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Ithaka

As you set out for Ithaka

hope the voyage is a long one,

full of adventure, full of discovery.

Laistrygonians and Cyclops,

angry Poseidon - don’t be afraid of them:

you’ll never find things like that on your way

as long as you keep your thoughts raised high,

as long as a rare excitement

stirs your spirit and your body.

Laistrygonians and Cyclops,

wild Poseidon - you won’t encounter them

unless you bring them along inside your soul,

unless your soul sets them up in front of you.

Hope the voyage is a long one.

May there be many a summer morning when,

with what pleasure, what joy,

you come into harbors seen for the first time;

may you stop at Phoenician trading stations

to buy fine things,

mother of pearl and coral, amber and ebony,

sensual perfume of every kind-

as many sensual perfumes as you can;

and may you visit many Egyptian cities

to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.

Arriving there is what you are destined for.

But do not hurry the journey at all.

Better if it lasts for years,

so you are old by the time you reach the island,

wealthy with all you have gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

C.P. Cavafy, Collected Poems.

Translated by Edmund Keeley and Philip Sherrard.

Edited by George Savidis. Revised Edition.

Princeton University Press, 1992
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Philosophical statement that motivated this work

It is a common saying that nobody understands quantum mechanics. I would rather

say that nobody understands quantum and classical physics. This is because when it

comes to science one has to rethink and redefine the meaning of the word understand.

The author’s opinion is that science, and in particular physics, is a reverse engineering

problem with only tools mathematics and experiments. Nature has no laws, humans

map Nature to their own perspective with their reverse engineering tools and they code

Nature into rules.

This work was motived from personal curiosity of how things work; what are the rules.

By things I mean physical entities that have some importance on technology or are of

fundamental interest. So, what more fundamental and fascinating than quantum light

and its manipulation?





Abstract

The processing of information based on the generation of common quantum optical

states (e.g., coherent states) and the measurement of the quadrature components of the

light field (e.g., homodyne detection) is often referred to as continuous-variable quantum

information processing. It is a very fertile field of investigation, at a crossroads between

quantum optics and information theory, with notable successes such as unconditional

continuous-variable quantum teleportation or Gaussian quantum key distribution. In

quantum optics, the states of the light field are conveniently characterized using a phase-

space representation (e.g., Wigner function), and the common optical components effect

simple affine transformations in phase space (e.g., rotations). In quantum information

theory, one often needs to determine entropic characteristics of quantum states and

operations, since the von Neuman entropy is the quantity at the heart of entanglement

measures or channel capacities. Computing entropies of quantum optical states requires

instead turning to a state-space representation of the light field, which formally is the

Fock space of a bosonic mode.

This interplay between phase-space and state-space representations does not represent

a particular problem as long as Gaussian states (e.g., coherent, squeezed, or thermal

states) and Gaussian operations (e.g., beam splitters or squeezers) are concerned. In-

deed, Gaussian states are fully characterized by the first- and second-order moments

of mode operators, while Gaussian operations are defined via their actions on these

moments. The so-called symplectic formalism can be used to treat all Gaussian trans-

formations on Gaussian states, including mixed states of an arbitrary number of modes,

and the entropies of Gaussian states are directly linked to their symplectic eigenvalues.

This thesis is concerned with the Gaussian transformations applied onto arbitrary states

of light, in which case the symplectic formalism is inapplicable and this phase-to-state

space interplay becomes highly non trivial. A first motivation to consider arbitrary (non-

Gaussian) states of light results from various Gaussian no-go theorems in continuous-

variable quantum information theory. For instance, universal quantum computing, quan-

tum entanglement concentration, or quantum error correction are known to be impos-

sible when restricted to the Gaussian realm. A second motivation comes from the fact

that several fundamental quantities, such as the entanglement of formation of a Gaussian

state or the communication capacity of a Gaussian channel, rely on an optimization over

all states, including non-Gaussian states even though the considered state or channel

is Gaussian. This thesis is therefore devoted to developing new tools in order to com-

pute state-space properties (e.g., entropies) of transformations defined in phase-space or

conversely to computing phase-space properties (e.g., mean-field amplitudes) of trans-

formations defined in state space. Remarkably, even some basic questions such as the



entanglement generation of optical squeezers or beam splitters were unsolved, which

gave us a nice work-bench to investigate this interplay.

In the first part of this thesis (Chapter 3), we considered a recently discovered Gaussian

probabilistic transformation called the noiseless optical amplifier. More specifically, this

is a process enabling the amplification of a quantum state without introducing noise.

As it has long been known, when amplifying a quantum signal, the arising of noise is

inevitable due to the unitary evolution that governs quantum mechanics. It was recently

realized, however, that one can drop the unitarity of the amplification procedure and

trade it for a noiseless, albeit probabilistic (heralded) transformation. The fact that the

transformation is probabilistic is mathematically reflected in the fact that it is non trace-

preserving. This quantum device has gained much interest during the last years because

it can be used to compensate losses in a quantum channel, for entanglement distilla-

tion, probabilistic quantum cloning, or quantum error correction. Several experimental

demonstrations of this device have already been carried out. Our contribution to this

topic has been to derive the action of this device on squeezed states and to prove that it

acts quite surprisingly as a universal (phase-insensitive) optical squeezer, conserving the

signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at

the same time. This also brought into surface a paradoxical effect, namely that such a

device could seemingly lead to instantaneous signaling by circumventing the quantum

no-cloning theorem. This paradox was discussed and resolved in our work.

In a second step, the action of the noiseless optical amplifier and it dual operation (i.e.,

heralded noiseless attenuator) on non-Gaussian states has been examined. We have

observed that the mean-field amplitude may decrease in the process of noiseless amplifi-

cation (or may increase in the process of noiseless attenuation), a very counterintuitive

effect that Gaussian states cannot exhibit. This work illustrates the above-mentioned

phase-to-state space interplay since these devices are defined as simple filtering opera-

tions in state space but inferring their action on phase-space quantities such as the mean-

field amplitude is not straightforward. It also illustrates the difficulty of dealing with

non-Gaussian states in Gaussian transformations (these noiseless devices are probabilis-

tic but Gaussian). Furthermore, we have exhibited an experimental proposal that could

be used to test this counterintuitive feature. The proposed set-up is feasible with cur-

rent technology and robust against usual inefficiencies that occur in optical experiment.

Noiseless amplification and attenuation represent new important tools, which may offer

interesting perspectives in quantum optical communications. Therefore, further under-

standing of these transformations is both of fundamental interest and important for the

development and analysis of protocols exploiting these tools. Our work provides a better

understanding of these transformations and reveals that the intuition based on ordinary

(deterministic phase-insensitive) amplifiers and losses is not always applicable to the



noiseless amplifiers and attenuators. In the last part of this thesis, we have considered

the entropic characterization of some of the most fundamental Gaussian transformations

in quantum optics, namely a beam splitter and two-mode squeezer. A beam splitter ef-

fects a simple rotation in phase space, while a two-mode squeezer produces a Bogoliubov

transformation. Thus, there is a well-known phase-space characterization in terms of

symplectic transformations, but the difficulty originates from that one must return to

state space in order to access quantum entropies or entanglement. This is again a hard

problem, linked to the above-mentioned interplay in the reverse direction this time. As

soon as non-Gaussian states are concerned, there is no way of calculating the entropy

produced by such Gaussian transformations. We have investigated two novel tools in or-

der to treat non-Gaussian states under Gaussian transformations, namely majorization

theory and the replica method.

In Chapter 4, we have started by analyzing the entanglement generated by a beam

splitter that is fed with a photon-number state, and have shown that the entanglement

monotones can be neatly combined with majorization theory in this context. Majoriza-

tion theory provides a preorder relation between bipartite pure quantum states, and

gives a necessary and sufficient condition for the existence of a deterministic LOCC (lo-

cal operations and classical communication) transformation from one state to another.

We have shown that the state resulting from n photons impinging on a beam splitter

majorizes the corresponding state with any larger photon number n′ > n , implying

that the entanglement monotonically grows with n, as expected. In contrast, we have

proven that such a seemingly simple optical component may have a rather surprising

behavior when it comes to majorization theory: it does not necessarily lead to states

that obey a majorization relation if one varies the transmittance (moving towards a

balanced beam splitter). These results are significant for entanglement manipulation,

giving rise in particular to a catalysis effect. Moving forward, in Chapter 5, we took

the step of introducing the replica method in quantum optics, with the goal of achiev-

ing an entropic characterization of general Gaussian operations on a bosonic quantum

field. The replica method, a tool borrowed from statistical physics, can also be used

to calculate the von Neumann entropy and is the last line of defense when the usual

definition is not practical, which is often the case in quantum optics since the defini-

tion involves calculating the eigenvalues of some (infinite-dimensional) density matrix.

With this method, the entropy produced by a two-mode squeezer (or parametric optical

amplifier) with non-trivial input states has been studied. As an application, we have

determined the entropy generated by amplifying a binary superposition of the vacuum

and an arbitrary Fock state, which yields a surprisingly simple, previously analytical

expression. Finally, we have turned to the replica method in the context of field theory,

and have examined the behavior of a bosonic field with finite temperature when the



temperature decreases. To this end, information theoretical tools were used, such as

the geometric entropy and the mutual information, and interesting connection between

phase transitions and informational quantities were found. More specifically, dividing

the field in two spatial regions and calculating the mutual information between these

two regions, it turns out that the mutual information is non-differentiable exactly at the

critical temperature for the formation of the Bose-Einstein condensate.

The replica method provides a new angle of attack to access quantum entropies in

fundamental Gaussian bosonic transformations, that is quadratic interactions between

bosonic mode operators such as Bogoliubov transformations. The difficulty of accessing

entropies produced when transforming non-Gaussian states is also linked to several cur-

rently unproven entropic conjectures on Gaussian optimality in the context of bosonic

channels. Notably, determining the capacity of a multiple-access or broadcast Gaussian

bosonic channel is pending on being able to access entropies. We anticipate that the

replica method may become an invaluable tool in order to reach a complete entropic

characterization of Gaussian bosonic transformations, or perhaps even solve some of

these pending conjectures on Gaussian bosonic channels.
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Chapter 1

Quantum mechanics

1.1 The very basics

1.1.1 Pure states and linear operators

In quantum mechanics the most fundamental concept is the pure state, i.e. a mathemat-

ical entity that encodes the physical system and can provide any information about the

system under investigation. More precisely, to any system that does not interact with

anything, i.e. a closed system, we associate a complex vector space with inner product

which is more commonly known as Hilbert space [Zet01]. A pure state is a complex

vector on Hilbert space normalized to unity. That means that if {|k〉} is set of vectors

that forms a basis with the properties of completeness,

∑
k

|k〉〈k| = I (1.1)

and orthonormality,

〈m|k〉 = δmk, (1.2)

where I is the unit matrix and δmk is the Kronecker delta. The most important of the

above properties is the one that refers to completeness.

Any pure state |ψ〉 can therefore be expressed as a linear superposition of the basis’

vectors,

|ψ〉 =
∑
k

ck|k〉 (1.3)

1
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where ck are complex numbers. The absolute square |cj |2 is interpreted as the probability

that the physical system is corresponding to the vector |j〉. All the probabilities should

always satisfy the condition of normalization,

∑
k

|ck|2 = 1. (1.4)

The matrix representation of a pure state reads,

|ψ〉 =


c0

c1

...

 . (1.5)

Note that a pure state does not have a unique representation on Hilbert space. In

fact the eigenvectors {|k〉} of any operator Â form a complete and orthogonal basis as

long as Â is Hermitian (in infinite dimension however, the eigenvectors of a Hermitian

operator do not necessarily form a basis) [Sak94], i.e. it satisfies Â† = Â. Also we may

describe many systems at the same time by taking the tensor product of single-system

pure states,

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . = |ψ1ψ2 . . .〉. (1.6)

Let us consider |ΨAB〉 to be a pure state describing a bipartite system AB. Then there

exist two orthogonal and complete bases for systems A and B respectively, {|iA〉} and

{|iB〉}, such that,

|ΨAB〉 =
∑
i

λi|iA〉|iB〉. (1.7)

This representation is called Schmidt decomposition [NC00]. The non-negative real

numbers λi satisfy
∑

i λ
2
i = 1.

An operation on a quantum mechanical system, that is in a separable state, is described

as the action of some operator Ô on |Ψ〉. If the operator involves all states |ψj〉 of

the tensor product, then the operator describes a global operation. If it involves only

some of them, then the operator describes a local operation. In quantum information

processing it is common to have several local operations and moreover to allow classical

communication between the isolated subsystems. That case is referred to as an LOCC

(Local Operation and Classical Communication) protocol. The classical communication

gives information about the outcome of some previous local measurement and serves as

to what local operation should one use next in order to achieve some desired outcome.
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The operators that act on pure states should be unitary, Ô†Ô = I so that condition (1.4)

is satisfied. Another important remark is that in general when two (or more) operators

act on a pure state, the order of action plays a role,

Ô1Ô2|Ψ〉 6= Ô2Ô1|Ψ〉, (1.8)

therefore it is logical to define the so-called commutator,[
Ô1, Ô2

]
= Ô1Ô2 − Ô2Ô1. (1.9)

An important question is how a pure state evolves in time. It can be argued that the

time evolution of a pure state is given by the Schrödinger equation (see for example a

modern approach [HR02]),

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (1.10)

where Ĥ is the Hamiltonian of the system. For two time instants t2 > t1 from equation

(1.10) we can write,

|ψ(t2)〉 = Û(t1, t2)|ψ(t1)〉 (1.11)

where,

Û(t1, t2) = exp

[
− i
~

(t2 − t1)Ĥ

]
|ψ(t1)〉 (1.12)

is a unitary operator. Note that the Hamiltonian in equation (1.12) is assumed to be

time independent. The Hamiltonian is a Hermitian operator and corresponds to the

energy of the system in the sense that the eigenvalues of Ĥ gives the accessible energy

levels. Let the eigenvalues-eigenvectors problem for the Hamiltonian be,

Ĥ|ek〉 = ek|ek〉 (1.13)

then the mean value of the energy for a system in pure state |ψ〉 reads,

〈Ĥ〉 = 〈ψ|Ĥ|ψ〉 =
∑
k

|ck|2ek. (1.14)

In fact all physical observables correspond to Hermitian operators Ô [Zet01]. If the

system is described by a pure state |ψ〉 then the mean value reads,

〈Ô〉 = 〈ψ|Ô|ψ〉. (1.15)
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The standard deviation of an observable is given by [Zet01],

∆Ô =

√
〈Ô2〉 − 〈Ô〉2. (1.16)

In general for two observables Â and B̂, it can be proven that,

∆Â∆B̂ ≥ 1

2
|〈[Â, B̂]〉| (1.17)

which is the Heisenberg’s uncertainty principle.

1.1.2 Mixed states and density operator

Given a pure state |ψ〉, we can construct the density operator, that is another useful

object and is found by taking the outer product,

ρ̂ = |ψ〉〈ψ| (1.18)

so if the system is described by a the pure state |ψ〉 =
∑

k ck|k〉, then the matrix

representation of the density operator reads,

ρ̂ =


c0

c1

...

(c∗0 c∗1 . . .
)

=


|c0|2 c0c

∗
1 . . .

c1c
∗
0 |c1|2 . . .

...
...

. . .

 (1.19)

where now the normalization condition (1.4) involves the trace of the density matrix,

namely,

tr(ρ̂) = 1. (1.20)

The density operator becomes handy when the physical system cannot be described by

a vector on Hilbert space, that is when we deal with statistical mixtures of pure states

[Sak94], i.e. mixed states,

ρ̂ =
∑
i

pi|ψi〉〈ψi| (1.21)

where
∑

i pi = 1. Since we can describe both pure and mixed states with the density

operator formalism, henceforth when we refer to a state we will mean the density opera-

tor. In general the conditions that an operator ρ̂ should satisfy in order to be considered
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as a valid density operator are,

trρ̂ = 1 (1.22)

ρ̂ ≥ 0 (1.23)

ρ̂ = ρ̂† (1.24)

where the second condition should be interpreted as that the density operator should be

positive semidefinite, i.e. to have non-negative eigenvalues. From the last property, i.e

that ρ̂ is Hermitian, and the simple observation that the state describes something that

exists, we can argue that the density operator corresponds to a physical quantity.

Let us consider a composite system, i.e. a system that we divide arbitrary in several

subsystems. If the subsystems are independent, then the density operator of the sys-

tem is the tensor product of the density operators of the subsystems. If the system

is described by a mixed state of possibly correlated subsystems, then in order to find

the density matrix that corresponds to one of the subsystems, i.e. the reduced density

operator, we have to trace out the degrees of freedom that do not belong to subsystem

under consideration. Namely, if the density matrix ρ̂s of the system has a representation

on some basis,

ρ̂s =
∑

k1,l1,k2,l2,...

ck1,l1,k2,l2...|k1, k2, . . .〉〈l1, l2, . . . | (1.25)

then, for example, by tracing out the degrees of freedom j ≥ 2, we find a reduced density

operator,

ρ̂sub =
∑

k1,l1,k2,l2,...

ck1,l1,k2,l2,...〈k2, . . . |l2, . . .〉|k1〉〈l1|. (1.26)

If the subsystem under consideration is named A while the traced out subsystems are

referred as B then the trace out procedure, called the partial trace, is denoted as,

ρ̂sub = trB(ρ̂s). (1.27)

When we consider the density operator of some subsystem with density operator ρ̂sub,

the mean value of some Hermitian operator Â reads [Sak94],

〈Â〉 = tr(Âρ̂sub). (1.28)

Let us now introduce the dynamics, that is how the state of system evolves in time. Any
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quantum operation T (ρ̂) on some state ρ̂, is the result of the composition of elementary

operations. More precisely, the evolution of a state can break down to the following

fundamental actions [BL07],

unitary dynamics

ρ̂′ = Û ρ̂Û †, (1.29)

composition of systems that do not interact

ρ̂′ = ρ̂⊗ σ̂, (1.30)

partial trace

see (1.27)

and

von-Neumann measurements

that is orthogonal projections that we will introduce in section 1.1.3.

The transformation T (.) must map density operators to density operators, first of all

that means that the map T (.) must be trace preserving, i.e. the output operator must

have trρ′ = 1. The other condition for T (.) comes from considering that the map T (.)

may act only in one of the subsystems, while in the other part of the system nothing

happens or equivalently the identity matrix is applied. So the map now reads T ⊗ I(.)
and we require that ρ̂′ = T ⊗ I(ρ̂) is a positive operator. That imposes the condition

that the map T (.) is completely positive.

In this way, all legitimate maps are called completely positive trace preserving maps,

abbreviated CPTP maps. As we will see in section 2.1.4 and in chapter 3 the trace

preservation property may be interpreted as the map being deterministic. Therefore if

we consider completely positive but trace decreasing maps, abbreviated CPTD maps,

the operation becomes probabilistic.

Completely positive maps can assume the form [BL07],

T (ρ̂) =
∑
i

Âiρ̂Â
†
i (1.31)

which is referred to as Krauss decomposition while Âi are the Krauss operators. If

moreover
∑

i Â
†
i Âi = I then the map is trace preserving while if

∑
i Â
†
i Âi < I it is trace

decreasing. If
∑

i ÂiÂ
†
i = I then the map is unital, i.e. it maps the identity matrix to

the identity matrix.
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Another way to express the completely positive maps comes naturally if we consider

what really happens in a generic quantum procedure. Namely, let us consider as system

of interest ρ̂ (the open system) and some environment ρ̂e that we do not have access

to or we do not care to have access to. The initial state ρ̂⊗ ρ̂e is transformed by some

global unitary operator as Û(ρ̂ ⊗ ρ̂e)Û †. We want to know what happens to the open

system. To this end we trace out the degrees of freedom of the environment,

T (ρ̂) = tre

(
Û(ρ̂⊗ ρ̂e)Û †

)
(1.32)

where the last formula is equivalent to equation (1.31) [BL07].

The maps T (.) represent quantum procedures that usually are desired to result to some

target state σ̂. In many cases, mainly because of the presence of some environment, the

output state ρ̂ is not the target state. An important quantity would be how close the

output state is to the target state. Such a figure of merit is the fidelity defined as,

F (ρ̂, σ̂) = tr

√
ρ̂1/2σ̂ρ̂1/2. (1.33)

It can be proven that the fidelity is symmetric under interchange of the its arguments

[NC00]. Often, the target state is a pure state, in that case the fidelity reads,

F (ρ̂, |ψ〉) =
√
〈ψ|ρ̂|ψ〉. (1.34)

The time evolution of the open system’s density matrix can be found from the Master

equation of the Lindblad type [BP02],

d

dt
ρ̂(t) = − i

~
[Ĥs, ρ̂(t)]−

∑
i

γi
2

(
L̂†i L̂iρ̂(t) + ρ̂(t)L̂†i L̂i − 2L̂iρ̂(t)L̂†i

)
, (1.35)

where in the right hand side Ĥs is the Hamiltonian of the system and therefore the first

term gives the unitary evolution. The second term gives the non-unitary contribution

to the evolution. The operators L̂i are called Lindblad operators but they will not be

used in this work.

1.1.3 Projective and POVM measurements

Let a Hermitian operator N̂ be a physical quantity that solves the eigenvalues-eigenvectors

problem,

N̂ |ψn〉 = n|ψn〉. (1.36)
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Let us define the operators |ψn〉〈ψn| that we call projective measurements. Also, let a

system ρ̂ be expressed in the basis that the eigenvectors of N̂ provide,

ρ̂ =
∑
n,m

cnm|ψn〉〈ψm|. (1.37)

Then it is easy to see that the probability that the system is found to be in the state

|ψk〉 is given by,

tr(ρ̂|ψk〉〈ψk|) = |ckk|2. (1.38)

Immediately after the measurement the state is found to be |ψk〉.

In several quantum information tasks, as for example in quantum state discrimination,

one is interested in the probabilities of several outcomes and not in the state after the

measurement. In that case one can define more general measurement operators, let Êm,

that are not orthogonal rank-one projectors but nevertheless positive definite. We call

the operators Êm Positive Operator-Valued Measure (abbreviated POVM) element. A

set of POVM elements {Êm} that satisfies
∑

m Êm = I, is simply called POVM and is

sufficient to determine the probabilities pm of different measurements outcomes [NC00],

pm = tr(ρ̂Êm). (1.39)

1.2 Entanglement and entropy

1.2.1 The idea of entanglement

It is straightforward to see that when two or more states interact under some Hamil-

tonian, then the total outcome state may not be written as a tensor product. In such

a case we say that the state is entangled [PV07]. For example if we consider that the

transformation,

Û =
1√
2


1 0 0 1

0 −1 1 0

0 1 1 0

1 0 0 −1

 (1.40)

acts on the pure state |i〉 = |10〉 then the output state |f〉 reads,

|f〉 =
1√
2

(|10〉+ |01〉) (1.41)
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and that is an entangled state. In fact the state in (1.41) is a maximally entangled

state. In a d−dimensional Hilbert space, maximally entangled states are local unitarily

equivalent to the state,

|Ψ〉 =
1√
d

(|00〉+ |11〉+ . . .+ |d− 1d− 1〉). (1.42)

It can be proven that the entanglement cannot increase under LOCC transformations

and it remains unchanged under local unitary operations. The latter sentence rises the

question of how much entanglement one state possess. This question is the starting

point of a vast field of research. In this thesis we will take under consideration pure

entangled states for which, in general, the starting point to understand the quantification

of entanglement is to make the simple observation that when we take the partial trace

of some entangled state we end up with a mixed state. So the question is to find the

measures of mixedness of some density operator. As a result of Schmidt decomposition

(1.7), the mixed states obtained when tracing out one or the other subsystem have the

same set of eigenvalues, hence the same measures of mixedness. These measures should

increase when the entanglement is increasing, and that is how their name entanglement

monotones is justified.

1.2.2 von Neuman entropy and mutual information

Entanglement is a type of correlation that occurs in quantum systems. Correlation

means that a subsystem possess information on another subsystem of the whole system.

Therefore by tracing out one of the subsystems we loose a part of the available informa-

tion. Note that this makes apparent that information is understood and studied via its

loss.

A normal first thing to do is to define a quantity inspired by the classical entropy, namely

the von Neumann entropy (or simply entropy from now on),

S(ρ̂) = −tr(ρ̂ ln ρ̂). (1.43)

If the density operator ρ̂ has eigenvalues λi then the entropy reads,

S(ρ̂) = −
∑
i

λi lnλi. (1.44)

From the practical point of view, in order to find the entropy of some state we have to

find the eigenvalues of the matrix and then apply definition (1.44).
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The entropy is positive and concave to its arguments [NC00],

S

(∑
i

piρ̂i

)
≥
∑
i

piS(ρ̂i) (1.45)

where
∑

i pi = 1.

The entropy possess also a number of other interesting properties, namely for a bipartite

system described by the density operator ρ̂AB it holds that S(ρ̂A) = S(ρ̂B) as long as

ρ̂AB is pure state. Also the entropy is subadditive [NC00],

S(ρ̂AB) ≤ S(ρ̂A) + S(ρ̂B) (1.46)

and satisfies the triangle inequality,

S(ρ̂AB) ≥ |S(ρ̂A)− S(ρ̂B)|. (1.47)

Moreover it satisfies strong subadditivity [Weh78], namely for a tripartite system with

density matrix ρ̂ABC it holds,

S(ρ̂ABC) + S(ρ̂B) ≤ S(ρ̂AB) + S(ρ̂BC) (1.48)

Another interesting quantity, based on the entropy, is the mutual information [AC97a,

AC97b, Cer98],

I(A : B) = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB) (1.49)

that measures the common information that the two subsystems share.

1.2.3 Purity and Tsallis entropies

Mixed states always satisfy tr(ρ̂n) ≤ 1 for n ≥ 1 [NC00]. Note that the latter fact

introduces an interesting quantity, i.e. the Schmidt number, that is the number of the

non-zero Schmidt numbers as defined in equation (1.7).

For n = 2 we have the quantity µ2(ρ̂) = tr(ρ̂2) ≤ 1 that is the so-called purity [NC00].

In this thesis we will refer to all quantities tr(ρ̂n) as purities. Based on the purities we

can define a family of entanglement monotones, the Tsallis entropies of order α [Tsa88],

STα (ρ̂) =
1

α− 1

(
1− (‖λ̄‖α)α

)
(1.50)
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for α ∈ R and α 6= 1. By ‖λ̄‖α we denote the α-norm of the probability vector that the

eigenvalues of ρ̂ put together, so we can equivalently write,

STα (ρ̂) =
1

α− 1

(
1−

∑
i

λαi

)
. (1.51)

In many cases we will use the notation STα (λ̄) instead of STα (ρ̂). The Tsallis entropies are

positive and concave in their arguments [Vid00]. Note that in the limit α→ 1 the von-

Neumann entropy is recovered [Vid00] and as we will see in Chapter 5, that connection

is the initial point for the replica method.

1.2.4 Rényi entropies

One can define an infinite number of entanglement monotones. Here we will introduce

one more, namely the Rényi entropies [Ren60],

Sα(ρ̂) =
α

1− α ln ‖λ̄‖α =

=
1

1− α ln
∑
i

λαi (1.52)

for α ≥ 0 and α 6= 1. Like for the Tsallis entropies, in many cases we will use the

notation Sα(λ̄) instead of Sα(ρ̂).

In the limit α → 1 the von-Neumann entropy is recovered. For the Rényi entropies it

holds that S0 ≥ S1 ≥ S∞, as Jensen’s inequality implies. Also, the Rényi entropies are

positive and concave in their arguments [Vid00].

We will revisit these entanglement monotones in Chapter 4 where their neat connection

with majorization theory will provide some interesting and counter-intuitive results and

in Chapter 5 where the replica method will be introduced to quantum optics.



Chapter 2

Quantum optics

2.1 Electromagnetic field

2.1.1 Quantization of the electromagnetic field

The classical theory of electromagnetism is fully described by a seemingly simple set of

only five equations; the Maxwell equations and the Lorentz force. The Maxwell equations

in vacuum and without sources are [Jac98],

∇ ·B = 0 (2.1)

∇×E = −µ0
∂

∂t
B (2.2)

∇ ·E = 0 (2.3)

∇×B = ε0
∂

∂t
E (2.4)

where E is the electric field, B is the magnetic field, µ0 is the magnetic constant while ε0

is the electric permeability of the vacuum. The Lorentz force describes the force that a

moving charge q is feeling while it is moving with a velocity u within an electromagnetic

field [Jac98],

F = q(E + u×B). (2.5)

By introducing the vector potential A of the magnetic field and by using the Coulomb

gauge ∇ ·A = 0, we have the following expressions,

µ0B = ∇×A (2.6)

E = − ∂

∂t
A. (2.7)

12
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Equations (2.6) and (2.7) and the last Maxwell equation (2.4) give rise to the wave

equation without sources,

∇2A(r, t) =
1

c2

∂2

∂t2
A(r, t) (2.8)

where (r, t) are the spacetime coordinates and c = 1/
√
µ0ε0 is the speed of light in

vacuum.

By taking the Fourier transform of A(r, t), that is decomposing it into its orthonormal

modes, and using equations (2.7) and (2.8) we can write,

E(r, t) =
2∑
j=1

∫
d3k

√
~ωk
2ε0

εkj

(
αkje

i(k·r−ωkt) + α∗kje
−i(k·r−ωkt)

)
(2.9)

where k is the propagation vector, εkj is the polarization vector with j = 1, 2 the possible

polarizations, ωk is the angular frequency, αk is the complex amplitude of the k mode,

and ~ is the reduced Planck constant.

Now we have all we need to preform the quantization of the electromagnetic field. This is

achieved by upgrading the complex amplitude αk and its complex conjugate to operators.

This gives rise to the annihilation and creation operators [KL10],

αkj → âkj (2.10)

α∗kj → â†kj . (2.11)

Since photons are bosons we impose the following commutation relations,[
âkj , â

†
k′j′

]
= δkk′δjj′ (2.12)[

âkj , âk′j′
]

= 0 (2.13)[
â†kj , â

†
k′j′

]
= 0. (2.14)

The normal-ordered Hamiltonian of the quantized free electromagnetic field is,

Ĥ =

2∑
j=1

∑
k

~ωkj
(
N̂kj +

1

2

)
=
∑
k

ĥk (2.15)

where

N̂kj = â†kj âkj . (2.16)
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is the number operator. The Hamiltonian of the free quantized electromagnetic field is

the summation of an infinite number of harmonic oscillator’s Hamiltonians, one for each

mode.

One can define the following operators,

Q̂k =

√
~

2ωk

(
âk + â†k

)
(2.17)

P̂k = −i
√
~ωk

2

(
âk − â†k

)
(2.18)

that are the generalized position and momentum respectively of the quantum field. Note

that we have dropped the polarization index j for simplicity. The Hamiltonian (2.15)

yields the form,

ĥk =
1

2

(
P̂ 2
k + ω2

kQ̂
2
k

)
. (2.19)

The operators Q̂k and P̂k are called quadrature operators and are the observables cor-

responding to the electric and the magnetic amplitude of the electromagnetic field. The

quadrature operators satisfy the commutations relations,[
Q̂k, P̂k′

]
= i~δkk′ (2.20)

and from the commutation relation (2.20) one can derive the Heisenberg uncertainty

relation,

∆Q̂k∆P̂k ≥
~
2

(2.21)

that is an upper bound of the product of the standard deviations of the generalized

position and momentum.

For simplicity we drop the k index and we redefine the quadrature operators as follows,

q̂ =
√
ωQ̂ =

√
~
2

(
â+ â†

)
(2.22)

p̂ =
1
√
ωP̂

= −i
√
~
2

(
â− â†

)
. (2.23)

The quadrature operators q̂ and p̂ are Hermitian and therefore they satisfy the eigen-

system problem,

q̂|q〉 = q|q〉 (2.24)

p̂|p〉 = p|p〉. (2.25)
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with real eigenvalues q and p and orthogonal eigenvectors

〈q|q′〉 = δ(q − q′) (2.26)

〈p|p′〉 = δ(p− p′) (2.27)

that satisfy completeness relations,∫
dq|q〉〈q| = I (2.28)∫
dp|p〉〈p| = I. (2.29)

The two bases {|q〉} and {|p〉} are transformed to one-another via the Fourier transform,

|q〉 =
1√
π

∫
dpeiqp|p〉 (2.30)

|p〉 =
1√
π

∫
dqe−iqp|q〉. (2.31)

2.1.2 States of the electromagnetic field

2.1.2.1 Fock states

The number operator (2.16) satisfies the following eigenvalue-eigenvector problem,

N̂k|nk〉 = nk|nk〉 (2.32)

and therefore the Hamiltonian (2.15) has the same eigenvectors |nk〉 as N̂k, while its

eigenvalues read ~ωk(nk + 1/2). Since N̂k (and Ĥ) are hermitian operators the vectors

|nk〉 form a complete and orthogonal basis {|nk〉}, namely

〈nk|mk〉 = δnm (2.33)
∞∑
n=0

|nk〉〈nk| = 1. (2.34)

We refer to |nk〉 as number states or Fock states with photon number nk for the mode

k. Since {|nk〉} is a complete and orthogonal basis we can express any state |ψ〉 in this

basis,

|ψ〉 =
∑
n

cn|n〉 (2.35)
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where cn ∈ C and

∑
n

|cn|2 = 1. (2.36)

The annihilation operator âk subtracts a photon while the creation operator â†k adds a

photon when they act on |nk〉. This is described by the following relations,

âk|nk〉 =
√
nk|nk − 1〉 (2.37)

â†k|nk〉 =
√
nk + 1|nk + 1〉 (2.38)

and when the annihilation operator is acting upon the vacuum state |0〉 we get âk|0〉 = 0.

Clearly âk and â†k are non-hermitian operators, nevertheless they play an important role

in quantum optics.

2.1.2.2 Coherent states and displacement operator

The coherent state |α〉 is the eigenstate of the annihilation operator,

â|α〉 = α|α〉 (2.39)

where α is a complex number. The coherent state corresponds to quantum physical

system where the distribution of photons P (n) = |〈n|α〉|2 is easily proved to be the

Poisson distribution. Coherent states are a minimum uncertainty states, i.e. they achieve

the lower bound imposed by Heisenberg’s uncertainty relation [Leo10],

∆q̂∆p̂ =
~
2

(2.40)

and moreover,

∆q̂ = ∆p̂. (2.41)

The unitary displacement operator is defined as,

D̂(α) = eαâ
†−α∗â (2.42)

and if we act with the displacement operator on the vacuum state we take the coherent

state,

D̂(α)|0〉 = e−|α|
2/2eαa

† |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 = |α〉. (2.43)
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The displacement operator has the following properties as well,

D̂†(α) = D̂−1(α) = D̂(−α). (2.44)

It is not difficult to find how the field operators transform under the action of the

displacement operator [KL10],

D̂†(α)âD̂(α) = â+ α (2.45)

D̂†(α)â†D̂(α) = â+ α∗ (2.46)

D̂†(α)q̂D̂(α) = q̂ +
√

2~<(α) (2.47)

D̂†(α)p̂D̂(α) = p̂+
√

2~=(α) (2.48)

while action of the displacement operator on the position eigenstate yields,

D̂(α)|q〉 = ei
√

2q=(α)/
√
~|q +

√
2~<(α)〉. (2.49)

From the discussion so far it is apparent that the coherent state is the vacuum state

displaced on phase space.

As we saw already the expansion of the coherent state on the Fock basis is given by,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.50)

From equation (2.50) we can easily find that the probability of measuring n photons in

the coherent state |α〉 is given by the Poisson distribution,

P (n) = |〈n|α〉|2 = e−〈n〉
〈n〉n
n!

(2.51)

where 〈n〉 = |α|2 is the mean and the variance of the photon number distribution.

Let us close the discussion on the coherent states by saying that they form a basis,

something that is useful for many calculations. It requires care given the fact that the

basis they form is not orthogonal since the inner product of two different coherent states

is not zero,

〈β|α〉 = e−
1
2

(|α|2+|β|2−2β∗α) 6= δ(α− β) (2.52)

moreover the basis is over-complete,∫
d2α|α〉〈α| = πI (2.53)
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where the double integral means that we have to integrate with respect to the real and

imaginary part of α. Note that no subset of an over-complete basis forms a complete

basis.

2.1.2.3 Squeezed states and squeezing operator

Coherent states are not the only ones that possess the minimum amount of uncertainty.

There is also the class of squeezed states that, just like coherent states, achieve the

bound imposed by Heisenberg’s uncertainty relation but their quadratures’ variances

are not equal. A squeezed state can be understood as a state that occupies the same

volume in phase space as a coherent state but is squeezed in some direction.

We will define the single-mode squeezed state by first introducing the squeezing operator,

S(ξ) = e−
ξ
2
â†2+ ξ∗

2
â2

(2.54)

where ξ = |ξ|eiφ, |ξ| is the squeezing parameter and φ is the squeezing angle. A single-

mode squeezed state |α, ξ〉 is produced when we act on the vacuum state |0〉 with the

squeezing operator and then by displacing it using the operator defined in (2.42),

|α, ξ〉 = D(α)S(ξ)|0〉. (2.55)

Note that the operators D(α) and S(ξ) do not commute and in general it holds that,

|α, ξ〉 = S(ξ)D(β)|0〉 (2.56)

where β = α cosh |ξ|+ α∗eiφ sinh |ξ|.

Just like in the case of the displacement operator, for the single-mode squeezing operator

it holds that S(ξ)† = S−1(ξ) = S(−ξ) and one can derive the following transformations

[Ors07],

S(ξ)†âS(ξ) = â cosh |ξ| − â†eiφ sinh |ξ| (2.57)

S(ξ)†â†S(ξ) = â† cosh |ξ| − âe−iφ sinh |ξ| (2.58)

from where one may derive the transformations for q̂ and p̂ as well.
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Single-mode squeezed states can be expanded in the Fock basis as follows [GA90],

|α, ξ〉 =
1√

cosh r
exp

{
− |α|

2 + α∗2eiφ tanh r

2

}
×
∞∑
n=0

Hn

(
α+ α∗eiφ tanh r

(2eiφ tanh r)1/2

) (
eiφ tanh r

2

)n/2 |n〉√
n!

(2.59)

where Hn(x) is the Hermite polynomial of order n. From the expansion (2.59) one

can find the distribution Psq(n) = |〈n|α, ξ〉|2 of the photon number for single-mode

squeezed. The mean photon number for single-mode squeezed state is found to be

〈n̂〉 = |α|2 + sinh2 |ξ|.

2.1.2.4 Two-mode squeezed states and two-mode squeezing operator

The single-mode squeezing can be generalized into the two-mode squeezing operator,

S(ξ) = e−ξâ
†
1â
†
2+ξ∗â1â2 . (2.60)

Where ξ = |ξ|eiφ is as defined before in the case of the single-mode squeezer. As it is

apparent from its name, the two-mode squeezer acts on two-mode state. The action

of the two-mode squeezer on the two-mode vacuum state |00〉 produces the two-mode

vacuum squeezed state which may be expressed on the Fock basis,

|00, ξ〉 =
1

cosh |ξ|
∑
n=0

(−ξ)n
|ξ|n tanhn |ξ||n, n〉. (2.61)

Acting on the previous state with two displacement operators, one for each mode, a

general two-mode squeezed state is produced. Note that in (2.61) it is apparent that

the two-mode squeezing operator produces pairs of photons.

The modes are transformed as follows [Ors07],

S(ξ)†âS(ξ) = â1 cosh |ξ| − â†2eiφ sinh |ξ| (2.62)

S(ξ)†â†S(ξ) = â†1 cosh |ξ| − â2e
iφ sinh |ξ|. (2.63)

2.1.2.5 Statistical mixtures

So far we have introduced the states of the electromagnetic field that plays an important

role in quantum optics. All of these states were pure. In many situations though we

deal with mixed states; states that are statistical mixtures of pure states. A statistical

mixture of pure states can be represented on any complete or overcomplete basis, as for
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example the Fock basis,

ρ̂ =
∑
n,m

ρnm|n〉〈m| (2.64)

where
∑

n ρnn = 1. An important example of mixed state is the thermal radiation ρ̂th.

For thermal equilibrium at inverse temperature βe we have ρnm = Pnδn,m with,

Pn =
[
1− e−~ωβe

]
e−~nωβe (2.65)

where Pn is the probability that one mode of the field is excited with n photons. It is

not difficult to find that,

ρ̂th =
∑
n

〈n̂〉n
(1 + 〈n̂〉)n+1

|n〉〈n| (2.66)

where 〈n̂〉 is the mean photon number of the thermal field,

〈n̂〉 =
1

e~ωβe − 1
. (2.67)

The thermal state will come up naturally in section 2.1.3 where the two-mode squeezing

operator will serve as an amplifier and it will be discussed again in section 2.2.

2.1.3 Quantum optical transformations

  

Figure 2.1: A general unitary transformation Û is acting in some initial state
|ψ〉. In order to find how to transform |ψ〉 we have to find how the modes
â1, . . . , âj , . . . are transformed into b̂1, . . . , b̂j , . . ..
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In this thesis we will consider quantum optical transformations and we will explore

several of their aspects. Therefore it is necessary to explain how a quantum optical

element works from a mathematical point of view. Quantum optical transformation

may be divided into two groups; the passive and the active ones. Passive are those

that conserve the photon number of the input while active are those that do not. The

quantum optical transformations are unitary transformations and there ought to be a

Hermitian Hamiltonian that generates them. Here, we will give the transformations of

the modes of some input field under the action of some unitary operation Û that is

generated by some Hamiltonian through Û = e−
i
~ Ĥ .

2.1.3.1 Phase shift

  

Figure 2.2: Phase shifter.

The Hamiltonian that corresponds to the evolution of the free field mode through free

space without interaction with a medium reads,

Ĥφ = ~φâ†â (2.68)

this Hamiltonian may be written in terms of the number operator n̂ = â†â and that

way it becomes apparent that the generator of the phase shifting is the operator n̂. The

corresponding unitary transformation reads,

Ûφ = exp

(
− i
~
Ĥφ

)
= exp (−iφn̂) . (2.69)
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The single-mode field is transformed as,

b̂ = ÛφâÛ
†
φ = âe−iφ. (2.70)

The phase shifter is the most simple passive optical transformation.

2.1.3.2 Beam splitter

  

Figure 2.3: Beam splitter.

The beam splitter is a fundamental passive optical element. It can be realized for

example with a simple glass plate with thin coating and no additional (pump) energy.

Roughly speaking, the beam splitter absorbs an incoming photon and creates a new one

in the output modes. This is described by the Hamiltonian,

Ĥθ = ~θeiϕâ†1â2 + ~θe−iϕâ1â
†
2. (2.71)

The modes’ transformation reads [KL10],

b̂1 = Û â1Û
† = cos θâ1 − ieiϕ sin θâ2 (2.72)

b̂2 = Û â2Û
† = −ie−iϕ sin θâ1 + cos θâ2 (2.73)

or in matrix form, (
b̂1

b̂2

)
=

(
cos θ −ieiϕ sin θ

−ie−iϕ sin θ cos θ

)(
â1

â2

)
. (2.74)
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By choosing appropriate phase reference, we usually set ϕ = 0 or ϕ = π/2. Note that the

fact that the beam splitter is a passive element is reflected in the fact that transformation

(2.74) does not mix â with â†, so that the total photon number â†1â1 + â†2â2 is conserved.

2.1.3.3 One-mode squeezer

Figure 2.4: One-mode squeezer.

One basic non photon-number preserving optical transformation is the one-mode squeezer.

This optical element (and the two-mode squeezer that we consider next) adds or removes

energy to the initial field by exploiting the non-linear features of dielectric media. This

transformation, that mixes annihilation and creation operators, is generated by the fol-

lowing Hamiltonian,

Ĥξ,ϕ = ~ξeiϕâ2 + ~ξe−iϕâ†2. (2.75)

where as we have already seen ξ = |ξ|eiφ, with |ξ| the squeezing parameter and φ the

squeezing angle. In matrix form the transformation reads,(
b̂

b̂†

)
=

(
cosh 2ξ −ie−iϕ sinh 2ξ

ieiϕ sinh 2ξ cosh 2ξ

)(
â

â†

)
. (2.76)

If we take for example the vacuum state |0〉 as an initial state, we obtain the squeezed

state as defined in equation (2.55). We also note that the mean photon number n̂ =

sinh2 |ξ|.
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2.1.3.4 Two-mode squeezer

Figure 2.5: Two-mode squeezer.

The two mode squeezer is a transformation generated by the Hamiltonian,

Ĥξ,ϕ = ~ξeiϕâ1â2 + ~ξe−iϕâ†1â
†
2 (2.77)

and the corresponding matrix form of the modes’ transformation is found to be,
b̂1

b̂†1

b̂2

b̂†2

 =


cosh ξ 0 0 −ieiϕ sinh ξ

0 cosh ξ ie−iϕ sinh ξ 0

0 ieiϕ sinh ξ cosh ξ 0

−ie−iϕ sinh ξ 0 0 cosh ξ




â1

â†1

â2

â†2

 . (2.78)

If we take for example as initial state the two-mode state |α0〉 and we apply the two-

mode squeezing operator, then the reduced output, i.e. the state in one of the output

modes, is the thermal state,

ρ̂th = (1− |τ |2)
∑
n

|τ |2n|n〉〈n| (2.79)

where |τ | = tanh |ξ|. If (2.79) is compared with the density matrix (2.66) we see imme-

diately that 〈n̂〉 = sinh2 |ξ|.

2.1.3.5 Bloch-Messiah reduction

Let us first introduce briefly the notion of normal modes. As it is understood so far

a mode operator is transformed following a unitary matrix that describes the transfor-

mation that is generated by some Hamiltonian Ĥ. This Hamiltonian can always be
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diagonalized by some unitary matrix and be written in the form,

Ĥ =
~
2

∑
i

d̂†i d̂i (2.80)

the modes d̂i are the normal modes of the field.

In general all Gaussian quantum optical transformations are described by the Bogoliubov

transformations [KL10], namely,

b̂i =
∑
j

Aij âj +Bij â
†
j (2.81)

b̂†i =
∑
j

B∗ij âj +A∗ij â
†
j . (2.82)

Since the operators b̂i and b̂†i must be annihilation and creation operators they should

obey the correct commutation relations,[
b̂i, b̂

†
j

]
= δij (2.83)[

b̂i, b̂j

]
=

[
b̂†i , b̂

†
j

]
= 0. (2.84)

The commutations relations (2.83) and (2.84) impose some restrictions on the matrices

A and B appearing in equations (2.81) and (2.82),

ABT =
(
ABT

)T
(2.85)

AA† = BB† + I. (2.86)

The inverse transformations to equations (2.81) and (2.82) read,

âi =
∑
j

A∗ij b̂j −B∗ij b̂†j (2.87)

â†i =
∑
j

(−Bij)b̂j +Aij b̂
†
j (2.88)

while the corresponding restrictions for A and B read,

A†B =
(
A†B

)T
(2.89)

A†A =
(
B†B

)T
+ I. (2.90)
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In general the matrices A and B are simultaneously diagonalized according to the sin-

gular value decomposition problem,

A = UADV† (2.91)

B = UBDW†. (2.92)

The restrictions (2.89) and (2.90) lead to the relation V∗ = W. The singular value

decomposition problem now reads,

A = UADV† (2.93)

B = UBDVT . (2.94)

If we organize the modes in vectors ā = (â1, . . . , âi, . . .) and b̄ =
(
b̂1, . . . , b̂i, . . .

)
, the

Bogoliubov transformation reads,(
b̄

b̄†

)
=

(
U 0

0 U∗

)(
AD BD

B∗D A∗D

)(
V† 0

0 V∗

)(
ā

ā†

)
. (2.95)

At this point there is an important observation to be made. The first and the last block

diagonal matrices in the right hand side of equation (2.95) do not mix annihilation and

creation operators, therefore they represent passive optical elements, i.e. beam splitters

and phase shifters. The matrix in the middle mixes annihilation and creation operators

so it correspond to active optical elements and since the matricesAD andBD are diagonal

then these optical elements are single-mode squeezers. The diagonal elements of AD are

proportional to cosh |ξ| while those of BD are proportional to sinh |ξ|. This is what is

known as the Bloch-Messiah reduction. Any quantum optical transformation may be

decomposed as the the successive action of passive optical interferometers, single-mode

squeezers and passive optical interferometers again. From this point of view the most

fundamental objects in quantum optics are beam splitters, phase shifters and single-

mode squeezers [Bra05].

By substituting equations (2.81) and (2.82) into (2.80), considering the operators b̂† and

b̂ we get the most general quadratic Hamiltonian,

Ĥ =
~
2

∑
ij

(
âiFij âj + 2â†iGij âj + â†iF

∗
ij â
†
j

)
(2.96)
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where

Fij =
∑
k

AkiB
∗
kj (2.97)

Gij =
∑
k

AkiA
∗
kj . (2.98)

The Hamiltonian in equation (2.96) describes the dynamics when the modes are mixed

under the action of Bogoliubov transformations.

2.1.4 Deterministic and probabilistic maps in quantum optics

Putting together the fundamental elements described so far, one can build composite

quantum optical devices for fundamental or more advanced use. Note that we divide the

composite quantum optical elements into two sets; the deterministic and the probabilistic

ones. As their names imply, the deterministic devices work always in the sense that they

produce always the same result. On the other hand the probabilistic devices produce

the desired outcome with some probability of success. The probabilistic devices are

designed in order to produce better output states than the deterministic ones, i.e. with

fidelity closer to one when compared with the ideal output. The important feature

that the probabilistic processing must possess is that it should be heralded; there is a

photon-counting event heralding the fact that the desired result is obtained.

The probabilistic protocols can be described as follows. Let some initial state ρ̂i and

some map T [.] that deterministically transforms ρ̂i into some final state T [ρ̂i] = ρ̂f .

Also let,

ρ̂f = Psuccρ̂succ + (1− Psucc)ρ̂fail (2.99)

where ρ̂succ the desirable outcome of the procedure, while ρ̂fail is a non-desirable state.

Now we perform post-selection, i.e. measurements to some idler modes of the final state,

so that we know when we would collect the desirable state at the output. In this manner

the final state that occurs with probability Psucc reads,

ρ̂f = Psuccρ̂succ (2.100)

which is clearly non-normalized. The output state that is collected should be of course

a physical state and therefore normalized. The normalization of the final state gives the

probability of success,

tr (ρ̂f ) = Psucctr (ρ̂succ)⇔ tr (ρ̂f ) = Psucc (2.101)
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where we have used the fact that the state ρ̂succ is normalized to unity, i.e. tr (ρ̂succ) = 1.

It is apparent that the ingredient that gives rise to the probabilistic nature comes from

the post-selection. If we incorporate the post-selection step into the deterministic map

T [.], we will get a map T̃ [.] that will decrease the trace of the input state. This is another

way to see the non-deterministic procedures, namely as trace-decreasing completely

positive maps (in contrast to the trace-preserving completely positive maps that the

deterministic procedures always are). The complete positivity means that the output

is a valid quantum state, but the trace-decreasing property reflects that the final state

needs to be normalized and therefore is non-deterministic procedure. The probabilistic

or non-deterministic processes will be discussed again in Chapter 3.

2.1.4.1 Realization of the displacement operator

Figure 2.6: Realization of the displacement operator.

The displacement operator that was defined in equation (2.42) is implemented by a

beam splitter. In the input there is the coherent state to be displaced |α1〉 and a bright

coherent state |α2〉 with |α2| � 1. The upper mode transformation yields,

b̂1 = cos θâ1 + sin θα2 (2.102)

where we have replaced the operator â2 by its mean value α2.

By choosing α2 = α/ sin θ, equation (2.102) becomes,

b̂1 = cos θâ1 + α. (2.103)

Therefore the coherent amplitude can be found to be transformed as,

β1 = cos θα1 + α (2.104)

which is the desired displacement operation if cos θ → 1. In this limit the amplitude

of the bright coherent state goes to infinity so in practical realizations inevitably, there



Chapter 2. Quantum optics 29

is a trade-off between the transmissivity and the intensity of the bright coherent input

state.

2.1.4.2 Deterministic amplification and attenuation

Figure 2.7: Realization of the quantum-limited amplifier.

When we talk about amplification or attenuation we may mean two things. One is that

the mean field of the signal is increased in case of amplification or decreased in the case

of attenuation. The second thing is that the mean photon number is increased when we

amplify the input state or decreased if we attenuate it. Those two definitions coincide

both for Gaussian states and non-Gaussian states under deterministic amplification. We

will see in Chapter 3 that this is not anymore the case for probabilistic amplification

and attenuation.

The quantum-limited amplifier is actually a two-mode squeezer where in one input port

(we take this idler mode to be the lower one) the vacuum state is injected. From

relation (2.78), that gives the modes’ transformation, it is apparent that entanglement

is produced and therefore when we trace out the idler mode the amplified state will be a

mixed state. In other words, in quantum mechanical systems noise is induced inevitably

[Cav82]. For example when a coherent state is the input state, then the full output state

would be a two-mode squeezed state. By tracing out the degrees of freedom of the idler

mode we obtain a thermal state (2.66), i.e a state with greater mean field amplitude 〈â〉
but the second order moments are affected as well, meaning that the uncertainty of the

position and momentum are greater than those of a coherent state. Since the mean field

amplitude 〈â〉 and the mean photon number 〈n̂〉 are increased in comparison with the

coherent state we say that the two-mode squeezer serves as an optical amplifier.
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Figure 2.8: Realization of the quantum-limited attenuator.

To attenuate a Gaussian quantum signal deterministically, means to decrease the input

state mean field amplitude or to decrease its mean photon number. To achieve this we

could, for example, inject a coherent state in a beam splitter while the idler state is

vacuum. From the transformation (2.74), if the state to be attenuated is |α1〉, then it is

found that the attenuated state is |β1〉 = | cos θα1〉, that is a state with reduced mean field

amplitude and less photons. If the state to be attenuated is not a coherent or thermal

state then entanglement will be generated and the final state would be attenuated but

it would be a mixed state.

2.1.4.3 Quantum scissors

Figure 2.9: Realization of the quantum scissors.

The first probabilistic protocol that we will discuss are the quantum scissors. As the

name may implies, quantum scissors truncate a state down to a superposition of |0〉 and

|1〉. Let the initial, normalized state |i〉 be,

|ψ〉 =
∑
k

ck|k〉 (2.105)
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with
∑

k |ck|2 = 1. The one photon state |1〉 interacts with the vacuum state |0〉 with

a balanced beam splitter. The state produced interacts with the state to be truncated

|ψ〉, through another balanced beam splitter. Note that the phases of the beam splitters

are not the same, as is noted in figure 2.9. Using formulas (2.74), it is straightforward

to do the calculations and to find how the initial state |i〉 = |10ψ〉 is transformed to the

final state |f〉. Prior to post selection the final state may be written,

|f〉 =

∞∑
k=0

ck

2
k
2

√
k!

k∑
l=0

(
k

l

)(
1√
2
â†1â
†l
2 â
†k−l
3 +

1

2
â†l+1

2 â†k−l3 − 1

2
â†l2 â

†k−l+1
3

)
|000〉 (2.106)

where the binomial expansion has been used.

The post-selection on |1〉 on the second mode and on |0〉 on the third puts restrictions

if we act with the creation operators of the expression (2.106); only terms with one

photon on the second mode and vacuum on the third mode will survive. The resulting,

non-normalized state |ψ̃trun〉 that will remain in the first mode is,

|ψ̃trun〉 =
∞∑
k=0

ck

2
k
2

√
k!

k∑
l=0

(
k

l

)(
1√
2
δl,1δk,l|1〉+

1

2
δl,0δk,l|0〉 −

1

2
δl,1δk,l−1|0〉

)
=

1

2
c0|0〉+

1

2
c1|1〉. (2.107)

The state |ψ̃trun〉 in equation (2.107) is indeed a truncated version of the initial state

|ψ〉. As we argued before, the fact that it is not normalized is a manifestation of the fact

the procedure is probabilistic. The absolute square of the normalization factor gives the

probability of success. The output of the procedure is,

|ψtrun〉 = c0|0〉+ c1|1〉 (2.108)

while the probability of occurring for the above state is,

Psucc =
1

4
|c0|2 +

1

4
|c1|2. (2.109)

The probability of success in (2.109) is not optimal. Generally speaking, if one involves

unitary operations in he setup of figure 2.9 the probability of success can be increased,

nevertheless it can never be equal to one. Note that a setup that would enhance the

probability of success would be more complicated from the perspective of the actual

realization of such a device.
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2.1.4.4 Probabilistic amplification and attenuation

  

Figure 2.10: A setup for noiseless heralded amplification. The NS stands for
N-splitter, meaning that the input beam is evenly divided into N parts with a
grid of beam splitters. QSc stands for quantum scissors with θ1 being chosen
according to the gain and θ2 = π/4. Post-selection on the vacuum state takes
place at the N − 1 output modes.

  

Figure 2.11: A setup for noiseless heralded attenuation. It consists of a single
beam splitter where post-selection on vacuum state takes place at the lower
output port.

The probabilistic amplifier may be described by the operator ηN/2gn̂, where η, N and

g > 1 are parameters defined in the proposed realization proposed in [RL09] and depicted
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in figure 2.10. Other realizations have been proposed [XRL+10, FBB+10, UMW+10,

ZFB11, OBS+12] as well.

If a state is expressed on Fock basis,

|ψ〉 =
∑
n

cn|n〉 (2.110)

after the action of the probabilistic amplifier the weights that correspond to higher Fock

states will be increased,

|ψ〉 ∝
∑
n

cng
n|n〉 (2.111)

where the proportional sign should be interpreted as that a normalization is required

for the final state, as we saw this provides the success probability.

In the level of coherent states it means that

|α〉 → |gα〉 (2.112)

and the corresponding probability reads,

Psucc = ηN exp
(
−(1− g2)|α|2

)
. (2.113)

Note that the probabilistic amplifier, also called heralded noiseless linear amplifier (ab-

breviated HNLA), is an unbounded operator.

The probabilistic attenuator has the inverse action of the probabilistic amplifier. It has

the same mathematical description as the noiseless probabilistic amplifier for g = ν < 1.

The setup is simply a beam splitter with post selection on vacuum in the one output

port and therefore is a bounded operator.

2.2 Phase space description

From now on, and for the rest of the thesis we fix ~ = 2, except for Section 5.3 where ~ =

1. We will define below the three characteristic functions and the corresponding phase

space representations or quasi-probability distributions. The characteristic functions

and the representations carry all the information of the quantum system and therefore

are useful for calculations.
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2.2.1 Symmetric-ordered characteristic function and the Wigner rep-

resentation

The symmetric characteristic function is defined as the mean value of the displacement

operator of equation (2.42) which is in the symmetric order. Namely,

χS(β, β∗) = tr
(
ρ̂ exp

(
βâ† − β∗â

))
. (2.114)

The Wigner representation is defined as the Fourier transform of the symmetric charac-

teristic function.

W (α, α∗) =
1

π2

∫
d2β exp (−βα∗ + β∗α)χS(β, β∗). (2.115)

It is straightforward to find that the Wigner function can assume the form,

W (q, p) =
1

4π

∫
dxe

i
2
px
〈
q − x

2

∣∣∣ρ̂∣∣∣q +
x

2

〉
. (2.116)

The Wigner function is of course normalized,∫
dpdqW (q, p) = 1. (2.117)

In quantum mechanical systems, since position and momentum cannot be measured at

the same time for a single system, the Wigner representation is not a proper distribution,

as for example it can take negative values. Often it is referred as quasi-distribution.

Nevertheless, it carries all information about the state and therefore is useful. The

marginals of the Wigner representation though give the correct probability distributions

for the position and momentum,∫
dpW (q, p) = P (q) (2.118)∫
dqW (q, p) = P (p). (2.119)

When we calculate mean values involving creation and annihilation operators using the

Wigner representation, the operator should be in symmetric form. For example the

symmetric form of the operator â†2â is 1/3(â†â†â+ â†ââ† + ââ†â†).

From equations (2.119) it becomes apparent that the Wigner distribution describes the

distribution we would take from the so-called homodyne detection [Leo10].
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2.2.2 Antinormal ordered characteristic function and the Husimi Q

representation

The antisymmetric characteristic function is defined as the mean value of the antisym-

metric displacement operator,

χA(β) = tr
(
ρ̂ exp(−β∗â) exp(βâ†)

)
. (2.120)

The Husimi Q representation is defined as the Fourier transform of the antisymmetric

characteristic function,

Q(α, α∗) =

∫
d2β exp (−βα∗ + β∗α)χA(β). (2.121)

An equivalent way to define the Q representation reads,

Q(α, α∗) =
1

π
〈α|ρ̂|α〉. (2.122)

The Q representation is again normalized,∫
d2aQ(α, α∗) = 1 (2.123)

and it is always positive and bounded, i.e 0 ≤ Q(α, α∗) ≤ 1/π.

When we calculate mean values involving creation and annihilation operators using the

Q representation, the operator should be in antinormal form. As an example let us

calculate the mean photon number 〈n̂〉, the coherent amplitude 〈â〉, the mean squared

position 〈q̂2〉 and the mean squared momentum 〈p̂2〉 of a single-mode squeezed state

|β, ξ〉, with ξ = |ξ| exp(iφ). The single-mode squeezed state’s Q representation is easily

found from definition (2.122),

Qβ,ξ(α, α
∗) =

1

π cosh |ξ| exp
(
− (1 + tanh |ξ| cosφ)(<α−<β)2

−(1− tanh |ξ| cosφ)(=α−=β)2

−2(<α−<β)(=α−=β) tanh |ξ| sinφ
)
. (2.124)

In order to find the mean photon number we have first to bring it in antinormal ordering,

〈â†â〉 = 〈ââ† − 1〉 = 〈ââ†〉 − 1. (2.125)
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where we have used the commutation relation
[
â, â†

]
= 1. So the mean photon number

reads,

〈ââ†〉 − 1 =

∞∫
−∞

∞∫
−∞

d<αd=αQβ,ξ(α∗, α)(αα∗ − 1) = |β|2 + sinh2 |ξ|. (2.126)

Continuing the single-mode squeezed state example, extra care is required when we

calculate the mean value 〈q̂2〉 and 〈p̂2〉. We have to bring the operators q̂2 and p̂2 in

terms of â and â†. Since ~ = 2 we have,

q̂ = â+ â† (2.127)

p̂ = −i(â+ â†) (2.128)

and therefore,

q̂2 = â2 + â†2 + 2ââ† − 1 (2.129)

p̂2 = −â2 − â†2 + 2ââ† − 1 (2.130)

or

q̂2 = q2
A − 1 (2.131)

p̂2 = p2
A − 1 (2.132)

where q2
A = â2 + â†2 + 2ââ† and p2

A = −â2 − â†2 + 2ââ†. As we have seen, when we

calculate some mean value using the Q representation the result corresponds to the

antinormally-ordered operator, so in the case of q̂2 and p̂2 the calculation would actually

return the values for q̂2
A and p̂2

A. Therefore in order to obtain the correct values we

should subtract 1 as equations (2.129) and (2.130) imply. That is,

〈q̂2〉 =

∫
d2αQ(α, α∗)(q2 − 1) (2.133)

〈p̂2〉 =

∫
d2αQ(α, α∗)(p2 − 1). (2.134)

Note that since ~ = 2 we have q = 2<α and p = 2=α. We get,

〈q̂2〉 = q2
β + cosh 2|ξ| (1− tanh 2|ξ| cosφ) (2.135)

〈p̂2〉 = p2
β + cosh 2|ξ| (1 + tanh 2|ξ| cosφ) . (2.136)
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The operators q̂ and p̂ are trivially in antinormal-ordering (and in normal and symmetric

as well) and we easily get,

〈q̂〉 = qβ (2.137)

〈p̂〉 = pβ. (2.138)

From equations (2.135), (2.136), (2.137) and (2.137) we readily find,

∆q̂2
φ = cosh 2|ξ| (1− tanh 2|ξ| cosφ)

= e−2|ξ| cos2 φ

2
+ e2|ξ| sin2 φ

2
(2.139)

∆p̂2
φ = cosh 2|ξ| (1 + tanh 2|ξ| cosφ)

= e−2|ξ| sin2 φ

2
+ e2|ξ| cos2 φ

2
. (2.140)

If ξ = 0 it means that there is no squeezing and therefore we have a coherent state |β〉,
equations (2.139) and (2.140) read,

∆q̂2 = 1 (2.141)

∆p̂2 = 1. (2.142)

Form equations (2.141)and (2.142) it is apparent that if we represent a coherent state

on q versus p diagram, that is a phase space, then we would get a circle centered at

(qβ, pβ) with diameter
√

∆q̂2 =
√

∆p̂2 = 1. If we go back to the single-mode squeezed

state, we notice that for φ = 0 equation (2.139) is minimized while equation (2.140) is

maximized,

∆q̂2
0 = e−2ξ (2.143)

∆p̂2
0 = e2ξ. (2.144)

It is straightforward to find that for a single-mode squeezed state |β, ξ〉, the direction of

squeezing is φ/2. From equations (2.143) and (2.144) it is apparent that the state |β, ξ〉
may be represented on the q − p plain as a squeezed coherent state in the φ/2 direction

and anti-squeezed in the π/2− 2φ direction, i.e. it is a ellipse centered at (qβ, pβ) with

minor axis
√

∆q̂2
0 = e−ξ and major axis

√
∆p̂2

0 = eξ.

The plots of the Q representation (2.124) are given in figures 2.13 and 2.14
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Figure 2.12: Coherent and squeezed state on the q − p plain.

  

Figure 2.13: Q representation of a coherent state, i.e. a single-mode squeezed
state with |ξ| = 0.



Chapter 2. Quantum optics 39

  

Figure 2.14: Q representation of a single-mode squeezed state with |ξ| = 0.8
and φ = 0, i.e squeezed in the q direction.

Since in the definition of the Q representation (2.122) |α〉 represents a coherent state,

it becomes apparent that the Q representation is the outcome of the measurement of

position and momentum at the same time, i.e. it corresponds to the so-called heterodyne

measurement [Leo10].

2.2.3 Normal ordered characteristic function and the Glauber P rep-

resentation

The last possible characteristic function is the normal-ordered one,

χN (β) = tr
(
ρ̂ exp(βâ†) exp (−β∗â)

)
. (2.145)

The Fourier transform of the normal-ordered characteristic function defines the Glauber

P representation,

P (α, α∗) =

∫
d2β exp (−βα∗ + β∗α)χN (β). (2.146)

The connection between the density matrix ρ̂ and the P representation is,

ρ̂ =

∫
d2αP (α, α∗)|α〉〈α|. (2.147)

The P representation is normalized,∫
d2αP (α, α∗) = 1. (2.148)
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The Wigner and the Q representations can be found without the use of the characteristic

functions. In contrast, it is more handy to find the P representation by first finding the

normal-ordered characteristic function. As an example we will consider the thermal

state of the expression (2.79). In the coherent states’ basis the thermal state can be

written,

ρ̂th =
1− |τ |2
π2

∑
n

|τ |2n
∫
d2α

∫
d2α′|α〉〈α|n〉〈n|α′〉〈α′|

=
1− |τ |2
π2

∫
d2α

∫
d2α′ exp

(
−|α|

2

2
− |α

′|2
2

+ |τ |2α∗α′
)
×

×|α〉〈α′|. (2.149)

From equations (2.145) and (2.149) it is straightforward to find the normal-ordered

characteristic function for the thermal state ,

χN (β) = exp

(
− |τ |2

1− |τ |2 |β|
2

)
. (2.150)

The P representation is found from equations (2.146) and (2.150),

Pth(α, α∗) =
1

π

1− |τ |2
|τ |2 exp

(
−|α|2 1− |τ |2

|τ |2
)

(2.151)

where |τ | = tanh |ξ|.

To calculate the mean value of a combination of annihilation and creation operators

using the P representations we should first bring this combination to normal order,

meaning that all annihilation operators should be placed on the right while the creation

operator on the left. If we consider for example the thermal state (2.151), the mean

value 〈â†â〉 reads,

〈â†â〉 =

∞∫
−∞

∞∫
−∞

d<αd=αPth(α, α∗)αα∗ = sinh2 |ξ|. (2.152)

2.3 Symplectic form and transformations of Gaussian states

In this thesis we mainly use the Q representation, therefore in this section we will focus

on how the Q representation is transformed. We will discuss the transformation of the

Wigner function as well though, since it is important in many applications in quantum

optics.
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Let a density matrix ρ̂ have a Wigner representation Wρ̂(q, p). If ρ̂ is transformed

according to the Krauss decomposition,

ρ′ =
∑
k

F̂kρF̂
†
k (2.153)

then from definition (2.116) it is straightforward to see that in order to find Wρ̂′(q
′, p′)

one has to transform (q, p) with the inverse transformation prescribed from F . The same

holds for Q. For example consider the displacement transformation ρ̂→ D̂(α)ρ̂D̂(α)†,

W (q, p) =
1

4π

∫
dxe

i
2
px
〈
q − x

2

∣∣∣D̂(α)ρ̂D̂(α)†
∣∣∣q +

x

2

〉
= W (q − 2<(α), p− 2=(α)). (2.154)

Let us now focus on Gaussian states. In order to proceed we will first consider a system

of n modes that each mode has quadrature operators q̂i and p̂i. The total Hilbert space

of the n-mode system is given by,

H =
n⊗
i=1

Hi. (2.155)

We can group the 2n quadratures in two -or more ways, for example,

ˆ̄r = (q̂1, . . . , q̂n, p̂1, . . . , p̂n)T , (2.156)

ˆ̄R = (q̂1, p̂1, . . . , q̂n, p̂n)T . (2.157)

Note that the commutation relation now reads,

[
ˆ̄rk, ˆ̄rk+n

]
= iΩk,k+n (2.158)

or [
ˆ̄Rk,

ˆ̄Rj

]
= iΩ̃k,j (2.159)

where

Ω =

(
On×n In×n
−In×n On×n

)
(2.160)
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and

Ω̃ =

n⊕
i=1

(
0 1

−1 0

)
. (2.161)

A multivariate Gaussian Wigner representation reads,

W (r̄) =
1

πn
√

detγ
exp

(
−(r̄ − d̄)Tγ−1(r̄ − d̄)

)
(2.162)

where d̄ are the 2n first moments,

d̄ = 〈ˆ̄r〉 = tr(ρ̂ˆ̄r) (2.163)

while the 2n× 2n matrix γ is the covariance matrix,

γkj = 〈{ˆ̄rk − d̄k, ˆ̄rj − d̄j}〉 = tr
(
ρ̂{ˆ̄rk − d̄k, ˆ̄rj − d̄j}

)
. (2.164)

By {Â, B̂} we denote the anti-commutator, {Â, B̂} = ÂB̂ + B̂Â.

In order to correspond to a physical state, the covariance matrix should obey the in-

equality,

γ + iΩ ≥ 0 (2.165)

that originates from Heisenberg’s uncertainty principle. Note that the ≥ sign in inequal-

ity (2.165) should be interpreted as a positive-semidefiniteness.

Also, a multivariate Gaussian Q representation has the form,

Q(r̄) =
1

πn
√

det Γ−1
exp

(
−(r̄ − d̄)TΓ(r̄ − d̄)

)
(2.166)

where Γ = (γ + 2I)−1.

If the n-mode system is in vacuum state, the its covariance matrix reads,

γvac = 2

(
I O
O I

)
. (2.167)

As it is apparent by now, from the vacuum state we can construct any other Gaussian

state by the use of displacement and squeezing operators. The covariance matrix of a

coherent state is again γvac since when the vacuum state is displaced, in order to obtain

a coherent state, only the first moments are affected.
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The covariance matrix of a squeezed state with φ = 0 is,

γsq = 2

(
e−2|ξ| 0

0 e2|ξ|

)
. (2.168)

while if φ 6= 0 the covariance matrix reads,

γsq = 2

(
e−2|ξ| cos2 φ

2 + e2|ξ| sin2 φ
2 − sin φ

2 cos φ2 (e2|ξ| − e−2|ξ|)

− sin φ
2 cos φ2 (e2|ξ| − e−2|ξ|) e−2|ξ| cos2 φ

2 + e2|ξ| sin2 φ
2

)
.

As we have seen before, the state obtained as the reduced output of a two-mode squeezer

when the input state is |α0〉, where |α〉 is a coherent state, has density matrix given in

equation (2.79). It is straightforward to find that the covariance matrix corresponding

to the thermal state reads,

γth = 2

(
cosh 2|ξ| 0

0 cosh 2|ξ|

)
. (2.169)

The covariance matrix for squeezed thermal vacuum is found to be,

γsq,th = cosh 2|ξ|γsq. (2.170)

Finally, the covariance matrix for the two-mode squeezed state reads,

γtms = 2


cosh 2|ξ| sinh 2|ξ| 0 0

sinh 2|ξ| cosh 2|ξ| 0 0

0 0 cosh 2|ξ| − sinh 2|ξ|
0 0 − sinh 2|ξ| cosh 2|ξ|

 . (2.171)

An important group of transformations M is the symplectic group M ∈ Sp(2n,R).

They represent Gaussian unitary transformations on the density matrix, i.e. ÛGρ̂GÛ
†
G.

They transform the first and the second moments as,

d̄′ = Md̄ (2.172)

γ ′ = MγMT (2.173)

and they leave the Ω matrix invariant,

MΩMT = Ω, (2.174)
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or in other words the commutation relations are invariant under the symplectic trans-

formations.

All symplectic transformations satisfy the relation det M = 1, moreover the passive

transformations satisfy MMT = I, so in that case M is a real rotation matrix. The

Williamson’s theorem [SCS99] states that all Gaussian states with covariance matrix γ,

are diagonalized by symplectic matrices M,

MγMT = diag(ν1, . . . , νn; ν1, . . . , νn) (2.175)

where νi are the symplectic eigenvalues that practically can be found as eigenvalues of

the matrix
√

(iΩγ)†(iΩγ).

The von Neumann entropy of a Gaussian n-mode state is found to be,

S(ρ̂G) =
n∑
i=1

g

(
νi −

1

2

)
(2.176)

where,

g(x) =

(x+ 1) log2(x+ 1)− x log2 x, x > 0

0, x = 0
. (2.177)

When the case at hand involves non-Gaussian states, there is not such handy formulas for

the calculation of the entropy, therefore other methods are required for the calculation

of the von Neumann entropy. We will address this problem in Chapter 5.

The phase space transformations that we will meet in this thesis are the rotation R(θ),

the beam splitter B(T ) and the one-mode squeezer S(ξ).

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
, (2.178)

B(T ) =


√
T

√
1− T 0 0

−
√

1− T
√
T 0 0

0 0
√
T

√
1− T

0 0 −
√

1− T
√
T

 , (2.179)

S(ξ) =

(
e−|ξ| 0

0 e|ξ|

)
(2.180)

where T = cos2 θ, therefore the beam splitter’s phase space transformation corresponds

to the application of a rotation from a mode to the other mode.
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2.4 Second quantization of the bosonic field

2.4.1 Preliminaries

From classical electrodynamics one performs the second quantization and obtains quan-

tum optics. We will now briefly discuss what happens when one proceeds with the

so-called second quantization in a more general context using the Lagrangian formalism

and functional analysis in order to be able to analyze interesting physics in Section 5.3.

In second quantization one upgrades the eigenfunctions to operators. In that way the

quantum mechanical position operator ˆ̄x corresponds to the field operator φ̂(x̄) that cre-

ates a boson in position x̄. The quantum mechanical position eigenstate |x̄〉 corresponds

to the field state |φ〉. So that it holds,

φ̂(x̄)|φ〉 = φ(x̄)|φ〉. (2.181)

In field theory the space that the eigenvectors {|φ〉} form, is referred as Fock space. The

basis {|φ〉} is complete and orthogonal,

Î =

∫
Dφ(x̄)|φ〉〈φ| (2.182)

〈φa|φb〉 =
∏
x̄

δ(φa(x̄)− φb(x̄)) ≡ δ[φa − φb] (2.183)

where the integration Dφ(x̄) means that one integrates over all possible formations of

the field.

The action S[φ] is a functional of the field,

S[φ] =

tf∫
ti

dt

∫
d3xL[φ] (2.184)

where L[φ] is the Lagrangian density. From the least action principle it is straightforward

to find the equations of motion of the field under consideration,

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (2.185)
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where ∂µ = ∂/∂xµ, with x0 = t. The field variable that is conjugate to φ, is the

momentum of the field,

π(t, x̄) =
∂L

∂(∂0φ(t, x̄))
. (2.186)

The Hamiltonian of the field is given by the Legendre transform of the Lagrangian,

Ĥ =

∫
d3x(π(t, x̄)∂0φ(t, x̄)− L) (2.187)

and can be written as,

Ĥ =

∫
d3xH(φ̂, π̂). (2.188)

The position and momentum field operators satisfy the equal-time commutation rela-

tions,

[φ̂(t, x̄), φ̂(t, x̄′)] = iδ3(x̄− x̄′). (2.189)

For the momentum field operator it holds that,

π̂(x̄)|π〉 = π(x̄)|π〉 (2.190)

and it satisfies completeness and orthogonality relations,

Î =

∫ D(π(x̄))

2π
|π〉〈π| (2.191)

〈πa|πb〉 = δ[πa − πb]. (2.192)

The overlap of the field eigenstate with the momentum eigenstate reads,

〈φ|π〉 = exp

(
i

∫
d3xπ(x̄)φ(x̄)

)
. (2.193)

2.4.2 Transition amplitude

An expression for calculating the transition amplitude 〈φf |e−i(tf−ti)Ĥ |φi〉, i.e. the am-

plitude from an initial state |φi〉 at t = ti to some final state |φf 〉 at t = tf , can be found

if we begin by dividing the time interval (ti, tf ) into N equal steps ∆t = (tf−ti)/(N+1)
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and the use of equations (2.182) and (2.183),

〈φf |e−i(tf−ti)Ĥ |φi〉 = lim
N→∞

∫ N+1∏
j=0

dφj

∫ N∏
j=1

dπj
2π

δ(φN+1 − φj)δ(φ0 − φi)

×
N∏
j=1

〈φj |e−i∆tĤj |πj〉
N∏
j=1

〈πj |φj−1〉. (2.194)

Since ∆t→ 0, we expand the exponential in equation (2.194) and keep terms up to the

first order,

〈φj |e−i∆tĤj |πj〉 ≈ 〈φj |(1− i∆tĤj)|πj〉 = (1− i∆tHj)〈φj |πj〉 (2.195)

with

Hj =

∫
d3xH(πj(x̄), φj(x̄)). (2.196)

From equation (2.193) we readily take,

〈φf |e−i(tf−ti)Ĥ |φi〉 = lim
N→∞

∫ N+1∏
j=0

dφj

∫ N∏
j=1

dπj
2π

δ(φN+1 − φj)δ(φ0 − φi)

× exp

−i∆t N∑
j=1

∫
d3x
H(πj , φj)− πj(φj − φj−1)

∆t

(2.197)

and by taking the continuum limit in equation (2.197) we obtain,

〈φf |e−i(tf−ti)Ĥ |φi〉 =

∫
Dπ

φ(tf ,x̄)=φf (x̄)∫
φ(ti,x̄)=φi(x̄)

Dφ exp

(
i

tf∫
ti

dt

∫
d3x

×
(
π(t, x̄)

∂φ(t, x̄)

∂t
−H(π(t, x̄), φ(t, x̄))

))
(2.198)

where Dπ and Dφ are functional integrals and the argument of the integrations involves

functions and not operators.

2.4.3 Thermal density matrix and partition function

The thermal density matrix for the canonical ensemble has the well-known form,

ρ̂ =
e−βĤ

Z
(2.199)
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where Ĥ is the Hamiltonian, Z is the partition function and β = 1/kT , with T the

temperature and k the Boltzmann’s constant. For a quantum field system we have,

ρ[φf , φi] =
1

Z
〈φf |e−βĤ |φi〉. (2.200)

The numerator in equation (2.200) looks like the transition amplitude (2.198) but with

imaginary time τ = it. That means that we can see 〈φf |e−βĤ |φi〉 as the transition

amplitude from the field |φi〉 at time τ = 0 to the field |φf at time τ = β. We can write,

〈φf |e−βĤ |φi〉 =

∫
Dπ

φ(β,x̄)=φf (x̄)∫
φ(0,x̄)=φi(x̄)

Dφ exp

( β∫
0

dt

∫
d3x

×
(
iπ(τ, x̄)

∂φ(τ, x̄)

∂τ
−H(π(τ, x̄), φ(τ, x̄))

))
. (2.201)

The partition function is defined,

Z(β) = tre−βĤ =
∑
α

∫
dφa〈φα|e−βĤ |φα〉 (2.202)

where the summation is over all possible states. In the imaginary time formalism the

partition function assumes the form,

Z(β) =

∫
Dπ

∫
periodic

Dφ exp

( β∫
0

dt

∫
d3x

×
(
iπ(τ, x̄)

∂φ(τ, x̄)

∂τ
−H(π(τ, x̄), φ(τ, x̄))

))
. (2.203)

where the integration over φ has the constraint φ(0, x̄) = φ(β, x̄).

From equations (2.199) and (2.201) we readily obtain,

ρ[φf , φi] =
1

Z(β)

∫
Dπ

φ(β,x̄)=φf (x̄)∫
φ(0,x̄)=φi(x̄)

Dφ exp

( β∫
0

dt

∫
d3x

×
(
iπ(τ, x̄)

∂φ(τ, x̄)

∂τ
−H(π(τ, x̄), φ(τ, x̄))

))
. (2.204)

The expressions (2.204) and (2.203) can be easily generalized for an arbitrary number

of fields. Note that if the system under consideration admits a conserved charge, then

we must make the replacement,

H(π, φ)→ H(π, φ)− µN (π, φ) (2.205)
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where π, φ is the conserved charge density.

A more elegant expression for equations (2.204) and (2.203) is,

ρ[φf , φi] =
1

Z(β)

∫
Dπ

φ(β,x̄)=φf (x̄)∫
φ(0,x̄)=φi(x̄)

Dφ exp

 β∫
0

dt

∫
d3xLE [φ]

 (2.206)

and

Z(β) =

∫
Dπ

∫
periodic

Dφ exp

 β∫
0

dt

∫
d3xLE [φ]

 (2.207)

where LE [φ] is the Euclidean Lagrangian Density. For example the free Euclidean Klein-

Gordon Lagrangian density reads,

LE [φ] =
1

2
∂µφ∂µφ+

1

2
m2φ2. (2.208)



Chapter 3

Noiseless amplification and

attenuation of quantum light

3.1 Noiseless amplification and attenuation of Gaussian

states

3.1.1 Heralded noiseless amplification and attenuation

Typically, what we mean by amplification in quantum optics is to amplify the intensity

of a quantum signal, i.e. a quantum state. That means that if the mean photon number

of the initial state is n, the mean photon number of the amplified state is ng > n, or

equivalently (if state is Gaussian) the mean field α of the initial state is smaller than the

mean field αg of the resulting state, i.e. |αg| > |α|. Such a transformation is provided

by the two-mode squeezer Ŝ(r) that we have already met. The state to be amplified, let

it be a pure state |Ψ〉, is coupled with some environment state |e〉 which usually is taken

to be the vacuum state |0〉 via the operator Ŝ(r). The resulting, mixed output state, let

ρ̂|Ψ〉 will possess more noise than the initial state |Ψ〉. If for example the initial state

was a coherent state, the amplified state would be a thermal state. This is deeply rooted

in quantum mechanics as a consequence of the unitary evolution and it is connected to

the result of tracing out one of the output modes; noise is the price we must pay in any

deterministic quantum state phase-insensitive amplification process. This can be seen in

the ideal (quantum-noise limited) optical amplifier, which is described by the evolution

[Cav82]

âout = g âin +
√
g2 − 1 b̂†vac (3.1)

where âin and âout denote the input and ouput bosonic mode operators, b̂vac is the bosonic

operator associated with an ancilla mode initially in the vacuum state, and g > 1 is the

50
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Figure 3.1: If an initial coherent state (black circle) is amplified deterministi-
cally it evolves to a thermal state (red circle), if the same initial coherent state
is probabilistically amplified it remains a coherent state (green circle).

amplitude gain. The term in b̂†vac necessarily adds some noise, which originates from

the vacuum fluctuations of mode b̂vac and can be associated with spontaneous emission.

Remarkably, if one drops the constraint that the amplifier is deterministic, it becomes

possible to define a noiseless amplification process, which probabilistically amplifies any

coherent state |α〉 with no added noise, that is

|α〉 → |gα〉 (3.2)

In other words, one can trade a noisy trace-preserving process for a noiseless but trace-

decreasing one. Such a scheme was proposed by Ralph and Lund [RL09], based on

an optical quantum scissor setup. It is called an heralded noiseless linear amplifier

(HNLA), in the sense that the success of the noiseless amplification can be heralded

by some detection event (we know when the noiseless amplification has succeeded).

Strictly speaking, the HNLA operator is unbounded, so it is actually impossible to

implement a perfect noiseless amplifier, albeit with zero success probability. However,

the perfect HNLA can be approximated as closely as we wish by truncating the input

Fock space to an increasingly large photon number N . More precisely, the action of an

approximate HNLA on a Fock state |n〉 in the truncated space {|0〉, |1〉, . . . , |N〉} can be

mathematically described by some filtration operator F̂ , which works as

F̂ |n〉 = ηN/2gn|n〉 (3.3)
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where N and η are two parameters defining the optical HNLA setup of Ref. [RL09].

Note that 0 < η < 1/2 implies that g =
√

(1− η)/η > 1. In the limit N →∞, applying

the filtration operator F̂ on a coherent state |α〉 gives

F̂ |α〉 ' ηN/2e(g2−1)|α|2/2|gα〉 (3.4)

which is proportional to the desired noiselessly amplified coherent state |gα〉. One can

see that F̂ tends to a perfect HNLA as N →∞, while its success probability

Psucc|α ' ηNe(g2−1)|α|2 (3.5)

tends to zero. Note that the success probability is state-dependent and diverges for

large input amplitudes (large α). This is precisely related to the fact that F̂ ∝ gn̂ is

an unbounded operator in the infinite-dimensional Fock space (this is why we need to

have the prefactor ηN , which vanishes for a perfect HNLA as N → ∞). As expected,

only an approximate HNLA with non-zero success probability can be realized physically

if we keep N finite. Various possible implementations of the HNLA have been found

and experimentally demonstrated [XRL+10, FBB+10, UMW+10, ZFB11, OBS+12], but

they all share this property that the higher is the fidelity between the actual output state

and target state, the lower is the success probability.

The HNLA may serve as a tool for quantum entanglement distillation or for breeding

Schrödinger cat states (|α〉+ |−α〉) [RL09]. More recently, it has also been shown useful

to carry out continuous-variable quantum error correction on a lossy line [Ral11], or, in

conjunction with noiseless attenuation, as a tool to convert a lossy line into a lossless line

[MSM+12]. In this Chapter, we will investigate its ability to serve as an heralded phase-

insensitive single-mode squeezer. We will mainly be interested in the perfect HNLA,

so we will disregard the above truncation effect and simply use F̂ ∝ gn̂ as a filtration

operator, remembering that the proportionality constant is related to the normalization

of the actual output state and would vanish in the limit of a perfect HNLA.

The same formalism applies when we deal with noiseless attenuation, only of course in

that case g < 1. The difference is found in the realization setup. In the case of noiseless

amplification the probabilistic heralded amplification may be realized with a scheme

based on the unbalanced quantum scissors, while as we have already seen in Section

2.1.4, in the case of noiseless attenuation the realization is simply a beam splitter with

post-selection on vacuum state in one of the outputs.
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3.1.2 General properties of the noiseless amplifier and attenuator

The noiseless amplifier probabilistically enhances the amplitude of a coherent state as

|α〉 → |gα〉 (3.6)

where g > 1 is the amplitude gain. It can be described by a quantum filter F (a

trace-decreasing CP map with a single Kraus operator F ) such that

ρ̂→ F̂ ρ̂F̂ † (3.7)

where the filter F = cgn̂ is diagonal in the Fock state basis |n〉 and c is a real constant.

The trace non-increasing condition F̂ †F̂ ≤ I implies that |c|2g2n ≤ 1, ∀n, which is

possible only if c = 0; hence, the success probability Tr(F̂ ρ̂F̂ †) of this ideal noiseless

amplifier vanishes. Mathematically, this is because the operator gn̂ is unbounded for g >

1. However, a non-ideal version of the noiseless amplifier can be defined by truncating

the Fock state basis at |N〉. Then, the trace non-increasing condition is fulfilled provided

|c|2g2N = 1; hence, the success probability scales as g−2N and can be made strictly larger

than zero as long as N is finite. In other words, a noiseless amplifier can be implemented

with non-zero success probability only within a finite-dimensional subspace of the Fock

space. We will ignore this subtlety in the rest of this Chapter, and consider the ideal

noiseless amplifier that is simply associated with the quantum filter gn̂.

Noiseless attenuation corresponds to the same quantum filter, but taking g = ν < 1. In

contrast with noiseless amplification, it corresponds to a bounded operator νn̂ for ν < 1,

so it can be implemented exactly with a success probability that is strictly larger than

zero. Indeed, the quantum filter νn̂ can be realized, for instance, by processing the input

state through a beam splitter of amplitude reflectance ν whose auxiliary input port is

prepared in the vacuum state |0〉, and then conditioning on projecting the state of the

auxiliary output port onto the vacuum state |0〉, as shown in Fig. 3.2 [MSM+12] .

It is easy to see that for an input state |ψ〉 =
∑

n cn|n〉, with
∑

n |cn|2 = 1, the final

state will read

|ψ̃〉 ∝
∑
n

νn cn|n〉. (3.8)

Intuitively, we understand that the heralded filtering operation preferentially keeps low-n

Fock states since νn exponentially decays with n, so in this sense the state is attenuated.

Conversely, if we formally consider amplitude reflectance larger than 1, we will get an

output state which can be interpreted as a noiselessly amplified state, where large-n Fock
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Figure 3.2: Noiseless attenuator. In a beam splitter with amplitude reflectance
ν the lower input mode is set to vacuum and we post-select on vacuum in the
lower output mode.

states are preferentially post-selected. This formal equivalence allows us to analyze the

effect of both conditional operations simultaneously.

Let us clarify the intuition behind saying that gn amplifies the state, or νn attenuates

the state. It so happens that this intuition holds true as far as the mean photon number

〈n̂〉 is concerned, but may be contradicted if we probe the mean field amplitude 〈â〉 of

certain non-Gaussian states as we will discuss later. As a first step, we will prove here

that 〈n̂〉 is necessarily increased (decreased) under the action of noiseless amplifier gn

(attenuator νn). For simplicity, we consider single-mode states, but the argument can

be extended to multimode states. An arbitrary input state ρ̂ can be expressed in Fock

basis as

ρ̂ =

∞∑
n,m=0

ρmn|n〉〈m|. (3.9)

where ρ ≥ 0 and
∑∞

n=0 ρnn = 1. The amplified (attenuated) state is

˜̂ρ =

∑∞
n,m=0 g

n+mρmn|n〉〈m|∑∞
n=0 g

2nρnn
(3.10)

and its mean photon number is given by

〈ñ〉 =

∑∞
n=0 ng

2nρnn∑∞
n=0 g

2nρnn
(3.11)
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We shall assume that this state is physical, i.e., the sum in the denominator exists and

has a finite value (this is not necessarily true for some input states and g > 1). The

derivative of equation (3.11) with respect to g is

d〈ñ〉
dg

=
1

N2

∞∑
m,n=0

n(n−m)enm, (3.12)

where

N =
∞∑
n=0

g2nρnn (3.13)

and

enm = emn = 2g2(n+m)−1ρnnρmm ≥ 0. (3.14)

Equation (3.12) can be rewritten as

d〈ñ〉
dg

=
1

N2

∞∑
n=0

n∑
m=0

(n−m)2enm (3.15)

from which we conclude that

d〈ñ〉
dg
≥ 0. (3.16)

Thus, the mean photon number of any physical state increases monotonically with g.

Equation (3.16) is valid for all g > 0, no matter if one considers attenuation (g < 1) or

amplification (g > 1), for g = 1 the mean photon number remains constant.

If the input state is a Fock state, which is an eigenstate of the operator gn̂, then the mean

photon number remains constant under noiseless amplification or attenuation. Let us

now discuss how noiseless amplification (attenuation) transforms Gaussian states, paying

a particular attention to the properties of the mean field. Let us begin by recalling that

the operator gn̂ transforms a coherent state |α〉 as

gn̂|α〉 = e(g2−1)|α|2/2|gα〉. (3.17)

where α is a complex number. This transformation suggests to decompose any input

state into the overcomplete basis of coherent states. Then, one has to evolve every

component coherent state according to the transformation (3.17). A natural idea may

be to use the Glauber P representation of the input state, that is

ρ̂ =

∫
d2αP (α)|α〉〈α|. (3.18)
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If we apply the transformation of equation (3.17) to both sides of equation (3.18), we

obtain the P representation of the transformed state ˆ̃ρ ∝ gn̂ρ̂gn̂, namely [Bla13]

P̃ (α) ∝ e(1−1/g2)|α|2P
(α
g

)
. (3.19)

where the symbol ∝ indicates that P̃ needs to be normalized. In the case at hand,

we find it more elegant to consider instead the Husimi Q-function. For an arbitrary

quantum state ρ̂, the Q-function is defined as

Q(α) =
1

π
〈α|ρ̂|α〉, (3.20)

For a Gaussian state with covariance matrix γ and vector of mean values of quadrature

operators d = (〈x̂〉, 〈p̂〉)T , it can be expressed as

Q(α) =
1

π
√

det Γ−1
exp

(
−(r̄ − d̄)TΓ(r̄ − d̄)

)
. (3.21)

Here Γ = (γ + 2I)−1, I denotes the identity matrix, and r = (αR, αI)
T , where αR and

αI denote the real and imaginary parts of α. We use the convention where ~ = 2.

We recall that Q(α) can be viewed as the probability density for the complex outcome α

of a heterodyne measurement performed on state ρ̂, which consists in projecting onto the

coherent-state basis. It is then possible to back-propagate each coherent state through

the noiseless amplifier or attenuator, as done in Ref. [FC12]. The Q-function Q̃(α) of

the transformed state ˜̂ρ ∝ gn̂ρ̂gn̂ can then be written as

Q̃(α) ∝ 1

π
〈α|gn̂ρ̂gn̂|α〉 = e(g2−1)|α|2Q(gα), (3.22)

where we have used equation (3.17) and the symbol ∝ indicates that Q̃ needs to be

normalized. Note that if Q(α) is expressed as in equation (3.21), its Gaussian form

is preserved by transformation (3.22), so that Gaussian input states are mapped onto

Gaussian output states. In particular, the corresponding transformations on γ and d

can be determined by looking at the exponent in Q̃(α). After some algebra, we find

Γ̃ = g2Γ− g2 − 1

4
I (3.23)

which implies that the covariance matrix transforms as

γ̃ =

[
g2(γ + 2I)−1 − g2 − 1

4
I

]−1

− 2I. (3.24)
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Similarly, the vector of mean values transforms as

d̃ = 2g

[
(g2 + 1)I − g2 − 1

2
γ)

]−1

d. (3.25)

Here, tilde denotes the parameters of the Gaussian state after noiseless amplification or

attenuation. Note that equation (3.25) agrees with a formula for the displacement of a

noiselessly amplified Gaussian state derived in Ref. [WLR13].

Since the operator gn̂ commutes with a unitary phase shift eiφn̂, we can without loss of

generality assume that the covariance matrix is diagonal,

γ =

(
2Vx 0

0 2Vp

)
, (3.26)

where Vx and Vp denote the variances of amplitude and phase quadratures, respectively,

which obey the Heisenberg uncertainty relation VxVp ≥ 1. If we insert the diagonal

covariance matrix (3.26) into equation (3.25), we get

d̃j =
2g

(1 + g2) + Vj(1− g2)
dj , (3.27)

where j = x, p. The effective amplification gain is thus different for the amplitude and

phase quadratures, and it depends on the variance Vj of the quadrature j, namely

Geff,j ≡
d̃j
dj

=
2g

(1 + g2) + Vj(1− g2)
. (3.28)

This can be rewritten as
Geff,j − g
Geff,j

=
g2 − 1

2
(Vj − 1) (3.29)

so that for the noiseless amplifier (g > 1) we have

G
Vj<1
eff < g < G

Vj>1
eff (3.30)

while for the noiseless attenuator (g < 1) we have

G
Vj>1
eff < g < G

Vj<1
eff (3.31)

In other words, in both cases, the effective gain is sublinear for the squeezed quadrature

(V < 1) and superlinear for the antisqueezed quadrature (V > 1). Of course, in between

these cases, we have simply a linear effective gain G
Vj=1/2
eff = g. At this point, we note

that the squeezed quadrature with the lowest possible variance must be considered in

order to find the minimum effective gain that the noiseless amplifier may exhibit, as well
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as the maximum effective gain that the noiseless attenuator may exhibit.

Let us prove that noiseless amplification always increases the amplitude of Gaussian

states. Since the HNLA is an unbounded operator it may generate unphysical states

from certain input Gaussian states. The starting point of the proof is that in practice

we will always observe physical states and a state is physical if and only if the output

covariance matrix is positive definite, which is equivalent to the matrix inequalities

I/2 > g2Γ + (1− g2)I/4 > 0. Both these inequalities are equivalent to

max
j

(Vj) <
g2 + 1

g2 − 1
. (3.32)

and the denominator of equation (3.28) vanishes if the variance Vj reaches this upper

bound, making Geff,j diverge. Taking this constraint into account, the squeezed quadra-

ture variance of the input state is lower bounded by

min
j

(Vj) >
g2 − 1

g2 + 1
(3.33)

which, when plugged into equation (3.28), gives

Geff,j >
1 + g2

2g
> 1 (3.34)

Thus, when g > 1, one finds that Geff,j > 1 for all input states leading to physical output

states.

Similarly, by considering the case g < 1, one can prove that the noiseless attenuation

always reduces the amplitude of Gaussian states and Geff,j < 1. In this latter case, there

is no physical constraint on the admissible input states because noiseless attenuation is a

physically allowed operation that can be implemented with finite success probability on

any input state. Thus, the variance of the squeezed quadrature is simply lower bounded

by min
j

(Vj) > 0. When plugging this into equation (3.28), we obtain

Geff,j <
2g

1 + g2
< 1 (3.35)

for all input states.

3.1.3 Squeezed states: the noiseless amplifier as a universal squeezer

In the following, we use the notation

|α, ξ〉 = D(α)S(ξ)|0〉 (3.36)
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for denoting a coherent squeezed state, where |0〉 is the vacuum state, D(α) = exp(αâ†−
α∗â) is the displacement operator, and S(ξ) = exp((ξ∗â2 − ξâ†2)/2) is the squeezing

operator with ξ = reiφ, where r > 0 is the squeezing strength and φ is the squeezing

angle (φ = 0 refers to squeezing of the x quadrature, while φ = π stands for squeezing

of the p quadrature).

For simplicity, we first consider the action of F̂ on a vacuum squeezed state, i.e., α = 0.

The expansion of such a state in the Fock basis reads as a superposition of even Fock

states [GA90],

|0, ξ〉 =
1√

cosh r

∞∑
n=0

√(
2n

n

)(
−e

iφ tanh r

2

)n
|2n〉 (3.37)

so that applying the F̂ operator gives rise to an additional weight g2n in each term of

this superposition, which results into another vacuum squeezed state

F̂ |0, ξ〉 ∝
√

cosh r′

cosh r
|0, ξ′〉 (3.38)

The resulting squeezing parameter ξ′ = r′eiφ is related to the original one by the relation

tanh r′ = g2 tanh r (3.39)

while the phase φ is unchanged. (Note that the condition g2 tanh r < 1 must be satisfied

for this expression to make sense.) Thus, if the operation is successful, the resulting

state is squeezed along the same angle φ as the original state, but with a stronger pa-

rameter r′ > r regardless of φ, as implied by equation (3.39). This is yet another very

peculiar property of this heralded transformation, namely phase-insensitive squeezing.

The signal-to-noise ratio is thus conserved in this transformation, just as for a (deter-

ministic) phase-sensitive amplifier [OPK93, LAR+93, GLP98], while the transformation

is actually phase-insensitive; this is obvious since F̂ only depends on n̂. Note that the

success probability

Psucc|0,ξ ∝
cosh r′

cosh r
(3.40)

is independent of the squeezing angle φ of the original state. (It is of course always lower

than one, given the meaning of the proportionality sign as explained above.)

Consider now the action of F̂ on a coherent squeezed state, whose expansion in the Fock

basis reads [GA90]

|α, ξ〉 =
1√

cosh r
exp

{
− |α|

2 + α∗2eiφ tanh r

2

}
×
∞∑
n=0

Hn

(
α+ α∗eiφ tanh r

(2eiφ tanh r)1/2

) (
eiφ tanh r

2

)n/2 |n〉√
n!

(3.41)
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where Hn(x) is the Hermite polynomial of order n, defined as

Hn(x) = n!

bn/2c∑
m=0

(−1)m

m! (n− 2m)!
(2x)n−2m (3.42)

Acting with the F̂ operator on this state gives an additional weight gn in each term of

this superposition, which can be written as

F̂ |α, ξ〉 ∝ 1√
cosh r

exp
{
− |α|

2 + α∗2eiφ tanh r

2

}
×
∞∑
n=0

Hn

(
α+ α∗eiφ tanh r

(2eiφ tanh r)1/2

)
1

n!

((
eiφ tanh r

2

)1/2

gâ†

)n
|0〉 (3.43)

With the help of the generating function of Hermite polynomials [AS65]

∞∑
n=0

tnHn(x)

n!
= e2xt−t2 (3.44)

we can simplify equation (3.43) as

F̂ |α, ξ〉 ∝ 1√
cosh r

exp
{
− |α|

2 + α∗2eiφ tanh r

2

}
× exp

{
(α+ α∗eiφ tanh r)gâ† − eiφ tanh r

2
g2â†2

}
|0〉 (3.45)

Now, let us see how the operator in the right-hand side of equation (3.45) acts on |0〉.
Using the fact that

|0, reiφ〉 = S(reiφ)|0〉 = e−ν/2e−τ â
†2/2|0〉 (3.46)

where τ = eiφ tanh r and ν = ln(cosh r), we can write

exp
{
− eiφ tanh r

2
â†2
}
|0〉 =

√
cosh r |0, reiφ〉 (3.47)

If we define the parameter r′ according to equation (3.39), we can use equation(3.47)

with r replaced by r′ in order to reexpress equation(3.45) as

F̂ |α, ξ〉 ∝
√

cosh r′

cosh r
exp

{
− |α|

2 + α∗2eiφ tanh r

2

}
× exp

{
(α+ α∗eiφ tanh r)gâ†

}
|0, ξ′〉 (3.48)

where we note the appearance of a vacuum squeezed state |0, ξ′〉 of parameter ξ′ = r′eiφ.

As it is linear in the bosonic mode operator, the exponential operator acting on this

state effects a displacement of the state. To calculate this displacement, we start by
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rewriting the vacuum squeezed state as

|0, ξ′〉 =
1√

cosh r′

∞∑
n=0

Hn(0)√
n!

(
eiφ tanh r′

2

)n/2
|n〉 (3.49)

where

Hn(0) =

{
(−1)n/2 n!

(n/2)! for even n

0 for odd n
(3.50)

If we define γ = g(α+α∗eiφ tanh r), we may calculate the action of the exponential eγâ
†

on the state |0, ξ′〉 by using the expansion

eγâ
† |n〉 =

∞∑
k=0

γk

k!

√
(n+ k)!

n!
|n+ k〉 (3.51)

The expression of eγâ
† |0, ξ′〉 is thus a double summation over n and k, which we may

express by relabeling the variables as

eγâ
† |0, ξ′〉 =

1√
cosh r′

∞∑
n=0

cn√
n!
|n〉 (3.52)

with

cn =
n∑
k=0

(
n

k

)
γn−kHk(0)

(
eiφ tanh r′

2

)k/2
(3.53)

Using equation (3.50) for Hk(0), which only contributes to the sum for even k, we can

rewrite this as

cn = n!

bn/2c∑
m=0

(−1)m

m! (n− 2m)!
γn−2m

(
eiφ tanh r′

2

)m
(3.54)

Using the explicit expression for the Hermite polynomial, equation (3.42), we get

cn = Hn

(
γ

(2eiφ tanh r′)1/2

) (
eiφ tanh r′

2

)n/2
(3.55)

Replacing γ by its definition and inserting Eqs. (3.52) and (3.55) into equation (3.48),

we obtain

F̂ |α, ξ〉 ∝ 1√
cosh r

exp
{
− |α|

2 + α∗2eiφ tanh r

2

}
×
∞∑
n=0

1√
n!
Hn

(
g(α+ α∗eiφ tanh r)

(2eiφ tanh r′)1/2

)

×
(
eiφ tanh r′

2

)n/2
|n〉 (3.56)
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Figure 3.3: When noiseless amplification is applied to an initially squeezed
state, the squeezing is enhanced while the direction remains unchanged as equa-
tion (3.39) implies. Also, the initial state is displaced according to formula
(3.57).

Noting the similarity with equation (3.41), this can be reexpressed as another coherent

squeezed state |α′, ξ′〉. By defining the new displacement amplitude α′ such that

α′ + α′∗eiφ tanh r′ = g(α+ α∗eiφ tanh r) (3.57)

we obtain finally

F̂ |α, ξ〉 ∝
√

cosh r′

cosh r
exp

{α′∗(α′ + α′∗eiφ tanh r′)

2

}
× exp

{
− α∗(α+ α∗eiφ tanh r)

2

}
|α′, ξ′〉 (3.58)

In summary, we see that the coherent squeezed state |α, ξ〉 has been transformed by F̂

into another coherent squeezed state |α′, ξ′〉, where the transformation of the squeezing

amplitude ξ = reiφ → ξ′ = r′eiφ is governed by equation (3.39), while the transformation

of the coherent amplitude α → α′ is defined via equation (3.57). The latter can be

rewritten as a transformation between the quadrature components before amplification

(〈x〉, 〈p〉) and those after amplification (〈x̃〉, 〈p̃〉). Such a transformation is generally

complicated, but if we consider an x-squeezed state (φ = 0), it takes the simple form

〈x̃〉 =
1 + tanh r

1 + tanh r′
g〈x〉 〈p̃〉 =

1− tanh r

1− tanh r′
g〈p〉 (3.59)

If the initial squeezing vanishes (r = 0), we recover the transformations which charac-

terize the action of the HNLA on a coherent state, 〈x̃〉 = g〈x〉 and 〈p̃〉 = g〈p〉. However,

for an x-squeezed state, we see that the prefactor of gx is smaller than one while the

prefactor of gp is larger than one (remember r′ > r). Of course, a similar behavior

prevails for squeezed states along any quadrature since the transformation is phase in-

sensitive. Thus, we conclude that the amplification gain becomes sublinear in g for the
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squeezed quadrature and superlinear in g for the antisqueezed quadrature.

Finally, the success probability can be expressed as

Psucc|α,ξ ∝
cosh r′

cosh r
exp

{
Re
[
α′∗(α′ + α′∗eiφ tanh r′)

]}
× exp

{
− Re

[
α∗(α+ α∗eiφ tanh r)

]}
. (3.60)

We observe that it is state-dependent, just as for coherent states (r = 0), in which case

we get

Psucc|α,0 ∝ exp{|α′|2 − |α|2} (3.61)

in agreement with equation (3.5).

We can derive the same results by considering the phase space formalism. Namely, we

can easily check that Eqs. (3.24) and (3.25) are consistent with the formulas obtained in

Section 3.1.2 for the noiseless amplification of a squeezed state of light, whose covariance

matrix is given by

γ =

(
2e−2r 0

0 2e2r

)
(3.62)

with |ξ| = s being the squeezing parameter. We have

Γ = (γ + 2I)−1 =

(
1+tanh r

4 0

0 1−tanh r
4

)
(3.63)

implying

Γ̃ =

(
1+g2 tanh r

4 0

0 1−g2 tanh r
4

)
(3.64)

so we conclude that the covariance matrix of the amplified state is that of another

squeezed state

γ̃ =

(
2e−2r′ 0

0 2e2r′

)
(3.65)

with stronger squeezing (the output squeezing parameter s′ satisfies tanh s′ = g2 tanh s).

The transformation of the vector of mean values, equation (3.25), gives(
〈x̃〉
〈p̃〉

)
= g

(
1+tanh r
1+tanh r′ 0

0 1−tanh r
1−tanh r′

)(
〈x〉
〈p〉

)
(3.66)

in perfect agreement with equations (3.59) ([GKC12]).

As we have already seen F̂ is an unbounded operator which can only be approximately

implemented by truncating the Fock space at a photon number N in order to get a
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Figure 3.4: Fidelity F of the approximate phase-insensitive squeezer (with
respect to the ideal one) as a function of the truncation size N for g = 1.1.
We consider a vacuum squeezed state at the input with several values of the
squeezing r (from 2 dB to 8 dB). The success probability Psucc is also shown.
For N = 2 and a squeezing of 4 dB, we have F = 0.9694 and Psuc = 0.7099

.

non-zero success probability. We have investigated this truncation effect for a vacuum

squeezed state of various squeezing parameters r. In figure 3.4, we exhibit the fidelity

F = |〈0, ξ′|0, ξ′〉tr|2 between the ideal output squeezed state |0, ξ′〉 and the (renormalized)

truncated output state |0, ξ′〉tr resulting from applying the truncated operator F̂tr =

gn̂/gN onto the truncated input squeezed state |0, ξ〉tr. The fidelity can be expressed as

F =
1

cosh r′

N∑
n=0

1

n!

(
tanh r′

2

)n
Hn(0)2 ≡ fN (r′) (3.67)

and it is easy to check that limN→∞ fN (r′) = 1, ∀r′, so that the truncated process

becomes perfect in the limit of an infinite large space. The success probability reads

Psucc =
fN (r′)

g2NfN (r)
(3.68)

which tends to zero in the limit of a large N , as expected. In figure 3.4, we plot F and

Psucc as a function of the truncation size N . We take a value of the gain g = 1.1 and

consider several values of the squeezing r assuming φ = 0 (remember ξ = reiφ). We

observe that for small values of N , the fidelity is close to one if the squeezing is not too

large, while the success probability remains acceptable. For example, if N is as low as 2

photons and the squeezing r corresponds to 4 dB, we get F = 0.9694 with Psuc = 0.7099.

3.1.4 A paradox resolved

Any local operation on an entangled quantum state whose members are spacelike sepa-

rated is well known to preserve causality in the sense that acting on one member cannot

lead to consequences that would be instantaneously measurable on another member.
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Thus, although the nonlocality inherent to quantum theory seemingly leads to a so-

called “action at a distance”, it does not open a way to instantaneous signaling. This

feature was dubbed by Shimony the “peaceful coexistence” between quantum mechanics

and special relativity [Shi78]. As explained below, it seems that the ability to squeeze a

quantum state independently of its phase could contradict this peaceful coexistence and

lead to instantaneous signaling between entangled parties on an heralded basis. While

we, of course, do not expect this possibility to hold, it is intriguing enough to deserve

a serious analysis. In this Section we examine the mechanism behind this peaceful co-

existence between the phase-insensitive squeezer and special relativity. Let us start by

analyzing the action of the HNLA on one mode of an EPR pair, or more precisely a

two-mode vacuum squeezed state of parameter s,

|EPRs〉 = (cosh s)−1
∞∑
n=0

(tanh s)n |n〉|n〉 (3.69)

Remember that tracing out one of the modes, results in a thermal state of mean photon

number ν = (sinh s)2,

ρ̂th
s = (cosh s)−2

∞∑
n=0

(tanh s)2n |n〉〈n| (3.70)

with a covariance matrix

γth
s =

(
2 cosh 2s 0

0 2 cosh 2s

)
(3.71)

Assume that Alice and Bob share such an EPR state and that Bob applies the HNLA,

as depicted in figure 3.5. As discussed in [RL09], applying the operator I × F̂ gives an

additional weight gn in each term of the superposition (3.69). Thus, when successful,

this yields a stronger entangled EPR state, namely

|EPRs′〉 = (cosh s′)−1
∞∑
n=0

(tanh s′)n |n〉|n〉 (3.72)

with squeezing parameter s′ > s satisfying

tanh s′ = g tanh s (3.73)

In a second time, Alice may measure the photon number in her mode (i.e., she applies a

projective measurement in the {|n〉} basis as shown in figure 3.5), so that she prepares

a mixture of photon number states (with a geometric distribution) on Bob’s side, which
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Figure 3.5: Simple illustration of the peaceful coexistence of the HNLA with
special relativity. Alice and Bob share an entangled state |EPRs〉 and we com-
pare two situations: (i) Bob amplifies his mode with the HNLA of gain g, which
creates a stronger entangled state |EPRs′〉, and then Alice measures her mode,
thereby preparing some mixture at Bob’s side; (ii) Alice measures her mode
first, thereby preparing some mixture at Bob’s side, and Bob later amplifies
each component pure state of this mixture. It is verified that these two situa-
tions yield the same average state ρ̂th

s′ at Bob’s side as a consequence of Bayes
rule (both photon number or heterodyne measurement are considered).

is the thermal state

ρ̂th
s′ = (cosh s′)−2

∞∑
n=0

(tanh s′)2n |n〉〈n| (3.74)

with a mean photon number ν ′ = (sinh s′)2. Of course, this preparation “at a distance”

just corresponds to some possible ensemble realizing Bob’s state, which may also have

been obtained simply by performing a partial trace of |EPRs′〉 over Alice’s mode.

Now, instead of assuming that Bob’s amplification was done before Alice’s measurement,

we may also consider the opposite situation, that is, Alice first measures her part of the

state |EPRs〉, which prepares a photon number state |n〉 at Bob’s side with probability

pn =
(tanh s)2n

(cosh s)2
(3.75)

Then, applying the HLNA on |n〉 results in the same state |n〉 with a success probability

Psucc|n ∝ g2n. To get the probability of the |n〉 component in the resulting state, we

need to use Bayes rule for conditional probabilities, namely,

pn|succ =
Psucc|n pn

Psucc
∝ g2n (tanh s)2n

(cosh s)2
∝ (tanh s′)2n

(cosh s′)2
(3.76)

where Psucc is the average success probability. Thus, as expected, the resulting mixture

of photon number states exactly coincides with the expression of Bob’s state given by
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equation (3.74), so that measuring on Alice’s side before or after amplifying on Bob’s side

does not make any difference. Even though the photon number states |n〉 are unaffected

by the HNLA, the mean photon number of Bob’s state is enhanced (ν → ν ′) by the

HNLA due to the fact that higher photon-number states have a higher probability to be

sucessfully transformed (into themselves), which introduces just the right bias. This is

the simplest illustration of the “peaceful coexistence” that we can find.

Another simple case occurs if Alice performs an heterodyne measurement on her mode

of the EPR state, that is, she performs a POVM measurement based on projectors onto

coherent states |α〉 (as also shown in Fig. 2). Remember that the thermal state ρ̂th
s can

also be written as a Gaussian mixture of coherent states, namely

ρ̂th
s =

1

πν

∫
d2α e−|α|

2/ν |α〉〈α| (3.77)

where the mean photon number ν is related to the squeezing parameter s via ν =

(sinh s)2. Starting from the entangled state |EPRs〉, if Bob amplifies his mode before

Alice’s measurement, we need to consider the effect of heterodyne measurement on

Alice’s mode of the entangled state |EPRs′〉. The resulting state that is prepared “at

a distance” (on Bob’s side) is obviously a Gaussian mixture of coherent states, which

reads as

ρ̂th
s′ =

1

πν ′

∫
d2α e−|α|

2/ν′ |α〉〈α| (3.78)

with a mean photon number ν ′ = (sinh s′)2. This is also simply the state obtained by

tracing |EPRs′〉 over Alice’s mode.

Alternatively, if Alice performs her heterodyne measurement before Bob’s amplification,

she first prepares the coherent states |α〉 on Bob’s side with the probability distribution

pα =
e−|α|

2/ν

πν
(3.79)

Each coherent state |α〉 is transformed by the HNLA into an amplified coherent state

|gα〉 with probability Psucc|α ∝ e(g2−1)|α|2 , so that Bob’s state conditional on the success

of the HNLA can be written as

ρ̂.|succ =

∫
d2α

Psucc|α pα

Psucc
|gα〉〈gα|

∝ 1

πν

∫
d2α e(g2−1)|α|2 e−|α|

2/ν |gα〉〈gα|

∝ 1

πν

∫
d2α eg

2|α|2 e−|α|
2/(tanh s)2 |gα〉〈gα| (3.80)

where we have used the identity (tanh s)2 = ν/(1+ν). By making the change of variable

gα→ α in equation (3.80), we recover the thermal state of equation (3.78) with a mean
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Alice Bob

Figure 3.6: With the use of the deterministic cloning machine Bob can know
which measurement Alice did. Therefore a deterministic cloner cannot exist.

photon number ν ′. Thus, the mean photon number enhancement ν → ν ′ is due here to

the combined effect of the amplification gain g with the bias induced by Bayes rule.

These two examples are of course not very surprising since we knew from the beginning

that whatever Alice does on her part of the entangled state (measuring it or not), Bob

is left with the same reduced state and the fact that he noiselessly amplifies it before or

after Alice’s measurement is irrelevant (this notion is even meaningless for a spacelike

interval between the two events). We will consider a more subtle scenario exploiting the

link between causality, cloning, and amplification, which seemingly provides a genuine

way to signaling.

It has been known since a famous paper by Dieks [Die82] that the quantum no-cloning

principle can be proven using a thought experiment which connects it to the impossibility

of instantaneous signaling. Assuming that Alice and Bob share an entangled state,

it appears that Alice could instantaneously communicate to Bob if the latter had a

perfect quantum cloning transformation at his disposal. Alice would simply perform a

specific measurement on her component of the state depending on the information she

wishes to communicate, while Bob would acquire the information by perfectly cloning

his component of the state before measuring it. Since signaling is impossible, perfect

quantum cloning is precluded. Note that imperfect quantum cloning is nevertheless

possible (see, e.g., [CF05] for a review) and, interestingly enough, the minimum cloning

noise that is needed to comply with causality in Dieks’ thought experiment exactly

coincides with the noise of the best imperfect cloning transformation that is allowed by

quantum mechanics [Gis98, NC03].

Let us see the Dieks’ scheme in some detail. In a setup like in figure 3.6 Alice and Bob

have one part of compound state, for example two entangled electrons, with total spin
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0,

|Ψ〉 =
|+−〉+ | −+〉√

2
(3.81)

where |+〉 and |−〉 are the eigenvectors of Ŝx, with |0〉 = (|+〉 + |−〉)/
√

2 and |1〉 =

(|+〉 − |−〉)/
√

2 while |0〉 and |1〉 are the eigenvectors of the Ŝz.

Bob possesses a multiplication or cloning machine. That means that if an electron with

a certain spin direction enters to the machine, in the output there will be N electrons

in the exact same state as the input. Initially Alice decides to measure either the x spin

direction or the z spin direction. If she measures x spin direction then cloning machine

on Bob’s side will produce N copies of |+〉 or |−〉 so since Bob measures always the x

spin direction then he will find all the spins in the same state (|+〉 or |−〉). If Alice

decides to measure the z spin direction then when Bob measures the x direction spin,

half of the electrons will be found to be in the state |0〉 and the other half in the state

|1〉. In that way Bob knows what measurement Alice did and therefore information

could be send without respecting causality. With this reasoning one can exclude the

possibility that there a cloning machine is feasible. Note that Dieks paper proceeds with

more formal proof of the no-cloning theorem (see also [WZ82]) based on the linearity of

quantum mechanics.

Note that the cloning machine in the setup described above is deterministic. One may

think if there is the possibility to violate causality by means of probabilistic proto-

cols. Here, we start from the possible realization of the continuous-variable Gaussian

cloning transformation [CIR00] in terms of a phase-insensitive amplifier of amplitude

gain
√

2 followed by a balanced beam splitter, whose output ports yield the two clones

[CI01, BCI+01]. In this realization, the imperfection of the clones originates from the

added noise of the amplifier, and the optimal (imperfect) cloner precisely corresponds

to the ideal quantum-limited amplifier of equation (3.1). If we replace this amplifier by

the HNLA with the same gain, we obtain a probabilistic heralded perfect cloner, which

yields two perfect clones when it succeeds. More precisely, the fidelity of the clones can

be made arbitrary close to one at the cost of a decreasing success probability. Following

Dieks’ reasoning, it seems that such a probabilistic perfect cloner could enable Alice

to communicate instantaneously to Bob, though on an heralded basis only. It must be

stressed that this possibility for heralded instantaneous signaling is in reckless contra-

diction with causality. Even if the success probability is very low and the fidelity is

slightly below one, Bob should not at all be able to acquire any information on Alice’s

bit while knowing that he has succeeded. We will show how this loophole is avoided,

thanks to a subtle interplay between quantum mechanics and Bayes rule for conditional

probabilities.
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Figure 3.7: Continuous-variable analog to Dieks’ scheme exploiting the her-
alded phase-insensitive squeezer, which seemingly opens the possibility for in-
stantaneous signaling on an heralded basis. Alice and Bob share an entangled
state |EPRs〉, and Alice measures the x or p quadrature in order to send the
bit 0 or 1, respectively. This results into two possible (indistinguishable) mix-
tures of squeezed states at Bob’s side. The perfect cloning (or amplification)
of each component squeezed state of these two mixtures realized with the her-
alded phase-insensitive squeezer of gain g seems to provide Bob with a way to
discriminate the phase-encoded information (x or p), which would lead to her-
alded signaling. In fact, the state dependence of this heralded transformation
“conspires” with Bayes rule and forbids this to happen. Bob’s mixtures coincide
with the same state ρ̂th

s′ regardless of Alice’s bit.
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We introduce a continuous-variable analog to Dieks’ scheme (see Fig. 3). In such a

scheme, Alice and Bob share an entangled state |EPRs〉, and Alice decides to perform

a homodyne measurement of the x or p quadrature on her mode. The choice between x

and p corresponds to the bit of information she wishes to instantaneously communicate

to Bob. If she measures the x (p) quadrature, this prepares an ensemble of x-squeezed

(p-squeezed) states on Bob’s side. Then, Bob clones these squeezed states by using the

HNLA and attempts to gain some knowledge on the phase-encoded information bit.

To understand why signaling is impossible, it is necessary to investigate the noiseless

amplification of these two indistinguishable ensembles of x- or p-squeezed states.

Assume that Alice wants to communicate a bit 0, so she measures the x quadrature

of her mode. As sketched in figure 3.7, this prepares on Bob’s side an ensemble of

x-squeezed states of mean vector (x, 0) and covariance matrix

γsq
r =

(
2e−2r 0

0 2e2r

)
(3.82)

with x being drawn from a Gaussian distribution of mean 0 and variance σ2 = e2r−e−2r.

Here r is the single-mode squeezing parameter of each component state of this mixture,

and, given equation (3.71), it must be related to the two-mode squeezing parameter s of

the EPR state by e2r = cosh 2s. This expresses that the p-variance of each component

x-squeezed state is equal to the variance of the thermal state ρ̂th
s obtained simply by

tracing over Alice’s mode. Using the identities

e2r =
1 + tanh r

1− tanh r
cosh 2s =

1 + (tanh s)2

1− (tanh s)2
(3.83)

this relation between r and s can also be equivalently reexpressed as

tanh r = (tanh s)2 (3.84)

Since the HNLA transforms the single-mode squeezing parameter r of each component

state according to equation (3.39) while it transforms the two-mode squeezing parameter

s of the EPR state according to equation (3.73), we get simply

tanh r′ = (tanh s′)2 (3.85)

which implies that the p-variance of each component x-squeezed state after amplification

remains precisely equal to that of the thermal state ρ̂th
s′ obtained by tracing the amplified

state |EPRs′〉 over Alice’s mode (see Fig. 3).

The next step is to verify that the x-variance of Bob’s state after amplification coincides
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with the p-variance. More generally, we need to verify that Bob’s resulting state is inde-

pendent of Alice’s choice to measure one particular quadrature (here x). The ensemble

of x-squeezed states before amplification can be written as a mixture

ρ̂ =

∫
dx px ρ̂

sq
r (x) (3.86)

where ρ̂sq
r (x) stands for an x-squeezed state of parameter r that is centered on (x, 0).

The Gaussian distribution

px =
1√

2πσ2
exp

{
− x2

2σ2

}
(3.87)

has a variance that can be reexpressed as

σ2 =
4 tanh r

1− (tanh r)2
(3.88)

Each squeezed state ρ̂sq
r (x) is transformed by the HNLA into another squeezed state

ρ̂sq
r′ (x

′) where r′ is related to r via equation (3.39) and x′ is related to x via equation

(3.59). Using equation (3.60), the success probability can be written as

Psucc|x ∝
cosh r′

cosh r
exp

{x′2(1 + tanh r′)

4

}
× exp

{
− x2(1 + tanh r)

4

}
(3.89)

Putting all this together, Bob’s resulting state conditionally on the success of the HNLA

can be written as

ρ̂.|succ =

∫
dx

Psucc|x px

Psucc
ρ̂sq
r′ (x

′)

∝
∫

dx exp
{x′2(1 + tanh r′)− x2(1 + tanh r)

4

}
× exp

{
− 1− (tanh r)2

8 tanh r
x2
}
ρ̂sq
r′ (x

′) (3.90)

We wish to prove that ρ̂.|succ coincides with the thermal state ρ̂th
s′ , which can also be

written as a mixture of x-squeezed states

ρ̂th
s′ =

∫
dx′ px′ ρ̂

sq
r′ (x

′) (3.91)

where

px′ =
1√

2πσ′2
exp

{
− x′2

2σ′2

}
(3.92)



Chapter 3. Noiseless amplification and attenuation of quantum light 73

is a Gaussian distribution of variance

σ′2 =
4 tanh r′

1− (tanh r′)2
(3.93)

in analogy with equation (3.88). This boils down to checking that, for all x, we have(
1− (tanh r)2

8 tanh r
+

1 + tanh r

4

)
x2

=

(
1− (tanh r′)2

8 tanh r′
+

1 + tanh r′

4

)
x′2 (3.94)

which simplifies to

(1 + tanh r)2

tanh r
x2 =

(1 + tanh r′)2

tanh r′
x′2 (3.95)

and holds as a consequence of Eqs. (3.39) and (3.59).

Therefore, we have verified that if Alice wants to send a bit 0 and Bob’s thermal state is

thereby decomposed into a Gaussian mixture of x-squeezed states ρ̂sq
r (x), the resulting

state becomes a Gaussian mixture of amplified x-squeezed states ρ̂sq
r′ (x

′) with a stronger

squeezing but which nevertheless remains phase-invariant, as illustrated in figure 3.7.

The same reasoning is of course true regardless of the initially squeezed quadrature,

so that the resulting state would be exactly the same if Alice wanted to send a bit 1

and Bob’s thermal state was decomposed into a Gaussian mixture of p-squeezed states.

Hence, no information whatsoever is available to Bob and causality is preserved, even

on a heralded basis.

3.2 Noiseless amplification and attenuation of non-Gaussian

states

3.2.1 Mean photon number and mean-field amplitude

The heralded noiseless amplifier (attenuator) is a transformation that increases (de-

creases) the complex amplitude α of a coherent state |α〉 without adding noise, that is

|α〉 → |gα〉. We have proven, that the same behavior holds true for the mean amplitude

of any (possibly mixed) Gaussian state. One could therefore naively expect that this

remains true for all states. Surprisingly, we will show that the mean amplitude of a

non-Gaussian state can actually be attenuated by noiseless amplification, or amplified

by noiseless attenuation. We first illustrate this counterintuitive effect on two simple and

instructive examples of states that can be expressed as superpositions of a finite number
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of Fock states. In a third example, a non-Gaussian mixed state will also be shown to

exhibit this effect. In the next subsection, we will design a scheme for experimentally

verifying the mean field amplification by noiseless attenuation that is robust against

most experimental imperfections.

As a first example, let us consider the superposition of vacuum and single-photon state,

|Ψ1〉 = c0|0〉+ c1|1〉, (3.96)

where without loss of any generality we assume that c0 and c1 are real and c2
0 + c2

1 = 1.

The coherent amplitude of this state then reads

A1 ≡ 〈Ψ1|â|Ψ1〉 = c1c0 = c1

√
1− c2

1, (3.97)

where â denotes the annihilation operator. After noiseless amplification with gain g > 1,

the state becomes

|Ψ̃1〉 = gn̂|Ψ1〉 = c0|0〉+ gc1|1〉, (3.98)

and its amplitude changes to

Ã1 =
g
√

1− c2
1c1

1 + (g2 − 1)c2
1

. (3.99)

The effective amplification gain is given by Ã1/A1, and we get

G
(1)
eff =

g

1 + (g2 − 1)c2
1

. (3.100)

If the probability of single-photon state satisfies c2
1 > 1/(g + 1), then Geff < 1 hence

the noiseless amplification attenuates the complex amplitude of the state. This effect

can be understood by noting that the mean amplitude of the superpositions (3.96) is

maximized when c0 = c1 = 1/
√

2. If the amplification gain becomes large enough, then

it enhances the imbalance between the amplitudes of the vacuum and single-photon

contributions, which results in effective reduction of the mean field. In the limit of

very large amplification gain, the noiselessly amplified state approaches a Fock state |1〉,
whose mean field vanishes.

Similar conclusions hold also for the noiseless attenuation. The effective amplitude gain

is given again by equation (3.100) but with g = ν < 1,

G
(1)
eff =

ν

1 + (ν2 − 1)c2
1

. (3.101)
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Figure 3.8: Contour plots for the Q representations for the state |Ψ1〉 = c0|0〉+
c1|1〉 before attenuation (upper row) and after attenuation (lower row). The
coefficients have the values c0 =

√
0.1 and c1 =

√
0.9 while the attenuation

is ν = 0.5. The dots represent the mean values 〈α̂〉2 (left column) and 〈α̂†α̂〉
(right column). Hollow points represent mean values before attenuation while
full points correspond to mean values after attenuation. The mean value 〈α̂†α̂〉
behaves as expected; it is decreased due to attenuation. The mean value 〈α̂〉2
exhibits the effect that it is increased via attenuation.

If c2
1 > 1/(1 + ν) then G

(1)
eff > 1 because starting from a state where the single-photon

component is dominant, the noiseless attenuation drives it closer to the balanced super-

position (|0〉+ |1〉)/
√

2.

As a second example, let us consider superposition of the three lowest Fock states,

|Ψ2〉 = c0|0〉+ c1|1〉+ c2|2〉, (3.102)

where for the sake of simplicity we again assume real cj , and c2
0 + c2

1 + c2
2 = 1. The

amplitude reads

A2 = 〈Ψ2|â|Ψ2〉 = c1(c0 +
√

2c2). (3.103)

Since the formula contains two terms, constructive or destructive quantum interference

can occur. After noiseless amplification, the complex amplitude becomes

Ã2 =
gc1(c0 +

√
2g2c2)

c2
0 + g2c2

1 + g4c2
2

(3.104)
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and the effective amplification gain can be expressed as

G
(2)
eff =

g

c2
0 + g2c2

1 + g4c2
2

c0 +
√

2g2c2

c0 +
√

2c2

. (3.105)

By suitably choosing c0 and c2, the factor c0 +
√

2g2c2 in the numerator can be made

arbitrarily small and we may even achieve zero gain. This can be interpreted as the

arising of a destructive interference between the vacuum and two-photon components

in the noiselessly amplified state, hence decreasing its mean field. Similarly, in case

of noiseless attenuation, we can choose the parameters such that the factor c0 +
√

2c2

will be very small and the gain will be very large. Here, the destructive interference

that makes the mean field of the initial state very small is disturbed as a result of

noiseless attenuation, hence increasing the mean field. Interestingly, this mechanism

of interference disturbance is robust against imperfections in the process of noiseless

attenuation, so it is a good candidate for an experimental demonstration.

We note that the same type of counterintuitive effects may also be exhibited by non-

Gaussian mixtures of Gaussian states. Indeed, as a third example, consider the binary

mixture of two coherent states |α〉 and |β〉,

ρ̂ρ̂3 = p|α〉〈α|+ (1− p)|β〉〈β|, (3.106)

where p ∈ [0, 1]. The amplitude of this state reads

A3 = Tr(ρ̂3â) = pα+ (1− p)β. (3.107)

After noiseless amplification, each coherent state |α〉 is mapped onto |gα〉 with weight

factor e(g2−1)|α|2 . Hence, the resulting state is also a mixture of two coherent states with

amplified amplitudes and modified weight,

˜̂ρ3 = p′|gα〉〈gα|+ (1− p′)|gβ〉〈gβ|, (3.108)

where

p′ =
p e(g2−1)|α|2

p e(g2−1)|α|2 + (1− p) e(g2−1)|β|2 . (3.109)

Its amplitude is given by

Ã3 = g[p′α+ (1− p′)β] (3.110)

so that the effective amplification gain reads

G
(3)
eff = g

p′α+ (1− p′)β
pα+ (1− p)β . (3.111)
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Figure 3.9: Proposed experimental setup. Coherent states are injected into
signal and idler ports of a nonlinear crystal where parametric down-conversion
with a low gain λ occurs. Conditional photon addition is heralded by a click of a
single-photon detector APDT . BS1 is a beam splitter with amplitude reflectance
ν and noiseless attenuation is heralded by a no-click of the single-photon detector
APD. Imperfect detection with efficiency η < 1, is modeled by coupling to an
auxiliary mode C prepared in a vacuum state, where η is the transmittance of
BS2.

This gain can be complex, and we can have |G(3)
eff | < 1 for g > 1. To see this, take

the example of two coherent states with real amplitudes α = 1 and β = −0.9 that are

mixed with p = 1/3. If we process this mixture in a noiseless amplifier of gain g = 2,

we get an effective gain G
(3)
eff = 0.063 smaller than unity. Thus, we observe a mean

field reduction by noiseless amplification of a non-Gaussian mixture of coherent states.

Conversely, if we set g = ν < 1 in equation (3.111), we get a formula for the effective

gain of the noiseless attenuation of state (3.106), and it is easy to find examples where

it is larger than 1. Thus, noiseless attenuation may enhance the mean field amplitude

of a non-Gaussian mixture of coherent states.

3.2.2 Proposal for an experimental setup

In this subsection, we propose and analyze an optical setup that enables to experi-

mentally demonstrate the counterintuitive effect of mean field enhancement by noiseless

attenuation. The suggested scheme is illustrated in Fig. 3.9. The non-Gaussian state is

generated from an input coherent state by conditional photon addition. A coherent state

|α〉 is injected into the signal input port of a nonlinear crystal where a non-degenerate

parametric down-conversion with a low parametric gain λ � 1 takes place. A click of

the trigger single-photon detector APDT heralds the generation of a photon pair in the

crystal and the addition of a photon to the signal beam. The noiseless attenuation νn̂ is
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implemented by sending the signal beam through a beam splitter BS1 with reflectance

R = ν2 and transmittance T = 1 − ν2. The auxiliary input port of BS1 is prepared in

vacuum state, and the auxiliary output port is measured with single-photon detector

APD. Assuming ideal detector with unit detection efficiency, the noiseless attenuation is

heralded by a no-click of the detector. In practice, the detection efficiency will be rather

low, so conditioning on no-clicks will result in a combination of noiseless attenuation

and usual losses. In what follows, we will first assume an ideal APD and then we will

provide a more realistic description which will account for imperfect state preparation

and inefficient single-photon detection.

In order to increase the flexibility of the setup we suggest to also inject a weak auxiliary

coherent state |λδ〉 to the idler input port of the nonlinear crystal. The detector APDT

can then be triggered either by the idler photon generated in the crystal or by a photon

from the auxiliary input coherent beam. If these two photons are indistinguishable, then

one obtains a coherent superposition of the photon addition and identity operations, and

the resulting conditionally prepared state reads,

|Ψ〉 =
1√
N

(â† + δ)|α〉. (3.112)

Here N = 1 + |α∗ + δ|2 is a normalization factor and the parameters α and δ can be

independently set to any desired value by tuning the amplitudes of the coherent beams

injected into the signal and idler ports of the nonlinear crystal, respectively. Note that

in the limit α = 0 the state becomes the superposition of vacuum and single-photon

states as studied in the previously. For the sake of simplicity, we shall assume that both

α and δ are real. In this case, the complex amplitude of |Ψ〉 is real as well,

A = α+
α+ δ

1 + (α+ δ)2
. (3.113)

After noiseless attenuation, the state transforms into

|Ψ̃〉 ∝ νn̂(â† + δ)|α〉 ∝ (νâ† + δ)|να〉. (3.114)

where we have used the identity νn̂â† = â†νn̂+1. We see that the structure of the

state remains unaltered but its parameters change according to α → να and δ → δ/ν.

Therefore, the amplitude of the noiselessly attenuated state (3.114) can be expressed as

Ã = να+
να+ δ/ν

1 + (να+ δ/ν)2
. (3.115)

The effective gain Geff = Ã/A is plotted in figures 3.10 and 3.11 as a function of ν and

δ respectively. We can see that the effective amplitude gain can be both positive and
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Figure 3.10: Noiseless attenuation of a non-Gaussian state given in equa-
tion(3.112). The amplitude gain Geff is plotted as a function of the attenu-
ation factor ν for four different values of detection efficiency η = 1 (solid line),
η = 0.75 (long dashed line), η = 0.5 (dot dashed line) and η = 0.25 (short
dashed line). The other parameters read α = 0.25, δ = −0.55, and p = 1.

negative and for suitable parameter values the gain can be much larger than 1. The

large gain occurs in the neighborhood of a point where A = 0 (figure 3.11). In the

proposed experiment, one could seek an optimal working point δopt such that Geff > 1

while the input and output amplitudes are large enough so the amplification effect would

be observable and not buried in noise.

Let us now include the effect of inefficient single-photon detection into our model. As

illustrated in Fig. 3.9, this can be done by including another auxiliary mode C, which is

coupled to mode B by the beam splitter BS2 with transmittance η equal to the detection

efficiency of the APD. While mode B is projected onto vacuum state, mode C is traced

over. The output state before measurement on mode B reads,

Û(â† + δ)|α〉A|0〉B|0〉C . (3.116)
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Here Û is a unitary operation describing the mode coupling effected by the two beam

splitters BS1 and BS2,

U =


ν

√
ηT

√
(1− η)T

−
√
T ν

√
η ν

√
1− η

0 −√1− η √
η

 (3.117)

where T = 1− ν2. Hence,

Û â†Û † = νâ† +
√
T (
√
ηb̂† +

√
1− ηĉ†), (3.118)

where b̂† and ĉ† denote creation operators of modes B and C, respectively, so that the

output state before measurement on mode B can be rewritten as

[νâ† +
√
Tη b̂† +

√
T (1− η) ĉ† + δ] Û |α〉A|0〉B|0〉C . (3.119)

We also use the fact that a passive linear optical network transforms input coherent

states onto output coherent states, so that

Û |α〉A|0〉B|0〉C = |να〉A|
√
Tηα〉B|

√
T (1− η)α〉C . (3.120)

After projection of mode B onto vacuum, the unnormalized conditional state reads

|Ψ̃η〉 = (νa† +
√
T (1− η) c† + δ) |να〉A|

√
T (1− η)α〉C . (3.121)

The amplitude of the output signal mode A is then given by

Ãη = να+
να(1− ηT ) + νδ

[α(1− ηT ) + δ]2 + 1− ηT . (3.122)

A second effect that we take into account is the imperfect mode overlap in conditional

photon addition. With some probability, the photon may be added to a different mode

and in this case the input state remains the coherent state |α〉. Thus, a realistic input

state can be modeled as a mixture of the state (3.112) and the coherent state |α〉 ,

ρ̂ = p|Ψ〉〈Ψ|+ (1− p)|α〉〈α|, (3.123)

where p ∈ [0, 1]. After noiseless attenuation, the (un-normalized) state of the output

signal mode reads

ρ̂out =
p

N
TrC [|Ψ̃η〉〈Ψ̃η|] + (1− p)|να〉〈να|. (3.124)
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The amplitude of this output state can be expressed as

Ãη,p = p′Ãη + (1− p′)να, (3.125)

where

p′ =
p

p+ (1− p) 1+(α+δ)2

[α(1−ηT )+δ]2+1−ηT

. (3.126)

As shown in figures 3.11 and 3.12, the effect of amplitude enhancement by noiseless

attenuation persists even for p = 0.75 and low detection efficiency η = 0.25, although

it becomes less pronounced with decreasing η. When fixing the parameters δ, α, and p,

there exists a detection efficiency threshold ηth such that if η ≤ ηth then |Geff | < 1 for

any 0 < ν < 1, so the noiseless attenuation does not any more increase the amplitude

of the considered input state. The dependence of Geff on ν and η shown in Figs. 3.10
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Figure 3.11: Dependence of the input amplitude A (a) and amplitude gain Geff

(b) on the displacement parameter δ. The other parameters read α = 0.25,
ν = 1/

√
2, and η = 1, p = 1 (solid line) and η = 0.25, p = 0.75 (dashed line).
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Figure 3.12: The same as Fig. 3.10 but p = 0.75 and δ = −0.65.

and 3.12 suggests that the efficiency threshold can be derived from the condition

dGeff

dν

∣∣∣∣
ν=1

= 0, (3.127)

which yields

ηth =

[
1 + (α+ δ)2

] [
α+ α(α+ δ)2 + p(α+ δ)

]
2p2(α+ δ)(1 + 2α2 + 2αδ)− 2pα[1 + (α+ δ)2]

. (3.128)

Explicitly, for α = 0.25, δ = −0.55, and p = 1 (Fig. 3.10), we obtain ηth = 0.0284, while

for α = 0.25, δ = −0.65, and p = 0.75 (Fig. 3.12), we obtain ηth = 0.0146. We have also

confirmed these results by numerical calculations.

Note that with a suitable choice of α and δ, the amplitude amplification by noiseless

attenuation can be observed for any η > 0 and p > 0, in which case ηth = 0. This can be

proved by noting that for a real α satisfying |α| < p/2, there exists real δ such that the

amplitude of the input state (3.123) vanishes. After (imperfect) noiseless attenuation,

the state will possess nonzero amplitude, hence the gain will be infinite. Therefore, by

continuity, there exists a region of parameters for which the initial amplitude is nonzero

and |Geff | > 1. Even severe experimental inefficiencies and imperfections can thus be

compensated and we can achieve high effective gains by a careful tuning of α and δ.

In an experimental realization of the proposed setup, values for the vacuum conditioning

efficiency η and for the purity parameter p like those used in figures 3.11 and 3.12 are

realistic and probably even too conservative. An efficient vacuum conditioning can be

obtained by loosening the spectral and spatial filtering in front of the APD detector
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so to bring losses in the heralding channel to a minimum. The increased rate of un-

wanted background counts can be limited by using pulsed laser sources for gating the

time interval when the absence of APD clicks should be detected. Note, however, that

higher levels of background counts only decrease the no-click heralding rate, without

compromising the quality of the generated states. Finally, a regime of small coherent

state amplitude α and high reflectance ν should be preferentially used in an experiment

in order to avoid saturation effects in the APD detector.

3.3 Conclusions

In this Chapter, we have found that the HNLA acts as a phase-insensitive or universal

single-mode squeezer in the sense that any squeezed state is transformed into another

squeezed state with a stronger squeezing of the quadrature that was initially squeezed.

This is not to be confused with other notions of universal squeezing such as that some

operations squeezes the initial state always in the same manner. The universal squeez-

ing in the context of this Chapter is superimposed with a nonlinear amplification of the

mean field of the input state, as the gain is proportional to g corrected with an ad-

ditional factor that underamplifies the initially squeezed quadrature and overamplifies

the initially antisqueezed quadrature. Note that if one considers probabilistic noiseless

attenuation, i.e. g = ν < 1 the inverse effect occurs, namely the the initial squeezed

states becomes less squeezed while the phase remains unchanged. This comes from the

fact that the mathematical description of the probabilistic noiseless amplification and

probabilistic noiseless attenuation have the same mathematical description; to obtain

results concerning attenuation from results concerning amplification one has to simply

substitute g → ν, where g > 1, g > 0 and ν < 1, ν > 0.

Such an ability to squeeze a quantum state independently of its phase, though it is

predicted within quantum mechanics, seems to contradict the celebrated “peaceful co-

existence” with special relativity as it might lead to an heralded version of instantaneous

signaling between entangled parties. We have examined the reasons why this intriguing

possibility fails by inserting this phase-insensitive squeezer in a continuous-variable ana-

log of Dieks’ scheme, which is a thought experiment aimed at ruling out the possibility

of perfect cloning (or amplification) based on the link with signaling. Our analysis shows

that if Alice encodes information in the phase of her measured quadrature of an entan-

gled two-mode state, Bob obtains different mixtures of squeezed states by applying the

phase-insensitive squeezer on his mode, but all these mixtures realize a same thermal

state. Hence, signaling is indeed impossible.
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Although it was expected, such a “coincidence” is remarkable if one recognizes that the

HNLA effects an enhancement of the squeezing strength according to equation (3.39)

together with a nonlinear amplification of the mean field according to equation (3.59).

Although the formulas do not suggest it at first sight, a simplification occurs due to the

conjunction of the filtration operator F̂ characterizing the HNLA with Bayes rule for

conditional probabilities, which guarantees that causality is preserved.

Since the class of squeezed states is broadly used in quantum information protocols, we

expect that this universal squeezer may offer new perspectives in quantum optics, going

beyond those that have been investigated today such as quantum entanglement distil-

lation, quantum error correction, or loss compensation. Our analysis may yield useful

tools in particular when turning to squeezed-state protocols, quantum noise reduction,

or phase estimation [RHG+92].

We have investigated the behavior of quantum states of light under the action of heralded

noiseless attenuation and amplification. By considering certain non-Gaussian states, we

have found out that noiselessly amplifying the state may be accompanied by a decrease

of its mean field amplitude 〈â〉. Conversely, noiselessly attenuating the state may come

with an increased coherent amplitude. We have proven that such counterintuitive effects

cannot occur for Gaussian states, so these are specific to non-Gaussian states. Our work

thus reveals that the intuition based on ordinary deterministic phase-insensitive ampli-

fiers and lossy channels is not directly applicable to noiseless amplifiers and attenuators,

and some unexpected interconnection between the mean field amplitude and mean pho-

ton number may occur when noiselessly amplifying or attenuating non-Gaussian states.

We have proposed an experimental scheme that is feasible with current technology and

should enable the observation of amplitude enhancement by noiseless attenuation with

a coherently-displaced single-photon added coherent state under realistic experimental

conditions. An alternative way to observe this effect may be based on the virtual noiseless

amplifier or attenuator [FC12, CWA+14], where the amplification or attenuation effect

is emulated by post-processing the experimental data.



Chapter 4

Majorization theory in quantum

optics

4.1 Elements of majorization theory

4.1.1 Accumulation of probability vectors

What does it mean that a vector is more disordered or more mixed than another one?

This question has many answers that depend on the system under consideration and it

appears in many cases-with no apparent connection between them. In most cases and

particularly in physics, the above question is answered by the means provided by the

theory of majorization [Mui03, HLP78, MO79, Arn87]. The theory of majorization is

an extremely vast area of mathematics and it had been studied from the early twentieth

century up to date. It finds application in many areas of physics, chemistry, economical

and social sciences. As it will be understood later on when a vector majorizes another

one is the strongest statement than one can prove in the context of which one has more

spread out components. To begin to get a feeling let us consider the following simple

example attributed to Lorentz.

Consider a community of n members. Each individual i has a wage wi. The question

we want to answer now is if this community’s wages are balanced. Let us denote as w↓

a vector with the wages of each individual as components. The down-pointing arrow

denotes that the components are in a non-increasing order, i.e. from richest to poorest.

We define a quantity called accumulation as Sk =
∑k

i=1w
↓
i and we plot the proportion of

population k/n versus the proportion of income Sk/Sn for k = 0, . . . , n. It is apparent

that if the income for every person is the same then the plot will be a straight line.

85
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A slight depart from equality of incomes will create a convex line above the absolute

equality line as depicted in figure 4.1.
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Figure 4.1: The closer to the straight the more equal the money is distributed
among individuals.

So, the intuition we obtain from this paradigm is that two communities with income

vectors w↓ and s↓ may be compared in terms of the summations of their accumulations.

Vector w↓ is more even than s↓ if,

k∑
i=1

w↓i ≤
k∑
i=1

s↓i , k = 1, . . . , n (4.1)

obviously it holds that,

n∑
i=1

w↓i =
n∑
i=1

s↓i = T, (4.2)

where T is the total wealth. Equation (4.1) will be transformed to the first formal

definition of majorization. Namely, consider two d-dimensional real positive vectors p

and q. We say that p is majorized by q, symbolized by p ≺ q, if and only if

k∑
i=1

p↓i ≤
k∑
i=1

q↓i (4.3)

for k = 1, . . . , d− 1 and

d∑
i=1

p↓i =
d∑
i=1

q↓i , (4.4)

where the down-pointing arrow on p and q indicates that the components are sorted

in non-increasing order. Equation (4.4) is automatically satisfied if p and q are vectors

normalized to unity, e.g., if they are probability distributions. Majorization only provides
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a partial order, in the sense that if p is not majorized by q (symbolized by p ⊀ q) then

this does not imply that p � q. When both p ⊀ q and q ⊀ p hold, we say that the two

vectors are incomparable. Moreover as we will see in the next subsection, majorization

is something stricter than partial ordering, it provides preordering.

4.1.2 Doubly stochastic matrices

The definition of majorization through Eqs. (4.3) and (4.4) is very handy for calculation

purposes, but there is clearer definition in what sense p is more disordered than q. A

more intuitive, but equivalent, definition is to say that p is majorized by q if and

only if there exists a set of d−dimensional permutation matrices Πn and a probability

distribution {tn} such that

p =
∑
n

tn Πnq. (4.5)

The above definition says that p is majorized by q if and only if we can obtain p by

randomly permuting the components of vector q and afterwards taking the average over

all permutations.

The notion of majorization is closely related to the notion of doubly stochastic matrices.

A real d × d matrix D = [Dij ] is doubly stochastic if all its entries are non-negative,

and each row and each column sums up to 1. The following theorem gives the relation

between majorization and doubly stochastic matrices.

Theorem 1: p ≺ q if and only if there exists a doubly stochastic matrix D such that

p = Dq.

The set of doubly stochastic matrices of a given dimension is convex. All extremal points

of this convex set are the permutation matrices Πn, so any doubly stochastic matrix can

be expressed as a convex combination of permutation matrices. This is expressed in the

following theorem.

Theorem 2: The d× d doubly stochastic matrices D form a convex set whose extremal

points are all the d× d permutation matrices Πn.

The convex set of d × d doubly stochastic matrices is called Birkhoff’s polytope. It

admits d! vertices (i.e., the number of d× d permutation matrices) and its dimension is
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(d− 1)2. Note that if we want to express a point (a doubly stochastic matrix) belonging

to this (d − 1)2-dimensional polytope as a convex combination of the extremal points,

Caratheodory’s theorem implies that we would need (d−1)2 +1 extremal points at most.

One naturally expects that majorization theory should be connected with various mea-

sures of “disorder”, such as the various entropies. Indeed, since p ≺ q means that p is

more disordered than q, any measure of disorder S : Rd → R should satisfy

S(p) ≥ S(q) (4.6)

for all p and q such that p ≺ q. A function S obeying this property is called Schur-

concave. Consider, for example, the Shannon entropy

S1(p) = −
d∑
i=1

pi ln pi (4.7)

or the Rényi entropy

Sα(p) =
1

1− α ln
( d∑
i=1

p αi

)
(4.8)

of order α ≥ 0, α 6= 1. (In the limit α → 1, the Rényi entropy converges to the Shan-

non entropy.) These functions can be seen to be Schur-concave as a consequence of the

following theorem [HLP78].

Theorem 3: p ≺ q if and only if
∑d

i=1 h(pi) ≥
∑d

i=1 h(qi) for all concave functions h.

Here let us note that any function that is concave in the usual sense and symmetric is

Schur-concave as well.

The usefulness of majorization in quantum information theory appears first if we wish to

compare two density matrices instead of probability distributions. Consider the density

matrices ρ and σ of a d−level quantum system, and their respective vectors of eigenval-

ues λ(ρ) and λ(σ). We have the following theorem.

Theorem 4: λ(ρ) ≺ λ(σ) if and only if state ρ can be obtained from state σ by applying

a random mixture of unitaries.

The proof goes simply by noting that there is a unitary transformation that aligns the

eigenbasis of σ with that of ρ, and that each permutation of the eigenstates can be

realized by a unitary transformation.
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Let us close be saying that majorization provides is a preordering theory. That means

that there is no distinction between two vectors such that one of them is transformed to

the other by applying a permutation matrix. This is easily understood by considering

the relation

p = Πq, (4.9)

where Π is a permutation matrix. In order to check majorization relations we order the

vectors as equations (4.3) and (4.4) imply, so the action of the permutation matrix is

suppressed and the vectors p and q become equivalent in terms of majorization.

4.1.3 Catalysis and LOCC transformations

The connection with quantum information theory becomes even more evident in the

context of comparing pure bipartite entangled states. Indeed, majorization theory gives

the means to determine whether one pure bipartite state is convertible into another

one using LOCC (local operation and classical communication). Consider two d−level

systems A and B, which can be thought of as belonging to Alice and Bob, respectively.

Any bipartite pure states of these systems can be written in the Schmidt form

|Ψ〉 =
d∑
i=1

√
λi|i〉A|i〉B, (4.10)

where {|i〉A} and {|i〉B} are suitable orthonormal bases of the systems A and B, respec-

tively. The reduced density matrix of system A is ρΨ
A ≡ trB|Ψ〉〈Ψ| =

∑d
i=1 λi|i〉〈i|A, and

similarly for B (the two reduced density matrices have the same eigenvalues λi). We

have the following theorem [Nie99, NV01].

Theorem 5: State |Ψ〉 can be converted deterministically into state |Φ〉 by means of

LOCC if and only if λΨ ≺ λΦ, where λΨ is the vector of eigenvalues of ρΨ
A ≡ trB|Ψ〉〈Ψ|

and similarly for λΦ.

For conciseness, we will write simply Ψ ≺ Φ instead of λΨ ≺ λΦ in what follows. A

consequence of this theorem is that Ψ ≺ Φ if and only if µ(Ψ) ≥ µ(Φ) for all mea-

sures of entanglement µ. A measure of entanglement, or entanglement monotone, is a

non-negative function of the state which does not increase on average under LOCC and

vanishes on separable states [Vid00]. A common example is the entropy of entangle-

ment, E(Ψ) ≡ S1(λΨ). Since, according to Theorem 5, converting Ψ into Φ is possible
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when Ψ ≺ Φ, this means that µ(Ψ) ≥ µ(Φ) must hold for all entanglement monotones.

Conversely, the maximum probability of success of converting Ψ into Φ by means of an

LOCC protocol satisfies P (Ψ → Φ) ≤ minµ
µ(Ψ)
µ(Φ) , where the minimum is taken over all

entanglement monotones [Vid00]. Since a strategy exists where P (Ψ → Φ) = 1, this

implies that µ(Ψ) ≥ µ(Φ), ∀µ.

According to Theorem 5, if λΨ and λΦ are incomparable, then there does not exist a

strategy to convert one state into the other by LOCC with probability 1. Remarkably, it

has been shown that one may nevertheless be able to accomplish such a transformation

deterministically with the use of an auxiliary entangled state, an effect called catalysis

[JP99]. If two states |Ψ〉 and |Φ〉 have incomparable λ vectors, then, under certain

conditions, there exists an entangled state |C〉 that the two parties can share, called a

catalyst state, such that

|Ψ〉 ⊗ |C〉 −→
LOCC

|Φ〉 ⊗ |C〉 (4.11)

is possible. The term “catalysis” is justified because the entangled state |C〉 is recovered

after the LOCC transformation. Note that if converting Ψ into Φ by catalysis is possible,

then all additive measures of entanglement must satisfy µ(Ψ) ≥ µ(Φ). In particular, we

must have Sα(λΨ) ≥ Sα(λΦ) for all α ≥ 0.

4.1.4 Weak majorization

By relaxing the equation (4.4) in the definition of majorization we obtain the so-called

weak majorization. We say that p is weakly majorized by q, denored as p ≺w q if and

only if

k∑
i=1

p↓i ≤
k∑
i=1

q↓i (4.12)

for k = 1, . . . , d. As previously, there is an equivalent definition involving matrices,

namely p is weakly majorized by q if and only if

p = Dwq, (4.13)

where Dw is a substochastic matrix, that is a non-negative matrix that has all his entries

smaller than the elements of some doubly stochastic.

Also, similarly to case of majorization, p ≺ q if and only if
∑d

i=1 h(pi) ≥
∑d

i=1 h(qi) for

all increasing concave functions h.

At this point let us underline the role of the column stochasticity (the column’s elements

sum to unity) compared with the row stochasticity (the row’s elements sum to unity).
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A column stochastic matrix (some authors refer to it simply as stochastic) preserves the

norm of the probability vector that acts upon, in other words it transforms probabil-

ity vectors to probability vectors. The row stochasticity guarantees that the invariant

d−dimesional vector, i.e. the maximally mixed vector (1
d , . . . ,

1
d), is transformed to it-

self. There is an interesting known result concerning the case of infinite probability

vectors. That is that weak majorization is enough to prove majorization [BZ07]. Since

both vectors are normalized as probability vectors, the matrix that transforms the one

vector to the other ought to be at least column stochastic, i.e a matrix matrix with

positive entries, that its columns sum to unity while the rows sum to |r| < 1. In other

words in the case of normalized infinite vectors, the row stochasticity can be dropped

and replaced by row substochasticity.

4.2 Application of majorization theory to Gaussian bosonic

transformations

4.2.1 Entanglement generation in a beam splitter

Now we are ready to proceed with the main target of this Chapter, that is the unfold-

ing of the entropic characteristics of one fundamental quantum optical transformation,

namely the beam splitter that has already been discussed in Chapter 2. More precisely

we prove that a beam splitter, one of the most common optical components, fulfills sev-

eral classes of majorization relations, which govern the amount of quantum entanglement

that it can generate. First, we show that the state resulting from k photons impinging

on a beam splitter majorizes the corresponding state with any larger photon number

k′ > k, implying that the entanglement monotonically grows with k. Then, we examine

parametric infinitesimal majorization relations as a function of the beam-splitter trans-

mittance, and find that there exists a parameter region where majorization is again

fulfilled, implying a monotonic increase of entanglement by moving towards a balanced

beam splitter. We also identify regions with a majorization default, where the output

states become incomparable. In this latter situation, we find examples where catalysis

may nevertheless be used in order to recover majorization. The catalyst states can be

as simple as a path-entangled single-photon state or a two-mode vacuum squeezed state.

Then we review the majorization properties of another fundamental quantum optical

transformation, namely the quantum optical amplifier.

As we have discussed already, in quantum optics, one of the most common transforma-

tions consists in the linear coupling between two-modes of the electromagnetic field, as

effected, for instance, by a beam splitter in bulk optics or an optical coupler in fiber
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optics [WM94]. We have seen that mathematically it corresponds to a rotation in phase

space, namely (
â

b̂

)
→
(
â′

b̂′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
â

b̂

)
, (4.14)

where â and b̂ are the annihilation operators of the two-modes that are coupled, while

the angle θ ∈ [0, π/2] is a coupling parameter related to the transmittance τ = cos2 θ of

the beam splitter. The beam splitter is called balanced when τ = 1/2 or θ = π/4. The

transformation (4.14) belongs to the set of Gaussian unitaries as it corresponds, in the

Heisenberg picture, to a linear canonical transformation in the annihilation (creation)

operators â(†) and b̂(†), or equivalently to a quadratic Hamiltonian, namely H = i(â†b̂−
âb̂†), see [WPG+12] for a review on Gaussian transformations.

The beam splitter is very conveniently modeled within the so-called symplectic formalism

by focusing on the action of the rotation (4.14) on the first- and second-order moments of

the quadrature operators. This enables treating complex optical circuits made of beam

splitters and other optical devices in a very concise way, which is sufficient for many

purposes, e.g. when the goal is to predict distributions in phase space such as Wigner

functions. However, if we want to make predictions about entropies or entanglement,

we need to move back to state space and work with density operators. Such calculations

are often nontrivial despite the simplicity of the transformation in phase-space represen-

tation. For example, consider a single-photon state |1〉 impinging on a balanced beam

splitter, the other input mode being in the vacuum state |0〉. The two-mode output

state is obtained simply by inverting transformation (4.14) and writing the input-mode

annihilation operators â and b̂ as functions of the output-mode annihilation operators

â′ and b̂′. The input state being â†|0〉, we can write the output state as

2−1/2(â′† + b̂′†)|0〉 = (|1〉|0〉+ |0〉|1〉)/
√

2, (4.15)

which is well known to be a path-entangled state of one photon, characterized by an

entanglement entropy of 1 bit as measured by the reduced von Neumann entropy of any

output mode. However, whenever we consider higher photon-number states at the input

and arbitrary transmittances, it becomes much harder to find closed formulas for the

entanglement entropy.

As another example illustrating the difficulty of treating a beam splitter in state space,

let us consider an arbitrary input state in mode â that is coupled to a thermal field in

mode b̂. The transformation â→ â′ can be viewed as a thermal bosonic channel, which

is a special case of a Gaussian phase-insensitive bosonic channel [GGL+04a]. In order

to derive the channel capacity, a crucial element is to determine the input state in mode
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â that results in the minimum-entropy output state in mode â′. Although it is very

tempting to assume that this extremal input state is the vacuum state |0〉 [HG12], this

has only recently been proven [GGC+14] after many years of elaboration. It is linked to

the Holevo-Werner conjecture, which states that Gaussian mixtures of Gaussian states

achieve the capacity of such Gaussian channels [HW01].

We exploit majorization theory in order to study the entanglement generated by an

optical beam splitter and a two-mode squeezer. Majorization provides a preorder relation

between bipartite pure quantum states and gives a necessary and sufficient condition for

the existence of a deterministic LOCC (local operations and classical communication)

transformation from one state to another [Nie99, NV01]. Here, we will show that a

beam splitter obeys two classes of majorization relations, which bear some similarity to

those characterizing another optical component, namely a two-mode squeezer [GNL+12].

Specifically, we will prove that when feeding the input mode of a beam splitter with k

photons while the other input mode is in the vacuum state, the resulting two-mode

output state majorizes the state corresponding to any larger photon number k′ > k.

This implies that any bipartite entanglement measure on the output modes increases

with k in a monotonic fashion.

Then, we examine majorization relations with respect to the coupling parameter θ (or,

equivalently, the transmittance τ) of the beam splitter. For a fixed photon-number

input state |k〉 in one port and vacuum in the other port, we probe the existence of

majorization relations between the output states corresponding to different θ’s, which

we call parametric majorization. We find that in a region of finite width, the output

state with parameter θ majorizes the output state with θ′ > θ, which implies that

entanglement can only increase with the coupling between the two modes in this region.

Interestingly, we also disprove parametric majorization in other regions of the parameter

θ, which means that the corresponding output states are then incomparable. In some

cases, however, we can prove that these incomparable output states can be catalyzed

[JP99], that is, if we supplement both states with an appropriate catalyst state, then the

new states become comparable (one is majorized by the other). Remarkably, the catalyst

state can be as simple as a path-entangled single-photon state or a two-mode vacuum

squeezed state. In order to study a first class of majorization relations characteristic of a

beam splitter we use the definition of majorization involving doubly stochastic matrices.

Let |Ψ(k)(θ)〉 be the output state of a beam splitter if the input state is |k, 0〉, as shown

in figure 4.2. Denoting by U(θ) the unitary transformation resulting from the beam

splitter, we have

|Ψ(k)(θ)〉 = U(θ) |k, 0〉 =

k∑
n=0

√
P

(k)
n (θ) |n, k − n〉, (4.16)
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where

P (k)
n (θ) =

(
k

n

)
cos2n θ sin2(k−n) θ. (4.17)

The reduced density matrix of the first output mode is

ρ(k)(θ) =

k∑
n=0

P (k)
n (θ) |n〉〈n|, (4.18)

where P
(k)
n (θ) can be interpreted as the probability that n photons are transmitted out

of the k incident photons if the transmittance of the beam splitter is τ = cos2 θ.

|0〉

|k〉

θ

|Ψ(k)(θ)〉

|0〉

|k + 1〉

θ

|Ψ(k+1)(θ)〉

Figure 4.2: Majorization relations with respect to the input photon number.
In the upper scheme, the input state is |k, 0〉, while in the lower scheme it is
|k + 1, 0〉. The output state |Ψ(k)(θ)〉 majorizes |Ψ(k+1)(θ)〉, and therefore the
generated entanglement µ(Ψ(k)(θ)) monotonically grows with k for all θ.

We wish to prove a majorization relation between P
(k)
n (θ) and P

(k+1)
n (θ), that is, we

want to prove that there exists a doubly stochastic matrix D such that

P(k+1)(θ) = D(k+1)P(k)(θ), (4.19)
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where P(k)(θ) is a vector having the eigenvalues P
(k)
n (θ) of ρ(k)(θ) as components. Using

Pascal’s identity for the binomial coefficients, we obtain the recurrence equation

P (k+1)
n (θ) =

(
k + 1

n

)
cos2n θ sin2(k+1−n) θ

=

((
k

n− 1

)
+

(
k

n

))
cos2n θ sin2(k+1−n) θ

= P
(k)
n−1(θ) cos2 θ + P (k)

n (θ) sin2 θ. (4.20)

This simply expresses the fact that the probability of transmitting n photons out of k+1

incident photons is the sum of two mutually exclusive possibilities: either n− 1 photons

(out of k) are transmitted and the (k + 1)-th photon goes through, or n photons (out

of k) are transmitted and the (k + 1)-th photon is reflected. We can expand equation

(4.20) as

P
(k+1)
0 (θ) = 0 + sin2 θ P

(k)
0 (θ),

P
(k+1)
1 (θ) = cos2 θ P

(k)
0 (θ) + sin2 θ P

(k)
1 (θ),

P
(k+1)
2 (θ) = cos2 θ P

(k)
1 (θ) + sin2 θ P

(k)
2 (θ),

...

P
(k+1)
k+1 (θ) = cos2 θ P

(k)
k (θ) + 0. (4.21)

This can be put in the form of equation (4.19) by defining

P(k+1)(θ) =



P
(k+1)
0 (θ)

P
(k+1)
1 (θ)

P
(k+1)
2 (θ)

...

P
(k+1)
k (θ)

P
(k+1)
k+1 (θ)


, P(k)(θ) =



P
(k)
0 (θ)

P
(k)
1 (θ)

P
(k)
2 (θ)

...

P
(k)
k (θ)

0


, (4.22)

where a zero entry has been inserted in the vector P(k) in order to make P(k) and P(k+1)

of equal dimension. The doubly stochastic matrix is

D(k+1) =



sin2 θ 0 0 · · · cos2 θ

cos2 θ sin2 θ 0 · · · 0

0 cos2 θ sin2 θ · · · 0
...

...
...

. . .
...

0 0 0 · · · sin2 θ


, (4.23)
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where the right-most entry of the fist row has been chosen so as to fulfill the doubly-

stochastic conditions (it plays no role since the last entry of P(k) is zero).

Thus, we have proven the majorization relation

Ψ(k+1)(θ) ≺ Ψ(k)(θ), ∀θ, (4.24)

which implies that when increasing the number of the incident photons, the 2-mode out-

put state can only be more entangled and the corresponding 1-mode reduced states are

getting more disordered. This also implies that the two parties (Alice and Bob) can con-

vert state |Ψ(k+1)(θ)〉 into state |Ψ(k)(θ)〉 by using a deterministic LOCC transformation.

To achieve such a transformation, Alice can, for example, perform a two-outcome POVM

(Positive Operator Valued Measure) measurement with the following Kraus operators,,

F (k)
1 =

k∑
n=0

√
k + 1− n
k + 1

|n〉〈n| (4.25)

and

F (k)
2 =

k∑
n=0

√
n+ 1

k + 1
|n〉〈n+ 1| , (4.26)

satisfying F†1F1 +F†2F2 = I for all k. Then, she must communicate her outcome to Bob,

who has to apply proper local unitaries. If outcome 1 occurs, then Bob should apply

the unitary

U (k)
1 =

k∑
n=0

|n〉〈n+ 1|+ |k + 1〉〈0| (4.27)

corresponding to a cyclic shift in the space spanned by {|0〉, · · · |k+1〉}. The second term

on the right-hand side of equation (4.27) ensures unitarity (it plays no role since Bob’s

reduced state is supported by {|1〉, · · · |k + 1〉} when outcome 1 occurs). If outcome 2

occurs, then Bob does nothing, that is, he applies the unitary U (k)
2 = I. It is easy to

check that the transformation |Ψ(k+1)(θ)〉 → |Ψ(k)(θ)〉 takes place for both outcomes, so

the LOCC transformation is indeed deterministic.

We now examine the scenario that is summarized in figures 4.3 and 4.4. The input

state is fixed to |k, 0〉, but we change the angle θ parameterizing the transmittance of

the beam splitter by an infinitesimal amount ε. Note that we take θ ≥ 0, ε > 0, and

θ+ε ≤ π
4 . (For angles greater than π

4 , the transmittance and reflectance just interchange

their roles.) An equivalent way to see this scenario is depicted in figure 4.4. Our goal is

thus to probe whether the intermediate state |Ψ(k)(θ)〉 majorizes or not the final state
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|0〉

|k〉

θ

|Ψ(k)(θ)〉

|0〉

|k〉

θ + ε

|Ψ(k)(θ + ε)〉

Figure 4.3: Majorization relations with respect to the coupling parameter θ
(or transmittance τ = cos2 θ). In both schemes the input state is |k, 0〉 but the
angles differ by ε. For a specific parameter region, the corresponding output
states |Ψ(k)(θ)〉 and |Ψ(k)(θ + ε)〉 are proven to satisfy a majorization relation.

|0〉

|k〉

θ ε

|Ψ(k)(θ)〉 |Ψ(k)(θ + ε)〉

Figure 4.4: Same situation as in figure 4.3, viewed as a sequence of two beam
splitters with angles θ and ε. For a specific parameter region, |Ψ(k)(θ)〉majorizes
|Ψ(k)(θ + ε)〉 for all k.

|Ψ(k)(θ + ε)〉. To this end, we find it easier to use the first definition of majorization,

involving the accumulations of the ordered vectors of eigenvalues of the reduced density

matrix. We will refer to these vectors as OSC (ordered Schmidt coefficients).

Let P↓(θ) be an OSC vector, whose components are the elements of the binomial distri-

bution (4.17). From now on, we drop the index k as it is fixed. This OSC vector will not

keep the same ordering as the parameter θ varies, so we will adopt the notation P↓r(θ),

where r = 1, 2, . . . labels the regions of parameter θ in which the ordering of the OSC

vector remains the same. More precisely, we have a change of ordering every time two

eigenvalues Pn(θ) and Pm(θ) are equal, which occurs at

θ = arctan

(
(k − n)!n!

(k −m)!m!

) 1
2(n−m)

. (4.28)
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Indeed, it can be shown that if Pn(θ) = Pm(θ) for m 6= n, then dPn(θ)
dθ 6= dPm(θ)

dθ , i.e., the

two eigenvalues cross. The cross-over points between regions are the different solutions

θ1 < θ2 < ... of the above equations. We define the region r = 1 as θ ∈ [0, θ1), the region

r = 2 as θ ∈ [θ1, θ2), etc.

Our goal now is to check whether the infinitesimal majorization relation

P↓r(θ + ε) ≺ P↓r(θ) (4.29)

holds or not within region r, taking the limit of an infinitesimal angle ε. Using the

definition of equation (4.3), we have to prove

j∑
n=0

P ↓rn (θ + ε) ≤
j∑

n=0

P ↓rn (θ), j = 0, . . . k − 1

⇔
j∑

n=0

P ↓rn (θ)

dθ
≤ 0, j = 0, . . . k − 1. (4.30)

By defining the vector of accumulation derivatives

a↓rj (θ) =

j∑
n=0

dP ↓rn (θ)

dθ
, (4.31)

the infinitesimal majorization relations can be written simply as

a↓rj (θ) ≤ 0, j = 0, . . . k − 1. (4.32)

We do not need to consider the last accumulation derivative a↓rk (θ) = 0 since equation

(4.4) is always satisfied (the OSC vectors are normalized).

The violation of at least one relation in equations. (4.32) is sufficient to disproof ma-

jorization in region r. A priori, if the above majorization relations do not hold, there

may nevertheless be a majorization in the opposite direction if all relations are satisfied

with ≥ instead of ≤. However, the (k− 1)-th accumulation is the same in all regions no

matter what the ordering is, and its derivative

ak−1(θ) = −2k sin2k−1 θ cos θ (4.33)

respects equation (4.32) with a strict inequality (except in the trivial cases k = 0 or

θ = 0). Hence, majorization is never possible in the opposite direction.
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It is easy to see that in the region r = 1, the components of the OSC vector are

P ↓1n (θ) =

(
k

n

)
sin2n θ cos2(k−n) θ. (4.34)

This region extends until the second largest eigenvalue becomes equal to the largest

eigenvalue and the two switch places. Beyond this cross-over point, we enter the second

region r = 2. Now, let us prove that the infinitesimal majorization relation P↓1(θ+ε) ≺
P↓1(θ) always holds in region r = 1. We have

dP ↓1n (θ)

dθ
=

[
2n

tan θ
− 2(k − n) tan θ

]
P ↓1n (θ) (4.35)

and

P ↓1n (θ) = P ↓10 (θ)

(
k

n

)
tan2n θ, (4.36)

from which we can express the vector of accumulation derivatives as

a↓1j (θ) = P ↓10 (θ)

j∑
n=0

[
2n− 2(k − n) tan2 θ

](k
n

)
tan2n−1 θ. (4.37)

The summation in equation (4.37) can be expressed in a closed form as

a↓1j (θ) = −P ↓10 (θ) 2(k − j)
(
k

j

)
tan2j+1 θ, (4.38)

which is non-positive for j = 0, . . . k − 1. Thus, infinitesimal majorization always holds

within region r = 1, which means that all states are comparable within this region,

Ψ(k)(θ + ε) ≺ Ψ(k)(θ), ∀k ≥ 0, (4.39)

and all measures of entanglement increase with θ.

At the cross-over point between regions r = 1 and r = 2, the first two components

of the OSC vector switch places and the derivative of the first accumulation becomes
dP1(θ)
dθ , which is positive at this point. Therefore, majorization is violated from the left

boundary of region r = 2 until the point where this derivative ceases to be positive

(and possibly beyond that point). In general, in every region that begins with a positive

derivative of the first accumulation, which is equal to dPn(θ)
dθ for some n, majorization

is violated at least until the point where this derivative ceases to be positive. From

equations (4.35) and (4.36), we find that the derivative dPn(θ)
dθ ceases to be positive up

to the value θ+
n ≤ arctan

(
n

k−n
) 1

2n−1 .
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In order to illustrate how parametric majorization behaves, let us exhibit three exam-

ples, corresponding respectively to a single-photon, two-photon, and three-photon state

impinging on the beam splitter.

Let us proceed with some examples:

Example 1:

We first consider the case of a single photon (k = 1). The OSC vector in region r = 1 is

P↓1(θ) =

(
cos2 θ

sin2 θ

)
. (4.40)

In order to find all possible regions we have to find all solutions of cos2 θ = sin2 θ in

[0, π4 ).There is no solution in this region (equality is reached at the boundary point

θ = π
4 ), which means that there is a single region r = 1 and, as we proved earlier,

parametric majorization holds everywhere.

Example 2:

We now move to the case of two photons (k = 2). The OSC vector in region r = 1 is

P↓1(θ) =


cos4 θ

2 cos2 θ sin2 θ

sin4 θ

 , (4.41)

where this ordering holds for [0, arctan 1√
2
). There is a second region r = 2 corresponding

to [arctan 1√
2
, π4 ), where the OSC vector is

P↓2(θ) =


2 cos2 θ sin2 θ

cos4 θ

sin4 θ

 . (4.42)

As proven in full generality, majorization holds in region r = 1. However, in region

r = 2, the accumulation derivatives are given by

a↓20 (θ) = sin 4θ

a↓21 (θ) = −4 cos θ sin3 θ. (4.43)

The accumulation derivative a0(θ) is positive in [0, π4 ), so majorization does not hold in

the entire region r = 2. This means that there ought to be measures of disorder that

decrease instead of increase as a function of θ in region r = 2. Indeed, we observe in

figure 4.5 that although the Shannon entropy increases, all other Rényi entropies of order



Chapter 4. Majorization theory 101

α > 1 exhibit a decreasing behavior somewhere within the region r = 2. In particular,

the Rényi entropy of order α → ∞, which is the min-entropy and is directly related to

the leading probability of the OSC vector, starts decreasing immediately when we enter

the second region at θ = arctan 1√
2
.
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Figure 4.5: Entanglement Rényi entropies resulting from a 2-photon state im-
pinging on a beam splitter as a function of the coupling parameter θ (related
to the transmittance τ = cos2 θ). The vertical dashed line denotes the bound-
ary between parameter regions r = 1 and r = 2. The von Neumann entropy
(α → 1) keeps increasing in region r = 2, while higher-order Rényi entropies
have a different behavior and start decreasing somewhere in region r = 2. The
min-entropy (α→∞) exhibits a non-differentiable point right at the crossover
point and decreases throughout the entire region r = 2, reflecting the default of
majorization.

Example 3:

As a last example, we consider the case of three photons (k = 3). We have two cross-over

angles and the OSC vectors in the corresponding three regions read,

P↓1(θ) =


cos6 θ

3 cos4 θ sin2 θ

3 cos2 θ sin4 θ

sin6 θ



P↓2(θ) =


3 cos4 θ sin2 θ

cos6 θ

3 cos2 θ sin4 θ

sin6 θ



P↓3(θ) =


3 cos4 θ sin2 θ

3 cos2 θ sin4 θ

cos6 θ

sin6 θ

 . (4.44)
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In region r = 1, it is easy to confirm that majorization holds, as it should. In regions

r = 2 and r = 3, the accumulation derivatives are given, respectively, by

a↓20 (θ) = 3 cos3 θ(−1 + 3 cos 2θ) sin θ

a↓21 (θ) = −3

2
sin3 2θ

a↓22 (θ) = −6 cos θ sin5 θ (4.45)

and

a↓30 (θ) = 3 cos3 θ(−1 + 3 cos 2θ) sin θ

a↓31 (θ) =
3

2
sin 4θ

a↓32 (θ) = −6 cos θ sin5 θ. (4.46)

The quantity a↓20 (θ) is positive in the interval [0, arctan 1√
2
), which means that we are

sure that there is no majorization in the interval [arctan 1√
3
, arctan 1√

2
), i.e., from the

left boundary of region r = 2 up to where a↓20 (θ) remains positive. In region r = 3,

a↓32 (θ) is always positive, while the other accumulation derivatives are negative within

this region. Hence, for r = 3, the states are always incomparable. This last violation of

majorization is, however, not visible with the Rényi entropies. In figure 4.6, we display

the evolution of entropies across the three regions.
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Figure 4.6: Entanglement Rényi entropies resulting from a 3-photon state im-
pinging on a beam splitter as a function of θ. The two vertical dashed lines at θ1

and θ2 separate the three regions r = 1, 2, 3, while the dotted line corresponds
to the local minimum of the min-entropy. Majorization is violated in the region
r = 2 from the left boundary of this region at θ1 up to the local minimum of
the min-entropy. The majorization violation throughout the entire region r = 3
is not manifested by the behavior of the Rényi entropies.

We have shown that one can always expect a default of majorization when the leading
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|1〉

|0〉

0.7

|3〉

|0〉
0.62 0.1

|Ψ(3)(0.62)〉 ⊗ |C(0.7)〉 |Ψ(3)(0.72)〉 ⊗ |C(0.7)〉

|Ψ(3)(0.62)〉 |Ψ(3)(0.72)〉

Figure 4.7: Schematic of the catalyzed conversion between the incomparable
states resulting from a 3-photon state impinging on a beam splitter with angles
θ = 0.62 and θ + ω = 0.72. The catalyst is the entangled state obtained from a
beam splitter with angle θ = 0.7 and one single-photon input state.

term in the probability vector changes, and this majorization default prevails at least up

to the point where the first accumulation derivative ceases to be positive, or, equivalently,

until we reach the local minimum of the min-entropy within this region. Beyond the

case where the first two components of the probability vector switch places, it appears

difficult to provide general rules for predicting the existence or absence of majorization

for an arbitrary k, and one has to treat the problem on a case-by-case basis. The

situation also becomes more complicated if we take a non-infinitesimal angle ε such that

the pair of angles θ and θ + ε belong to different regions.

It is natural to ask whether the incomparable states that occur when we change the

parameter θ can nevertheless be made comparable through catalysis. We will show that

this is indeed possible in certain cases, and will provide an example for this. Note that

not all incomparable states can be catalyzed: some necessary conditions have to be

respected [JP99, DK01, ZG00, SDT05]. To solve the problem of whether catalysis is

possible or not in generality is difficult due to the fact that one has to reorder the vector

resulting from the tensor product of the state to be catalyzed and the catalyst state.

Consider two angles θ and θ + ω that give OSC vectors P↓r(θ) and P↓r
′
(θ + ω) which

are incomparable. These angles may be within different ordering regions, which is the

case in the following example where r = 2 and r′ = 3. We take k = 3, θ = 0.62, and

ω = 0.10, which gives

P↓2(0.62) =


0.44439

0.290641

0.226491

0.0384782

 (4.47)
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and

P↓3(0.72) =


0.416698

0.320544

0.180565

0.0821927

 (4.48)

such that P↓3(0.72) ⊀ P↓2(0.62). The path-entangled single-photon state cos θ|1〉|0〉 +

sin θ|0〉|1〉 resulting from a single photon impinging on a beam splitter with angle θ = 0.7

is sufficient to serve as a catalyst for these two states. It corresponds to the binary

probability vector

C(0.7) =

(
0.584984

0.415016

)
, (4.49)

and one can easily verify from equations (4.47), (4.48), and (4.49), that P↓3(0.72) ⊗
C(0.7) ≺ P↓2(0.62) ⊗C(0.7), implying that the catalyzed conversion is possible. This

is summarized in figure 4.7. We could also use as a catalyst a two-mode squeezed

vacuum state ∝ ∑∞n=0 tanhn r |n〉|n〉 with squeezing parameter r = 1.38. Several other

numerical examples can be found and some of them, like the ones provided above, are

experimentally accessible.

Note that, due to the additivity of the Rényi entropies, one should look for catalyzable

incomparable states only in regions where all of the Rényi entropies increase (see also

Refs. [AN08, DFL+05]). However, in the case at hand, we have got numerical evidence

that the sole behavior of the min-entropy seems to give a necessary and sufficient condi-

tion for the existence of catalysis. The latter property will be examined in a forthcoming

work.

4.2.2 Entanglement generation in a two-mode squeezer

For the sake of completeness we will briefly discuss the majorization relations that hold

in a two-mode squeezer for Fock states input. The main target of the work [GNL+12]

where such a scenario is explored is to prove the so-called minimum entropy conjecture

mentioned before, therefore to prove that maximum capacity of Gaussian channel is

achieved by Gaussian input states. This was proven later [GGC+14] but we will not dis-

cuss such a result since our purpose is to explore the entropic characteristics of quantum

optical operation mainly for non classical states.
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We consider a two-mode squeezer that was introduced in chapter 2,

Û = e−ξâ
†
Aâ
†
B+ξ∗âAâB (4.50)

where as before, A is the system under consideration while B is the mode that we trace

out in the output. It can be shown that the final pure state of a two-mode squeezer,

when the input state is Fock and vacuum product state |m0〉,

|Ψ(m)
λ 〉 =

∞∑
k=0

√
p

(m)
k (λ)|k +m, k〉 (4.51)

with,

p
(m)
k (λ) = (1− λ2)m+1λ2k

(
k +m

k

)
(4.52)

and we denote λ = tanh |ξ|.

We want to compare in terms of majorization the two situations corresponding to m

and m + 1 photons. It easy to see that the probabilities in (4.52) are the eigenvalues

of the reduced density matrix in the output. Also they form an infinite-dimensional

vector p(m), so if weak majorization is proven among p(m+1) and p(m) is enough for

majorization relations to hold as well. Indeed one can find,

p(m+1) = Dcp
(m) (4.53)

where Dc is a column stochastic matrix of the form,

Dc = (1− λ2)


1 0 0 . . .

λ2 1 0 . . .

λ4 λ2 1 . . .
...

...
...

. . .

 . (4.54)

The elements of the matrix in (4.54) can be shown that are given by,

Dcij = (1− λ2)λ2(i−j)Θ(i− j) (4.55)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 otherwise. It is easy to see that Dc is column

stochastic therefore p(m+1) ≺ p(m), just like in the case where the interaction between

the modes was a beam splitter.
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We now move to the second class of majorization. The input state is fixed to |m0〉 and

we compare the two reduced output states, one that corresponds to λ and the other that

corresponds to λ′ < λ. It can be shown that the following relation holds,

p(m)(λ) = F(m)
c (λ, λ′)p(m)(λ′) (4.56)

where the elements of the column stochastic matrix Fc(λ, λ
′) are,

F (m)
cij (λ, λ′) =

(
j +m

m

)−1
(

1− λ2

1− λ′2

)
(L

(m,j)
i−j λ2 − L(m,j+1)

i−j−1 λ′2)λ1(i−j−1)Θ(i− j) (4.57)

with

L
(m,i)
j = i

(
i+m

m

)(
j +m

m

)
λ′−2iB(λ′2; i, 1 +m) (4.58)

and B(z; a, b) =
∫ z

0 dxx
a−1(1− x)b−1 is the incomplete beta function.

Equation (4.56) and the column stochasticity of matrix Fc(λ, λ
′) provide that the ma-

jorization relations p(m)(λ) ≺ p(m)(λ′), ∀λ′ < λ are valid. This is in contrast to the

result provided for the parametric default of majorization relation in a beam splitter.

Since there are valid majorization relations one can find LOCC transformations from

the more random state to the less random one [GNL+12] but we not will consider them

here.

4.3 Conclusions

We have found several classes of majorization relations characterizing a beam splitter, or

more generally the linear coupling between a pair of bosonic modes. More formally, we

have proven that the passive Bogoliubov transformation of equation (4.14) fulfills some

majorization relations, which enable comparing the output states corresponding to vari-

ous input photon numbers k as well as various coupling parameters θ (or transmittances

τ = cos2 θ). We have reviewed the majorization relations that prevail with an active

Bogoliubov transformation (a two-mode squeezer or parametric amplifier) [GNL+12].

Interestingly and counter-intuitively, the behavior of the passive and active Bogoliubov

transformations are different in terms of partial ordering of the reduced outputs.

We have shown that for any value of the transmittance parameter θ, the output states

resulting from injecting Fock states |k〉 in one port of the beam splitter and vacuum

|0〉 in the other port obey a chain of majorization relations Ψ(k+1)(θ) ≺ Ψ(k)(θ), for all

k ≥ 0. As a consequence, the output states can only be more entangled when increasing
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the number of incident photons, and we have found an explicit deterministic LOCC

transformation that maps Ψ(k+1)(θ) onto Ψ(k)(θ).

In contrast, we have found that the situation is more complicated when varying the

parameter θ and keeping k constant. In that case, we have shown that there exists a

first region in the space of parameter θ where a parametric infinitesimal majorization

relation holds, by taking the limit of an infinitesimal angle ε > 0 for any k ≥ 0, namely

Ψ(k)(θ + ε) ≺ Ψ(k)(θ). This implies a monotonic increase of the entanglement of the

output states when decreasing the transmittance and moving towards a balanced beam

splitter. However, beyond some value of the parameter θ, we have shown the existence of

a default of majorization, which occurs because the ordering of the OSC vectors changes

in such a way that the leading probability is replaced by another one. This majorization

default holds from the left boundary of this new ordering region at least up to the local

minimum of the min-entropy. Moreover, by examining specific examples, we have shown

that one may find more violations of majorization for non-infinitesimal angles ε within

the same ordering region or between different ordering regions.

Finally, we have provided an example of two incomparable states, resulting from dif-

ferent values of θ, whose conversion can nevertheless be catalyzed with the help of

an experimentally accessible state, such as a single-photon path-entangled state or a

two-mode squeezed vacuum state. Catalysis schemes like the one in figure 4.7 may

potentially be used for authentication protocols based on entanglement-assisted LOCC

[Bar99, JS00]. Further investigations should also include a more general solution to the

catalysis process in the parameter-varying case, the analysis of majorization relations in

more complicated optical circuits in the spirit of [LM02] or the application in the context

of the non-classicality of quantum states [ACR05]. More ambitiously, one may address

phase transitions and critical phenomena in a field-theoretical approach [ZBF+06] under

the prism of parametric majorization, where the parameter could be the temperature of

a thermal field (Section 5.3 and [GKK13]).



Chapter 5

von Neumann entropy revisited

5.1 The replica method

5.1.1 Calculating the von Neumann entropy using the moments

Calculating the von Neumann entropy S(ρ̂) = −tr(ρ̂ ln ρ̂) of a bosonic mode that is

found in state ρ̂ is often an intractable task because it requires finding the infinite

vector of eigenvalues of ρ̂. This can sometimes be circumvented by using the replica

method, which relies on the identity logZ = limn→0+(Zn − 1)/n. Using x log x =

limn→1+(xn − x)/(n − 1) = ∂
∂n(xn)

∣∣
n=1+ , we may reexpress the von Neumann entropy

as

S(ρ̂) = −∂ tr(ρ̂n)

∂n

∣∣∣
n=1+

(5.1)

The trick is to find an analytical expression of tr(ρ̂n) as a function of n ∈ N∗ and

then computing the derivative at n = 1, avoiding the need to diagonalize ρ̂. This

method also makes apparent the connection between the von Neumann entropy and

other widely used measures of disorder, such as Tsallis and Rényi entropies. It has

been used with great success in the context of spin glasses and quantum field theory

[MPV87, CW94, HLW94, CC04, CC05, RT06, BB08, GKK13], being often justified

based on the analyticity of tr(ρ̂n) and its derivative with respect to n in the neighborhood

of n = 1 [CC04, CC05].

To be more precise, the replica method gives the mean value 〈ln Â〉 of some Hermitian

operator Â by the use of the moments 〈Ân〉. Therefore, in order for the replica method

to be applicable, two conditions should be satisfied. First, one must ensure that the

moments 〈Ân〉 carry all the information for the corresponding probability distribution,

and therefore it makes sense to use the moments to find any other mean value. When

considering Â = ρ̂, where ρ̂ is some density matrix, this is always true. Something

108
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that is shown using the Hausdorff moment problem. Second, once one has obtained the

tr(ρ̂n) = f(n) one assumes that the function f(n), n ∈ N∗ can be expanded to reals,

i.e. f(x), x ∈ R. Many authors refer to this step as analytic continuation, but this

is not correct since it is not mathematically correct to do analytic continuation from

the positive integers to reals. There are examples where the so-called replica symmetry

breaking occurs, i.e f(n) 6= f(x). These examples do not concern density matrices

though.

Now let us argue that the knowledge of tr(ρ̂n), ∀ n ∈ N∗, is equal to the knowledge

of the eigenvalues of the density matrix ρ̂. In what follows, we define as moments the

quantity mn = tr(ρ̂n). Hausdorff’s moment problem states that if X is a random variable

in the interval [0, 1], then the integer-order moments

mn ≡ E(Xn−1) (5.2)

uniquely determine the distribution P (X) if and only if

(−1)k(∆km)n ≥ 0, ∀ k ∈ N∗ (5.3)

where

(∆km)n =

k∑
j=0

(−1)j
(
k

i

)
mn+k−i. (5.4)

In the case at hand, we will consider as random variable the eigenvalues λi of the

(hermitian) density operator, that is Λ ∈ [0, 1] with

P (Λ = λi) = λi (5.5)

The moments,

mn = E(ρ̂n−1) = tr(ρ̂n−1ρ̂) = tr(ρ̂n) (5.6)

are easily found to satisfy,

(−1)k(∆km)n =
∑
j

λnj (1− pj)k > 0. (5.7)

Therefore the knowledge of the moments uniquely determines the density operator in the

basis of its eigenvectors, or equivalently the eigenvalues of the density operator. Thus,

we can find in principle any expectation value from the knowledge of tr(ρ̂n) for n ∈ N∗.
What we need is a recipe to derive the von Neumann entropy from the moments. An
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obvious choice comes from observing that if we treat n as a real variable we have,

−∂tr(ρ̂n)

∂n

∣∣∣∣∣
n=1

= −tr(ρ̂ ln ρ̂) = S. (5.8)

Here we should make two important remarks. First, the trick played in equation (5.8)

may not be unique; there could be other recipes to determine the von Neumann entropy.

What is important is that Hausdorff’s moment problem guarantees that these other

recipes would give the same result as equation (5.8). Second, extra care should be taken

regarding the following fact. During the calculation of tr(ρ̂n), we consider n to be a

natural number in N∗. We only consider n to be real in order to apply the step in

equation (5.8), but this does not imply that tr(ρ̂x), with x ∈ R , is found by simply

substituting the natural variable n with the real variable x. What Hausdorff’s moment

problem guarantees is that, in principle, tr(ρ̂x) could be uniquely determined from tr(ρ̂n)

with some proper recipe. One recipe is given by equation (5.1).

One may object that the derivative in equation (5.8) it is not a correct thing to do in

the sense that by taking tr(ρ̂n) and doing the substitution n → x may not give the

correct tr(ρ̂x), as if one computes tr(ρ̂x) considering x ∈ R (or more generally tr(ρ̂α)

for α ∈ C) from the start. To put it in a formal way, let us consider the quantities,

trρ̂n = f0(n) −→ f0(α), n ∈ N, α ∈ C (5.9)

and

trρ̂α = f(α). (5.10)

The function f(α) should be analytic and since it represents moments it should be

bounded,

|f(α)| < 1. (5.11)

Equations f0(α) and f(α) should be equal when their arguments are integers (in our

case we care about only positive integers). So we can write,

f(α) = f0(α) + g(α)

g(α) = h(α) sinπα

g(n) = 0 (5.12)
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where h(α) is any analytic function. From equation (5.11) we have,

|f0(α) + g(α)| < 1. (5.13)

The problematic term in the previous equation is g(α) since it hides a hyperbolic sinus.

That means that the term

|g(α)| = | sinπα||h(α)| (5.14)

should be bounded but the hyperbolic sinus diverges like | sinπα| ∼ O(eπ|y|). The

function h(α) must compensate this divergence meaning that |h(α)| ∼ O(e−|τ ||y|) and

therefore,

|g(α)| ∼ O(e(π−|τ |)|y|). (5.15)

From Carlson’s theorem [Car14], equations (5.11), (5.12) and (5.15) imply that g(α) =

0, α ∈ C. That means that by computing trρ̂n, n ∈ N, and simply substituting

n→ α, α ∈ C, it is the same as if one computes trρ̂α, α ∈ C, from the start.

5.1.2 Examples from classical probability theory

First, consider the Gaussian distribution over some real variable x with mean value µ

and standard deviation σ,

P (G)(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (5.16)

The entropy of this distribution can be found by calculating the moments, which are

m(G)
n =

1

(2π)
n−1

2
√
nσn−1

(5.17)

and then by finding the derivative of equation (5.17) with respect to n at n = 1,

−dm
(G)
n

dn

∣∣∣∣∣
n=1

=
1

2
ln(2eπσ2) (5.18)

which is indeed the well-known entropy of the Gaussian distribution.

Now, let us consider the Poisson distribution,

P (P )(k) =
λk

k!
e−λ, λ > 0, k ∈ N. (5.19)
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The moments read,

m(P )
n =

∞∑
k=0

λnk

k!n
e−nλ (5.20)

and from the latter we find,

−dm
(P )
n

dn

∣∣∣∣∣
n=1

= λ(1− lnλ) + e−λ
∞∑
k=0

λk

k!
ln k! (5.21)

which is indeed the entropy of the Poisson distribution. This result reminds us the simple

fact that a non-summation expression for the entropy is not always available, even for a

simple classical distribution. As we see in this paper, a similar situation prevails when

considering the output entropy of a parametric amplifier that is fed with an arbitrary

Fock state |m〉 with m > 1.

5.2 Application of replica method to quantum optics

In quantum optics and continuous-variable quantum information theory, the so-called

Gaussian transformations are ubiquitous [WPG+12]. For instance, the coupling between

two modes of the electromagnetic field as effected by a beam splitter in bulk optics or an

optical coupler in fiber optics is modeled by the (passive) quadratic Hamiltonian H =

iâ1â
†
2− iâ†1b̂2, where â1 and â2 are the bosonic annihilation operators of the modes. This

operation can be shown to preserve the Gaussian character of the quantum state, or more

precisely the quadratic exponential form of its characteristic function. The corresponding

transformation in phase space is the rotation â1 → cos θ â1 +sin θ â2 and â2 → cos θ â2−
sin θ â1, where cos2 θ is the transmittance. Another generic Gaussian coupling between

two modes of the electromagnetic field results from parametric down-conversion in a

nonlinear medium, which is modeled by the (active) quadratic Hamiltonian H = iâ1â2−
iâ†1â

†
2. It effects the Bogoliubov transformation â1 → cosh r â1 + sinh r â†2 and â2 →

cosh r â2 + sinh r â†1, where cosh2 r is the parametric amplification gain. It corresponds

to two-mode squeezing or parametric amplification in the context of quantum optics, but

also describes a much wider range of physical situations, such as the Unruh radiation

in an accelerating frame [Ful73, Dav75, Unr76] or the Hawking radiation emitted by a

black hole [Haw74, Haw75].

While they are common in quantum optics and related fields, these Gaussian transfor-

mations are nevertheless poorly understood in terms of quantum entropy generation.

For example, when amplifying the state of the electromagnetic field using parametric

down-conversion, the output state suffers from some intrinsic quantum noise, which is
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an increasing function of the amplification gain. It is a central problem to characterize

this noise and be able to determine the von Neumann entropy of the output state, this

being indispensable for instance to compute the capacities of Gaussian bosonic chan-

nels [HW01, GGL+04a, GNL+12]. Unfortunately, the output entropy is generally not

accessible for an arbitrary input state because it is difficult – usually impossible – to

diagonalize the corresponding density operator in an infinite-dimensional Fock space.

With the exception of Gaussian states, e.g., the vacuum state (resulting after amplifica-

tion in a thermal state whose entropy is given by a well-known formula), few analytical

results are available as of today. This problem is also linked to several entropic conjec-

tures on Gaussian optimality in the context of bosonic channels. Notably, determining

the capacity of a multiple-access or broadcast Gaussian bosonic channel is pending on

being able to prove such entropic conjectures, see e.g [Guh08, YS05, GSE07].

In this chapter, we demonstrate that the replica method can be successfully exploited in

order to overcome this problem and find the exact analytical expression of the output

entropy of Gaussian transformations applied on non-trivial input states. The replica

method is well known to be a very useful tool in statistical physics, especially with dis-

ordered systems [MPV87], and in quantum field theory [CW94, HLW94]. Here, we first

apply it to the field of quantum optics and show that it enables accessing the entropy

generated by a quantum optical amplifier, paving the way towards a quantum entropic

characterization of all Gaussian transformations generated by quadratic Hamiltonians.

To illustrate the power of this approach, we calculate the output entropy when ampli-

fying a binary superposition of the vacuum and an arbitrary Fock state, which yields a

surprisingly simple analytical expression.

5.2.1 Example: The thermal state

Let us consider the thermal state ρ̂0 = (1 − |τ |2)
∑∞

k=0 |τ |2k |k〉〈k| with a mean photon

number N = |τ |2/(1 − |τ |2), where τ ≡ tanh ξ and ξ is the squeezing parameter (see

below). Since ρ̂0 is in a diagonal form, it is of course straightforward to calculate its

entropy, giving the well-known formula S(ρ̂0) = g(N) ≡ (N + 1) log(N + 1)−N logN .

However, we may also start with its non-diagonal representation in the coherent-state

basis {|α〉}, where α is a complex number, namely

ρ̂0 =
1

π

1− |τ |2
|τ |2

∫
d2α e

− 1−|τ |2

|τ |2
|α|2 |α〉〈α| (5.22)
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By making the change of variable α → |τ | α and by using 〈α|β〉 = e−(|α|2+|β|2−2α∗β)/2,

we can write

tr(ρ̂n0 ) =
(1− |τ |2)n

πn

∫
d2α1 . . .

∫
d2αn e

−ᾱ†Mᾱ (5.23)

where ᾱ = (α1, . . . αn)T is a column vector and M is the n× n circulant matrix

M =


1 −|τ |2 0 . . . 0

0 1 −|τ |2 . . . 0
...

...
...

. . .
...

−|τ |2 0 0 . . . 1

 . (5.24)

Equation (5.23) is a simple Gaussian integral, which, using the determinant detM =

1− |τ |2n, can be expressed as

tr(ρ̂n0 ) =
(1− |τ |2)n

1− |τ |2n (5.25)

Then, we readily find that

− ∂

∂n
tr(ρ̂n0 )

∣∣∣
n=1

= ln
1

1− |τ |2 +
|τ |2

1− |τ |2 ln
1

|τ |2 (5.26)

which coincides with the above expression S(ρ̂0) = g(N) for the entropy of a thermal

state, as expected.

5.2.2 Entropic characterization of the two mode squeezer: Amplifying

a Fock state

Consider now the problem of expressing the entropy Sm generated by amplifying an

arbitrary Fock state |m〉. Thus, we consider a two-mode squeezer of parameter ξ =

|ξ| eiφ, applying the unitary transformation

Û = e−ξâ
†b̂†+ξ∗âb̂ (5.27)

on the initial state |m〉a|0〉b (subscript a refers to the signal mode, while b refers to the

idler mode). It can be shown that the vector of eigenvalues of the reduced output state

ρ̂m of the signal mode is given by [GNL+12, NGS+12]

p
(m)
k = (1− |τ |2)m+1

(
k +m

k

)
|τ |2k, k ∈ N (5.28)
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where |τ | = tanh |ξ|, from which we find

tr(ρ̂nm) = (1− |τ |2)n(m+1)
∞∑
k=0

(
k +m

k

)n
|τ |2nk. (5.29)

Equation (5.29) can be re-expressed in a closed form as

tr(ρ̂nm) =
(1− |τ |2)n(m+1)

|τ |2n Li
(m)
−n (|τ |2n). (5.30)

where

Li
(m)
−n (ζ) ≡

∞∑
k=0

(
k +m

k

)n
ζk+1 (5.31)

and Li
(1)
−n(ζ) denotes the polylogarithm of order −n [OLB+10]. Applying equation (5.1)

to equation (5.30) and taking into account that Li
(m)
−1 (ζ) = ζ/(1− ζ)m+1, we obtain the

entropy

Sm = − ∂

∂n
tr(ρ̂nm)

∣∣∣
n=1

= ln
|τ |2

(1− |τ |2)m+1

− (1−|τ |2)m+1

|τ |2
∂
∂n Li

(m)
−n (|τ |2n)

∣∣∣
n=1

. (5.32)

From equation (5.28), the corresponding output state can be written as

ρ̂m =

∞∑
k=0

(1− |τ |2)m+1

(
k +m

k

)
|τ |2k |k〉〈k| (5.33)

so that we obtain a closed expression (5.30) where Li
(m)
−n (ζ) was defined in (5.31) The

function Li
(1)
−n(ζ) is known as the polylogarithm of order −n. It is connected with the

Eulerian polynomials in the following way,

Li
(1)
−n(ζ) =

1

(1− ζ)n+1

n−1∑
k=0

E(n, k) ζk+1 (5.34)

where

E(n, k) ≡
k∑
j=0

(
n+ 1

j

)
(−1)j(k − j + 1)n (5.35)

are the Eulerian numbers.
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Equation (5.32) can be written more explicitly as

Sm = (m+ 1)S0 + lnm!−
(
1− |τ |2

)m+1

×
∞∑
k=0

(
k +m

k

)
|τ |2k ln

(k +m)!

k!
. (5.36)

Closed expressions of Sm are hard to extract for m > 1 since the function Li
(m)
−n (ζ)

cannot be written in a non-summation form for m > 1. This is not so unexpected as

it is similar to the case of a Poisson distribution. Note that Sm can also be calculated

analytically using the standard definition of the entropy −tr(ρ̂ ln ρ̂), but the replica

method provides an alternative way to achieve this calculation which is straightforward

and remains applicable even when the formula −tr(ρ̂ ln ρ̂) cannot be exploited.

One can easily verify numerically from equation (5.36) that Sm+1 > Sm. We will not

provide an analytical proof on this because this result is already known [GNL+12]. Let

us underline that replica was introduced to calculate the von Neumann entropy and

indeed in the last paradigm replica method was successful.

5.2.3 Entropic characterization of the two mode squeezer: Amplifying

a superposition of Fock states

We will now show that the same procedure makes it possible to express the entropy

analytically in situations where no diagonal form is available for the output state, so the

replica method becomes essential. Consider the amplification of a binary superposition

of the type

|ψ〉 =
|0〉+ z|m〉√

1 + z2
(5.37)

where we take z ∈ R without loss of generality. By using the Baker-Campbell-Hausdorff

relation, the unitary transformation (5.27) can be rewritten in the form

Û = e−νe−τ â
†b̂†e−ν(â†â+b̂†b̂)eτ

∗âb̂ (5.38)
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where ν = ln cosh |ξ| and τ = ξ
|ξ| tanh |ξ|, so that the joint output state |Ψ〉 of the two

modes can be expressed in the double coherent-state basis |α〉a|β〉b, namely

〈α, β|Ψ〉 =
1√

1 + z2

(
〈α, β|Û |0, 0〉+ z 〈α, β|Û |m, 0〉

)
=

1√
1 + z2

(
(1− |τ |2)

1
2 + z

(1− |τ |2)
m+1

2√
m!

)
×e−(|α|2+|β|2)/2−τα∗β∗+τ∗αβ. (5.39)

From equation (5.39), we can easily write the reduced output state ρ̂ obtained by tracing

|Ψ〉 over the idler mode and paying attention to the non-orthogonality of coherent states.

Using the notation ᾱ = (α1, . . . αn)T , we get

tr(ρ̂n) =
(1− |τ |2)n

πn(1 + z2)n

n∏
j=1

∫
d2αj

∣∣1 + cαmj
∣∣2 e−ᾱ†Mᾱ (5.40)

where the matrix M is defined as in equation (5.24) and

c =
z√
m!

(1− |τ |2)m/2. (5.41)

In order to bring this back to a Gaussian integral, we use the so-called “sources” trick

[Zei09], exploiting the identity xme−x
2

= ∂m

∂λm e
−x2+λx|λ=0. Then, equation (5.40) be-

comes

tr(ρ̂n) =
(1− |τ |2)n

πn(1 + z2)n
Π∂λ(n)

n∏
j=1

∫
d2αj

× exp
(
−ᾱ†Mᾱ+ ᾱ†λ̄+ λ̄†ᾱ

) ∣∣∣
λ̄=0̄

(5.42)

where Π∂λ(n) ≡ ∏n
j=1

∣∣∣1 + c ∂m/∂λmj

∣∣∣2 is a differential operator in the variables λ̄ =

(λ1, . . . λn)T . Note here that λj and λ∗j are treated as independent variables, instead of

their real and imaginary parts. The derivatives with respect to all λ’s have been pushed

in front of the integrals in equation (5.42), so that we get a Gaussian integral that is

immediately computable, resulting in

tr(ρ̂n) =
tr(ρ̂n0 )

(1 + z2)n
Π∂λ(n) exp

(
λ̄†Nλ̄

) ∣∣∣
λ̄=0̄

, (5.43)
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where tr(ρ̂n0 ) is given by equation (5.25) and corresponds to a vacuum input state (z = 0).

In equation (5.43), we have defined the circulant matrix N = (1− |τ |2n)mM−1, with

M−1 =
1

1− |τ |2n


1 |τ |2 . . . |τ |2(n−1)

|τ |2(n−1) 1 . . . |τ |2(n−2)

...
...

. . .
...

|τ |2 |τ |4 . . . 1

 (5.44)

while the operator Π∂λ(n) can be expanded as

Π∂λ(n) =

n∑
k=0

c2k Π2k(n) (5.45)

where each Π2k(n) contains
(
n
k

)2
terms that return a non-zero result when acting on

exp
(
λ̄†Nλ̄

)
and taking the value at λ̄ = 0̄, see Appendix A for details. The term with

k = 0 in equation (5.45) is simply Π0(n) = 1, so that taking z = 0 trivially results into

tr(ρ̂n) = tr(ρ̂n0 ). The term with k = n gives, when acting on the exponential of equation

(5.43),

Π2n exp
(
λ̄†Nλ̄

) ∣∣∣
λ̄=0̄

= m!n
1− |τ |2n
|τ |2n Li

(m)
−n (|τ |2n) (5.46)

where Li
(m)
−n (|τ |2n) is defined in equation (5.31). Thus, we recognize that this term is

connected with the case of an input Fock state |m〉, something that can also be seen by

taking the limit z →∞ in equation (5.43). If we put all pieces together, we obtain the

expression

tr(ρ̂n) =
trρ̂n0

(1 + z2)n

{[
1 + z2

(
1− |τ |2
1− |τ |2n

)m]n

−z2n

(
1− |τ |2
1− |τ |2n

)mn
+ F (m)(n) + z2n trρ̂nm

trρ̂n0

}
(5.47)

where ρ̂m is the reduced output state resulting from the amplification of |m〉, and F (m)(n)

is defined in Appendix A. Now, applying equation ( 5.1) to equation (5.47), we get

S(z) =
1

1 + z2
S0 +

z2

1 + z2
Sm −

∂

∂n
F (m)(n)

∣∣∣
n=1

. (5.48)

Finally, we prove in Appendix A that the last term of the right-hand side of equation

(5.48) vanishes, so that equation (5.48) simplifies into the expression,

S(z) =
1

1 + z2
S0 +

z2

1 + z2
Sm (5.49)
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Figure 5.1: The von Neumann entropy S(z), function of the superposition
parameter z, is pictured by a point belonging to a one-dimensional convex poly-
tope. The two extremal points of the polytope are the entropies S0 and Sm
corresponding to the two extreme cases, i.e., the input states |0〉 and |m〉.
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Figure 5.2: Plot of the von Neumann entropy S(z) as a function of the super-
position parameter z for m = 1 and several values of the squeezing parameter
ξ. Since S1 > S0, equation (5.49) implies that the curve S(z) is always above
S0.

Intriguingly, the output entropy is thus a simple convex combination of S0 and Sm with

the exact same weights as if we had lost coherence between the components |0〉 and |m〉
of the input superposition. This is schematically pictured in figure 5.1. We have also

numerically verified this behavior, which, to our knowledge, had never been observed

before. It is illustrated in figure 5.2, where we show that the entropy is a monotonically

increasing function of the superposition parameter z.

5.3 Application of replica method to bosonic field theory

The use of the replica method can be expanded to bosonic field theory. In particular

the replica method can be used to calculate the geometric entropy, in the framework

of a quantum system. One of the first calculations [BKL+86] was performed in the

eighties for the case of a scalar field propagating in a black hole background. Some years

later, a similar problem, in the framework of a quantum field theory, was addressed by

several authors [Sre93, KS94, CW94, CC04, CC06, CCD08, CC09]. Geometric entropy,

generally speaking, is a measure of the information loss after cutting out a spatial region

of the system. It caught attention because of its characteristic behavior; for a system in
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its ground state, it grows like the boundary surface of the excluded subregion, a property

that the black hole entropy exhibits as well. In fact, in the context of quantum field

theory, pioneering work on the geometric entropy was driven in part by the suggested

connection to the Bekenstein-Hawking black hole entropy [Bek73].

From the very beginning, geometric entropy has been tightly related with the presence

of spatial entanglement in a quantum system. Entanglement is a fundamental ingredient

of quantum mechanics leading to strong correlations between subsystems and from the

early days of quantum mechanics up until now, it has been playing an increasingly

important role in understanding and controlling quantum systems. The interest in it

has been renewed [PV98, AEP+02, ON02, OMF+02, VLR+03] after the developments

of the quantum information science in which it is viewed as a resource in quantum

information processing. Geometric entropy has been considered as a measure of spatial

entanglement when the system under consideration is in a pure quantum state with a

density matrix of the form ρ̂ = |Ψ〉〈Ψ|. By defining an in and an out spatial region and

tracing out the in degrees of freedom, one obtains the reduced density matrix for the

out region, ρ̂out = trinρ̂. The geometric entropy is then defined as the von Neumann

entropy: Sout = −trρ̂out ln ρ̂out.

When the system is in a thermal state, the geometric entropy can be defined, following

the von Neumann definition, in an analogous way. However, in this case, it does not

have the same properties as the entanglement entropy in a pure state system, and it

is no longer a good estimator of entanglement since it mixes correlations of different

types [CW94, CC04, WVH+08, Woo01, HAK+07], from genuine quantum to thermal

correlations. Since it measures the thermal information loss, geometric entropy becomes

an extensive quantity at the limit of an infinite system, and loses the area law behavior

that characterizes a pure state system. As an alternative probe for the amount of

correlations between different parts of a system in the case of thermal states, the notion

of the so-called mutual information [AC97a, HV01, WVH+08, GPW05, DY09] has been

proposed, which, roughly speaking, eliminates the contribution of the extensive part of

the thermal entropy from the geometric entropy and can be considered as an upper limit

for the entanglement entropy.

In any case, geometric entropy has been considered as a convenient construction, playing

the role of an order parameter, for the investigation of finite temperature conformal

quantum field systems [CC04] and in the context of the AdS/CFT correspondence,

aiming at the physics of strongly coupled Quark-Gluon Plasma, the weakly coupled

deconfined phase of Yang-Mills theories or the phase structure of large N QCD at a

finite density [FNT08, FO10].
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In the rest of this Chapter, we derive, for a simple spatial partition, the geometric

entropy in a free bosonic quantum field theory at finite temperature, starting from the

canonical or the grand canonical partition functional of the system. Having found it, we

subtract its extensive part, that is, the part related to the amount of information that is

lost due to the mixed nature of the system. The result quantifies the spatial correlations

between the different parts of the system, it exhibits the known area law behavior and

it can be related to the mutual information for the specific partition.

The underlying reason for the present study is connected to the Bose-Einstein conden-

sation that characterizes the system, which has been in the center of theoretical and

experimental investigations during the last fifteen years after the production of the con-

densate in the laboratory [AEM+95, DMA+95].

Bose-Einstein condensation has the characteristics of a phase transition albeit, theoret-

ically at least, it can take place in an ideal system [LD65, Kap81, HW81, HW82, PS03,

PS08, GNZ09]. It is then natural to search for the interconnection between this phase

transition and the spatial correlations in the Bose system. Our findings indicate that,

indeed, the Bose-Einstein condensation influences the behavior of the mutual informa-

tion; we find that its derivative with respect to the temperature, ∂Im/∂T, has a finite

discontinuity at the critical temperature both at the non-relativistic and the relativis-

tic limit. Thus, we show how this phase transition leaves its fingerprint on a quantum

informational quantity like mutual information.

Note that in this Section we fix ~ = 1.

5.3.1 Geometric entropy at finite temperature

Our starting point is the thermal density matrix ρ̂ = e−βĤ/Z of a quantum field system

and its Fock space representation,

ρ[Φ′,Φ] =
1

Z
〈Φ′|e−βĤ |Φ〉, (5.50)

where Φ denotes a single scalar field or a collection of fields. The matrix element (5.50)

can be written as a functional integral,

ρ[Φ′,Φ] =

Φ(β,~x)=Φ′(~x)

1

Z(β)

∫
DΦ(τ, ~x)

Φ(0,~x)=Φ(~x)

e
−
β∫
0

dτ
∫

dDxL[Φ]
(5.51)

where in (5.51) the action contains the usual free Klein-Gordon Lagrangian, see equation

(2.208).
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It is worth noting that at the zero temperature limit, β →∞, (5.51) is just an expression

for the ground state density matrix [CW94]. It is then natural to expect that our result

will reproduce, at this limit, the known [KS94, CW94, CC04] entanglement entropy. To

derive the geometric entropy we follow the usual line of reasoning and we divide the D

dimensional space on which our system is defined, into two regions A : (x1 > 0, ~x⊥)

and B : (x1 < 0, ~x⊥). Tracing out the “in” region, and gluing along the axis x1 > 0, n

copies of the resulting reduced density matrix, we find [KS94, CW94, CC04],

tr(ρ̂R)n =
1

Zn(β)

∫
Mn

DΦe−S[Φ] ≡ Zn(β)

Zn(β)
. (5.52)

In Zn the fields are defined on a D + 1 dimensional space Mn = RD−1 × Cn. The

subspace RD−1 is an Euclidean space with metric ds2 = dx2
2 + · · · + dx2

D while Cn is a

two dimensional Riemann space consisting of n sheets glued together along the positive

x1 axis. This n folded structure turns eventually [CW94] the (τ, x1) plane into a flat cone

with an angle deficit δ = 2π(1 − n) at the origin. Having found tr(ρ̂R)n the geometric

entropy is defined through the relation,

− lim
n→1

tr(ρ̂R)n − 1

n− 1
= −tr(ρ̂R ln ρ̂R) ≡ Sg

= −
( ∂
∂n
− 1
)

lnZn

∣∣∣∣∣
n=1

. (5.53)

For a free bosonic theory, the partition function can be deduced by following standard

steps [CW94],

lnZn(β) = ln
[

det
Mn

(−∂2
E +m2)

]− 1
2

= −1

2
trMn

[
ln(−∂2

E +m2)
]

=
1

2

∞∫
0+

dT

T
e−Tm

2
trMne−T (−∂2

E)

=
1

2

1

(4π)(D−1)/2
VD−1

∞∫
0+

dT

T (D+1)/2
e−Tm

2
trCne−T (−∂2

E) (5.54)

where ∂2
E = ∂2

τ + ∂2
~x + m2. Due to the locality of the action, the partition function in

(5.54) is not expected to depend explicitly on the details of the Riemann surface. Thus,

in order to calculate the non-trivial trace appearing in (5.54), we start with the finite

temperature propagator of a free particle in cartesian coordinates,

Aβn(~x′, ~x) = 〈~x′|e−T (−∂2
E)|~x〉βn . (5.55)

In (5.55) the |~x〉 denotes the the eigenstates of the position operator and the subscript
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βn = βn indicates the periodic boundary conditions imposed on the thermal Green’s

function. As it is obvious, they are dictated by the n folded structure of the Riemann

space Cn. The next step is to transfer the result onto a two dimensional cone with angle

deficit 2π(1− n),

ds2 = dρ2 + ρ2n2dθ2, 0 ≤ θ ≤ 2π. (5.56)

One can easily find that the free thermal propagator in (5.55) assumes the form [Sim95],

Aβn(~x′, ~x) =
1

4πT

∞∑
ν=−∞

e
− 1

4T

[
(x′1−x1)2+(x′0−x0−νβn)2

]

=
1

4πT

∞∑
ν=−∞

e−
1

4T
(~x′−~x)2+ νβn

2T
(x′0−x0)− (νβn)2

4T . (5.57)

The above expression can be written in the conical metric (5.56) by making the replace-

ments x0 = ρ sin(nθ), x1 = ρ cos(nθ), and using the expansion [DJ88],

eiz cos(nθ) =

∞∑
m=−∞

cmJ |m|
n

(z)eimθ, cm = i
|m|
n , (5.58)

where J |m|
n

are Bessel functions of the first kind. Thus, the thermal propagator on the

surface (5.56) reads,

Aβn(ρ′, θ′; ρ, θ;n) =
1

4πit

∑
ν,m,m1,m2

e−
(νβ)2

4it e−
ρ′2+ρ2

4it ×

×eim(θ′−θ)eim1θ′+im2θe−
iπ(m1+m2)

2n J |m|
n

(ρ′ρ
2t

)
×

×J |m1|
n

(νβn
2t

ρ′
)
J |m2|

n

(νβn
2t

ρ
)
×

×i−
|m|
n i
|m1|
n (−i)

|m2|
n . (5.59)

In the last expression the rotation T → it has been adopted in order to secure conver-

gence of all our intermediate steps.

Tracing out (5.59) we find,

Aβn = trCne−T (−∂2
E)

=
1

2it

∑
ν,m,m1

e−
(νβ)2

4it i−
|m|
n ×

×
∞∫

0

dρρe−
ρ2

2itJ |m|
n

(ρ2

2t

)
J2
|m1|
n

(νβn
2t

ρ
)
. (5.60)
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At this point we stress the fact that for n 6= 1, the trace over the conical metric (5.56),

that is the integration over ρ, must be performed before the summations over m or m1.

The relevant calculations can be facilitated by using the fact that, apart for Zn=1 which

is easily calculated, we are only interested in the derivative of (5.60) with respect to n,

(
∂nAβn

)
n=1

=
1

2it

∑
ν

e−
(νβ)2

4it ∂n

[∑
m

∞∫
0

dρρe−
ρ2

2it i−
|m|
n J |m|

n

(ρ2

2t

)]
n=1

+

+
1

2it
∂n

[∑
ν,m

e−
(νβn)2

4it

∞∫
0

dρρJ |m|
n

(νβn
2t

ρ
)]

n=1

. (5.61)

In obtaining the last expression we have used the identities,

∑
m

i−mJm(z) = e−iz,
∑
m

J2
m(z) = 1. (5.62)

In Appendix B we prove that,

1

2it

∑
m

∞∫
0

dρρe−
ρ2

2it i−
|m|
n J |m|

n

(ρ2

2t

)
=

it→T
n
V2

4πT
+

1

12

( 1

n
− n

)
+O

( T
V2

)
(5.63)

and

1

2it

∑
m

∞∫
0

dρρJ2
|m|
n

(νβn
2t

ρ
)

=
it→T

V2

4πT
+O

( T
V2

)
. (5.64)

In the above equations we introduced an upper cutoff R in the ρ-integrals and we have

written as V2 = πR2 the volume of the two dimensional subspace. Substituting the

first term in the rhs of (5.63) into (5.61) and feeding with the result (5.61) we find (see

Appendix B) that it leads to the logarithm of the partition function,

1

2

VD−1V2

(4π)
D+1

2

∞∫
0+

dT

T
D+3

2

e−Tm
2
∑
ν

e−
(νβ)2

4T = lnZ1(β). (5.65)
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Following the same steps for the first term in the rhs of (5.64) we can prove that it is

connected to the thermal entropy of the system,

1

2

VD−1V2

(4π)
D+1

2

∂n

[ ∞∫
0+

dT

T
D+3

2

e−Tm
2
∑
ν

e−
(νβ)2

4T

]

=
1

2
VD

∫
dDp

(2π)D

(
ln(1− e−βω)− βω

eβω − 1

)
(5.66)

where ω2 = p2 +m2. The contribution to (5.61) of the second term in the rhs of (5.63)

assumes the form,

1

12

1

(4π)
D−1

2

VD−1

∞∫
0

dT

T
D+1

2

e−Tm
2
∑
ν

e−
(νβ)2

4T

=
π

6
VD−1

∫
dDp

(2π)Dω

1

tanh(ωβ2 )
. (5.67)

Collecting everything together and using (5.54) we get the geometric entropy,

Sg =
π

6
VD−1

∫
dDp

(2π)Dω

1

tanh(ωβ2 )
+

+
1

2
VD

∫
dDp

(2π)D

(
ln(1− e−βω)− βω

eβω − 1

)
. (5.68)

At the limit p→∞ , tanh
(√

p2+m2β
2

)
→ 1 and consequently the fist integral in (5.68)

diverges. The same divergence appears in the case of zero temperature,

Sg(β =∞) =
π

6
VD−1

∫
dDp

(2π)D
1√

p2 +m2

→ 1

12

VD−1

(4π)
D−1

2

mD−1Γ
(
− D − 1

2
,
m2

Λ2

)
. (5.69)

After this observation we are led to write,

Sg(β) = Sg(β =∞) +
π

3
VD−1

∫
dDp

(2π)Dω

1

eβω − 1
+

+
1

2
Sthermal. (5.70)

Some comments are in order at this point. The first term in the last expression represents

the well known [KS94, CW94, CC04] entanglement entropy at zero temperature. This

is a quantity that diverges in the absence of an ultraviolet cutoff, while it grows like the

boundary surface of the excluded subregion. This fact clearly indicates the existence

of very strong quantum correlations between fields defined at neighboring points, a
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direct consequence of a local quantum field theory. A quantitative explanation of such

a behavior can be traced back to the uncertainty relations. Even at zero temperature,

the notion of a sharp, well defined, boundary surface is more classical than quantum.

The divergences appearing in Sg(T = 0) are connected to the fact that in (5.69) we

integrate down to zero distance, driving to infinity the density of the reduced density

matrix eigenvalues. The second term is finite and well-defined for m2 > 0. It is also

proportional to the boundary surface and it is an increasing function of the temperature.

We can consider it as a measure of the number of degrees of freedom that have been

excited on the boundary surface due to the non-zero temperature and, consequently, as a

measure of the thermal correlations between the partitions. The last term is the thermal

entropy of the subsystem, an obviously extensive quantity. Subtracting this term from

the geometric entropy we are led to find the following quantity,

Im(β) = Sg(β =∞) +
π

3
VD−1

∫
dDp

(2π)Dω

1

eβω − 1
. (5.71)

which turns out to be proportional to the mutual information. In general the mutual

information is a measure of all correlations, thermal and quantum. We use the following

definition,

I(A : B) = S(ρA) + S(ρB)− S(ρAB). (5.72)

For the case in hand the entropy of the combined system AB is just the total thermal

entropy, S(ρAB) = Sthermal. The entropies of each one of the two subsystems are equal

due to the way we have divided our system. Moreover, each one of them contains a

part which is one half of the total thermal entropy of the system. Thus, their extensive

thermal contribution to the mutual information is equal to S(ρAB) and when subtracting

the latter, all contributions due to the thermal entropy will be eliminated. So, what

(5.71) represents is the mutual information of the system divided by 2, Im(β) ≡ I(A :

B)/2.

5.3.2 Mutual information and Bose-Einstein condensation

Almost all of the technical details needed for the current section have already been

exposed in the previous one. We underline that we still consider the geometric entropy,

when we cut space into two halves. The basic difference of the analysis that follows, lies

on the fact that we are now interested in charged scalar (non- interacting) fields. The

field theoretical description will be based on complex fields while the introduction of a

chemical potential (as a Lagrange multiplier) will ensure the conservation of the charge.

The obtained result is novel and connects the formation of a Bose-Einstein condensation
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and spatial correlations in system as that under consideration. Note that calculations

are exact.

In this framework, the partition function of the system assumes the form,

Z(β) =

∫
β−periodic

DφDφ∗ exp

{
−

β∫
0

dτ

∫
dDxL[φ, φ∗]

}
. (5.73)

The Lagrangian entering the last expression can be written [Kap81, HW81] as follows,

L[φ, φ∗] = φ∗
[
− (∂τ − µ)2 − ∂2

~x +m2
]
φ. (5.74)

Following the same steps as in the previous section, we find,

lnZn(β) =
1

(4π)
D−1

2

VD−1

∞∫
0

dT

T
D+1

2

e−Tm
2
trCne−T (−∂2

E+2µ∂0−µ2). (5.75)

Once again we start from the free thermal propagator in Cartesian coordinates,

Aβn(~x′, ~x) =
1

4πT

∞∑
ν=−∞

exp

{
− 1

4T
(~x′ − ~x)2 +

+
(νβn

2T
+ µ

)
(x′0 − x0)− (νβn)2

4T
− µνβn

}
(5.76)

to arrive at the traced quantity that is relevant for the final calculation in (5.75),

trCne−T (−∂2
E+2µ∂0−µ2) → ntrC1e−T (−∂2

E+2µ∂0−µ2) +

+
1

12

(
1

n
− n

)∑
ν

e−
(νβ)2

4T
−µνβ +

+O
( T
V2

)
(5.77)

where the arrow underlines the fact that we have followed the same steps as from (5.57)

to (5.64) and we have kept only the non-extensive terms that are relevant for determining

the mutual information.

In Appendix B we show that,

Im =
π

6
VD−1

∫
dDp

(2π)Dω

{
1

tanh
[

(ω−µ)β
2

] +

+
1

tanh
[

(ω+µ)β
2

]}. (5.78)
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Isolating the (diverging) zero temperature contribution we find,

Im = Sg(β =∞) +
π

6
VD−1

∫
dDp

(2π)Dω

{
1

e(ω−µ)β − 1
+

+
1

e(ω+µ)β − 1

}
. (5.79)

For the system in hand the zero temperature geometric entanglement entropy reads,

Sg(β =∞) =
π

3
VD−1

∫
dDp

(2π)Dω

→ 1

6

VD−1

(4π)
D−1

2

mD−1Γ
(
− D − 1

2
,
m2

Λ2

)
. (5.80)

To reveal the physical content of our results we shall focus on the well-studied D = 3 case

which hosts the Bose-Einstein condensation. As it is well-known [LD65, Kap81, HW81]

the quantitative realization of the phenomenon is different at the two opposite limits,

the non-relativistic ρ � m3 and the ultra-relativistic one ρ � m3, as these are defined

by the total charge density of the system.

Beginning from the non-relativistic case, in which the charge density is very low and the

anti-particle contribution can be omitted [HW81], we rewrite (5.79) in the form,

INRm (β) = Sg(β =∞) +
π

6

V2

m

∫
d3p

(2π)3

1

e( p
2

2m
−µNR)β − 1

(5.81)

where we noted as µNR(β) = µ − m ≤ 0 the non-relativistic chemical potential. The

integral appearing in (5.81) is the total density of particles occupying excited states,

ρe =

∫
d3p

(2π)3

1

e( p
2

2m
−µNR)β − 1

=

(
m

2πβ

)3/2 ∞∑
n=1

znNR
n3/2

, (5.82)

where zNR = eβµNR ≤ 1. For temperatures below a certain critical value TC we have

µ(TC) = m and the above quantity is a constant,

ρe =

(
m

2πβ

)3/2 ∞∑
n=1

1

n3/2

=

(
2πm

β

)3/2

ζ
(3

2

)
, 0 ≤ T ≤ TC . (5.83)
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At exactly the critical temperature the number (5.83) becomes the conserved total par-

ticle density of the system,

ρe = ρ =

(
2πm

βC

)3/2

ζ
(3

2

)
. (5.84)

As an immediate consequence we get for the mutual information,

INRm = Sg(T = 0) +
π

6

V2

m
ρ

(
T

TC

)3/2

, T < TC . (5.85)

Above the critical temperature the system passes to the gas phase in which all of the

particles occupy excited states. The mutual information reads now,

INRm = Sg(T = 0) +
π

6

V2

m
ρ, T > TC . (5.86)

Thus, the Bose-Einstein condensation and the relevant phase transition are reflected in a

discontinuity of the derivative with respect to the temperature of the mutual information,

∂INRm

∂T

∣∣∣∣∣
T=T−C

− ∂INRm

∂T

∣∣∣∣∣
T=T+

C

=
π2

2
ζ2/3

(3

2

)
V2ρ

1/3. (5.87)

When ρ � m3 we are approaching the ultra-relativistic limit, the critical temperature

rises at relativistic high values TC = (3|ρ|/m)1/2 � m and the behavior of the system

changes. Below the critical temperature, one easily finds that [LD65, Kap81],

Im = Sg(T = 0) +
π

6
V2

∫
d3p

(2π)3ω

(
1

e(ω−µ)β − 1
+

1

e(ω+µ)β − 1

)

≈ Sg(T = 0) +
πV2

12

|ρ|
m

(
T

TC

)2

, T < TC . (5.88)

The integral that appears in (5.87) and (5.88) is not the charge density of the system

and, consequently, is not a conserved quantity even for temperatures above the critical

one. However, it is not hard to confirm [LD65] that at high temperatures T > TC it

behaves as following,

∫
d3p

(2π3)ω

(
1

e(ω−µ)β − 1
+

1

e(ω+µ)β − 1

)

=
T2

6
− T

2π
(m2 − µ2)1/2 − m2

4π2
ln
(
C
m

T

)
+

+
1

4π2
(m2 − µ2) +O

(m2

T2

)
(5.89)
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where C = eγE−1/4π and γE is the Euler-Macheroni constant.

As in the non-relativistic case, the derivative of the mutual information with respect to

the temperature possesses a discontinuity that reflects the underlying phase transition,

∂Im
∂T

∣∣∣∣∣
T=T−C

− ∂Im
∂T

∣∣∣∣∣
T=T+

C

= −π
√

3

9
V2

(
|ρ|
m

)1/2

. (5.90)

The last result completes our study for the influence of the Bose-Einstein condensation

on the entropy of entanglement in an ideal Bose system at finite temperature and non-

zero chemical potential.

5.4 Conclusions

The main propose of this chapter was to demonstrated the power of the replica method.

This tool, used in several fields of physics, provides a new angle of attack to access

quantum entropic measures for fundamental Gaussian transformations. The entropic

characteristics of such transformations can be normally accessed as long as Gaussian

states are considered, using the symplectic formalism, but otherwise the problem is

generally unsolvable. For instance, it could be proven only recently that the state min-

imising the output entropy of an optical amplifier is simply the vacuum state [GGC+14].

Although the amplifier is a common Gaussian operation, the difficulty behind this proof

was that no diagonal representation of ρ̂ is available, as is most often the case when

non-Gaussian states are considered. The replica method should hopefully enable going

beyond this proof as it provides a trick to overcome this difficulty: tr(ρ̂n) is expressed

for n replicas of state ρ̂ by using Gaussian integrals, without accessing its eigenvalues.

We have illustrated this procedure with the amplification of a state of the form |0〉+z|m〉.
This allowed us to unveil a remarkably simple behavior for the entropy of the amplified

state, namely that it is a convex combination of the extremal points S0 and Sm, as

expressed by equation (5.49). It must be stressed that this analytical result is non-

trivial as we do not expect similar expressions for the entropy resulting from other

superpositions, such as |1〉+ z|2〉 or |0〉+ z|1〉+ z′|2〉. Take for instance a coherent state,

which is an infinite superposition of Fock states: the entropy of the amplified state is

simply S0, just as for the vacuum state.

Future works will further explore this avenue in order to achieve a better entropic char-

acterization of fundamental quantum optical operations or even perhaps solve some

pending conjectures on bosonic Gaussian channels. More generally, we anticipate that
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the replica method will become an invaluable tool in quantum optics and continuous-

variable quantum information theory.

Moreover, to a more familiar to the replica method field, we have performed two types

of calculations and we have arrived at results with a clear physical content. First, we

calculated the geometric entropy in an ideal Bose system at finite temperature and we

confirmed the expected result; it combines the genuine quantum correlations with the

thermal fluctuations, and it becomes an extensive quantity for an infinite system. Due to

the simplicity of the system under consideration, we were able to explicitly subtract from

the geometric entropy its extensive component which coincides with the corresponding

thermal entropy. In this way we found the so-called mutual information, which grows

like the surface that bounds the space region in which a system lives.

The second novel calculation we performed refers to a Bose system at finite temperature

and in an environment with finite charge density. We found that, at the critical tempera-

ture, the temperature derivative of the mutual information exhibits a finite discontinuity,

and we explicitly calculated it. This result connects the condensation that appears in

an ideal quantum Bose system with the spatial correlations between two regions of the

system. This connection was shown by using a purely informational tool namely, the

quantum mutual information by introducing to thermal field theory.



Summary and outlook

This thesis was concerned with theoretical quantum optics and its interconnection with

continuous-variable quantum information theory. The main focus was on Gaussian

bosonic transformations, which play a special role in optical continuous-variable quan-

tum communication. More specifically, we have investigated how non-Gaussian bosonic

states evolve under such transformations, in which case the sympletic formalism can-

not be used. We have considered both deterministic transformations (such as optical

squeezers and beam splitters) and probabilistic transformations (such as noiseless am-

plifiers and attenuators), and have studied the entanglement production under such

transformations. This led us to consider the mean-field characteristics of the noiseless

amplifier/attenuator when acting on several classes of states, giving rise to some counter-

intuitive behavior, as well as the entropic characteristic of Bogoliubov transformations,

yielding some intriguing new analytical results. The tools that we have developed to

reach these goals were based on majorization theory and the replica method. To our

knowledge, there were only very few earlier applications of the former technique and

none of the later technique in the area of quantum optics. The contributions of this

thesis can be structured into the following three topics (corresponding respectively to

Chapters 3, 4, and 5):

Noiseless amplification and attenuation of quantum light

Amplification of quantum light is an important operation in quantum information pro-

cessing. It is rooted in the problem of how to transmit a quantum signal over large

distances so that the signal does not lose its quantum properties, i.e., the quantum

state should be protected from decoherence. Therefore, having at hand a setup that

could amplify a quantum signal without introducing noise is of great importance and

its study is necessary. Such a setup has been proposed and for reasons rooted deeply

in the unitary evolution of closed systems such a transformation is probabilistic, albeit

heralded. Another practical application of this so-called heralded noiseless amplifier can

be found in relation with quantum error correction. In this thesis, we have studied some

132
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of the characteristics of such a probabilistic heralded transformation, namely its action

on squeezed states and the proof that such a device acts as a universal squeezer.

Beyond practical applications, the heralded noiseless amplifier and attenuator have

raised instant signaling paradoxes that have been discussed and resolved in the thesis.

Furthermore, the study of noiseless amplification and attenuation has been completed

by considering their effect on non-Gaussian states of light and finding counterintuitive

physical effects concerning the behavior of the coherent (or mean-field) amplitude of the

signal state.

Majorization relations in quantum optics

The theory of majorization, or preorder theory, when used in quantum mechanics pro-

vides the means to analyze the behavior of entanglement transformations. This is done

without specific entanglement monotones since using majorization theory for proving

(or for disproving) majorization relations, i.e. which state is more disordered, provides

the means for very strict conclusions about all entanglement monotones. We have used

preorder theory to analyze the entanglement production of a most common Gaussian

transformation, namely a beam splitter, in two different scenarios: when the number of

input photons is increasing and when the transmittance is varying. The results were

unexpected and interesting and may be proven useful in future works on quantum op-

tical circuits. Moreover, the author believes that majorization theory could be used in

many-body systems and in particular with Bose-Hubbard models and the various phase

transitions that such systems exhibit.

Quantum entropy

The most studied, interesting and important entanglement monotone is the (reduced)

von Neumann entropy for a pure state (or geometric entropy in quantum field theory).

This is because it is connected with several quantum informational conjectures concern-

ing the amount of information a specific quantum operation can transmit. The difficult

part is generally how to compute this entropy. To this end, we made an attempt in this

thesis to introduce the replica method to the community of quantum optics and quantum

information theory. With this method, one does not have to compute the eigenvalues of

the density matrix in order to find the entropy, which is particularly useful when dealing

with infinite-dimensional state spaces as it is the case for bosonic states. The replica

method is based on the fact that tr(ρ̂n), ∀ n ∈ N∗ carries equivalent information as



Chapter 6. Summary and outlook 134

the eigenvalues of ρ̂, and on the assumption that this quantity is well behaved in the

region of n = 1. One has to find the derivative of tr(ρ̂n) with respect to n at n = 1,

which gives the entropy with a minus sign.

In this thesis, we have discussed the justification of the replica method and considered the

amplification (using a two-mode squeezer) of some non-trivial input states (e.g., super-

position of the vacuum and a Fock state). The author believes that the replica method

will serve as an excellent tool for attacking and proving several entropic conjectures in

quantum optics.

As a more mathematically challenging problem but more familiar ground for the use of

the replica method, a quantum informational signature was found for the phase transi-

tion from thermal gas to Bose-Einstein condensation in systems with finite temperature

and chemical potential. Namely, this signature is the discontinuity of the derivative of

the mutual information of two spatial regions of the field. This problem may at first

sight seem detached to the rest of this work but it becomes clear that when one geomet-

rically cuts out a region in a field, this can be seen as a fundamental quantum operation

as well.



Appendix A

Calculations for Section 5.2.3

In the main text, it is shown that if the input state is a superposition |ψ〉 = (|0〉 +

z|m〉)/
√

1 + z2, then the output state ρ̂ is such that

tr(ρ̂n) =
tr(ρ̂n0 )

(1 + z2)n
Π∂λ(n) exp

(
λ̄†Nλ̄

) ∣∣∣
λ̄=0̄

, (A.1)

where tr(ρ̂n0 ) corresponds to a vacuum input state, i.e., z = 0. Here, we define the matrix

N = (1− |τ |2n)mM−1, with

M−1 =
1

1− |τ |2n


1 |τ |2 . . . |τ |2(n−1)

|τ |2(n−1) 1 . . . |τ |2(n−2)

...
...

. . .
...

|τ |2 |τ |4 . . . 1

 (A.2)

being a circular matrix. The differential operator Π∂λ(n) has the form

Π∂λ(n) =
n∑
k=0

c2k Π2k(n) (A.3)

where each Π2k(n) contains
(
n
k

)2
terms that give a non-zero result when acting on

exp
(
λ̄†Nλ̄

)
and taking the value at λ̄ = 0̄. These terms are all the derivatives of

even order (2, 4, . . . , 2n) with respect to λ such that the number of λ is equal to the

number of λ∗ for each derivative. For example, by keeping terms that return non-zero
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result in Eq. (A.1), we have

k = 0 : Π0(n) = 1

k = 1 : Π2(n) =
∂2m

∂λ1∂λ∗1
+ . . .

k = 2 : Π4(n) =
∂4m

∂λ1∂λ∗1∂λ2∂λ∗2
+ . . .

...

k = n : Π2n(n) =
∂2mn

∂λ1∂λ∗1 . . . ∂λn∂λ
∗
n

(A.4)

It can be verified that the term with k = n gives, when acting on the exponential of Eq.

(A.1),

Π2n exp
(
λ̄†Nλ̄

) ∣∣∣
λ̄=0̄

= m!n
1− |τ |2n
|τ |2n Li

(m)
−n (|τ |2n) (A.5)

where Li
(m)
−n (|τ |2n) is defined in the main text. In other words, this term is connected

with the entropy Sm when the input state is the Fock state |m〉, something that can

be seen by taking the limit z → ∞ in Eq. (A.1). Also, it is not difficult to see that

for each operator with k = 0, 1 . . . , n in Eq. (A.4), there are exactly
(
n
k

)
terms where

the derivatives with respect to conjugate pairs of λ’s appear. For example, such a term

is ∂6/∂λ1∂λ
∗
1∂λ2∂λ

∗
2∂λ3∂λ

∗
3. These terms will give a result with no dependence on |τ |

in the numerator when it acts on the exponential of Eq. (A.1). If we extract all these

terms and gather them together, substituting c with its definition

c =
z√
m!

(1− |τ |2)m/2, (A.6)

we can write

n∑
k=0

(
n

k

)
z2k

(
1− |τ |2
1− |τ |2n

)mk
=

[
1 + z2

(
1− |τ |2
1− |τ |2n

)m]n
.

(A.7)

From all this, we obtain the expression

tr(ρ̂n) =
trρ̂n0

(1 + z2)n

{[
1 + z2

(
1− |τ |2
1− |τ |2n

)m]n

−z2n

(
1− |τ |2
1− |τ |2n

)mn
+ F (m)(n) + z2n trρ̂nm

trρ̂n0

}
(A.8)

where ρ̂m is the output state resulting from an input state |m〉. In Eq. (A.8), we
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subtracted the term proportional to z2n as we have used it twice; one in the first term of

the form [. . .]n and a second time for the very last term. In the same equation, F (m)(n)

gathers all terms except for the first and last one of Eq. (A.1), but without returning

any term with no dependence on |τ | in the numerator, something that we denote as

Π̃2k(n) in the expression

F (m)(n) =

n−1∑
k=1

z2k

m!k

(
1− |τ |2
1− |τ |2n

)mk
× Π̃2k(n) exp

(
λ̄†Nλ̄

)
. (A.9)

In the main text, it is shown that by taking the derivative of Eq. (A.8) with respect to

n and keeping the value at n = 1, we get

S(z) =
1

1 + z2
S0 +

z2

1 + z2
Sm −

∂

∂n
F (m)(n)

∣∣∣
n=1

. (A.10)

We shall now prove that the last term in the right hand side of Eq. (A.10) is equal to

zero. It can be found that Eq. (A.9) assumes the form,

F (m)(n) =

n−1∑
k=0

z2k

m!k

(
1− |τ |2
1− |τ |2n

)mk
×

×
(n−1)k∑
l=0

Ak(n, l)|τ |2(l+m−1) (A.11)

where Ak(n, l) are unknown coefficients satisfying the constraints,

Ak(1, l) = 0

A0(n, l) = 0. (A.12)

Now, Eq. (A.11) may be written,

F (m)(n) =

n−1∑
k=0

R(m)(n, k). (A.13)



Appendix A. Calculations for Section 5.2.3 138

Using the Euler-McLaurin summation formula [Apo69] we get,

F (m)(n) =

n−1∫
0

dxR(m)(n, x) +

+
1

2

[
R(m)(n, n− 1) +R(m)(n, 0)

]
+

+

p∑
r=1

B2r

(2r)!

[
R(m)(2r−1)(n, n− 1)−

−R(m)(2r−1)(n, 0)
]

+ Rem (A.14)

where B2r are the Bernoulli numbers and we symbolize as R(m)(µ)(n, a) the differentia-

tion with respect to the second argument,

R(m)(µ)(n, a) =
∂µ

∂xµ
R(m)(n, x)

∣∣∣∣∣
x=a

. (A.15)

Differentiation with respect to the first argument will be denoted explicitly as ∂nR
(m)(n, x).

The last term in Eq. (A.14) is the remainder and has the form,

Rem = −
n−1∫

0

dx
P2p(x)

(2p)!
R(m)(2p)(n, x). (A.16)

For x > 0 we get the periodic Bernoulli functions Pn(x) = Bn(x− [x]), where [x] is the

largest integer x, while Pn(0) = Bn.

If we perform the derivative of Eq. (A.14) with respect to n at n = 1, we see, taking Eq.

(A.12) into account, that all terms vanish. This is because three kind of terms appear,

R(m)(1, 0) = 0 (A.17)
0∫
0

dx(. . . ) = 0 (A.18)

∂nR
(m)(n, 0)

∣∣∣∣∣
n=1

= ∂n0 = 0 (A.19)

R(m)(2r)(1, 0) = 0. (A.20)

Thus, we conclude that

d

dn
F (m)(n)

∣∣∣
n=1

= 0. (A.21)

as advertised.
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Calculations for Section 5.3.2

In this Appendix we shall prove those of the formulas appearing in the text for which

summations over m or ν must be performed. To begin with, let us discuss (5.63). The

relevant integral diverges and calls for the introduction of a cutoff,

1

2it

∑
m

∞∫
0

dρρe−
ρ2

2it i−
|m|
n J |m|

n

(ρ2

2t

)
→
it→T

1

2T

∑
m

∫ R

0
dρρe−

ρ2

2T I |m|
n

( ρ2

2T

)
. (B.1)

To handle the last integral we make an intermediate step by introducing the following

expression,

Fn(α) =
1

2

∞∑
m=−∞

∞∫
0

dqe−αqI |m|
n

(q)

=
1

2
√
α2 − 1

coth
(α+

√
α2 − 1

2

)
(B.2)

which is also a regularized version (for α → 1+) of the integral entering (5.63). Taking

the limit α = 1 + ε, ε→ 0+ one easily finds that,

Fn(α) =
n

2ε
+

1

12

( 1

n
− n

)
+O(ε). (B.3)

We immediately see that the diverged part of the integral appears for n = 1. In this

case the integration in (B.1) is trivial and we are led to the conclusion,

1

ε
→ πR2

4πT
=

V2

4πT
. (B.4)
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Combining this identification with the finite part appearing in (B.3) we get the confir-

mation of (5.63).

Our next concern is (5.65). Using the identities,

e−
(νβ)2

4T = (4πT )
D+1

2

∫
dD+1p

(2π)D+1
e−Tp

2+ip0νβ ,

∞∑
ν=−∞

eip0νβ =
2π

β

∞∑
k=−∞

δ(p0 − ωk), ωk =
2πk

β
(B.5)

we recast the integral appearing in (5.65) into the form,

1

2

VD−1V2

(4π)
D+1

2

∞∫
0+

dT

T
D+3

2

e−Tm
2
∑
ν

e−
(νβ)2

4T

=
VD
4

∫
dDp

(2π)D

∑
k

∞∫
0+

dT

T
e−T

[
(βω)2+(2πk)2

]
. (B.6)

To obtain the last result we wrote V2 =
β∫
0

dτ
∞∫
−∞

dx1 → βL, we rescaled T → Tβ2 and

we used the abbreviation ω2 = p2 +m2.

Performing the integral over T and neglecting an irrelevant (infinite) constant we get,

∞∫
0+

dT

T
e−T

[
(βω)2+(2πk)2

]
= − ln

(
(βω)2 + (2πk)2

)
. (B.7)

The summation over k is standard [Kap81],

1

2

∑
k

ln
(
(βω)2 + (2πk)2

)
=

1

2
βω + ln(1− e−βω). (B.8)

The last result proves (5.65).

Following the same line of reasoning we can prove (5.67). Using, once again, the identities

(B.5) we rewrite the relevant integral in the form,

1

12

VD−1

(4π)
D−1

2

∞∫
0

dT

T
D+1

2

e−Tm
2
∑
ν

e−
(νβ)2

4T

=
π

3β
VD−1

∫
dDp

(2π)D

∑
k

1

ω2 + ω2
k

. (B.9)
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The summation is easily performed,

∑
k

1

ω2 + ω2
k

=
β

2ω

1

tanh(βω)
. (B.10)

Combining (B.9) and (B.10) we immediately obtain (5.67) of the text.

Our next concern is Eq. (5.64). The relevant integral diverges and the introduction of

a cutoff is necessary. To this end let us discuss the integral,

∑
m

∞∫
0

dρρe−
ρ2

R2 J2
|m|
n

(νβn
2t

ρ
)

=
R2

2
e−

(νβR)2

8t2

∑
m

I |m|
n

((νβR)2

8t2

)
=
R2

2
(B.11)

which can be considered (at the limit R → ∞) as a regularized version of the integral

appearing in (5.64). Note that the divergence in (B.11) is independent of n and, contrary

to (B.3), there is no finite part for n 6= 1. This completes the proof of (5.64).

To prove (17) it is enough to follow the road we followed to arrive at (B.8). Beginning

from the relation,

1

2

VD−1V2

(4π)
D+1

2

∞∫
0+

dT

T
D+3

2

e−Tm
2
∑
ν

e−
(νβn)2

4T

=
VD
4n

∫
dDp

(2π)D

∑
k

∞∫
0+

dT

T
e−T [(βnω)2+(2πk)2] (B.12)

we only have to perform a differentiation with respect to n to arrive at the result indi-

cated in (5.66),

∂n

{
1

n

∫
dDp

(2π)D

[
− 1

2
βωn− ln

(
1− e−βωn

)]}∣∣∣∣∣
n=1

=

∫
dDp

(2π)D

[
ln
(

1− e−βω
)
− βω

eβω − 1

]
. (B.13)

The last relation we have to prove is (5.78) of the text. We begin by using the Poisson

summation formula to find that,

∑
ν

e−
(νβ)2

4T
−µνβ =

∑
k

∞∫
−∞

dxe2πikxe−
(xβ)2

4T
−µxβ

=

√
4πT

β

∑
k

e−T (ωk+iµ)2
. (B.14)
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With the help of this result we get the mutual information,

Im =
2π

3β
VD−1

∫
dDp

(2π)D

∑
k

1

(ωk + iµ)2 + ω2
. (B.15)

The sum in the last expression can be easily performed if we rewrite it in the form,

∑
k

1

(ωk + iµ)2 + ω2
=

1

2

ω − µ
ω

∑
k

1

ω2
k + (ω − µ)2

+

+
1

2

ω + µ

ω

∑
k

1

ω2
k + (ω + µ)2

. (B.16)

Using for each term the formula (B.10) we get the result indicated in (5.78).

It would be useful to compare our result indicated in (5.68) with the corresponding result

derived in the framework of a two dimensional conformal scalar field theory [CC04] with

central charge c = 1/2. This can be done by identifying the ultraviolet cutoff Λ with

the inverse lattice spacing 1/α and the mass m with the inverse finite size of excluded

interval 1/l (that is, the infrared cutoff). Given that our result is valid at the limit

L2m2 → ∞, the comparison is meaningful only for β/α → ∞ or l/β → ∞. Applying

(5.68) for D = 1 we get the result,

Sg =

 1
6 ln

(
Λ
m

)
→ 1

6 ln
(
l
α

)
if β →∞

π
6

1
mβ → π

6
l
β if β → 0

. (B.17)
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[Bla13] R. Blandino, Méthode de caractérisation de portes quantiques agissants sur les

états coherents, Ph. D. Thesis (Universit é Paris XI, 2013).
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[FC12] J. Fiurášek and N. J. Cerf, Gaussian postselection and virtual noiseless amplifica-

tion in continuous-variable quantum key distribution, Phys. Rev. A 86, 060302(R)

(2012).

[FNT08] M. Fujita, T. Nishioka and T. Takayanagi, Geometric Entropy and Hage-

dorn/Deconfinement Transition, JHEP 0809, 016 (2008).

[FO10] M. Fujita and H. Ohki, Geometric entropy and third order phase transition in

d = 4 N = 2 SYM with flavor, JHEP 1008, 056 (2010).

[Ful73] S. A. Fulling, Nonuniqueness of Canonical Field Quantization in Riemannian

Space-Time, Phys. Rev. D 7, 2850 (1973).

[GA90] J. J. Gong and P. K. Aravind, Expansion coefficients of a squeezed coherent

state in the number state basis, Am. J. Phys. 58 1003 (1990).

[GGC+14] V. Giovannetti, R. Garcia-Patron, N. J. Cerf, and A. S. Holevo, Ultimate

classical communication rates of quantum optical channels, Nature Phot. 8, 796-

800 (2014).

[GGL+04a] V. Gionnavetti, S. Guha, S. Lloyd, L. Maccone, and J. H. Shapiro, Minimum

output entropy of bosonic channels: A conjecture, Phys. Rev. A 70, 032315 (2004).

[GGL+04b] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P.

Yuen, Classical Capacity of the Lossy Bosonic Channel: The Exact Solution, Phys.

Rev. Lett. 92, 027902 (2004).

[Gis98] N. Gisin, Quantum cloning without signaling, Phys. Lett. A 242, 1 (1998).

[GKC12] C. N. Gagatsos, E. Karpov, and N. J. Cerf, Probabilistic phase-insensitive

optical squeezer in compliance with causality, Phys. Rev. A 86, 012324 (2012).

[GKK13] C. N. Gagatsos, A. I. Karanikas, and G. I. Kordas, Mutual information and

Bose-Einstein condensation, Open Syst. Inf. Dyn. 20, 1350008 (2013).

[GLP98] P. Grangier, A. Levenson, and J.-Ph. Poizat, Quantum non-demolition mea-

surements in optics, Nature 396, 537 (1998).

[GNZ09] A. Griffin, I. Nikumi and E. Zaremba, Bose-Condensed Gases at Finite Tem-

perature, Cambridge University Press (2009).
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and boundary critical phenomena, Phys. Rev. A 74, 050305(R) (2006).



Bibliography 152

[Zei09] E. Zeidler, Quantum Field Theory II Quantum Electrodynamics, Springer (2009).

[Zet01] N. Zettili, Quantum Mechanics, (John Willey and sons, Chichester, 2001).

[ZFB11] A. Zavatta, J. Fiurasek, and M. Bellini, A high-fidelity noiseless amplifier for

quantum light states, Nature Phot. 5, 52 (2011).

[ZG00] Z.-W. Zhou and G.-C. Guo, Basic limitations for entanglement catalysis, Phys.

Lett. A 277, 70-74 (2000).




	Contents
	List of Figures
	Philosophical statement that motivated this work
	Abstract
	Publications
	1 Quantum mechanics
	1.1 The very basics
	1.1.1 Pure states and linear operators
	1.1.2 Mixed states and density operator
	1.1.3 Projective and POVM measurements

	1.2 Entanglement and entropy
	1.2.1 The idea of entanglement
	1.2.2 von Neuman entropy and mutual information
	1.2.3 Purity and Tsallis entropies
	1.2.4 Rényi entropies


	2 Quantum optics
	2.1 Electromagnetic field
	2.1.1 Quantization of the electromagnetic field
	2.1.2 States of the electromagnetic field
	2.1.2.1 Fock states
	2.1.2.2 Coherent states and displacement operator
	2.1.2.3 Squeezed states and squeezing operator
	2.1.2.4 Two-mode squeezed states and two-mode squeezing operator
	2.1.2.5 Statistical mixtures

	2.1.3 Quantum optical transformations
	2.1.3.1 Phase shift
	2.1.3.2 Beam splitter
	2.1.3.3 One-mode squeezer
	2.1.3.4 Two-mode squeezer
	2.1.3.5 Bloch-Messiah reduction

	2.1.4 Deterministic and probabilistic maps in quantum optics
	2.1.4.1 Realization of the displacement operator
	2.1.4.2 Deterministic amplification and attenuation
	2.1.4.3 Quantum scissors
	2.1.4.4 Probabilistic amplification and attenuation


	2.2 Phase space description
	2.2.1 Symmetric-ordered characteristic function and the Wigner representation
	2.2.2 Antinormal ordered characteristic function and the Husimi Q representation
	2.2.3 Normal ordered characteristic function and the Glauber P representation

	2.3 Symplectic form and transformations of Gaussian states
	2.4 Second quantization of the bosonic field
	2.4.1 Preliminaries
	2.4.2 Transition amplitude
	2.4.3 Thermal density matrix and partition function


	3 Noiseless amplification and attenuation of quantum light
	3.1 Noiseless amplification and attenuation of Gaussian states
	3.1.1 Heralded noiseless amplification and attenuation
	3.1.2 General properties of the noiseless amplifier and attenuator
	3.1.3 Squeezed states: the noiseless amplifier as a universal squeezer
	3.1.4 A paradox resolved

	3.2 Noiseless amplification and attenuation of non-Gaussian states
	3.2.1 Mean photon number and mean-field amplitude
	3.2.2 Proposal for an experimental setup

	3.3 Conclusions

	4 Majorization theory in quantum optics
	4.1 Elements of majorization theory
	4.1.1 Accumulation of probability vectors
	4.1.2 Doubly stochastic matrices
	4.1.3 Catalysis and LOCC transformations
	4.1.4 Weak majorization

	4.2 Application of majorization theory to Gaussian bosonic transformations
	4.2.1 Entanglement generation in a beam splitter
	4.2.2 Entanglement generation in a two-mode squeezer

	4.3 Conclusions

	5 von Neumann entropy revisited
	5.1 The replica method
	5.1.1 Calculating the von Neumann entropy using the moments
	5.1.2 Examples from classical probability theory

	5.2 Application of replica method to quantum optics
	5.2.1 Example: The thermal state
	5.2.2 Entropic characterization of the two mode squeezer: Amplifying a Fock state
	5.2.3 Entropic characterization of the two mode squeezer: Amplifying a superposition of Fock states

	5.3 Application of replica method to bosonic field theory
	5.3.1 Geometric entropy at finite temperature
	5.3.2 Mutual information and Bose-Einstein condensation

	5.4 Conclusions

	Summary and outlook
	A Calculations for Section 5.2.3
	B Calculations for Section 5.3.2
	Bibliography

