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Entropy generation in Gaussian quantum transformations:
applying the replica method to continuous-variable quantum
information theory
Christos N Gagatsos1, Alexandros I Karanikas2, Georgios Kordas2 and Nicolas J Cerf1

In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such
as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy
production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem,
with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic
channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum
field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables
accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a
binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.

npj Quantum Information (2015) 2, 15008; doi:10.1038/npjqi.2015.8; published online 16 February 2016

INTRODUCTION
Gaussian transformations are ubiquitous in quantum physics,
playing a major role in quantum optics, quantum field theory,
solid-state physics or black-hole physics.1 In particular, the
Bogoliubov transformations resulting from Hamiltonians that are
quadratic (bilinear) in mode operators are among the most
significant Gaussian transformations, well known to model
superconductivity2 but also describing a much wider range of
physical situations, from squeezing or amplification in the context
of quantum optics3–6 to Unruh radiation in an accelerating
frame7–9 or even Hawking radiation as emitted by a black
hole.10–12 In the present article, we focus on Gaussian bosonic
transformations, which are at the heart of so-called Gaussian
quantum information theory.13 These transformations encompass
the passive coupling between modes of the electromagnetic field
as effected by a beam splitter in bulk optics or an optical coupler
in fibre optics, as well as the active transformations resulting from
parametric downconversion in a nonlinear optical medium, which
are traditionally used as a source of quantum entanglement.
Although they are common, quantum Gaussian processes are

poorly understood in terms of entropy generation. Indeed, the
symplectic formalism in phase-space representation is not suited
to calculate von Neumann entropies as this requires diagonalising
density operators in state space.14 When amplifying an optical
state using parametric downconversion, for example, the output
state suffers from quantum noise, which is an increasing function
of the amplification gain.15 Characterising this noise in terms of
entropy is indispensable for determining the capacity of Gaussian
bosonic channels.16–18 However, the output entropy is not
accessible for an arbitrary input state because it is hard—usually
impossible—to diagonalise the corresponding output state in
infinite-dimensional Fock space. With the notable exception of

Gaussian states (e.g., the vacuum state, resulting after amplifica-
tion in a thermal state of well-known entropy), very few analytical
results are available as of today.18

In this article, we demonstrate that the replica method can be
successfully exploited to overcome this central problem and find
an exact analytical expression for the entropy generated by
Gaussian processes acting on non-trivial bosonic states. The
replica method is known to be an invaluable tool in statistical
physics, especially with disordered systems,19 and in quantum
field theory.20 Here we first apply it to continuous-variable
(Gaussian) quantum information theory and show that it enables
accessing the entropy generated by a quantum optical amplifier,
opening a new way towards the entropic characterisation of
Gaussian channels as considered in quantum communication
theory. To illustrate the power of this approach in an interesting
and experimentally relevant case, we investigate the output
entropy when amplifying a binary superposition of the vacuum
and an arbitrary Fock state, which yields a surprisingly simple
analytical expression.

RESULTS
Gaussian bosonic transformations
The linear coupling between two modes of the electromagnetic
field with, e.g., a beam splitter, is modelled by the (passive)

quadratic Hamiltonian H ¼ iâb̂
y
- iâyb̂, where â and b̂ are bosonic

mode operators. This operation can be shown to preserve
the Gaussian character of a quantum state, or more precisely
the quadratic exponential form of its characteristic function. The
corresponding transformation in phase space is the rotation
â- cos y âþ sin y b̂ and b̂- cos y b̂ - sin y â, where cos2 θ is
the transmittance. Another generic Gaussian transformation
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results from parametric downconversion in a nonlinear medium,
which is modelled by the (active) quadratic Hamiltonian

H ¼ iâb̂ - iâyb̂
y
. It effects the Bogoliubov transformation

â-cosh r âþ sinh r b̂
y
and b̂-cosh r b̂þ sinh r ây, where cosh2 r

is the parametric amplification gain. More generally, the set of all
linear canonical transformations effected by quadratic bosonic
Hamiltonians, also referred to as symplectic transformations, can
easily be characterised in terms of affine transformations in phase
space (e.g., rotations and area-preserving squeeze mapping).

Accessing the generated entropy
Calculating the von Neumann entropy S ρ̂ð Þ ¼ - tr ρ̂ ln ρ̂ð Þ of a
bosonic mode that is found in state ρ̂ at the output of a Gaussian
transformation is often an intractable task because it requires
turning to state space and finding the infinite-size vector of
eigenvalues of ρ̂. The above symplectic formalism for Gaussian
transformations is useless in this respect, albeit for Gaussian states.
However, this problem can be circumvented by adapting the
replica method, which relies on expressing tr ρ̂nð Þ as a function of
the number of replicas nAℕ� and taking the derivative at n= 1,
thereby avoiding the need to diagonalise ρ̂ (see Materials and
Methods). As we shall show, dealing with a quadratic Hamiltonian
makes the replica method a perfect tool to access von Neumann
entropies because it involves Gaussian integrations, or else some
tricks can be used in order to bring tr ρ̂nð Þ to a calculable form.
First, we illustrate this principle with a generic zero-mean

rotation-invariant Gaussian state, namely a thermal state ρ̂0 ¼
1 - τj j2� �P1

k¼0 τj j2k kj i kh j characterised by a mean photon number
N� τj j2= 1 - τj j2� �

. As ρ̂0 is in a diagonal form, it is of course
straightforward to calculate its entropy, giving the well-known
formula S ρ̂0ð Þ ¼ g Nð Þ � N þ 1ð Þlog N þ 1ð Þ -N log N. However,
we may also start with its non-diagonal representation in the
coherent-state basis αj if g, where α is a complex number, namely

ρ̂0 ¼
1
π

1 - τj j2
τj j2

Z
d2α e

- 1 - τj j2
τj j2 αj j2

αj i αh j ð1Þ

By making the change of variable α- τj j α and using

hα βj i ¼ e - αj j2þ βj j2 - 2α�βð Þ=2, we can write

tr ρ̂n0
� � ¼ 1 - τj j2� �n

πn

Z
d2α1 ¼

Z
d2αn e

- αyMα ð2Þ

where α ¼ α1; ¼ αnð ÞT is a column vector and M is the n× n
circulant matrix

M ¼
1 - τj j2 0 ¼ 0
0 1 - τj j2 ¼ 0
^ ^ ^ & ^

- τj j2 0 0 ¼ 1

0
BB@

1
CCA: ð3Þ

Equation (2) is a simple Gaussian integral, which, using the
determinant det M¼ 1 - τj j2n, can be expressed as

tr ρ̂n0
� � ¼ 1 - τj j2� �n

1 - τj j2n ð4Þ

Applying the replica method, we readily find that

-
∂
∂n
tr ρ̂n0
� �

9n¼1 ¼ ln
1

1 - τj j2 þ
τj j2

1 - τj j2 ln
1

τj j2 ð5Þ

which coincides with the above expression S ρ̂0ð Þ ¼ g Nð Þ for the
entropy of a thermal state, as expected.

Amplifying a Fock state
Next, we consider the problem of expressing the entropy Sm
generated by amplifying an arbitrary Fock state mj i. For this, we

consider a two-mode squeezer of parameter ξ ¼ ξj jeiϕ, applying
the unitary transformation

Û ¼ e - ξâyb̂
yþξ� âb̂ ð6Þ

on the initial state mj ia 0j ib (subscript a refers to the signal mode,
while b refers to the idler mode). The reduced output state ρ̂m
of the signal mode is diagonal in the Fock basis, with a
vector of eigenvalues given by18,21

p mð Þ
k ¼ 1 - τj j2� �mþ1 k þm

k

� �
τj j2k ; kAℕ ð7Þ

where τ ¼ tanhξ, from which we find

tr ρ̂nm
� � ¼ 1 - τj j2� �n mþ1ð ÞX1

k¼0

k þm
k

� �n

τj j2nk: ð8Þ

Equation (8) can be re-expressed in a closed form as

tr ρ̂nm
� � ¼ 1 - τj j2� �n mþ1ð Þ

τj j2n Li mð Þ
- n τj j2n� �

: ð9Þ

where

Li mð Þ
- n ζð Þ �

X1
k¼0

k þm
k

� �n

ζkþ1 ð10Þ

and Li 1ð Þ
- n ζð Þ denotes the polylogarithm of order − n.22 Applying

the replica method to Equation (9) and taking into account
Li mð Þ

- 1 ζð Þ ¼ ζ= 1 - ζð Þmþ1, we obtain the entropy

Sm ¼ -
∂
∂n

tr ρ̂nm
� �

9n¼1

¼ ln
τj j2

1 - τj j2� �mþ1 -
1 - τj j2� �mþ1

τj j2
∂
∂n

Li mð Þ
- n τj j2n� �

9n¼1: ð11Þ

Using Li 0ð Þ
- n ζð Þ ¼ ζ= 1 - ζð Þ, it is easy to check that Equation (11)

gives the correct value for S0, that is, the entropy of a thermal state
ρ̂0 as in Equation (5). Interestingly, as the polylogarithm Li 1ð Þ

- n ζð Þ is
a well-studied function, a closed expression can also be found for
S1 in terms of Eulerian numbers (Supplementary Information). For
m41, the function Li mð Þ

- n ζð Þ assumes a summation form, which is
convergent and differentiable with respect to n, yielding an
analytical expression for Sm (Supplementary Information).

Amplifying a superposition of Fock states
Now, we show that the same procedure makes it possible to express
the entropy in situations where no diagonal form is available for the
output state, so the replica method becomes essential. As an illus-
tration, consider the amplification of a binary superposition of the type

ψj i ¼ 0j i þ z mj iffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p ð12Þ

where we take zAℝ without loss of generality. By using the Baker–
Campbell–Hausdorff relation, the unitary transformation (6) can be
rewritten in the form

Û ¼ e - νe - τâyb̂
y
e - ν ây âþb̂

y
b̂

� �
eτ

� âb̂ ð13Þ
where ν ¼ ln cosh ξj j and τ ¼ ξ

ξj j tanh ξj j, so that the joint output
state Ψj i of the two modes can be expressed in the double-coherent-
state basis αj ia βj ib , namely

hα; β Ψj i ¼ 1ffiffiffiffiffiffiffiffi
1þz2

p α; β Û
�� ��0; 0� 	þ z α; β Û

�� ��m; 0
� 	� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p 1 - τj j2� �1
2 þ z

1 - τj j2� �mþ1
2ffiffiffiffiffiffi

m!
p

0
@

1
A
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´ e - αj j2þ βj j2ð Þ=2 - τα�β�þτ�αβ: ð14Þ
From Equation (14), we can easily write the reduced output state ρ̂
obtained by tracing Ψj i over the idler mode and paying attention to
the non-orthogonality of coherent states. Using again the notation
α ¼ α1; ¼ αnð ÞT , we get

tr ρ̂nð Þ ¼ 1 - τj j2� �n
πn 1þ z2ð Þn

Yn
j¼1

Z
d2αj 1þ cαmj

��� ���2e - αyMα ð15Þ

where the matrix M is defined as in Equation (3) and

c ¼ zffiffiffiffiffiffi
m!

p 1 - τj j2� �m=2
: ð16Þ

In order to bring this back to a Gaussian integral, we use the ‘sources’
trick,23 exploiting the identity xme - x2 ¼ ∂m

∂λm e - x2þλx
λ¼0j . Then,

Equation (15) becomes

tr ρ̂nð Þ ¼ 1 - τj j2� �n
πn 1þ z2ð Þn

Y
∂λ nð Þ

Yn
j¼1

Z
d2αj

´ exp - αyMαþ αyλþ λ
y
α


 �
λ¼0

�� ð17Þ

where
Q

∂λ nð Þ � Qn
j¼1 91þ c∂m=∂λmj j2 is a differential operator in the

variables λ ¼ λ1; ¼ λnð ÞT . Note here that λj and λ�j are treated as
independent variables, instead of their real and imaginary parts. The
derivatives with respect to all λ’s have been pushed in front of the
integrals in Equation (17), so that we get a Gaussian integral that is
immediately calculable, resulting in

tr ρ̂nð Þ ¼ tr ρ̂n0
� �

1þ z2ð Þn
Y

∂λ nð Þexp λ
y
Nλ


 �
λ¼0 ;
�� ð18Þ

where tr ρ̂n0
� �

is given by Equation (4) and corresponds to a vacuum
input state (z=0). We have defined here the circulant matrix
N ¼ 1 - τj j2n� �m

M - 1, with

M - 1 ¼ 1

1 - τj j2n
1 τj j2 ¼ τj j2 n - 1ð Þ

τj j2 n - 1ð Þ 1 ¼ τj j2 n - 2ð Þ

^ ^ & ^
τj j2 τj j4 ¼ 1

0
BB@

1
CCA ð19Þ

Equation (18) can finally be re-expressed in a form that is suitable to
the replica method (see Materials and Methods), which yields a nice
expression for the output entropy

S zð Þ ¼ 1
1þ z2

S0 þ z2

1þ z2
Sm ð20Þ

Intriguingly, the entropy of the amplified state is thus a convex
combination of the extremal points S0 and Sm with the exact same
weights as if we had lost coherence between the components 0j i and
mj i of the input superposition. This is schematically pictured in
Figure 1. We have also numerically verified this behaviour, which, to
our knowledge, has never been observed before. This is illustrated in
Figure 2, where we show that the entropy is a monotonically
increasing function of the superposition parameter z for fixed values
of the squeezing parameter ξ. It must be stressed that this analytical
result is highly non-trivial as we do not expect similar expressions for

the entropy generated by other superpositions, such as 1j i þ z 2j i or
0j i þ z 1j i þ z0 2j i. Another striking case is the amplification of a
coherent state: although αj i is an infinite superposition of Fock states,
the resulting entropy is S0, just as for the vacuum state 0j i.

DISCUSSION
We have demonstrated that the replica method, a tool borrowed
from other areas of physics, provides a new angle of attack to
access the quantum entropies generated by Gaussian bosonic
transformations, especially in cases where the symplectic formal-
ism is useless. As a matter of fact, it did require considerable effort
simply to show that the vacuum state minimises the entropy
produced by Gaussian bosonic channels, as recently proven in
ref. 24. The difficulty behind this proof was precisely that no
diagonal representation of the output state ρ̂ is available when
non-Gaussian input states are considered. A similar problem is also
at the heart of other—yet unproven—Gaussian entropic con-
jectures for bosonic channels. For example, determining the
capacity of a multiple-access or broadcast Gaussian bosonic
channel is pending on being able to access entropies when non-
Gaussian mixed input states are considered, see, e.g., refs 25–27.
The replica method holds the promise to unblock these situations
as it provides a generic trick to overcome the difficulty: tr ρ̂nð Þ is
expressed for n replicas of state ρ̂ by solving Gaussian integrals,
without ever accessing the eigenvalues of ρ̂.
We have illustrated this procedure for the amplification of a

superposition state of the form 0j i þ z mj i, which allowed us to
unveil a remarkably simple behaviour for the entropy of the
amplified state. The replica method thus clearly extends the limits
of exactly computable entropies in comparison with the usual
methods. Yet, one may question whether this method is
sufficiently robust to address more complicated situations, such
as arbitrary input states or general Gaussian transformations
(other than the Bogoliubov transformation considered here). Even
if a closed expression for tr ρ̂nð Þ can be found, taking its derivative
with respect to n is a task that may become impractical. Although
it is uncertain whether we can apply the replica method in such
cases, we nevertheless believe that this method remains valuable
if the goal is to find a bound on the entropy (instead of its
exact expression). Take, for example, a general input state
ψj i ¼Pkck kj i in Fock space. Our current calculations have shown
that applying a Bogoliubov transformation yields an output
state whose moments can be written as tr ρ̂nð Þ ¼ tr ρ̂n0

� �
Tψ nð Þ,

where ρ̂0 is the output state that results from a vacuum input

Figure 1. Generated entropy as a linear function over a one-
dimensional convex polytope. The von Neumann entropy S(z),
function of the superposition parameter z, is pictured by a point
belonging to a one-dimensional convex polytope. The two extremal
points correspond to the entropies S0 and Sm, obtained by
amplifying states 0j i and mj i, respectively.
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Figure 2. Amplification of a superposition of the vacuum and a
single-photon state. Plot of the von Neumann entropy S(z) as a
function of the superposition parameter z for m= 1 and several
values of the squeezing parameter ξ. As S14S0, Equation (20) implies
that the curve S(z) always lies above S0 for a given ξ.
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state and Tψ nð Þ is some analytical function of n,
which encapsulates the actual input state ψj i. Similarly as in
Equation (17), the function Tψ nð Þ can be written by applying

some differential operator to the function
Qn

j¼1 f αj
� ��� ��2 with

f αð Þ ¼P1
k¼0 ckα

k=
ffiffiffiffi
k!

p
. The above expression for tr ρ̂nð Þ, written in

terms of tr ρ̂n0
� �

, is especially relevant in the context of
Gaussian entropic conjectures. It can, for example, be linked to
the property that the vacuum input minimises the output entropy of
the Bogoliubov transformation, as shown in a forthcoming work.
Another possible extension of the present work would be to

consider more general Gaussian transformations as well as mixed
input states. A possibility is to use the Glauber–Sudarshan
P representation of the input and output mixed states (instead
of their non-diagonal coherent-state basis decompositions), which
may lead to a simpler way to express tr ρ̂nð Þ. Our preliminary
results indicate that the replica method is again promising here,
for example, to compute (or lower bound) the output entropy of a
beam splitter if the input state is mixed. This avenue will be further
explored in a future work.
In conclusion, we anticipate that the replica method will

become quite a valuable tool in order to reach a complete
entropic characterisation of Gaussian bosonic transformations, or
perhaps even solve pending conjectures on Gaussian bosonic
channels. More generally, the present work underlines the
usefulness of a tool that had been neglected so far in the fields
of quantum optics and quantum information theory.

MATERIALS AND METHODS
Replica method
The replica method relies in general on the identity log Z ¼
limn-0 Zn - 1ð Þ=n. For our purposes, using x log x ¼ limn-1 xn - xð Þ=
n - 1ð Þ ¼ ∂

∂n xnð Þ9n¼1, we may re-express the von Neumann entropy of a
state ρ̂ as

S ρ̂ð Þ ¼ -
∂ tr ρ̂nð Þ
∂n

9n¼1 ð21Þ

The trick is to find an analytical expression of tr ρ̂nð Þ as a function of the
number of replicas nAℕ� and to compute its derivative at n= 1,
avoiding the need to diagonalise ρ̂. This method also makes apparent
the connection between the von Neumann entropy and other widely
used measures of disorder, such as Tsallis and Rényi entropies. It has been
used with great success in the context of spin glasses and quantum
field theory,19,20,28–33 being justified based on the analyticity of tr ρ̂nð Þ in a
neighbourhood of n=1.29,30 In the Supplementary Information, we discuss
its validity using Hausdorff’s moment problem and provide some easy but
instructive examples from classical probability theory.

Applying the replica method to Equation (18)
The differential operator

Q
∂λ nð Þ appearing in Equation (18) can be

expanded as

Y
∂λ nð Þ ¼

Xn
k¼0

c2k
Y

2k
nð Þ ð22Þ

where each
Q

2k nð Þ contains
n
k

� �2

terms that return a non-zero result

when acting on expðλyNλÞ and taking the value at λ ¼ 0, see
Supplementary Information for details. The term with k=0 in
Equation (22) is simply

Q
0 nð Þ¼ 1, so that taking z= 0 trivially results into

tr ρ̂nð Þ ¼ tr ρ̂n0
� �

, corresponding to the amplification of a vacuum state.
The term with k= n gives, when acting on the exponential of
Equation (18),

Y
2n

nð Þ expðλyNλÞ9
λ¼0 ¼ m!n

1 - τj j2n
τj j2n Li mð Þ

- n τj j2n� � ð23Þ

where Li mð Þ
- n τj j2n� �

is defined in Equation (10). Thus, we recognise that this
term is connected to the case of an input Fock state mj i, something that

can also be seen by taking the limit z→∞ in Equation (18). If we put all
pieces together, we may re-express Equation (18) as

tr ρ̂nð Þ ¼ trρ̂n0
1þ z2ð Þn 1þ z2

1 - τj j2
1 - τj j2n
 !m" #n

- z2n
1 - τj j2
1 - τj j2n
 !mn(

þF mð Þ nð Þ þ z2n
trρ̂nm
trρ̂n0

�
ð24Þ

where ρ̂m is the reduced output state resulting from the amplification of
mj i, and FðmÞ nð Þ is defined in the Supplementary Information. Now,
applying the replica method (Equation (21)) to Equation (24), we get

S zð Þ ¼ 1
1þ z2

S0 þ z2

1þ z2
Sm -

∂
∂n
F mð Þ nð Þ9n¼1: ð25Þ

Finally, we prove in the Supplementary Information that the last term of
the right-hand side of Equation (25) vanishes, so that it simplifies into
Equation (20).
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