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Operational formulation of time reversal
in quantum theory
Ognyan Oreshkov* and Nicolas J. Cerf

The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition
probabilities given by Born’s rule do not apply backward in time. Here, we resolve this problem within a rigorous operational
probabilistic framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion
of operation that permits realizations through both pre- and post-selection. We develop the generalized formulation of
quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a
previously overlooked distinction between states and e�ects. We prove an analogue ofWigner’s theorem, which characterizes
all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger
classes of symmetry transformations than previously assumed, suggesting a possible direction in the search for extensions
of known physics.

Symmetries play a fundamental role in our understanding of
physics. It is widely believed that the most general symmetry
transformations in quantum theory correspond to unitary or

anti-unitary transformations on the Hilbert space, with symmetries
involving time reversal being anti-unitary1. This has profound
implications for many phenomena, such as the classification of
possible elementary particles2. The joint transformation of charge
conjugation, parity inversion and time reversal, defined according to
this principle, is considered an exact symmetry of all knownphysical
laws3–6. However, it has been recognized that Born’s rule, which
describes the probabilities for the outcomes of future measurements
conditional on past preparations, does not apply for events in
the reverse order7,8. This is in conflict with the very definition
of symmetry underlying the above assertions9. Moreover, because
the operational interpretation of a quantum state is directly linked
to Born’s rule10, this raises doubts about whether the commonly
accepted notion of time-reversed state makes physical sense.

Here, we address this problem from a rigorous operational per-
spective11–20, using the circuit framework14,15 for operational prob-
abilistic theories (OPTs), which has been shown to successfully
formalize the informational foundations of quantum theory18,19. We
argue that reconciling time reversal with the probabilistic rules of
the theory requires a generalized notion of operation, defined with-
out assumptions on whether the implementation of an operation
involves pre- or post-selection. In this approach, operations are not
expected to be up to the ‘free choices’ of agents, but merely describe
knowledge about the possible events taking place in di�erent re-
gions, conditional on information obtained locally. We develop the
generalized formulation of quantum theory that stems from this
approach and show that it has a new notion of state space that is
not convex. We give a precise definition of time-reversal symmetry,
taking into account the di�erent nature of states and e�ects, which
has been overlooked in previous treatments. We prove an analogue
of Wigner’s theorem1, which characterizes all possible symmetry
transformations in this time-symmetric formulation of quantum
theory. Remarkably, we find more general classes of symmetry
transformations than those assumed before.

We also identify the time asymmetry ingrained in the standard
formulation of quantum theory as the fact that, forward in time,
without post-selection we can only obtain a restricted class of all
allowed operations, which does not hold backward in time. We
show how this property can be expressed formally in the circuit
framework, and that it can be understood as a result of the unitarity
of the dynamics in spacetime combined with the form of the past
and future boundary operations.We establish an exact link between
this asymmetry and the fact that we can remember the past but not
the future.

The circuit framework
The basic concept in the circuit framework for OPTs (refs 14,15,
18,19) is that of operation, corresponding to ‘one use of a physical
device with an input and an output system’. An operation with an
input system A and an output system B is described by a collection
of events {MA!B

i }i2O labelled by an outcome index i taking values in
some set O. Pictorially, operations are represented by ‘boxes’ with
input and output ‘wires’ (Fig. 1). Operations whose input system
is trivial (depicted with no wire) are called preparations, and those
whose output system is trivial are called measurements (the trivial
system is denoted by I ). Operations can be composed in sequence
and in parallel, yielding new operations21 (see Supplementary
Methods). A circuit is an acyclic composition of operations with no
open wires (Fig. 2). The central idea of the circuit framework is that
a theory prescribes joint probabilities for the operation outcomes
in every given circuit, which depend only on the specification
of the circuit14,19. Equivalently15,18, for any preparation {⇢I!A

i }i2O
and any measurement {EA!I

j }j2Q, the theory prescribes joint
probabilities p(i, j|{⇢I!A

i }i2O, {EA!I
j }j2Q)�0,

P
i2O,j2Q p(i, j|{⇢I!A

i }i2O,
{EA!I

j }j2Q)=1, where for parallel circuits the probabilities factor out.
A circuit formalizes the idea of information exchange mediated

by systems21. By definition, the wires in a circuit are the only means
of information exchange responsible for the correlations between
the events in the boxes. One can figuratively think of the boxes in a
circuit as isolated spacetime regions, which can communicate with
each other only through the wires (see Supplementary Methods).
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Figure 1 | Operation. In the circuit framework for operational probabilistic
theories, an operation {MA!B

i }i2O is defined as a collection of possible
events from an input system A to an output system B, labelled by an
outcome index i2O. In the standard approach, an operation is implicitly
assumed to be realized without post-selection, whereas our generalized
formulation permits both pre- and post-selection.

The description of the operation in a given box is determined only
based on variables in that box.

An OPT is completely defined by specifying all possible opera-
tions and the probabilities for the outcomes of all possible circuits.
It is formulated in terms of equivalence classes of operations—
if two operations {MA!B

i }i2O and {N A!B
i }i2O yield the same joint

probabilities in all circuits that they may be plugged into, they are
deemed equivalent. Similarly, one defines equivalence classes of
eventsMA!B

i 2{MA!B
i }i2O andN A!B

j 2{N A!B
j }j2Q that may belong

to di�erent operations. They are called transformations15. In the
case of preparation and measurement events, they are called states
and e�ects, respectively11. The joint probabilities of preparation
and measurement events are then functions of the state and e�ect
only, p(i, j|{⇢I!A

i }i2O, {EA!I
j }j2Q)=p(⇢I!A

i ,EA!I
j ). States are thus real

functions on e�ects and vice versa.
Quantum theory is a special case of OPT, in which a system

A is associated with a Hilbert space HA of dimension dA (we
assume finite dimensions), and a transformation from A to
B is a completely positive (CP) and trace-nonincreasing linear
map MA!B :L(HA)!L(HB), where L(HX) denotes the space
of linear operators over HX. (The Hilbert space of a composite
system XY is the tensor product HX ⌦HY.) A standard quantum
operation is a collection of CP maps {MA!B

i }i2O, whose sumP
i2O MA!B

i = M̄A!B is a CP and trace-preserving (CPTP) map.
Using a convenient isomorphism, states ⇢I!A and e�ects EA!I are
represented as positive semidefinite (PS) operators ⇢A,EA 2L(H)
(see Supplementary Methods). In particular, a preparation is
described by a set of PS operators {⇢A

i }i2O, such thatPi2OTr(⇢A
i )=1

(where Tr(⇢) denotes the trace of ⇢), and a measurement by a set of
PS operators {EA

j }j2Q, such thatPj2Q EA
j =1A. The joint probabilities

of states and e�ects are then given by

p(⇢I!A
i , EA!I

j )=Tr(⇢A
i E

A
j )

Causality and the no-post-selection criterion
Operations in the standard formulation of quantum theory obey
the axiom of causality15,18, which says that for every preparation
{⇢I!A

i }i2O composed with a measurement {EA!I
j }j2Q, the probabili-

ties of the preparation events do not depend on the measurement—
that is,

P
j2Q p(i, j|{⇢I!A

i }i2O, {EA!I
j }j2Q)=p(i|{⇢I!A

i }i2O) is the same
for every {EA!I

j }j2Q. This implies that the outcomes of past opera-
tions in a circuit do not depend on operations in the future. But the
outcomes of future operations can depend on past operations, which
shows an explicit time asymmetry in the standard formulation of
quantum theory.

The essence of this asymmetry can be understood by observing
that a standard operation is implicitly assumed to be realized
without post-selection—that is, the occurrence of an operation
is assumed conditional only on information available before the

p(i, j, k, l)

Joint probabilities

p(i, j, k, l) ≥ 0, Σijkl p(i, j, k, l) = 1

{     j}A

B

C D

{    k}
{   l}

{     i}

Figure 2 | Circuit. A circuit is an acyclic composition of operations with no
open wires. An operational probabilistic theory prescribes joint
probabilities for the outcomes of any given circuit14,15,18,19.

time of the input system (see Supplementary Methods). Indeed,
conditionally on information available in the future, we could obtain
non-standard ‘operations’ in a given box, which violate the axiom.
Thus, the axiom expresses a non-trivial constraint on the operations
obtainable by pre-selection only.

An accurate comparison between the forward and backward
directions of time requires identifying the ‘pre-selected’ operations
in the backward direction. They correspond to the sets of possible
events in a given box that can be known to have occurred in
the past in the forward direction, and include all subsets of
the outcomes of standard operations. Thus, there is a physical
asymmetry concerning the fact that the operations that can be
obtained without post-selection in the two directions of time are
di�erent. The origin of this asymmetry will be analysed later.

A time-symmetric theory should describe observations in both
directions of time via the same rules. As only in one direction of
time do the events that correspond to valid operations according
to the no-post-selection criterion respect the causality axiom, based
on this criterion there does not exist an empirically confirmed time-
symmetric theory that agrees with the circuit connections assumed
in the standard theory. Without ad hoc assumptions, the only way
of obtaining such a theory is to drop the no-post-selection criterion
from the definition of operation.

We therefore propose to view an operation simply as a
description of the possible events in a given box, conditional on
information obtained without looking into other boxes in the
circuit, irrespectively of when in time this information is available.
(We will show that any constraints on the latter follow from
the form of the dynamics in spacetime.) From this perspective,
learning or discarding of information about the outcomes of an
operation should yield another valid operation in agreement with
the corresponding Bayesian update of the probabilities in a circuit.
Intuitively, one may imagine that the information about the events
in each box in a circuit is stored in a separate ‘safe’ that can be opened
in the future22. Upon looking into the content of a given safe, an
experimenter will update their description of its content, as well as
the probabilities for the contents of other safes. We next present the
generalized formulation of quantum theory that follows from this
point of view.

Generalized formulation
The generalized formulation is summarized by the following rules
(see derivation in Methods).

Equivalent operations are described by a collection of CP maps
{MA!B

i }i2O, where M̄A!B =Pi2OMA!B
i satisfies

Tr
✓
M̄A!B

✓
1A

dA

◆◆
=1

(Note that M̄A!B does not have to be trace-preserving.)
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Figure 3 | Time reversal as an active transformation. If we could actively
‘flip’ the time orientation of a preparation box (for example, create a
process that looks just like the preparation process played in reverse), we
would obtain a measurement box. The measurement implemented by that
box, characterized relative to preparations that have not been ‘flipped’, is
the time-reversed image of the preparation.

The sequential composition of two operations {MA!B
i }i2O and

{N B!C
j }j2Q is a new operation {LA!C

ij }i2O,j2Q, where

LA!C
ji = N B!C

j �MA!B
i

Tr
⇣
N̄ B!C �M̄A!B

⇣
1A

dA

⌘⌘ , i2O, j2Q

unless N̄ B!C � M̄A!B =0A!C, where 0A!C is the null CPmap. In the
latter case, the composition never occurs, or, equivalently, its result
is the null operation from A to C.

As in the standard formulation15,18, CP maps from the trivial
system to itself are interpreted as probabilities. As every circuit is
equivalent to an operation from the trivial system to itself, the above
rules define the probabilities for all circuits.

Importantly, the equivalent events, or transformations, are not
given by theCPmaps above. They are described by pairs of CPmaps,
(MA!B;M̄A!B), with the property

MA!B(⇢A) M̄A!B(⇢A), 8⇢A �0,

Tr
✓
M̄A!B

✓
1A

dA

◆◆
=1

States are represented by (⇢A; ⇢̄A), with ⇢A  ⇢̄A, Tr(⇢̄A) = 1,
⇢A, ⇢̄A 2L(HA), and e�ects by (EA; ĒA), with EA  ĒA, Tr(ĒA)=dA,
EA, ĒA 2L(HA), with the main probability rule reading

p((⇢A; ⇢̄A),(EA; ĒA))= Tr(⇢AEA)

Tr(⇢̄AĒA)
, for Tr(⇢̄AĒA) 6=0

=0, for Tr(⇢̄AĒA)=0 (1)

(Born’s rule is obtained for ⇢= ⇢̄, Ē=1.)
Notably, the sets of states and e�ects, viewed as real functions

on each other via equation (1), are not closed under convex
combinations. The convex combinations of these functions do not
correspond to events that can be obtained by local procedures in the
preparation and measurement boxes (see Methods).

The most general rule for updating an operation upon learning
or discarding of information is presented in Methods.

We remark that the approach we have proposed is not limited
to quantum theory. In particular, it can be used to generalize any
OPT formulated in the standard approach. In the Supplementary
Methods, we illustrate the case of classical OPT with an example.

Time reversal and general symmetries
Under time reversal T , every operation {MA!B

i }i2O is expected to
be seen as an operation {M̃B!A

i }i2O, such that the probabilities of
any circuit under this map T remain invariant. In particular,
states should become e�ects and vice versa, such that their joint
probabilities are preserved. There are, however, infinitely many
maps T with this property. Time reversal is a specific map between

the spaces of states and e�ects, which is determined by the laws
of mechanics and should be understood in the following sense.
Imagine that we could create a measurement box whose classical
description looks just like that of a given preparation box operating
in reverse temporal order. The measurement implemented by the
measurement box is the time-reversed image of the preparation
implemented by the preparation box (Fig. 3). Before we discuss how
the two can be related, we give a characterization of all possible
symmetry transformations—that is, all transformations of boxes
that leave the probabilities of circuits invariant.

A crucial insight in our analysis is that states and e�ects
on the same systems A are distinct objects—they are associated
with separate events and live in separate spaces, StA and E�A,
even though we describe them using operators in the same space
L(HA). Importantly, the latter is based on a canonical isomorphism
which merely reflects a choice of representation of the pairing
between dual vectors, (⇢I!A, EA!I ) = Tr[⇢AEA] (see Methods).
Therefore, a symmetry transformation SA must be defined by
its action on both spaces, SA : StA ⇥ E�A ! StA ⇥ E�A. We can
distinguish two types of symmetry transformations. Type I—those
that map states to states and e�ects to e�ects (for example, spatial
rotation). They can be thought of as consisting of a pair of
transformations, SA

s!s :StA !StA and SA
e!e :E�A !E�A, whose form

in the canonical representation will be denoted by ŜAs!s, ŜAe!e. Type
II—those thatmap states to e�ects and e�ects to states (for example,
time reversal). They can be thought of as consisting of a pair
of transformations, SA

s!e :StA !E�A and SA
e!s : E�A ! StA, whose

canonical representation will be denoted by ŜAs!e, ŜAe!s. Hereafter, we
drop the superscript A.

Theorem. Consider a system with Hilbert spaceH of dimension d .
Symmetry transformations of type I have the form

Ŝs!s(⇢; ⇢̄)⌘(� ; �̄ )=
✓

S⇢S†

Tr(S⇢̄S†)
; S⇢̄S†

Tr(S⇢̄S†)

◆
(2)

Ŝe!e(E; Ē)⌘(F; F̄)=
 
d

S�1†ES�1

Tr(S�1†ĒS�1)
;d S�1†ĒS�1

Tr(S�1†ĒS�1)

!
(3)

or the form

Ŝs!s(⇢; ⇢̄)⌘(� ; �̄ )=
✓

S⇢TS†

Tr(S⇢̄TS†)
; S⇢̄TS†

Tr(S⇢̄TS†)

◆
(4)

Ŝe!e(E; Ē)⌘(F; F̄)=
 
d

S�1†ETS�1

Tr(S�1†ĒTS�1)
;d S�1†ĒTS�1

Tr(S�1†ĒTS�1)

!
(5)

where T denotes transposition in some basis, † is Hermitian
conjugation and S 2 L(H) is an invertible operator. Similarly,
symmetry transformations of type II have the form

Ŝs!e(⇢; ⇢̄)⌘(F; F̄)=
✓
d

S⇢S†

Tr(S⇢̄S†)
;d S⇢̄S†

Tr(S⇢̄S†)

◆
(6)

Ŝe!s(E; Ē)⌘(� ; �̄ )=
 

S�1†ES�1

Tr(S�1†ĒS�1)
; S�1†ĒS�1

Tr(S�1†ĒS�1)

!
(7)

or the form

Ŝs!e(⇢; ⇢̄)⌘(F; F̄)=
✓
d

S⇢TS†

Tr(S⇢̄TS†)
;d S⇢̄TS†

Tr(S⇢̄TS†)

◆
(8)

Ŝe!s(E; Ē)⌘(� ; �̄ )=
 

S�1†ETS�1

Tr(S�1†ĒTS�1)
; S�1†ĒTS�1

Tr(S�1†ĒTS�1)

!
(9)
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Figure 4 | A toy model of the universe between two instants of time.
According to the known laws of quantum mechanics, physical systems
undergo unitary evolution in time. All information about the events in the
universe between times t1 and t2 is then encoded in the outcomes of
operations on the boundaries of this spacetime region. The information
available at time t1 is contained in the preparation box. An observer at t1 can
have direct access only to this information but not to the information in the
measurement box. According to such an observer, all future circuits consist
of standard operations if and only if the final measurement {Ej}j2Q
satisfies

P
j2Q Ej=1.

This implies the transformation of arbitrary operations. The proof
is presented in Methods.

If we assume that an isolated system must follow unitary
evolution driven by a Hamiltonian, and energy should not change
under time reversal, we obtain that time reversal must be described
by a transformation of the form (8) and (9) (see Methods). If
this is to hold for arbitrary Hamiltonians, then S must be unitary.
The concrete S, which depends on the transposition basis, would
be determined by how specific observables transform under time
reversal (for example, energy remains invariant, spin changes sign).
Note that because the generalized formulation permitsmore general
than unitary evolutions, transformationswith non-unitary S are also
conceivable in principle.

The original classification of symmetries by Wigner1 is obtained
within the traditional exposition of quantum theory, where one
does not distinguish states and e�ects but speaks of transition
probabilities between states only. If wewere to similarly interpret the
canonical representations of e�ects (times 1/d for each operator)
as states, a symmetry transformation would be described by a
single map from states to states and we would obtain that S
must be unitary. The operators ⇢ 2L(H) would then transform
as either ⇢! S⇢S† or ⇢! S⇢TS†, which amounts respectively to
a unitary or an anti-unitary transformation on the vectors in the
underlying Hilbert space, which agrees with Wigner’s theorem.
However, from an operational perspective there is no justification
for this identification of states with e�ects. Furthermore, the
traditional conclusion about the form of time reversal1 is derived
assuming that the transition probabilities given by Born’s rule
remain invariant under time reversal. In practice, such a transition
corresponds to a measurement event following a preparation
event, and the conditional probabilities of events in the reverse
order are not generally described by Born’s rule. This is why, in
our view, the traditional conclusion is not justified. In contrast,
the generalized formulation developed here gives an empirically
consistent definition of time-reversal symmetry. However, it also
shows the possibility for transformations with non-unitary S.

Understanding the observed asymmetry
We now investigate why without post-selection in the forward
direction of time we can implement only standard quantum
operations, which does not hold backward in time.

UU

UUU’
Time

Present 

Future

=

E

{ i}ρ

{     i}

Figure 5 | Preparing non-standard operations without post-selection in a
world with non-standard future boundary conditions. A future boundary
measurement with operator Ē 6=1 can allow present knowledge of future CP
maps {Mi}i2O that are not proportional to CPTP maps.

Assume that isolated systems evolve unitarily forward in time, as
prescribed by the known laws of quantum mechanics. This means
that if we consider all systems in the universe between times t1 and t2,
t1 < t2, we can describe their evolution by a unitary circuit (or one
joint unitary operation), such that the classical information about
all events between the two times is encoded in the outcomes of
operations on the past and future boundaries of the circuit (Fig. 4).
By definition, all information available before t1 is contained in the
preparation box (the box can be imagined to extend to the infinite
past). An observer inside that box can update their description of
the events in the box, but not of the events in future boxes. So
according to an observer before t1, the future events in the universe
would look as in Fig. 4, where the preparation may be updated, but
the final measurement is fixed. Any e�ective circuit in some region
in the future between times t1 and t2 according to this observer
must be consistent with the big unitary circuit—that is, all future
circuits should be possible to extend, by including the devices and
environments in the description, to the circuit in Fig. 4. It is well
known that if the e�ective circuits consist of standard operations,
their unitary extension can be done with a final measurement that
is a standard quantum measurement. Reversely, if every future
circuit must consist of standard operations, the final measurement
in particular must be a standard measurement. In other words, the
claim that all future circuits that can be known at a given time
unconditionally on future eventsmust be standard quantum circuits
is equivalent to a statement about the form of the future boundary
operation in the circuit of the universe. This boundary operation can
be moved arbitrarily far into the future, transforming it consistently
with the unitary dynamics.

To analyse the time-reversed situation, assume for simplicity
that time reversal is described by equations (8) and (9) with S=1
(the exact form of time reversal does not a�ect the probabilities
of events). In this case, the reverse evolution is unitary and we
have a similar picture to the previous case, but with a possibly
non-standard future measurement. As argued earlier, the causality
axiom does not hold for pre-selected operations in the reverse
direction, which means that the ‘future’ measurement backward in
time indeed cannot be a standard one. Equivalently, this means that
the preparation in the past boundary of the universe in the forward
direction (Fig. 4) cannot give the maximally mixed state on average.

If the preparation gave the maximally mixed state on average,
we could not have memory of the past consistently with unitarity,
because, at any time, systems coming from the past would be
uncorrelated. By the same token, the standard form of the future
boundary measurement implies that we cannot have memory of the
future. This establishes an exact link between the psychological23,24
and ‘quantum’ arrows of time.

Interestingly, Fig. 4 contains the possibility that not all classical
information available in the past is available in the future, just like
there is information in the future that cannot be known in the past.
One can think of this as information that is lost in the forward
direction of time.

By considering the extension of circuits on larger systems, we
can understand the mechanism by which information about these
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circuits reaches di�erent spacetime locations. For example, Fig. 5
illustrates how a non-standard future boundary measurement can
lead to present information about non-standard local operations in
the future. In the Supplementary Methods, we discuss the consis-
tency of the interpretation of the theory in these more general cases.

Unlike previous models of quantum mechanics with past and
future boundary conditions25–27, our approach does not interpret the
future condition as a constraint on the future state of the universe,
but on the future e�ects. It gives an explicit picture of the flow of
information in spacetime, where classical information by definition
lives on the boundary.

Discussion
We have argued that an empirically consistent notion of time-
reversal symmetry in quantum theory requires a generalized
notion of operation, whose implementation can involve both
pre- and post-selection. This has allowed us to give a rigorous
definition of time-reversal symmetry based on the preservation
of probabilities of events. The operational approach provides a
di�erent understanding of the accepted notion of time reversal:
it is a map between two separate spaces—those of states and
e�ects—and not from the space of states to itself. This has revealed
the possibility for symmetry transformations beyond the standard
classes of unitary and anti-unitary transformations predicted by
Wigner’s theorem. Could such symmetries be realized in nature?

One possibility is that they may arise in a novel sense in
scenarios defined through post-selection, still in agreement with
the known laws of quantum mechanics. Another possibility is
that they may be relevant in new physical regimes, such as those
where both quantum theory and gravity play a role. Indeed,
these symmetry transformations, like the most general evolutions
permitted in the time-symmetric formulation, are post-selection-
like transformations of the kind proposed to model the dynamics
of quantum systems in the presence of black holes and closed time-
like curves28–33. Such models are often referred to as ‘nonlinear’
extensions of quantum theory, but we have seen that this is not
precise, because the notion of state in the extended theory is
di�erent from the standard one, and the state space is not convex.
We believe that this insight is an important stepping stone for the
understanding of such models.

The time-symmetric approach to the notion of operation
proposed here is also conceptually suited for theories with no
background time, as in the context of gravity. Building on recent
ideas for quantum theory with indefinite causal structure34–36, the
present formulation can be extended to an operational quantum
theory without any predefined time37. Our demonstration that the
circuit notion of causality can be regarded as non-fundamental
o�ers a new perspective on the role of causal structure in
quantum mechanics34–50.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Derivation of the generalized formulation.We consider as a valid operation any
set of possible events that can be obtained by a local procedure inside a box with an
input and an output system, without assumptions on whether the procedure
involves pre- or post-selection. If a set of events defines a valid operation in this
sense, so does any subset of this set, because any subset can be selected inside the
box. We assume that standard quantum theory holds, and we derive its generalized
formulation based on this principle without additional assumptions.

Consider a preparation box implementing the standard preparation {⇢A
i }i2O,

which is connected via the system A to a measurement box implementing the
standard measurement {EA

j }j2Q (we use the representation of preparations and
measurements in terms of PS operators in L(HA)). The joint probabilities of the
preparation and measurement outcomes are given by
p(i, j|{⇢A

i }i2O, {EA
j }j2Q)=Tr(⇢A

i EA
j ), 8i2O, 8j2Q. Assuming that the probability for

the preparation event to belong to the subset O0 ⇢O and the measurement event to
belong to the subset Q0 ⇢Q is non-zero, by locally discarding those cases in which
the events do not belong to the respective subsets, we obtain two new operations
connected to each other by the system A, whose joint probabilities are given by

p(i, j|{⇢A
i }i2O0 , {EA

j }j2Q0 )= Tr(⇢A
i EA

j )
P

l2O0 ,m2Q0 Tr(⇢A
l EA

m)
(10)

for all i2O0, j2Q0.
From equation (10), we see that two sets of preparation events described by

operators {⇢A
i }i2O0 and {� A

i }i2O0 yield the same probabilities if and only if their
operators di�er by an overall factor, �i =↵⇢i, 8i2O0, ↵>0. The same holds for the
sets of measurement events. We can therefore choose a normalization to dispose of
the irrelevant degree of freedom. We define equivalent preparations and
measurements to be described by sets of PS operators that satisfy the
normalizations (we choose di�erent normalizations for preparations and
measurements to keep parallelism with the standard formalism, which can be seen
as a special case of the new one):

{⇢A
i }i2O,

X

i2O
Tr(⇢A

i )=1

{EA
j }j2Q,

X

j2O
Tr(EA

j )=dA

Note that preparations are described just as before, but measurements are now
more general as they do not have to satisfy

P
j2O EA

j =1A.
Introducing the notation

⇢̄A ⌘
X

i2O
⇢A
i

ĒA ⌘
X

j2Q
EA
j

we can write the main probability rule in the form

p(i, j|{⇢A
i }i2O, {EA

j }j2Q)= Tr(⇢A
i EA

j )

Tr(⇢̄AĒA)
, 8i2O, j2Q (11)

for any preparation and measurement for which ĒA⇢̄A 6=0A.
Unlike the standard approach to OPTs, here not all preparations and

measurements defined over the same system are compatible—some of them are
simply never found connected to each other. Equivalently, we can say that their
connection results in the null event. These are the preparations and measurements
for which ĒA⇢̄A =0A, where 0A is the null operator on system A. The joint
probabilities for the outcomes of such a pair of preparation and measurement can
be defined to be all zero (that is, no outcome occurs).

It is easily seen from equation (11) that the equivalence classes of preparation
events, or states, are now described by a pair of PS operators (⇢A; ⇢̄A), where
⇢A  ⇢̄A, Tr(⇢̄A)=1, and the equivalence classes of measurement events, or e�ects,
are described by a pair of PS operators (EA; ĒA), where EA  ĒA, Tr(ĒA)=dA.
The joint probability rule for a pair of state and e�ect is given by equation (1).

Via equation (1), states are real functions on e�ects and vice versa. However,
the sets of states and e�ects are not closed under convex combinations (only some
subsets of them are—those that correspond to the same ⇢̄ or Ē). Even though we
may conceive of the convex combinations of these functions, they generally do not
correspond to events that can be obtained by local procedures in the preparation
and measurement boxes.

To see this, consider for example two deterministic preparations, each
preparing one of two standard states with density operators ⇢̄1 and ⇢̄2, ⇢̄1 6= ⇢̄2, both
of which can be assumed to have full support. In the above language of states
described by two operators, these correspond to (⇢̄1; ⇢̄1) and (⇢̄2; ⇢̄2). Regarding
them as functions on e�ects, imagine that we want to find a closed-box preparation

procedure that yields a convex combination of these functions, for example,
1/3(⇢̄1; ⇢̄1)+2/3(⇢̄2; ⇢̄2). Any preparation that we may perform inside a closed box
(allowing both pre- and post-selection) is captured by standard preparations. The
desired convex combination must therefore correspond to some state (⇢; ⇢̄). But it
is easy to see that such a state does not exist. Indeed, the requirement that it yields
the desired convex combination of probabilities with all e�ects of the form
(E; Ē=1) implies that ⇢= ⇢̄=(1/3)⇢̄1 +(2/3)⇢̄2. But then for e�ects (E; Ē) with
Ē 6=1, the probabilities would generally not respect the convex combination:

Tr
��

1
3 ⇢̄1 + 2

3 ⇢̄2
�
E
�

Tr
��

1
3 ⇢̄1 + 2

3 ⇢̄2
�
Ē
� 6= 1

3
Tr(⇢̄1E)

Tr(⇢̄1Ē)
+ 2

3
Tr(⇢̄2E)

Tr(⇢̄2Ē)

Of course, we may simulate the desired convex combination by suitably
post-selecting preparation and measurement events, but this requires joint
post-selection, which is not achievable by separate closed-box procedures for the
preparation and the measurement.

Note that a deterministic state (that is, a state associated with the outcome of a
single-outcome preparation) is described by a pair of identical density operators
(⇢̄; ⇢̄). Because of this redundancy, we can parameterize the space of deterministic
states by a single density operator, just like the space of deterministic states in the
standard formulation of quantum theory. The probabilities for the outcomes of a
measurement applied on a deterministic state ⇢̄A are given by

p(j|{EA
j }j2O, ⇢̄A)= Tr(⇢̄AEA

j )

Tr(⇢̄AĒA)
, for Tr(⇢̄AĒA) 6=0

=0, for Tr(⇢̄AĒA)=0

which reduces to Born’s rule in the special case ĒA =1A. In particular, the set of
deterministic states can be regarded as real functions on e�ects. As we saw in the
above example, this set is not closed under convex combinations, even though the
operators by which we describe deterministic states form a convex set—the usual
set of density operators. As functions of these operators, the probabilities for
measurement outcomes are not linear, but we emphasize that this does not mean
nonlinearity in the state as defined in an operational sense.

The spaces of states and e�ects over a system A, StA and E�A, can be equipped
with a natural distance. Let (⇢A

1 ; ⇢̄A
1 ) and (⇢A

2 ; ⇢̄A
2 ) be two states in StA. We can

define the distance

DStA ((⇢
A
1 ; ⇢̄A

1 ),(⇢A
2 ; ⇢̄A

2 ))=

Sup(EA ;ĒA)2E�A |p((⇢A
1 ; ⇢̄A

1 ),(EA; ĒA))� p((⇢A
2 ; ⇢̄A

2 ),(EA; ĒA))|1 (12)

The fact that DStA is a distance function can be verified straightforwardly. (The
distance on E�A can be defined analogously.) However, note that DStA is not a
continuous function of k⇢A

1 �⇢A
2 k and k⇢̄A

1 � ⇢̄A
2 k, where k ·k denotes the operator

norm. For example, consider two states (⇢A
1 ; ⇢̄A) and (⇢A

2 ; ⇢̄A), ⇢̄A =⇢A
1 +⇢A

2 ,
associated with the two possible outcomes of a preparation. If ⇢A

1 and ⇢A
2 have

di�erent supports, the two states are maximally distant no matter how small
k⇢A

1 �⇢A
2 k may be, as long as it is non-zero. Indeed, in the case when one of ⇢A

1 or
⇢A
2 has support that is inside (but di�erent from) the support of the other, say,

Supp(⇢A
1 )⇢Supp(⇢A

2 ), we can achieve the maximum value of 1 for the right-hand
side of equation (12) by choosing an e�ect (ĒA; ĒA) such that Supp(ĒA) is
orthogonal to Supp(⇢A

1 ) and has a non-zero overlap with Supp(⇢A
2 ). In the case

when none of ⇢A
1 or ⇢A

2 has support that is inside the support of the other, the same
e�ect also yields the maximum value. The maximum distance between these states
reflects the fact that there exists a measurement event that can occur together with
one of the preparation events but not with the other.

As for preparations and measurements, one can define the equivalence classes
of general operations and general events. Equivalent operations are described by a
collection of CP maps with the normalization

{MA!B
i }i2O,

X

i2O
Tr

✓
MA!B

i

✓
1A

dA

◆◆
=1 (13)

which reduces to the normalization of preparations and measurements in the
respective limiting cases. Defining

M̄A!B =
X

i2O
MA!B

i

one sees that equivalent events, or transformations, from A to B are described by
pairs of CP maps

(MA!B;M̄A!B)
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with the properties

MA!B(⇢A)M̄A!B(⇢A), 8⇢A �0

Tr
✓
M̄A!B

✓
1A

dA

◆◆
=1

Although in OPTs it makes sense to think of an operation as a collection of
transformations, here we choose to describe operations as collections of CP maps
as above, which we find more natural in view of the intuition developed from the
standard formulation.

Generalizing the case of preparations and measurements, two operations
{N B!C

j }j2Q and {MA!B
i }i2O are not compatible, or their composition amounts to

the null operation from A to C, when N̄ B!C �M̄A!B =0A!C, where 0A!C is the
null CP map. The operation resulting from the sequential composition of two
compatible operations, {LA!C

ij }i2O,j2Q ={N B!C
j }j2Q � {MA!B

i }i2O, has CP maps

LA!C
ji = N B!C

j �MA!B
i

Tr
✓
N̄ B!C �M̄A!B

✓
1A

dA

◆◆ , i2O, j2Q (14)

Upon learning or discarding of local information about the outcomes of an
operation, its description gets updated. To derive the most general update rule, it is
convenient to model the classical variable describing the outcome of an operation
by a set of (standard) orthonormal pure pointer ‘states’ {|iiC}i2O on a pointer system
C. An operation {MA!B

i }i2O can then be thought of as a two-step process, the first
step being the single-outcome operation

MA!BC =
X

i2O
MA!B

i ⌦ |iihi|C (15)

and the second one being a standard von Neumann measurement of the system C
in the pointer basis. Without loss of generality, we can imagine that the outcome of
the measurement is stored in another pointer system, so for an experimenter who
has not looked at the information about the outcome of the operation, the
experiment can be described by the first stage only (this is nothing but the model of
a standard quantum instrument51, trivially extended to the more general type of
operations we consider). Any process of learning or discarding of information
about the outcome of the operation can be described by a classical operation on the
pointer system. This most generally corresponds to a diagonal CP map, followed by
a renormalization of the overall operation, which results in an operation of a
similar form to (15), but with the pointer states possibly running over a di�erent
set. Let C0 describe the (possibly di�erent) pointer system after this operation, with
pointer basis {|jiC0 }j2Q. The diagonal CP map describing the transformation of the
pointer has the form

MC!C0
(·)=

X

i2O,j2Q
T(j, i)|jiC0 hi|C(·)|iiChj|C0

where

T(j, i)�0, 8i2O,8j2Q,
X

j2Q
T(j, i)1, 8i2O

After renormalization, this gives rise to the updated overall operation

MA!BC0 =
P

j2Q
P

i2OT(j, i)MA!B
i ⌦ |jihj|C0

P
j2Q

P
i2OT(j, i)Tr

✓
MA!B

i

✓
1A

dA

◆◆

From this, we infer the general update rule of the operation on the original systems:

{MA!B
i }i2O !{M0A!B

j }j2Q
where

M0A!B
j =

P
i2OT(j, i)MA!B

i

P
j2Q

P
i2OT(j, i)Tr

✓
MA!B

i

✓
1A

dA

◆◆ (16)

It is worth noting a couple of special cases that will be used later. The case of
completely discarding the information about the outcome of the operation
corresponds to Q={e} being a singleton set, and T(e, i)=1, 8i2O. This leads to the
fully coarse-grained deterministic operation {M̄A!B}. On the other hand, the case
in which the outcome of the operation is found to belong to a specific subset,
O0 ⇢O, corresponds to Q=O0 and T(i, i)=p>0 for i2O0, and T(j, i)=0 in all other
cases. The latter gives us a prescription of how to obtain any operation in the new

formalism starting from a standard operation (one whose CP maps sum up to a
CPTP map) and using post-selection. It is important to emphasize, however, that
the theory does not attribute any special status to those operations that satisfy the
standard trace-preserving condition.

To summarize, the generalized formulation is defined by the following rules:
Systems are associated with Hilbert spaces, and an operation from a given input to
a given output system is described by a collection of CP maps from the space of
operators over the input Hilbert space to the space of operators over the output
Hilbert space, with the normalization (13). When a preparation is connected to a
measurement, the joint probabilities for their outcomes are given by equation (11).
Equivalently, two operations connected sequentially yield a new operation
according to (14), and CP maps from the trivial system to itself are interpreted as
probabilities. Upon learning or discarding of information, the description of an
operation is updated according to equation (16).

Even though we have formulated the theory for finite dimensions, we expect
that it can be extended to infinite dimensions with suitable modifications of the
representation conventions.

We have described all possible circuits and the probabilities for their outcomes
in the generalized formulation of quantum theory using the mathematical language
of Hilbert spaces. An interesting question is to find a set of operational principles
from which this formulation can be derived, similarly to the way this has been done
for the standard formulation18–20.

Time reversal and general symmetries: proof of the main theorem. Because
we have allowed operations to be defined by both pre- and post-selection, one
can expect that the theory should be symmetric under time reversal in some sense.
This is because the events that constitute a valid operation in one direction of time
constitute a valid operation in the other, and the probabilities of events conditional
on specific information are independent of the direction of time. Here, we discuss in
detail the question of time reversal along with general symmetry transformations.

Under time reversal T , every operation from A to B is expected to be seen as a
valid operation from B to A, such that the probabilities of any circuit when
calculated in the opposite direction under this transformation remain the same.
This by itself, however, does not define time reversal. Indeed, we will see that the
above theory permits infinitely many transformations with this property. Time
reversal is a specific, physically motivated transformation, which is not implicit in
the formalism. The simplest example of a transformation that satisfies the general
requirement above is the following. For every CP mapMA!B, which can be written
in the Kraus formMA!B(·)=PdAdB

↵=1 K↵(·)K †
↵ , where K↵ :HA !HB are linear

maps52, we could define the ‘time-reversed’ image as the CP map
M†B!A(·)=dB/dA

PdAdB
↵=1 K †

↵ (·)K↵ , where K †
↵ :HB !HA. This definition is

basis-independent, and it simply amounts to reading a circuit in the opposite
direction by regarding the operators of preparations as operators of measurements
up to a (dimension-dependent) constant factor, and vice versa. More precisely, a
preparation {⇢A

i }i2O is seen as a measurement {dA⇢
A
i }i2O, and a measurement

{EA
j }j2Q as a preparation {1/dAEA

j }j2Q. (At the level of the underlying Hilbert space,
this is equivalent to interchanging vectors | i2H with their canonical duals
h |2H⇤ (ref. 53), up to a factor.) Using the cyclic invariance of the trace, one can
easily see that the probabilities of a circuit remain invariant under this
transformation. The new states and measurements correspond to the so-called
retrodictive states and measurements7,38,54.

The problem with this definition arises when one goes beyond the mere OPT
and makes a connection to concepts such as energy, momentum, or spin. The latter
are not part of the OPT per se, but are the subject of the theory that describes the
dynamics of physical systems, which we will refer to as the mechanics (an OPT says
what the possible operations are, but not what operations will arise in specific
circumstances). According to our present understanding of the laws of mechanics,
an isolated quantum system undergoes unitary evolution in time driven by a
Hamiltonian generator, which is the operator of energy. Quantum states are
described in terms of physical variables such as momentum or spin. Under time
reversal, these variables transform in a specific way (for example, energy remains
invariant, whereas momentum and spin change sign) and this determines the
notion of time reversal in a physical sense. As shown by Wigner1 (see also
Schwinger3), these considerations imply that time reversal must be described by an
anti-unitary transformation at the Hilbert-space level (see below). The above
transformation, however, does not correspond to an anti-unitary transformation
on the Hilbert space. If we assume, as is the current understanding of quantum
mechanics, that the states of an isolated system evolve forward in time according to
the Schrödinger equation driven by a given Hamiltonian with a positive energy
spectrum, then the retrodictive states would evolve backward in time driven by the
negative of the original Hamiltonian, which would have a negative
energy spectrum.

To understand the issue of time reversal, let us have a closer look at the relation
between preparation and measurement events, and their representations. The
operators {⇢A

i }i2O by which we describe a preparation can be thought of as elements
of the real vector space VA of Hermitian operators overHA (strictly speaking, a
preparation is a collection of CP maps, {⇢I!A

i }i2O, which are elements of the real
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vector space of linear maps from R to VA, which is naturally isomorphic to VA).
Measurements can be similarly thought of as described by collections of vectors,
but in the dual vector space, VA⇤ . This dual vector space is isomorphic to VA if VA

is finite-dimensional. Let us denote the vectors in the dual space by EA⇤ . The
pairing between elements of the two vector spaces yields a real number:
(EA⇤ ,⇢A)2R, 8EA⇤ 2VA⇤ ,8⇢A 2VA, which we write as (EA⇤ ,⇢A)=Tr[⇢AEA], where
EA 2VA corresponds (via an isomorphism) to EA⇤ . Note, however, that before
choosing this representation, there is no natural isomorphism between the vector
space VA and its dual VA⇤ . Every non-degenerate bilinear form h·, ·i :VA ⇥VA !R
gives rise to an isomorphism. Our representation is based on the particular choice
of bilinear form h⇢A,� Ai⌘Tr[⇢A� A]2R. This bilinear form is an inner product
(the Hilbert–Schmidt inner product restricted to the subspace of Hermitian
operators). It induces a ‘canonical’ isomorphism between the two vector spaces,
EA⇤ $E, EA⇤ 2VA⇤ , E2VA, given via (EA⇤ ,⇢A)= h⇢A,EAi=Tr[⇢AEA]. This
canonical isomorphism merely corresponds to a choice of representation for the
pairing between dual vectors, and need not have any physical meaning. (The
physically non-trivial aspect of this picture is that the vector spaces can be realized
as the spaces of Hermitian operators over a complex Hilbert space of a given
dimension.) As we will show below, time reversal may also define an isomorphism
between the two dual vector spaces (although not necessarily, as the general
correspondence is between states and e�ects, and these are described by pairs of
vectors) because, under time reversal, measurements are mapped onto
preparations, and vice versa. However, this cannot be the canonical isomorphism
arising from the standard choice of bilinear form because of the physical
considerations noted earlier. The retrodictive states and measurements arise exactly
from the canonical isomorphism, up to a constant factor.

Under time reversal T , every set of vectors {⇢A
i }i2O in VA corresponding to a

valid preparation would become a specific set of vectors {FA⇤
i }i2O in VA⇤

corresponding to a valid measurement, which is the time-reversed image of
{⇢A

i }i2O. Using the canonical isomorphism, the time-reversed image of the
preparation will be described by a set of measurement operators {FA

i }i2O in VA

(Fig. 3). In a similar way, the operators {EA
j }j2Q describing a measurement get

mapped onto a set of operators {� A
j }j2Q describing a preparation, which is the

time-reversed image of the measurement. Under this interchange, which must be
invertible, the probabilities (11) (or equivalently, (1)) must remain the same. The
latter requirement means that T is described by a bijection between states (⇢A; ⇢̄A),
⇢A, ⇢̄A 2VA and e�ects (EA⇤ ; ĒA⇤

), EA⇤ , ĒA⇤ 2VA⇤ (where we represent the e�ects
via the canonical isomorphism as (EA; ĒA), EA, ĒA 2VA). This does not, however,
imply that time reversal should be realized by a bijection between VA and VA⇤

applied independently on each vector in the pair (⇢A; ⇢̄A) (or (EA⇤ ; ĒA⇤
)). Indeed,

below we completely characterize the transformations that preserve the
probabilities and show that more general transformations are possible.

As pointed out in the main text, because states and e�ects are di�erent objects, a
symmetry transformation has to be defined by its action on both the space of states
and the space of e�ects, SA :StA ⇥E�A !StA ⇥E�A. Symmetry transformations of
type I, such as spatial rotation, transform states into states and e�ects into e�ects.
Symmetry transformations of type II, such as time reversal or any combination of
time reversal with a symmetry transformation of type I, transform states into
e�ects and e�ects into states. In the case of transformations of type I, the
transformation SA can be thought of as consisting of two transformations,
(SA

s!s,SA
e!e), where SA

s!s :StA !StA, SA
e!e :E�A !E�A, and in the case of type II, it

can be thought of as consisting of two transformations, (SA
s!e,SA

e!s), where
SA

s!e :StA !E�A, SA
e!s :E�A !StA. By representing e�ects in terms of pairs of

vectors in VA via the canonical isomorphism, each of these transformations can be
represented as a transformation on the space of pairs of PS operators onHA. We
denote these representations by ŜAs!s, ŜAe!e, ŜAs!e, ŜAe!s, respectively. The possible
form of these symmetry transformations is given by our main theorem, which we
prove next. (We drop the superscript A for the proof of the theorem.)

Proof of theorem. Because we are interested primarily in time reversal, we will
exhibit the proof for transformations of type II. The case of type I is analogous. We
will make use of the way operations get updated upon learning or discarding of
information (equation (16)), which must be independent of the symmetry
transformation. First, observe that the case of complete coarse graining implies that
two states have the same ⇢̄ if and only if their images under the symmetry
transformation have the same F̄ . (The same holds for measurements and their
images.) Consider then two states (⇢1; ⇢̄) and (⇢2; ⇢̄) whose images are (F1; F̄) and
(F2; F̄), respectively. Let us take any state (q⇢1 +(1�q)⇢2; ⇢̄), 0q1. From
formula (1), we see that the joint probability of this state with any e�ect (E; Ē) is
p((q⇢1 +(1�q)⇢2; ⇢̄),(E; Ē))=qp((⇢1; ⇢̄),(E; Ē))+(1�q)p((⇢2; ⇢̄),(E; Ē)).
Similarly, consider the e�ect (qF1 +(1�q)F2; F̄), with the same q. It must yield the
probabilities p((� ; �̄ ),(qF1 +(1�q)F2; F̄))=qp((� ; �̄ ),(F1; F̄))+(1�q)p((� ; �̄ ),
(F2; F̄)) when paired with a state (� ; �̄ ). But when (� ; �̄ ) is the image of (E; Ē), the
probabilities in the first case must be equal to the corresponding probabilities in the
second case. Because a state (e�ect) is completely characterized by its joint
probabilities with all possible e�ects (states), we conclude that (qF1 +(1�q)F2; F̄)

must be the image of (q⇢1 +(1�q)⇢2; ⇢̄). In other words, for every fixed ⇢̄, Ŝs!e

transforms the first operator in (⇢; ⇢̄) by a (positive) linear map, possibly
dependent on ⇢̄, which we will denote by ⌧̂⇢̄ . This linear map can be assumed
defined on the subspace of Hermitian operators with support in the support of ⇢̄.
Consider now the update rule (16) in the case of learning the outcome of an
operation (a special case of learning that the outcome belongs to a subset, which
was discussed earlier). It implies that two states have proportional ⇢ (di�ering by
an overall factor) if and only if their images have proportional F . This means that
⌧̂⇢̄(⇢)= f (⇢̄)⌧̂1/d (⇢)⌘ f (⇢̄)⌧̂ (⇢), for all ⇢ in the domain of ⌧̂⇢̄ , where ⌧̂⌘ ⌧̂1/d is a
positive linear map defined on the whole space of Hermitian operators overH. But
as every deterministic state must be mapped onto a deterministic e�ect, we have
⌧̂⇢̄(⇢̄)= F̄ , and hence f (⇢̄)Tr[⌧̂ (⇢̄)]=Tr[⌧̂⇢̄(⇢̄)]=d , which implies
f (⇢̄)=d/Tr[⌧̂ (⇢̄)]. We thus obtain

Ŝs!e(⇢; ⇢̄)=
✓
d

⌧̂ (⇢)

Tr[⌧̂ (⇢̄)] ;d
⌧̂ (⇢̄)

Tr[⌧̂ (⇢̄)]
◆

As Ŝs!e acts as a bijection from the space of states to the space of the canonical
representations of e�ects, ⌧̂ must map the cone of PS operators overH onto itself.
This means (see Proposition 3.6 in ref. 55) that ⌧̂ is either of the form ⌧̂ (⇢)=S⇢S†

or of the form ⌧̂ (⇢)=S⇢TS†, where S is invertible, which corresponds to
equations (6) or (7). An analogous argument applied to the transformation of
e�ects yields equations (8) and (9).

Note. The operator S depends on the transposition basis. The basis can be chosen
arbitrarily by redefining S. For involutions, in the case of equations (2) and (3), S
satisfies S=/S�1, in the case of equations (4) and (5), S satisfies S=/S⇤�1, where ⇤

denotes complex conjugation in the basis of the transposition, in the case of
equations (6) and (7), S satisfies S/S†, and in the case of equations (8) and (9), S
satisfies S=±ST. This follows straightforwardly from the requirement that
applying the transformation twice maps every state and e�ect onto itself.

Let us assume, as in standard quantum mechanics, that isolated systems evolve
in time unitarily according to the Schrödinger equation driven by some
Hamiltonian, and let us assume, following Wigner1, that the same kind of evolution
should take place under time reversal, driven by a Hamiltonian with the same
spectrum (because energy should not change under time reversal). Let a general
transformation (MA!B;M̄A!B), whereMA!B(·)=PdAdB

↵=1 K↵(·)K †
↵ ,

M̄A!B(·)=PdAdB

↵=1 K̄↵(·)K̄ †
↵ , be transformed under time reversal T as

(MA!B;M̄A!B)
T!(M̃B!A; ¯̃MB!A)

M̃B!A(·)=
dAdBX

↵=1

K̃↵(·)K̃ †
↵

¯̃MB!A(·)=
dAdBX

↵=1

¯̃K↵(·) ¯̃K †
↵

If T transforms states and e�ects as in equations (6) and (7) (with specific
transposition bases and specific operators SA and SB for the respective systems),
from the requirement that the probability for a sequence of a state, a
transformation, and an e�ect, remains invariant, we find

K̃↵ =(SBK↵SA
�1

)†/�

¯̃K↵ =(SBK̄↵SA
�1

)†/�

for all ↵=1 . . .dAdB, with � such that

Tr

0

@
dAdBX

↵

¯̃K †
↵

¯̃K↵

1

A=dB (17)

However, assume that in the case when A is of the same kind as B a unitary
transformation (K↵ =K↵ =�↵,1U , U †U =1) gets mapped onto a unitary
transformation (K̃↵ = K̃↵ =�↵,1Ũ , Ũ †Ũ =1), where U has the same spectrum as
Ũ =(SUS�1)† =S�1†U †S†. Because the last expression is a similarity transformation
of U †, this means that U and U † must have the same spectrum. But this is
incompatible with a nontrivial continuous unitary evolution in time driven by a
Hamiltonian with a non-negative spectrum.

Thus, the only possibility compatible with the known quantum mechanics is
that time reversal is described by a transformation of the form (8) and (9). In such a
case, we find

K̃↵ =(SBK ⇤
↵ S

A�1
)†/� (18)

¯̃K↵ =(SBK̄ ⇤
↵ S

A�1
)†/� (19)
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for all ↵=1 . . .dAdB, where ⇤ denotes complex conjugation in the joint basis in
which the transpositions for A and B are defined in equations (8) and (9), and �
ensures the normalization (17). In this case, for the image of a unitary operation we
obtain Ũ =(SU ⇤S�1)†. If S=V is unitary, Ũ =VU TV † would be unitary and it
would have the same spectrum as U , because U T has the same spectrum as U . Note
that it is not necessary that S be unitary in order for Ũ to satisfy this property. If S
has a polar decomposition S=VM ,M�0, where V is unitary andM commutes
with U T (or, equivalently, with the transpose of the Hamiltonian generator of U ),
then the requirement is still satisfied. However, if we further demand that time
reversal satisfies the above requirement for any Hamiltonian generator, then Smust
be unitary. The standard notion of time reversal, as understood at present,
corresponds to this case, although it is formulated as a map from the state space to
itself. Because we are generalizing the standard formulation of quantum theory, it is
in principle conceivable that in some regimes the laws of mechanics may not obey
Schrödinger’s equation, which was used in the above argument. It is reasonable to
assume, however, that any generalized notion of time reversal would be of the kind
(8), (9), (equivalently, (18), (19)) so that it would reduce continuously to the
standard one in the regimes of standard quantum mechanics.

As time reversal is a reflection, its transformation of states and e�ects is
expected to be an involution. This means that S=ST or S=�ST. When S is unitary,
these two cases correspond to the form of time reversal for bosons and fermions,
respectively56. Note that the bosonic time reversal is an involution also at the level
of the Hilbert spaceH, but the fermionic one is not, as applying it twice yields an
overall minus sign. The minus sign disappears at the level of the operators by
means of which we describe states and e�ects, but its existence at the Hilbert-space
level is one way of arguing that there has to be a spin superselection rule56.

It is also interesting to note that when S is unitary, time reversal corresponds to
an isomorphism between the underlying Hilbert spaceH and its dualH⇤, which is
linear. The standardly claimed anti-linearity of time reversal arises from the
representation of the vectors inH⇤ by vectors inH via the canonical anti-linear
isomorphism between the two spaces.

The most general possible form of time reversal (18), (19) on an arbitrary
transformation was obtained from the requirement that the probabilities for a

preparation, followed by a general operation, followed by a measurement, remain
the same under time reversal. One can easily see that this guarantees that the
probabilities remain invariant for general circuits, because any circuit can be
‘foliated’ into global time steps, where at each step a single operation is applied
from a given composite input system to a given composite output system (this can
be achieved by padding operations with additional sequences of identity operations
where necessary). The joint probabilities of a circuit consisting of a preparation
{⇢A0

i0 }i02Q0 , followed by a sequence of operations {MAn�1!An
in }in2Qn , n=1, . . . ,N �1,

and then by a measurement {EAN
iN }iN 2QN , are given by

p(i0, i1, . . . , iN |{⇢A0
i0 }i02Q0 , {MA0!A1

i1 }i12Q1 , . . . ,{EAN
iN }iN 2QN )

= Tr(EAN
iN MAN�1!AN

iN�1 (· · ·MA0!A1
i1 (⇢

A0
i0 )))

Tr(ĒAN M̄AN�1!AN (· · ·M̄A0!A1 (⇢̄A0 )))

and the fact that the probabilities remain invariant under the transformation given
by equations (18) and (19) can be verified by expanding each CP map in its Kraus
form and using the invariance of the trace under cyclic permutations
and transposition.
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SUPPLEMENTARY METHODS

Sequential and parallel composition of operations

Operations can be composed in sequence and in parallel to form new operations [1, 2].
Two operations can be composed in sequence if the output system of the first one is of the same type as the input system of

the second one: {NB→C
j } j∈Q ◦ {MA→B

i }i∈O = {NB→C
j ◦MA→B

i }i∈O, j∈Q ≡ {LA→C
k }k∈O×Q. For every system A, one defines the identity

operation IA→A, which has a single outcome and has the property {MA→B
i }i∈O ◦ IA→A = {MA→B

i }i∈O and IA→A ◦ {NB→A
j } j∈Q =

{NB→A
j } j∈Q, for all {MA→B

i }i∈O and {NB→A
j } j∈Q.

Given a pair of systems A and B, one can define the composite system AB. The parallel composition of two operations
{MA→B

i }i∈O and {NC→D
j } j∈Q is a new operation {MA→B

i }i∈O ⊗ {NC→D
j } j∈Q = {MA→B

i ⊗NC→D
j }i∈O, j∈Q ≡ {LAC→BD

k }k∈O×Q from the
composite system AC to the composite system BD.

As circuits have no open wires, the composition of operations in a circuit amounts to an operation from the trivial system to
itself.

Canonical representation of states and effects in the standard formulation of quantum theory

Every CP map from system A to system B can be written in the (generally non-unique) Kraus form [3] MA→B(·) =∑dAdB
α=1 Kα(·)K†α, where {Kα}dAdB

α=1 , Kα : HA → HB, are linear maps, known as Kraus operators. The condition that the

CP maps {MA→B
i }i∈O associated with all outcomes of a standard quantum operation have a sum

∑
i∈OMA→B

i = MA→B

that is a CP and trace-preserving (CPTP) map is equivalent to the constraint
∑

i∈O
∑dAdB
αi=1 K†αi Kαi = 11A, where {Kαi }dAdB

αi=1 are
Kraus operators for MA→B

i . The trivial system I corresponds to the 1-dimensional Hilbert space C1. States are thus CP
maps of the form ρI→A(·) = ∑dA

α=1 |ψα⟩(·)⟨ψα|, |ψα⟩ ∈ HA. They are isomorphic to positive semidefinite (PS) operators,
ρI→A ↔ ρA =

∑dA
α=1 |ψα⟩⟨ψα|A ∈ L(HA), and this is how they are represented. In particular, a preparation is described by a

set of PS operators {ρA
i }i∈O, such that

∑
i∈O Tr(ρA

i ) = 1. Effects are CP maps of the form EA→I(·) = ∑dA
α=1⟨φα|(·)|φα⟩, |φα⟩ ∈ HA.

They are also isomorphic to PS operators, EI→A ↔ EA =
∑dA
α=1 |φα⟩⟨φα|A ∈ L(HA), and this is how they are represented. Here

the trace-preserving condition means that a measurement is described by a set of PS operators {EA
j } j∈Q that form a positive

operator-valued measure (POVM), i.e.,
∑

j∈Q EA
j = 11A. In this representation, the joint probabilities of states and effects are

given by p(ρI→A
i , EA→I

j ) = EA→I
j ◦ ρI→A

i = Tr(ρA
i EA

j ).

The concept of operation

The closed-box assumption

The concept of circuit formalizes the intuitive notion of information exchange. Notice that a circuit does not represent merely
a sequence of applications of physical devices as one may commonly understand this. Indeed, we can construct a sequence
in which the device applied at a given step is chosen based on information about the outcomes of previously applied devices
according to some protocol. In such a case, the joint probabilities for the outcomes of the sequence would generally depend
on the protocol, whereas a circuit is defined to have unique probabilities. The idea of a circuit is that it provides a complete
picture of the information exchange responsible for the correlations between the set of events it describes—the wires in a circuit
are assumed to represent all systems through which the correlations between the possible events in the boxes arise. The above
example would not correspond to a valid circuit because it does not take into account all existing means of information exchange
between the events. If we have a scenario in which the device at a given step is selected using information about past outcomes,
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in the language of circuits this would have to be described by an operation acting on a larger composite system that includes the
carriers of the information about the past outcomes, while these carriers would be seen as outputs of suitably extended operations
in the past. The very notion of operation in the circuit framework, by definition, carries the idea that the input and output systems
of an operation are the sole mediator through which any correlations between the outcomes of that operation and the outcomes
of other operations is established. One can figuratively think of the boxes in a circuit as isolated space-time regions that can
exchange information with each other only through the wires. We will refer to this idea as the ‘closed-box’ assumption.

This is not an assumption that concerns the circuit framework as a mathematical model. It is an assumption that we make
about a part of an experiment when we say that it corresponds to a valid operation with given input and output systems. One way
to think about it is to imagine that we could block the information transmission through the wires corresponding to the assumed
input and output systems of the box. If the wires are blocked, all random variables in the box should be completely uncorrelated
from other events in the experiment. [Note that a wire in the circuit picture is not a physical wire in space, but is more akin to an
ideal channel in time, albeit an instantaneous one (actual channels are represented by boxes, while a wire connecting two boxes
signifies that the output of one box is an input of the other).]

If systems were classical objects that we could track as they go from one experiment to another, we could in principle know
the paths of information exchange by tracking the systems. But at the microscopic level, the exchange of information is not
evident, and in practice a specific circuit structure in the sense above can only be assumed to hold, usually based on some
physical considerations (e.g., extrapolating intuition from classical physics). Assuming that we can recognize the structure of
boxes and wires in a given experiment, however, is necessary in order for a theory to make non-trivial sense.

The no-post-selection criterion in the standard approach

Consider an experiment in which a quantum operation from system A to system B is chosen out of a set of possible such
operations {Mλ,A→B

iλ }iλ∈Oλ , labeled by λ ∈ Λ, according to a probability distribution p(λ) ≥ 0,
∑
λ∈Λ p(λ) = 1, independent of

past events. Notice that the whole experiment can be equivalently viewed as a single quantum operation with a larger number of
outcomes, {p(λ)Mλ,A→B

iλ }iλ∈Oλ,λ∈Λ. Imagine that the experiment is performed inside a box with input system A and output system
B by an apparatus which outputs in separate registers the values of λ and iλ. If we only look at the value of λ, conditionally on
that information we can say that the operation {Mλ,A→B

iλ }iλ∈Oλ has been applied, with the outcome of that operation being stored
in the other register. We see that in this case an operation {Mλ,A→B

iλ }iλ∈Oλ corresponds to a set of events between A and B that
is a proper subset of a larger set of possible events that also define an operation. Specifically, the operation {Mλ,A→B

iλ }iλ∈Oλ is
obtained from {p(λ)Mλ,A→B

iλ }iλ∈Oλ,λ∈Λ by updating the description of possible events, conditionally on gained information. This
observation suggests a point of view according to which an operation represents knowledge about the possible events in a given
region, which can be updated upon learning or discarding of information.

If we have a given operation, any subset of the outcomes of that operation would obey the closed-box assumption, because
learning whether the outcome belongs to a subset can be done inside a closed box. However, not all subsets of the outcomes of
an operation define a valid operation in the standard formulation of quantum theory. What is the criterion that defines a given set
of events that obeys the closed-box assumption as a valid operation?

Intuitively, one may say that the key distinction between a valid operation and an arbitrary subset of the outcomes of a valid
operation is that an operation is something that an experimenter is able to choose ‘at will’. For example, we think that we could
‘choose’ a measurement, but not the outcome of a measurement. How can we formalize this idea?

One possible way could be through the notion of a freely chosen variable as a variable that is uncorrelated from events in the
past [4–6]. If we adopt this point of view, a valid operation would be one that satisfies the causality axiom [2]. But then the
axiom would be part of the definition of operation and not an axiom. However, it is clear that there is some nontrivial physical
property that this condition expresses, i.e., it is regarded as an axiom for a reason. The fact that theories that allow signaling
from the future are considered sensible [7] further shows that the causality axiom is not the implicit assumption that one makes
about what an operation is supposed to mean.

There is another idea that can be said to express the intuition of being able to ‘choose’ an operation, which is in principle
compatible with signaling to the past, and in the context of which the causality axiom expresses a nontrivial physical constraint.
This is the idea that the variables that define an operation are (or at least can be) obtained without post-selection, i.e., they can
be known before the time of the input system unconditionally on information available in the future. It is this criterion that
is implicitly assumed in the standard approach to quantum theory. Indeed, under this condition the causality axiom captures
a nontrivial empirical fact—namely, that out of the larger class of potential operations that we could obtain by selecting sets
of events that obey the closed-box assumption, only the class of standard operations can be obtained without post-selection. A
priori, the non-standard operations that in practice can only be obtained with post-selection could have been obtainable without
post-selection too. The fact that they are not can be thought of as enforced by the axiom, since adding any of these operations
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to the class of standard operations would violate the axiom (the joint probabilities for circuits of such operations can be easily
calculated using Bayes’s theorem; see Methods).

We remark that if we redefine the class of valid operations not only by adding non-standard operations that require post-
selection to the standard ones, but also by excluding standard operations, we can obtain a new class that obeys the causality
axiom. For example, we could define measurements to consist only of sets of standard effects {EA

j } j∈Q that satisfy
∑

j∈Q EA
j = E

A

for some fixed E
A
< 11A). But the new operations will be isomorphic to operations in the standard theory. In this example, we

could redefine the operators describing a measurement as EA
j → (E

A
)−

1
2 EA

j (E
A
)−

1
2 and the operators describing a preparation

{ρA
i }i∈O as ρA

i →
(E

A
)

1
2 ρA

i (E
A

)
1
2

Tr[E
A
ρA]

, where ρA =
∑

i∈O ρ
A
i , which would put the new preparations and measurements in the standard

form while preserving their joint probabilities.

The case of classical operational probabilistic theory

The case of classical OPT in the time-symmetric approach can be obtained by restricting the quantum formalism to CP maps
that are diagonal in a fixed orthonormal basis for each system. The general form of such CP maps is given by Eqs. (30) and (31)
in Methods. Here, we discuss the classical case in the context of a simple example, highlighting an important difference between
the concept of probability distribution of a classical random variable and the state of a classical system that carries the variable,
which may sometimes lead to confusion.

Consider a random bit X = {0, 1} whose possible values have probabilities p(X = 0) and p(X = 1), p(X = 0) + p(X = 1) = 1,
conditionally on some information. According to the circuit framework, well defined probabilities are associated only with the
outcomes of closed circuits, so such a random bit must be associated with the two outcomes of an operation from the trivial
system to itself. Nevertheless, such a bit must be carried by some physical system, and we may ask what the state of that system
can be. We will illustrate the fact that there is no unique answer, as this depends on the form of the measurement by which the
value of the bit would be learned.

First, consider how the logical values 0 and 1 can be encoded in a physical system. Since it must be possible to distinguish
these values by a suitable measurement on the system, the system has to be non-trivial, i.e., at least two-dimensional. For
simplicity, we will assume that it is exactly two-dimensional (we can always think of the relevant information as contained
in a suitably defined two-dimensional subsystem of a fictitious larger system). Representing for convenience the states of the
system using operators over a two-dimensional Hilbert space that are diagonal in the basis {|0⟩, |1⟩}, one can see that the two
logical values must be associated with the two deterministic states S 0 = (|0⟩⟨0|; |0⟩⟨0|) and S 1 = (|1⟩⟨1|; |1⟩⟨1|). This is because
only these deterministic states are perfectly distinguishable, i.e., only for them does there exist a measurement {E j}1j=0, such
that the probability for its outcomes conditional on the preparation that produces the state (Eq. (21) in Methods) satisfies
p( j|{E j}1j=0, S i) = δi, j, ∀i, j = 0, 1. (Note that here we allow non-standard measurements too.) The most general form of a
measurement that achieves this is

{E j}1j=0, where E0 = q|0⟩⟨0|, E1 = (2 − q)|1⟩⟨1|, q ∈ (0, 2). (1)

Consider now the case in which the value of the bit is not known. We can think that someone has prepared the system that
carries the bit in one of the two possible deterministic states S 0 or S 1, but we do not know which one. This means that the
system that carries the bit can be thought of as the output system of a preparation device with two possible outcomes, i = 0, 1,
which are such that conditionally on knowledge of the outcome, the preparation would be updated to the respective deterministic
preparation {|0⟩⟨0|} or {|1⟩⟨1|} (corresponding to the deterministic state S 0 or S 1). From the rule for updating the description
of an operation conditionally on information about its outcome (Eq. (34) in Methods and discussion after it), we see that such
a preparation can most generally have the form {ρi}1i=0, where ρ0 = p|0⟩⟨0|, ρ1 = (1 − p)|1⟩⟨1|, p ∈ [0, 1], with the two states
corresponding to the two outcomes being respectively (ρ0; ρ) and (ρ1; ρ), ρ = p|0⟩⟨0| + (1 − p)|1⟩⟨1|. If we have no access to the
outcomes of the preparation, we would describe it by the coarse-grained deterministic preparation {ρ} yielding the deterministic
state (ρ; ρ).

In the standard approach, where all measurements are assumed to be of the standard type and the theory obeys the causality
axiom, the coefficients p and 1 − p above are equal to the probabilities of the respective preparation outcomes, for any measure-
ment applied on the system. They are also equal to the probabilities of the outcomes of a subsequent measurement on the system
that reads out the value of the bit (there is only one such measurement in the standard approach: E0 = |0⟩⟨0|, E1 = |1⟩⟨1|). This
is why the standard density operator ρ = p|0⟩⟨0| + (1 − p)|1⟩⟨1| is often regarded as equivalent to our probabilistic description of
the random bit (where p(X = 0) = p and p(X = 1) = 1 − p). However, we stress that in the general case the coefficients p and
(1− p) are not equal to the probabilities of the outcomes of the preparation, nor to the probabilities of a subsequent measurement
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in the language of circuits this would have to be described by an operation acting on a larger composite system that includes the
carriers of the information about the past outcomes, while these carriers would be seen as outputs of suitably extended operations
in the past. The very notion of operation in the circuit framework, by definition, carries the idea that the input and output systems
of an operation are the sole mediator through which any correlations between the outcomes of that operation and the outcomes
of other operations is established. One can figuratively think of the boxes in a circuit as isolated space-time regions that can
exchange information with each other only through the wires. We will refer to this idea as the ‘closed-box’ assumption.

This is not an assumption that concerns the circuit framework as a mathematical model. It is an assumption that we make
about a part of an experiment when we say that it corresponds to a valid operation with given input and output systems. One way
to think about it is to imagine that we could block the information transmission through the wires corresponding to the assumed
input and output systems of the box. If the wires are blocked, all random variables in the box should be completely uncorrelated
from other events in the experiment. [Note that a wire in the circuit picture is not a physical wire in space, but is more akin to an
ideal channel in time, albeit an instantaneous one (actual channels are represented by boxes, while a wire connecting two boxes
signifies that the output of one box is an input of the other).]

If systems were classical objects that we could track as they go from one experiment to another, we could in principle know
the paths of information exchange by tracking the systems. But at the microscopic level, the exchange of information is not
evident, and in practice a specific circuit structure in the sense above can only be assumed to hold, usually based on some
physical considerations (e.g., extrapolating intuition from classical physics). Assuming that we can recognize the structure of
boxes and wires in a given experiment, however, is necessary in order for a theory to make non-trivial sense.

The no-post-selection criterion in the standard approach

Consider an experiment in which a quantum operation from system A to system B is chosen out of a set of possible such
operations {Mλ,A→B

iλ }iλ∈Oλ , labeled by λ ∈ Λ, according to a probability distribution p(λ) ≥ 0,
∑
λ∈Λ p(λ) = 1, independent of

past events. Notice that the whole experiment can be equivalently viewed as a single quantum operation with a larger number of
outcomes, {p(λ)Mλ,A→B

iλ }iλ∈Oλ,λ∈Λ. Imagine that the experiment is performed inside a box with input system A and output system
B by an apparatus which outputs in separate registers the values of λ and iλ. If we only look at the value of λ, conditionally on
that information we can say that the operation {Mλ,A→B

iλ }iλ∈Oλ has been applied, with the outcome of that operation being stored
in the other register. We see that in this case an operation {Mλ,A→B

iλ }iλ∈Oλ corresponds to a set of events between A and B that
is a proper subset of a larger set of possible events that also define an operation. Specifically, the operation {Mλ,A→B

iλ }iλ∈Oλ is
obtained from {p(λ)Mλ,A→B

iλ }iλ∈Oλ,λ∈Λ by updating the description of possible events, conditionally on gained information. This
observation suggests a point of view according to which an operation represents knowledge about the possible events in a given
region, which can be updated upon learning or discarding of information.

If we have a given operation, any subset of the outcomes of that operation would obey the closed-box assumption, because
learning whether the outcome belongs to a subset can be done inside a closed box. However, not all subsets of the outcomes of
an operation define a valid operation in the standard formulation of quantum theory. What is the criterion that defines a given set
of events that obeys the closed-box assumption as a valid operation?

Intuitively, one may say that the key distinction between a valid operation and an arbitrary subset of the outcomes of a valid
operation is that an operation is something that an experimenter is able to choose ‘at will’. For example, we think that we could
‘choose’ a measurement, but not the outcome of a measurement. How can we formalize this idea?

One possible way could be through the notion of a freely chosen variable as a variable that is uncorrelated from events in the
past [4–6]. If we adopt this point of view, a valid operation would be one that satisfies the causality axiom [2]. But then the
axiom would be part of the definition of operation and not an axiom. However, it is clear that there is some nontrivial physical
property that this condition expresses, i.e., it is regarded as an axiom for a reason. The fact that theories that allow signaling
from the future are considered sensible [7] further shows that the causality axiom is not the implicit assumption that one makes
about what an operation is supposed to mean.

There is another idea that can be said to express the intuition of being able to ‘choose’ an operation, which is in principle
compatible with signaling to the past, and in the context of which the causality axiom expresses a nontrivial physical constraint.
This is the idea that the variables that define an operation are (or at least can be) obtained without post-selection, i.e., they can
be known before the time of the input system unconditionally on information available in the future. It is this criterion that
is implicitly assumed in the standard approach to quantum theory. Indeed, under this condition the causality axiom captures
a nontrivial empirical fact—namely, that out of the larger class of potential operations that we could obtain by selecting sets
of events that obey the closed-box assumption, only the class of standard operations can be obtained without post-selection. A
priori, the non-standard operations that in practice can only be obtained with post-selection could have been obtainable without
post-selection too. The fact that they are not can be thought of as enforced by the axiom, since adding any of these operations
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to the class of standard operations would violate the axiom (the joint probabilities for circuits of such operations can be easily
calculated using Bayes’s theorem; see Methods).

We remark that if we redefine the class of valid operations not only by adding non-standard operations that require post-
selection to the standard ones, but also by excluding standard operations, we can obtain a new class that obeys the causality
axiom. For example, we could define measurements to consist only of sets of standard effects {EA

j } j∈Q that satisfy
∑

j∈Q EA
j = E

A

for some fixed E
A
< 11A). But the new operations will be isomorphic to operations in the standard theory. In this example, we

could redefine the operators describing a measurement as EA
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)−
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2 and the operators describing a preparation

{ρA
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, where ρA =
∑

i∈O ρ
A
i , which would put the new preparations and measurements in the standard

form while preserving their joint probabilities.

The case of classical operational probabilistic theory

The case of classical OPT in the time-symmetric approach can be obtained by restricting the quantum formalism to CP maps
that are diagonal in a fixed orthonormal basis for each system. The general form of such CP maps is given by Eqs. (30) and (31)
in Methods. Here, we discuss the classical case in the context of a simple example, highlighting an important difference between
the concept of probability distribution of a classical random variable and the state of a classical system that carries the variable,
which may sometimes lead to confusion.

Consider a random bit X = {0, 1} whose possible values have probabilities p(X = 0) and p(X = 1), p(X = 0) + p(X = 1) = 1,
conditionally on some information. According to the circuit framework, well defined probabilities are associated only with the
outcomes of closed circuits, so such a random bit must be associated with the two outcomes of an operation from the trivial
system to itself. Nevertheless, such a bit must be carried by some physical system, and we may ask what the state of that system
can be. We will illustrate the fact that there is no unique answer, as this depends on the form of the measurement by which the
value of the bit would be learned.

First, consider how the logical values 0 and 1 can be encoded in a physical system. Since it must be possible to distinguish
these values by a suitable measurement on the system, the system has to be non-trivial, i.e., at least two-dimensional. For
simplicity, we will assume that it is exactly two-dimensional (we can always think of the relevant information as contained
in a suitably defined two-dimensional subsystem of a fictitious larger system). Representing for convenience the states of the
system using operators over a two-dimensional Hilbert space that are diagonal in the basis {|0⟩, |1⟩}, one can see that the two
logical values must be associated with the two deterministic states S 0 = (|0⟩⟨0|; |0⟩⟨0|) and S 1 = (|1⟩⟨1|; |1⟩⟨1|). This is because
only these deterministic states are perfectly distinguishable, i.e., only for them does there exist a measurement {E j}1j=0, such
that the probability for its outcomes conditional on the preparation that produces the state (Eq. (21) in Methods) satisfies
p( j|{E j}1j=0, S i) = δi, j, ∀i, j = 0, 1. (Note that here we allow non-standard measurements too.) The most general form of a
measurement that achieves this is

{E j}1j=0, where E0 = q|0⟩⟨0|, E1 = (2 − q)|1⟩⟨1|, q ∈ (0, 2). (1)

Consider now the case in which the value of the bit is not known. We can think that someone has prepared the system that
carries the bit in one of the two possible deterministic states S 0 or S 1, but we do not know which one. This means that the
system that carries the bit can be thought of as the output system of a preparation device with two possible outcomes, i = 0, 1,
which are such that conditionally on knowledge of the outcome, the preparation would be updated to the respective deterministic
preparation {|0⟩⟨0|} or {|1⟩⟨1|} (corresponding to the deterministic state S 0 or S 1). From the rule for updating the description
of an operation conditionally on information about its outcome (Eq. (34) in Methods and discussion after it), we see that such
a preparation can most generally have the form {ρi}1i=0, where ρ0 = p|0⟩⟨0|, ρ1 = (1 − p)|1⟩⟨1|, p ∈ [0, 1], with the two states
corresponding to the two outcomes being respectively (ρ0; ρ) and (ρ1; ρ), ρ = p|0⟩⟨0| + (1 − p)|1⟩⟨1|. If we have no access to the
outcomes of the preparation, we would describe it by the coarse-grained deterministic preparation {ρ} yielding the deterministic
state (ρ; ρ).

In the standard approach, where all measurements are assumed to be of the standard type and the theory obeys the causality
axiom, the coefficients p and 1 − p above are equal to the probabilities of the respective preparation outcomes, for any measure-
ment applied on the system. They are also equal to the probabilities of the outcomes of a subsequent measurement on the system
that reads out the value of the bit (there is only one such measurement in the standard approach: E0 = |0⟩⟨0|, E1 = |1⟩⟨1|). This
is why the standard density operator ρ = p|0⟩⟨0| + (1 − p)|1⟩⟨1| is often regarded as equivalent to our probabilistic description of
the random bit (where p(X = 0) = p and p(X = 1) = 1 − p). However, we stress that in the general case the coefficients p and
(1− p) are not equal to the probabilities of the outcomes of the preparation, nor to the probabilities of a subsequent measurement
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on the system that reads the value of the bit. Indeed, consider a measurement of the form (1) with q ! 1 (obtained, for instance,
using post-selection as described below). In this case, the joint probabilities for the preparation and measurement outcomes are

p(i, j|{ρi}1i=0, {E j}1j=0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pq
pq+(1−p)(2−q) , for i = j = 0

(1−p)(2−q)
pq+(1−p)(2−q) , for i = j = 1
0, for i ! j

. (2)

Note that, since the measurement is one that perfectly distinguishes the two values of the bit, the (marginal) probability of the
event of preparing a given value x of the bit X is equal to the probability of the event of reading out that value, and equal to the
probability of the joint event of preparing and reading out that value. The logical value of the bit X can thus be associated with
any of these respective events, and its probability with the probability of that corresponding event. We have

p(X = 0) =
pq

pq + (1 − p)(2 − q)
, p(X = 1) =

(1 − p)(2 − q)
pq + (1 − p)(2 − q)

. (3)

We see that there is no unique value of p (and hence no unique deterministic state (ρ; ρ)) associated with a system carrying a
random bit with a given probability distribution p(X), unless we also specify the form of the measurement (here the parameter
q), which in the standard approach is implicitly specified (the case q = 1).

The difference between the state of a classical system and the probability of the random variable carried by the system can
be seen clearly in the context of updating the probabilities of the outcomes of the preparation conditionally on information
about the outcomes of the measurement. Consider the same preparation as above, but connected to the standard three-outcome
measurement {E′k}2k=0, where E′0 =

q
2 |0⟩⟨0|, E′1 =

2−q
2 |1⟩⟨1|, E′2 =

2−q
2 |0⟩⟨0| +

q
2 |1⟩⟨1|. In this case, the probabilities of the two

preparation outcomes are p and (1 − p). (The joint probabilities of the preparation and measurement outcomes are p(i = 0, k =
0|{ρi}1i=0, {E′k}2k=0) = pq/2, p(i = 0, k = 1|{ρi}1i=0, {E′k}2k=0) = 0, p(i = 0, k = 2|{ρi}1i=0, {E′k}2k=0) = p(2 − q)/2, p(i = 1, k =
0|{ρi}1i=0, {E′k}2k=0) = 0, p(i = 1, k = 1|{ρi}1i=0, {E′k}2k=0) = (1 − p)(2 − q)/2, p(i = 1, k = 2|{ρi}1i=0, {E′k}2k=0) = (1 − p)q/2.) If we
look at the outcome of the measurement in a way that only reveals whether the outcome is k = 2 or not, conditionally on finding
out that it is not, we would update the description of the measurement exactly to the two-outcome measurement (1). The joint
probabilities for the preparation and measurement outcomes are also updated accordingly, in agreement with Bayes’s theorem,
to those in Eq. (2), with the probabilities of the preparation outcomes becoming those in Eq. (3). Note, however, that even though
the probabilities of the preparation outcomes are updated, the state associated with the coarse-grained preparation is not. This is
because the state, by definition, is a mathematical object associated with the local description of the procedure in the preparation
box, and this description is not altered by information gained from the measurement box. Since in the standard approach the
state and the probability of the preparation outcomes are often identified, it is common to see discussions about updating the
state that the system had prior to a measurement conditionally on the outcome of the measurement. From the perspective of the
operational approach, this is a category mistake. The state of a system can only be updated conditionally on information gained
from the preparation box.

Consistency of the operational interpretation of the time-symmetric formulation

As discussed in the main text, in the limit where all physical systems in the universe are included in our description, we obtain
a global ‘field’ picture similar to the one in Fig. 4, where the transformation in the bulk of the space-time region between two
instants of time is deterministic, and all random data is outsourced to the boundary. The toy example of Fig. 4 depicts the case
where the dynamics is unitary and the future boundary measurement is of the standard type, but the time-symmetric formulation
in principle permits more general operations both in the bulk and on the boundary, because it does not require the sum of the
CP maps associated with the outcomes of an operation to be a CPTP map. For example, Fig. 5 illustrates the case of unitary
dynamics in the bulk combined with a non-standard future boundary measurement, and how this leads to the possibility of
effectively obtaining non-standard operations at specific space-time location without post-selection. One may wonder whether
such scenarios make sense operationally because, for instance, the possibility for a non-standard future boundary condition
allows for non-local correlations to be established as a result of events in the future, and this seems to offer the possibility of
explaining arbitrary observations as a result of suitable future boundary conditions, rendering the theory non-falsifiable. Here, we
discuss why this is not the case, highlighting the fact that the theory makes operational sense locally while also being consistent
with the global field picture.

The key point to be emphasized is that in practice we infer the global picture based on the results of local experiments
described by locally available information, not the other way around. As noted earlier, the assumption that we can recognize
experimental setups corresponding to specific circuits is necessary in order for an operational probabilistic theory to have an
empirical meaning. By definition, a circuit is associated with an experimental setup in which specific events have well defined
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probabilities conditionally on the variables that define the setup only. Hence, a local circuit makes sense by definition. The local
circuits that we find in practice do not have to be of the standard kind—we may find circuits consisting of non-standard operations
that can be obtained without post-selection (as in the situation depicted in Fig. 5). But any local circuit should be consistent with
the global field picture, i.e., it should be possible to understand it as arising effectively from the global circuit of the universe,
even though we do not need to know the global circuit in order to describe the local experimental setup and corresponding local
circuit. Note that according to the global field picture all classical information in the universe can be thought of as existing on
a holographic hypersurface (the boundary of space-time), but consistently with it, we can also think of effective local circuits
taking place in the bulk. By definition, any classical information that can be thought to exist in the bulk must be projected
consistently on the boundary. In particular, the probabilities for all classical variables that can be thought to exist in the bulk are
the same as those of their holographic projections. Thus, the local and global points of view are consistent.

Finally, we remark that similarly to the standard formulation of quantum theory, the time-symmetric formulation makes
falsifiable propositions. As pointed out, e.g., in Ref. [8], falsifiable propositions are introduced in the theory by the existence
of states that can be perfectly distinguished from some other states. The fact that the time-symmetric formulation contains such
logical propositions was demonstrated for the special case of diagonal operators in the previous section. More generally, any
deterministic state (ρA; ρA), where ρA ∈ L(HA) does not have full rank, can be perfectly distinguished from a state (σA;σA),
where σA has support orthogonal to the support of ρA. We can distinguish two such states using, for example, a measurement of
the standard type with two outcomes corresponding to the effects (PA; 11A) and (11A − PA; 11A), where PA is the projector on the
support of ρA.
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on the system that reads the value of the bit. Indeed, consider a measurement of the form (1) with q ! 1 (obtained, for instance,
using post-selection as described below). In this case, the joint probabilities for the preparation and measurement outcomes are

p(i, j|{ρi}1i=0, {E j}1j=0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pq
pq+(1−p)(2−q) , for i = j = 0

(1−p)(2−q)
pq+(1−p)(2−q) , for i = j = 1
0, for i ! j

. (2)

Note that, since the measurement is one that perfectly distinguishes the two values of the bit, the (marginal) probability of the
event of preparing a given value x of the bit X is equal to the probability of the event of reading out that value, and equal to the
probability of the joint event of preparing and reading out that value. The logical value of the bit X can thus be associated with
any of these respective events, and its probability with the probability of that corresponding event. We have

p(X = 0) =
pq

pq + (1 − p)(2 − q)
, p(X = 1) =

(1 − p)(2 − q)
pq + (1 − p)(2 − q)

. (3)

We see that there is no unique value of p (and hence no unique deterministic state (ρ; ρ)) associated with a system carrying a
random bit with a given probability distribution p(X), unless we also specify the form of the measurement (here the parameter
q), which in the standard approach is implicitly specified (the case q = 1).

The difference between the state of a classical system and the probability of the random variable carried by the system can
be seen clearly in the context of updating the probabilities of the outcomes of the preparation conditionally on information
about the outcomes of the measurement. Consider the same preparation as above, but connected to the standard three-outcome
measurement {E′k}2k=0, where E′0 =

q
2 |0⟩⟨0|, E′1 =

2−q
2 |1⟩⟨1|, E′2 =

2−q
2 |0⟩⟨0| +

q
2 |1⟩⟨1|. In this case, the probabilities of the two

preparation outcomes are p and (1 − p). (The joint probabilities of the preparation and measurement outcomes are p(i = 0, k =
0|{ρi}1i=0, {E′k}2k=0) = pq/2, p(i = 0, k = 1|{ρi}1i=0, {E′k}2k=0) = 0, p(i = 0, k = 2|{ρi}1i=0, {E′k}2k=0) = p(2 − q)/2, p(i = 1, k =
0|{ρi}1i=0, {E′k}2k=0) = 0, p(i = 1, k = 1|{ρi}1i=0, {E′k}2k=0) = (1 − p)(2 − q)/2, p(i = 1, k = 2|{ρi}1i=0, {E′k}2k=0) = (1 − p)q/2.) If we
look at the outcome of the measurement in a way that only reveals whether the outcome is k = 2 or not, conditionally on finding
out that it is not, we would update the description of the measurement exactly to the two-outcome measurement (1). The joint
probabilities for the preparation and measurement outcomes are also updated accordingly, in agreement with Bayes’s theorem,
to those in Eq. (2), with the probabilities of the preparation outcomes becoming those in Eq. (3). Note, however, that even though
the probabilities of the preparation outcomes are updated, the state associated with the coarse-grained preparation is not. This is
because the state, by definition, is a mathematical object associated with the local description of the procedure in the preparation
box, and this description is not altered by information gained from the measurement box. Since in the standard approach the
state and the probability of the preparation outcomes are often identified, it is common to see discussions about updating the
state that the system had prior to a measurement conditionally on the outcome of the measurement. From the perspective of the
operational approach, this is a category mistake. The state of a system can only be updated conditionally on information gained
from the preparation box.

Consistency of the operational interpretation of the time-symmetric formulation

As discussed in the main text, in the limit where all physical systems in the universe are included in our description, we obtain
a global ‘field’ picture similar to the one in Fig. 4, where the transformation in the bulk of the space-time region between two
instants of time is deterministic, and all random data is outsourced to the boundary. The toy example of Fig. 4 depicts the case
where the dynamics is unitary and the future boundary measurement is of the standard type, but the time-symmetric formulation
in principle permits more general operations both in the bulk and on the boundary, because it does not require the sum of the
CP maps associated with the outcomes of an operation to be a CPTP map. For example, Fig. 5 illustrates the case of unitary
dynamics in the bulk combined with a non-standard future boundary measurement, and how this leads to the possibility of
effectively obtaining non-standard operations at specific space-time location without post-selection. One may wonder whether
such scenarios make sense operationally because, for instance, the possibility for a non-standard future boundary condition
allows for non-local correlations to be established as a result of events in the future, and this seems to offer the possibility of
explaining arbitrary observations as a result of suitable future boundary conditions, rendering the theory non-falsifiable. Here, we
discuss why this is not the case, highlighting the fact that the theory makes operational sense locally while also being consistent
with the global field picture.

The key point to be emphasized is that in practice we infer the global picture based on the results of local experiments
described by locally available information, not the other way around. As noted earlier, the assumption that we can recognize
experimental setups corresponding to specific circuits is necessary in order for an operational probabilistic theory to have an
empirical meaning. By definition, a circuit is associated with an experimental setup in which specific events have well defined
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probabilities conditionally on the variables that define the setup only. Hence, a local circuit makes sense by definition. The local
circuits that we find in practice do not have to be of the standard kind—we may find circuits consisting of non-standard operations
that can be obtained without post-selection (as in the situation depicted in Fig. 5). But any local circuit should be consistent with
the global field picture, i.e., it should be possible to understand it as arising effectively from the global circuit of the universe,
even though we do not need to know the global circuit in order to describe the local experimental setup and corresponding local
circuit. Note that according to the global field picture all classical information in the universe can be thought of as existing on
a holographic hypersurface (the boundary of space-time), but consistently with it, we can also think of effective local circuits
taking place in the bulk. By definition, any classical information that can be thought to exist in the bulk must be projected
consistently on the boundary. In particular, the probabilities for all classical variables that can be thought to exist in the bulk are
the same as those of their holographic projections. Thus, the local and global points of view are consistent.

Finally, we remark that similarly to the standard formulation of quantum theory, the time-symmetric formulation makes
falsifiable propositions. As pointed out, e.g., in Ref. [8], falsifiable propositions are introduced in the theory by the existence
of states that can be perfectly distinguished from some other states. The fact that the time-symmetric formulation contains such
logical propositions was demonstrated for the special case of diagonal operators in the previous section. More generally, any
deterministic state (ρA; ρA), where ρA ∈ L(HA) does not have full rank, can be perfectly distinguished from a state (σA;σA),
where σA has support orthogonal to the support of ρA. We can distinguish two such states using, for example, a measurement of
the standard type with two outcomes corresponding to the effects (PA; 11A) and (11A − PA; 11A), where PA is the projector on the
support of ρA.
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