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Abstract
The idea that events are equippedwith apartial causal order is central to ourunderstandingof physics in the
tested regimes: given twopointlike eventsA andB, eitherA is in the causal past ofB,B is in the causal past of
A, orA andB are space-like separated.Operationally, themeaningof these order relations corresponds to
constraints on thepossible correlationsbetween experiments performed in the vicinities of the respective
events: ifA is in the causal past ofB, an experimenter atA could signal to an experimenter atBbutnot the
otherway around,while ifA andB are space-like separated, no signaling is possible in either direction. In
the context of a concrete physical theory, the correlations compatiblewith a given causal configurationmay
obey further constraints. For instance, space-like correlations inquantummechanics arise from local
measurements on joint quantumstates,while time-like correlations are established via quantumchannels.
Similarly to other variables, however, the causal order of a set of events couldbe random, and little is
understoodabout the constraints that causality implies in this case.Amaindifficulty concerns the fact that
the order of events cannowgenerally dependon theoperationsperformedat the locationsof these events,
since, for instance, anoperation atA could influence theorder inwhichB andCoccur inA’s future. So far,
no formal theoryof causality compatiblewith suchdynamical causal orderhas beendeveloped.Apart from
beingof fundamental interest in the context of inferring causal relations, such a theory is imperative for
understanding recent suggestions that the causal order of events inquantummechanics canbe indefinite.
Here,wedevelop such a theory in the generalmultipartite case. Starting fromabackground-independent
definitionof causality,wederive an iteratively formulated canonical decompositionofmultipartite causal
correlations. For afixednumberof settings andoutcomes for eachparty, these correlations formapolytope
whose facets define causal inequalities. The case of quantumcorrelations in this paradigm is capturedby
theprocessmatrix formalism.We investigate the linkbetween causality and the closely relatednotionof
causal separability of quantumprocesses,whichweheredefine rigorously in analogywith the linkbetween
Bell locality and separability of quantumstates.We show that causality and causal separability arenot
equivalent in general by giving an exampleof aphysically admissible tripartite quantumprocess that is
causal butnot causally separable.Wealso show that there are causally separable quantumprocesses that
becomenon-causal if extendedby supplying thepartieswith entangledancillas.Thismotivates the concepts
of extensibly causal and extensibly causally separable (ECS)processes, forwhich the respective property
remains invariant under extension.Wecharacterize the class of ECSquantumprocesses in the tripartite
case via simple conditionson the formof theprocessmatrix.We show that theprocesses realizable by
classically controlledquantumcircuits areECSand conjecture that the reverse alsoholds.

1. Introduction

The possibility for dynamical and indefinite causal structures in quantum theory andmore general probabilistic
theories has recently attracted a great deal of interest, both from a foundational point of view and in the context
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of quantum information processing [1–23].Motivated by the long standing search for a theory of quantum
gravity, where the causal structure is expected to be dynamical as inGeneral Relativity but fundamentally
probabilistic in nature, as well as by the exploration of novel quantumarchitectures beyond the standard circuit
model, operational ways of thinking about causal order in a probabilistic setting have provided new perspectives
on quantummechanics, its possible applications, and routes for potential extensions.

A general framework for the study of correlations between local experiments without the assumption of a
predefined causal order between themwas proposed in [4]. In this so called process framework, each experiment
is associatedwith an input and an output systembetweenwhich an experimenter can performdifferent
operations, but no specific assumption about the existence of a causal structure inwhich the experiments are
embedded ismade.When the experiments take place atfixed locations in a background space-time in
circumstances definedwithout post-selection, the causal structure of space-time imposes signaling constraints
on the correlations between the experiments. For example, there can be signaling fromone experiment to
another only if the former takes place in the past light cone of the latter, but no signaling between space-like
separated locations or from the future to the past is possible. In [4], it was shown that if the local operations are
described by quantummechanics, it is possible to conceive correlations that are incompatible with any
underlying causal structure. Such correlations allow two parties, Alice and Bob, to establish correlations that
violate a causal inequality, which is impossible if their operations take place in a causal order, even if that order is
random.A similar possibility was subsequently shown to exist in amultipartite setting evenwhen the local
operations are purely classical [9], which in the bipartite case is not possible [4]. It is not known at present
whether such joint processes could have a physical realizationwithout post-selection, that is, whether one could
prepare a setup that leads to correlations violating causal inequalities between separate experimenters who
locally experience the validity of standard quantummechanics.

Another peculiar effect that seems at oddswith causality, which has a physical realizationwithout post-
selection, arises when local quantumoperations are applied in an order that depends on the value of a variable
prepared in a quantum superposition [3, 5, 6, 10, 17], a technique known as ‘quantum switch’ [3]. This approach
allows achieving certain tasks that are impossible if the quantumoperations are applied in a definite causal order.
In contrast to the violation of a causal inequality, however, this conclusion depends on the assumed description
of the local operations and is theory-dependent.

So far, the analysis of these effects has relied on semi-rigorous considerations aboutwhat itmeans for a
process to be compatible with ‘definite causal order’. A fully rigorous argument requires such considerations to
be rooted in a clear notion of causality, which, however, in this background-independent setting has been
lacking. Such a notion is expected to have a universal expressionwhich can be applied in the context of any
number of parties, but how to formulate it turns out to be a nontrivial problem. Simple considerations in the
multipartite case show that the causal order of a set of local experiments shouldmost generally be considered to
be a randomvariable that can depend on the settings of these experiments. The latter possibility cannot be
excluded since compatibly with our intuition of causality we can conceive of scenarios inwhich the setting in a
given local experiment can influence the order inwhich other experiments take place in the future. In other
words, causality should be expressed as a rule that constrains the joint conditional probabilities for the events in
the local experiments and the causal order between them, allowing for the possibility that causal configurations
unfold as a result of events in the past. A formal theory of such dynamical causal order is essential not only for
understanding the subject of indefinite causal order in quantummechanics ormore general theories, but also for
the problemof inferring causal structure beyond the classic paradigmof underlying deterministic variables and
static causal relations [24].

In this paper, we develop rigorous theory-independent and theory-dependent notions of causality in the
process framework and characterize the structure and relations between the corresponding classes of processes
they define. Section 2 is devoted to the theory-independent perspective, which contains our core result.We
formalize the process framework in theory-independent terms and propose a definition of causality which
allows for the possibility of dynamical causal order.We develop a number of concepts, such asmultipartite
signaling, reduced and conditional processes, and derive necessary and sufficient conditions for a process to be
causal, which are expressed in the formof an iteratively defined canonical decomposition of the probabilities in
the process. This decomposition can be understood as describing a causal ‘unraveling’ of the events in the
experiment in a sequence, showing that the proposed notion of causality yields the structure expected from
intuition. Apart frombeing logically non-trivial, this result has important conceptual implications—it presents
uswith an understanding of causal order as a random function on randomevents rather than the ordering of
underlying locations inwhich events happen. This perspective is in the spirit of the idea of background
independence in general relativity, according towhich there are no underlying locations, but only events and the
relations between them. In section 3, we focus on the quantumprocess framework, wherewe develop different
theory-dependent notions of causality, which in principle have analogues inmore general process theories too.
Specifically, we investigate several possible generalizations of the bipartite notion of causal separability, which
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was previously defined heuristically in the bipartite case by postulating a particular formof the quantumprocess
matrix [4].We show that this form can be understood as arising from the canonical decomposition of causal
processes under the condition that each process in this decomposition is a valid quantumprocess.We define the
multipartite concept based on this principle.We show that the sets of causal and causally separable processes are
not equivalent in themultipartite case, by giving an explicit example of a class of processes that are causal but not
causally separable. This example is based on the ‘quantum switch’ technique discussed earlier.We also show
that, surprisingly, there exist causally separable (and hence causal) quantumprocesses that become non-causal if
extended by supplying the parties with an entangled input ancilla. This example of ‘activation of non-causality’ is
constructed based on a suitablemodification of the non-causal processmatrix of [4]. This observationmotivates
the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective
property remains invariant under extensionwith arbitrary input ancillas.We derive a characterization of the
class of ECS quantumprocesses in the tripartite case in terms of simple conditions on the formof the process
matrix, which generalize the known formof bipartite causally separable processmatrices. In the bipartite case,
causal separability and extensible causal separability are equivalent, hence the class of ECS processes can be
regarded as another possiblemultipartite generalization of the previously known bipartite concept. Finally, we
consider the class of processes realizable by classically controlled quantum circuits, whichwe show is inside the
class of ECS processes. These, too, are equivalent to the causally separable processes in the bipartite case and
provide a possiblemultipartite generalization based on a different principle.We conjecture that the processes
that can be obtained by classically controlled quantum circuits are equivalent to the ECS processes, and hence
are described by processmatrices obeying the simple conditionswe have derived.We provide arguments in
favor of this conjecture based on analysis in the tripartite case. In section 4, we summarize our results and discuss
future research directions.

2. The process framework

2.1. General processes
The process framework introduced in [4] describes probabilities for the outcomes of local experiments
associatedwith different parties, Alice, Bob, Charlie, etc, performed in abstract circumstances definedwithout
assuming the existence of a global causal order between the experiments, but only a local order of the events in
each of them. Each local experiment can be thought of as performed inside an isolated laboratory, where, at a
given instant, an input system is received in the laboratory, it is subject to some operation that yields one of a set
of possible outcomes, and, at a given later instant, an output system is sent out of the laboratory. The input and
output systems are assumed to provide the onlymeans of information exchange between events in the
laboratory and any events in the rest of thewhole experiment. The framework in [4]was developed for the case
where the local experiments are described by standard quantummechanics, under a set of specific assumptions.
These assumptions are that the joint probabilities of the outcomes of the local experiments are non-contextual
functions of the transformations (described by completely positive (CP)maps) associatedwith the local
outcomes, and that the local experiments can be extended to act on ancillas prepared in any joint quantum state.

There is a straightforwardway inwhich an analogous theory can be formulated starting from any generalized
operational probabilistic theory that has a formulation in the circuit framework [25–28] following the
construction in [4]. Indeed, the concepts of transformation and state are defined for any such theory, and so is the
idea of a composite system that is employed in the notion of adding an ancilla. (Note that the representation of
the quantumprocess framework [4] in terms of processmatrices (see section 3) is built around theChoi–
Jamiołkowski isomorphism [29, 30], whichmay not be available for arbitrary theories, but this concerns the
representation of the framework.)However, the above assumptions underlying the extension from a circuit
theory to a process theory, albeit arguably natural, are by nomeansmandatory. For example, one can conceive of
extensions of quantum theory inwhich the joint probability distributions are contextual, but nevertheless for
each single party themarginal probabilities are non-contextual and consistent with standard quantum
mechanics. One can also conceive of theories inwhich the allowed non-signaling ancillary resources are not
quantum states, although they give valid non-contextual probabilities for the outcomes of any combination of
local quantummeasurements [31]. It is therefore of interest to formulate a general process framework in
operational termswithout additional assumptions about how that frameworkmay be related to theories
expressed in the circuit framework. This is important also for the question of understanding the concept of
causal inequality introduced in [4], which tests the compatibility of a process with an underlying causal structure
in theory-independent terms.

To this end, wewill describe each local experiment, say that of Alice, by two variables—a setting s A, and an
outcome oAs for that setting.What these variables are supposed to correspond to in practice will be discussed
below. The possible settings for a given local experiment are assumed to belong to some set SA, and the outcomes
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for each value s A of the setting to a setOA
s . Sincewe can formally extend the possible outcomes for each setting

withfictitious outcomes that never occur, without loss of generality we can assume that the setsOA
s are identical

for all Îs SA A, i.e., ºO Os
A A. A particular event in Alice’s laboratory is thus described by a pair of variables

Î ´( )s o S O,A A A A. An operation is a collection of possible events Î{( )}s o,A A
o OA A for afixed value of Îs SA A.

The very occurrence of the local experiments, as well as the circumstances inwhich they take place, would be
conditional on some variable that wewill denote by ¼w A B C, , , , which belongs to some set W ¼A B C, , , of possible
such variables.What the variable ¼w A B C, , , is supposed to correspond to in practice will also be discussed below.

Definition 2.1 (Process).Mathematically, we define a process ¼A B, , for a set of local experiments (or parties)
= ¼{ } A B, , as the collection of conditional probabilities

º
Î Î Î

¼ ¼{ ( ∣ )}
( )





P o o s s w

o O s S X

, ,... , ,..., ,

, , , 1

A B A B A B A B

X X X X

, , , ,

for a given value of Î W¼ ¼w A B A B, , , , .

Definition 2.2 (Trivial process). For the purposes of expressingmore succinctly certain conditions later, it is
convenient to allow the set of local experiments = ¼{ } A B, , in the definition to be the empty set {}as a
special case. In that case, the corresponding process will be referred to as the trivial process.We define it to consist
of a single probability—that for the trivial outcome given the trivial setting—which is equal to 1.

In abstract terms, a theory in the process framework is specified by listing the different types of input and
output systems, all possible settings and outcomes between input and output systems of specific types, all
possible variables ¼w A B, , for whichwe have a valid occurrence of a set of local experiments = ¼{ } A B, , , and
the corresponding processes (1). Similarly to operational probabilistic theories in the circuit framework [25–28],
it is understood that equivalence classes of the variables s X, oX, and w A B, ,..., with regard to the probabilities (1)
are taken, and these variables are identifiedwith their equivalence classes.

Butwhat are these variables supposed to describe in practice? In [15, 16], it was argued that there are two
main ideas that underlie the concept of operation in the standard circuit framework for operational probabilistic
theories [25–28]. Thefirst one, termed the closed-box assumption, is the idea that the input and output systems of
an operation are the onlymeans of information exchange responsible for the correlations between the outcomes
of that operation and the outcomes of other operations in the global experiment. The second idea, termed the
no-post-selection criterion, whichmakes sense assuming a predefined notion of temporal ordering as in the
standard circuit formulation, is that the variable that defines an operation, or the setting s X, can be knownwith
certainty before the time of interactionwith the input systemunconditionally on any events in the future.

Since no predefined global time is assumed in our picture, the latter conditionwill be imagined to hold only
with respect to the local temporal sequence of events observed by each experimenter. Furthermore, wewill
assume that the variable ¼w A B, , that defines the global setup inwhich the individual experiments take place is
also obtainedwithout post-selection.We canmake sense of this idea by imagining that the variable is associated
with an event that fits within each of the local temporal frames of the experimenters and is such that it occurs
before any of them receives the input system.Wewill call processes that describe experiments of this kind pre-
selected processes. (For a generalization that admits post-selection, see [15].)

For the rest of this paper, wewill consider only pre-selected processes.Wewill drop the explicit specification
‘pre-selected’ for brevity, andwill refer to them simply as processes, unless wewant to explicitly emphasize the
assumption of pre-selection.Wewill also drop the explicit specification of the variable ¼w A B, , onwhich the joint
experiment is conditioned, andwewill simplywrite º ¼ ¼¼ { ( ∣ )} p o o s s, , , ,A B A B A B, , , keeping inmind
that every process describes circumstances defined by such a variable and hence all probabilities we consider are
implicitly conditional on such a variable.

2.2. Causal processes
In the circuit framework for operational probabilistic theories, causality is defined as the property that the
probability distribution over the outcomes of a given operation in a circuit do not depend onwhat operations
take place in the absolute future or absolute elsewhere [32] of that operation as defined by the strict partial order
(SPO) of the circuit composition [26, 27].More specifically, every circuit describes a set of operations taking
place at the vertices of a directed acyclic graph, whose directed edges (the circuit ‘wires’) correspond to systems
that go fromone operation to another. Such a graph defines a SPOon the operations in a circuit (a precise
definition of SPO is given below)—one operation is in the absolute past of another (equivalently, the latter is in
the absolute future of the former) if there exists a directed path from the former to the latter through the graph. If
there is no directed path connecting two operations, we say that one is the absolute elsewhere of the other. If we
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imagine that there is a local experiment taking place at every vertex of such a graph, the property of causality says
that the probabilities for the outcomes of local experiments that are in the causal past or causal elsewhere of a
given local experiment cannot depend on the setting of that experiment. A circuit theory that obeys this
condition, such as standard quantum theory, is called causal, and for such a theory the SPOdefined by the circuit
composition can be interpreted as causal order [26, 27]. This interpretation corresponds to the intuitive idea
that, if the setting of a local experiment is regarded as up to the ‘free choice’ of an experimenter, then any
correlations between that setting and other variablesmust indicate a causal influence of the setting on those
variables. From this perspective, causality can be understood as the condition that a variable can influence only
variables in its immediate location or in its absolute future.

In the process framework, we do not assume the existence of a given circuit inwhich the local experiments
are embedded. Thus, there is no natural SPOwith respect towhich to define causality. Nevertheless, wemay ask
whether the probabilities described by a given process are compatible with the existence of a SPOwith respect to
which causality is satisfied.How to formulate this precisely, however, is not immediately clear because the
process framework can describe situations inwhich the SPOmay be random. For instance, it can describe the
correlations between local experiments that can be embedded in different circuits according to some probability
distribution. Clearly, if the SPObetween the local experiments is random, itmust be the case that conditionally
on that SPO taking any particular value, the probabilities of the outcomes of the parties given their settingsmust
obey the above notion of causality. This condition, however, is not sufficient to capture the idea of causality. For
example, consider the local experiments of two parties, Alice and Bob, which are embedded at random in one of
two possible causal circuits where they occur in different orders. The probabilities for all events and the specific
circuit could be such that, conditionally on any particular circuit being realized, the joint probabilities of the
outcomes of the parties given their settings obey the above notion of causality, but nevertheless the setting of
Alice could be correlatedwith the circuit inwhich her experiment is embedded, and therebywith the SPOon the
two local experiments. Intuitively, such a situation should be in conflict with causality, because if Alice’s setting
could not influence events that occur in the past, it should not influencewhether or not Bob performs an
operation in the past. The circuit notion of causality cannot be used to define such an independence from the
past, because there the past is defined assuming afixed circuit. This indicates that we need amore general notion
of causality that imposes constraints on how the SPOon the local experiments can depend on the parties’
settings. A simple possibility is to require that the SPOon the local experimentsmust be independent of the
parties’ setting. This condition, however, is too restrictive, because, compatibly with the idea of causality, we can
conceive of scenarios where the setting of a given party influences the order inwhich other parties perform their
experiments in that party’s absolute future. Thus, amore sophisticated definition of causality is needed for the
process framework.Wenext develop such a definition.

First, let us review the properties of SPO and introduce some terminology. A SPOon a nonempty set of local
elements = ¼{ } A B C, , , is a binary relation  which satisfies the following conditions: (1) irreflexivity—
not A A; (2) transitivity—if A B and B C , then A C; (3) anti-symmetry—if A B , then not B A .
When two local experimentsA andB satisfy A B (equivalently, B A ), wewill say thatA is in the absolute
past ofB, or thatB is in the absolute future ofA [32]. It will be convenient to introduce the notation A B
(equivalently, B A), whichmeansA¹B and not A B , that is,A andB are different andA is not in the
absolute past ofB (equivalently,B is not in the absolute future ofA).Wewill also introduce the notation
A B, whichmeans A B and A B, that is,A andB are different andA is neither in the absolute past nor

in the absolute future ofB (and hence,B is neither in the absolute past nor in the absolute future ofA). In the case
when A B, wewill say thatA andB are absolutely independent, or thatA is in the absolute elsewhere [32] ofB
(and similarly,B is in the absolute elsewhere ofA). A prototypical example of these relations is the causal order
between the points in aMinkowski space-time—the absolute past/future of a given point corresponds to the
points in the past/future light-cone of this point, excluding the point itself, while the absolute elsewhere consists
of the points that are space-like separated from the point.

Note that if a set of elements = ¼{ } A B, , is equippedwith a SPO, the elementsX andY in any pair
Î ´( )  X Y, are related by X Y , X Y ,  X Y , or =X Y . The SPOon the set = ¼{ } A B, , is

equivalently described by the list of respective relations for each such pair, whichwewill denote by k ¼( )A B, , .
(This list obviouslymust respect the properties of SPO listed above.) Since for pairs (X,X) of identical elements
this relation is triviallyX=X, whenwe explicitly describe k ¼( )A B, , , wewill only list the pairwise relations for
all pairs of distinct elements of the set (if any). Note that this description is generally redundant due to the
transitivity of SPO. If we are given the pairwise relations for a set = ¼{ } A B, , , we have, in particular,
pairwise relations for any nonempty subset ¢ = ¼ Ì{ } X Y, , , i.e., a SPO k ¼( )A B, , on  implies a SPO
k ¼( )X Y, , on ¢ Ì  , ¢ ¹ {} .

As discussed above, the SPO k ¼( )A B, , on a set of local experiments = ¼{ } A B, , in terms of which
causality would be defined canmost generally be randomand correlatedwith the events in these experiments.
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The notion of causality would impose constraints on the possible correlations.Wewant these constraints to
formalize the following intuition about causality:

The choice of setting in a local experiment cannot affect the occurrence of events in the absolute past or
absolute elsewhere of that experiment, nor the SPO on such events and the experiment in question.

Since a process is defined by the conditional probabilities for the outcomes of the local experiments given
their settings and does not assume the existence of probabilities for the settings, wewill formulate the above
constraint at the level of probabilities conditional on the settings.We define this as follows.

Definition 2.3 (Causal process).Aprocess º ¼ ¼¼ { ( ∣ )} p o o s s, , , ,A B A B A B, , for a nonempty set of local
experiments = ¼{ } A B, , is called causal if and only if there exists a probability distribution
k ¼ ¼ ¼( ( ) ∣ )p A B o o s s, , , , , , ,A B A B , kå ¼ ¼ ¼ =k ¼ ( ( ) ∣ )( )p A B o o s s, , , , , , ,A B

A B A B
, ,

¼ ¼( ∣ )p o o s s, , , ,A B A B , where the randomvariable k ¼( )A B, , takes values in the possible SPOs on
= ¼{ } A B, , , such that for every local experiment, e.g.A, every subset = ¼{ } X Y, , of the rest of the local

experiments, and every SPO k k¼ º( ) ( )A X Y A, , , , on the local experiment in question and that subset,
we have

k k¼ = ¼( ( ) ∣ ) ( ( ) ∣ ) ( )     p A A o s s p A A o s, , , , , , , , , . 2A B B

Here, o denotes collectively the outcomes of all local expriments in , and A denotes the condition that
all these local experiments are in the causal past or causal elsewhere ofA (i.e., ¼ A X A Y, , , for all

¼Î X Y, , ). (The probability k ¼( ( ) ∣ )  p A A o s s, , , , ,A B is understood obtained from
k ¼ ¼ ¼( ( ) ∣ )p A B o o s s, , , , , , ,A B A B by summing over all cases inwhich k ¼( )A B, , is compatible with

k ( )A, and A (obviously, if k ( )A, itself is not compatible with A , the respective probability is
zero) and over all possible outcomes of the local experiments in the complement of ).

Note.Amonopartite process is trivially causal.

For a process ¼A B, , that is causal, the binary relation  of the SPO k ¼( )A B, , can be interpreted as
causal order. In that case, wewill use the terms ‘causal past’, ‘causal future’, ‘causal elsewhere’ and ‘causally
independent’ in the place of ‘absolute past’, ‘absolute future’, ‘absolute elsewhere’ and ‘absolutely independent’,
respectively.Wewill also refer to the list of pairwise relations k ¼( )A B, , as the causal configuration of the local
experiments (in the case of amonopartite process, the causal configuration is trivial).

Our goal next is to understand the structure of causal processes that arises from this definition and show that
it corresponds exactly towhat one expects from intuition.

2.3. Fixed-order causal processes, (no) signaling, reduced and conditional processes
Beforewe consider the case of general causal processes, it will be instructive to investigate the special case of
causal processes for which the causal configuration of the local experiments isfixed. Aswewill show, the
constraints on such processes can be expressed via the concept of signaling, whichwe develop below.We also
introduce several related concepts that will be of use later.

Definition 2.4 (Fixed-order causal process).Aprocess º ¼ ¼¼ { ( ∣ )} p o o s s, , , ,A B A B A B, , is called fixed-
order causal if it is compatiblewith a deterministic causal configuration, i.e., if it satisfies condition (2) for a SPO
k ¼( )A B, , that takes a particular value k k¼ = ¼( ) ( )*A B A B, , , , with unit probability for all possible
settings of the parties:

k
k k

¼ ¼ ¼ =
¼ ¹ ¼

" Î " Î ¼ " Î " Î ¼

( ( ) ∣ )
( ) ( )

( )
*

p A B o o s s

A B A B

s S s S o O o O

, , , , , , , 0,

iff , , , , ,

, , , , , . 3

A B A B

A A B B A A B B

Since our definition of causal process implies that the setting of a local experiment cannot be correlatedwith
the outcomes of local experiments that are in the absolute past or absolute elsewhere of that experiment, one
may expect that for anyfixed causal configuration of the local experiments, causality would impose constraints
on the possibility for signaling between them, similarly to the case in the circuit framework. In the case of two
experiments, signaling can be defined as follows:

Definition 2.5 (Bipartite signaling).We say that there is no signaling fromAlice (A) to Bob (B) in a bipartite
processA B, if and only if the probabilities of the process satisfy
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åº =

" Î Î Î
Î

( ∣ ) ( ∣ ) ( ∣ )

( )

p o s s p o o s s p o s

s S s S o O

, , , ,
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i.e., themarginal probabilities for the outcomes of Bob are independent of the setting of Alice for any possible
setting of Bob. Equivalently, we say that there is signaling fromAlice to Bob in the processA B, if and only if this
condition is not satisfied.

For afixed-order causal processA B, , where one of the relations A B , B A , or A B holds with
unit probability for all settings of the parties, we can see that signaling is possible fromone experiment to the
other only if the former is in the causal past of the latter, which agrees with the notion of causality in the circuit
framework [26, 27]. Indeed, assume for example that B A , i.e., k = =( ( ) ∣ )p A B B A s s, , 1A B , " Îs SA A,
" Îs SB B (and hence k = =( ( ) ∣ )p A B A B s s, , 0A B and k = =( ( ) ∣ )p A B A B s s, , 0A B , " Îs SA A,
" Îs SB B). Then, we have

= + +

= = =

" Î Î Î

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )
( ∣ ) ( ∣ ) ( ∣ )

( )


 

p o s s p A B o s s p B A o s s p A B o s s

p A B o s s p A B o s p o s

s S s S o O

, , , , , , ,

, , , ,

, , , 5

B A B B A B B A B B A B

B A B B B B B

A A B B B B

 

i.e., there is no signaling fromAlice to Bob. In a similar way, we see that if A B , there is no signaling fromBob
toAlice, while if A B, there is no signaling fromAlice to Bob and no signaling fromBob toAlice.

In the case ofmore than two local experiments, the relevant generalization of the above notion of signaling
may not be immediately obvious. Notice that if a given bipartite processA B, involves no signaling betweenA
andB, such a process is in principle compatible with the causal configuration A B (in fact, it is compatible
with any causal configuration of the two parties). However, in the case of processes formore than two local
experiments, even if there is lack of signaling between any pair of experiments for all possible settings of the rest
of the experiments, the processmay not be compatible with a causal configuration inwhich all experiments are
causally independent.

To see this, consider three local experiments performed byAlice, Bob, andCharlie, where each party’s input
and output systems are classical bits, and each party is allowed to perform any classical stochastic operation from
the input bit to the output bit. Let the experiments of Bob andCharlie be causally independent, and let Alice’s
experiment be in the absolute future of Bob’s experiment, but in the absolute elsewhere of Charlie’s experiment
(i.e., the causal configuration of the three parties is [B A ,  A C ,  B C]). Imagine that Charlie
receives his input system in one of the two possible states 0 or 1with probability 1/2, and depending on that
state, Alice andBob are in one of the following two scenarios. In the first scenario (say, whenCharlie receives 0),
Bob receives a randombit as an input system, his output bit is sent unaltered into the input systemof Alice, and
Alice’s output bit is discarded. In the second scenario (whenCharlie receives 1), Bob again receives a random
input bit, but this time his output bit is flipped before sending it intoAlice’s input, andAlice’s output bit is again
discarded. In both cases, the output systemof Charlie is discarded. Clearly, the described situation can be
realized in agreement with afixed causal configuration of the parties—all we need to do is supply Bobwith a
randombit and correlate the channel fromBob toAlice with the input systemofCharlie, discarding the
outcomes of Alice andCharlie. Themechanism realizing this is sketched infigure 1(a). Note that the tripartite
process corresponding to this scenariowould involve no signaling fromBob toAlice in spite of the existence of a
channel fromBob toAlice. This is the case irrespectively of what operationCharlie performs. Obviously, there

Figure 1.Certain types ofmultipatite signaling correlations do not involve bipartite signaling and do not imply the existence of a
causal connection between any particular pairs of channels. The example discussed in the text could arise from any of themechanisms
sketched here.
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can be no signaling fromAlice to Bob either, since Alice operates in the future of Bob, nor can there be signaling
betweenAlice andCharlie, or between Bob andCharlie, sinceCharlie is causally independent of bothAlice and
Bob. Thus, we have no signaling between any pair of parties, nomatter what the setting of the third party is. Yet,
the possible correlations between the parties cannot be realized if all parties are causally independent because if
Alice andCharliemeasure their input bits and collect the results of theirmeasurements, they can infer the bit
sent out by Bob, which is impossible if all parties are causally independent.Wemight say that in this case we have
signaling fromBob toAlice andCharlie together. But intuitively, given the described scenario, this signaling
should be fromBob toAlice only, since there is no channel connecting Bob’s output system toCharlie’s input.
However, the latter conclusion is based on knowledge about themechanismbymeans of which the correlations
are established, or about the causal configuration of the parties, and does not follow solely from the correlations
between them. Indeed, the tripartite joint probabilities for the outlined scenario are symmetric with respect to
interchanging the roles of Alice andCharlie, and thus they could arise from a differentmechanism in a situation
where Alice is causally independent of both Bob andCharlie, andCharlie is in the causal future of Bob
(figure 1(c)). They could also arise from a channel fromBob to bothAlice andCharlie (figure 1(c))which
transforms Bob’s output bit into either correlated or anti-correlated random input bits for Alice andCharlie.We
therefore see that, at the level of the joint probabilities for the parties’ experiments, there is noway of
distinguishing between these differentmechanism of information transmission, and hence noway of giving a
definition of signaling among a proper subset of the parties that unambiguously captures the existence of such a
mechanism.We can, however, give an unambiguous definition of lack of signaling between two complementary
subsets of the parties (figure 2), as well as an associated notion ofmultipartite signaling, generalizing the
bipartite case.

Definition 2.6 (Multipartite signaling).Consider an n-partite process ¼ n1, , for a set of local experiments
= ¼{ } n1, , , = ¼n 0, 1, (in the case of n=0, this is understood as the empty set, and correspondingly the

process is the trivial process). Let = ¼{ } k1, , and = + ¼{ } k n1, , ,  k n0 , be two complementary
subsets of the experiments, È =   , Ç = {}  (for simplicity, we take them to be thefirst k and the next
n− k experiments, which can always be ensured by relabeling).We say that there is no signaling from the subset
 to the complementary subset  in the process ¼ n1, , if and only if

¼ ¼ º ¼ ¼

" Î Î = ¼

+ + +( ∣ ) ( ∣ )
( )

p o o s s p o o s s

s S o O j n

, , , , , , , , ,

, , 1, , . 6

k n n k n k n

j j j j

1 1 1 1

Equivalently, we say that there is signaling from (1 orLor k ) to ( +k 1orL orn) if and only if this condition is
not satisfied.

Remark.There is no signaling fromor to the empty subset.

Note that this definition only says whether there is signaling fromone ormore local experiments from a
given subset to one ormore local experiments from the complementary subset, but in the general case it does not
identify pairs of experiments betweenwhich there is signaling. In the case of two experiments, the definition
reduces to the notion of bipartite signaling defined earlier.

Definition 2.7 (Non-signaling process).Aprocess ¼ n1, , for a set of local experiments = ¼{ } n1, , ,
= ¼n 0, 1, , is called non-signaling if and only if there is no signaling from to  for any pair of

complementary subsets and  of  .

Figure 2.Pictorial representation of the definition ofmultipartite signaling.
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Remark.Monopartite processes and the trivial process are non-signaling.

From the definition of causal process, one easily obtains the following relation between the existence of
multipartite signaling among the local experiments described by a given process and the causal configuration of
these experiments.

Proposition 2.1. In an n-partite fixed-order process ¼ n1, , , n 1, compatible with a deterministic causal
configuration k ¼( )* n1, , , there can be signaling from (1 orLor k) to ( +k 1orL or n), only if at least one of

¼{ }k1, , is in the absolute past of at least one of + ¼{ }k n1, , according to k ¼( )* n1, , .

It turns out that we can formulate necessary and sufficient conditions for a process to befixed-order causal,
which are expressed entirely in terms of the condition stated in proposition 2.1 applied to different subsets of the
experiments. To formulate the conditions precisely, wewill need to introduce the concept of reduced process.

Definition 2.8 (Reduced process).Consider an n-partite process ¼ n1, , , n 0, for a set of local experiments
= ¼{ } n1, . Let = ¼{ } k1, , and = + ¼{ } k n1, , , < k n0 , be two complementary subsets of the

experiments (specified up to relabeling), such that there is no signaling from  to. Thismeans that

¼ ¼ = ¼ ¼

" Î Î = ¼

( ∣ ) ( ∣ )
( )

p o o s s p o o s s

s S o O j n

, , , , , , , , ,

, , 1, , 7

k n k k

j j j j

1 1 1 1

i.e., we havewell defined conditional probabilities ¼ ¼( ∣ )p o o s s, , , ,k k1 1 for the experiments in. The collection
of these probabilities will be called reduced process for andwill be denoted by º ¼  k1, , .

Note that if amultipartite process is a valid pre-selected process, any of its reduced processes is also a valid
pre-selected process because it is defined conditionally on the same pre-selected event. Note also that a general
multipartite process need not admit any reduced processes apart from the trivial process and itself, since itmay
involve signaling from every proper subset of the local experiments to its complementary subset.

Before we state the conditions for a process to befixed-order causal, we introduce another concept that will
be needed later.

Definition 2.9 (Conditional process).Consider ann-partite process ¼ n1, , , n 0, for a set of local experiments
= ¼{ } n1, , . Let = ¼{ } k1, , and = + ¼{ } k n1, , , < k n0 , be twocomplementary subsets of the

experiments (specifiedup to relabeling), such that there is no signaling from  to (andhencewe candefine a
reducedprocess º ¼  k1, , ). For eachfixed event ¼( )s o s o, , ,k k1 1 in forwhich ¼ ¼ ¹( ∣ )p o o s s, , , , 0k k1 1 ,
consider the collectionof conditional probabilities ¼ ¼ ¼+ +{ ( ∣ )}p o o s s s o s o, , , , , , , , ,k n k n k k1 1 1 1 . These canbe
thought of as an ( – )n k -partite process for  dependenton the event ¼( )s o s o, , , ,k k1 1 in. The collectionof these
processes for all values of ¼( )s o s o, , , ,k k1 1 forwhich ¼ ¼ ¹( ∣ )p o o s s, , , , 0k k1 1 will be called conditional process and
will bedenotedby º + ¼ ¼   k n k1, , 1, , . The relationbetween thewhole process and the reduced and
conditional processes canbewritten in the compact form

º =
º

¼ + ¼ ¼ ¼◦
◦ ( )

∣

∣
   

 

 

  , 8

n k n k k, 1, , 1, , 1, , 1, ,

where the product ◦ between  and denotesmultiplication of the respective probabilities of these
processes, when defined, for the same value of the event in:

¼ ¼ = ¼ ¼ ¼ ¼ ¼+ +( ∣ ) ( ∣ ) ( ∣ ) ( )p o o s s p o o s s s o s o p o o s s, , , , , , , , , , , , , , , , , , 9n n k n k n k k k k1 1 1 1 1 1 1 1

for ¼ ¼ ¹( ∣ )p o o s s, , , , 0k k1 1 , and

¼ ¼ =( ∣ ) ( )p o o s s, , , , 0, 10n n1 1

for ¼ ¼ =( ∣ )p o o s s, , , , 0k k1 1 .

Proposition 2.2.Aprocess ¼ n1, , for a set of local experiments = ¼{ } n1, , , n 1, is compatible with a
deterministic causal configuration k ¼( )* n1, , of these experiments (and is thereby fixed-order causal) if and only if,
for the assumed causal configuration, proposition 2.1 holds for the full process and all of its reduced processes for all
bipartitions of the local experiments into two complementary subsets. The proof S1 is given in the appendix.

Wenext turn to general causal processes, beginningwith the bipartite case.
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2.4. Bipartite causal processes
Consider a processA B, describing the local experiments of two parties, Alice and Bob. If the process is causal,
there exist probabilities ( ∣ )p A B s s,A B , ( ∣ )p B A s s,A B , ( ∣ )p A B s s,A B , with

+ + =( ∣ ) ( ∣ ) ( ∣ )p A B s s p B A s s p A B s s, , , 1A B A B A B  .We can therefore write the joint probabilities
of the process in the form

=

+

+

( ∣ ) ( ∣ ) ( ∣ )
( ∣ ) ( ∣ )
( ∣ ) ( ∣ ) ( ) 

p o o s s p A B s s p o o s s A B

p B A s s p o o s s B A

p A B s s p o o s s A B

, , , , , ,

, , , ,

, , , , , 11

A B A B A B A B A B

A B A B A B

A B A B A B

 
 

where each of the probability distributions ( ∣ )p o o s s A B, , ,A B A B  , ( ∣ )p o o s s B A, , ,A B A B  , and
( ∣ )p o o s s A B, , ,A B A B , is defined assuming that ¹( ∣ )p A B s s, 0A B , ¹( ∣ )p B A s s, 0A B , and

¹( ∣ )p A B s s, 0A B , respectively, otherwise that term is absent from the expansion. The definition of
causality (2) implies that =( ∣ )p A B s s p,A B ( ∣ )A B s A , =( ∣ )p B A s s p,A B ( ∣ )B A sB ,

=( ∣ )p A B s s p,A B ( )A B . Since the sumof these probabilitiesmust be unity, we obtain
=( ∣ )p A B s pA ( )A B , =( ∣ )p B A s pB ( )B A , i.e., the causal configuration of the local experiments is

independent of the parties’ settings. Thus, the probabilities of a bipartite causal processA B
c

, have the form

=

+

+

( ∣ ) ( ) ( ∣ )
( ) ( ∣ )
( ) ( ∣ ) ( ) 

p o o s s p A B p o o s s A B
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where the probability distributions º( ∣ ) ( ∣ ) ( )p o o s s A B p A B o o s s p A B, , , , , ,A B A B A B A B   ,
º( ∣ ) ( ∣ ) ( )p o o s s B A p B A o o s s p B A, , , , , ,A B A B A B A B   , and º( ∣ )p o o s s A B, , ,A B A B

( ∣ ) ( ) p A B o o s s p A B, , ,A B A B , whenever defined, describe processes, whichwewill denote by
A B ,B A , and  A B, respectively. (Note that we can imagine that the causal configuration k ( )A B,
taking values A B , B A , or A B, is associatedwith an event in the past of bothA andB, i.e., the
processesA B ,B A , and  A B, can be thought of as proper pre-selected processes.)The assumption
of causality imposes conditions on these processes too. Specifically, it can be seen that each of themmust obey a
no-signaling constraint compatible with the concrete causal configuration it is conditioned on: thefirst one
must involve no signaling fromBob toAlice, =( ∣ ) ( ∣ )p o s s A B p o s A B, , , ;A A B A A  the second onemust
involve no signaling fromAlice to Bob, =( ∣ ) ( ∣ )p o s s B A p o s B A, , , ;B A B B B  and the third onemust involve
no signaling in either direction, =( ∣ ) ( ∣ ) p o s s A B p o s A B, , ,A A B A A , =( ∣ )p o s s A B, ,B A B

( ∣ )p o s A B,B B , i.e., these are fixed-order causal processes. In a compact form,we canwrite

= + +( ) ( ) ( ) ( )     p A B p B A p A B , 13A B A B B A A B
c

,   

i.e., a bipartite causal process has the formof a probabilisticmixture of processes that are compatible with the
differentmutually exclusive causal configurations of the parties (and correspondingly involve only one-way
signaling in the respective direction, or no signaling). This form is not only necessary but also sufficient for a
process to be causal because it explicitly gives a joint probability distribution k =( ( ) ∣ )p A B o o s s, , , ,A B A B

k k( ( )) ( ∣ ( ))p A B p o o s s A B, , , , ,A B A B that obeys the condition for causality (2)when each conditional
distribution k( ∣ ( ))p o o s s A B, , , ,A B A B obeys the no-signaling constraints compatible with k ( )A B, . Indeed, we
have

= +

= +

= +

=

( ∣ ) ( ∣ ) ( ∣ )
( ) ( ∣ ) ( ) ( ∣ )
( ) ( ∣ ) ( ) ( ∣ )
( ∣ ) ( )
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
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and similarly =( ∣ ) ( ∣ ) p B A o s s p B A o s, , ,A A B A A .
Since the non-signaling probabilities ( ∣ )p o o s s A B, , ,A B A B are compatiblewith the one-way signaling

constraints for the cases A B or B A , we can alsowrite theprobabilities (12) in thenon-unique form

= +( ∣ ) ( ) ( ∣ ) ( ) ( ∣ ) ( )   p o o s s p w p o o s s w p w p o o s s w, , , , , , , , , 15A B A B A B A B A B A B B A A B A B B A

where w A B and wB A are twomutually exclusive variables for which the experiments of Alice and Bob
respect the relations A B and B A, respectively, with the probabilities of these variables satisfying

+ =( ) ( ) p w p w 1A B B A . In a compact form, this can bewritten

= + -( ) ( )     q q q1 , 0 1, 16A B A B B A
c

,

where Y X is a process that involves no signaling fromY toX, i.e.

= ◦ ( )∣   . 17Y X Y X X
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The constraint (16) (equivalently, (15)) provides ameans of testingwhether a given bipartite process theory
is compatible with causal order. For every fixed number of settings andfixed number of outcomes for each party,
the joint probabilities satisfying equation (15) form a convex polytope, which is the convex hull of the polytope
of probabilities that involve no signaling fromAlice to Bob, and the polytope of probabilities that involve no
signaling fromBob toAlice [33]. The non-trivial facets of this ‘causal polytope’ define bipartite causal
inequalities, similar to the one in [4], whose violation by a given process theory indicates that the theory is not
compatible with causal order. Note that a causal inequality does not need to be a facet of the causal polytope—it
may correspond to an external plane. For instance, the causal inequality of [4], which concerns the case where
one party has a binary input and a binary outputwhile the other one has a quaternary input and a binary output,
is not a facet of the respective causal polytope [21]. Oneway of seeing this is to note that the derivation of the
inequality in [4] only used certain consequences of the requirement that the causal configuration of the parties
must be independent of the parties’ settings, but not the full requirement. The bipartite causal polytope for
binary inputs and binary outputs has been characterized by Branciard [33] (see [21]).

2.5. The tripartite andn-partite causal processes
In the case ofmore than two parties, causal processes need not have the simple formof probabilisticmixtures of
fixed-order causal processes with probability weights that are independent of the parties’ settings. This is
because, consistently with causality, we have the possibility that the causal configuration of a subset of the local
experimentsmay depend on the settings of other local experiments in their past. For example, imagine that we
have a tripartite experiment where the input and output systems of each party correspond to the internal (e.g.,
spin) degrees of freedomof a particle that enters the respective laboratory at a given instant and leaves it at a given
later instant. The time atwhich each party receives her/his particle is determined by somepredefined
mechanism,which also governs any exchange of information taking place outside of the parties’ laboratories.
(Note that in order for the internal degrees of freedomof the particle to constitute the onlymeans of information
exchange between each local experiment and the rest of the experiment, the experiment should be so designed
that no communication via the times of input or output of the parties is possible. For example, each partymay be
restricted not to possess any common time reference framewith the rest of the experiment and to performher/
his operation during a fixed time interval with a stopwatch.) In such a case, if Charlie receives a particle first, the
operation that he applies on the system could affect the order inwhichAlice and Bob receive their particles
afterwards, sincewe can conceive of amechanism that selects different future scenarios for that order
conditionally on the outcome of ameasurement performed on the internal degrees of freedomof the particle
coming out of Charlie’s laboratory. This can result in the different scenarios depicted infigure 3. By
construction, the outlined setup is compatible with the condition that the setting of each local experiment can be
chosen independently of events in the causal past and causal elsewhere of that experiment, as well as of the causal
configuration of such events and the experiment in question, so it would be associatedwith a valid causal
process.

Clearly, the dependence of the causal configuration of the parties on the parties’ settings cannot be arbitrary,
because itmust agree with causality. To formulate the constraints on this dependence, wewill need to introduce
somemore terminology.

For anyfixed causal configuration k ¼( )n1, , of the local experiments = ¼{ } n1, , , there are local
experiments that are in no-one else’s causal future. The full set of such local experiments, ¼ Ì ¼{ } { }i j n, , 1, , ,
will be referred to as the local experiments that are first, or as the first consecutive set andwill be denoted by

¼[ ]i j, , I. Next, if thefirst consecutive set does not include all of the local experiments, there are local
experiments whose causal past contains local experiments from ¼[ ]i j, , I and only from ¼[ ]i j, , I. The full set of
thesewill be referred to as the local experiments that are second, or as the second consecutive set, andwill be
denoted by ¼[ ]k l, , II. Then, if thefirst and second consecutive sets do not include all local experiments, there
are local experiments whose causal past contains local experiments fromboth sets ¼[ ]i j, , I and ¼[ ]k l, , II and
only from those sets. The full set of thesewill be referred to as the local experiments that are third, or as the third
consecutive set, andwill be denoted by ¼[ ]p q, , III, and so on.

Figure 3. In a causal setupwhere Charlie performs his experiment in the causal past of bothAlice and Bob, the causal configuration of
Alice and Bobmay depend on the setting of Charlie.
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The following propositionwill play a central role in our derivation of the formofmultipartite causal
processes.

Proposition 2.3.Consider a causal process for = ¼{ } n1, , , n 1, with an associated joint probability
distribution k ¼ ¼ ¼( ( ) ∣ )p n o o s s1, , , , , , ,n n1 1 , where k ¼( )n1, , are the causal configurations of the local
experiments. The probability for the first K consecutive sets to consist of specific local experiments, ¼[ ]n1 , ,I I

I,K,
¼[ ]n1 , ,K K

K , these experiments to have a specific causal configuration k ¼( )n1 , , KI , the experiments in the first
-K I consecutive sets to have a specific set of outcomes ¼ -o o, , n1 KI I, and a given (possibly empty) subset
¼ Ì ¼{ } { }g n1 , , 1 , ,K K K K of the local experiments in the K th set (given up to relabeling) to have specific outcomes
¼o o, , g1K K , can depend non-trivially only on the settings of the local experiments indicated in the first -K I

consecutive sets and the subset ¼{ }g1 , ,K K ,

k
k
¼ ¼ ¼ ¼ ¼ ¼

= ¼ ¼ ¼ ¼ ¼ ¼

( ( ) [ ] [ ] ∣ )
( ( ) [ ] [ ] ∣ ) ( )

p n n n o o s s

p n n n o o s s

1 , , , 1 , , , , 1 , , , , , , ,

1 , , , 1 , , , , 1 , , , , , , , , 18

K K K
K g n

K K K
K g g

I I I
I 1 1

I I I
I 1 1

K

K K

I

I I

where we define the 0th set as the empty set. The proof S2 is given in the appendix.
An important consequence of proposition 2.3 is that the probability for a given set of local experiments to be

first is independent of the settings of all parties (this is the case of =K 1and the subset ¼{ }g1 , ,K K being empty).
For example, consider the different causal configurations of three parties—Alice (A), Bob (B), andCharlie (C)—
which are compatible with [ ]C I (figure 3). Each of the individual configurations has a probability thatmay
depend on the setting of Charlie, but the overall probability for Charlie to befirst, i.e., for any one of these
configurations to be realized (which is the sumof the probabilities for the individual configurations), is
independent of the settings of all parties, including Charlie. This independence of the first consecutive set on the
settings of all parties will play a key role in our characterization of the structure ofmultipartite causal processes.
Wewillfirst develop the characterization for the case of three parties in order to illustrate the underlying
principle, and thenwewill extend it to the generalmultipartite case.

The groups of tripartite causal configurations compatible with the different possibilities for the first
consecutive set of parties are listed in table 1. In terms of these possibilities, the probabilities of a tripartite causal
process can bewritten

=

+

+

+

+

+

+

( ∣ ) ([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] )
([ ] ) ( ∣ [ ] ) ( )

p o o o s s s p A p o o o s s s A

p B p o o o s s s B

p C p o o o s s s C

p A B p o o o s s s A B

p A C p o o o s s s A C

p B C p o o o s s s B C

p A B C p o o o s s s A B C

, , , , , , , , ,

, , , , ,

, , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , , , , , 19

A B C A B C A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

A B C A B C

I I

I I

I I

I I

I I

I I

I I

where

+ +

+ + + + =

([ ] ) ([ ] ) ([ ] )
([ ] ) ([ ] ) ([ ] ) ([ ] ) ( )

p A p B p C

p A B p A C p B C p A B C, , , , , 1, 20

I I I

I I I I

and the probability distributions ¼ ¼( ∣ [ ] )p o s, , ,A A I for a given [ ]I , definedwhenever ¹([ ] )p 0I ,
describe processes whichwewill denote by [ ]

I . (Note that we can imagine that the variable [ ]I is associated
with an event in the past of all local experiments, i.e., these can be thought of as a proper pre-selected process.)

Table 1.Themutually exclusive groups of tripartite causal configurations.

Groups of tripartite causal configurationswhose probabilities are independent of the parties’ settings, defined by the set of parties that

are first

[ ]A I : [A B , A C , B C ] or [A B , A C , C B ]or [A B , A C ,  B C]
[ ]B I : [B A , B C , A C ] or [B A , B C , C A ] or [B A , B C ,  A C]
[ ]C I :[C A , C B , A B ] or [C A , C B , B A ] or [C A , C B , A B]
[ ]A B, I : [ A B, A C ,  B C] or [ A B,  A C , B C ] or [ A B, A C , B C ]
[ ]A C, I : [  A C , A B ,  B C] or [  A C , A B, C B ] or [  A C , A B , C B ]
[ ]B C, I : [  B C , B A ,  C A] or [  B C ,  B A, C A ] or [  B C , B A , C A ]
[ ]A B C, , I : [ A B,  B C ,  A C]
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In a compact form, equation (19) can bewritten

= + +

+ + +

+

([ ] ) ([ ] ) ([ ] )
([ ] ) ([ ] ) ([ ] )
([ ] ) ( )

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ]

   

  



p A p B p C

p A B p A C p B C

p A B C

, , ,

, , , 21

A B C A B C

A B A C B C

A B C

c
, , I I I

I , I , I ,

I , ,

I I I

I I I

I

i.e., the overall process is amixture of processes defined conditionally on the different scenarios [ ]I . The
processes [ ]

I cannot be arbitrary butmust be compatible with causality, the conditions forwhichwe
derive next.

Consider the case inwhich one party isfirst, say [ ]C I (figure 3). There are three distinct causal configurations
compatible with this case, in which A B , B A , or A B (table 1).We can expand

( ∣ [ ] )p o o o s s s C, , , , ,A B C A B C I conditionally on these configurations as follows:

=

´

+

+

( ∣ [ ] )
( ∣ [ ] )
[ ( ∣ [ ] ) ( ∣ [ ] )

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( ∣ [ ] )] ( ) 

p o o o s s s C

p o s s s C

p A B s s s o C p o o s s s o A B C

p B A s s s o C p o o s s s o B A C

p A B s s s o C p o o s s s o A B C

, , , , ,

, , ,

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , , , 22

A B C A B C

C A B C

A B C C A B A B C C

A B C C A B A B C C

A B C C A B A B C C

I

I

I I

I I

I I

 
 

where k( ∣ ( ) [ ] )p o o s s s o A B C, , , , , , ,A B A B C C I is definedwhen k ¹( ( )∣ [ ] )p A B s s s o C, , , , , 0A B C C I , and

+

+ =

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( )

p A B s s s o C p B A s s s o C

p A B s s s o C

, , , , , , , ,

, , , , 1. 23

A B C C A B C C

A B C C

I I

I

 

Fromproposition 2.3, we have that

º = =( ∣ [ ] ) ([ ] ∣ ) ([ ] ) ([ ] ∣ ) ([ ] ) ( ∣ [ ] )p o s s s C p C o s s s p C p C o s p C p o s C, , , , , , , , .C A B C C A B C C C C CI I I I I I

Similarly, we have

=

=

=

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( ∣ [ ] )

( ∣ [ ] ) ( ∣ [ ] ) ( ) 

p A B s s s o C p A B s s o C

p B A s s s o C p B A s s o C

p A B s s s o C p A B s o C

, , , , , , , ,

, , , , , , , ,

, , , , , , , 24

A B C C A C C

A B C C B C C

A B C C C C

I I

I I

I I

 
 

which togetherwith equation (23) implies

=

=

=

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( ∣ [ ] )

( ∣ [ ] ) ( ∣ [ ] ) ( ) 

p A B s s s o C p A B s o C

p B A s s s o C p B A s o C

p A B s s s o C p A B s o C

, , , , , , ,

, , , , , , ,

, , , , , , . 25

A B C C C C

A B C C C C

A B C C C C

I I

I I

I I

 
 

Substituting this in equation (22), we obtain

=

´

+

+

( ∣ [ ] )
( ∣ [ ] )
[ ( ∣ [ ] ) ( ∣ [ ] )

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( ∣ [ ] )] ( ) 

p o o o s s s C

p o s C

p A B s o C p o o s s s o A B C

p B A s o C p o o s s s o B A C

p A B s o C p o o s s s o A B C

, , , , ,

,

, , , , , , , ,

, , , , , , , ,

, , , , , , , , , 26

A B C A B C

C C

C C A B A B C C

C C A B A B C C

C C A B A B C C

I

I

I I

I I

I I

 
 

with

+ + =( ∣ [ ] ) ( ∣ [ ] ) ( ∣ [ ] ) ( )p A B s o C p B A s o C p A B s o C, , , , , , 1, 27C C C C C CI I I 

where the probability distributions ( ∣ [ ] )p o o s s s o A B C, , , , , ,A B A B C C I ,
( ∣ [ ] )p o o s s s o B A C, , , , , ,A B A B C C I , and ( ∣ [ ] )p o o s s s o A B C, , , , , ,A B A B C C I describe bipartite processes

for Alice and Bob for everyfixed value of ( )s o,C C . The assumption of causality implies conditions for these
processes too. Theymust respect the no-signaling constraints imposed by the causal configuration k ( )A B, they
are conditioned on—thefirst onemust involve no signaling fromBob toAlice, the second onemust involve no
signaling fromAlice to Bob, and the third onemust involve no signaling betweenAlice and Bob in either
direction. This follows from the fact that

k
k

k
=( ∣ ( ) [ ] ) ([ ] ( ) ∣ )

([ ] ) ( ∣ [ ] ) ( ( )∣ [ ] )
( )p o o s s s o A B C

p C A B o o o s s s

p C p o s C p A B s o C
, , , , , , ,

, , , , , , ,

, , , ,
28A B A B C C

A B C A B C

C C C C
I

I

I I I

and the observation that since only the numerator on the right-hand side depends on s A, oA, s B, and oB, the
respective no-signaling constraints on the quantity on the left-hand side follow from the requirement that the
numerator is compatible with equation (2).
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Notice that the probabilities ( ∣ [ ] )p o s C,C C I in equation (26) define a reducedmonopartite process for
Charlie,C , while the probabilities enclosed by the square brackets define a conditional bipartite process
A B C

c
, , which is causal (indicated by the subscript c) for everyfixed ( )s o,C C . In a compact form, this can be

written

= ◦ ( )[ ] ∣   . 29C A B C C
c

,I

The form (29) is necessary for a causal process for which all causal configurations that have non-zero
probabilities respect [ ]C I (in that case, a causal process of the general form (21) reduces to the term [ ] C I

).
It is also sufficient, because this formprovides an explicit joint probability distribution

k( ( ) ∣ )[ ]p A B C o o o s s s, , , , , , ,C A B C A B CI
—equal to k([ ] ( ) ∣ )p C A B o o o s s s, , , , , , ,A B C A B CI

k k= ( ∣ [ ] ) ( ( )∣ [ ] ) ( ∣ ( ) [ ] )p o s C p A B s o C p o o s s s o A B C, , , , , , , , , , ,C C C C A B A B C CI I I when k ( )A B C, , is
compatible with [ ]C I, and to zero otherwise—for which condition (2) is satisfiedwith respect to every party.
Indeed, condition (2) is satisfiedwith respect toC since the probability for any party being in the causal past or
causal elsewhere ofC is zero. It is also satisfiedwith respect toA (similarly forB) since the no-signaling
constraints respected by k( ∣ ( ) [ ] )p o o s s s o A B C, , , , , , ,A B A B C C I guarantee that k( ( )[ ] p A B C A B, , , ,C I

∣ )A C o o s s s, , , ,B C A B C k= ( ( ) ∣ )[ ]  p A B C A B A C o o s s, , , , , , ,C B C B CI
. The necessary and sufficient

conditions for a causal process compatible with [ ]A I and [ ]B I are analogous.
Let us now consider the case where two parties arefirst, say [ ]B C, I. The possible causal configurations in this

case (table 1) are depicted infigure 4. Similarly to the previous case, using the assumption of causality, we can
expand the probabilities ¼ ¼( ∣ [ ] )p o s B C, , , ,A A I conditionally on the different configurations as follows:

=

´

+

+

( ∣ [ ] ) ( ∣ [ ] )
[ ( ∣ [ ] ) ( ∣ [ ] )

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( ∣ [ ] )] ( )

   
   

p o o o s s s B C p o o s s B C

p B A C A s o s o B C p o s s o s o B A C A B C

p B A C A s o s o B C p o s s o s o B A C A B C

p B A C A s o s o B C p o s s o s o B A C A B C

, , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , 30

A B C A B C B C B C

B B C C A A B B C C

B B C C A A B B C C

B B C C A A B B C C

I I

I I

I I

I I

 
 

   

with

+

+ =

( ∣ [ ] ) ( ∣ [ ] )
( ∣ [ ] ) ( )

   p B A C A s o s o B C B A C A s o s o B C

p B A C A s o s o B C

, , , , , , , , , , , ,

, , , , , , 1, 31

B B C C B B C C

B B C C

I I

I

 
 

where the probabilities ( ∣ [ ] )p o o s s B C, , , ,B C B C I in equation (30) define a reduced bipartite process that involves
no signaling betweenB andC, and the probabilities in the square brackets describe a conditional process forA.
The fact that there is no signaling betweenB andC in thefirst process follows easily fromproposition 2.3.

It turns out that the decomposition over different causal configurations does not yield any nontrivial
conditions on the probabilities of the conditional process enclosed in the square brackets, i.e., the simpler form

=( ∣ [ ] ) ( ∣ [ ] ) ( ∣ [ ] ) ( )p o o o s s s B C p o o s s B C p o s s o s o B C, , , , , , , , , , , , , , , , 32A B C A B C B C B C A A B B C CI I I

is both necessary and sufficient for a valid [ ] B C, I
. Necessity is obvious since equation (30) implies equation (32).

Sufficiency follows from the fact that the right-hand side of equation (32) is compatible with the particular case
=( ∣ [ ] )p B A C A s o s o B C, , , , , , 1B B C C I  , where the only non-trivial constraints on the probabilities

( ∣ [ ] )p o o o s s s B C, , , , , ,A B C A B C I imposed by k ( )A B C, , are that there is no signaling fromAlice to Bob and
Charlie, and no signaling between Bob andCharlie in their reduced bipartite process. These are clearly
guaranteed by equation (32)when the reduced process { ( ∣ [ ] )}p o o s s B C, , , ,B C B C I involves no signaling
betweenBob andCharlie. Therefore, similarly to equation (29), we canwrite equation (32) in the compact form

= ◦ ( )[ ] ∣   , 33B C A B C B C, ,
ns

,I

whereB C
ns

, is a non-signaling bipartite process for Bob andCharlie, andA BC is amonopartite process for
Alice conditional on the events in the laboratories of Bob andCharlie.

Figure 4.The three possible tripartite causal configurations included in the groupwhereB andC are first. From left to right:
[  B C and B A and  C A], [  B C and B A and C A ], [  B C and  B A and C A ].
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Finally, in the case where all of the parties arefirst, we only have the constraint that

= ( )[ ]  34A B C A B C, ,
ns

, ,I

is a tripartite non-signaling process. Again, this follows fromproposition 2.3.
Therefore, we have obtained that a tripartite causal processA B C

c
, , must have the form

= +

+ +

+ +

+

([ ] ) ◦ ([ ] ) ◦
([ ] ) ◦ ([ ] ) ◦
([ ] ) ◦ ([ ] ) ◦
([ ] ) ( )

∣ ∣

∣ ∣

∣ ∣

    

   

   



p A p B

p C p A B

p A C p B C

p A B C

,

, ,

, , , 35

A B C B C A A A C B B

A B C C C A B A B

B A C A C A B C B C

A B C

c
, , I

c
, I

c
,

I
c

, I ,
ns

,

I ,
ns

, I ,
ns

,

I
ns

, ,

with suitable probability weights ([ ] )p A I , ([ ] )p B I , ([ ] )p C I , ([ ] )p A B, I , ([ ] )p A C, I , ([ ] )p B C, I , and
([ ] )p A B C, , I . This form is also sufficient for a tripartite process to be causal because it explicitly gives a

probability distribution
k k= å( ( ) ∣ ) ([ ] ) ( ( ) ∣ [ ] )[ ]p A B C o o o s s s p p A B C o o o s s s, , , , , , , , , , , , , , ,A B C A B C A B C A B CI I

I   that satis-
fies equation (2). Indeed, we have seen that each of the distributions k( ( ) ∣ [ ] )p A B C o o o s s s, , , , , , , ,A B C A B C I
in this convexmixture is an extension of a causal process { ( ∣ [ ] )}p o o o s s s, , , , ,A B C A B C I , and hence it satisfies
equation (2). Since theweights ([ ] )p I in themixture are independent of s A, s B, and s C, and equation (2) is
linear in k( ( ) ∣ [ ] )p A B C o o o s s s, , , , , , , ,A B C A B C I , the equation is satisfied by thewholemixture too.

Condition (35) can be further simplified by noticing that the processes corresponding to the cases inwhich
two or three parties arefirst have forms compatible with cases inwhich only a single party isfirst. For instance,

[ ] B C, I
satisfies the necessary and sufficient conditions for a valid [ ] B I

or a valid [ ] C I
, while [ ] A B C, , I

satisfies
the necessary and sufficient conditions for any of [ ] A I

, [ ] B I
, or [ ] C I

. The compatibility of [ ] B C, I
with [ ]C I,

for example, can be seen from the fact that equation (32) (or equation (33)) is compatible with the case [ ]C I in
which C B A  , since the only constraints in that case are that Alice cannot signal to Bob andCharlie, and
that Bob cannot signal to Charlie, which are satisfied by the probabilities in equation (32). Similarly, [ ] B C, I

is
compatible with [ ]C I. A process [ ] A B C, , I

is compatible with any causal configuration since it does not involve
signaling between any of the parties. These observations suggest that we can group (in a generally non-unique
way) the terms in the probabilisticmixture (21) so as to obtain amixture of three processes

=

+ +

( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

 

 

 

   
p w

p w p w , 36

A B C B C A B C A

A C B A C B A B C A B C

c
, , , ,

, , , ,

where ( ) w B C A, , ( ) w A C B, , and ( ) w A B C, , are somemutually exclusive variables whose probabilities satisfy
+ + =( ) ( ) ( )( ) ( ) ( )  p w p w p w 1B C A A C B A B C, , , , such that conditionally on these variables, the causal

configuration of the parties belongs to one of the groups compatible with ( ) B C A, (meaning
 B A C A), ( ) A C B, , and ( ) A B C, , respectively, while the processes ( ) B C A, , ( ) A C B, , and

( ) A B C, , satisfy themost general causal constraints compatible with these groups. For instance, conditionally
on ( ) w B C A, , the causal configurations of the partiesmay belong to any of the groups defined by [ ]A I, [ ]A B, I,
[ ]A C, I, and [ ]A B C, , I. The process ( ) B C A, would itself be a probabilisticmixture of processes compatible
with these groups, whichmost generally satisfy the constraints satisfied by [ ] A I

. That is

= ◦ ( )( ) ∣   , 37B C A B C A A,
c

,

= ◦ ( )( ) ∣   , 38A C B A C B B,
c

,

= ◦ ( )( ) ∣   . 39A B C A B C C,
c

,

Obviously, the existence of a convex decomposition (36) is both necessary and sufficient for a tripartite process
to be causal, since any process of the form (35) can bewritten in the form (36), while equation (36) is a special
case of equation (35).

As in the bipartite case, for anyfixed number of settings and fixed number of outcomes for each party, the
constraint (36)provides ameans of testingwhether the corresponding tripartite probabilities are compatible
with causality. The set of probabilities that satisfy equation (36) is the convex hull of the probabilities compatible
with causal configurations inwhich ( ) B C A, , ( ) A C B, , and ( ) A B C, . One can see that the latter form
polytopes, since the constraints imposed by causality in each of these cases are linear. For example, in the case of
( ) A B C, , we have the constraint that ( ∣ )( ) p o o o s s s w, , , , ,A B C A B C A B C, involve no signaling fromAlice and
Bob toCharlie, and that for every ( )s o,C C , the resultant process betweenAlice and Bob is causal. The first
requirement corresponds to a set of linear constraints. The second requirement corresponds to the condition
that for everyfixed ( )s o,C C , the probabilities ( ∣ )( ) p o o s s s o w, , , , ,A B A B C C A B C,

º ( ∣ ) ( ∣ )( ) ( ) p o o o s s s w p o s w, , , , , ,A B C A B C A B C C C A B C, , are the probabilities describing a causal process for
Alice and Bob, which themselves belong to a polytope and hence respect a set of linear inequalities. Plugging
these probabilities in the respective inequalities andmultiplying both sides by ( ∣ )( ) p o s w,C C A B C, would yield a
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set of linear inequalities for ( ∣ )( ) p o o o s s s w, , , , ,A B C A B C A B C, . Therefore, these probabilities also form a
polytope, and so do the probabilities of the form (36). The nontrivial facets of the polytope of probabilities (36)
would define tripartite causal inequalities, whose violation indicates incompatibility with causal order.
Examples of tripartite causal inequalities for binary inputs and outputs can be found in [7, 9] (we have not
investigatedwhether these are facets of the respective causal polytope).

The extension of the conditions for causality of a process to the case of n parties can be defined iteratively.
The following theoremprovides the generalization of condition (35):

Theorem2.1.Aprocess for a set of parties = ¼{ } n1, , , n 1, is causal if and only if it can be written in the form

å=
Ì ¹

◦ ( )
{}

⧹ ∣  

  


   p , 40c
,

c ns

where the sum is over all nonempty subsets of the local experiments  , p are suitable probability weights (which
can be interpreted as the probability for to be first, = ([ ] )p p I ), ⧹  denotes the relative complement of in

 ,
ns is a non-signaling reduced process for , and the conditional process

⧹

  
c is either the trivial process

(when =  ) or otherwise can bewritten in the same form (40) for every given value of the possible events in . The
proof S3 is given in the appendix.

As in the bipartite and tripartite cases, we can simplify the conditions for an n-partite process to be causal by
noticing that the constraints on a process compatible with a given set of k (  k n1 ) parties beingfirst are
compatible with the constraints on a process compatible with the case inwhich only a single one of the k parties
isfirst. Therefore, by an argument analogous to the one in the tripartite case, we obtain the following alternative
formulation of the conditions.

Theorem2.2 (Canonical causal decomposition).A causal process for n parties is one that can bewritten in the
(generally non-unique) form

å å= " =¼

=

¼ - + ¼

=

( )( )  q q i q, 0, , 1, 41n

i

n

i
i i n i

i
i

n

ic
1, ,

1

1, , 1, 1, ,

1

with

=¼ - + ¼ ¼ - + ¼ ◦ ( )( ) ∣   , 42i i n i i i n i i1, , 1, 1, ,
c
1, , 1, 1, ,

where the -( )n 1 -partite conditional process ¼ - + ¼ i i n i
c
1, , 1, 1, , is either trivial (when n=1) or has the form (41)

for every value of the event in i.

Theweights qi in equation (42) can be thought of as the probabilities º ¼ - + ¼( )( ) q p wi
i i n i1, , 1, 1, , for a

mutually exclusive set of variables ¼ - + ¼( ) w i i n i1, , 1, 1, , for which the causal configurations of the parties belong
to a group such that ¼ - + ¼( ) i i n i1, , 1, 1, , .

Theorem 2.2 (alternatively theorem 2.1) gives iteratively formulated necessary and sufficient conditions for a
process to be causal in the generalmultipartite case. It can be understood as describing an ‘unraveling’ of the
different possible sequences of operations in steps: first, the party that isfirst and his/hermonopartite process
are selected at randombased on some probability distribution; next, the party that is second and his/her
monopartite process are selected at random from some probability distribution thatmost generally can depend
on thefirst party’s setting and outcome; next, the party that is third and his/hermonopartite process are selected
from some probability distribution thatmost generally can depend on the settings and outcomes of the first two
parties, and so on.We refer to this intuitive decomposition as the canonical causal decomposition of a causal
process.

By an argument analogous to the one in the tripartite case, one easily sees from theorem 2.2 that for anyfixed
number of settings and outcomes for each party, the causal probabilities for n parties form a polytope, provided
that the causal probabilities for -( )n 1 parties form a polytope. By induction, this implies a polytope structure
for the generalmultipartite case. The nontrivial facets of such a polytope define causal inequalites. Examples of
n-partite causal inequalities, where = +n k2 1, for binary inputs and outputs can been found in [7, 9]. It would
be interesting to check if these inequalities are facets of the respective causal polytope.
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3. The quantumprocess framework

3.1. General quantumprocesses
The quantumprocess framework introduced in [4] is a particular theorywithin the general operational
framework for pre-selected processes discussed in the previous section. It is based on a set of assumptions about
the local operations of the parties and the joint probabilities for their outcomes, whichwe review next.

Thefirstmain assumption is that of local quantummechanics [4], which says that each local experiment is
described as in standard quantummechanics. Specifically, letX1 andX2 denote the input and output systems of a
local experimentX. It is assumed that these systems are associatedwithHilbert spacesX1 andX2 of
dimensions = ddim X

X1
1
and = ddim X

X2
2
, respectively. The set of operations that can be performed

between the input and output systems is the set of standard quantumoperations (or quantum instruments [34]).
A quantumoperation has a set of outcomes labeled by j=1,K, n. Each outcome induces a specific
transformation from the input to the output, which corresponds to aCPmap ( ) ( )    :j

X X X1 2 , where

( )  is the space of linear operators over the (finite-dimensional)Hilbert space. The action of eachj
X on

an operator s Î ( ) X1 can bewritten in theKraus form [35] s s= å =( ) † E Ej
X

k
m

jk jk1 , =m d dX X1 2
, where the

Kraus operators  E :jk
X X1 2 satisfyå =

†  E Ek
m

jk jk
X

1
1, " j. The set of CPmaps ={ }j

X
j
n

1 corresponding to

all possible outcomes of a quantumoperation has the property that å = j
n

j
X

1 is CP and trace-preserving

(CPTP), which is equivalent to the condition å å == =
† E Ej

n
k
m

jk jk
X

1 1
1.

The secondmain assumption is that the joint probabilities for the outcomes of the operations of a set of
parties, Alice, Bob, Charlie,L, is a non-contextual function of the local CPmaps

w¼ ¼ = ¼( ∣{ } { } { } ) ( ) ( )     p i j k, , , , , , , , . 43i
A

j
B

k
C

i
A

j
B

k
C

The requirement that local procedures agreewith standard quantummechanics implies that the functionω
should be linear in the local CPmaps [4].

Such a linear function can bewritten in a convenient formby expressing each local CPmap as a positive
semidefinite operator using a version of theChoi–Jamiołkowsky (CJ) isomorphism [29, 30]. In this
isomorphism, theCJ operator Î Ä( )  Mi

A A A A1 2 1 2 corresponding to a linearmap

( ) ( )    :i
A A A1 2 is defined as f fÄ ñá+ +≔ [ (∣ ∣)] Mi

A A
i

T1 2 , where f ñ = å ñ Î Ä+
=∣ ∣  jjj

d A A
1

A1 1 1

is a (not normalized)maximally entangled state on two copies ofA1, the set of states ñ ={∣ }j j
d

1
A1 is an orthonormal

basis ofA1,  is the identitymap, and T denotesmatrix transposition in the basis ñ ={∣ }j j
d

1
A1 ofA1 and some

specific basis ofA2. TheCJ operator defined in this way does not depend on the choice of basis ofA1, but does
depend on the choice of basis ofA2.4 For the purposes of the present paper, the latter basis can be an arbitrary
fixed basis.We note, however, that within the time-symmetric generalization of the framework developed in
[15], this basis has a nontrivial physical significance related to the transformation of time reversal. Specifically, in
that formulation, theHilbert spaceA2 onwhich theCJ operator is defined is not interpreted as the original
outputHilbert space of theCPmap, but a time-reversed copy of it. In this paper, wewill not be concernedwith
that formulation, but will simply regard theCJ representation of CPmaps, defined for an arbitrary choice of
basis, as amathematical convenience. Using theCJ representation, the joint probabilities (43) can bewritten in
the form

¼ ¼

= Ä Ä Ä

( ∣{ } { } { } )

[ ( )] ( )

  p i j k

W M M M

, , , , , ,

Tr , 44

i
A

j
B

k
C

A A B B C C
i
A A

j
B B

k
C C1 2 1 2 1 2 1 2 1 2 1 2 

where Î Ä Ä Ä Ä Ä Ä( )      W A A B B C C A A B B C C1 2 1 2 1 2 1 2 1 2 1 2  .
The lastmain assumption behind the quantumprocess framework is that the local operations of the parties

can be extended to act on input ancillas ¢A1 , ¢B1 , ¢C1 ,K, that are allowed to be prepared in an arbitrary quantum

state r ¢ ¢ ¢A B C1 1 1, r ¢ ¢ ¢  0A B C1 1 1 , r =¢ ¢ ¢Tr 1A B C1 1 1 . Upon such an extension, the original operatorW A A B B C C1 2 1 2 1 2

becomes rÄ ¢ ¢ ¢W A A B B C C A B C1 2 1 2 1 2 1 1 1  [4]. The requirement that the probabilities are non-negative for any
combination of local CPmapsi

A,j
B,k

C,K, on the extended systems = ¢A A A A1 1 2, = ¢B B B B1 1 2,

= ¢C C C C1 1 2,K, implies that [4]

4
Note that both the entangled state f ñ+∣ and the overall transposition T that appear in our definition of the CJ operator depend on the

choice of basis ñ ={∣ }j j
d

1
A1 , which altogethermakes theCJ operator independent of that basis. In contrast, in the original version of theChoi

isomorphism [30], theChoi operator is definedwithout the transposition T, which is why it depends on ñ ={∣ }j j
d

1
A1 . However, the original

Choi operator does not depend on any choice of basis for A2, whereas ourCJ operator depends on such a choice through the
transposition T.
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( )W 0. 45A A B B C C1 2 1 2 1 2

In addition, since the probabilities should sumup to 1 for a complete set of local outcomes, we have the
condition that

Ä Ä Ä =
"

= = = ¼

[ ( )]

( )


  

W M M M

M M M

M M M

Tr 1,

, , , 0,

Tr , Tr , Tr , , 46

A A B B C C A A B B C C

A A B B C C

A
A A A

B
B B B

C
C C C

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

2
1 2 1

2
1 2 1

2
1 2 1






where TrX2
denotes partial trace overX2. Here, we have used the fact that a linearmapX is CPTP if and only if

its CJ operator satisfies M 0X X1 2 and = MTrX
X X X

2
1 2 1. An operatorW A A B B C C1 2 1 2 1 2 that satisfies conditions

(45) and (46) is called a processmatrix [4]. Knowing the processmatrix, by equation (44)we have the probabilities
for the outcomes of any combination of local operations of the parties, i.e., the processmatrix provides a
complete description of a process. (Here, the set SX of possible settings of a given party is the set of quantum
operationswith the respective input and output systems.)

The processmatrix can be expanded in aHilbert–Schmidt basis of orthogonalmatrices on theHilbert spaces
of the input and output systems of the parties, which is helpful in analyzing different properties of the
correlations that the process allows. AHilbert–Schmidt basis of ( ) X is given by a set ofHermitian operators

sm m=
-{ }X d

0
1X

2

, with s = X X
0 , s s d=m n mndTr X X

X , and s =Tr 0j
X for = ¼ -j d1, , 1X

2 . In such a basis, a process
matrix can bewritten

å s s s s s s= Ä Ä Ä Ä Ä Ä

Î " ¼
¼

( )

W w

w i j k l m n

,

, , , , , , , . 47

A A B B C C

i j k l m n
ijklmn i

A
j
A

k
B

l
B

m
C

n
C

ijklmn

, , , , ,

1 2 1 2 1 2 1 2 1 2 1 2 




It turns out thatmany properties of processmatrices can be formulated entirely as statements about the nonzero
terms in the above expansion [4]. For this purpose, it is convenient to introduce the following terminology.
Non-zero terms proportional to s Ä i

A rest1 ( i 1)will be called terms of typeA1, non-zero terms proportional
to s sÄ Ä i

A
j
B rest2 1 (i, j 1)will be called terms of type A B2 1, etc. Every processmatrix also contains a non-

zero termproportional to the identity operator on all systems. This termwill be referred to as of type , or as the
identity term.

In [4], it was shown that, in the bipartite case, an operatorW A A B B1 2 1 2 satisfies condition (46) if and only if it
contains atmost terms from the following types: ,A1,B1, A B2 1, A B1 2, A A B1 2 1, A B B1 1 2. This rule also includes
themonopartite case, which is obtainedwhen the input and output systems of one of the parties is trivial (the
one-dimensionalHilbert space 1). Specifically, amonopartite operatorW A A1 2 satisfies condition (46) if and
only if it contains atmost terms of type  andA1. The types of allowed terms can be generalized to the n-partite
case as follows.

Proposition 3.1.An operator of the form (47) satisfies condition (46) if and only if in addition to the identity term it
contains atmost terms in which there is a nontrivialσ operator onX1 and a trivial one (the identity operator) on X2

for some party Î ¼{ }X A B C, , , .

In the appendix, we present proof S4 of the above proposition for the case of three parties and the general
case follows accordingly. From the analysis in proof S4we see that a general operatorW A A B B C C1 2 1 2 1 2 can contain
up to 64 types of terms. The condition for normalization of probabilities (46)narrows the types of terms to the 38
types listed in table 2. The positive semidefiniteness condition (45) does not limit any further the allowed types of
terms, because one can conceive of a positive semidefinitematrix containing nonzero terms of any chosen type
(this can be ensured by taking the nontrivialσ termswith non-zero coefficients of sufficiently smallmagnitude
relative to theweight of the identity termwhich is always fixed). Thus, an operator W A A B B C C1 2 1 2 1 2 is a valid
tripartite processmatrix, i.e., it satisfies conditions (45) and (46), if and only if it satisfies condition (45) and
contains only terms of the types listed in table 2, where the identity term comeswith theweight

Table 2.The types of terms allowed in a tripartite processmatrix W A A B B C C1 2 1 2 1 2.

C1 B C2 1 B1 B C1 2 B C1 1

B C C1 1 2 B B C1 2 1 A C2 1 A B C2 2 1 A B2 1

A B C2 1 2 A B C2 1 1 A B C C2 1 1 2 A B B C2 1 2 1 A1

A C1 2 A C1 1 A C C1 1 2 A B1 2 A B C1 2 2

A B C1 2 1 A B C C1 2 1 2 A B1 1 A B C1 1 2 A B C1 1 1

A B C C1 1 1 2 A B B1 1 2 A B B C1 1 2 2 A B B C1 1 2 1 A B B C C1 1 2 1 2

A A C1 2 1 A A B C1 2 2 1 A A B1 2 1 A A B C1 2 1 2 A A B C1 2 1 1

A A B C C1 2 1 1 2 A A B B C1 2 1 2 1 
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=w
d d d000000

1

A B C1 1 1

. In a similar way, one proves the allowed types of terms in the general n-partite case. (For an

alternative formulation of the conditions for an operator to be a valid processmatrix, see [19].)
The types of terms that appear in the expansion of a processmatrix are closely related to the signaling

between the parties that the process allows. For example, a bipartite process involves signaling fromBob toAlice
if and only if the processmatrix contains terms of type A B1 2 or A B B1 1 2 [4]. To state the condition for (no)
signaling in themultipartite case, it is convenient to introduce the following terminology (see also [19]).
Consider aHilbert–Schmidt term s s s s s sÄ Ä Ä Ä Ä Äi

A
j
A

k
B

l
B

m
C

n
C1 2 1 2 1 2  as in equation (47). The

restriction of this termonto, say, subsystems B C C2 1 2  is defined as s s sÄ Ä Äl
B

m
C

n
C2 1 2 .

Proposition 3.2.Ann-partite processmatrix for a set of parties ¼{ }n1, , does not permit signaling from, say, (1 and
2 andLand k) to ( +k 1and +k 2 and L and n) if an only if it contains only termswhose restriction onto

k k1 11 2 1 2 are of the allowed types for a processmatrix on ¼{ }k1, , as described in proposition S4. The proof S5 is
given in the appendix.

As an example, a tripartite quantumprocess that is causal and compatible with a situation inwhichCharlie is
first (figure 3) should involve no signaling fromAlice andBob toCharlie, and hence it can only contain the types
of terms listed in table 3. These constraints on the allowed types of terms imposed by causal order will turn out to
play an important role in the characterization of the so-called causally separable quantumprocesses, whichwe
define in the next subsection.

3.2. Causally separable quantumprocesses
Given that quantumprocesses have a simple description in terms of processmatrices, it is natural to askwhether
the property of causality can also be expressed in terms of simple conditions on thesematrices. Consider a
bipartite quantumprocess for Alice and Bob, and assume that it is a fixed-order process compatible with the
causal configuration A B . In that case, as argued earlier, the only constraint imposed by causal order is that
the process should involve no signaling fromBob toAlice. As pointed out in the previous subsection, there can
be signaling fromBob toAlice if and only if the processmatrixW A A B B1 2 1 2 contains terms of type A B1 2 or A B B1 1 2.
Therefore, a processmatrix is compatible with A B if and only if none of these types of terms appear in its
expansion. Thismeans that such a processmatrix has the form

= Ä ( )W W , 48A B A A B B1 2 1 2

where W 0A A B1 2 1 (with =W dTr A A B
A

1 2 1
2
) contains atmost terms of type ,A1,B1, A B1 1, A B2 1, A A B1 2 1. (This

is equivalent to saying thatW A A B1 2 1 is a valid processmatrix for the casewhere Bob has a trivial output
system, = B 11 .)

Similarly, in the case where  A B, the processmatrix has the form

= Ä ( )  W W , 49A B A B A B1 1 2 2

where W 0A B1 1 , =WTr 1A B1 1 . Such a process is realized in a situation inwhichAlice and Bob receive input
systems in a joint quantum state with a densitymatrixW A B1 1, and their output systems are discarded.

We can unify these two conditions towrite down the formof a processmatrix compatible with B A,
which is identical to (48)

= Ä ( ) W W , 50B A A A B B1 2 1 2

whereW A A B1 2 1 is a valid processmatrix for the casewhere = B 11 .
As shown in [36]within a different framework, all processmatrices of the type (50) can be realized by

embedding the experiments of Alice and Bob in a quantum circuit, so that Bob’s experiment does not precede
Alice’s experiment in the order of the circuit composition.Most generally, this corresponds to providing Alice
with an input system that is entangledwith an ancilla, then sending Alice’s output together with the ancilla

Table 3.The types of terms allowed in a causal processmatrix ( ) W A B C
A A B B C C

,
1 2 1 2 1 2 compa-

tible with ( ) A B C, .

C1 B1 B C1 2 B C1 1 B C C1 1 2

A B2 1 A B C2 1 2 A B C C2 1 1 2 A1 A C1 2

A C1 1 A C C1 1 2 A B1 2 A B C1 2 2 A B C C1 2 1 2

A B1 1 A B C1 1 2 A B C1 1 1 A B C C1 1 1 2 A B B1 1 2

A B B C1 1 2 2 A B B C C1 1 2 1 2 A A B1 2 1 A A B C1 2 1 2 A A B C C1 2 1 1 2

A B C1 2 1 A B C2 1 1 A A B C1 2 1 1 A B B C1 1 2 1 
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through a quantum channel into Bob’s input, and then discarding Bob’s output. Such a process is referred to as
quantum ‘channel withmemory’.

Aswe have seen earlier, a bipartite causal process is one that can bewritten in the form (16), where A B

and B A are two processes compatible with A B and B A, respectively. It is then tempting to
conjecture that the class of causal quantumprocessesmight be thosewhose processmatrices can bewritten in
the form

= + -( ) ( )  W q W q W q1 , 0 1, 51A A B B A B B A1 2 1 2

where WA B and WB A have the formdefined in equation (50). Certainly, since the probabilities for the
outcomes in the quantumprocess framework are linear functions of the processmatrix, a processmatrix of the
form (51)describes a causal process.

However, the condition for a process to be causal (equation (16)) does not imply that A B and B A in
the convex decomposition of the process should themselves be quantumprocess; only their convexmixture
needs to be.While it is conceivable that the structure of quantumprocessesmight imply the form (51) (indeed,
this has been shown to hold for a limited class of bipartite quantumprocesses [14]), there is no obvious reason to
expect this to hold in the general case. In fact, wewill see that the natural generalization of condition (51) to the
multipartite case is not equivalent to the condition that a process is causal (the same holds also for other possible
generalizations that wewill discuss later). Very recently, the samewas shown to hold also in the bipartite case, by
Feix, Araújo, and Brukner [38].

A bipartite quantumprocess that admits the decomposition (51)was called causally separable [4]. Oneway to
think of the relation between causal and causally separable quantumprocesses is in analogywith the relation
betweenBell-local and separable (non-entangled) quantum states. Given an arbitrarymultipartite quantum
state with a densitymatrix rAB, the probabilities for the outcomes of a set of local POVMmeasurements

Î{ }Mi
A

i O A, Î{ }Mj
B

j OB,K (å =Î Mi O i
A A

A , å =Î Mj O j
B A

B ,K) are given by

r¼ ¼ = Ä ÄÎ Î( ∣{ } { } ) ( ) ( )p i j M M M M, , , , Tr . 52i
A

i O j
B

j O
AB

i
A

j
B

A B 

ABell-local state is one forwhich the joint probabilities for the outcomes of any combination of local
measurements admits a local hidden variable description (andhence such a state cannot beused to violate anyBell
inequality [39]), i.e., the joint distribution canbewritten as a probabilisticmixture of factorizing local distributions

år l l l¼ ¼ =
l

( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )p o o s s p p o s p o s, , , , , , , , 53A B A B AB A A B B 

whereλ is some variable with a probability distribution l( )p , s A, s B,K are the localmeasurement settings (each
corresponding to a specific local POVMmeasurement Î{ }Mi

A
i O A, Î{ }Mj

B
j OB,K), and oA, oB,K are their

outcomes (corresponding to i, j,Kin the expression (52)). A separable quantum state is one forwhich each of the
local distributions l( ∣ )p o s ,A A , l( ∣ )p o s ,B B ,K in equation (52) itself can be thought of as arising from the
respective localmeasurement being applied on a local quantum state, whichmeans that the densitymatrix of the
state can bewritten

år l r l r l= Ä Ä
l

( ) ( ) ( ) ( )p . 54AB A B 

A separable quantum state is clearly Bell local, but the reverse is knownnot to be true [40]. The relation between
causal (16) and causally separable (51) bipartite quantumprocesses can be seen in an analogousway—a causally
separable process is one forwhich the processes intowhichwe decompose the process are themselves valid
quantumprocesses.

Here, we propose to extend the notion of causal separability to themultipartite case based on this analogy.

Definition 3.1 (Causally separable quantumprocess).Aquantumprocess is called causally separable if and
only if it can be decomposed in the canonical form given by theorem 2.2, with the additional condition that each
process on the right-hand side of equation (41) is a quantumprocess. (Note that since the canonical form is
defined iteratively, the latter is understood to hold for all conditional processes in this definition.)By a direct
analogy, causally separable processes can be defined for any theory formulated in the process framework, but
herewewill be interested specifically in quantumprocesses. The processmatrix of a causally separable quantum
process will be called a causally separable processmatrix.

3.3. Non-equivalence between causal and causally separablemultipartite processes: a tripartite example
Wenow give an example of a tripartite quantumprocess that is causal but causally non-separable, which
demonstrates that these two concepts are not equivalent, at least in the case ofmore that two parties. A similar
conclusion based on the same example has been obtained independently byCosta and is presented in [19].

The example is inspired by the idea of superposition of causally ordered quantum circuits bymeans of the
so-called quantum switch technique [3], where the order of two black-box quantumoperations ismade to
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depend on the value of a quantum control bit prepared in superposition of the two possible logical values. Each
of the input and output systems of Alice and Bob in our example will be assumed to be a two-dimensional (qubit)
system.We can imagine that this is the spin degree of freedomof a spin- 1

2
particle, which enters each laboratory,

interacts with the devices inside, and leaves. The particle could be prepared so as to go in superposition along two
different possible paths—along one path, it goes first throughAlice’s laboratory and then through Bob’s,
whereas along the other path it goesfirst through Bob’s laboratory and then throughAlice’s. For simplicity, we
can imagine that the experiment is arranged in such away that the particle would always go through Bob’s
laboratory at afixed time, but depending on the value of the control bit, it would go throughAlice’s laboratory
before or after that. It is assumed that independently of the time at which the systemmay go throughAlice’
laboratory in a given run, Alice would apply the same operation on it. To understand the effect of such a setup,
consider first the case inwhichAlice and Bob each apply a unitary operation on the system,UA andUB,
respectively. Let us denote theHilbert space of the control qubit (path degree of freedom) byc, and that of the
system (spin degree of freedom) bys. If ñ∣0 c corresponds to the path inwhichAlice is before Bob and ñ∣1 c to the
path inwhich Bob is before Alice, if we initially prepare the particle in the state, say, r = YñáY∣ ∣cs cs

in in, where
a b yYñ = ñ + ñ ñ∣ ( ∣ ∣ )∣0 1cs c c s

in , at the end it will be in the state r = YñáY∣ ∣cs cs
fi fi , where

a y b yYñ = ñ ñ + ñ ñ∣ ∣ ∣ ∣ ∣U U U U0 1cs c
B
s

A
s s c

A
s

B
s s

fi . Now, if a third party, Charlie, performs an operation on the joint
system Ä c s subsequently, he can distinguish this situation from a situation inwhich the order between the
operations of Alice and Bob is conditioned on a classical bit (e.g.,modeled by the initial state of the control qubit
being in a ‘classical’mixture of the two possible values, a bñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣0 0 1 1s s2 2 , instead of a coherent
superposition) by performing a suitablemeasurement. In fact, it was shown in [6] that by exploiting such a
coherent strategy, Charlie can perfectly distinguish between a pair of unitariesUA andUB that commute or
anticommute by using each of the unitaries only once, which is impossible if the order of the unitaries is
conditioned on a classical bit. An experimental demonstration of this effect was recently reported in [17].

In the general case, the operations of Alice and Bob need not be unitary andmay have different possible
outcomes. Every such operation, however, can be seen as the result of a joint unitary on the input system and a
local ancilla, such that the outcome remains stored on the local ancilla in a particular basis. Similarly, any local
‘choice’ of operation can bemodeled by a larger unitary on all systems involved plus a local ancilla that carries the
‘choice’ variable. Thus, we can have Alice and Bob perform general operations in this setup by purifying their
local operations to unitaries and deferring the reading of their outcomes to the end of thewhole experiment.
(Note that in order not to destroy the superposition, thewhole experiments needs to be performed coherently,
whichmay be unrealistic for local operations performed bymacroscopic devices, but is in principle compatible
with standard quantummechanics.)

In our example, wewill take a b= = 1

2
, andwewill assume, as described above, that Charlie can operate

on both the path and spin degrees of freedomof the particle after it has interactedwith Alice and Bob. In other
words, Charlie’s input systemwill be four-dimensional, andwewill formally decompose it into two qubit
subsystems, = Ä  C C Cc s

1 1 1 , whereC c
1 andC s

1 correspond to the path and spin degrees of freedom,
respectively. Since Charlie operates last, we do not need to introduce a non-trivial output system for him, i.e., his
output systemwill be assumed one-dimensional. The processmatrix relating the local experiment of Alice, Bob,
andCharlie in this setup can easily be obtained by describing the experiment in the formof a circuit inwhich
Alice’s operation is represented by two controlled operations at two possible times, such that one of themwould

Figure 5.The left diagram illustrates the circuit with quantum control. The right diagram illustrates a simulation of the same
correlations with a classically controlled circuit using input and output systems of larger dimensions.
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act nontrivially depending on the state of the control qubit (left diagramonfigure 5). Using theCJ representation
of the channels connecting the different boxes, we obtain

= ñá∣ ∣ ( )W W W , 55A A B B C C A A B B C C1 2 1 2 1 2 1 2 1 2 1 2

where

y yñ = ñ ñ F ñ F ñ + ñ ñ F ñ F ñ+ + + +∣ (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )W 0 1 2 , 56A A B B C C C A A B B C C B B A A Cc s c s
1 2 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 1

with F ñ = ñ + ñ+∣ ∣ ∣00 11 . It can be verified thatW A A B B C C1 2 1 2 1 2 contains only allowed terms. This processmatrix
is a rank-one projector, and hence it cannot bewritten as a convexmixture of different processmatrices.
Therefore, if it is causally separable, itmust be of one of the types ( ) W A B C, , ( ) W B C A, , or ( ) W A C B, . But each
of these types of processmatrices should permit no signaling from two of the parties to the third one (e.g., in the
first case there can be no signaling fromAlice andBob toCharlie). However, the above processmatrix permits
signaling to any of the parties from some of the other parties. Indeed, to see that there can be signaling fromAlice
andBob toCharlie, imagine that Alice and Bob choose to perform the unitary operationsUA andUB. In this case,
Charlie will receive the state y yñ ñ + ñ ñ[∣ ( ∣ ) ∣ ( ∣ ) ]U U U U0 1 2C

B A
C C

A B
Cc s c s

1 1 1 1 , which can be different for different
choices of the unitaries of Alice and Bob, and can therefore yield different probabilities for the outcomes of some
measurement of Charlie. To see that we can have signaling fromAlice to Bob or vice versa, noticefirst that there
can be no signaling fromCharlie toAlice and Bob (Charlie has a trivial output system). Thismeans thatwe have a
well-defined reduced process for Alice and Bob, whose processmatrix is

y y y y= ñá Ä F ñáF Ä + ñá Ä F ñáF Ä+ + + +(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( ) W
1

2
. 57A A B B A A B B B B A A1 2 1 2 1 2 1 2 1 2 1 2

This is a causally separable bipartite processmatrix that can be interpreted as describing an equally weighted
probabilisticmixture of twofixed-order processes—thefirst one describes a situation inwhich the input state
yñ∣ is sent into Alice’s input, her output is sent into Bob’s input through the identity channel, and Bob’s output is
discarded; the second one describes the analogous situationwith the roles of Alice and Bob interchanged.
Clearly, since in the first situation there is an ideal channel fromAlice to Bob, there can be signaling fromAlice to
Bob in this process (even if imperfect on average), and similarly fromBob toAlice. Therefore, the processmatrix
given by equations (55) and (56) is not causally separable.

The fact that the process is causal follows immediately from the fact that the reduced process for Alice and
Bob is causally separable (and hence also causal). Specifically, we have

= + = +◦ ◦[ ] [ ] [ ] [ ]       AB B A A B
A

B A
A
A

B
A B

B
B1

2

1

2

1

2

1

2I I I I. But the tripartite process is simply

= = +◦ ◦ ◦ ◦ ◦[ ] [ ] [ ] [ ]        ABC C AB AB C AB
A

B A
A
A C AB

B
A B

B
B1

2

1

2I I I I, which is the formof a causal

process. This observation suggests how the probabilities of Alice, Bob, andCharlie can be simulatedwithout
using a quantum switch, if we allow the parties to have larger input and output systems. Since the reduced
probabilities of Alice and Bob can be realized by conditioning their order on a classical randombit, all that is
needed in order for the tripartite process to be reproduced in this way is for Charlie to receive the information
about the settings and outcomes of Alice and Bob so as to produce the necessary ( ∣ )p o s o s o s, , , ,C A A B B C .
Therefore, if in addition to the qubit system that goes betweenAlice and Bob there is another (possibly infinite-
dimensional) systemonwhich each party writes down his/her setting and outcome (right diagramonfigure 5),
and this system at the end enters Charlie’s laboratory (or, alternatively, the state onCharlie’s original input
system is prepared based on this information), the process can be simulated using classically random causal
configurations.

By a similar argumentwe can construct a large class ofmultipartite processes that are causal but not causally
separable. Consider a situation inwhich the order of all but one of the parties is conditioned on the state of a
control systemprepared in superposition, and subsequently all systems onwhich these parties have operated
togetherwith the control system are sent into the input of the last party. If all systemswere initially prepared in a
pure state and all channels are unitary ones, the processmatrix will have rank 1, and unless the process isfixed-
order causal, it cannot be causally separable. Yet, it will be causal because the reduced process for all parties
except for the last onewill be causally separable (and hence causal) due to the fact that whenwe trace out the
control system, the process for these parties would be a classical probabilisticmixture offixed-order processes.
Since the full process is obtained bymultiplying the conditional process of the last party with the reduced process
of the previous ones, the full process is causal. It can be simulated using classical control of the order of the
parties by allowing larger input and output systems bywhich the settings and outcomes of all other parties are
made available to the last one.

3.4. Non-causality can be activated by shared entanglement
Wenow show another peculiar property of the concepts of causality and causal separability of quantum
processes. One of the key assumptions in the derivation of the quantumprocessmatrix framework is that every
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process can be extended by supplying the parties with ancillary input systems in an arbitrary quantum state,
yielding another valid process. Intuitively, since a joint input state is a non-signaling process that is compatible
with any causal configuration, onemay expect that by adding such a state to a causal quantumprocess would
yield again a causal process.We now show that this is not the case.We refer to this effect as activation of non-
causality.

We give a particular example of a tripartite causal quantumprocessmatrix, constructed on the basis of the
bipartite processmatrix presented in [4],

s s s s s= + + ( )
⎛
⎝⎜

⎞
⎠⎟W

1

4

1

2

1

2
, 58A A B B A A B B

z
A

x
B

z
B

z
A

z
B1 2 1 2 1 2 1 2 1 1 2 2 1

which itself can violate a causal inequality and is hence non-causal (see [4]). Here, the input and output systems
of Alice and Bob are two-level systems. In our tripartite construction, the input and output systems of Alice and
Bob are also two-level systems, andwe addCharlie, who has a trivial input system and a two-level output system.
In terms of the Paulimatrices sx, sy, sz , the processmatrix we consider has the form

s s s s s s s= + + ( )
⎛
⎝⎜

⎞
⎠⎟W

1

4

1

2

1

2
. 59A A B B C A A B B C

z
A

z
B

z
B

x
C

z
A

z
B

z
C1 2 1 2 2 1 2 1 2 2 1 1 2 2 2 1 2

The fact that this is a valid processmatrix follows from the fact that it has the right normalization, contains
only allowedσ terms, and is positive semidefinite. The latter is easy to see by noticing that relative to the

ñ ñ{∣ ∣ }0 , 1 basis of systemB1 (this is the eigenbasis of sz corresponding to eigenvalues+1 and−1, respectively),
the processmatrix can bewritten

s s s s s

s s s s s

= ñá Ä + +

+ ñá Ä - -

∣ ∣

∣ ∣ ( )





⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

W 0 0
1

4

1

2

1

2

1 1
1

4

1

2

1

2
. 60

A A B B C B A A B C
z
A

z
B

x
C

z
A

z
C

B A A B C
z
A

z
B

x
C

z
A

z
C

1 2 1 2 2 1 1 2 2 2 1 2 2 2 2

1 1 2 2 2 1 2 2 2 2

Now, the operator s s s s s+ +( )A A B C
z
A

z
B

x
C

z
A

z
C1

4

1

2

1

2
1 2 2 2 1 2 2 2 2 is identical to that in equation (58) except that

we have the systemC2 in the place ofB1, and this operator has been shown to be positive semidefinite. The

operator s s s s s- -( )A A B C
z
A

z
B

x
C

z
A

z
C1

4

1

2

1

2
1 2 2 2 1 2 2 2 2 differs only by the fact that the nontrivialσ terms come

with aminus sign, and can be obtained from the first operator by a unitary transformation (e.g., one that takes
sx

C2 to s- x
C2 and sz

C2 to s- z
C2, such as s y

C2).
To see that this processmatrix describes a causally separable process, note that it permits no signaling from

Alice andBob toCharlie, i.e., it can be formally written as = ◦  A B C A B C C, , , . But conditionally on any
event inCharlie’s laboratory, which ismost generally described by someCPmapwithCJ operator M 0C2 ,
Alice and Bob are left with a bipartite process with processmatrix

= Ä[( ) ] [ ] ( )W M W MTr Tr . 61
M
A A B B

C
C A A B B A A B B C C

C2
1 2 1 2

2
2 1 2 1 2 1 2 1 2 2 2

This processmatrix is obviously a linear combination of the identity and terms containing only sz operators on
different subsystems, i.e., it is diagonal in a given local basis (the ñ ñ{∣ ∣ }0 , 1 basis for each subsystem). It was
shown in [4] that all such bipartite processmatrices are causally separable (thoughwe remark that the samewas
shownnot to hold formultipartite processes [9]).

Imagine now thatwe supply Bob andCharlie with the entangled input state F ñáF+ + ¢ ¢∣ ∣C B1

2
1 1 , which yields the

newprocess

= Ä
F ñáF¢ ¢

+ + ¢ ¢∣ ∣ ( )W W
2

. 62A A B B B C C A A B B C
C B

1 2 1 1 2 1 2 1 2 1 2 2

1 1

If Charlie performs the identity unitary channel from ¢C1 toC2 in his laboratory, which is described by

= F ñáF¢ + + ¢∣ ∣MC C C C1 2 1 2, Alice and Bob are left with the bipartite process

s s s s s s s= + +¢ ¢ ¢ ¢ ( )
⎛
⎝⎜

⎞
⎠⎟W

1

4

1

2

1

2
. 63A A B B B A A B B B

z
A

z
B

x
B

z
B

z
A

z
B

z
B1 2 1 1 2 1 2 1 1 2 1 1 1 2 2 1 1

This can be easily seen from the fact that taking the partial trace of ¢ ¢W A A B B B C C1 2 1 1 2 1 2 with the operator

F ñáF+ + ¢∣ ∣C C1 2 is formally identical (up to a normalization) to a local projection in a quantum-state teleportation
protocol [37], which amounts to ‘teleporting’ the part of thematrix onC2 onto ¢B1 . (Note that the standard
notion of teleportation is defined for quantum states and not processmatrices, and the protocol requires a
correcting operation on the receiver’s side since a projection of the kind above, which does not require
correction, cannot be accomplished deterministically [37]). The processmatrix (63) is similar to (58), except that
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the local operators onB1 in the non-trivial sigma terms in equation (58) are nowon ¢B1 , and there is a sz operator
onB1 in each such term. This processmatrix is non-causal, because it allowsAlice and Bob to obtain any
correlations that they could obtain using the non-causal processmatrix (58). This can be done as follows. Alice
always performs the same operations that shewould performwith the processmatrix (58). Bob performs a
measurement on systemB1 in the ñ ñ{∣ ∣ }0 , 1 basis. If he obtains the outcome ñ∣0 , then it is as if Alice and Bob
share the processmatrix (58)with ¢B1 in the place ofB1. Hewill then apply any operation from ¢B1 toB2 that he
would apply fromB1 toB2 with the processmatrix (58), which yields the same joint probabilities for Alice and
Bob as thosewith the processmatrix (58). If Bob obtains the outcome ñ∣1 for hismeasurement onB1, then it is as
if Alice and Bob share the same processmatrix as (58)with ¢B1 in the place ofB1 but with aminus sign in front of
each of the twonontrivialσ terms. This processmatrix is equivalent to the previous one under a change of basis

by the unitary s
¢

y
B1 . Therefore, Bob can simply apply from ¢B1 toB2 the same operations hewould apply from B1

toB2 with the processmatrix (58) but transformed by the unitary transformation s
¢

y
B1 . Again, this yields the same

joint probabilities for Alice and Bob aswith the processmatrix (58). In particular, Alice and Bob can use this
strategy to violate the causal inequality described in [4]. The processmatrix (63) is thus non-causal, and so is the
tripartite processmatrix (62).

It is not known at present whether non-causal processes can be realized in agreementwith the known laws of
quantummechanics without resorting to post-selection.We have seen in the previous subsection that we can
realize causally non-separable processes, which are nevertheless causal. Here, we see that certain causal processes
can become non-causal when suppliedwith shared entanglement. The ability to extend a process with shared
entanglement seems natural to expect for any experimentally realizable process. From this perspective, this
result suggests that either non-causal processesmay be possible, or that theremay exist causally separable
processes, as defined above, that cannot be realized in practice.

3.5. Extensibly causal and ECS quantumprocesses
The fact that according to our definition of causal separability there exist causal processes thatmay be activated
to non-causal ones by shared entanglement naturally suggests the definition of the following classes of processes
that do not have this counterintuitive property.

Definition 3.2 (Extensibly causal quantumprocess).Aquantumprocess that is causal and remains causal
under extensionwith input systems in an arbitrary joint quantum state is called extensibly causal.

Definition 3.3 (ECSquantumprocess).Aquantumprocess that is causally separable and remains causally
separable under extensionwith input systems in an arbitrary joint quantum state is called ECS.

The processmatrices of these types of processes will also be referred to as extensibly causal and ECSprocess
matrices, respectively.

Note.These definitions can be formulated analogously formore general process theories that permit
composite local systems.

Do these classes of processes correspond to something easy to describe in practice, and are they different at
all? It is immediate to see the following facts.

Observation 1: All bipartite causally separable processes are ECS. This is because, if we add an arbitrary joint
input ancilla to a processmatrix of the form (51), we again obtain a processmatrix of the same form. Therefore,
the notion of extensible causal separability can be seen as another possiblemultipartite extension of the bipartite
notion of causal separability, which, however, is linked in a less direct way to the theory-independent notion of
causality.

Observation 2: Extensibly causal and ECS processes are not equivalent in general. Indeed, the causally non-
separable tripartite process (55) based on the quantum switch is also extensibly causal (our proof that it is causal
applies also if the parties share entangled input ancillas).

Comment: Recently, Feix, Araújo, and Brukner gave an example of a bipartite quantumprocess that is causal
but not extensibly causal [38], proving that causality and extensible causality are different in the bipartite case
too.While in the tripartite case we have seen that extensible causality is also different from causal separability, it
is currently an open problemwhether the same holds in the bipartite case.

In the next subsection, we derive a characterization o f the tripartite ECS processes in terms of conditions on
the formof the processmatrix which generalize the conditions in the bipartite case (equations (50) and (51)).

3.6. Structure of tripartite ECSprocessmatrices
Recalling the definition of causally separable process, let usfirst state an obvious consequence of this definition
for the structure of causally separable (though not necessarily ECS) processmatrices. Since the probabilities of a
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quantumprocess are linear in the processmatrix, the requirement that a causally separable process decomposes
as in theorem 2.2where all processes on the right-hand side of equation (41) are valid quantumprocessesmeans
that a causally separable processmatrix is one that can bewritten in the form

å å= " =¼

=

¼ - + ¼

=

( )( ) W q W q i q, 0 , , 1, 64cs
n n

i

n

i
i i n i

i
i

n

i
1 1

1

1, , 1, 1, ,

1

1 2 1 2

where ¼ - + ¼( ) W i i n i1, , 1, 1, , is a processmatrix which describes a process ¼ - + ¼( ) i i n i1, , 1, 1, , with the
property

=¼ - + ¼ ¼ - + ¼ ◦ ( )( ) ∣   , 65i i n i
cs

i i n i i1, , 1, 1, , 1, , 1, 1, ,

where for >n 1 the conditional process ¼ - + ¼ cs
i i n i1, , 1, 1, , is a causally separable process for every value of the

event in i, and for n=1 it is the trivial process. Note that the requirement that ¼ - + ¼( ) i i n i1, , 1, 1, , is a
quantumprocess that permits no signaling from the rest of the parties to i guarantees that both the reduced and
the conditional process on the right-hand side of equation (65) are valid quantumprocesses (this can be seen
from the (no) signaling condition in proposition 3.2).

In the case of two parties, we have seen that the processmatrices WA B, whose processes obey
= ◦  A B

cs
A B B (note that anymonopartite process is trivially causally separable and ECS), are those that

can bewritten in the form = Ä W WA B B B A A1 2 1 2, and the general formof bipartite causally separable process
matrices is (51). As noted already, this is also the general formof the bipartite ECS processmatrices. Our goal is
to obtain a similar conditionfor triparite ECS processes.

First, let us consider a process of the form = ◦( )  A B C
cs
A B C C, , , whereC is amonopartite

quantumprocess and cs
A B C, is a bipartite conditional process which is causally separable for each possible

event inC. Since in particular there should be no signaling fromAlice andBob toCharlie in such a process, its
processmatrix, whichwewill denote ( ) W A B C

A A B B C C
,
1 2 1 2 1 2, can atmost contain the types of terms listed in table 3. These

are the terms that do not permit signaling fromAlice and Bob toCharlie according to proposition 3.2.
Wewillfirst obtain necessary and sufficient conditions for such a process to be ECS.Note thatwe have not

proven yet that a general ECS processmatrix should have the form (64)where each of the terms
¼ - + ¼( ) W i i n i1, , 1, 1, , is itself ECS. This will be shown later.
Every event inCharlie’s laboratory is described by someCPmapwithCJ operator M 0C C1 2 ,

M dTr C C
C

1 2
1
. Conditionally on such an event, Alice and Bob are left with the processmatrix

= Ä[ ( )] ( ) ( )( )  W W M p MTr , 66
M
A A B B

C C A B C
A A B B C C A A B B C C C C

,C C1 2
1 2 1 2

1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2

where ( )p MC C1 2 is the probability for the event MC C1 2 to occur in Carlie’s laboratory (given the appropriate
setting), which is independent of the operations performed byAlice and Bob since the process involves no
signaling fromAlice andBob toCharlie.More specifically

=( ) [ ] ( )p M W MTr , 67C C C C C C1 2 1 2 1 2

where

= Ä ( )( ) 



⎡
⎣
⎢⎢

⎛
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⎞
⎠⎟

⎤
⎦
⎥⎥W W

d d
Tr 68C C

A A B B A B C
A A B B C C

A A B B

A B

C C
,

1 2
1 2 1 2

1 2 1 2 1 2
1 2 1 2

2 2

1 2

is the reduced process of Charlie. The requirement that the conditional process for Alice and Bob is causally
separablemeans that for all MC C1 2

= + -( ) ( ) W q W q W1 , 69
M
A A B B

M M
A B

M M
B A

C C C C C C C C C C1 2
1 2 1 2

1 2 1 2 1 2 1 2

where W
M
A B

C C1 2 and
W

M
B A

C C1 2 are valid quantumprocesses compatible with A B and B A, respectively, and

Î [ ]q 0, 1MC C1 2 (all objects generally depend on MC C1 2). For convenience, wewill write this simply in the form

= Ä + Ä˜ ˜ ( ) W W W , 70
M
A A B B A

M
A B B B

M
A A B

C C C C C C1 2
1 2 1 2 2

1 2
1 1 2 2

1 2
1 2 1

where ˜ W 0
M
A B B

C C1 2
1 1 2 and ˜ W 0

M
A A B

C C1 2
1 2 1 , and thewhole operator is a valid processmatrix, i.e., it contains only

allowed terms and is properly normalized.
A sufficient condition for this to hold is that

= Ä + Ä˜ ˜ ( )( )   W W W , 71A B C
A A B B C C A A B B C C B A A B C C

,
1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2

where ˜ W 0A B B C C1 1 2 1 2 and ˜ W 0A A B C C1 2 1 1 2 are some positive semidefinite operators, whose sumgives a
properly normalized quantumprocessmatrix containing only the types of terms listed in table 3. (We remark
that each of ˜ W 0A B B C C1 1 2 1 2 and ˜ W 0A A B C C1 2 1 1 2 may contain terms that are forbidden in a processmatrix,
such as terms of typeC2, but these terms have to cancel in the sum.) Indeed, we have
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where

= Ä˜ [ ˜ ( )] ( ) ( )W W M p MTr 0, 73
M
A B B

C C
A B B C C A B B C C C C

C C1 2
1 1 2

1 2
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= Ä˜ [ ˜ ( )] ( ) ( )W W M p MTr 0, 74
M
A A B

C C
A A B C C A A B C C C C

C C1 2
1 2 1

1 2
1 2 1 1 2 1 2 1 1 2 1 2

and it is easy to see that since ( ) W A B C
A A B B C C

,
1 2 1 2 1 2 contains only the types of terms listed in table 3,W

M
A A B B

C C1 2
1 2 1 2 can only

contain allowed terms.
It is immediate to see that this condition is sufficient also for the processmatrix ( ) W A B C

A A B B C C
,
1 2 1 2 1 2 to be ECS. This

is because ifW A A B B C C1 2 1 2 1 2 has the above properties, any extension rÄ ¢ ¢ ¢W A A B B C C A B C1 2 1 2 1 2 1 1 1 , where r ¢ ¢ ¢A B C1 1 1 is a
densitymatrix, also has these properties.

We now show that the form (71) is also a necessary condition for an ECS processmatrix compatible with
( ) A B C, , whichwewill denote by ( ) W A B C

A A B B C C
ecs; ,

1 2 1 2 1 2. The proofmakes use of the ‘teleportation’ technique that we
used in showing the activation of non-causality. Imagine that we supply Alice andCharlie respectively with
ancillary systems ¢A1 and ¢C1 of dimension d dC C1 2

each, which are prepared in themaximally entangled state

f fñá+ + ¢ ¢∣ ∣ ( )d dA C
C C

1 1
1 2

, where f ñ = å ñ ñ+
=

¢ ¢∣ ∣ ∣i ii
d d A C

1
C C1 2 1 1 . Conditionally onCharlie performing a suitable

operation and obtaining an outcomewithCPmap f fµ ñá¢ + + ¢∣ ∣( )MC C C C C C1 2 1 1 2 1 , Alice and Bobwill be left sharing
a processmatrix which, up to a normalization factor, has an identical form to that of ( ) W A B C

A A B B C C
ecs; ,

1 2 1 2 1 2 butwith ¢A1 in
the place of C C1 2. The requirement that this is a causally separable bipartite processmatrixmeans that

( ) W A B C
A A B B C C

ecs; ,
1 2 1 2 1 2 must be of the form (71).
So far, we have only obtained necessary and sufficient conditions for an ECS processmatrix ( ) W A B C

A A B B C C
ecs; ,

1 2 1 2 1 2

compatible with ( ) A B C, (and similarly for permutations ofA,B,C).We next prove the general case.

Proposition 3.3.Every tripartite ECS processmatrix can bewritten in the form

å

= + +

" = =
=

( )

( ) ( ) ( )



  W q W q W q W

q i q

,

0, 1, 2, 3, 1, 75

A A B B C C
A B C

A A B B C C
A C B

A A B B C C
B C A

A A B B C C

i
i

i

ecs 1 ecs; , 2 ecs; , 3 ecs; ,

1

3

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

where ( ) W A B C
A A B B C C

ecs; ,
1 2 1 2 1 2 contains only terms from table 3 and has the form (71), and analogously for ( ) W A C B

A A B B C C
ecs; ,

1 2 1 2 1 2 and

( ) W B C A
A A B B C C

ecs; ,
1 2 1 2 1 2 by permutation. The proof S6 is given in the appendix.

The extension of this form to an arbitrary number of parties is left for future investigation.

3.7. Processes realizable by classically controlled quantum circuits
Bipartite ECS processes have a clear experimental realization. This raises the question of whethermultipartite
ECS processes can also be realized in practice, and if so, whether they correspond to a natural class of
experimental procedures. (Note that in the bipartite case, ECS processes are equivalent to causally separable
processes, butwe have already seen that there aremultipartite causally separable processes that can become non-
causal under extensionwith entangled ancillas, and these do not have a known experimental realization.)Here,
wewill show that a particular class of processes which can be realized in practice, referred to as classically
controlled quantum circuits, belong to the class of ECS processes, which is the smallest class of causal quantum
processes thatwe have considered so far. Based on certain considerations, we furthermore conjecture that all
ECS processes can be realized in this way (this is certainly true in the bipartite case).

The idea of a classically controlled circuit can be thought of as fallingwithin the paradigmof quantum
lambda calculuswith classical control [41, 42]. If we regard the local experiments of the parties as black-box
operations, wemay think that they are called, only once each, as part of a computationwhere at every time step a
quantumoperation is applied on some part of a quantum register depending on a classical protocol thatmay use
as a variable the outcomes of past operations. If black-box operations are involved in such a computation, their
outcomes cannot be directly used (they remain ‘inside the box’until the end), but the order of subsequent
operations of the circuitmay nevertheless depend indirectly on the event inside such a black box, since it can be
decided based on ameasurement on the output system.

More concretely, we define such a process to have the following general realization.We beginwith some
sufficiently large quantum system (or ‘register’) in a given quantum state.We perform a quantumoperation on it
and conditionally on the outcome of that operationwe determinewhich partywill befirst, which subsystemof
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the register will be his/her input system, andwhat operationwill be applied after the black box of that party, all
according to some specified rule.We apply the black-box operation of the first party on the decided subsystem,
perform the decided operation after it, and depending on its outcome and the outcome of ourfirst operation
decidewhich party will be second, and so on. This continues until all parties are called (by definition, the
protocol is such that each party is called exactly once). Thismodel can be formalized in different equivalent ways,
whichmay be suitable for different purposes, andwewill consider some simplifications belowwhenwe discuss a
tripartite example. The fact that thismodel gives rise to valid quantumprocesses can be seen from the fact that if
we formally write the operation inside each box and calculate the joint probabilities for the outcomes of all boxes
using the standard rules of quantummechanics for all possible outcomes of the protocol, we see that they are
linear and non-contextual functions of the respective CPmaps of the parties. The same holds if we introduce
ancillary systems prepared in an arbitrary state and consider extended operations of the parties that act on parts
of them.

In the case of only two parties, we know that any (extensibly) causally separable process can be implemented
in this way, since itmost generally corresponds to embedding at random the local experiments of Alice and Bob
into one of two possiblefixed circuits, which can be chosen conditionally on the outcome of ameasurement on
some state at the very beginning. Since after the first party is chosen there is only one possible choice for the
second party, nomeasurement after thefirst party is needed. Reversely, any bipartite process that wemay obtain
via thismodel has the formof an ECS process. Fist notice that the process is independent of the operation
applied after the last party. Also, the outcome of any operation after the first party can be ignored since there is
only one choice for the last party, i.e., that operation can be assumed deterministic. Finally, the outcomes of the
operation before the first party can be grouped into two coarse-grained outcomes such that conditionally on one
of them the first party is Alice and on the other one it is Bob. But since after the outcome of that operation and
before the input of the first party the quantum register is in some particular quantum state, the rest of the
experiment simply corresponds to a deterministic circuit inwhichAlice and Bob are embedded in a particular
order. Therefore, the process realized by such a procedure is just a probabilisticmixture of the processes of two
fixed-order circuits, which is the claimed form.

In the case ofmore than two parties, the equivalence between the two concepts is less obvious, butwe can
easily argue that all processes obtained by classically controlled circuits are ECS. First, it is clear that depending
on the outcome of thefirstmeasurement (which has a probability independent of any future operations and
therefore of the settings of the parties), there will be one party that isfirst and hence the subsequent process that
results from the protocol can involve no signaling from the rest of the parties to that first party. Therefore, the
subsequent process has awell-defined reduced process for the first party. Taking into account all possible
outcomes of the firstmeasurement, thewhole process will be just a probabilisticmixture of processes of this kind
where one party isfirst, which is equation (64). But conditionally on the outcome of thefirst party, the procedure
for the rest of the parties looks analogously, so equation (65) holds too, i.e., the process is causally separable.
Including ancillas ontowhich the operations of the parties can be extended does not change anything in this
argument. Therefore, every process realizable with a classically controlled quantum circuit is ECS.

We conjecture that the reverse also holds.We provide some partial considerations that support this
conjecture, based on analysis of the restrictions on the allowed terms in processes realized by classically
controlled quantum circuits in the tripartite case.Wewill focus on the question of implementing by a classically

Figure 6.Realization of an ECS process compatible with ( ) A B C, by a classically controlled quantum circuit.
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controlled quantum circuit an ECS processmatrix of the type ( ) W A B C
ecs

, , which has the form (71).
Implementability of amatrix of this kind is both necessary and sufficient for the implementability of a general
tripartite ECS processmatrix as described in proposition 3.3, since by using a suitablemeasurement at the
beginningwe can select with the right probability which of the three processmatrices in themixture on the right-
hand side of equation (75) to realize subsequently.

The protocol beginsmost generally with some quantum systemprepared in a state ρ. After Charlie operates
on some subsystem,we apply some operation based onwhose outcomewe determinewho is second, onwhat
subsystemhe/shewould act, andwhat operationwill be applied after that. Note that without loss of generality
wemay assume that there is a pre-specified subsystemonwhich the second party will operate since any
subsystemof the same dimension can bemapped onto the designated subsystemby a unitary transformation
that can be absorbed as part of the definition of the present operation. Also, without loss of generality wemay
assume that this operation has only two outcomes, sincewe can group the outcomes into those forwhichAlice
will be next, and those forwhich Bobwill be next, and any conditioning of the operation following the next party
on thefine-grained outcomewithin each group can be equivalently done by a single future operation acting on a
larger system that includes some subsystemonwhich the classical information about the outcome at this step is
copied (still something thatwe can include as part of the definition of the operation at this step). Since there is
only a single possibility for the last party, the operation after the second party can be regarded as a deterministic
operation (or aCPTPmap) from all systems to the input of the last party.We leave the possibility that this last
operationmay be defined conditionally on thefirst outcome rather than absorb the conditioning on that
outcome into a larger operation, in order to avoid complications arising from the fact that the different parties
may have input and output systems of different dimensions. The outlined procedure is sketched infigure 6,
where the two possible sequences of transformations arising from the two possible outcomes of ourfirst
operation are depicted in blue and green, respectively. The twoCPmaps corresponding to the outcomes of the
operation after Charliemust sumup to aCPTPmap, since they correspond to the two possible outcomes of a
standard quantumoperation.

Each of the two possible developments (blue and green) of this protocol is a non-deterministic linear
supermap [43] from the local CPmaps of the parties into the real numbers, the result of which equals the
probability for the particular sequence of events. This can bewritten in a similar form as the formula for the
probabilities of the outcomes of the parties in a valid process, except that in the place of the processmatrix we

would have an operator ˜ W 0i
A A B B C C1 2 1 2 1 2 , where i=1, 2, labels the particular development, which generally

would not be a valid processmatrix. However, + =˜ ˜
( ) W W W

A A B B C C A A B B C C
cs A B C
A A B B C C

1 2 ; ,
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 would be a valid

processmatrix realized through this classically controlled quantum circuit.
Consider now just one of the two possible developments, say, the blue one, inwhichAlice is second andBob

is last (labeled by 1). One can see that since Bob is last and his output system is discarded, we have

= Ä˜ ˜W W
A A B B C C B A A B C C

1 1
1 2 1 2 1 2 2 1 2 1 1 2 (similarly, in the other case we have = Ä˜ ˜W W

A A B B C C A A B B C C
2 2

1 2 1 2 1 2 2 1 1 2 1 2).
Notice that if the transformation 1,CPTP after Alicewas not required to beCPTP but could be anyCPmap
1,CP, for a suitable choice of the initial state ρ and of theCPmaps1,CP and 1,CP we could realize any
˜ W 0

A A B C C
1

1 2 1 1 2 . This is simply becausewe can choose the density operator r ¢C C1 proportional to W̃
A A B C C

1
1 2 1 1 2,

where the part of W̃
A A B C C

1
1 2 1 1 2 on A A B C1 2 1 2 is stored on ¢C , andwe can ‘teleport’ this part of the operator onto its

desired subsystemby usingCPmaps1,CP and 1,CP that haveCJ operators proportional to projectors on
maximally entangled states as needed to realize the ‘teleportation’ (the traces of these CPmaps can be chosen to

ensure the overall trace of the resultant operator W̃
A A B C C

1
1 2 1 1 2). However, the restriction that the transformation

after Alice is trace-preserving, 1,CPTP, places constraints onwhat kind of W̃
A A B C C

1
1 2 1 1 2 can be obtained. Indeed,

the CJ operator of 1,CPTP cannot contain terms of typeA2, ¢A A2, and ¢A . Considering the calculation of

W̃
A A B C C

1
1 2 1 1 2 based on theCJ operators of ρ,1,CP and 1,CP, we see that the lack of these types of terms in

1,CPTP implies the lack of any termwith a nontrivialσ onA2 in W̃
A A B C C

1
1 2 1 1 2. This is the only constraint on the

possible types of terms in W̃
A A B C C

1
1 2 1 1 2. The possible types of terms are exactly those allowed in the operator

W̃ A A B C C1 2 1 1 2 in equation (71). Similarly, we see that the allowed terms in W̃
A B B C C

2
1 1 2 1 2 (Bob second, Alice last) are

the same as those in W̃ A B B C C1 1 2 1 2 in equation (71). These are the terms allowed in a processmatrix compatible

withCharlie being first, except that both W̃
A A B C C

1
1 2 1 1 2 and W̃

A B B C C
2

1 1 2 1 2 may contain terms of typeC2 and C C1 2 .

The fact that these terms should cancel in the sum Ä + Ä =˜ ˜
( )  W W WB A A B C C A A B B C C

cs A B C
A A B B C C

1 2 ; ,
2 1 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2

follows from the fact that this is a valid ECS process, and can be seen to be ensured by the requirement that
+  CP1,CP 2, is CPTP.

The only restriction on the operators Ä ˜ WB A A B C C
1

2 1 2 1 1 2 and Ä ˜ WA A B B C C
2

2 1 1 2 1 2 imposed by thismodel, apart
from their positive-semidefiniteness and the normalization of their sum, seems to be the absence of the
forbidden terms in each of them, aswell as of the forbidden terms in their sum. If this is indeed the case, then any
ECS process could be realized by a suitable classically controlled quantum circuit. A strictly rigorous proof
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requires showing that apart from the lack of these forbidden terms, there can be no other hidden constraints on

the pair of operators Ä ˜ WB A A B C C
1

2 1 2 1 1 2 and Ä ˜ WA A B B C C
2

2 1 1 2 1 2 (which, of course, are guaranteed to be properly
normalized). Oneway of doing it could be by exhibiting an explicit constructive procedure for implementing
any given ECS process, whichwould be of additional interest on its own right.We leave this question, and the
multipartite case, for future investigation.

4. Conclusion

In this paper, we proposed a rigorous definition of causality in the process framework [4], which takes into
account the fact that the causal order between a set of local experimentsmay in general be randomand
correlatedwith the settings of some of them.We derived the structure of causal processes permitting such
‘dynamical’ causal order in the generalmultipartite case, which is captured by an iteratively formulated
canonical form expressed in terms of reduced and conditional processes. The canonical form can be interpreted
as an unraveling of the process into a sequence of local experiments, which agrees with the condition that the
order and outcomes of the experiments prior to a given step is independent of the settings of future experiments.
We showed that for anyfixed number of settings and outcomes for each party, the probabilities of a causal
processes form a polytope, referred to as the causal polytope. The facets of this polytope define causal
inequalities, whose violation by a given process can be interpreted as demonstrating the non-existence of causal
order between the local experiments.

We investigated this concept and the related concept of causal separability in the quantumprocess theory
introduced in [4], whose properties were detailed here in themultipartite case.We proposed a definition of
causal separability, which reduces to the one for the case of two parties [4], based on the canonical formof causal
processes. Specifically, a causally separable quantumprocess was defined as a causal quantumprocess that has a
causal decomposition such that the different processes appearing in this decomposition are themselves valid
quantumprocesses.We showed that the set of causally separable quantumprocesses is strictly within the set of
causal quantumprocesses, by exhibiting an example of a tripartite process that is causal but not causally
separable. Very recently, the samewas shown to hold also in the bipartite case [38].We also gave an example of a
causally separable (and hence also causal) process that becomes non-causal when extended by supplying the
parties with an entangled ancillary state. Based on this observation, we proposed two extended notions of
causality and causal separability called extensible causality and extensible causal separability, which require
preservation of the respective property under extending the process with entangled input ancillas. Although they
are different in the general case, the sets of causally separable and ECS processes are equivalent in the bipartite
case.We showed that the sets of extensibly causal and causally separable processes are different in general via the
same tripartite example that we used to show that causal and causally separable processes are different. At
present we do not know if the same separation holds in the bipartite case. However, it was recently shown that
causal and extensibly causal processes are different in the bipartite case, similarly to themultipartite case [38].

Finally, we derived a simple characterization of the ECS quantumprocesses in the tripartite case in terms of
conditions on the formof their processmatrices, which extends the conditions for (extensibly) causally
separable processmatrices in the bipartite case.We conjectured that the set of ECS processes is equivalent to the
processes that can be obtainedwithin the paradigmof classically controlled quantum circuits and provided
evidence for this based on analysis of the restrictions that this paradigm imposes on the tripartite process
matrices it can create. The ECSprocesses and the processes obtainable by classically controlled quantum circuits
are equivalent in the bipartite case.

Our present understanding of the relation between all these different classes of quantumprocesses is
illustrated for the generalmultipartite case and for the bipartite case infigures 7(a) and (b), respectively. An
obvious open problem iswhether the gray segments in these figures are empty or not.

Another problemof fundamental importance is to understand the class of quantumprocesses that are
physically admissible in agreementwith the known laws of quantummechanics, andwhere this class standswith
respect to all of the above classes. Are the processes that can be realized by classically controlled quantum circuits
all the physically admissible causally separable processes?Where does the class of quantum-controlled quantum
circuits stand? At present, this is themost general operationally feasible paradigm thatwe are aware of and all
knownprocesses realizable through it seem to be extensibly causal. Could the class of extensibly causal processes
be equivalent to quantum-controlled quantum circuits? Andmost intriguingly, are there physically admissible
non-causal processes?

The implications of our results are not limited to the subject of indefinite causal order in quantum
mechanics. They can be useful also for the problemof inferring causal structure [24], both in classical and
quantum theory [44]. The subject of causal inference concernsmany disciplines, fromphilosophy andmachine
learning to sociology andmedicine. Our formulation of a background-independent operational notion of
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causality that admits dynamical causal relations opens the road to amore general paradigm for causal inference
than the one assuming deterministic underlying variables and static causal relations [24]. The decomposition of
causal processes derived here implies constraints on the possible causal orders compatible with given setting-
outcome correlations, which can serve as a basis for developingmore sophisticated causal inference tools.
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Appendix. Causal and causally separable processes

Proof S1 (proposition 2.2).The ‘only if’ part is contained in the very proposition 2.1. To prove the ‘if’ part, take
an arbitrary experiment, say, 1. Let ¼{ }k2, , , up to relabeling, be the set of local experiments that are in the
causal past or causal elsewhere of 1, and + ¼{ }k n1, , be the set of local experiments that are in the causal future
of 1. Since the causal configuration of the local experiments is assumedfixed, the condition for the process to be
causal reduces to the requirement that for every such1,wehave ¼ ¼ = ¼ ¼( ∣ ) ( ∣ )p o o s s s p o o s s, , , , , , , , ,k n n n2 1 2 2 2 .
But from the transitivity and anti-symmetry of causal order it follows that none of the experiments ¼{ }k1, , is in
the causal future of anyof the experiments + ¼{ }k n1, , . This implies thatwehave a reduced k-partite process for

¼{ }k1, , , i.e., ¼ ¼ = ¼ ¼( ∣ ) ( ∣ )p o o s s s p o o s s, , , , , , , , ,k n k k1 1 2 1 1 . The desired condition then follows from
proposition 2.1 applied to the k-partite process.

Proof S2 (proposition 2.3). First, observe that the property (18)holds for the case where the specified K
consecutive sets exhaust all local experiments ¼{ }n1, , . This is because, in this case, each of the local
experiments in the K th consecutive set is causally preceded by or causally independent from every other local
experiment. Hence, the definition of causality (2) directly implies the desired relation. The general case follows
by induction from this special case and the following Lemma.

LemmaS1. Let the property (18) hold for = ¢ +K K I, where ¢ K 1. Then it also holds for = ¢K K .

Figure 7.Avenn diagrammatic sketch of our present knowledge of the different sets of quantumprocesses that we have introduced, in
the generalmultipartite case and in the bipartite case. Thewhite segments are non-empty. The gray segments are sets forwhich at
present we do not know if they are empty or not.
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Proof.Observe that
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where the sumon the right-hand side is over all sets of local experiments that can be the ¢ +( )K I th set when the
first ¢K consecutive sets are the specified ones. If equation (18) holds for = ¢ +K K I, all terms in the sum can
depend non-trivially only on the settings of the parties in thefirst ¢K consecutive sets, and hence the samemust
hold for the quantity on the left-hand side:
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What remains to be shown is that this probability cannot depend on the settings ¼+ ¢ ¢( )s s, ,g n1 K K .
Note that herewe cannot apply straightforwardly the causality condition (2) as we did in the case when the

first ¢K consecutive sets were assumed to contain all local experiments. This is because for a particular causal
configuration k ¼ ¢( )* n1 , , KI compatible with ¼[ ]n1 , ,I I

I,K, ¼¢ ¢
¢[ ]n1 , ,K K

K , it is generally not the case that
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Indeed, in order for thefirst ¢K consecutive sets to be the specified ones, it is necessary and sufficient that: (1) the
local experiments in the specified ¢K consecutive sets have a causal configuration compatible with these sets, and
(2) each of the local experiments that are not in the specified ¢K consecutive sets is in the causal future of at least
one of the local experiments in the ¢K th consecutive set. (In the casewhere the ¢K sets were assumed to contain
all local experiments, only condition (1)was relevant and hence the equality (S3) held.)Consider a particular
causal configuration k ¼ ¢( )* n1 , , KI compatible with ¼[ ]n1 , ,I I

I,K, ¼¢ ¢
¢[ ]n1 , ,K K

K (when the causal configura-
tion k ¼ ¢( )n1 , , KI in the probability on the left-hand side of equation (18) is not compatible with the specified
consecutive sets, that probability is trivially zero). Let us denote by ¼ l1 , ,rest rest, = - å å=
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Wewill show that the probability on the right-hand side can bewritten as a linear combination of probabilities
for which the condition of causality (2) straightforwardly implies independence of ¼+ ¢ ¢( )s s, ,g n1 K K .

To this end, wewrite
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where ¢ = ¼¢ ¢{ } n1 , ,K K , and ¢  l means  ¢ ¢ l n l1K K .
By the definition of causality, the term k ¼ ¼ ¼¢ ¢( ( ) ∣ )*p n o o s s1 , , , , , , ,K

g n
I

1 1KI on the right-hand side is

independent of ¼+ ¢ ¢( )s s, ,g n1 K K .We need to prove that the second term is also independent of ¼+ ¢ ¢( )s s, ,g n1 K K .
Observe that the proposition ‘ ¢   ¢( ) ( )   l1rest rest ’ is truewhen a proposition of the following
kind is true: for somenonempty subset of ¼{ }l1 , ,rest rest , say, ¼{ }r1 , ,rest rest ,  r l1 , define the proposition
‘ ¢   ¢   ¢ +   ¢( ) ( ) [( ( ) ) ( )]      r r l1 1rest rest rest rest  ’. The different nonempty
subsets of ¼{ }l1 , ,rest rest yield different such propositions that describe a complete set ofmutually exclusive
scenarios for which ‘ ¢   ¢( ) ( )   l1rest rest ’ is true. Therefore, the probability k ¼ ¢( ( )*p n1 , , ,KI

¢   ¢ ¼ ¼¢( ) ( ) ∣ )   l o o s s1 , , , , ,g n
rest rest

1 1KI is a sumof probabilities of the form
k ¼ ¢ ¼ ¢¢( ( ) ( ) ( )*   p n r1 , , , 1 , ,KI rest rest ,  ¢ +  ¼  ¢ ¼ ¢[( ( ) ) ( )]  r l o o1 , , , g

rest rest
1 KI

¼∣ )s s, , n1 , up to relabeling of ¼ l1 , ,rest rest, where  r l1 . But every such probability can be further written as
k ¼ ¢ ¼ ¢ ¼ ¼¢ ¢( ( ) ( ) ( ) ∣ )*   p n r o o s s1 , , , 1 , , , , , , ,K

g n
I rest rest

1 1KI

k- ¼ ¢ ¼ ¢ ¢ +  ¼ ¢( ( ) ( ) ( ) ( ( ) )*     p n r r1 , , , 1 , , , 1KI rest rest rest

¢ ¼ ¼¢( ) ∣ )  l o o s s, , , , ,g n
rest

1 1KI . By the definition of causality, the first of these terms is independent of
¼+ ¢ ¢( )s s, ,g n1 K K . Considering again the different realizations of ‘ ¢ +  ¼  ¢( ( ) ) ( )  r l1 rest rest ’ by

propositions of the form
‘ ¢ +   ¢ +   ¢ + +   ¢( ( ) ) ( ( ) ) [( ( ) ) ( )]      r r q r q l1 1rest rest rest rest  ’ for
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- q l r1 (up to relabeling of the local experiments), the probability in the second term can again bewritten
as a sumof probabilities of the form k ¢( ( )*p n1 , , KI  , ¢ ¼ ¢( ) ( )   r1 , ,rest rest ,
 ¢ +  ¼  ¢[( ( ) ) ( )]  r l1 rest rest , ¼ ¼¢∣ )o o s s, , , ,g n1 1KI , where now r is strictly larger than the one in
the previous step.We can continue this for every new termuntil we reach r=l. In this way, the probability
k ¼ ¼ ¼ ¼ ¼ ¼¢ ¢ ¢

¢ ¢( ( ) [ ] [ ] ∣ )*p n n n o o s s1 , , , 1 , , , , 1 , , , , , , ,K K K
K g n

I I I
I 1 1KI is decomposed entirely into a linear

combination of probabilities of the form k ¼ ¢ ¼ ¢ ¼ ¼¢ ¢( ( ) ( ) ( ) ∣ )*   p n r o o s s1 , , , 1 , , , , , , ,K
g n

I rest rest
1 1KI ,

 r l1 , which by the definition of causality are independent of ¼+ ¢ ¢( )s s, ,g n1 K K . This completes the proof of
lemma S1.

Proof S3 (theorem2.1).The necessity of the form (40) follows fromproposition 2.3. Indeed, let s and o
denote the collection of settings and outcomes, respectively, of the local experiments in a subset Ì  . In
terms of the set of parties that are first, the probabilities of a causal process

c canmost generally be
expanded

å=
Ì ¹

( ∣ ) ([ ] ∣ ) ( ∣ [ ] ) ( ∣ [ ] ) ( )
{}

⧹ ⧹    

  

        p o s p s p o s p o s s o, , , , . S5
c

,

I I I

But, as noted earlier, proposition 2.3 implies that =([ ] ∣ ) ([ ] ) p s pI I , and that
= = =( ∣ [ ] ) ([ ] ∣ ) ([ ] ∣ ) ([ ] ∣ ) ([ ] ) ( ∣ [ ] )              p o s p o s p s p o s p p o s, , , ,I I I I I

ns
I are the probabil-

ities of a non-signaling process for .We therefore have

å=
Ì ¹

◦ ( )
{}

⧹ ∣  

  


   p , S6c
,

ns

where = ([ ] )p p I . Next, if ¹  , we can similarly expand the probabilities of the process ⧹   in terms
of the set of parties  that are second:

å=

´ È
Ì ¹

( ∣ [ ] ) ([ ] ∣ [ ] ) ( ∣ [ ] [ ] )

( ∣ [ ] [ ] ) ( )

⧹ ⧹

{}
⧹ ( )

    

 

     

  

    

     

p o s s o p s o p o s o

p o s o o

, , , , , , , ,

, , , , . S7

I

,

II I I II

I II

Again, fromproposition 2.3we have that =([ ] ∣ [ ] ) ([ ] [ ] ∣ )      p s o p o s, , , ,II I I II

= =([ ] ∣ ) ([ ] [ ] ∣ ) ([ ] ∣ ) ([ ] ∣ [ ] )            p o s p o s p o s p s o, , , , , ,I I II I II I . Similarly,
=( ∣ [ ] [ ] ) ([ ] [ ] ∣ ) ([ ] [ ] ∣ )            p o s o p o o s p o s, , , , , , , ,I II I II I II

= ([ ] [ ] ∣ ) ([ ] [ ] ∣ )        p o o s s p o s, , , , , ,I II I II = ( ∣ [ ] [ ] )     p o s s o, , , ,ns
I II are the probabilities of

a non-signaling process for  for each value of ( ) s o, . In other words, we obtain that for each value of the
events ( ) s o, in , ⧹   has the form (S6). The argument is completely analogous for the next conditional
process that appears, È È⧹ ( )     , which, if nontrivial, can be expanded in terms of the different possibilities
for the third consecutive set, and so on. This can be continued until we reach the last consecutive set in every
possible grouping of the parties into consecutive sets, which proves the necessity of the form (40).

To prove sufficiency, wewill show that if every process of the form (40) is causal for ¢ n n1 , then the
samemust hold for = ¢ +n n 1. The general case then follows by induction from this and the fact that a
monopartite (n=1) process, which has the form (40), is causal. Let an ¢n -partite process have the form (40), i.e.,
its probabilities can bewritten

åk =
Ì ¹

( ( ) ∣ ) ( ∣ ) ( ∣ ) ( )
{}

⧹ ⧹  

  


       p o s p p o s p o s s o, , , , S8
,

ns

where the probabilities ( ∣ )⧹ ⧹     p o s s o, , describe a conditional process
⧹


  
c , which, if non-trivial, has

an analogous form for every possible value of ( ) s o, . Such a conditional process is therefore causal for every
possible value of ( ) s o, according to our assumption. Thismeans that there exists a probability distribution
k( ( ⧹ ) ∣ )⧹ ⧹       p o s s o, , , , where k ( ⧹ )  is the causal configurations of the experiments in ⧹  , such

that kå =k ( ( ⧹ ) ∣ ) ( ∣ )( ⧹ )
⧹ ⧹ ⧹ ⧹  
           p o s s o p o s s o, , , , , , which for everyfixed ( ) s o, obeys the

causality condition (2).Wewant to show that there exists a distribution k( ( ) ∣ )  p o s, , where k ( ) is the causal
configuration of all experiments  , such that kå =k ( ( ) ∣ ) ( ∣ )( ) 

   p o s p o s, , which also obeys the causality
condition (2). The following distributionwill be shown to satisfy these desiderata:

k k=( ( ) ∣ ) ( ∣ ) ( ( ⧹ ) ∣ )⧹ ⧹   


       p o s p p o s p o s s o, , , ,ns

for k k= " Î " Î " Î( ) [ ( ⧹ ) ⧹ ]       i j i j i j i j; , , ; , , ,

k =( ( ) ∣ ) ( )  p o s, 0 S9

for k k¹ " Î " Î " Î( ) [ ( ⧹ ) ⧹ ]       i j i j i j i j; , , ; , , .
According to this distribution, = ([ ] )p p I , and the causal configuration of all local experiments for [ ] I is

always such that each of the local experiments in is in the causal past of all local experiments in ⧹  , while the
probability for the causal configuration and outcomes of ⧹  given the events in and the settings in ⧹  is
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k( ( ⧹ ) ∣ )⧹ ⧹       p o s s o, , , . The distribution k( ( ) ∣ )  p o s, has the correctmarginal ( ∣ ) p o s by

construction. To show that it satisfies condition (2), wewill show that k( ( ) ∣ [ ] )  p o s, , I , which equals
k( ∣ ) ( ( ⧹ ) ∣ )⧹ ⧹        p o s p o s s o, , ,ns for

k k= " Î " Î " Î( ) [ ( ⧹ ) ⧹ ]       i j i j i j i j; , , ; , , and vanishes otherwise, satisfies this condi-

tion. The fact that thewholemixture k k= å Ì ¹( ( ) ∣ ) ([ ] ) ( ( ) ∣ [ ] ){}    
  

 p o s p p o s, , ,,
I I satisfies it then

follows from the linearity of the condition. Consider a given local experiment Î ⧹ l . Let ¢ Ì  and

¢ Ì ( ⧹ )⧹   l .We have k ¢ ¢( ( ) p l, , , ¢ ¢ =¢ ¢∣ )     l l o o s p, , , k ¢ ¢( ( )  l, , ,

¢ =¢ ¢∣ )   l o o s p, , ns
¢ ¢( ∣ ) o s p k ¢( ( ) l, , ¢ ¢∣ l o s, ,l ¢ )  s s o, , for

Èk k¢ ¢ = ¢ " Î ¢ " Î ¢ " Î ¢( ) [ ( ) ]      l l i j i j l i j i j, , , ; , , ; , , , and

k ¢ ¢ ¢ ¢ =¢ ¢( ( ) ∣ )       p l l l o o s, , , , , , 0 otherwise. But from the fact that
k( ( ⧹ ) ∣ )⧹ ⧹       p o s s o, , , satisfies condition (2), it follows that

k k¢ ¢ = ¢ ¢¢ ¢ ¢ ¢( ( ) ∣ ) ( ( ) ∣ )           p l l o s s s o p l l o s s o, , , , , , , , , , ,l . This proves that

k k¢ ¢ ¢ ¢ = ¢ ¢ ¢ ¢¢ ¢ ¢ ¢( ( ) ∣ ) ( ( ) ∣ )⧹               p l l l o o s p l l l o o s, , , , , , , , , , , , l , which is condi-
tion (2). Similarly, if we take Î l , consider two arbitrary subsets ¢ Ì ⧹  l , ¢ Ì ⧹   .When ¢ ¹ {} , we

have k ¢ ¢ ¢ ¢ =¢ ¢( ( ) ∣ )       p l l l o o s, , , , , , 0.When ¢ = {} , we have

k k¢ ¢ ¢ ¢ = ¢ ¢ = =¢ ¢ ¢ ¢ ¢ ¢( ( ) ∣ ) ( ( ) ∣ ) ( ∣ ) ( ∣ )               p l l l o o s p l l o s p o s p o s, , , , , , , , , ns ns ,
which again proves that
k k¢ ¢ ¢ ¢ = ¢ ¢ ¢ ¢¢ ¢ ¢ ¢( ( ) ∣ ) ( ( ) ∣ )⧹               p l l l o o s p l l l o o s, , , , , , , , , , , , l , i.e., we have

seen that condition (2) is satisfied for every l. This completes the proof of theorem 2.1.

Proof S4 (proposition 3.1).The proof follows the idea of the proof for the bipartite case in [4]. Here, we detail it
for the case of three parties. The n-partite follows analogously.

Expanding theCJ operator of a local CPmap in theHilbert–Schmidt basis, s s= åmn mn m nM rX X X X1 2 1 2,

Îmn r , we observe that the trace-preserving condition = MTrX
X X X

2
1 2 1 is equivalent to the requirement

=r
d00
1

X2

, =r 0i0 for >i 0. Thus, CJ operators corresponding toCPTPmaps are positive semidefinite operators

of the form

å ås s s= + + Î
> >

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟M

d
a t a t

1
, , . S10X X

X i
i i

X

i j
ij i

X
j
X

i ij
0 , 0

1 2

2

2 1 2

It turns out that condition (46) can be equivalently imposed only for operators M X X1 2 of the form (S10)
without the constraint M 0X X1 2 . Clearly, an operatorW A A B B C C1 2 1 2 1 2 that satisfies equation (46) for all
operators M X X1 2 of the form (S10) satisfies equation (46) for positive semidefinite operators M X X1 2 of this form in
particular. The converse follows from the fact that any operator M X X1 2 of the form (S10) can bewritten as a real
linear combination of positive semidefinite operators of the form (S10): a= åM MX X

i i i
X X1 2 1 2, where

M 0i
X X1 2 satisfy (S10) for all i, and aå = 1i i , a Î i , " i.Wewill use this fact to recast condition

equation (46) as a statement about the types of non-zero terms in theHilbert–Schmidt expansion
ofW A A B B C C1 2 1 2 1 2.

In the case of three parties, the expansion ofW A A B B C C1 2 1 2 1 2 reads

å s s s s s s= ( )W w , S11A A B B C C

i j k l m n
ijklmn i

A
j
A

k
B

l
B

m
C

n
C

, , , , ,

1 2 1 2 1 2 1 2 1 2 1 2

Î " ( )w i j k l m n, , , , , , . S12ijklmn

Let usfix = M A A
d

A A

A

1 2
1 2

2

and = M B B
d

B B

B

1 2
1 2

2

, and consider an arbitrary MC C1 2 of the form (S10). Condition (46)

becomes

å ås s sÄ Ä + + =
> >

( )  
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥d d d

W c p
1

Tr 1, S13
A B C

A A B B C C A A B B C C

n
n

C

mn
mn m

C
n
C

0 02 2 2

1 2 1 2 1 2 1 2 1 2 1 2 2 1 2

which, using the expansion of the processmatrix, becomes

å å+ + =

" Î
> >

( )

⎛
⎝⎜

⎞
⎠⎟d d d w w c w p

c p

1,

, . S14

A B C
n

n n
mn

mn mn

n mn

000000
0

00000
0

00001 1 1

This implies =w
d d d000000

1

A B C1 1 1

and = =w w 0n mn00000 0000 , " >m n, 0.
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Likewise, by fixing = M A A
d

A A

A

1 2
1 2

2

and = MC C
d

C C

C

1 2
1 2

2

, and considering an arbitrary M B B1 2 of the form (S10),

we obtain = =w w 0l kl000 00 00 00 for all >k l, 0, while by fixing = M B B
d

B B

B

1 2
1 2

2

and = MC C
d

C C

C

1 2
1 2

2

, and

considering an arbitrary M A A1 2 of the form (S10), we obtain = =w w 0j ij0 0000 0000 for all >i j, 0.

Now, if we fix only = M A A
d

A A

A

1 2
1 2

2

, andwe use the previously obtained constraints, we obtain

= = = =w w w w 0l n kl n lmn klmn000 0 00 0 000 00 (each of these coefficients can be shown to vanish by suitably
choosing the parameters in M B B1 2 and MC C1 2 in order to select only the termwith that coefficient). Then, if we
fix = M B B

d

B B

B

1 2
1 2

2

, we obtain = = = =w w w w 0j n j mn ij n ij mn0 000 0 00 000 00 . Similarly, if we fix = MC C
d

C C

C

1 2
1 2

2

, we

obtain = = = =w w w w 0j l jkl ij l ijkl0 0 00 0 00 0 00 00 .
Finally, we impose condition (46) for arbitrary M A A1 2, M B B1 2, and MC C1 2, of the form (S10). Using the

constraints obtained from the special cases above, we obtain = = = = =w w w w wj l n j lmn jkl n jklmn ij l n0 0 0 0 0 0 0 0 0 0

= = =w w w 0ij lmn ijkl n ijklmn0 0 . Thus, we have shown that all coefficientswijklmn, except forw000000, thatmay
appear in the result of taking the trace ofW A A B B C C1 2 1 2 1 2 with a general combination of M A A1 2, M B B1 2, MC C1 2 of the
form (S10), must vanish. This is also a sufficient condition for the normalization condition (46) to hold. All these
forbidden terms for a processmatrix are listed in table A1.

Proof S5 (proposition 3.2).Explicitly, by the definition of (no) signaling (6) and the expression for the
probabilities of a process in terms of the processmatrix (44), there is no signaling from (1 and 2 andLand k ) to
( +k 1and +k 2 andL and n) if and only if

å¼ ¼ º Ä Ä

º Ä Ä Ä Ä Ä

= Ä Ä º ¼ ¼

+

¼

+ +

+ + + + + + +

+

+ +

( ∣{ } { }) [ ( )]

[ ( )]

[ ( )] ( ∣{ } { })

( ) ( )

( ) ( ) ( ) ( )

 

 

p o o W M M

W M M M M

W M M p o o

, , , , Tr

Tr

Tr , , , , ,

k
o o

n

o o

n n
o o

n n

n n k k
o

k k
o
n n

k k n n
o

k k
o
n n k k

o
k

o
n

1 1 1

, ,

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

n

k

n

k n

k n k n

1

1

1 2 1 2
1
1 2 1 2

1 2 1 2 1 2 1 2
1

1 2 1 2

1 2 1 2
1

1 2 1 2
1



 









for all local quantumoperations ¼{ } { } , ,
o o

n1 n1 , where = åM MX X
o

o

X Xi i
Xi

Xi

i i
1 2 1 2, " i. Here, the operator

+ +( ) ( )W k k n n1 11 2 1 2 is given by

=+ + ( )( ) ( )W
W

d d

Tr
, S15k k n n k k

n n

k

1 1 1 1
1 1

1

1 2 1 2 1 2 1 2
1 2 1 2

1 1
 



which is obtained for the case where = M di i i i
i

1 2 1 2
1
, " = ¼i k1, , . This condition is equivalent to the condition

that

Ä Ä Ä = " ¼+ + + +[ ( )]
( )

( ) ( ) ( ) ( )W M M W M MTr , , , ,

S16
k k

n n k k k k k k n n k k
1 1

1 1 1 1 1 1 1 1 1 1
1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
  

where ¼M M, , k k1 11 2 1 2 are theCJ operators of CPTPmaps (this is because any linear operator + +( ) ( )V k k n n1 11 2 1 2 is
fully determined by the values of Ä Ä+ + + +[ ( )]( ) ( ) ( ) ( )V M MTr k k n n k k n n1 1 1 11 2 1 2 1 2 1 2 for all possible

¼+ +( ) ( )  M M0, , 0k k n n1 11 2 1 2 ). To analyze the role of the different types of terms in satisfying or violating
condition (S16), consider the representation ofW n n1 11 2 1 2 as a linear combination ofHilbert–Schmidt terms of
different types and the contribution that each such termmakes to the quantity on the left-hand side of
equation (S16). Assume thatW n n1 11 2 1 2 contains only terms of the types stated in proposition 3.2. The identity
term is such a term.When the identity term is partially tracedwith any combination of local CPTPmaps

¼M M, , k k1 11 2 1 2, it yields exactly the right-hand side of equation (S16). From the rest of the terms that satisfy the
condition in proposition 3.2, we can distinguish two types. Thefirst type are those that have a nontrivialσ
operator on i1 and  on i2 for some = ¼i k1, , . They yield zerowhen partially tracedwith any combination of
local CPTPmaps ¼M M, , k k1 11 2 1 2, since aCPTPmap M i i1 2 does not contain terms of type i1 (which is necessary
to get a non-trivial partial trace with the term in question). The second type of terms are those that do not have
any nontrivialσ operator on any of the systems i1 and i2, = ¼i k1, , , and hence, when partially tracedwith any
combination of local CPTPmaps ¼M M, , k k1 11 2 1 2, only the  components of those CPTPmaps contribute to the
result, which by definition yields the right-hand side of equation (S16). Therefore, ifW n n1 11 2 1 2 contains only the
types of terms stated in proposition 3.2.

To prove the reverse, assume thatW n n1 11 2 1 2 contains at least one termwhose restriction onto k k1 11 2 1 2 is
not a valid term for a processmatrix for ¼{ }k1, , . Every such termhas the form

s sÄ Ä Ä Ä Ä Ä Ä Äa a a a a a a a + ++ + ( ) ( ) O O Q k k n n1 1m m m m k k
1
1

2
1

1 2 1
1

2
1

1 2 1 2 1 2   , where ai, = ¼i k1, , , are dif-

ferent numbers from1 to k,  m k1 , aO
i
1 is either the identity or some nontrivialσ operator on ai

1, sai
2 is a

nontrivialσ operator on ai
2, and

+ +( ) ( )Q k k n n1 11 2 1 2 is a non-zero operator on + +( ) ( )k k n n1 11 2 1 2 , which is
proportional to a tensor product of nontrivialσ operators and  on the different subsystems, such that thewhole
term is an allowed term for a processmatrix.Wewant to show that if such a term is present in the processmatrix,
equation (S16) can be violated for a specific choice of the local CPTPmaps ¼M M, , k k1 11 2 1 2. Out of all such terms,
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consider one forwhichmhas the smallest value (theremay bemore than one of these). Consider the following
choice of local CPTPmaps constructed based on this term: for = + ¼i m k1, , , choose =a a a a

a
M

d

1i i

i

i i
1 2

1

1 2, and

for = ¼j m1, , , choose s= + Äa a a a
a

a a

a
( )M O

d

1j j

j

j j
j

j j
1 2

1

1 2 1 2 , where >a 0j is such that

s+ Äa a
a

a a( )  O 0
j j

j
j j

1 2 1 2 (this can always be ensured for sufficiently small non-zero a j). Consider the
Hilbert–Schmidt expansion of the tensor product Ä ÄM M k k1 11 2 1 2 . From this expansion, only the identity
term and the termproportional to s sÄ Ä Ä Äa a a aO O

m m
1
1

2
1

1 2 will survive whenwe plug
Ä ÄM M k k1 11 2 1 2 in the expression on the left-hand side of equation (S16). This is because in order for any

other term to survive, it would be necessary thatW n n1 11 2 1 2 contains a termof a form similar to
s sÄ Ä Ä Ä Ä Ä Ä Äa a a a a a a a + ++ + ( ) ( ) O O Q k k n n1 1m m m m k k

1
1

2
1

1 2 1
1

2
1

1 2 1 2 1 2   butwith a smaller value ofm
than the onewe have chosen, which contradicts the assumption that we have chosen the smallest value. Plugging

Ä ÄM M k k1 11 2 1 2 in the expression on the left-hand side of equation (S16) therefore yields
++ + + +( ) ( ) ( ) ( )W Qk k n n k k n n1 1 1 11 2 1 2 1 2 1 2  for some   0, which is different from the right-hand side of

equation (S16). This completes the proof of proposition 3.2.

Proof S6 (proposition 3.3).The fact that this form is sufficient for the processmatrix to be ECS is obvious

because if this is true for each of the individual terms, any extension rÄ =¢ ¢ ¢W qA A B B C C A B C
ecs 1

1 2 1 2 1 2 1 1 1
( ) W A B C

A A B B C C
ecs; ,

1 2 1 2 1 2

rÄ +¢ ¢ ¢ qA B C
2

1 1 1 rÄ ¢ ¢ ¢
( ) W A C B

A A B B C C A B C
ecs; ,

1 2 1 2 1 2 1 1 1 r+ Ä ¢ ¢ ¢
( ) q W B C A

A A B B C C A B C
3 ecs; ,

1 2 1 2 1 2 1 1 1 is also causally separable. The fact that it

is necessary can be seen as follows. Let us choose r ¢ ¢ ¢A B C1 1 1 which is a tensor product of three bipartitemaximally
entangled states of the type used in the ‘teleportation’ argument, one shared betweenAlice and Bob, the other
one betweenAlice andCharlie, and the third one between Bob andCharlie. For this particular ancilla, itmust be
possible towrite the extended process in the form

r r r

r

Ä = Ä + Ä

+ Ä

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ( )

W q W q W

q W , S17

A A B B C C A B C A A B B C C A B C A A B B C C A B C

A A B B C C A B C

ecs 1 1 2 2

3 3

1 2 1 2 1 2 1 1 1 1 2 1 2 1 2 1 1 1 1 2 1 2 1 2 1 1 1

1 2 1 2 1 2 1 1 1

where rÄ ¢ ¢ ¢W A A B B C C A B C
1

1 2 1 2 1 2 1 1 1 is causally separable and compatible with ( ) A B C, , rÄ ¢ ¢ ¢W A A B B C C A B C
2

1 2 1 2 1 2 1 1 1

is causally separable and compatible with ( ) A C B, , and rÄ ¢ ¢ ¢W A A B B C C A B C
3

1 2 1 2 1 2 1 1 1 is causally separable and

compatible with ( ) B C A, . (This is because the state r ¢ ¢ ¢A B C1 1 1 is pure.)But for each of these terms, we can
perform the ‘teleportation’ argument exploiting the respectivemaximally entangled bipartite state contained in

r ¢ ¢ ¢A B C1 1 1 , proving thatW A A B B C C
1

1 2 1 2 1 2 has the formwe obtained for ( ) W A B C
A A B B C C

ecs; ,
1 2 1 2 1 2,W A A B B C C

2
1 2 1 2 1 2 has the formwe

obtained for ( ) W A C B
A A B B C C

ecs; ,
1 2 1 2 1 2, andW A A B B C C

3
1 2 1 2 1 2 has the formwe obtained for ( ) W B C A

A A B B C C
ecs; ,

1 2 1 2 1 2. This completes the
proof.
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