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Abstract

The idea that events are equipped with a partial causal order is central to our understanding of physics in the
tested regimes: given two pointlike events A and B, either A is in the causal past of B, Bis in the causal past of
A, or A and Bare space-like separated. Operationally, the meaning of these order relations corresponds to
constraints on the possible correlations between experiments performed in the vicinities of the respective
events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the
other way around, while if A and B are space-like separated, no signaling is possible in either direction. In
the context of a concrete physical theory, the correlations compatible with a given causal configuration may
obey further constraints. For instance, space-like correlations in quantum mechanics arise from local
measurements on joint quantum states, while time-like correlations are established via quantum channels.
Similarly to other variables, however, the causal order of a set of events could be random, and little is
understood about the constraints that causality implies in this case. A main difficulty concerns the fact that
the order of events can now generally depend on the operations performed at the locations of these events,
since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far,
no formal theory of causality compatible with such dynamical causal order has been developed. Apart from
being of fundamental interest in the context of inferring causal relations, such a theory is imperative for
understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite.
Here, we develop such a theory in the general multipartite case. Starting from a background-independent
definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal
correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope
whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by
the process matrix formalism. We investigate the link between causality and the closely related notion of
causal separability of quantum processes, which we here define rigorously in analogy with the link between
Bell locality and separability of quantum states. We show that causality and causal separability are not
equivalent in general by giving an example of a physically admissible tripartite quantum process that is
causal but not causally separable. We also show that there are causally separable quantum processes that
become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts
of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property
remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite
case via simple conditions on the form of the process matrix. We show that the processes realizable by
classically controlled quantum circuits are ECS and conjecture that the reverse also holds.

1. Introduction

The possibility for dynamical and indefinite causal structures in quantum theory and more general probabilistic
theories has recently attracted a great deal of interest, both from a foundational point of view and in the context
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of quantum information processing [1-23]. Motivated by the long standing search for a theory of quantum
gravity, where the causal structure is expected to be dynamical as in General Relativity but fundamentally
probabilistic in nature, as well as by the exploration of novel quantum architectures beyond the standard circuit
model, operational ways of thinking about causal order in a probabilistic setting have provided new perspectives
on quantum mechanics, its possible applications, and routes for potential extensions.

A general framework for the study of correlations between local experiments without the assumption of a
predefined causal order between them was proposed in [4]. In this so called process framework, each experiment
is associated with an input and an output system between which an experimenter can perform different
operations, but no specific assumption about the existence of a causal structure in which the experiments are
embedded is made. When the experiments take place at fixed locations in a background space-time in
circumstances defined without post-selection, the causal structure of space-time imposes signaling constraints
on the correlations between the experiments. For example, there can be signaling from one experiment to
another only if the former takes place in the past light cone of the latter, but no signaling between space-like
separated locations or from the future to the past is possible. In [4], it was shown that if the local operations are
described by quantum mechanics, it is possible to conceive correlations that are incompatible with any
underlying causal structure. Such correlations allow two parties, Alice and Bob, to establish correlations that
violate a causal inequality, which is impossible if their operations take place in a causal order, even if that order is
random. A similar possibility was subsequently shown to exist in a multipartite setting even when the local
operations are purely classical [9], which in the bipartite case is not possible [4]. It is not known at present
whether such joint processes could have a physical realization without post-selection, that is, whether one could
prepare a setup that leads to correlations violating causal inequalities between separate experimenters who
locally experience the validity of standard quantum mechanics.

Another peculiar effect that seems at odds with causality, which has a physical realization without post-
selection, arises when local quantum operations are applied in an order that depends on the value of a variable
prepared in a quantum superposition [3, 5, 6, 10, 17], a technique known as ‘quantum switch’ [3]. This approach
allows achieving certain tasks that are impossible if the quantum operations are applied in a definite causal order.
In contrast to the violation of a causal inequality, however, this conclusion depends on the assumed description
of thelocal operations and is theory-dependent.

So far, the analysis of these effects has relied on semi-rigorous considerations about what it means for a
process to be compatible with ‘definite causal order’. A fully rigorous argument requires such considerations to
be rooted in a clear notion of causality, which, however, in this background-independent setting has been
lacking. Such a notion is expected to have a universal expression which can be applied in the context of any
number of parties, but how to formulate it turns out to be a nontrivial problem. Simple considerations in the
multipartite case show that the causal order of a set of local experiments should most generally be considered to
be arandom variable that can depend on the settings of these experiments. The latter possibility cannot be
excluded since compatibly with our intuition of causality we can conceive of scenarios in which the settingin a
given local experiment can influence the order in which other experiments take place in the future. In other
words, causality should be expressed as a rule that constrains the joint conditional probabilities for the events in
the local experiments and the causal order between them, allowing for the possibility that causal configurations
unfold as a result of events in the past. A formal theory of such dynamical causal order is essential not only for
understanding the subject of indefinite causal order in quantum mechanics or more general theories, but also for
the problem of inferring causal structure beyond the classic paradigm of underlying deterministic variables and
static causal relations [24].

In this paper, we develop rigorous theory-independent and theory-dependent notions of causality in the
process framework and characterize the structure and relations between the corresponding classes of processes
they define. Section 2 is devoted to the theory-independent perspective, which contains our core result. We
formalize the process framework in theory-independent terms and propose a definition of causality which
allows for the possibility of dynamical causal order. We develop a number of concepts, such as multipartite
signaling, reduced and conditional processes, and derive necessary and sufficient conditions for a process to be
causal, which are expressed in the form of an iteratively defined canonical decomposition of the probabilities in
the process. This decomposition can be understood as describing a causal ‘unraveling’ of the events in the
experiment in a sequence, showing that the proposed notion of causality yields the structure expected from
intuition. Apart from being logically non-trivial, this result has important conceptual implications—it presents
us with an understanding of causal order as a random function on random events rather than the ordering of
underlying locations in which events happen. This perspective is in the spirit of the idea of background
independence in general relativity, according to which there are no underlying locations, but only events and the
relations between them. In section 3, we focus on the quantum process framework, where we develop different
theory-dependent notions of causality, which in principle have analogues in more general process theories too.
Specifically, we investigate several possible generalizations of the bipartite notion of causal separability, which
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was previously defined heuristically in the bipartite case by postulating a particular form of the quantum process
matrix [4]. We show that this form can be understood as arising from the canonical decomposition of causal
processes under the condition that each process in this decomposition is a valid quantum process. We define the
multipartite concept based on this principle. We show that the sets of causal and causally separable processes are
not equivalent in the multipartite case, by giving an explicit example of a class of processes that are causal but not
causally separable. This example is based on the ‘quantum switch’ technique discussed earlier. We also show
that, surprisingly, there exist causally separable (and hence causal) quantum processes that become non-causal if
extended by supplying the parties with an entangled input ancilla. This example of ‘activation of non-causality’ is
constructed based on a suitable modification of the non-causal process matrix of [4]. This observation motivates
the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective
property remains invariant under extension with arbitrary input ancillas. We derive a characterization of the
class of ECS quantum processes in the tripartite case in terms of simple conditions on the form of the process
matrix, which generalize the known form of bipartite causally separable process matrices. In the bipartite case,
causal separability and extensible causal separability are equivalent, hence the class of ECS processes can be
regarded as another possible multipartite generalization of the previously known bipartite concept. Finally, we
consider the class of processes realizable by classically controlled quantum circuits, which we show is inside the
class of ECS processes. These, too, are equivalent to the causally separable processes in the bipartite case and
provide a possible multipartite generalization based on a different principle. We conjecture that the processes
that can be obtained by classically controlled quantum circuits are equivalent to the ECS processes, and hence
are described by process matrices obeying the simple conditions we have derived. We provide arguments in
favor of this conjecture based on analysis in the tripartite case. In section 4, we summarize our results and discuss
future research directions.

2. The process framework

2.1. General processes
The process framework introduced in [4] describes probabilities for the outcomes of local experiments
associated with different parties, Alice, Bob, Charlie, etc, performed in abstract circumstances defined without
assuming the existence of a global causal order between the experiments, but only alocal order of the events in
each of them. Each local experiment can be thought of as performed inside an isolated laboratory, where, ata
given instant, an input system is received in the laboratory, it is subject to some operation that yields one of a set
of possible outcomes, and, at a given later instant, an output system is sent out of the laboratory. The input and
output systems are assumed to provide the only means of information exchange between events in the
laboratory and any events in the rest of the whole experiment. The framework in [4] was developed for the case
where the local experiments are described by standard quantum mechanics, under a set of specific assumptions.
These assumptions are that the joint probabilities of the outcomes of the local experiments are non-contextual
functions of the transformations (described by completely positive (CP) maps) associated with the local
outcomes, and that the local experiments can be extended to act on ancillas prepared in any joint quantum state.

There is a straightforward way in which an analogous theory can be formulated starting from any generalized
operational probabilistic theory that has a formulation in the circuit framework [25-28] following the
construction in [4]. Indeed, the concepts of transformation and state are defined for any such theory, and so is the
idea of a composite system that is employed in the notion of adding an ancilla. (Note that the representation of
the quantum process framework [4] in terms of process matrices (see section 3) is built around the Choi—
Jamiotkowski isomorphism [29, 30], which may not be available for arbitrary theories, but this concerns the
representation of the framework.) However, the above assumptions underlying the extension from a circuit
theory to a process theory, albeit arguably natural, are by no means mandatory. For example, one can conceive of
extensions of quantum theory in which the joint probability distributions are contextual, but nevertheless for
each single party the marginal probabilities are non-contextual and consistent with standard quantum
mechanics. One can also conceive of theories in which the allowed non-signaling ancillary resources are not
quantum states, although they give valid non-contextual probabilities for the outcomes of any combination of
local quantum measurements [31]. It is therefore of interest to formulate a general process framework in
operational terms without additional assumptions about how that framework may be related to theories
expressed in the circuit framework. This is important also for the question of understanding the concept of
causal inequality introduced in [4], which tests the compatibility of a process with an underlying causal structure
in theory-independent terms.

To this end, we will describe each local experiment, say that of Alice, by two variables—a setting s? and an
outcome o/ for that setting. What these variables are supposed to correspond to in practice will be discussed
below. The possible settings for a given local experiment are assumed to belong to some set S*, and the outcomes
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for each value s of the setting to a set OZ*. Since we can formally extend the possible outcomes for each setting
with fictitious outcomes that never occur, without loss of generality we can assume that the sets O;* are identical
forall s* € $4,i.e., O = OA. Aparticular eventin Alice’s laboratory is thus described by a pair of variables

(s4, 04) € S* x OA. Anoperation is a collection of possible events { (s4, 04) }o4¢ o4 for a fixed value of s4 € S4.
The very occurrence of the local experiments, as well as the circumstances in which they take place, would be
conditional on some variable that we will denote by w5+, which belongs to some set Q45+ of possible
such variables. What the variable w45 is supposed to correspond to in practice will also be discussed below.

Definition 2.1 (Process). Mathematically, we define a process VW45 for a set of local experiments (or parties)
S = {A, B, ...}asthecollection of conditional probabilities

WA,B,... = {P(OA, OB,...lsA, SB,...,WA’B"")},

oXeoX sXesX, Xe§, (€))

for a given value of w5 € Q4B+,

Definition 2.2 (Trivial process). For the purposes of expressing more succinctly certain conditions later, it is
convenient to allow the set of local experiments S = {A, B, ...} inthe definition to be the emptyset { } asa
special case. In that case, the corresponding process will be referred to as the trivial process. We define it to consist
of a single probability—that for the trivial outcome given the trivial setting—which is equal to 1.

In abstract terms, a theory in the process framework is specified by listing the different types of input and
output systems, all possible settings and outcomes between input and output systems of specific types, all
possible variables w45 for which we have a valid occurrence of a set of local experiments S = {A, B, ...},and
the corresponding processes (1). Similarly to operational probabilistic theories in the circuit framework [25-28],
itis understood that equivalence classes of the variables s*, 0*, and w8, with regard to the probabilities (1)
are taken, and these variables are identified with their equivalence classes.

But what are these variables supposed to describe in practice? In [15, 16], it was argued that there are two
main ideas that underlie the concept of operation in the standard circuit framework for operational probabilistic
theories [25-28]. The first one, termed the closed-box assumption, is the idea that the input and output systems of
an operation are the only means of information exchange responsible for the correlations between the outcomes
of that operation and the outcomes of other operations in the global experiment. The second idea, termed the
no-post-selection criterion, which makes sense assuming a predefined notion of temporal ordering as in the
standard circuit formulation, is that the variable that defines an operation, or the setting s, can be known with
certainty before the time of interaction with the input system unconditionally on any events in the future.

Since no predefined global time is assumed in our picture, the latter condition will be imagined to hold only
with respect to the local temporal sequence of events observed by each experimenter. Furthermore, we will
assume that the variable w5 that defines the global setup in which the individual experiments take place is
also obtained without post-selection. We can make sense of this idea by imagining that the variable is associated
with an event that fits within each of the local temporal frames of the experimenters and is such that it occurs
before any of them receives the input system. We will call processes that describe experiments of this kind pre-
selected processes. (For a generalization that admits post-selection, see [15].)

For the rest of this paper, we will consider only pre-selected processes. We will drop the explicit specification
‘pre-selected’ for brevity, and will refer to them simply as processes, unless we want to explicitly emphasize the
assumption of pre-selection. We will also drop the explicit specification of the variable w%+- on which the joint
experiment is conditioned, and we will simply write W45 = {p (04, 0P, ...|s4, 55, ...)}, keeping in mind
that every process describes circumstances defined by such a variable and hence all probabilities we consider are
implicitly conditional on such a variable.

2.2. Causal processes

In the circuit framework for operational probabilistic theories, causality is defined as the property that the
probability distribution over the outcomes of a given operation in a circuit do not depend on what operations
take place in the absolute future or absolute elsewhere [32] of that operation as defined by the strict partial order
(SPO) of the circuit composition [26, 27]. More specifically, every circuit describes a set of operations taking
place at the vertices of a directed acyclic graph, whose directed edges (the circuit ‘wires’) correspond to systems
that go from one operation to another. Such a graph defines a SPO on the operations in a circuit (a precise
definition of SPO is given below)—one operation is in the absolute past of another (equivalently, the latter is in
the absolute future of the former) if there exists a directed path from the former to the latter through the graph. If
there is no directed path connecting two operations, we say that one is the absolute elsewhere of the other. If we
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imagine that there is a local experiment taking place at every vertex of such a graph, the property of causality says
that the probabilities for the outcomes oflocal experiments that are in the causal past or causal elsewhere of a
given local experiment cannot depend on the setting of that experiment. A circuit theory that obeys this
condition, such as standard quantum theory, is called causal, and for such a theory the SPO defined by the circuit
composition can be interpreted as causal order [26, 27]. This interpretation corresponds to the intuitive idea
that, if the setting of a local experiment is regarded as up to the ‘free choice’ of an experimenter, then any
correlations between that setting and other variables must indicate a causal influence of the setting on those
variables. From this perspective, causality can be understood as the condition that a variable can influence only
variables in its immediate location or in its absolute future.

In the process framework, we do not assume the existence of a given circuit in which the local experiments
are embedded. Thus, there is no natural SPO with respect to which to define causality. Nevertheless, we may ask
whether the probabilities described by a given process are compatible with the existence of a SPO with respect to
which causality is satisfied. How to formulate this precisely, however, is not immediately clear because the
process framework can describe situations in which the SPO may be random. For instance, it can describe the
correlations between local experiments that can be embedded in different circuits according to some probability
distribution. Clearly, if the SPO between the local experiments is random, it must be the case that conditionally
on that SPO taking any particular value, the probabilities of the outcomes of the parties given their settings must
obey the above notion of causality. This condition, however, is not sufficient to capture the idea of causality. For
example, consider the local experiments of two parties, Alice and Bob, which are embedded at random in one of
two possible causal circuits where they occur in different orders. The probabilities for all events and the specific
circuit could be such that, conditionally on any particular circuit being realized, the joint probabilities of the
outcomes of the parties given their settings obey the above notion of causality, but nevertheless the setting of
Alice could be correlated with the circuit in which her experiment is embedded, and thereby with the SPO on the
two local experiments. Intuitively, such a situation should be in conflict with causality, because if Alice’s setting
could not influence events that occur in the past, it should not influence whether or not Bob performs an
operation in the past. The circuit notion of causality cannot be used to define such an independence from the
past, because there the past is defined assuming a fixed circuit. This indicates that we need a more general notion
of causality that imposes constraints on how the SPO on the local experiments can depend on the parties’
settings. A simple possibility is to require that the SPO on the local experiments must be independent of the
parties’ setting. This condition, however, is too restrictive, because, compatibly with the idea of causality, we can
conceive of scenarios where the setting of a given party influences the order in which other parties perform their
experiments in that party’s absolute future. Thus, a more sophisticated definition of causality is needed for the
process framework. We next develop such a definition.

First, let us review the properties of SPO and introduce some terminology. A SPO on a nonempty set of local
elements S = {A, B, C, ...}isabinaryrelation < which satisfies the following conditions: (1) irreflexivity—
not A < A; (2) transitivity—if A < Band B < C,then A < C; (3) anti-symmetry—if A < B,thennot B < A.
When two local experiments A and Bsatisfy A < B (equivalently, B > A), we will say that A is in the absolute
past of B, or that Bis in the absolute future of A [32]. It will be convenient to introduce the notation A X B
(equivalently, B # A), which means A = Band not A < B, thatis, A and B are different and A is not in the
absolute past of B (equivalently, Bis not in the absolute future of A). We will also introduce the notation
A KX # B,whichmeans A X Band A # B, thatis, A and Bare different and A is neither in the absolute past nor
in the absolute future of B (and hence, Bis neither in the absolute past nor in the absolute future of A). In the case
when A X 2 B, we will say that A and B are absolutely independent, or that A is in the absolute elsewhere [32] of B
(and similarly, Bis in the absolute elsewhere of A). A prototypical example of these relations is the causal order
between the points in a Minkowski space-time—the absolute past/future of a given point corresponds to the
points in the past/future light-cone of this point, excluding the point itself, while the absolute elsewhere consists
of the points that are space-like separated from the point.

Note thatifaset of elements S = {A, B, ...} is equipped with a SPO, the elements X and Yin any pair
(X,Y)e S x Sarerelatedby X <Y, X > Y, X £ # Y,or X =Y.TheSPOontheset S = {A, B, ...}is
equivalently described by the list of respective relations for each such pair, which we will denote by x (A, B, ...).
(This list obviously must respect the properties of SPO listed above.) Since for pairs (X, X) of identical elements
this relation is trivially X = X, when we explicitly describe (A, B, ...), we will only list the pairwise relations for
all pairs of distinct elements of the set (if any). Note that this description is generally redundant due to the
transitivity of SPO. If we are given the pairwise relations foraset S = {A, B, ...}, we have, in particular,
pairwise relations for any nonempty subset ' = {X, Y, ...} C S,ie.,aSPO k(4A, B, ...)on S impliesa SPO
kX, Y,..)onS CS,8 = {}.

As discussed above, the SPO k (A, B, ...) onasetoflocal experiments S = {A, B, ...} interms of which
causality would be defined can most generally be random and correlated with the events in these experiments.

5



10P Publishing

NewJ. Phys. 18 (2016) 093020 O Oreshkov and C Giarmatzi

The notion of causality would impose constraints on the possible correlations. We want these constraints to
formalize the following intuition about causality:

The choice of setting in a local experiment cannot affect the occurrence of events in the absolute past or
absolute elsewhere of that experiment, nor the SPO on such events and the experiment in question.

Since a process is defined by the conditional probabilities for the outcomes of the local experiments given
their settings and does not assume the existence of probabilities for the settings, we will formulate the above
constraint at the level of probabilities conditional on the settings. We define this as follows.

Definition 2.3 (Causal process). A process WAB - = {p (04, o8, ...|s%, 5B, ...)} foranonempty set of local
experiments S = {A, B, ...}iscalled causalif and only if there exists a probability distribution
p(fs(AB ),o,o,. |s,s,. )ZA(AB,,_,)P(“(AB L), 04, 0B, L s4, $B, )=

(o , 0B, ...|s4, sB, ...),where the random variable & (A, B, ...) takes Values in the possible SPOs on

= {A, B, ...},such that for everylocal experiment, e.g. A, every subset X = {X, Y, ...} of the rest of the local
experiments, andeverySPO k (A, X, Y, ...) = k(A, A) onthelocal experiment in question and that subset,
we have

p(R(A, X), A X X, 0¥s4, sB, ) = p(k(A, X), A X X, o|sB, ..). 2
Here, o denotes collectively the outcomes of all local exprimentsin X', and A ¥ & denotes the condition that
all these local experiments are in the causal past or causal elsewhere of A(ie, A XX, A XY, .. forall
X, Y, ..e X). (Theprobabilityp(ﬂ(A X), A £ X, o¥|s4, sB, ...)isunderstood obtalnedfrorn
p(k(A, B, ...), 0%, 0B, ...|s4, sB, ...) by summing over all cases 1nwh1ch Kk (A, B, ...)iscompatible with

KA, X)and A X X (obv1ously, if k (A, X)itselfis not compatiblewith A ¥ X, the respective probability is
zero) and over all possible outcomes of the local experiments in the complement of X').

Note. A monopartite process is trivially causal.

For a process WAB.-- that is causal, the binaryrelation < ofthe SPO (A, B, ...) canbeinterpreted as
causal order. In that case, we will use the terms ‘causal past’, ‘causal future’, ‘causal elsewhere’ and ‘causally
independent’ in the place of ‘absolute past’, ‘absolute future’, ‘absolute elsewhere’ and ‘absolutely independent’,
respectively. We will also refer to the list of pairwise relations « (A, B, ...) as the causal configuration of the local
experiments (in the case of a monopartite process, the causal configuration is trivial).

Our goal next is to understand the structure of causal processes that arises from this definition and show that
it corresponds exactly to what one expects from intuition.

2.3. Fixed-order causal processes, (no) signaling, reduced and conditional processes

Before we consider the case of general causal processes, it will be instructive to investigate the special case of
causal processes for which the causal configuration of the local experiments is fixed. As we will show, the
constraints on such processes can be expressed via the concept of signaling, which we develop below. We also
introduce several related concepts that will be of use later.

Definition 2.4 (Fixed-order causal process). A process W5 = {p (04, 08, ...|s4, sB, ...)}is called fixed-
order causal if it is compatible with a deterministic causal configuration, i.e., if it satlsﬁes condition (2) for a SPO
Kk (A, B, ...)thattakes a particular value s (A, B, ...) = kx(A, B, ...) with unit probability for all possible
settings of the parties:

p(k(A, B, ...), 04, 0B, ...|s4, sB, ..) =0,
iff kK(A, B, ...) = kx(A, B, ...),
Vst e SA, VsBeSE.. Vot € 04, VoB € OF, ... (3)

Since our definition of causal process implies that the setting of a local experiment cannot be correlated with
the outcomes of local experiments that are in the absolute past or absolute elsewhere of that experiment, one
may expect that for any fixed causal configuration of the local experiments, causality would impose constraints
on the possibility for signaling between them, similarly to the case in the circuit framework. In the case of two
experiments, signaling can be defined as follows:

Definition 2.5 (Bipartite signaling). We say that there is no signaling from Alice (A) to Bob (B) in a bipartite
process WB ifand only if the probabilities of the process satisfy
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Figure 1. Certain types of multipatite signaling correlations do not involve bipartite signaling and do not imply the existence of a
causal connection between any particular pairs of channels. The example discussed in the text could arise from any of the mechanisms
sketched here.

p(oBIsE, s = > p(oh, 0BlsE, s1) = p(0®lsP),
04e04
VsA e §4, sB e SB, 0B € OB, 4)

i.e., the marginal probabilities for the outcomes of Bob are independent of the setting of Alice for any possible
setting of Bob. Equivalently, we say that there is signaling from Alice to Bob in the process W8 ifand only if this
condition is not satisfied.

For a fixed-order causal process VW48, where one of the relations A < B, B < A,or A X ¥ Bholdswith
unit probability for all settings of the parties, we can see that signaling is possible from one experiment to the
other only if the former is in the causal past of the latter, which agrees with the notion of causality in the circuit
framework [26, 27]. Indeed, assume for example that B < A, i.e., p(x(A, B) = B < A|s*4, s8) = 1, Vs* € §4,
VsP € S (andhence p(x (A, B) = A < B|s?, s®) = 0and p(x (A, B) = A £ ¥ B|s4, s8) = 0,Vs4 € S4,

v sB € SP). Then, we have

p(oBs4, sB)y = p(A < B, 0B|s4, sB) + p(B < A, 0®|s4, sB) + p(A X # B, 08|54, sB)
= p(A £ B, 0®|s%, sB) = p(A X B, 0P|sB) = p(o®|sP),
Vs4 e §4, sB e SB, 0B ¢ OF, (5)

i.e., there is no signaling from Alice to Bob. In a similar way, we see thatif A < B, there is no signaling from Bob
to Alice, whileif A X ¢ B, there is no signaling from Alice to Bob and no signaling from Bob to Alice.

In the case of more than two local experiments, the relevant generalization of the above notion of signaling
may not be immediately obvious. Notice that if a given bipartite process WA involves no signaling between A
and B, such a process is in principle compatible with the causal configuration A £ # B (in fact, it is compatible
with any causal configuration of the two parties). However, in the case of processes for more than two local
experiments, even if there is lack of signaling between any pair of experiments for all possible settings of the rest
of the experiments, the process may not be compatible with a causal configuration in which all experiments are
causally independent.

To see this, consider three local experiments performed by Alice, Bob, and Charlie, where each party’s input
and output systems are classical bits, and each party is allowed to perform any classical stochastic operation from
the input bit to the output bit. Let the experiments of Bob and Charlie be causally independent, and let Alice’s
experiment be in the absolute future of Bob’s experiment, but in the absolute elsewhere of Charlie’s experiment
(i.e., the causal configuration of the three partiesis [B < A, A ¥ # C, B X # C]).Imagine that Charlie
receives his input system in one of the two possible states 0 or 1 with probability 1,/2, and depending on that
state, Alice and Bob are in one of the following two scenarios. In the first scenario (say, when Charlie receives 0),
Bob receives a random bit as an input system, his output bit is sent unaltered into the input system of Alice, and
Alice’s output bit is discarded. In the second scenario (when Charlie receives 1), Bob again receives arandom
input bit, but this time his output bit is flipped before sending it into Alice’s input, and Alice’s output bit is again
discarded. In both cases, the output system of Charlie is discarded. Clearly, the described situation can be
realized in agreement with a fixed causal configuration of the parties—all we need to do is supply Bob with a
random bit and correlate the channel from Bob to Alice with the input system of Charlie, discarding the
outcomes of Alice and Charlie. The mechanism realizing this is sketched in figure 1(a). Note that the tripartite
process corresponding to this scenario would involve no signaling from Bob to Alice in spite of the existence of a
channel from Bob to Alice. This is the case irrespectively of what operation Charlie performs. Obviously, there

7
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Figure 2. Pictorial representation of the definition of multipartite signaling.

can be no signaling from Alice to Bob either, since Alice operates in the future of Bob, nor can there be signaling
between Alice and Charlie, or between Bob and Charlie, since Charlie is causally independent of both Alice and
Bob. Thus, we have no signaling between any pair of parties, no matter what the setting of the third party is. Yet,
the possible correlations between the parties cannot be realized if all parties are causally independent because if
Alice and Charlie measure their input bits and collect the results of their measurements, they can infer the bit
sent out by Bob, which is impossible if all parties are causally independent. We might say that in this case we have
signaling from Bob to Alice and Charlie together. But intuitively, given the described scenario, this signaling
should be from Bob to Alice only, since there is no channel connecting Bob’s output system to Charlie’s input.
However, the latter conclusion is based on knowledge about the mechanism by means of which the correlations
are established, or about the causal configuration of the parties, and does not follow solely from the correlations
between them. Indeed, the tripartite joint probabilities for the outlined scenario are symmetric with respect to
interchanging the roles of Alice and Charlie, and thus they could arise from a different mechanism in a situation
where Alice is causally independent of both Bob and Charlie, and Charlie is in the causal future of Bob

(figure 1(c)). They could also arise from a channel from Bob to both Alice and Charlie (figure 1(c)) which
transforms Bob’s output bit into either correlated or anti-correlated random input bits for Alice and Charlie. We
therefore see that, at the level of the joint probabilities for the parties’ experiments, there is no way of
distinguishing between these different mechanism of information transmission, and hence no way of giving a
definition of signaling among a proper subset of the parties that unambiguously captures the existence of such a
mechanism. We can, however, give an unambiguous definition of lack of signaling between two complementary
subsets of the parties (figure 2), as well as an associated notion of multipartite signaling, generalizing the
bipartite case.

Definition 2.6 (Multipartite signaling). Consider an n-partite process YW " for a set of local experiments
S={1,..,n},n=0, 1, ...(inthe case of n = 0, this is understood as the empty set, and correspondingly the
process is the trivial process). Let A = {1,...,k}and B = {k + 1,...,n},0 < k < n,betwo complementary
subsets of the experiments, A U B = S, A N B = {} (for simplicity, we take them to be the first k and the next
n — k experiments, which can always be ensured by relabeling). We say that there is no signaling from the subset
A to the complementary subset B3 in the process W' -~ " if and only if

POt L 0"s, .5 = p (ot L. 0"kt L 5™,

Vsie S, oleOlj=1,..,n (6)

Equivalently, we say that there is signaling from (1 or - --or k) to (k + 1or --- or n) ifand only if this condition is
not satisfied.

Remark. There is no signaling from or to the empty subset.

Note that this definition only says whether there is signaling from one or more local experiments from a
given subset to one or more local experiments from the complementary subset, but in the general case it does not
identify pairs of experiments between which there is signaling. In the case of two experiments, the definition
reduces to the notion of bipartite signaling defined earlier.

Definition 2.7 (Non-signaling process). A process W' " for a set of local experiments S = {1,...,n},
n =0, 1, ..., is called non-signaling if and only if there is no signaling from A to B for any pair of
complementary subsets .4 and B of S.
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Remark. Monopartite processes and the trivial process are non-signaling.

From the definition of causal process, one easily obtains the following relation between the existence of
multipartite signaling among the local experiments described by a given process and the causal configuration of
these experiments.

Proposition 2.1. In an n-partite fixed-order process W' ", n > 1, compatible with a deterministic causal
configuration r« (1, ...,n), there can be signaling from (1 or ---ork) to (k + 1or--- orn), only if at least one of
{1,...,k} isin the absolute past of at least one of {k + 1,...,n} accordingto k«(1,...,n).

It turns out that we can formulate necessary and sufficient conditions for a process to be fixed-order causal,
which are expressed entirely in terms of the condition stated in proposition 2.1 applied to different subsets of the
experiments. To formulate the conditions precisely, we will need to introduce the concept of reduced process.

Definition 2.8 (Reduced process). Consider an n-partite process W%, n > 0, for a set of local experiments
S={1,..n}.Let A= {1,...,k}and B = {k + 1,...,n},0 < k < n,betwo complementary subsets of the
experiments (specified up to relabeling), such that there is no signaling from B to 4. This means that

p(o...,0%s,...,s") = p(d,...,0%|s!,...,s5),
VsieSi,oleOl,j=1,..n, @)

i.e., we have well defined conditional probabilities p (o', ..., oX|s, ..., s for the experimentsin A. The collection
of these probabilities will be called reduced process for A and will be denoted by WA = Wh -k,

Note that if a multipartite process is a valid pre-selected process, any of its reduced processes is also a valid
pre-selected process because it is defined conditionally on the same pre-selected event. Note also that a general
multipartite process need not admit any reduced processes apart from the trivial process and itself, since it may
involve signaling from every proper subset of the local experiments to its complementary subset.

Before we state the conditions for a process to be fixed-order causal, we introduce another concept that will
be needed later.

Definition 2.9 (Conditional process). Consider an n-partite process W ", n > 0, for a set of local experiments
S={1..,n}).Let A= {1,....k}and B = {k + 1,...,n},0 < k < n,betwo complementary subsets of the
experiments (specified up to relabeling), such that there is no signaling from B to .A (and hence we can define a
reduced process WA = W" k), For each fixed event (s, o', ...s*, 0¥)in A forwhich p(0!,...,0|s,,...,s¥) = 0,
consider the collection of conditional probabilities { p (0% T, ..., 0"[s*+1, ..., 5", s, 0\, ...,s%, 0F)}. These canbe
thought of as an (n—k)-partite process for B dependent on the event (s', o', ..., sk, 0%)in A. The collection of these
processes for all values of (s', 0, ..., sk, of) for which p (o), ...,0*|s, ...,s*) = 0 will be called conditional processand
will be denoted by WBIA = Wkt1..nll,..k The relation between the whole process and the reduced and
conditional processes can be written in the compact form

WAB = WL — Ykt1nll ok g WL,k
= Wh4o WA, ®)

where the product o between W54 and W4 denotes multiplication of the respective probabilities of these
processes, when defined, for the same value of the eventin A:
p (o ...,0"sh ...,s™) = p(oFtL, .. 0"k L sm sk ol .5k, 0F) p (oL, 0F]sh, .., s5), 9)
for p(o',...,0ks,,...,s%) = 0,and
p(oY...,0"s,...,s") = 0, (10)
for p(0',...,0ks,,...,s5) = 0.

Proposition 2.2. A process W' for aset of local experiments S = {1,...,n}, n > 1,is compatible with a
deterministic causal configuration kx (1, ..., n) of these experiments (and is thereby fixed-order causal) if and only if,
for the assumed causal configuration, proposition 2.1 holds for the full process and all of its reduced processes for all
bipartitions of the local experiments into two complementary subsets. The proof S1 is given in the appendix.

We next turn to general causal processes, beginning with the bipartite case.

9
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2.4. Bipartite causal processes

Consider a process W8 describing the local experiments of two parties, Alice and Bob. If the process is causal,
there exist probabilities p(A < B|s*, sB), p(B < Als?, sB), p(A £ # B|s4, sB), with

p(A < BlsA, sB) + p(B < Als4, sB) + p(A K # B|s#, sB) = 1. We can therefore write the joint probabilities
of the process in the form

p(o?, 08|54, sB) = p(A < B|s4, sB) p(o?, oP|s4, sB, A < B)
+ p(B < Als?, sB) p(o4, 08|54, sB, B < A)
+ p(A K # Bls?, s) p(o?, 0®|s4, s5, A £ ¥ B), (11)

where each of the probability distributions p (04, 08|54, s8, A < B), p(04, 0|s*, s5, B < A),and

p(ot, 0B|s4, sB, A K # B),is defined assuming that p(A < B|s4, sB) = 0, p(B < Als4, sB) = 0,and

p(A £ # Bls?, sB) = 0, respectively, otherwise that term is absent from the expansion. The definition of
causality (2) implies that p(A < B|s4, s%) = p (A < B|s?), p(B < A|s4, sB) = p (B < A[sD),

p(A X ¥ Bls4, sB) = p (A £ # B).Since the sum of these probabilities must be unity, we obtain

p(A < Bls?) = p(A < B), p(B < A|s®) = p (B < A), i.e., the causal configuration of the local experiments is
independent of the parties’ settings. Thus, the probabilities of a bipartite causal process VW28 have the form

p (04, 0B|s4, sB) = p(A < B) p(04, 08|54, sB, A < B)
+ p(B < A) p(04, 08|54, sB, B < A)
+ p(A £# B) p(o?, 0Pls?, 55, A £ # B), (12)

where the probability distributions p (04, 0®|s4, s?, A < B) = p(A < B, 04, 08|54, s%)/p(A < B),

p(0?, 08]s4, sB, B < A) = p(B < A, 0%, 08|57, sB)/p(B < A),and p (04, o®|s4, sB, A £ # B) =

p(A X # B, 04, 08]s4, sB)/p(A K # B), whenever defined, describe processes, which we will denote by

WA =B WB <A and WA X # B, respectively. (Note that we can imagine that the causal configuration x (A, B)
takingvalues A < B, B < A,or A X ¥ B,isassociated with an event in the past of both A and B, i.e., the
processes WA < B WB <4 and WA X 7 B can be thought of as proper pre-selected processes.) The assumption
of causality imposes conditions on these processes too. Specifically, it can be seen that each of them must obey a
no-signaling constraint compatible with the concrete causal configuration it is conditioned on: the first one
must involve no signaling from Bob to Alice, p (0]s*#, s8, A < B) = p(04|s, A < B); the second one must
involve no signaling from Alice to Bob, p (0®|s#, s, B < A) = p(0®|s8, B < A); and the third one must involve
no signaling in either direction, p(0%|s%, s®, A X £ B) = p(0%]s4, A K # B), p(0®|s*, s8, A £ # B) =

p (0858, A K # B),i.e., these are fixed-order causal processes. In a compact form, we can write

WEP=p(A<B) WASE 4+ p(B<A) WESA 4 p(A X By WAXFE (13)

i.e., a bipartite causal process has the form of a probabilistic mixture of processes that are compatible with the
different mutually exclusive causal configurations of the parties (and correspondingly involve only one-way
signaling in the respective direction, or no signaling). This form is not only necessary but also sufficient for a
process to be causal because it explicitly gives a joint probability distribution p (x (A, B), 0%, 08|s4, s8) =

p(5 (A, B)p(ot, oB|s4, sB, k(A, B))thatobeys the condition for causality (2) when each conditional
distribution p (0%, 08|54, s5, (A, B)) obeys the no-signaling constraints compatible with « (A, B).Indeed, we
have

P(A £ B, o°ls*, s%) = p(B < 4, o”|s*, s") + p(A £ B, o”s%, sP)
= p(B<A) poPs4, sB, B<A) + p(A X# B) p(oB|s4, sB, A X% B)
=p(B =< A) p°Is®, B<A) + p(A X} B) p(o°ls®, A X # B)
= p(A & B, 0%|sP) (14)
and similarly p(B % A, 0%]s4, sB) = p(B K A, 04|s%).
Since the non-signaling probabilities p (04, 0®|s4, s5, A £ # B) are compatible with the one-way signaling
constraints for the cases A < B or B < A, we can also write the probabilities (12) in the non-unique form
p(0?, 0P|sA, sB) = p(wA % B) p(o4, 0B|s4, sB, wA £ By + p(wPB A 4) p(o4, 0B|s4, sB, wh £ 4), (15)

AXB BXA

where w and w are two mutually exclusive variables for which the experiments of Alice and Bob
respectthe relations A ¥ Band B ¥ A, respectively, with the probabilities of these variables satisfying
pwA A By + p(wPA4) = 1.Inacompact form, this can be written

WEP=gWAAP+ (1 - WEAY, 0<g <, (16)
where WY % X isa process that involves no signaling from Yto X, i.e.

WY AX — WYX o WX, (17)

10
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A B

Figure 3. In a causal setup where Charlie performs his experiment in the causal past of both Alice and Bob, the causal configuration of
Alice and Bob may depend on the setting of Charlie.

The constraint (16) (equivalently, (15)) provides a means of testing whether a given bipartite process theory
is compatible with causal order. For every fixed number of settings and fixed number of outcomes for each party,
the joint probabilities satisfying equation (15) form a convex polytope, which is the convex hull of the polytope
of probabilities that involve no signaling from Alice to Bob, and the polytope of probabilities that involve no
signaling from Bob to Alice [33]. The non-trivial facets of this ‘causal polytope’ define bipartite causal
inequalities, similar to the one in [4], whose violation by a given process theory indicates that the theory is not
compatible with causal order. Note that a causal inequality does not need to be a facet of the causal polytope—it
may correspond to an external plane. For instance, the causal inequality of [4], which concerns the case where
one party has abinary input and a binary output while the other one has a quaternary input and a binary output,
is not a facet of the respective causal polytope [21]. One way of seeing this is to note that the derivation of the
inequality in [4] only used certain consequences of the requirement that the causal configuration of the parties
must be independent of the parties’ settings, but not the full requirement. The bipartite causal polytope for
binary inputs and binary outputs has been characterized by Branciard [33] (see [21]).

2.5. The tripartite and n-partite causal processes

In the case of more than two parties, causal processes need not have the simple form of probabilistic mixtures of
fixed-order causal processes with probability weights that are independent of the parties’ settings. This is
because, consistently with causality, we have the possibility that the causal configuration of a subset of the local
experiments may depend on the settings of other local experiments in their past. For example, imagine that we
have a tripartite experiment where the input and output systems of each party correspond to the internal (e.g.,
spin) degrees of freedom of a particle that enters the respective laboratory at a given instant and leaves it at a given
later instant. The time at which each party receives her/his particle is determined by some predefined
mechanism, which also governs any exchange of information taking place outside of the parties’ laboratories.
(Note that in order for the internal degrees of freedom of the particle to constitute the only means of information
exchange between each local experiment and the rest of the experiment, the experiment should be so designed
that no communication via the times of input or output of the parties is possible. For example, each party may be
restricted not to possess any common time reference frame with the rest of the experiment and to perform her/
his operation during a fixed time interval with a stopwatch.) In such a case, if Charlie receives a particle first, the
operation that he applies on the system could affect the order in which Alice and Bob receive their particles
afterwards, since we can conceive of a mechanism that selects different future scenarios for that order
conditionally on the outcome of a measurement performed on the internal degrees of freedom of the particle
coming out of Charlie’s laboratory. This can result in the different scenarios depicted in figure 3. By
construction, the outlined setup is compatible with the condition that the setting of each local experiment can be
chosen independently of events in the causal past and causal elsewhere of that experiment, as well as of the causal
configuration of such events and the experiment in question, so it would be associated with a valid causal
process.

Clearly, the dependence of the causal configuration of the parties on the parties’ settings cannot be arbitrary,
because it must agree with causality. To formulate the constraints on this dependence, we will need to introduce
some more terminology.

For any fixed causal configuration (1, ..., 1) of the local experiments S = {1, ...,n}, there arelocal
experiments that are in no-one else’s causal future. The full set of such local experiments, {7, j, ...} C {1,...,n},
will be referred to as the local experiments that are first, or as the first consecutive set and will be denoted by
[4 ], - .]". Next, if the first consecutive set does not include all of the local experiments, there are local
experiments whose causal past contains local experiments from [7, 7, ...]'and only from [4, j, ...]. The full set of
these will be referred to as the local experiments that are second, or as the second consecutive set, and will be
denoted by [k, I, ...]". Then, if the first and second consecutive sets do not include all local experiments, there
are local experiments whose causal past contains local experiments from both sets [4, j, ...]'and [k, [, ...]"and
only from those sets. The full set of these will be referred to as the local experiments that are third, or as the third
consecutive set, and will be denoted by [p, ¢, ...]"™, and so on.

11
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Table 1. The mutually exclusive groups of tripartite causal configurations.

Groups of tripartite causal configurations whose probabilities are independent of the parties’ settings, defined by the set of parties that
are first

[A]':[A<B,A<C,B<Clor [A<B,A<C,C<Blor [A<B,A<C,B % ¥ C]
[BI':[B<A,B<C,A<C]or [B<A,B<C,C=<A]or [B<AB=<C,AX ¥C]

[CI':[C <A,C<B,A<B] or [C<A,C<B,B=<A]or [C<A,C<B,A K ¥ B]

[A,Bl':[A X#B,A<C,BX #Clor [AX#B,AX #C,B<Clor[AX¥B A=<C,B=<C]
[A,CI":[A KX #C,A<B,BX #£Clor [AX #£C,AX¥¢BC=<Blor[AZ#¥C, A<B,C=<B]
[B,CI':[BX #C,B<A,CK #£Alor [BX #£C,BX £ZA C=<Alor [BX #C,B<AC=<A]
[A, B, CI":[A X#B,B% #C,AXK #C]

The following proposition will play a central role in our derivation of the form of multipartite causal
processes.

Proposition 2.3. Consider a causal process for S = {1, ...,n}, n > 1, with an associated joint probability
distribution p(k (1, ...,n), o', ...,0"s.,...,s"), where k (1, ..., n) are the causal configurations of the local
experiments. The probability for the first K consecutive sets to consist of specific local experiments, [11, ..., 1], ...,
[k, .., n IX, these experiments to have a specific causal configuration r (1, ..., ng ), the experiments in the first

K — I consecutive sets to have a specific set of outcomes o, ..., 0«1, and a given (possibly empty) subset

{1ks .. 8} C {1k, ....,nx} of thelocal experiments in the K th set (given up to relabeling) to have specific outcomes
o', ..., 0%, can depend non-trivially only on the settings of the local experiments indicated in the first K — 1
consecutive sets and the subset { 1g, ..., g},

Py ng)s [y e s [l o 1 1K, 01, L. 08¢sY, Ly ™)

:P(H(ll) ...,7’1[(), [lla ~'~)nI]I>"'>[1K) ~'~)nK]K> 011) ~'~>0gK|5111~~)SgK)) (18)

where we define the Oth set as the empty set. The proof S2 is given in the appendix.

An important consequence of proposition 2.3 is that the probability for a given set of local experiments to be
firstis independent of the settings of all parties (this is the case of K = 1and the subset { I, ..., g } being empty).
For example, consider the different causal configurations of three parties—Alice (A), Bob (B), and Charlie (C)—
which are compatible with [C]' (figure 3). Each of the individual configurations has a probability that may
depend on the setting of Charlie, but the overall probability for Charlie to be first, i.e., for any one of these
configurations to be realized (which is the sum of the probabilities for the individual configurations), is
independent of the settings of all parties, including Charlie. This independence of the first consecutive set on the
settings of all parties will play a key role in our characterization of the structure of multipartite causal processes.
We will first develop the characterization for the case of three parties in order to illustrate the underlying
principle, and then we will extend it to the general multipartite case.

The groups of tripartite causal configurations compatible with the different possibilities for the first
consecutive set of parties are listed in table 1. In terms of these possibilities, the probabilities of a tripartite causal
process can be written

(0%, 0B, o€|s4, sB, sC) = p([AT) p(o™, 0B, o|sA, sB, sC, [A]")
+ p([B") p(o?, 0, o%|s4, 55, s, [BI')
+ p([CI') p(o?, 0, o°Is#, 5B, s, [CT)
+ p([A, B p(o?, o8, o%|s4, sB, sC, [A, B]")
+ p([A, CT) p(0?, o, 0|54, 5B, sC, [A, CI)
+ p([B, CIY) p(o”, 0B, o“|s4, sB, s, [B, CI")
+ p([A, B, CIY) p(04, 0B, o¢|s4, sB, s, [A, B, CI), (19)

where

p([ATY + p(IBI) + p(CIH
+ p([A, BIY) + p([A, CIY) + p([B, CI) + p([A, B, CI") =1, (20)
and the probability distributions p (04, ...|s4,...,[---]") foragiven [---]!, defined whenever p([---]') = 0,

describe processes which we will denote by Wt I, (Note that we can imagine that the variable [---]' is associated
with an event in the past of all local experiments, i.e., these can be thought of as a proper pre-selected process.)
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In a compact form, equation (19) can be written

WERE = p(IAT) W+ p([BI) WP + p(ICTH) WIET
+ p([A, B WAEE 1 p([A, CIY WIACT 4 p([B, CTH) WIBCT
+ p([A, B, CI) WiABCT, 1)
i.e., the overall process is a mixture of processes defined conditionally on the different scenarios [ ---]'. The
processes W1 cannot be arbitrary but must be compatible with causality, the conditions for which we
derive next.
Consider the case in which one party is first, say [C]' (figure 3). There are three distinct causal configurations

compatible with this case, inwhich A < B, B < A,or A X2 B(table 1). We can expand
p(04, 0B, 0¢s4, sB, s€, [CT") conditionally on these configurations as follows:

p(o?, 0B, o¢ls4, sB, sC, [CTH)
— p(os4, sB, <€, [CTH

X [p(A < B|s4, sB, sC, 0%, [C]") p(04, 0B|s4, sB, s¢, o¢, A < B, [C]")

+ p(B < Als, 58, sC, o, [CT') p(o?, oBs4, sB, sC, o¢, B < A, [C]I)

+ p(A K # Bls4, sB, sC, 0%, [CT) p(o4, oBs4, sB, s¢, 0%, A X # B, [CI)], (22)
08|54, 58, sC, 0%, K (A, B), [CI") is defined when p (k (A, B)|s4, s5, sC, oC, [C]Y) = 0,and

p(A < BJs4, sB, sC, o, [CT) + p(B < Als4, 5B, s¢, o, [C]D)
+ p(A X # B|s4, sB, sC, o¢, [C]) = 1. (23)

where p (04,

From proposition 2.3, we have that
p(o©lst, 5%, s [CT) = p(ICT, o°ls4, 55, s9)/p(ICTH) = p(ICT, o“Is9)/p(ICT) = p(o°IsC, [CT).
Similarly, we have
p(A < Bls4, 5%, 56, 0%, [CT) = p(A < Bls*, s, o, [CT),
p(B < Als?, 58, s, 0%, [CI) = p(B < Als®, s€, o, [C]),
p(A K Bls#, s, s€, 0%, [CT) = p(A £ # BIsC, o, [C]), (24)
which together with equation (23) implies
p(A = Bls#, 5%, s, 0%, [CT) = p(A < BIsS, o, [CT),
p(B < Als?, 5%, 5, 0% [CTH) = p(B < AlsS, o, [C]),
PA £ # Bls*, 5% 5%, 0%, [CT) = p(A £ # BIsS, o, [CT). (25)
Substituting this in equation (22), we obtain
p(o?, of, o4, s, 5% [CTH
—p(oCIsC [CT)
x [p(A < BIsS, o [C]) p(o?, 0®|s%, s, 5% 0%, A < B, [C])
+ p(B < A|sS, o, [C]) p(o?, 0P|s4, 55, €, 0%, B < A, [C])
+pA ¥ Blsca Oca [C]I) P(O > OBlsA) SB’ ST 0C> A X# B, [C]I)]) (26)
with
P(A < BIsS, 0% [CT) + p(B < Als, o, [CI) + p(A X BIsS, 0%, [CT) = 1, (27)
where the probability distributions p(o BlSA $B s, A < B, [C]),
P04, oB|s4, sB, sC, o, B < A, [C]),and p(o oB|s4, sB, sC, 0%, A K # B, [C]") describe bipartite processes
for Alice and Bob for every fixed value of (s, 0©). The assumption of causality implies conditions for these
processes too. They must respect the no-signaling constraints imposed by the causal configuration « (A, B) they
are conditioned on—the first one must involve no signaling from Bob to Alice, the second one must involve no
signaling from Alice to Bob, and the third one must involve no signaling between Alice and Bob in either
direction. This follows from the fact that
p([CI, K(A, B), 04, 0B, o¢|s4, sB, s©)
p(ICT) po“IsC, [CTH) p(k(A, B[S, o, [CT)

p(o?, o®s4, 5%, s¢, 0%, K (A, B), [CT) = (28)
and the observation that since only the numerator on the right-hand side depends on s 04,52 and o®, the
respective no-signaling constraints on the quantity on the left-hand side follow from the requirement that the
numerator is compatible with equation (2).
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Figure 4. The three possible tripartite causal configurations included in the group where B and Care first. From left to right:
[BX #ZCandB<AandC K £ Al[BX #CandB<AandC <A][B X # Cand B ¥ ¥ Aand C < A].

Notice that the probabilities p (0€|s¢, [C]') in equation (26) define a reduced monopartite process for
Charlie, W¢, while the probabilities enclosed by the square brackets define a conditional bipartite process
WHBIC which is causal (indicated by the subscript ¢) for every fixed (s, 0€). In a compact form, this can be
written

WICT — WABIC g €, (29)

The form (29) is necessary for a causal process for which all causal configurations that have non-zero
probabilities respect [C]" (in that case, a causal process of the general form (21) reduces to the term Wi,
Itis also sufficient, because this form provides an explicit joint probability distribution
Pl (k(A, B, C), 0, 08, o€|s4, 58, s¢)—equalto p([CT, K (A, B), 04, 0B, 0|54, 5B, sC)
= p(0°|s¢, [CT) p(k (A, B)|sC, o, [CT") p(o4, 0|54, 5B, sC, 0%, Kk (A, B), [C]') when k(A, B, C)is
compatible with [C]!, and to zero otherwise—for which condition (2) is satisfied with respect to every party.
Indeed, condition (2) is satisfied with respect to Csince the probability for any party being in the causal past or
causal elsewhere of Cis zero. It is also satisfied with respect to A (similarly for B) since the no-signaling
constraints respected by p (04, 08|s4, sB, sC, o€, (A, B), [C]') guarantee that plI (1 (A, B, C), A £ B,

A & C, 08, 0€|s4, sB, sC) = plV(k(A, B, C), A £ B, A £ C, 0B, 0€|s, sC). The necessary and sufficient
conditions for a causal process compatible with [A]' and [B] are analogous.

Let us now consider the case where two parties are first, say [B, C]'. The possible causal configurations in this
case (table 1) are depicted in figure 4. Similarly to the previous case, using the assumption of causality, we can
expand the probabilities p (04, ...|s4, ...,[B, CI") conditionally on the different configurations as follows:

p(o?, 0B, o¢s4, sB, sC, [B, CI') = p (0B, o¢s?, sC, [B, CI")
X [p(B <A, C & # AlsB, 0B, sC, o°, [B, CI)p(0?]s4, sB, 08, s, 0, B< A, C X #£ A, [B, C]")
+ p(B K £ A, C=<A|sB, o8, sC, o°, [B, CI)p(04s4, sB, 08, sC, 0¢, B X # A, C < A, [B, CI")
+p(B <A, C<AlsE, 08, s 0%, [B, CT)p(04]s?, sB, 0P, s, 0%, B< A, C < A, [B, CI)], (30)

with

P(B <A, C K FAlsP of, 5% 0% [B, CI) + (B K #£ A, C=Als%, o, 5 o, [B, CT)
+p(B <A, C < A|s?, 08, s 0% [B, CI) =1, (31)
where the probabilities p (0Z, 0o€|s8, s¢, [B, CI") in equation (30) define a reduced bipartite process that involves
no signaling between B and C, and the probabilities in the square brackets describe a conditional process for A.
The fact that there is no signaling between B and Cin the first process follows easily from proposition 2.3.
It turns out that the decomposition over different causal configurations does not yield any nontrivial
conditions on the probabilities of the conditional process enclosed in the square brackets, i.e., the simpler form

p(o?, 08, o€s4, sB, sC, [B, CT') = p (08, o€|sB, sC, [B, CI') p(o?]s4, sB, 0B, sC, o, [B, CI") (32)

is both necessary and sufficient for a valid W5 cr, Necessity is obvious since equation (30) implies equation (32).
Sufficiency follows from the fact that the right-hand side of equation (32) is compatible with the particular case
p(B < A, C < AlsB, 0B, s¢, o, [B, CI') = 1, where the only non-trivial constraints on the probabilities

P04, 0B, oC|s4, sB, sC, [B, C]') imposed by (A, B, C)are that there is no signaling from Alice to Bob and
Charlie, and no signaling between Bob and Charlie in their reduced bipartite process. These are clearly
guaranteed by equation (32) when the reduced process { p (0%, 0|s5, s¢, [B, CI') } involves no signaling
between Bob and Charlie. Therefore, similarly to equation (29), we can write equation (32) in the compact form

WIBCT = WAIBC o YWEC, (33)

where W2C is a non-signaling bipartite process for Bob and Charlie, and WAIEC is a monopartite process for
Alice conditional on the events in the laboratories of Bob and Charlie.

14



10P Publishing

NewJ. Phys. 18 (2016) 093020 O Oreshkov and C Giarmatzi

Finally, in the case where all of the parties are first, we only have the constraint that
WIAB.CI — W;XS,B,C (34)

is a tripartite non-signaling process. Again, this follows from proposition 2.3.
Therefore, we have obtained that a tripartite causal process VW€ must have the form

W€ = p(AT) WAt e WA+ p(IBIN WP o WP
+ p([CH W?,BIC o WS + p([A, BY) WClAB o WQS’B
+p([A, CI) WEACo WIC 4 p([B, CTY) WAIBC o WEE
+ p([A, B, CI") WS, (35)

with suitable probability weights p ([A]), p([BI"), p([CT), p([A, B, p([A, CI), p([B, C]"),and
p([A, B, CI). This form is also sufficient for a tripartite process to be causal because it explicitly gives a
probability distribution
p(k(A, B, C), 04, 0B, o%|s4, sB, s¢) = S P (-1 p(s(A, B, C), 04, 0B, o€|s4, 5B, sC, [---]') that satis-
fies equation (2). Indeed, we have seen that each of the distributions p (k (A, B, C), 04, o, o|s4, s5, s, [---1)
in this convex mixture is an extension of a causal process { p (04, 08, 0¢|s4, sB, sC, [---]") }, and hence it satisfies
equation (2). Since the weights p ([---]") in the mixture are independent of s, 5% and s, and equation (2) is
linearin p(x (A, B, C), 04, 0P, 0%|s4, sB, sC, [---]"), the equation is satisfied by the whole mixture too.
Condition (35) can be further simplified by noticing that the processes corresponding to the cases in which
two or three parties are first have forms compatible with cases in which only a single party is first. For instance,
WIBCT satisfies the necessary and sufficient conditions for a valid WIB! or a valid WICT, while WI4B.CT satisfies
the necessary and sufficient conditions for any of WIAI, WIBT or WICT The compatibility of WIBC! with [CT,
for example, can be seen from the fact that equation (32) (or equation (33)) is compatible with the case [C]! in
which C < B < A, since the only constraints in that case are that Alice cannot signal to Bob and Charlie, and
that Bob cannot signal to Charlie, which are satisfied by the probabilities in equation (32). Similarly, WB-1 is
compatible with [C]'. A process WI4B-CT is compatible with any causal configuration since it does not involve
signaling between any of the parties. These observations suggest that we can group (in a generally non-unique
way) the terms in the probabilistic mixture (21) so as to obtain a mixture of three processes

WABC — b (wBC) £ 4) YWBO) A A
+ p(WwAO X By WA KB | p(3y(AB) £ C) YY(AB) £ € (36)

where wBO £ A/ (AC) X B and wAB % C are some mutually exclusive variables whose probabilities satisfy
pwBO XAy 1 p(wAO A By 1 p(wAB) X C) = 1, such that conditionally on these variables, the causal
configuration of the parties belongs to one of the groups compatible with (B, C) £ A (meaning

B X ANAC X A), (A C) X B,and (A, B) X C, respectively, while the processes W # 4 WWAC) X B and
WWAB £ C satisfy the most general causal constraints compatible with these groups. For instance, conditionally
on wB©) # 4 the causal configurations of the parties may belong to any of the groups defined by [A]', [A, BT,
[A, CI',and [A, B, C]'. The process W) % 4 would itself be a probabilistic mixture of processes compatible
with these groups, which most generally satisfy the constraints satisfied by W4 That is

WEOAL = W o WA, (37)
WEOAE = WEAE o WE, (38)
WD A € = YWABIC o WC, (39)

Obviously, the existence of a convex decomposition (36) is both necessary and sufficient for a tripartite process
to be causal, since any process of the form (35) can be written in the form (36), while equation (36) is a special
case of equation (35).

Asin the bipartite case, for any fixed number of settings and fixed number of outcomes for each party, the
constraint (36) provides a means of testing whether the corresponding tripartite probabilities are compatible
with causality. The set of probabilities that satisfy equation (36) is the convex hull of the probabilities compatible
with causal configurations in which (B, C) £ A, (A, C) ¥ B,and (A, B) ¥ C.One can see that the latter form
polytopes, since the constraints imposed by causality in each of these cases are linear. For example, in the case of
(A, B) ¥ C,wehave the constraint that p (04, 0%, 0€|s4, 5B, s¢, w5 % € involve no signaling from Alice and
Bob to Charlie, and that for every (s¢, 0€), the resultant process between Alice and Bob is causal. The first
requirement corresponds to a set of linear constraints. The second requirement corresponds to the condition
that for every fixed (s, o), the probabilities p (04, 08|s4, s5, sC, o€, wdB % C)
= p (04, 08, 0%s4, 5B, sC, wAB £ C) /p (0C|sC, wAB) % C) are the probabilities describing a causal process for
Alice and Bob, which themselves belong to a polytope and hence respect a set of linear inequalities. Plugging
these probabilities in the respective inequalities and multiplying both sides by p (0€|s¢, w5 % €)would yield a
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set of linear inequalities for p (04, 0B, 0|54, sB, sC, wAB) % C) Therefore, these probabilities also form a

polytope, and so do the probabilities of the form (36). The nontrivial facets of the polytope of probabilities (36)
would define tripartite causal inequalities, whose violation indicates incompatibility with causal order.
Examples of tripartite causal inequalities for binary inputs and outputs can be found in [7, 9] (we have not
investigated whether these are facets of the respective causal polytope).

The extension of the conditions for causality of a process to the case of n parties can be defined iteratively.
The following theorem provides the generalization of condition (35):

Theorem 2.1. A process for a set of parties S = {1,...,n}, n > 1, iscausal if and only if it can be written in the form

WE=" 3 pWA\ Mo W (40)
XCS,Xx={}

where the sum is over all nonempty subsets X of the local experiments S, p, are suitable probability weights (which

can be interpreted as the probability for X to be first, p,, = p([X]"), S\ X denotes the relative complement of X in

) o . S\XX .. .
S, Wi is a non-signaling reduced process for X, and the conditional process W \A is either the trivial process

(When X = S) or otherwise can be written in the same form (40) for every given value of the possible eventsin X . The
proof S3 is given in the appendix.

Asin the bipartite and tripartite cases, we can simplify the conditions for an n-partite process to be causal by
noticing that the constraints on a process compatible with a given setof k (1 < k < n) parties being firstare
compatible with the constraints on a process compatible with the case in which only a single one of the k parties
is first. Therefore, by an argument analogous to the one in the tripartite case, we obtain the following alternative
formulation of the conditions.

Theorem 2.2 (Canonical causal decomposition). A causal process for n parties is one that can be written in the
(generally non-unique) form

Whtt = iqiw(l,m,i—l,Hl,.4.,n)7{1" >0, Vi, i%‘ -1, (41)
i=1 i=1
with
W(1,4.4,i71,i+1,4.4,n);4i _ ch,4.4,i71,i+1 ..... nli o Wi, (42)
where the (n — 1)-partite conditional process WY o l=Lit L eonliye oither trivial (whenn = 1) or has the form (41)

for every value of the event in i.

The weights g;in equation (42) can be thought of as the probabilities g, = p (W'l = LitL.m i) for g
mutually exclusive set of variables w(l> 1= LiF1.m £ i for which the causal configurations of the parties belong
toagroupsuchthat(l,...,1 — 1, i+ 1,...,n) £ i.

Theorem 2.2 (alternatively theorem 2.1) gives iteratively formulated necessary and sufficient conditions for a
process to be causal in the general multipartite case. It can be understood as describing an ‘unraveling’ of the
different possible sequences of operations in steps: first, the party that is first and his/her monopartite process
are selected at random based on some probability distribution; next, the party that is second and his/her
monopartite process are selected at random from some probability distribution that most generally can depend
on the first party’s setting and outcome; next, the party that is third and his/her monopartite process are selected
from some probability distribution that most generally can depend on the settings and outcomes of the first two
parties, and so on. We refer to this intuitive decomposition as the canonical causal decomposition of a causal
process.

By an argument analogous to the one in the tripartite case, one easily sees from theorem 2.2 that for any fixed
number of settings and outcomes for each party, the causal probabilities for n parties form a polytope, provided
that the causal probabilities for (n — 1) parties form a polytope. By induction, this implies a polytope structure
for the general multipartite case. The nontrivial facets of such a polytope define causal inequalites. Examples of
n-partite causal inequalities, where n = 2k + 1, for binary inputs and outputs can been found in [7, 9]. It would
be interesting to check if these inequalities are facets of the respective causal polytope.
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3. The quantum process framework

3.1. General quantum processes

The quantum process framework introduced in [4] is a particular theory within the general operational
framework for pre-selected processes discussed in the previous section. It is based on a set of assumptions about
the local operations of the parties and the joint probabilities for their outcomes, which we review next.

The first main assumption is that of local quantum mechanics [4], which says that each local experiment is
described as in standard quantum mechanics. Specifically, let X; and X, denote the input and output systems of a
local experiment X. It is assumed that these systems are associated with Hilbert spaces H* and H*: of
dimensions dimH* = dy and dimH* = dy,, respectively. The set of operations that can be performed
between the input and output systems is the set of standard quantum operations (or quantum instruments [34]).
A quantum operation has a set of outcomes labeled by j = 1, ..., n. Each outcome induces a specific
transformation from the input to the output, which corresponds to a CP map ./\/lf : L(HY) — L(HX), where
L (H) is the space of linear operators over the (finite-dimensional) Hilbert space H. The action of each ./\/lf on

an operator ¢ € £ (H*) can be written in the Kraus form [35] ./\/lf (0) = 2L Eix oEj, m = dx, dx,, where the
Kraus operators Ej : H* — H% satisfy /| Ej Ejr < I, Vj. The set of CP maps { M} }I_, corresponding to
all possible outcomes of a quantum operation has the property that Z;’zl Mf is CP and trace-preserving
(CPTP), which is equivalent to the condition Z’;: oy E}j(Ejk = 1%,

The second main assumption is that the joint probabilities for the outcomes of the operations of a set of
parties, Alice, Bob, Charlie, -+, is a non-contextual function of the local CP maps

PGy jo ks UMY, (MF), {IME) ) = w(ME, ME, M, ). (43)

The requirement that local procedures agree with standard quantum mechanics implies that the function w
should be linear in the local CP maps [4].

Such alinear function can be written in a convenient form by expressing each local CP map as a positive
semidefinite operator using a version of the Choi—Jamiotkowsky (CJ) isomorphism [29, 30]. In this
isomorphism, the CJ operator M/"* € L£(H* @ H™) corresponding to alinear map
M2 LOHAY — L(H™)is defined as M4 = [T @ M;(|¢1) (¢T])]T, where |t ) = Z?illljﬁ € HA @ HA
isa (not normalized) maximally entangled state on two copies of H "1, the set of states {| j) ji‘l is an orthonormal

basis of H*, Z is the identity map, and T denotes matrix transposition in the basis {| j) }?ill of H* and some

specific basis of H*2. The C] operator defined in this way does not depend on the choice of basis of H:, but does
depend on the choice of basis of {*:." For the purposes of the present paper, the latter basis can be an arbitrary
fixed basis. We note, however, that within the time-symmetric generalization of the framework developed in
[15], this basis has a nontrivial physical significance related to the transformation of time reversal. Specifically, in
that formulation, the Hilbert space H*: on which the CJ operator is defined is not interpreted as the original
output Hilbert space of the CP map, but a time-reversed copy of it. In this paper, we will not be concerned with
that formulation, but will simply regard the CJ representation of CP maps, defined for an arbitrary choice of
basis, as a mathematical convenience. Using the C]J representation, the joint probabilities (43) can be written in
the form

PG jo ks MY, (M), (M), )
= Tr[WAABBEGC (A% @ MPFP @ MO @ -], (44)

where WALBRGG ¢ L(HA @ HA: @ HA @ HE: @ HO @ HO ® --).
The last main assumption behind the quantum process framework is that the local operations of the parties
can be extended to act on input ancillas A;, B/, C/, ..., that are allowed to be prepared in an arbitrary quantum

A/B/c!... A'B/C/!... A'B/C!... . ..
state p M BICU pABIC 5 0 TrpMBIC — 1 Upon such an extension, the original operator W44:BiB:GC

becomes WAABIBGC: @ pABIG [4] The requirement that the probabilities are non-negative for any
combination of local CP maps M,A, ./\/l?, /\/lf, ...,on the extended systems A = AIA{AQ, B = BlBI' B,,
C = C,C/C,, ...,implies that [4]

4 Note that both the entangled state |¢") and the overall transposition T that appear in our definition of the CJ operator depend on the
choice of basis {| 7) jill, which altogether makes the CJ operator independent of that basis. In contrast, in the original version of the Choi
isomorphism [30], the Choi operator is defined without the transposition T, which is why it depends on {] j) } jill. However, the original
Choi operator does not depend on any choice of basis for H 2, whereas our CJ operator depends on such a choice through the
transposition T.
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Table 2. The types of terms allowed in a tripartite process matrix W A42BiB2G G,

G B,G B, B G, B G
BIGC,y BB, G G A B, G Ay By
A BiC, ABIG A BIGCy A BB, G Ay
AG AG AGG A1B, AB,Cy
AB, G A1B,G Gy A B, AB Gy A1B1G
AB GG, A1B1 B, A1B1B,C, A1BB,G A1B1B,G G,
AAG A4 B, G AlAy By AA B Cy AAB G
AAB G C, A1AB B, G 1
WA1A23132C1C2"' 2 0. (45)

In addition, since the probabilities should sum up to 1 for a complete set of local outcomes, we have the
condition that

Tr [WAIAZBlBZC1C2‘“(MA1A2 ® M3132 ® MCICZ ® )] — 1)
VMA‘AZ, MB1Bz’ MCICZ) >0,
Tra, MA% = 14, Try MBB = 1B Tre, MGG = 16, (46)

where Try, denotes partial trace over X,. Here, we have used the fact that a linear map M~ is CPTP if and only if
its CJ operator satisfies M*% > 0 and Try, M%% = 1%. An operator W A4:BiB:GC2 that satisfies conditions
(45) and (46) is called a process matrix [4]. Knowing the process matrix, by equation (44) we have the probabilities
for the outcomes of any combination of local operations of the parties, i.e., the process matrix provides a
complete description of a process. (Here, the set S* of possible settings of a given party is the set of quantum
operations with the respective input and output systems.)

The process matrix can be expanded in a Hilbert—Schmidt basis of orthogonal matrices on the Hilbert spaces
of the input and output systems of the parties, which is helpful in analyzing different properties of the
correlations that the process allows. A Hilbert—Schmidt basis of £ (H*) is given by a set of Hermitian operators

27 . . .
{aff}fj‘zol,wuh oy = 1%, Traffa,)f = dx 6,,,and Traf = 0forj = 1,..., d¢ — 1.Insuchabasis, a process
matrix can be written

A A B B C C
WAIABIBCCy e — z Wik 011 @ sz @il ®dl® -,
ij,k,Lmn...
Wiikimn-- cR, Vi, j, k, I, myn, ... (47)

It turns out that many properties of process matrices can be formulated entirely as statements about the nonzero
terms in the above expansion [4]. For this purpose, it is convenient to introduce the following terminology.
Non-zero terms proportional to oiAl ® It (i > 1) will be called terms of type A, non-zero terms proportional
to oriAZ ® 0? ' ® It (4, j > 1) will be called terms of type A, By, etc. Every process matrix also contains a non-
zero term proportional to the identity operator on all systems. This term will be referred to as of type 1, or as the
identity term.

In [4], it was shown that, in the bipartite case, an operator W 425182 satisfies condition (46) if and only if it
contains at most terms from the following types: 1, A;, By, A By, A1 B,, AjA; By, A; B B,. This rule also includes
the monopartite case, which is obtained when the input and output systems of one of the parties is trivial (the
one-dimensional Hilbert space C'). Specifically, a monopartite operator W 4142 satisfies condition (46) if and
only if it contains at most terms of type 1 and A;. The types of allowed terms can be generalized to the n-partite
case as follows.

Proposition 3.1. An operator of the form (47) satisfies condition (46) if and only ifin addition to the identity term it
contains at most terms in which there is a nontrivial o operator on X; and a trivial one (the identity operator) on X,
forsomeparty X € {A, B, C, ...}.

In the appendix, we present proof S4 of the above proposition for the case of three parties and the general
case follows accordingly. From the analysis in proof S4 we see that a general operator W 44:Bi82GC2 can contain
up to 64 types of terms. The condition for normalization of probabilities (46) narrows the types of terms to the 38
types listed in table 2. The positive semidefiniteness condition (45) does not limit any further the allowed types of
terms, because one can conceive of a positive semidefinite matrix containing nonzero terms of any chosen type
(this can be ensured by taking the nontrivial o terms with non-zero coefficients of sufficiently small magnitude
relative to the weight of the identity term which is always fixed). Thus, an operator W 445G §5 3 valid
tripartite process matrix, i.e., it satisfies conditions (45) and (46), if and only if it satisfies condition (45) and
contains only terms of the types listed in table 2, where the identity term comes with the weight

18



I0OP Publishing NewJ. Phys. 18 (2016) 093020 O Oreshkov and C Giarmatzi

Table 3. The types of terms allowed in a causal process matrix W(ﬁ‘)gz) ’;‘B(%C‘ @ compa-
tible with (A, B) ¥ C.

C B, B G, B G BIGC,

A By A B Gy AB1GCy A AG

AG AGGC A B, A1B,Cy AB, GG,
AiBy AB G, ABIG ABIG G, A1B B,
AB1B,C, A1B1B,G Gy A4 By AAB Gy AABIGG
A B, G Ay B G AAB G A BB, G 1

1 . . . .
Wo00000 = 77— In a similar way, one proves the allowed types of terms in the general n-partite case. (For an
A dp de;

alternative formulation of the conditions for an operator to be a valid process matrix, see [19].)

The types of terms that appear in the expansion of a process matrix are closely related to the signaling
between the parties that the process allows. For example, a bipartite process involves signaling from Bob to Alice
ifand only if the process matrix contains terms of type A; B, or A; BB, [4]. To state the condition for (no)
signaling in the multipartite case, it is convenient to introduce the following terminology (see also [19]).
Consider a Hilbert-Schmidt term ¢/ @ 0?2 ® 0P ® 01* ® 05 ® 05> @ -+ asinequation (47). The

restriction of this term onto, say, subsystems B, C,C, --- isdefined as o*fz ® US; & JSZ & -

Proposition 3.2. An n-partite process matrix for a set of parties { 1, ..., n} does not permit signaling from, say, (1 and
2and---andk)to (k + land k + 2 and --- and n) ifan only if it contains only terms whose restriction onto

L1, -+ kik; areof the allowed types for a process matrix on {1, ..., k} as described in proposition S4. The proof S5 is
given in the appendix.

As an example, a tripartite quantum process that is causal and compatible with a situation in which Charlie is
first (figure 3) should involve no signaling from Alice and Bob to Charlie, and hence it can only contain the types
of terms listed in table 3. These constraints on the allowed types of terms imposed by causal order will turn out to
play an important role in the characterization of the so-called causally separable quantum processes, which we
define in the next subsection.

3.2. Causally separable quantum processes

Given that quantum processes have a simple description in terms of process matrices, it is natural to ask whether
the property of causality can also be expressed in terms of simple conditions on these matrices. Consider a
bipartite quantum process for Alice and Bob, and assume that it is a fixed-order process compatible with the
causal configuration A < B.In that case, as argued earlier, the only constraint imposed by causal order is that
the process should involve no signaling from Bob to Alice. As pointed out in the previous subsection, there can
be signaling from Bob to Alice if and only if the process matrix W 445152 contains terms of type A, B; or A B, B,.
Therefore, a process matrix is compatible with A < B ifand only if none of these types of terms appear in its
expansion. This means that such a process matrix has the form

WA <B _ WA1A231 ® EBZ, (48)

where WA4B > 0 (with Tr WA4B = 4, ) contains at most terms of type 1, A}, By, A By, Ay By, AjA;By. (This
is equivalent to saying that W 414:B1 is a valid process matrix for the case where Bob has a trivial output
system, HB = Cl.)

Similarly, in the case where A ¥ # B, the process matrix has the form

WA A #B — WAB g |48, (49)

where WAB > 0, Tr WAB = 1. Such a process is realized in a situation in which Alice and Bob receive input
systems in a joint quantum state with a density matrix W4, and their output systems are discarded.

We can unify these two conditions to write down the form of a process matrix compatible with B £ A,
which is identical to (48)

WB XA — WAAB ® JlBZ, (50)

where W41 is a valid process matrix for the case where H% = C.

As shown in [36] within a different framework, all process matrices of the type (50) can be realized by
embedding the experiments of Alice and Bob in a quantum circuit, so that Bob’s experiment does not precede
Alice’s experiment in the order of the circuit composition. Most generally, this corresponds to providing Alice
with an input system that is entangled with an ancilla, then sending Alice’s output together with the ancilla
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through a quantum channel into Bob’s input, and then discarding Bob’s output. Such a process is referred to as
quantum ‘channel with memory’.

As we have seen earlier, a bipartite causal process is one that can be written in the form (16), where /4 % B
and W X 4 are two processes compatible with A # Band B % A, respectively. It is then tempting to
conjecture that the class of causal quantum processes might be those whose process matrices can be written in
the form

WhLBE: — g WARE 4+ (1 —q WEAA 0<q<, (51)

where WA % B and W? % 4 have the form defined in equation (50). Certainly, since the probabilities for the
outcomes in the quantum process framework are linear functions of the process matrix, a process matrix of the
form (51) describes a causal process.

However, the condition for a process to be causal (equation (16)) does not imply that W4 % B and W5 A 4 in
the convex decomposition of the process should themselves be quantum process; only their convex mixture
needs to be. While it is conceivable that the structure of quantum processes might imply the form (51) (indeed,
this has been shown to hold for a limited class of bipartite quantum processes [ 14]), there is no obvious reason to
expect this to hold in the general case. In fact, we will see that the natural generalization of condition (51) to the
multipartite case is not equivalent to the condition that a process is causal (the same holds also for other possible
generalizations that we will discuss later). Very recently, the same was shown to hold also in the bipartite case, by
Feix, Aratjo, and Brukner [38].

A bipartite quantum process that admits the decomposition (51) was called causally separable [4]. One way to
think of the relation between causal and causally separable quantum processes is in analogy with the relation
between Bell-local and separable (non-entangled) quantum states. Given an arbitrary multipartite quantum
state with a density matrix p8°, the probabilities for the outcomes of a set of local POVM measurements

{M{"}icon AMP} jeon, -+ (Cicon M = 14, on MP = 14, ..) are given by

p(l) j) -"l{MiA}iEOA) {M]B}jGOB) ) - Tr(pABmMiA ® MJB ® ) (52)

A Bell-local state is one for which the joint probabilities for the outcomes of any combination oflocal
measurements admits a local hidden variable description (and hence such a state cannot be used to violate any Bell
inequality [39]), i.e., the joint distribution can be written as a probabilistic mixture of factorizing local distributions

p(OA’ OB) -~-|5A) 5B)-~-)PAB) = ZP()\) P(0A|5A, )‘) P(OB|5B) )\) R (53)
A

where ) is some variable with a probability distribution p(\),s?,s”, ... are the local measurement settings (each
corresponding to a specific local POVM measurement { M} ic o4, { J\/I]-B } jeoss ---),and 04,08, ... are their
outcomes (corresponding to 4, j, ...in the expression (52)). A separable quantum state is one for which each of the
local distributions p(04]s4, A), p(0®[sB, \), ... in equation (52) itself can be thought of as arising from the
respective local measurement being applied on a local quantum state, which means that the density matrix of the
state can be written

A

A separable quantum state is clearly Bell local, but the reverse is known not to be true [40]. The relation between
causal (16) and causally separable (51) bipartite quantum processes can be seen in an analogous way—a causally
separable process is one for which the processes into which we decompose the process are themselves valid
quantum processes.

Here, we propose to extend the notion of causal separability to the multipartite case based on this analogy.

Definition 3.1 (Causally separable quantum process). A quantum process is called causally separable if and
only if it can be decomposed in the canonical form given by theorem 2.2, with the additional condition that each
process on the right-hand side of equation (41) is a quantum process. (Note that since the canonical form is
defined iteratively, the latter is understood to hold for all conditional processes in this definition.) By a direct
analogy, causally separable processes can be defined for any theory formulated in the process framework, but
here we will be interested specifically in quantum processes. The process matrix of a causally separable quantum
process will be called a causally separable process matrix.

3.3. Non-equivalence between causal and causally separable multipartite processes: a tripartite example
We now give an example of a tripartite quantum process that is causal but causally non-separable, which
demonstrates that these two concepts are not equivalent, at least in the case of more that two parties. A similar
conclusion based on the same example has been obtained independently by Costa and is presented in [19].
The example is inspired by the idea of superposition of causally ordered quantum circuits by means of the
so-called quantum switch technique [3], where the order of two black-box quantum operations is made to
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Figure 5. The left diagram illustrates the circuit with quantum control. The right diagram illustrates a simulation of the same
correlations with a classically controlled circuit using input and output systems of larger dimensions.

depend on the value of a quantum control bit prepared in superposition of the two possible logical values. Each
of the input and output systems of Alice and Bob in our example will be assumed to be a two-dimensional (qubit)
system. We can imagine that this is the spin degree of freedom of a spin—% particle, which enters each laboratory,
interacts with the devices inside, and leaves. The particle could be prepared so as to go in superposition along two
different possible paths—along one path, it goes first through Alice’s laboratory and then through Bob’s,
whereas along the other path it goes first through Bob’s laboratory and then through Alice’s. For simplicity, we
can imagine that the experiment is arranged in such a way that the particle would always go through Bob’s
laboratory at a fixed time, but depending on the value of the control bit, it would go through Alice’s laboratory
before or after that. It is assumed that independently of the time at which the system may go through Alice’
laboratory in a given run, Alice would apply the same operation on it. To understand the effect of such a setup,
consider first the case in which Alice and Bob each apply a unitary operation on the system, U, and U,
respectively. Let us denote the Hilbert space of the control qubit (path degree of freedom) by H¢, and that of the
system (spin degree of freedom) by . If |0) corresponds to the path in which Alice is before Bob and |1)° to the
path in which Bob is before Alice, if we initially prepare the particle in the state, say, p* = |¥) (W[5}, where

[U)in = (@0) + BI1)°)[1))*, at the end it will be in the state p; = [¥) (V[g, where

[ = «|0) Uz Uilw) + BI1)° Uy Uplv)*. Now, if a third party, Charlie, performs an operation on the joint
system H® @ H’ subsequently, he can distinguish this situation from a situation in which the order between the
operations of Alice and Bob is conditioned on a classical bit (e.g., modeled by the initial state of the control qubit
being in a ‘classical’ mixture of the two possible values, |«|*|0) (O] + |B[?|1) (1], instead of a coherent
superposition) by performing a suitable measurement. In fact, it was shown in [6] that by exploiting such a
coherent strategy, Charlie can perfectly distinguish between a pair of unitaries U* and U® that commute or
anticommute by using each of the unitaries only once, which is impossible if the order of the unitaries is
conditioned on a classical bit. An experimental demonstration of this effect was recently reported in [17].

In the general case, the operations of Alice and Bob need not be unitary and may have different possible
outcomes. Every such operation, however, can be seen as the result of a joint unitary on the input system and a
local ancilla, such that the outcome remains stored on the local ancilla in a particular basis. Similarly, any local
‘choice’ of operation can be modeled by a larger unitary on all systems involved plus a local ancilla that carries the
‘choice’ variable. Thus, we can have Alice and Bob perform general operations in this setup by purifying their
local operations to unitaries and deferring the reading of their outcomes to the end of the whole experiment.
(Note that in order not to destroy the superposition, the whole experiments needs to be performed coherently,
which may be unrealistic for local operations performed by macroscopic devices, but is in principle compatible
with standard quantum mechanics.)

In our example, we will take . = § = %, and we will assume, as described above, that Charlie can operate
on both the path and spin degrees of freedom of the particle after it has interacted with Alice and Bob. In other
words, Charlie’s input system will be four-dimensional, and we will formally decompose it into two qubit
subsystems, HC = HE @ HE, where HE and H' correspond to the path and spin degrees of freedom,
respectively. Since Charlie operates last, we do not need to introduce a non-trivial output system for him, i.e., his
output system will be assumed one-dimensional. The process matrix relating the local experiment of Alice, Bob,
and Charlie in this setup can easily be obtained by describing the experiment in the form of a circuit in which
Alice’s operation is represented by two controlled operations at two possible times, such that one of them would
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act nontrivially depending on the state of the control qubit (left diagram on figure 5). Using the C] representation
of the channels connecting the different boxes, we obtain

WAIAZBIBZCICZ — |W> <W|A1AZBIBZC|C2’ (55)

where
[W)MABBCC = ([0)CE ) B4R BB 4 [1)C [y |or) B4 o) ach) /7, (56)

with |®) = |00) + |11). It canbe verified that W A4:B1B:G.C: contains only allowed terms. This process matrix
is arank-one projector, and hence it cannot be written as a convex mixture of different process matrices.
Therefore, if it is causally separable, it must be of one of the types W) # C (W B.C) XA o WAC) X B Byt each
of these types of process matrices should permit no signaling from two of the parties to the third one (e.g., in the
first case there can be no signaling from Alice and Bob to Charlie). However, the above process matrix permits
signaling to any of the parties from some of the other parties. Indeed, to see that there can be signaling from Alice
and Bob to Charlie, imagine that Alice and Bob choose to perform the unitary operations U, and Up. In this case,
Charlie will receive the state [|0) (U Ua|10))S + [1)C (Uy Uplth) )©1/~/2 , which can be different for different
choices of the unitaries of Alice and Bob, and can therefore yield different probabilities for the outcomes of some
measurement of Charlie. To see that we can have signaling from Alice to Bob or vice versa, notice first that there
can be no signaling from Charlie to Alice and Bob (Charlie has a trivial output system). This means that we have a
well-defined reduced process for Alice and Bob, whose process matrix is

WAABE: — %uw (VA @ DT ) (@TRE @ 15 + i) (WIFr @ |DT ) (DTBA @ 14). (57)

This is a causally separable bipartite process matrix that can be interpreted as describing an equally weighted
probabilistic mixture of two fixed-order processes—the first one describes a situation in which the input state
|1)) is sent into Alice’s input, her output is sent into Bob’s input through the identity channel, and Bob’s output is
discarded; the second one describes the analogous situation with the roles of Alice and Bob interchanged.
Clearly, since in the first situation there is an ideal channel from Alice to Bob, there can be signaling from Alice to
Bob in this process (even if imperfect on average), and similarly from Bob to Alice. Therefore, the process matrix
given by equations (55) and (56) is not causally separable.

The fact that the process is causal follows immediately from the fact that the reduced process for Alice and
Bob is causally separable (and hence also causal). Specifically, we have

AB _ 1yOB X A A X B LyriBlA A 1y 0AIB B : ; i ol
W =W + W = 2VV[ Al ° W[ AR 2VV[B], o W[B]].Butthetrlpartlte process is simply

WABC — YWCIAB o Y\AB — %WCV‘B o W[il]ﬂ‘ o W[f}ﬂ[ + %WCV‘B o W[f;']? o Wé]l’ which is the form of a causal
process. This observation suggests how the probabilities of Alice, Bob, and Charlie can be simulated without
using a quantum switch, if we allow the parties to have larger input and output systems. Since the reduced
probabilities of Alice and Bob can be realized by conditioning their order on a classical random bit, all that is
needed in order for the tripartite process to be reproduced in this way is for Charlie to receive the information
about the settings and outcomes of Alice and Bob so as to produce the necessary p(0“|s4, 04, s5, 0P, s©).
Therefore, if in addition to the qubit system that goes between Alice and Bob there is another (possibly infinite-
dimensional) system on which each party writes down his/her setting and outcome (right diagram on figure 5),
and this system at the end enters Charlie’s laboratory (or, alternatively, the state on Charlie’s original input
system is prepared based on this information), the process can be simulated using classically random causal
configurations.

By a similar argument we can construct a large class of multipartite processes that are causal but not causally
separable. Consider a situation in which the order of all but one of the parties is conditioned on the state of a
control system prepared in superposition, and subsequently all systems on which these parties have operated
together with the control system are sent into the input of the last party. If all systems were initially prepared in a
pure state and all channels are unitary ones, the process matrix will have rank 1, and unless the process is fixed-
order causal, it cannot be causally separable. Yet, it will be causal because the reduced process for all parties
except for the last one will be causally separable (and hence causal) due to the fact that when we trace out the
control system, the process for these parties would be a classical probabilistic mixture of fixed-order processes.
Since the full process is obtained by multiplying the conditional process of the last party with the reduced process
of the previous ones, the full process is causal. It can be simulated using classical control of the order of the
parties by allowing larger input and output systems by which the settings and outcomes of all other parties are
made available to the last one.

3.4. Non-causality can be activated by shared entanglement
We now show another peculiar property of the concepts of causality and causal separability of quantum
processes. One of the key assumptions in the derivation of the quantum process matrix framework is that every
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process can be extended by supplying the parties with ancillary input systems in an arbitrary quantum state,
yielding another valid process. Intuitively, since a joint input state is a non-signaling process that is compatible
with any causal configuration, one may expect that by adding such a state to a causal quantum process would
yield again a causal process. We now show that this is not the case. We refer to this effect as activation of non-
causality.

We give a particular example of a tripartite causal quantum process matrix, constructed on the basis of the
bipartite process matrix presented in [4],

WA B i(w&m %a?lai‘afw %0?205'), (58)

which itself can violate a causal inequality and is hence non-causal (see [4]). Here, the input and output systems
of Alice and Bob are two-level systems. In our tripartite construction, the input and output systems of Alice and
Bob are also two-level systems, and we add Charlie, who has a trivial input system and a two-level output system.
In terms of the Pauli matrices oy, 0y, 0, the process matrix we consider has the form

WAABEC — 1 (JlAlAzBleCz . LB G 1 Lty Ucz) (59)
4 NP V2 f
The fact that this is a valid process matrix follows from the fact that it has the right normalization, contains
only allowed o terms, and is positive semidefinite. The latter is easy to see by noticing that relative to the
{]0), |1) } basis of system B, (this is the eigenbasis of 0, corresponding to eigenvalues +1 and —1, respectively),
the process matrix can be written

WA1A23132C2 — |0> <0|Bl ® l(ﬂAlAzBZCZ + 1 O' O' O'CZ + LO'AZ O'CZ)
4

\/E \/5 z z
+ ) (1P ® i(ﬂAlAszCZ - \/IEO'AIO' 200 — %0?2 ng). (60)

Al

Now, the operator i (IIAIAZ BG4 ﬁ =0 - ﬁ =0 O'CZ) is identical to that in equation (58) except that

we have the system C, in the place of By, and thls operator has been shown to be positive semidefinite. The

operator — (JlAlA232 G J1§ ohiobgl Jli oot ) differs only by the fact that the nontrivial o terms come

witha mmus sign, and can be obtained from the first operator by a unitary transformation (e.g., one that takes
C2 to — a 2and acz to — UC2 such as agz).

To see that this process matrix describes a causally separable process, note that it permits no signaling from
Alice and Bob to Charlie, i.e., it can be formally written as WAB¢ = WABIC 6 )WC But conditionally on any
event in Charlie’s laboratory, which is most generally described by some CP map with CJ operator M©: > 0,
Alice and Bob are left with a bipartite process with process matrix

WOLPP: = Tre, (M@ @ 14455y WALBEG] ITr[MS]. (61)

This process matrix is obviously a linear combination of the identity and terms containing only ¢, operators on
different subsystems, i.e., it is diagonal in a given local basis (the {|0), |1) } basis for each subsystem). It was
shown in [4] that all such bipartite process matrices are causally separable (though we remark that the same was

shown not to hold for multipartite processes [9]).
c/B/

Imagine now that we supply Bob and Charlie with the entangled input state %|<I>+> (®H1™, which yields the
new process
C/B/
WA,AZB,B{BZC{CZ — WAABBC g |<I)+> <q)+| ] (62)
2
If Charlie performs the identity unitary channel from C/ to C, in his laboratory, which is described by
MEC = |&+) (&9, Alice and Bob are left with the bipartite process
’ 1 ! 1 1
WAABIB{B, _ _(JIAIAZBIBIBZ NI S UBI oB 4 —_ghgBigh ) (63)
4 V2 o V2 o

This can be easily seen from the fact that taking the partial trace of W 44515 1B.GiCy

with the operator

|DF) (DT 1% s formally identical (up to a normalization) to alocal projection in a quantum-state teleportation
protocol [37], which amounts to ‘teleporting’ the part of the matrix on C, onto B,. (Note that the standard
notion of teleportation is defined for quantum states and not process matrices, and the protocol requires a
correcting operation on the receiver’s side since a projection of the kind above, which does not require

correction, cannot be accomplished deterministically [37]). The process matrix (63) is similar to (58), except that
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the local operators on B in the non-trivial sigma terms in equation (58) are now on B}, and there s a o, operator
on By in each such term. This process matrix is non-causal, because it allows Alice and Bob to obtain any
correlations that they could obtain using the non-causal process matrix (58). This can be done as follows. Alice
always performs the same operations that she would perform with the process matrix (58). Bob performs a
measurement on system B; in the {|0), |1) } basis. Ifhe obtains the outcome |0), then it is as if Alice and Bob
share the process matrix (58) with B/ in the place of B,. He will then apply any operation from B/ to B, that he
would apply from B to B, with the process matrix (58), which yields the same joint probabilities for Alice and
Bob as those with the process matrix (58). If Bob obtains the outcome |1) for his measurement on B;, then itis as
if Alice and Bob share the same process matrix as (58) with B, in the place of B, but with a minus sign in front of
each of the two nontrivial o terms. This process matrix is equivalent to the previous one under a change of basis

by the unitary o'l;l/. Therefore, Bob can simply apply from B/ to B, the same operations he would apply from B,

to B, with the process matrix (58) but transformed by the unitary transformation afll. Again, this yields the same
joint probabilities for Alice and Bob as with the process matrix (58). In particular, Alice and Bob can use this
strategy to violate the causal inequality described in [4]. The process matrix (63) is thus non-causal, and so is the
tripartite process matrix (62).

Itis not known at present whether non-causal processes can be realized in agreement with the known laws of
quantum mechanics without resorting to post-selection. We have seen in the previous subsection that we can
realize causally non-separable processes, which are nevertheless causal. Here, we see that certain causal processes
can become non-causal when supplied with shared entanglement. The ability to extend a process with shared
entanglement seems natural to expect for any experimentally realizable process. From this perspective, this
result suggests that either non-causal processes may be possible, or that there may exist causally separable
processes, as defined above, that cannot be realized in practice.

3.5. Extensibly causal and ECS quantum processes

The fact that according to our definition of causal separability there exist causal processes that may be activated
to non-causal ones by shared entanglement naturally suggests the definition of the following classes of processes
that do not have this counterintuitive property.

Definition 3.2 (Extensibly causal quantum process). A quantum process that is causal and remains causal
under extension with input systems in an arbitrary joint quantum state is called extensibly causal.

Definition 3.3 (ECS quantum process). A quantum process that is causally separable and remains causally
separable under extension with input systems in an arbitrary joint quantum state is called ECS.

The process matrices of these types of processes will also be referred to as extensibly causal and ECS process
matrices, respectively.

Note. These definitions can be formulated analogously for more general process theories that permit
composite local systems.

Do these classes of processes correspond to something easy to describe in practice, and are they different at
all? It is immediate to see the following facts.

Observation 1: All bipartite causally separable processes are ECS. This is because, if we add an arbitrary joint
input ancilla to a process matrix of the form (51), we again obtain a process matrix of the same form. Therefore,
the notion of extensible causal separability can be seen as another possible multipartite extension of the bipartite
notion of causal separability, which, however, is linked in a less direct way to the theory-independent notion of
causality.

Observation 2: Extensibly causal and ECS processes are not equivalent in general. Indeed, the causally non-
separable tripartite process (55) based on the quantum switch is also extensibly causal (our proof that it is causal
applies also if the parties share entangled input ancillas).

Comment: Recently, Feix, Araujo, and Brukner gave an example of a bipartite quantum process that is causal
but not extensibly causal [38], proving that causality and extensible causality are different in the bipartite case
too. While in the tripartite case we have seen that extensible causality is also different from causal separability, it
is currently an open problem whether the same holds in the bipartite case.

In the next subsection, we derive a characterization o f the tripartite ECS processes in terms of conditions on
the form of the process matrix which generalize the conditions in the bipartite case (equations (50) and (51)).

3.6. Structure of tripartite ECS process matrices
Recalling the definition of causally separable process, let us first state an obvious consequence of this definition
for the structure of causally separable (though not necessarily ECS) process matrices. Since the probabilities of a
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quantum process are linear in the process matrix, the requirement that a causally separable process decomposes
asin theorem 2.2 where all processes on the right-hand side of equation (41) are valid quantum processes means
that a causally separable process matrix is one that can be written in the form

n n
W[lsllzn.n]nz — Zqiw(l,.A.,i—l,i+1,m,n),{i’ 0 < g9 Vi, Zqi =1, (64)
i=1 i=1
where W+ i=Lit1...m X 53 process matrix which describes a process YW -+ i=Lith...m £ i yith the
property
boorie Lit L) i — Ybooeori=Li + 1Lonli ’
W( i—1,i+ n) Ki _ Wcs i—1,i n|i ° Wl, (65)

where for n > 1the conditional process WY+~ bi* b1l s 3 causally separable process for everyvalue of the

eventini,and forn = 1 itisthe trivial process. Note that the requirement that YW -+ i=bLith.om L ijgq
quantum process that permits no signaling from the rest of the parties to i guarantees that both the reduced and
the conditional process on the right-hand side of equation (65) are valid quantum processes (this can be seen
from the (no) signaling condition in proposition 3.2).

In the case of two parties, we have seen that the process matrices W4 #* B, whose processes obey
WA X B — WAIB 5 WB (note that any monopartite process is trivially causally separable and ECS), are those that
can be written in the form W4 # B = WBB:A @ 14, and the general form of bipartite causally separable process
matrices is (51). As noted already, this is also the general form of the bipartite ECS process matrices. Our goal is
to obtain a similar conditionfor triparite ECS processes.

First, let us consider a process of the form WP £ € = WABIC o )WC where WC is a monopartite
quantum process and W€ is a bipartite conditional process which is causally separable for each possible
eventin C. Since in particular there should be no signaling from Alice and Bob to Charlie in such a process, its
process matrix, which we will denote W(ﬁlng%Bzccl €2, can at most contain the types of terms listed in table 3. These
are the terms that do not permit signaling from Alice and Bob to Charlie according to proposition 3.2.

We will first obtain necessary and sufficient conditions for such a process to be ECS. Note that we have not
proven yet that a general ECS process matrix should have the form (64) where each of the terms
W oi=Litlom £ i g jtself ECS. This will be shown later.

Every event in Charlie’s laboratory is described by some CP map with CJ operator M&© > 0,

TrM %€ < d,. Conditionally on such an event, Alice and Bob are left with the process matrix

WA1A231Bz _ TrC|C2 [W(zzlngleQCz (JlA 1A2B1B; ® MCICZ)]/p (MC1C2) (66)

MEae

where p (M%) is the probability for the event M%< to occur in Carlie’s laboratory (given the appropriate
setting), which is independent of the operations performed by Alice and Bob since the process involves no
signaling from Alice and Bob to Charlie. More specifically

p(MClCZ) — Tr[WclczMClCZ], (67)
where
A1A,B B
WaC — Tr 4,4,8,B, W(Izlgz)B;(BZCICZ u ® 16¢ (68)
da,ds,

is the reduced process of Charlie. The requirement that the conditional process for Alice and Bob is causally
separable means that for all M© 2

W]CI({}%?IBZ = q C1Cy ICIC](’Z (1 — qMclcz)W L1L2’ (69)

where Wjacfcf and W2 Cfcf are valid quantum processes compatible with A ¥ Band B & A, respectively, and

qyac € [0, 1] (all ob]ects generally depend on M“¢2). For convenience, we will write this simply in the form

W™ = 1% @ WRGER + 1% @ Wik (70)

MCICZ >

where Wﬁglgfz > 0and W;}léch ' > 0, and the whole operator is a valid process matrix, i.e., it contains only
allowed terms and is properly normalized.

A sufficient condition for this to hold is that

W(ﬁlng%BéQ G — 14 ® WAIBIBZ GG + 1B WA1AZB1C1C2’ (71)

where WABBGC: > 0and WAABGC > 0 are some positive semidefinite operators, whose sum gives a
properly normalized quantum process matrix containing only the types of terms listed in table 3. (We remark
that each of WA BIBGC > 0and WAABGE > 0 may contain terms that are forbidden in a process matrix,
such as terms of type C,, but these terms have to cancel in the sum.) Indeed, we have
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TrC1C2 [WSI,IE%B;%B&CICZ (JlAlAZBlBZ ® MCICZ)]/p (MCICZ)

= Wyl = 1 @ WoRE + 1% @ Wik,
VMGG >0, (72)
where
VABE = Tre,c, [WHPRAC qABiB: @ MGG)] /p(MGS) > o, (73)
VA = Tre, o [WARROC Ak @ MGG)] [p(MO®) > 0, (74)

and it is easy to see that since W(ﬁl,’gz)B%Bzccl €2 contains only the types of terms listed in table 3, Wlélléch 182 can only

contain allowed terms.

Itis immediate to see that this condition is sufficient also for the process matrix W(ﬁ‘)’;Z)B;\(BZCC‘ ©2to be ECS. This
is because if W 44:B1B:G.C2 has the above properties, any extension W44BBGC @ pABICH where pABIC g
density matrix, also has these properties.

We now show that the form (71) is also a necessary condition for an ECS process matrix compatible with
(A, B) ¥ C,which we will denote by Wéi‘sﬁf}gz? 2. The proof makes use of the ‘teleportation’ technique that we
used in showing the activation of non-causality. Imagine that we supply Alice and Charlie respectively with

ancillary systems A and C{ of dimension d, d, each, which are prepared in the maximally entangled state
™) (¢ / (dg dc,), where [¢t) = Z?(:?lld“zli )41 |7)%. Conditionally on Charlie performing a suitable
operation and obtaining an outcome with CP map M“““" [¢h) (¢+|(C‘ ©)G | Alice and Bob will be left sharing
a process matrix which, up to a normalization factor, has an identical form to that of We/z‘lsﬁﬁfgzg % butwith A in
the place of C; C,. The requirement that this is a causally separable bipartite process matrix means that
Wﬁ;ﬁf}gﬁ‘ 82 must be of the form (71).

So far, we have only obtained necessary and sufficient conditions for an ECS process matrix We‘glsf‘zifgzg &

compatible with (A, B) # C (and similarly for permutations of A, B, C). We next prove the general case.

Proposition 3.3. Every tripartite ECS process matrix can be written in the form

A1A: BB, GGy A1A43B1B,C G,y A1A; B, B,C Gy A1A; BB, C Gy
Wees =q Wecs;(A,B) #AC + 1 Wecs;(A,C) A B + q3 WECS;(B,C) XA

3
q;>0, Vi=1,2,3, Y q,=1, (75)
i=1

where We’?sﬁfﬁzg % contains only terms from table 3 and has the form (71), and analogously for Wefélsﬁfgzgl% and

Wﬁ;ﬁ%lfgzgg 2 by permutation. The proof S6 is given in the appendix.

The extension of this form to an arbitrary number of parties is left for future investigation.

3.7.Processes realizable by classically controlled quantum circuits

Bipartite ECS processes have a clear experimental realization. This raises the question of whether multipartite
ECS processes can also be realized in practice, and if so, whether they correspond to a natural class of
experimental procedures. (Note that in the bipartite case, ECS processes are equivalent to causally separable
processes, but we have already seen that there are multipartite causally separable processes that can become non-
causal under extension with entangled ancillas, and these do not have a known experimental realization.) Here,
we will show that a particular class of processes which can be realized in practice, referred to as classically
controlled quantum circuits, belong to the class of ECS processes, which is the smallest class of causal quantum
processes that we have considered so far. Based on certain considerations, we furthermore conjecture that all
ECS processes can be realized in this way (this is certainly true in the bipartite case).

The idea of a classically controlled circuit can be thought of as falling within the paradigm of quantum
lambda calculus with classical control [41, 42]. If we regard the local experiments of the parties as black-box
operations, we may think that they are called, only once each, as part of a computation where at every time step a
quantum operation is applied on some part of a quantum register depending on a classical protocol that may use
as a variable the outcomes of past operations. If black-box operations are involved in such a computation, their
outcomes cannot be directly used (they remain ‘inside the box’ until the end), but the order of subsequent
operations of the circuit may nevertheless depend indirectly on the event inside such a black box, since it can be
decided based on a measurement on the output system.

More concretely, we define such a process to have the following general realization. We begin with some
sufficiently large quantum system (or ‘register’) in a given quantum state. We perform a quantum operation on it
and conditionally on the outcome of that operation we determine which party will be first, which subsystem of
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Figure 6. Realization of an ECS process compatible with (A, B) % C bya classically controlled quantum circuit.

the register will be his/her input system, and what operation will be applied after the black box of that party, all
according to some specified rule. We apply the black-box operation of the first party on the decided subsystem,
perform the decided operation after it, and depending on its outcome and the outcome of our first operation
decide which party will be second, and so on. This continues until all parties are called (by definition, the
protocol is such that each party is called exactly once). This model can be formalized in different equivalent ways,
which may be suitable for different purposes, and we will consider some simplifications below when we discuss a
tripartite example. The fact that this model gives rise to valid quantum processes can be seen from the fact that if
we formally write the operation inside each box and calculate the joint probabilities for the outcomes of all boxes
using the standard rules of quantum mechanics for all possible outcomes of the protocol, we see that they are
linear and non-contextual functions of the respective CP maps of the parties. The same holds if we introduce
ancillary systems prepared in an arbitrary state and consider extended operations of the parties that act on parts
of them.

In the case of only two parties, we know that any (extensibly) causally separable process can be implemented
in this way, since it most generally corresponds to embedding at random the local experiments of Alice and Bob
into one of two possible fixed circuits, which can be chosen conditionally on the outcome of a measurement on
some state at the very beginning. Since after the first party is chosen there is only one possible choice for the
second party, no measurement after the first party is needed. Reversely, any bipartite process that we may obtain
via this model has the form of an ECS process. Fist notice that the process is independent of the operation
applied after the last party. Also, the outcome of any operation after the first party can be ignored since there is
only one choice for the last party, i.e., that operation can be assumed deterministic. Finally, the outcomes of the
operation before the first party can be grouped into two coarse-grained outcomes such that conditionally on one
of them the first party is Alice and on the other one it is Bob. But since after the outcome of that operation and
before the input of the first party the quantum register is in some particular quantum state, the rest of the
experiment simply corresponds to a deterministic circuit in which Alice and Bob are embedded in a particular
order. Therefore, the process realized by such a procedure is just a probabilistic mixture of the processes of two
fixed-order circuits, which is the claimed form.

In the case of more than two parties, the equivalence between the two concepts is less obvious, but we can
easily argue that all processes obtained by classically controlled circuits are ECS. First, it is clear that depending
on the outcome of the first measurement (which has a probability independent of any future operations and
therefore of the settings of the parties), there will be one party that is first and hence the subsequent process that
results from the protocol can involve no signaling from the rest of the parties to that first party. Therefore, the
subsequent process has a well-defined reduced process for the first party. Taking into account all possible
outcomes of the first measurement, the whole process will be just a probabilistic mixture of processes of this kind
where one party is first, which is equation (64). But conditionally on the outcome of the first party, the procedure
for the rest of the parties looks analogously, so equation (65) holds too, i.e., the process is causally separable.
Including ancillas onto which the operations of the parties can be extended does not change anything in this
argument. Therefore, every process realizable with a classically controlled quantum circuit is ECS.

We conjecture that the reverse also holds. We provide some partial considerations that support this
conjecture, based on analysis of the restrictions on the allowed terms in processes realized by classically
controlled quantum circuits in the tripartite case. We will focus on the question of implementing by a classically
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controlled quantum circuit an ECS process matrix of the type W % € which has the form (71).
Implementability of a matrix of this kind is both necessary and sufficient for the implementability of a general
tripartite ECS process matrix as described in proposition 3.3, since by using a suitable measurement at the
beginning we can select with the right probability which of the three process matrices in the mixture on the right-
hand side of equation (75) to realize subsequently.

The protocol begins most generally with some quantum system prepared in a state p. After Charlie operates
on some subsystem, we apply some operation based on whose outcome we determine who is second, on what
subsystem he/she would act, and what operation will be applied after that. Note that without loss of generality
we may assume that there is a pre-specified subsystem on which the second party will operate since any
subsystem of the same dimension can be mapped onto the designated subsystem by a unitary transformation
that can be absorbed as part of the definition of the present operation. Also, without loss of generality we may
assume that this operation has only two outcomes, since we can group the outcomes into those for which Alice
will be next, and those for which Bob will be next, and any conditioning of the operation following the next party
on the fine-grained outcome within each group can be equivalently done by a single future operation actingon a
larger system that includes some subsystem on which the classical information about the outcome at this step is
copied (still something that we can include as part of the definition of the operation at this step). Since there is
only a single possibility for the last party, the operation after the second party can be regarded as a deterministic
operation (or a CPTP map) from all systems to the input of the last party. We leave the possibility that this last
operation may be defined conditionally on the first outcome rather than absorb the conditioning on that
outcome into a larger operation, in order to avoid complications arising from the fact that the different parties
may have input and output systems of different dimensions. The outlined procedure is sketched in figure 6,
where the two possible sequences of transformations arising from the two possible outcomes of our first
operation are depicted in blue and green, respectively. The two CP maps corresponding to the outcomes of the
operation after Charlie must sum up to a CPTP map, since they correspond to the two possible outcomes of a
standard quantum operation.

Each of the two possible developments (blue and green) of this protocol is a non-deterministic linear
supermap [43] from the local CP maps of the parties into the real numbers, the result of which equals the
probability for the particular sequence of events. This can be written in a similar form as the formula for the
probabilities of the outcomes of the parties in a valid process, except that in the place of the process matrix we

AABB,GC . . .
would have an operator W, """ > 0, where i = 1, 2, labels the particular development, which generally
would not be a valid process matrix. However, WAlAzBlB2 G + WAlAzBlB2 Ge _ chl(Af{BlB;CICCZ would be a valid

process matrix realized through this classically controlled quantum circuit.

Consider now just one of the two possible developments, say, the blue one, in which Alice is second and Bob
is last (labeled by 1). One can see that since Bob is last and his output system is discarded, we have
WA RBBRGC _ B, @ W ARBAC (Gmilarly, in the other case we have W; P4 — 14 g W,
Notice that if the transformation MV, cprp after Alice was not required to be CPTP but could be any CP map
M cp, for asuitable choice of the initial state p and of the CP maps M cp and J\/l cp we could realize any
WAIAZB1 G > 0. Thisis simply because we can choose the density operator p““’ proportional to WA‘AZBICl @
where the part of W, AlAZB‘CI  on AjA, B, C, is stored on C’, and we can ‘teleport’ this part of the operator onto its
desired subsystem by using CP maps M, cp and N cp that have CJ operators proportional to projectors on
maximally entangled states as needed to realize the ‘teleportation’ (the traces of these CP maps can be chosen to
ensure the overall trace of the resultant operator WAlAZB =

A1B 1B, G Cz)

CZ) However, the restriction that the transformation

after Alice is trace-preserving, V; cprp, places constraints on what kind of W, A‘AZB‘ S anbe obtained. Indeed,

the CJ operator of V] cprp cannot contain terms of type A,, A’A;,and A’ Considering the calculation of
~ AABI G

W

M. cprp implies the lack of any term with a nontrivial o on A, in W;

AABG

©hased on the CJ operators of p, M, cp and M cp, we see that the lack of these types of terms in
ARBGE Thisis the only constraint on the
© The possible types of terms are exactly those allowed in the operator
MBIBGCy (Bob second, Alice last) are

in equation (71). These are the terms allowed in a process matrix compatible
AABGC, delBleqcz

A1A231 GG

possible types of terms in W,

WALBIGC i equation (71). Similarly, we see that the allowed terms in W,

the same as those in W4 515G C2
with Charlie being first, except that both W; may contain terms of type C; and G, C, .
The fact that these terms should cancel in the sum 1% @ W, + @ Wy RaG = WA‘{}\Z%)B;q C2
follows from the fact that this is a valid ECS process, and can be seen to be ensured by the requirement that
Ml cp + M2 CP is CPTP.

The only restriction on the operators 1% @ W; and 1*: @ W, imposed by this model, apart
from their positive-semidefiniteness and the normalization of their sum, seems to be the absence of the
forbidden terms in each of them, as well as of the forbidden terms in their sum. If this is indeed the case, then any

ECS process could be realized by a suitable classically controlled quantum circuit. A strictly rigorous proof

AABIGC ABB,GC,
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requires showing that apart from the lack of these forbidden terms, there can be no other hidden constraints on
the pair of operators 17 ® WIAlAzBl “Cand 1 @ WZA BB (which, of course, are guaranteed to be properly
normalized). One way of doing it could be by exhibiting an explicit constructive procedure for implementing
any given ECS process, which would be of additional interest on its own right. We leave this question, and the

multipartite case, for future investigation.

4, Conclusion

In this paper, we proposed a rigorous definition of causality in the process framework [4], which takes into
account the fact that the causal order between a set of local experiments may in general be random and
correlated with the settings of some of them. We derived the structure of causal processes permitting such
‘dynamical’ causal order in the general multipartite case, which is captured by an iteratively formulated
canonical form expressed in terms of reduced and conditional processes. The canonical form can be interpreted
as an unraveling of the process into a sequence of local experiments, which agrees with the condition that the
order and outcomes of the experiments prior to a given step is independent of the settings of future experiments.
We showed that for any fixed number of settings and outcomes for each party, the probabilities of a causal
processes form a polytope, referred to as the causal polytope. The facets of this polytope define causal
inequalities, whose violation by a given process can be interpreted as demonstrating the non-existence of causal
order between the local experiments.

We investigated this concept and the related concept of causal separability in the quantum process theory
introduced in [4], whose properties were detailed here in the multipartite case. We proposed a definition of
causal separability, which reduces to the one for the case of two parties [4], based on the canonical form of causal
processes. Specifically, a causally separable quantum process was defined as a causal quantum process that has a
causal decomposition such that the different processes appearing in this decomposition are themselves valid
quantum processes. We showed that the set of causally separable quantum processes is strictly within the set of
causal quantum processes, by exhibiting an example of a tripartite process that is causal but not causally
separable. Very recently, the same was shown to hold also in the bipartite case [38]. We also gave an example of a
causally separable (and hence also causal) process that becomes non-causal when extended by supplying the
parties with an entangled ancillary state. Based on this observation, we proposed two extended notions of
causality and causal separability called extensible causality and extensible causal separability, which require
preservation of the respective property under extending the process with entangled input ancillas. Although they
are different in the general case, the sets of causally separable and ECS processes are equivalent in the bipartite
case. We showed that the sets of extensibly causal and causally separable processes are different in general via the
same tripartite example that we used to show that causal and causally separable processes are different. At
present we do not know if the same separation holds in the bipartite case. However, it was recently shown that
causal and extensibly causal processes are different in the bipartite case, similarly to the multipartite case [38].

Finally, we derived a simple characterization of the ECS quantum processes in the tripartite case in terms of
conditions on the form of their process matrices, which extends the conditions for (extensibly) causally
separable process matrices in the bipartite case. We conjectured that the set of ECS processes is equivalent to the
processes that can be obtained within the paradigm of classically controlled quantum circuits and provided
evidence for this based on analysis of the restrictions that this paradigm imposes on the tripartite process
matrices it can create. The ECS processes and the processes obtainable by classically controlled quantum circuits
are equivalent in the bipartite case.

Our present understanding of the relation between all these different classes of quantum processes is
illustrated for the general multipartite case and for the bipartite case in figures 7(a) and (b), respectively. An
obvious open problem is whether the gray segments in these figures are empty or not.

Another problem of fundamental importance is to understand the class of quantum processes that are
physically admissible in agreement with the known laws of quantum mechanics, and where this class stands with
respect to all of the above classes. Are the processes that can be realized by classically controlled quantum circuits
all the physically admissible causally separable processes? Where does the class of quantum-controlled quantum
circuits stand? At present, this is the most general operationally feasible paradigm that we are aware of and all
known processes realizable through it seem to be extensibly causal. Could the class of extensibly causal processes
be equivalent to quantum-controlled quantum circuits? And most intriguingly, are there physically admissible
non-causal processes?

The implications of our results are not limited to the subject of indefinite causal order in quantum
mechanics. They can be useful also for the problem of inferring causal structure [24], both in classical and
quantum theory [44]. The subject of causal inference concerns many disciplines, from philosophy and machine
learning to sociology and medicine. Our formulation of a background-independent operational notion of

29



I0OP Publishing NewJ. Phys. 18 (2016) 093020 O Oreshkov and C Giarmatzi

multipartite quantum processes bipartite quantum processes

causal causal

extensibly causal extensibly causal
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Figure 7. A venn diagrammatic sketch of our present knowledge of the different sets of quantum processes that we have introduced, in
the general multipartite case and in the bipartite case. The white segments are non-empty. The gray segments are sets for which at
present we do not know if they are empty or not.

causality that admits dynamical causal relations opens the road to a more general paradigm for causal inference
than the one assuming deterministic underlying variables and static causal relations [24]. The decomposition of
causal processes derived here implies constraints on the possible causal orders compatible with given setting-
outcome correlations, which can serve as a basis for developing more sophisticated causal inference tools.
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Appendix. Causal and causally separable processes

Proof S1 (proposition 2.2). The ‘onlyif partis contained in the very proposition 2.1. To prove the ‘if’ part, take
an arbitrary experiment, say, 1. Let {2, ..., k}, up to relabeling, be the set of local experiments that are in the
causal past or causal elsewhere of 1,and {k + 1,...,n} be the set of local experiments that are in the causal future
of 1. Since the causal configuration of the local experiments is assumed fixed, the condition for the process to be
causal reduces to the requirement that for every such 1, we have p (02, ...,08[s', 5% ...,5") = p(0%,...,0"|s% ...,s").
But from the transitivity and anti-symmetry of causal order it follows that none of the experiments {1, ...,k} isin
the causal future of any of the experiments {k + 1,...,n}. Thisimplies that we have a reduced k-partite process for
{1,....k},ie., p(o...,08sY, s%,...,s") = p(0),...,0k|s, ..., s"). The desired condition then follows from
proposition 2.1 applied to the k-partite process.

Proof S2 (proposition 2.3). First, observe that the property (18) holds for the case where the specified K
consecutive sets exhaust all local experiments {1, ..., n}. This is because, in this case, each of thelocal
experiments in the Kth consecutive set is causally preceded by or causally independent from every other local
experiment. Hence, the definition of causality (2) directly implies the desired relation. The general case follows
by induction from this special case and the following Lemma.

Lemma S1. Let the property (18) hold for K = K’ + 1, where K > 1. Then it also holds for K = K'.
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Proof. Observe that

K’ ,
P(H(l],...,l’l}(’), [II:---)nI]I)--->[1K’:---anK’] > olla-nyogK 51,”.’511)

= Z p(H(lla-~-)nK/)) [11)---)nl]l)---)

K'+1
[/ 415 -5 41l

K’ K'+1 ,
X [IK’)---a”K'] 5 [IK’+I:-~-)nK’+I] + > ollan-aogKlSl:n-’Sn): (Sl)

where the sum on the right-hand side is over all sets of local experiments that can be the (K’ + I)th set when the
first K’ consecutive sets are the specified ones. If equation (18) holds for K = K’ + I, all terms in the sum can
depend non-trivially only on the settings of the parties in the first K’ consecutive sets, and hence the same must
hold for the quantity on the left-hand side:

K’ ,
p(/‘i(ll,...,nK/), [11) ~‘~)nI]I)"‘1[lK’) ...,7’1[(’] > 011,...’081('51,“.’571)

= (K11 (Lo sty ] o [ty e i 155 01, Ly 05T, L 7). (S2)

Ngr

What remains to be shown is that this probability cannot depend on the settings s€ ™%/, . 5",
Note that here we cannot apply straightforwardly the causality condition (2) as we did in the case when the

first K’ consecutive sets were assumed to contain all local experiments. This is because for a particular causal

configuration kx(1y, ..., ngr) compatible with [1y, ..., a1, ..., [1xrs ..o, nK/]K’, itis generally not the case that

’
p("'{'*(lla-”)nK/)) [11)~-~)nI]I)~--$[1K/)--~ynK/]K > 011’.“)031('51’.“’51’1)
= p(ksx(ly, ..., 1x7), 01, ..., 0%|sL, ... s™). (S3)

Indeed, in order for the first K’ consecutive sets to be the specified ones, it is necessary and sufficient that: (1) the
local experiments in the specified K’ consecutive sets have a causal configuration compatible with these sets, and
(2) each of the local experiments that are not in the specified K’ consecutive sets is in the causal future of at least
one of the local experiments in the K’th consecutive set. (In the case where the K’ sets were assumed to contain
all local experiments, only condition (1) was relevant and hence the equality (S3) held.) Consider a particular
causal configuration k. (1y, ..., 1ig’) compatible with 1y, ..., 1% ..., [1x7s ..., s ]K/ (when the causal configura-
tion k (1, ..., ng’) in the probability on the left-hand side of equation (18) is not compatible with the specified
consecutive sets, that probability is trivially zero). Let us denote by Liest, .- o lrest, | = 1 — Z?:IZ':"KZI m, the rest
of thelocal experiments, i.e, those that do not belong to the assumed first K’ consecutive sets. We have

p(K/*(II’”')HK')) [11)'~~)nI]I)~'~)[1K/)~-~)nK/]K/) 011’”"0&(/'51’”"511)
:P(K&*(llaunnK’)’ (1K’ < lrest Vo Vongr < 1rest)>~~~>

X (Igr < lest Vo0 Votigr < Legt), 01,00, 0% st L s™). (S4)
We will show that the probability on the right-hand side can be written as a linear combination of probabilities
for which the condition of causality (2) straightforwardly implies independence of sk, 5",
To this end, we write
P(’i*(llr v i)y (g < et Voo Vg < Liet)s -0
X (1K’ = lrest Vo Vongr < lrest)’ 011) .- ~)0gK/|51) e '>5n)

= p (ks (ly, ..., 1x7), 01, ..., 0%|sL, ... s™)
*P(’i*(lb ...,7’1[(’), (}C/ %’( lrest) Vo Vv (IC/ %’( lrest); 01[>~~~>0gK,|51>~~'>5n)>

where K/ = {Ig/,...,nixr},and K £ Imeans Iy X LA -+ A ngr X L.

By the definition of causality, the term p (k4 (1y, ..., 1igr), 04, ..., 0%|sL, ..., s") on the right-hand side is
independent of s@TDe o Weneed to prove that the second term is also independent of s@Hber g,
Observe that the proposition ‘(K & liesr) V -+ V (K’ & ls)’ is true when a proposition of the following
kind is true: for some nonempty subset of { Lets - -+ Lrest }> S8V { Liests -+ o> Trest}> 1 < 7 < I, define the proposition
K K Les) A A KL ret) Ao [(KE K (4 Dies) Voo V(K K Le)]’- The different nonempty
subsets of { 1, - . -» Lrest } yield different such propositions that describe a complete set of mutually exclusive
scenarios for which ‘(' & liesr) V -+ V. (K’ & lLes) is true. Therefore, the probability p (kx (13, -- ., 1x7),
K'Z Le) Voo V(K K egt)s 01, ...,0%|s), ..., s") is a sum of probabilities of the form
p(H*(IIJ e nK’)) (IC/ 7\< lrest)) e (]C/ % rrest)) - [(]C/ %’< (1‘ + 1)rest) VooV (]C/ %’< lrest)]) 01]) e OgK’

s', ...,s™), up to relabeling of 1eg, - - - Lrest, where 1 < r < . But every such probability can be further written as
PRIy o)y (KN & Liegt)s - vos (K & frest)s 01, .0, 05 sh, L, 5™)

_P ("{* (ll’ SRR nK’)) (IC/ % 1rest)) (R (IC/ %’< rrest)’ (’C/ %’< (1’ + 1)rest) VooV

(K" & Liest), 0O1,...,0%[s, ..., s"). By the definition of causality, the first of these terms is independent of
s@HDk g, Considering again the different realizations of ‘(' £ (r + Dyest) V ... V (K" & L) by
propositions of the form

‘(K:/ 7\< (T’ + l)rest) JANRERNVAN (IC/ % (1’ + q)rest) AN [(K:/ %( (T’ + q + l)rest) Ve V (Kl %( lrest)]’for
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1 < g < I — r(up torelabeling of the local experiments), the probability in the second term can again be written
as a sum of probabilities of the form p (kx (11, -+, i), K &K Liegt)s - os K & Trest)

S[K' K+ D) Voo V(K K L), 0., 0%|s), ..., s™), where now ris strictly larger than the one in
the previous step. We can continue this for every new term until we reach r = I In this way, the probability
PRIy ey mger)y [ oo mp I [kt eess e 15, ol o%¢|s\, ..., s") is decomposed entirely into a linear
combination of probabilities of the form p (ks (11, ..., fix7)y (K" & Liegt)s -+ o» (K" & Tregt)s 01, ..., 0%sh, ... s™),

1 < r < I, which by the definition of causality are independent of s 1%, ™' This completes the proof of
lemma S1.

Proof S3 (theorem 2.1). The necessity of the form (40) follows from proposition 2.3. Indeed, let s* and oM
denote the collection of settings and outcomes, respectively, of the local experiments in a subset M C S.In
terms of the set of parties X’ that are first, the probabilities of a causal process W can most generally be
expanded

PP = > p([ATIsS)p(o¥]sS, [AT)p 05\ ¥[sS\Y, s¥, o, [AT). (S5)

XCS,Xx={}

But, as noted earlier, proposition 2.3 implies that p ([AX]'|s®) = p([X]"), and that
p(o™1s%, A1) = p(LAT, 0V1s%)/p(1XT'Is%) = p(IAT, 0"|s™)/p(IXT) = py; (0"|s”, [AX]') are the probabil-
ities of a non-signaling process for X'. We therefore have

W= S pWS\M¥o Wt (S6)
XCS,X={}

where p,, = p([X]). Next, if X = S, we can similarly expand the probabilities of the process WS\ in terms
of the set of parties ) that are second:

PSS\, 5%, 0%, [Ty = S p(IVISS, o, [A1)p (0”155, 0%, (AT, [VIV)
YcS§y={}
X p(oS\XUDSS, o, oY, [T, V). (87)

Again, from proposition 2.3 we have that p ([V]"|sS, o, [X]) = p([AT, VIV, 0¥|s®)/

pUAXL, 0¥[s%) = p(IAT, VI, 01s)/p (LA, 0¥|sY) = p(IVI[sY, o, [A]"). Similarly,

p©”1s%, o, [XT, [VI") = p([XT, [V, 0%, 0¥|s)/p (XY, [V, 0%]s%)

= p([AT, VI, o, 0¥Is™, s¥)/p (1AL, [V, 0%[s™) = p2 (07]s”, s¥, o, [A]', [VIU) are the probabilities of
anon-signaling process for ) for each value of (s*, o). In other words, we obtain that for each value of the
events (s, o) in X', WS\ YUY has the form (S6). The argument is completely analogous for the next conditional
process that appears, WS\ (YU |¥UY, which, if nontrivial, can be expanded in terms of the different possibilities
for the third consecutive set, and so on. This can be continued until we reach the last consecutive set in every
possible grouping of the parties into consecutive sets, which proves the necessity of the form (40).

To prove sufficiency, we will show that if every process of the form (40) is causal for 1 < n < #/, then the
same must hold for n = n’ + 1. The general case then follows by induction from this and the fact thata
monopartite (n = 1) process, which has the form (40), is causal. Let an n’-partite process have the form (40), i.e.,
its probabilities can be written

P((S), 051s5) = D pupu (0FIsV)p 05\ [sS\Y, 5T, o), (S8)
XCS,X={}

where the probabilities p (0°\¥|s\¥, s*, 0%) describe a conditional process Wf\ 4 X, which, if non-trivial, has
an analogous form for every possible value of (s*, o). Such a conditional process is therefore causal for every
possible value of (s*, 0%) according to our assumption. This means that there exists a probability distribution
p(r(S\X), 05\Y[s\Y, 5T, o%), where k (S\ X) is the causal configurations of the experiments in S\ X, such
that 3, s\ pP (£ (S\ ), oS\ Y|\ sX o) = p(0°\¥[s\¥, s, oY), which for every fixed (s*, o) obeys the
causality condition (2). We want to show that there exists a distribution p (s (S), 05]s%), where x (S) is the causal
configuration of all experiments S, such that 3> 5 p (5 (S), 0°]s%) = p(05|s°), which also obeys the causality
condition (2). The following distribution will be shown to satisfy these desiderata:

P(K(S), 0515%) = pyp,s (0FIsV)p (K (S\ D), 05\ ¥|sS\Y, 5%, o)
foru(S) = [k(S\A); i <, Vie X, Vje S\&X i KX #j,Vi,je &l
p(r(S), 0%1s) =0 (S9)

fork(S) = [K(S\A); i <, Vie X, Vje S\&Xi K #j,Vi,je &l

According to this distribution, p,, = p([X]"), and the causal configuration of all local experiments for [ X]' is
always such that each of the local experiments in A’ is in the causal past of all local experiments in S\ X', while the
probability for the causal configuration and outcomes of S\ A’ given the events in X’ and the settings in S\ X’ is

32



10P Publishing

NewJ. Phys. 18 (2016) 093020 O Oreshkov and C Giarmatzi

p(r(S\X), 05\Y[s\Y, ¥, o%). The distribution p (x (S), 05|sS) has the correct marginal p (05]sS) by
construction. To show that it satisfies condition (2), we will show that p (1 (S), 05|sS, [X]'), which equals

Pos (0F[sV)p (1 (S\ X), 05\ ¥[sO\Y, s, o) for

k(S = [k(S\A); i <j, Vi€ A, Vjc S\A i £ #j, Vi, j € X]and vanishes otherwise, satisfies this condi-
tion. The fact that the whole mixture p (s (S), 05|s%) = ZXCS,;&{}P([)C]I)P (5 (S), 0°]s°, [AX]}) satisfies it then
follows from the linearity of the condition. Consider a given local experiment / € S\ X'.Let ' C & and

YV C (S\D\L.Wehave p(x(X, YV, D, 1 K X, 1 KV, 0", 0”Is5) = p (e (X, V, ]),

1Z Y, 0", 0Y1s8) = p, Vs )p (k (P, D, 1 KV, 0”Ish 7, 5%, o) for

KXV, D=[cQ),1);i<jp,VieX,VieY ULiX ¥#j,Vi,je X,and

Pk, Y, DI XX, IXKY, oV, 03)’|SS) = 0 otherwise. But from the fact that

p(R(S\X), 05\Y[s\Y, ¥, o) satisfies condition (2), it follows that

pQY, D, 1 XY, oY |s, s, 5%, o) = p(Q, D, LK), oY s”, s¥, o). This proves that

P, Y, DI XX, IXKY, oV, oy/lss) =pkX, YV, D, I XX, 1KY, oV, oy/lss\’),whichiscondi—
tion (2). Similarly, if we take I € X', consider two arbitrary subsets X' C X\, )’ C S\X.When )’ = {},we
have p(k (X, YV, D, I L X, 1 X Y, 0¥, oyllss) = 0.When ) = {}, wehave

PV, D, LK XK Y, 0%, 071s%) = pe(X, D, 1 K X, 0¥s5) = p, (07 ]sY) = p, (0"]sY),
which again proves that

PRV, D LA X, TKY, 0%, 0”1s5) = p(k(X, V, D, 1 £ X, 1 KV, oF, 0”s5\]), i.e., wehave

seen that condition (2) is satisfied for every I. This completes the proof of theorem 2.1.

Proof $4 (proposition 3.1). The proof follows the idea of the proof for the bipartite case in [4]. Here, we detail it
for the case of three parties. The n-partite follows analogously.
Expanding the CJ operator of alocal CP map in the Hilbert-Schmidt basis, M*% = 3> 1,0 0,2,

1. € R, we observe that the trace-preserving condition Try, M%% = 1% is equivalent to the requirement
1

oo = 5 Tio = 0fori > 0. Thus, CJ operators corresponding to CPTP maps are positive semidefinite operators
of the form
1
MA% = — (143 a0 + Y tofo| aity € R (510)
dXz i>0 1,j>0

It turns out that condition (46) can be equivalently imposed only for operators M %% of the form (510)
without the constraint M %% > 0. Clearly, an operator W 44:B1B:2GCo that satisfies equation (46) for all
operators M %1% of the form (S10) satisfies equation (46) for positive semidefinite operators M %1% of this form in
particular. The converse follows from the fact that any operator M %% of the form (S10) can be written as a real
linear combination of positive semidefinite operators of the form (510): M%% = 3. aiMiX‘ %, where
MI-XIX2 > Osatisfy (S10) foralli,and 3, o; = 1, o € R, Vi. Wewill use this fact to recast condition

equation (46) as a statement about the types of non-zero terms in the Hilbert—Schmidt expansion
of WAABB.GC, -+

In the case of three parties, the expansion of W 414BiB:GC: reads
WAALBBGC — Z Wijkimn O'iAl sz Ufl sz U,Cnl USZ, (S11)
i,j,k,L,m,n
Wiikimn € R, Vi, j) k, I, m, n. (812)
AL A; By B:
Let us fix M4 = Jldl—z and MBiB = ! dl *,and consider an arbitrary MGC: of the form (510). Condition (46)
Ay B>
becomes
w1 e (1964 Set S petiof)] <1 o
dAz de dCz n>0 mn>0

which, using the expansion of the process matrix, becomes

ddp dc, (Woooooo + ZWOOOOOnCn + Z W0000man,,) =1

n>0 mn>0

Ve b, € R (S14)

This implies wyoo00 = and Wooo00n = Woooomn = 0, Vm, n > 0.

1
dadp de,
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Likewise, by fixing M 44 = Jl;ll

Ay C

1(?1 Cy

and MGG =

,and considering an arbitrary M 582 of the form (510),

. . . JlBle lClCZ
we obtain Wogg00 = Wookioo = O forall k, [ > 0, while by fixing M 2182 = — and MGG = — and
By C

considering an arbitrary M 412 of the form (S10), we obtain Wojoooo = Wijoooo = 0 forall £, j > 0.

. 1442 . . . .
Now, if we fix only M4 = ——and we use the previously obtained constraints, we obtain
A

Wo00lon = Wooklon = Wooolmn = Wookimn = 0 (each of these coefficients can be shown to vanish by suitably
choosing the parameters in M 5% and M@ in order to select only the term with that coefficient). Then, if we
fix MBIB2 = Jl:;iz , We obtain Wojooon = Wojoomn = Wijooon = WijOOmn =0. Slmllarly, if we fix MCl G = ]lCICLZ

2
obtain wyjoi00 = Wojrioo = Wijoioo = Wijkioo = 0.

Finally, we impose condition (46) for arbitrary M Ady MBIB: and MG, of the form (S10). Using the
constraints obtained from the special cases above, we obtain wyjoi0n = Wojolmn = Wojkion = Wojkimn = Wijolon =
Wijolmn = Wijkion = Wijkimn = 0. Thus, we have shown that all coefficients wijx,n,,, except for wogoooo, that may
appear in the result of taking the trace of W A4BiB2GC2 with a general combination of M4, MBiB: MGG of the
form (S10), must vanish. This is also a sufficient condition for the normalization condition (46) to hold. All these
forbidden terms for a process matrix are listed in table A1.

,we

Proof S5 (proposition 3.2). Explicitly, by the definition of (no) signaling (6) and the expression for the
probabilities of a process in terms of the process matrix (44), there is no signaling from (1 and 2 and - --and k) to
(k + land k 4 2 and --- and n) ifand only if

p(ol,...,ok“l{Mil},...,{/\/lgn}) = Z Tr[Whk-mn (Mollllz ® - @ ME™)]
1 k

0, ..., 0

= Tr[Whbmm (Mhlz ® - ® Mhk M;fjll)l(kJrl)z ® - ®M:ﬂ1ﬂ2 ]
= Tr[W(k+])l(k+1)z-”n1ﬂ2 (Mtff:—ll)l(k-‘rl)z ® ® Mn'lnz ] = P(0k+]) -‘-)Ok+1| {M];ktll PRRRS} {M(r)l"})’

¢

for all local quantum operations { M}, ..., { MG}, where MXX: = YoM )if,-xé, V i. Here, the operator
0

W(k+ Dy (k+1)y---mmy iS given by

11y
Trlllz.”klkZle i
dy - di

W(k+1)1 (k1) -mny —

, (S15)
1

which is obtained for the case where M2 = 1Ii2/d;, Vi = 1,..., k. This condition is equivalent to the condition
that

Tl‘ll 12-~-k1k2[W11 L-mmny (Mhlz R - ® M kik ® ]l(k+1)1(k+1)2~~~)] — W(k+1)1(k+1)2~~n1n2) lellz’”_)MklkZ’
(S16)

where M, ..., M5k are the C] operators of CPTP maps (this is because any linear operator V +Di(k+Dz-mm jg
fully determined by the values of Tr[V ¢+ DGkt Dawmm (AfktDik+12 ) ... @ M™™)]for all possible
MDD > 0 M™™ > 0). To analyze the role of the different types of terms in satisfying or violating
condition (S16), consider the representation of Wik ™M™ ag a linear combination of Hilbert-Schmidt terms of
different types and the contribution that each such term makes to the quantity on the left-hand side of
equation (S16). Assume that Wh% " contains only terms of the types stated in proposition 3.2. The identity
term is such a term. When the identity term is partially traced with any combination of local CPTP maps
MU, .. Mkk ityields exactly the right-hand side of equation (S16). From the rest of the terms that satisfy the
condition in proposition 3.2, we can distinguish two types. The first type are those that have a nontrivial o
operator oni; and 1 on i, forsome i = 1,..., k. Theyyield zero when partially traced with any combination of
local CPTP maps M %, ..., Mk, sincea CPTP map M ' does not contain terms of type i, (which is necessary
to get a non-trivial partial trace with the term in question). The second type of terms are those that do not have
any nontrivial o operator on any of the systems i; and i, i = 1, ..., k, and hence, when partially traced with any
combination of local CPTP maps M"Y, ..., M %%, only the 1 components of those CPTP maps contribute to the
result, which by definition yields the right-hand side of equation (S16). Therefore, if Wi ™™ contains only the
types of terms stated in proposition 3.2.

To prove the reverse, assume that Wh2™m" contains at least one term whose restrictiononto I 1, -+- ki k, is
notavalid term for a process matrix for {1, ..., k}. Every such term has the form
o ® % ® - ®0% Q% ® o ey R - ® Jotal ® Q(k+1)1(k+1)2~~~n1n2’ where o, i = 1,...,k, are dif-
ferent numbers from 1tok, 1 < m < k, O is either the identity or some nontrivial o operator on o/, 0% is a
nontrivial o operator on a, and Q-+ Dik+ D2 mm js 3 non-zero operator on (k + 1);(k + 1), --- nyn,, which is
proportional to a tensor product of nontrivial o operators and 1 on the different subsystems, such that the whole
term is an allowed term for a process matrix. We want to show that if such a term is present in the process matrix,
equation (S16) can be violated for a specific choice of the local CPTP maps MUY, ..., Mk, Out of all such terms,
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Table Al. The types of terms that are forbidden in a tripartite process
matrix W AABIBAGG,

CZ C1 CZ Bz Bz Cz
B,G G, BB, BiB,C, B,B,C/C,
Az A Cy A, GGy A B,
A B, Gy A B, GG AyB1B, AyB1B, G,
A BB, GGy AAy A4 C AAHGC
A4 By AAB Gy AAB GG A4 BB,

AAB B, C,y AAB B, GG,y

consider one for which m has the smallest value (there may be more than one of these). Consider the following
choice oflocal CPTP maps constructed based on this term: for i = m + 1,...,k, choose M ajah — L‘Il“iaxz, and

i
af

for j = 1,...,m, choose Moo = dij (Jl“f(‘ﬁ + €4 oo ® U‘in), where €,,; > 01issuch that

“
(s e, 04 ® aaé) > 0 (this can always be ensured for sufficiently small non-zero € ,i). Consider the
Hilbert-Schmidt expansion of the tensor product M'% @ --- ® M %k, From this expansion, only the identity
term and the term proportional to 0% @ 0 ® --- ® O ® ¢°% will survive when we plug
Mt @ ... @ Mk intheexpression on theleft-hand side of equation (S16). This is because in order for any
other term to survive, it would be necessary that Wik ™™ contains a term of a form similar to
0N®a%® - ® 0% ®o% @10 g ... @ 1Ml g QK+Dik+ D mm byt with a smaller value of m
than the one we have chosen, which contradicts the assumption that we have chosen the smallest value. Plugging
Mt @ ... ® M%k intheexpression on the left-hand side of equation (S16) therefore yields
Wkt DIkt Doy QU DIk D mm for some ¢ > 0, which is different from the right-hand side of

equation (S16). This completes the proof of proposition 3.2.

Proof S6 (proposition 3.3). The fact that this form is sufficient for the process matrix to be ECS is obvious

AA4BIB,GC,
4 ecs;(A,B) X C

® pMBG 4 a4, Wé:‘sﬁqu‘cB)zg% ® phBC 4 a5 We‘g‘sﬁfgzg ¢ p B¢ s also causally separable. The fact that it
A/B/

I'n! !
because if this is true for each of the individual terms, any extension WA4BBGC g pABIGH —

is necessary can be seen as follows. Let us choose p S which is a tensor product of three bipartite maximally
entangled states of the type used in the ‘teleportation” argument, one shared between Alice and Bob, the other
one between Alice and Charlie, and the third one between Bob and Charlie. For this particular ancilla, it must be
possible to write the extended process in the form

A1A;B1B,Ci Gy A{B{C{ _ A1A; BB, C Gy A{B{C{ A1A;B1B,Ci Gy A{B{C{
Wecs ® p - qlwl ® p + q2W2 ® p

+ q3W3A|AzB|BZC1Cz ® pAI,B]/C]/’ (517)

where WAABEGC ¢ pAl/B 1C i causally separable and compatible with (A, B) % C, W/iABBEGC g pA‘/B VGl
is causally separable and compatible with (A, C) % B,and Wi1:BBGC g pAl’B 1Gl i causally separable and
compatible with (B, C) K A. (Thisis because the state pA‘I BICl s pure.) But for each of these terms, we can
perform the ‘teleportation’ argument exploiting the respective maximally entangled bipartite state contained in
pA"B‘/ G, proving that WA4:B1B2GC2 hag the form we obtained for WhABB G, W ABIBGC hag the form we

cs;(A,B) X C
obtained for Wéﬁ;f}flc%fé%% and W3A1A23 15:G.C has the form we obtained for We‘gls%l?gzg} gz. This completes the
proof.
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