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We study the feasibility of generating photon pairs in a resonant Vertical-Cavity Surface-Emitting

Laser (VCSEL) as a result of a third-order non-linear, four wave mixing interaction. We focus on

degenerate four wave mixing in the spontaneous regime where two pump photons are annihilated

to create a pair of signal and idler photons. Using the methods of quantum optics, we calculate the

two-photon production rate, the spectrum of the generated photons, and the signal-idler cross-corre-

lations. We highlight how the dispersion of the medium in the VCSEL cavity (a regular GaAs con-

figuration) significantly diminishes the two-photon production rate. Based on our results, we

enumerate the characteristics of a VCSEL that would be suitable for photon pair generation.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985641]

The second quantum revolution that we have been wit-

nessing for the past few decades opens new horizons for

fast computation, communication, and cryptography.

Heralded single-photon sources enable optical implemen-

tations of rapidly developing quantum technologies and

make possible the realization of these revolutionary ideas.

Like previously for electronics, one of the key issues for

quantum optical technologies is scalability achieved by

integration of optical components. This makes small-size

photon sources such as Vertical-Cavity Surface-Emitting

Lasers (VCSELs) highly important for future develop-

ment. Here, we present our study of the possibility of using

VCSELs for photon pair generation based on third-order

non-linear effects in semiconductor materials. With the

help of the methods of quantum optics, we calculated rele-

vant parameters of photon pair generation including the

two-photon production rate, their spectrum of emitted

photons, and the cross-correlations between the photons in

each pair. Based on our results, we specified the require-

ments for the design of VCSELs capable of providing a

sufficiently high photon-pair generation rate.

I. INTRODUCTION

Entangled and single photon sources are a key ingredi-

ent in a wide range of applications of quantum information,

including quantum computation,1,2 communication,3,4 cryp-

tography,5–7 and quantum metrology.8 They are based on

nonlinear optical effects, among which one can mention

parametric down conversion9,10 and quantum dots exploiting

the Purcell effect.11,12 Modern quantum technologies are try-

ing to achieve scalability by using integrated photonic quan-

tum circuits on chip, for example, for boson sampling.13 The

photon sources suitable for on-chip integration are at hand

for future development.

Cost-effectiveness and ubiquity of current VCSELs14–16

are the main drivers for this analysis. Considering their cur-

rent size and manufacturing process, VCSEL devices appear to

be easily scalable.17–20 Massive arrays of VCSEL sources gen-

erating entangled photons would result in a number of applica-

tions in modern quantum technologies. Furthermore, the

mature VCSEL technology gives the advantage of developing

monolithic, electrically injected photon pair sources.

The second order non-linear susceptibility vð2Þ value in

a VCSEL does not allow for parametric down conversion,

and we are taking advantage of the relatively high value of

the third-order non-linearity vð3Þ. We analyze the feasibility

of producing photon pairs by four wave mixing within a res-

onant semiconductor VCSEL cavity. Degenerate four wave

mixing allows the generation of a pair of photons whose fre-

quencies are equidistant from the pump frequency, poten-

tially allowing easy separation of the generated photons by

filtering.21

The efficient conversion of two pump photons into a sig-

nal and an idler photon by degenerate four wave mixing

requires that the non-linear material allows both conserva-

tion of energy (2xpump ¼ xsignal þ xidler) and conservation

of momentum (2kpump ¼ ksignal þ kidler), also referred to as

phase matching. As was already emphasized,22,23 highly dis-

persive materials hinder such conservation, and we need to

take into account the impact of the dispersion in our study.

The refractive index of the material used in VCSELs is not

constant, having a wavelength-dependent value; therefore,

two waves that fulfill the phase matching criteria (2kpump

¼ ksignal þ kidler) will not straightforwardly allow the conser-

vation of energy (2xpump 6¼ xsignal þ xidler). Expressed in

angular frequency, this difference between the energy of the

two pump photons (2xpump) and the sum of the energies of the

(possibly) emitted signal and idler photons (xsignal þ xidler) is

called the spectral walk-off. The spectral walk-off will affect

the spectrum of the emitted photons, strongly reducing the

number of emitted photon pairs when the difference between

the refractive index of the signal and idler photons becomes

high. In the case of our VCSEL, the refractive index grows

monotonically with the frequency. As a result, the spectrum of

the emitted photons will be considerably narrowed around the
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pump angular frequency. Our analysis shows that the effi-

ciency of our photon pair production scheme will depend on

the technical capability to limit the spectral walk-off, that is,

to compensate the dispersion of the material.

To evaluate the feasibility of generating photon pairs by

degenerate four wave mixing from a VCSEL, we estimate

the two-photon production rate and two other parameters

that characterize photon sources: the frequency spectrum of

the photon pairs and their cross-correlation.

We make a series of simplifying assumptions to perform

this evaluation. We emphasize two of those assumptions:

• We consider only the physical effect of interest in this arti-

cle: degenerate four wave mixing. The variety of physical

effects that “disturb” the two-photon production is

neglected in our calculation. Chen et al. enumerated23 the

non-linear physical effects that can occur in the non-linear

material (for instance Raman scattering).
• The VCSEL cavity is designed to be resonant for the

pump, signal, and idler frequencies.

Future technical designs of the VCSEL sources aimed at

generating photon pairs should comply with those assump-

tions. Other assumptions are made and explained prior to the

calculations in each section.

To calculate the two-photon production rate, the fre-

quency spectrum of the emitted photons, and their cross-

correlation for our VCSEL cavity, we follow the approach

presented by Herzog et al.,24 where those three values are

calculated for a vð2Þ down-conversion process using an

Optical Parametric Oscillator. We start in Sec. II by defining

the expressions for the electric field operators applicable to

our environment and use a perturbative treatment to derive

expressions for the two-photon wave function. We then use

those expressions to calculate the two-photon production

rate in Sec. III, the output spectrum of the signal wave in

Sec. IV, and the signal-idler cross-correlation in Sec. V. We

present a discussion of the results of our analysis and a con-

clusion in Sec. VI.

II. THE TWO-PHOTON WAVE FUNCTION

A. Expressions for the fields

In our calculations, electric fields in the cavity will be

split into four components identified by the (þ) or (�) symbol

that refers to the component of the field oscillating as e�ixpt

or as eþixpt, respectively, and also by indicesþx or �x, indi-

cating whether the field wave travels in the positive or nega-

tive direction, respectively. The pump, signal, and idler

optical fields in the cavity are assumed to be linearly co-

polarized.25 The resonant VCSEL cavity is assumed to be

pumped by a classical pump field

Epðx; tÞ ¼ EðþÞp ðx; tÞ þ Eð�Þp ðx; tÞ

¼ E
ðþÞ
p;þxðx; tÞ þ E

ð�Þ
p;þxðx; tÞ

þEðþÞp;�xðx; tÞ þ Eð�Þp;�xðx; tÞ;

where, for example, the component of the pump field travel-

ling in theþ x direction24 and oscillating as e�ixpt is

E
ðþÞ
p;þxðx; tÞ ¼ Epei½kpðxpÞx�xpt�: (1)

In what follows, we will omit theþ x index, indicating

the travelling direction because in our calculations, we will

only make use of the components of the fields travelling in

the positive x direction. From now on, theþ x index must be

assumed for all resonant fields: pump, signal, and idler intra-

cavity fields. The resonant cavity is considered as lossless

for the strong pump field.

To define expressions for the signal and idler field

operators in the cavity, we start from the expression for the

resonant field travelling in the x direction in a lossless

cavity24

EðþÞðx; tÞ ¼ 1

2

X1
m¼1

�hxm

e0V

� �1=2

ameixmðxc�tÞ: (2)

In this expression, V is the volume of the resonant VCSEL

cavity, equal to the product of A, the transverse section of

the interaction volume, and L the length of the cavity, c is

the speed of light in the vacuum, e0 is the permittivity of the

vacuum. am is the annihilation operator corresponding to the

resonant cavity mode identified by m and obeys the usual

bosonic commutation relations ½am; a
†
n� ¼ dmn.

Some authors make an approximation by moving the

angular frequency xm out of the sum.26 In the case of our

VCSEL, the resonant modes are relatively distant from each

other in the frequency domain (ðxmþ1 � xmÞ=xm � 5%),

and we do not make the upfront simplification xm � x for

any m (although we will make such simplification later in

order to make feasible numerical estimations).

Eq. (2) is valid in the vacuum, and in order to have a

correct description of the fields in our cavity, we need to take

into account the refractive index nðxÞ of the resonant

medium.27 The expression for the electric field in the

VCSEL cavity becomes

EðþÞðx; tÞ ¼ 1

2

X1
m¼1

�hxm

e0Vn2ðxmÞ

� �1=2

ameixm
x
cnðxmÞ�tð Þ: (3)

To account for the losses in the cavity, we have to

replace the annihilation operator am by a time-dependent

operator amðtÞ which can be expressed in terms of its Fourier

components as22,24,26

amðtÞ ¼
1ffiffiffiffiffiffi
2p
p

ðþ1
�1

dXaðxm þ XÞ
ffiffiffiffi
cs
p

cs

2
þ iX

e�iXt;

where cs is the damping rate of the signal wave, which

reflects the photon emission out of the one-side cavity. We

assume that the damping rate cs (ci) has the same value for

all signal (idler) waves in the cavity. We note that amðtÞ has

no dimension and aðxÞ has the dimension of square root of

time (s1=2).

We denote the resonant pump, signal, and idler modes

by the indices mp, ms, and mi, respectively, and the corre-

sponding signal and idler angular frequencies by xms
and

xmi
, respectively.
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After replacement of am by amðtÞ in Eq. (3), we arrive at

the following expressions for the signal and idler fields trav-

elling in the positive x direction E
ðþÞ
s=i ðx; tÞ in the lossy

VCSEL cavity24

E
ðþÞ
s=i ðx; tÞ ¼

1

2

X1
ms=i¼1

�hxms=i

2pe0Vn2ðxms=i
Þ

 !1=2ðþ1
�1

dXaðxms=i
þ XÞ

�
ffiffiffiffiffiffiffics=i
p

cs=i

2
þ iX

e
i ks=iðXÞx�ðxms=i

þXÞt½ �; (4)

where the x-component ks=iðXÞ of the wave vector of the

mode ms=i is

ks=iðXÞ ¼ 2pms=i=L ¼ ðxms=i
þ XÞnðxms=i

þ XÞ=c : (5)

The non-constant factor nðxms=i
þ XÞ in Eq. (5) reflects the

dispersion of the material and, as will be seen later in this

text, will induce a spectral walk-off between (potentially)

created photon pairs. In turn, the induced spectral walk-off

will strongly affect the two-photon production rate.

We note that although the VCSEL cavity has a layered

structure, we do not take into account differences between

the various layers. The above signal and idler field expres-

sions assume that the cavity is homogeneous from the refrac-

tive index viewpoint.

The angular frequencies of the fields coming out of the

cavity are assumed to be in the neighborhood of the pump

angular frequency xp, and we use the following expression

for the signal and idler outside fields

E
ðþÞ
Outs=i
ðx; tÞ ¼ �hxp

2e0cA

� �1=2 ðþ1
�1

dXffiffiffiffiffiffi
2p
p

� as=iðxp þ XÞei ðxpþXÞðxc�tÞ½ �; (6)

where A is the transverse cross-section of the wave.24

Equation (6) is established by first defining the expression of

the electromagnetic field in a finite volume and then taking

the continuum limit by extending the quantization length to

infinity. The lower limit of integration is subsequently

extended to minus infinity using the fact that xp � 1, that is,

the bandwidths of the fields outside the cavity are assumed

to be small compared to the angular frequency xp.26 The sig-

nal and idler annihilation operators introduced in Eq. (6) are

defined as follows: asðxÞ ¼ aðxÞ for x > xp and asðxÞ ¼ 0

for x � xp and aiðxÞ ¼ aðxÞ for x < xp and aiðxÞ ¼ 0 for

x � xp.

B. Expressions for the two-photon wave function

The interaction Hamiltonian describing our degenerate

four wave mixing interaction has the following expression

(refer to Appendix B for its derivation):

Hint ¼
3

2
e0

ð
V

vð3ÞEðþÞp EðþÞp Eð�Þs E
ð�Þ
i dV þ H:c: ; (7)

where V is the interaction volume, vð3Þ is the third-order non-

linear susceptibility,22 and the signal and idler modes satisfy

ms þ mi ¼ 2mp. We define Dm ¼ mp � mi ¼ ms � mp. The

off-diagonal terms of the third-order non-linear susceptibility

tensor have been neglected,25 and vð3Þ is considered as a con-

stant parameter below.

We calculate the state jwci of the radiation field in the

VCSEL cavity by means of first order perturbation expansion

jwci � j0i þ
1

i�h

ðDt

0

Hint tð Þdt j0i

� j0i þ jwi; (8)

which defines the (non-normalized) perturbation state jwi
that will be referred to as the two-photon state.

The perturbation treatment is valid when the perturba-

tion is weak, that is, when the probability to be in the two-

photon state hwjwi 	 1. Also, the cavity can safely be

assumed to be in the vacuum state before each two-photon

emission if the production rate is significantly lower than the

cavity damping rates: hwjwi=Dt	 cs=i.
24,27

Inserting Eqs. (1), (4), and (7) into Eq. (8) and rearrang-

ing the terms, we obtain the two-photon state jwi (here and

in what follows, when integration limits are omitted, �1 to

þ1 must be assumed):

jwi ¼ 3

16p
vð3ÞE2

pDt cscið Þ1=2
Xmp�1

Dm¼1

xms
xmið Þ1=2

nðxms
Þnðxmi

Þ

�
ð

dX
ð

dX0
Ssi X;X0
� �

cs

2
� iX

� �
ci

2
� iX0

� �

� ei XþX0�Dmsið ÞDt
2 sinc ðXþ X0 � DmsiÞ

Dt

2

� �
� a†ðxms

þ XÞa†ðxmi
þ X0Þ j0i; (9)

where we have used the following mathematical identities:ða

0

dt eibt ¼
ð0

�a

dx e�ibx ¼ a eiba
2sinc b

a

2

� �

and defined the mode-dependent spectral walk-off Dmsi ¼ 2xp

�xms
� xmi

, as well as the function

Ssi X;X0
� �

¼ ei 2kpðxpÞ�ksðXÞ�kiðX0Þð ÞL2

� sinc 2kpðxpÞ � ksðXÞ � kiðX0Þ
� � L

2

� �
: (10)

In this expression, xp and L are parameters of the function

SsiðX;X0Þ. The function sincðxÞ ¼ sin ðxÞ=x is the un-

normalized sinc function.

III. TWO-PHOTON PRODUCTION RATE

To compute the two-photon production rate
hwjwi

Dt , we

start from (9). By using the relation aðxms=i1
þ X1Þa†ðxms=i2

þX2Þ j0i ¼ dms=i1;ms=i2
dðX1 � X2Þ j0i, valid for two non-

overlapping modes in the frequency domain, we obtain24
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hwjwi
Dt
¼ 3

16p
vð3ÞE2

p

� �2

csciDt
Xmp�1

Dm¼1

xms
xmi

n2ðxms
Þn2ðxmi

Þ

�
ð

dX
ð

dX0
jSsi X;X0
� �

j2

cs

2

� �2

þ X2

" #
ci

2

� �2

þ X02
" #

� sinc2 ðXþ X0 � DmsiÞ
Dt

2

� �
: (11)

We continue our calculations in two cases. In the first

case, it is assumed that the spectral walk-off can be compen-

sated by the VCSEL design. The second case does not rely

upon such assumption.

A. Two-photon production rate if the spectral walk-off
is compensated

Compensation of the spectral walk-off (Dmsi ¼ 0) allows

us to make the assumption of a constant free spectral range

Dx, which we define as

Dx ¼ xmsþ1 � xms
¼ xmi�1 � xmi

: (12)

We start from (11) and make the assumption that, for

sufficiently large Dt, the X0 integral is dominated by the

region ðXþ X0Þ62p=Dt.24 If jSsiðX;X0Þj2=½ðci=2Þ2 þ X02� is

a slowly varying function of X0 in this region, the latter func-

tion can be replaced by its value at X0 ¼ �X. The validity of

this approximation is analyzed in Sec. 1 of Appendix D.

We then use the relation
Ðþ1
�1 sinc2ðxÞdx ¼ p to perform

the integration over X0. This leads to the following two-

photon production rate:

hwjwi
Dt
¼ 1

2p
3

8
vð3ÞE2

p

� �2

csci

Xmp�1

Dm¼1

xms
xmi

n2ðxms
Þn2ðxmi

Þ

�
ð

dXjSsi X;�Xð Þj2

cs

2

� �2

þ X2

" #
ci

2

� �2

þ X2

" # : (13)

We make a rough evaluation of this expression for the

VCSEL whose parameters are described in Appendix A. In

the case of this VCSEL, Dm � 4 as four pairs of signal-idler

photon pairs are produced above the absorption band of the

VCSEL. Signal photons of lower wavelengths fall in the

absorption band, defined by the wavelength k � 0:69lm.

We further assume that in the range of values of X
where the two Lorentzians in (13) are non-zero, we can

safely make the approximation jSsiðX;�XÞj2 ¼ 1. This

approximation is validated in Sec. 2 of Appendix D. We also

make the simplifying assumption

xms
xmi

n2ðxms
Þn2ðxmi

Þ �
x2

p

n4
p

: (14)

As a result, the integral is independent of the angular

frequencies xms
; xp, and xmi

and becomes

ðþ1
�1

dX

cs

2

� �2

þ X2

 !
ci

2

� �2

þ X2

 ! ¼ 8p
csciðcs þ ciÞ

:

With these approximations, the two-photon production

rate is the same for all signal-idler pairs [identified by their

mode indices ðms;miÞ and the value of Dm in the sum in Eq.

(13)], and the final expression of the two-photon production

rate per pair of modes when the spectral walk-off is compen-

sated is

hwjwi
Dt

				
per pair of modes

¼ 1

ðcs þ ciÞ
3vð3ÞxpE2

p

4n2
p

 !2

: (15)

With the values Ep ¼ 2� 104Vm�1 (lower than the

laser threshold value of 2:5� 104Vm�1 in the VCSEL),

vð3Þ ¼ 1:4� 10�18 m2V�2 (third-order non-linear suscepti-

bility of the GaAs material28), and cs ¼ ci ¼ 300 GHz (typi-

cal value for a VCSEL), we obtain a two-photon production

rate per pair of modes:

hwjwi
Dt

				
per pair of modes

¼ 1:08� 10�2 s�1:

It is expected that the actual third-order non-linear sus-

ceptibility for the VCSEL might be significantly higher than

the value of the GaAs material used in our calculation because

the above vð3Þ value does not take into account the quantum

wells present in the layered structure of the VCSEL.

Taking into account that, in our case, Dm takes four val-

ues (Dm ¼ 1;…; 4) corresponding to four resonant modes

above the absorption bandwidth of the VCSEL, the total

two-photon production rate when the spectral walk-off is

compensated amounts to 4:32� 10�2 s�1.

The two-photon production rate does not directly

depend on the properties (length, volume…) of the cavity.24

In many cases, the damping coefficients cs and ci might

have different values. The production rate varies with the

ratio of the two damping coefficients as depicted in Fig. 1.

B. Two-photon production rate if the spectral walk-off
is not compensated

In the case where the spectral walk-off in the VCSEL

cannot or can only be partially compensated (Dmsi 6¼ 0), we

need to include its effect into our expressions of the two-

photon production rate. Among our references, only Ref. 22

has explicitly integrated the spectral walk-off in the perturba-

tive calculation. Expression (11) for the two-photon produc-

tion rate becomes

hwjwi
Dt
¼ 1

2p
3

8
vð3ÞE2

p

� �2

csci

Xmp�1

Dm¼1

xms
xmi

n2ðxms
Þn2ðxmi

Þ

�
ð

dXjSsi X;Dmsi � Xð Þj2

cs

2

� �2

þ X2

" #
ci

2

� �2

þ Dmsi � Xð Þ2
" # ; (16)
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which is obtained by replacing jSsiðX;X0Þj2=½ðci=2Þ2 þ X02�
by its value at X0 ¼ Dmsi � X in (11) because for sufficiently

large Dt, the X0 integral in (11) is dominated by the region

ðXþ X0 � DmsiÞ62p=Dt (Ref. 24) and jSsiðX;X0Þj2=½ðci=2Þ2

þX02� is a slowly varying function of X0 in this region.

The validity of this approximation is analyzed in Sec. 1 of

Appendix D. We can also safely approximate the jSsiðX;Dmsi

�XÞj2 factor by 1, as it is shown in Sec. 2 of Appendix D.

The two-photon production rate per mode calculated

numerically from (16) as a function of the spectral walk-off

Dmsi is plotted in Fig. 2 (with the same parameters as those

used in the case where there is compensation). It shows that

the two-photon production rate drops dramatically when the

spectral walk-off increases, in particular, if the spectral

walk-off has a value larger than the cavity damping rate ci

(
300 GHz in our case). We assume ci ¼ cs ¼ c in the fol-

lowing calculations of the production rates.

When the spectral walk-off is significantly larger than

the cavity damping rate (Dmsi � c), we can make the follow-

ing approximation for the two-photon production rate:

hwjwi
Dt
� 1

pD2
msi

3

8
vð3ÞE2

p

� �2

c2 x2
p

n4
p

ðþ1
�1

dX

c
2

� �2

þ X2

� c
2

3vð3ÞxpE2
p

4Dmsin2
p

 !2

; (17)

where we have made the approximation (14) and replaced

the definite integral by its value 2p=cs in the last expression.

Although the root cause of the dispersion is the varying value

of the refractive index, making the approximation n4
p

� n2ðxms
Þn2ðxmi

Þ in (14) is still acceptable to calculate an

order of magnitude of the two-photon production rate.

Indeed, in the case of the VCSEL considered in Appendix A,

two values that might appear as strongly incompatible with

the approximation are nðxms
¼ 2:69PHzÞ ¼ 3:53 and nðxmi

¼ 1:67PHzÞ ¼ 3:29, which results in n2ðxms
Þn2ðxmi

Þ
¼ 134:8. We consider here that n4

p ¼ 133:6 is an acceptable

approximation for n2ðxms
Þn2ðxmi

Þ for all pairs of modes ms

and mi that intervene in our calculation. In the derivation of

Eq. (17), we have only kept the first term from the sum in

Eq. (16), that is, the term where Dm ¼ 1 because the value

of the second term is approximately only 10% of the value

of the first one in the case of the VCSEL described in

Appendix A. Indeed, the product of the two Lorentzian func-

tions in Eq. (16) is drastically decreased for Dm > 1 when

Dmsi 6¼ 0. It can be seen in Fig. 2 and Table II that the pro-

duction rates corresponding to the modes Dm ¼ 3 (Dmsi

¼ 31� 1012 s�1) and Dm ¼ 4 (Dmsi ¼ 54� 1012 s�1) are

even smaller in comparison to the terms Dm ¼ 1 (Dmsi ¼ 3:4
�1012 s�1) and Dm ¼ 2 (Dmsi ¼ 14� 1012 s�1).

Note that the production rate increases with the fourth

power of the pump electric field. Table I presents the values

of the two-photon production rate obtained for three values

of the pump electric field, in particular, above the laser

threshold. Note that the production rate 2:7� 105s�1 should

be taken with caution as this value for the production rate

might conflict with the calculation assumption Dt� 10�8s

as explained in Sec. 1 of Appendix D. Increasing the power

of the pump might also increase other physical effects (such

as Raman scattering) that may come in addition and disturb

the photon pair emission.

As the above results demonstrate, reducing the disper-

sion or compensating the spectral walk-off in the VCSEL

cavity will be paramount to enhance the production rate of

photon pairs. Different strategies can be developed for com-

pensating the spectral walk-off, such as VCSEL waveguide

dispersion management,29–31 embedding photonic crystals in

the VCSEL Distributed Bragg Reflectors and/or cavity,32–36

utilizing optical feedback,37 and implementing the coupled

cavity-VCSEL system38,39 where electro-optic tuning of the

resonance wavelength provides additional flexibility.40

The production rate also increases quadratically with the

material third-order non-linear susceptibility vð3Þ. A significant

FIG. 2. Production rate per mode as a function of the spectral walk-off Dmsi.

FIG. 1. Two-photon production rate
hwjwi

Dt normalized to
hwjwi

Dt jcs¼ci
as a func-

tion of the ratio of signal and idler damping rates
cs

ci
.

TABLE I. Two-photon production rates obtained for a couple of values of

the pump electric field in the VCSEL cavity. The laser threshold value for

the radiation field is 2:5� 104V=m.

hwjwi
Dt

; s�1 hwjwi
Dt

; s�1

Ep, V=m

Spectral walk-off

compensated

Spectral walk-off

non-compensated

2� 104 4:3� 10�2 8:4� 10�5

1� 105 27 5:3� 10�2

1� 106 2:7� 105 5:3� 102
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increase in the production rate might be in the range of the pos-

sibilities as the value we have used vð3Þ ¼ 1:4� 10�18m2=V2

is the value for the GaAs material28 and it does not take into

account the quantum wells. Utilizing the excitonic effects in

quantum wells might result in an increase in the actual third-

order non-linear susceptibility.41

IV. OUTPUT SPECTRUM

The output spectrum of the wave is given by SðxÞ
¼ hwj a†ðxÞaðxÞ jwi. We start our calculation from expres-

sion (9), and we assume that Dt is sufficiently large so that

the following limit applies:24

lim
Dt!1

Dtsinc ðXþ X0 � DmsiÞ
Dt

2

� �� �

¼ 2pdðXþ X0 � DmsiÞ : (18)

We further assume that the free spectral range, denoted

as Dx, is constant (no dispersion, that is Dmsi ¼ 0), and we

write xms ¼ xp þ DmDx and xmi ¼ xp � DmDx. Then, the

Dirac delta function in (18) leads to X0 ¼ �X.

At the limit of infinite Dt, the two-photon wave function

(9) may then be written under the (time-independent) alter-

native form

jwi ¼ 3

8
vð3ÞE2

p cscið Þ1=2
Xmp�1

Dm¼1

xms
xmið Þ1=2

nðxms
Þnðxmi

Þ

�
ð

dX
Ssi X;�Xð Þ

cs

2
� iX

� �
ci

2
þ iX

� �� a†ðxp þ DmDxþ XÞ

� a†ðxp � DmDx� XÞ j0i: (19)

Under this simplified form, the two-photon wave func-

tion cannot easily be normalized as a Dirac delta function

dð0Þ would intervene in the normalization calculation (also

see note 26 in Herzog et al.24). This divergence in the

normalization constant results from the limit that we have

taken in (18). This is not an issue in our context as we are

not seeking absolute values (we know the production rate),

and we have written Eq. (19) in order to find out the shape of

the output spectrum. We calculate

aðxÞ jwi /
Xmp�1

Dm¼1

xms
xmið Þ1=2

nðxms
Þnðxmi

Þ

ð
dX

Ssi X;�Xð Þ
cs

2
� iX

� �
ci

2
þ iX

� �
� aðxÞ a†ðxp þ DmDxþ XÞ
� a†ðxp � DmDx� XÞ j0i

and we obtain the spectrum in the form

SðxÞ /
Xþ4

jjj¼þ1

xmpþjxmp�j

n2ðxmpþjÞn2ðxmp�jÞ
� jSsi x� xp � jDx;x� xp � jDxð Þj2

cs

2

� �2

þ ðx� xp � jDxÞ2
" #

ci

2

� �2

þ ðx� xp � jDxÞ2
" # ;

(20)

where we have used an index j ¼ �4; ::;þ4; j 6¼ 0 that takes

into account that photons with angular frequencies higher

than xmp�4 are absorbed. If we take into account the spectral

walk-off (Dmsi 6¼ 0), the output spectrum would be propor-

tional to the integrand in Eq. (16). The output spectrum is

depicted in Fig. 3. It is a frequency comb, as already

described in other articles.22,23

The number of “teeth” of the comb is limited by the

absorption band of the VCSEL so that our comb has only

four coupled “teeth” at each side of the pump frequency,

which is significantly less than that in other cases considered

in the literature.23 If the spectral walk-off is not compen-

sated, the “amplitude” of the “teeth” decreases significantly

with increasing Dm (that is, when the “teeth” gets further

away from the central pump frequency).22

We noticed that some authors24 use different steps and

perform the calculation of the output spectrum with the help

of the Fourier transform of the first order correlation func-

tion. Our result is consistent with other articles.22,23

V. SIGNAL-IDLER CROSS-CORRELATION

The signal-idler cross-correlation function is defined24 as

FIG. 3. Normalized signal-idler output spectra SðxÞ as a function of the

idler, pump, and signal angular frequencies. The values for the angular fre-

quencies xms
and xmi

are provided in Appendix A for ms ¼ 16;…; 19 and

mi ¼ 11;…; 14. The pump angular frequency is xp ¼ 2:2� 1015 s�1. For

clarity, the width of the Lorentzians represented on the graphs is larger than

c ¼ 300 GHz used in our calculations; (a) spectrum for Dmsi ¼ 0 and (b)

spectrum for Dmsi 6¼ 0.
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G
ð2Þ
IS ¼ hwjE

ð�Þ
Outi
ðx; tÞEð�ÞOuts

ðx; tþ sÞ

� E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi:

Physically, the cross-correlation function is proportional to

the coincidence rate, that is, the rate of detection, at the out-

put of the cavity, of an idler photon at time t and a signal

photon at time tþ s.

We perform the calculation in the case where the spec-

tral walk-off is compensated. We start with the calculation

of the state E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi using Eq. (19) for the

two-photon wave function jwi and Eq. (6) for the signal and

idler field operators in the free field24

E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi

¼ �hxp

2e0cA

� �1=2 ð dX0ffiffiffiffiffiffi
2p
p asðxp þX0Þei ðxpþX0Þðx=c�t�sÞ½ �

" #

� �hxp

2e0cA

� �1=2 ð dX00ffiffiffiffiffiffi
2p
p aiðxp þX00Þei ðxpþX00Þðx=c�tÞ½ �

" #

� 3

8
vð3ÞE2

p

Xmp�1

Dm¼1

xms
xmið Þ1=2

nðxms
Þnðxmi

Þ

ð
dX

Ssi X;�Xð Þ
cs

2
� iX

� �
ci

2
þ iX

� �
� a†ðxp þDmDxþXÞa†ðxp �DmDx�XÞ j0i:

Outside of the cavity, the signal and the idler field

modes can be spatially separated by filtering. The commuta-

tion relations applicable between the fields then lead to the

following:

asðxp þ X0Þ aiðxp þ X00Þ
� a†ðxp þ DmDxþ XÞa†ðxp � DmDx� XÞ j0i
¼ dðX0 � X� DmDxÞ dðX00 þ Xþ DmDxÞ j0i:

With these approximations, we obtain

E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi / ei 2xpðx=c�tÞ�xpsÞ½ �

�
Xmp�1

Dm¼1

xms
xmið Þ1=2

nðxms
Þnðxmi

Þ e
�iDmDxs

�
ð

dXe�iXs

� Ssi X;�Xð Þ
cs

2
� iX

� �
ci

2
þ iX

� � j0i:
(21)

To find out the signal-idler cross-correlations, we need to

calculate the squared module of this vector state. For a first

evaluation of this expression, we make further assumptions:

• ðxms xmi
Þ1=2

nðxms Þnðxmi
Þ �

ðxpxpÞ1=2

nðxpÞnðxpÞ ¼ const,

• SsiðX;�XÞ � 1 (straightforward when ms ¼ mi, refer to

Sec. 2 of Appendix D).

After the constants have been removed from expression (21),

the vector state can be simplified as follows:

E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi

/ ei 2xpðx=c�tÞ�xpsÞ½ �Xmp�1

Dm¼1

e�iDmDxs
ð

dXe�iXs

c
2

� �2

þ X2

j0i:

Then, we replace the integral by its value 2pe�
c
2
jsj=c and

obtain

E
ðþÞ
Outs
ðx; tþ sÞEðþÞOuti

ðx; tÞ jwi

/ ei 2xpðx=c�tÞ�xpsÞ½ �e�
c
2
jsj
Xmp�1

Dm¼1

e�iDmDxs j0i:

Finally, the squared modulus of this expression gives us the

signal-idler cross-correlations of the following form:

G
ð2Þ
IS ðsÞ / e�cjsj

				 X
mp�1

Dm¼1

e�iDmDxs

				
2

: (22)

A plot of the G
ð2Þ
IS ðsÞ function is shown in Fig. 4. In our

example, as already mentioned, the sum contains in fact only

four terms (ms ¼ 16; ::; 19 and mi ¼ 11; ::; 15). This figure

shows that the emitted photon pairs go out of the cavity at

the same time (s ¼ 0) or that one of the two emitted photons

goes out later, after one or multiple round-trips (of time T) in

the resonant cavity. A proportion of the photons that resonate

in the cavity are lost so that the peaks decrease with the cav-

ity damping rate c. Otherwise, this graph is similar to the one

obtained for an optical parametric oscillator.27

We have not performed the calculations in the case

where the spectral walk-off is not compensated, but we

expect that the spectral walk-off will have an effect similar

to an increase of the damping rate of the cavity. This means

that the decrease of the amplitude with the signal-idler delay

will be more pronounced in the cross-correlation rate graph.

VI. CONCLUSION

We have considered the degenerate four wave mixing in

a cavity of a regular VCSEL whose characteristics are out-

lined in Appendix A.

We have calculated the two-photon production rate, the

output spectrum of the emitted photons, and the cross-

correlation between the signal and idler photons.

The calculation of the production rate has highlighted the

significant impact of the dispersion, illustrated by Eq. (17).

FIG. 4. Normalized signal-idler cross-correlation function G
ð2Þ
IS ðsÞ for

c ¼ 30 GHz; Dx ¼ 3THz, and Dm ¼ 1;…; 4. The horizontal scale is s=T,

where T ¼ 2p=Dx.
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This expression shows that the production rate decreases qua-

dratically with the spectral walk-off when the latter is large

compared to the cavity damping rate c.23

We have shown that the output spectrum represents a

frequency comb as expected. However, in the considered

VCSEL, only four modes are being excited below the cavity

absorption band. Moreover, the non-compensated spectral

walk-off reduces drastically the amplitude of the “teeth” at

the sides of the spectrum even within the narrow bandwidth

where photon pairs are emitted.

The observed cross-correlations show the highest proba-

bility of the simultaneous emission of the signal and idler

photons. However, the emission of signal-idler pairs sepa-

rated by multiples of the period of time necessary for the

light to resonate within the cavity has also a non-zero rate.

This latter rate decreases when the delay between the emitted

signal and idler photons increases.

Despite the relatively low value of the two-photon pro-

duction rate that we obtained (see Table I), for instance, in

comparison to some past experiences,21,42 we find it worth

investigating degenerate four wave mixing in a VCSEL as a

potential source of photon pairs. In order to address the key

challenge of increasing the production rate, the VCSEL cav-

ity should be

• resonant for the pump and at least one signal and idler

modes and, whenever possible, several signal and idler

modes,
• with a high value of the third-order non-linear susceptibil-

ity vð3Þ,
• with a compensation of the spectral walk-off to the maxi-

mum possible extent,
• such that it allows a maximum number of signal-idler cou-

pled modes beyond the absorption band,
• such that we can avoid undesirable (for our purpose)

effects such as Raman or Brillouin effects and thermo-

optical oscillations43—in particular, if the pump needs to

be stepped up to increase the production rate.

Addressing those challenges may be the subject of a

study focused on designing a VCSEL device dedicated to the

generation of photon pairs via degenerate four wave mixing.
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APPENDIX A: THE VCSEL CAVITY UNDER ANALYSIS

In this appendix, we outline the parameters of a realistic

VCSEL cavity on which we base our analysis.

We consider a GaAs VCSEL configuration with

Al0:25Ga0:75As=Al0:85Ga0:15As distributed Bragg mirrors.14,15

However, in contrast to the usual VCSEL configuration

where the cavity optical thickness is either half or a single

wavelength, we consider a much thicker cavity. This allows

a design of a VCSEL cavity resonant not only for the pump

wavelength but also for the idler and the signal wavelengths

as well.

We assume that the length of the VCSEL cavity is 1:9lm

and that the VCSEL cavity is resonant with a pump wave num-

ber mp¼ 15, that is, for a pump wavelength kp ¼ 0:850 lm

(wavelengths considered here are “in the vacuum”).

Resonant four wave mixing may take place for wave num-

bers that ensure that the phase matching conditions are met, that

is, when ms þ mi ¼ 2mp. The corresponding resonant wave-

lengths are then calculated numerically from 2LnðksÞ ¼ msks

and 2LnðkiÞ ¼ miki, where nðkÞ denotes the wavelength-

dependent refractive index and L is the length of the VCSEL

cavity. Those wavelengths are presented in Table II.

The resonant angular frequencies xms
and xmi

are calcu-

lated from those wavelengths: xms
¼ 2pc=ks and xmi

¼ 2pc=ki, where c is the speed of light in the vacuum.

The spectral walk-offs presented in Table II are calcu-

lated by considering only the dispersion characterizing the

semiconductor materials.

The table shows only four couples of wavelengths

because the signal photons of lower wavelengths fall in the

absorption band, defined by the wavelength k ¼ 0:69lm.

For the VCSEL presented in the table, the values for the

free spectral range Dx vary from 115 THz to 139 THz.

We note that the spectral walk-offs Dmsi are significantly

larger than the damping coefficient cs, for each of the reso-

nant angular frequencies considered in the table. In order to

optimize or even allow four wave mixing at a reasonable

rate, it will be important to analyze whether the spectral

walk-off can be reduced below the cavity damping rate, that

is, reduced to a value comparable to c.22

APPENDIX B: INTERACTION HAMILTONIAN

In this appendix, we derive Eq. (7) for the interaction

Hamiltonian in three steps.

1. Step 1: assumption on the form of the interaction
Hamiltonian

We make the assumption that the interaction

Hamiltonian operator in our VCSEL cavity may be approxi-

mated by an expression of the following form:25,43,44

Hint ¼
X1

s;i

�hga2
0a†

s a†
i þ H:c: ; (B1)

TABLE II. Couples of four wave mixing-generated signal and idler waves

in the VCSEL.

Dm Couple ms,mi ks, lm ki, lm xms
; PHz xmi

; PHz

Spectral walk-off

Dmsi, THz

1 16, 14 0.804 0.903 2.34 2.08 3.4

2 17, 13 0.764 0.964 2.46 1.95 14

3 18, 12 0.729 1.04 2.58 1.81 31

4 19, 11 0.698 1.12 2.69 1.67 54
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where a†
s and a†

i are the creation operators for the signal and

idler fields, respectively, a0 is the amplitude of the pump field,

and g is a real coupling constant that must be determined taking

into account the physical configuration of the VCSEL cavity.

This simplified form of the interaction Hamiltonian

implicitly neglects the self-phase and the cross-phase modu-

lations effects.43 The only Kerr effect considered here is the

four wave mixing.

The sum in Eq. (B1) is performed on all possible cou-

ples of signal (s) and idler (i) resonant modes that fulfill

energy and momentum conservation requirements.

2. Step 2: correspondence with classical expression

We make a correspondence between the expression that

describes the time evolution of the quantized signal mode

operator as and the classical coupled-mode equations.

The time evolution of the signal mode operator as can

be written as43

das

dt
¼ 1

i�h
as;Htot½ � � cs

2
as þ

ffiffiffiffi
cs

p
Vs;

where Vs is the quantum noise operator43 that avoids a viola-

tion of the Heisenberg uncertainty principle.

Taking into account that Htot ¼ Hpump þ Hs þ Hi þ Hint,

where Hpump, Hs, and Hi denote the respective energy opera-

tors of the non-interacting pump, signal, and idler fields, we

can conclude that the only term of ½as;Htot� that includes the

operator a†
i is

as;Hint½ � ¼ �hga2
0a†

i :

The time evolution of the signal mode operator can then

be written as follows:

das

dt
¼ �iga2

0a†
i � ixsas �

cs

2
as þ

ffiffiffiffi
cs

p
Vs: (B2)

In order to determine the value of g, we make a correspon-

dence between this quantum expression and the classical

coupled-mode equation for the signal mode derived by

Ramirez et al.45 [Eq. (2)]

_as ¼ ixsð1� as0j ~a0 j2 � assjasj2 � asijaij2Þ �
cs

2

� �
as

� ixsbs ~a0
2a�i þ

ffiffiffiffi
cs

p
sm;þ; (B3)

where sm;þ is a loss term, as0, ass, and asi are coefficients cor-

responding to the self-phase and cross-phase modulations,

while bs (see below) characterizes the energy transfer

between the modes by four wave mixing. As mentioned

above, we assume as0 ¼ ass ¼ asi ¼ 0.

We note that Ramirez et al.45 used a different convention

for the sign of the angular frequencies and that the dimensions

of the classical vector potential aj (j ¼ s; i; 0) in Eq. (B3) are

defined such that jajj2 represents the electromagnetic energy

of mode j, while the operator as in Eq. (B2) has no dimension

and obeys the usual bosonic commutation relations.

Making the correspondence between Eqs. (B2) and (B3)

and also making the assumption xs � xp, we obtain the fol-

lowing value for constant g:

g ¼ �hx2
pbs;

where bs is obtained by Ramirez et al.45 [see Eqs. (6) and (7)

therein]

bs ¼

ð
V

dV�0v
ð3Þ �E

�
p

�E
�
p


 �
�Es

�Eið Þ þ 2 �E
�
p

�Es


 �
�E
�
p

�Ei


 �h i

16

ð
V

dV�j �Epj2
ð

V

dV�j �Esj2
ð

V

dV�j �Eij2
� �1=2

:

We have assumed that the resonant fields are all polar-

ized along a common transverse direction and assumed the

following forms for the amplitude of the resonant pump, sig-

nal, and idler fields in the VCSEL cavity:

�Ep ¼ Ep sin mp
p
L

z

� �
1x ;

�Es ¼ Es sin ms
p
L

z

� �
1x ;

�Ei ¼ Ei sin mi
p
L

z

� �
1x ;

where 1x is a unit polarization vector along the x axis, Ep, Es,

and Ei are the real amplitudes of the classical fields, and

ms þ mi ¼ 2mp.

We obtain the coupling constant in the following form:

g ¼
3�hx2

p�0vð3Þ

16�2
0n4

pA2
L

2

� �
L

2

� �1=2
L

2

� �1=2

ð
V

dV sin 2 mp
p
L

z

� �

� sin msð Þ
p
L

z

� �
sin mið Þ

p
L

z

� �

¼ 3

32

�hx2
pv
ð3Þ

�0n4
pV

: (B4)

Note that the units of the coupling coefficient g are s�1

and that the integral in expression (B4) is equal to 0 if

ms þ mi 6¼ 2mp, implying that no energy transfer is possible

between modes that do not conserve momentum.

3. Step 3: interaction Hamiltonian as a function of the
electric fields

Finally, we express the interaction Hamiltonian as a

function of the electric fields in the cavity. In an arbitrary

volume, the interaction Hamiltonian may be written as

Hint ¼ Ce0

ð
V

vð3ÞEðþÞp EðþÞp Eð�Þs E
ð�Þ
i dV þ H:c: ; (B5)

where C is a constant to be determined.

Comparing expressions (B1) and (B5) at time t¼ 0 and

requiring momentum conservation, we find C¼ 3/2. Then,

the final expression for the interaction Hamiltonian as a func-

tion of the electric field operators is

Hint ¼
3

2
e0

ð
V

vð3ÞEðþÞp EðþÞp Eð�Þs E
ð�Þ
i dV þ H:c: (B6)
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APPENDIX C: COMPARISON WITH THE PRODUCTION
RATE DERIVED FROM QUANTUM FLUCTUATIONS

In this appendix, we compare our results for the two-

photon production rate with the results obtained by Chembo43

from the Heisenberg-Langevin equations. Although the calcu-

lation in this article43 is dedicated to four wave mixing in a

whispering-gallery mode resonator, the development may

apply as such to a VCSEL cavity if we use the coupling coef-

ficient in the Hamiltonian and the damping factor that corre-

sponds to our physical configuration. Interestingly, this article

also presents and calculates a four wave mixing threshold

photon number that separates the spontaneous emission of

two photons (below threshold) from the stimulated emission

of two photons (above threshold).

The following variables were used in Ref. 43:

• jA0j2 is the photon number at the pump frequency in the

cavity,
• g0 ¼ n2c�hx2

p=n2
pV is the four wave mixing gain (dimen-

sion s�1) at the pump frequency, where n2 is the Kerr

coefficient (dimension m2=W).

Let us emphasize that g0 is related to the physical config-

uration of the chosen resonator.43 Constant g0 is related to the

value of g (B4) for our VCSEL cavity as follows: g ¼ g0=8.

When making this comparison, we assume that the interaction

Hamiltonian used in Ref. 43 is actually Hint ¼ �hg0a2
0a†

s a†
i

þH:c: instead of �hg0a2
0a†

s a†
i =2þ H:c: as described by

Chembo43 in expression (85).

Chembo43 provided the following expression for the

four wave mixing threshold photon number:

jAthj2 ¼
cs

2g0

;

and the production rate of the spontaneously emitted photons

for a given signal mode ms:

RðmsÞ ¼ q
cs

2

g2
0jA0j4

cs

2

� �2

� g2
0jA0j4 þ n2

ms

; (C1)

where q is the ratio between the outcoupling and the total

losses and nms
is described as the overall shift induced by

laser detuning, group-velocity dispersion, and self-phase

modulation for mode ms.

We take q ¼ 1, that is, we assume that the production

rate of photons represents the only loss in the cavity. We

also make the approximation that nms
represents the spectral

walk-off between mode ms and the pump mode.

With the following values,

• cs ¼ 300� 109s�1,
• n2 ¼ 3:3� 10�13cm2=W,
• xp ¼ 2:2� 1015s�1,
• np ¼ 3:4,
• V ¼ 1:87 lm� pð2 lmÞ2 ¼ 2:3� 10�17m3,

we obtain a four wave mixing threshold photon number

jAthj2 ¼ 8:4� 106. This corresponds to the following four

wave mixing threshold for the classical pump electric field

travelling in the positive x direction in the cavity

Epth
¼ 1

2

�hxp

e0n2
pV

 !1=2

jAthj ¼ 1:4� 107V=m:

The corresponding maximum of the pump electric field stand-

ing wave in the cavity amounts for 4Epth
¼ 5:6 � 107V=m.

We evaluate the production rate of the spontaneously emit-

ted photons for the mode ms ¼ 16 when the cavity is pumped

below the four wave mixing threshold (jA0j2 	 cs=2g0) in the

following two cases.

1. Production rate with compensation of the spectral
walk-off

In the case nms
¼ 0, the production rate is mode-

independent. Replacing g0 by g in (C1), we recover the pro-

duction rate (15) calculated by the perturbative method in

the case cs ¼ ci:

R � 2g2jA0j4

cs

� 2

cs

3vð3ÞxpE2
p

8n2
p

 !2

: (C2)

2. Production rate with no compensation of the
spectral walk-off

When the spectral walk-off is significantly larger than

the damping coefficient Dmsi � cs, we recover the produc-

tion rate (17) by making the approximation

RðmsÞ � cs

g2jA0j4

2n2
ms

� cs

2

3vð3ÞxpE2
p

4n2
pDmsi

 !2

;

where we have used nms
¼ Dmsi=2 to take into account that

the spectral walk-off Dmsi derived in Appendix A is taken

between the signal and idler, while numbers in (C1) refer to

the spectral walk-off between signal and pump waves.

APPENDIX D: VALIDATION OF SOME ASSUMPTIONS

1. Large Dt approximation

In Sec. III A, we have assumed that Dt was sufficiently

large to perform the following approximation:

ðþ1
�1

dX0
sinc2 2kpðxpÞ � ksðXÞ � kiðX0Þ

� � L

2

� �

cs

2

� �2

þ X2

" #
ci

2

� �2

þ X02
" #

� sinc2 ðXþ X0 � DmsiÞ
Dt

2

� �

�
sinc2 2kpðxpÞ � ksðXÞ � kiðDmsi � XÞ

� �L

2

� �

cs

2

� �2

þ X2

" #
ci

2

� �2

þ Dmsi � Xð Þ2
" #

�
ðþ1
�1

dX0sinc2 ðXþ X0 � DmsiÞ
Dt

2

� �
(D1)
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for all values of X, considered here as a parameter. We can

now replace the factor sinc2½ð2kpðxpÞ � ksðXÞ � kiðX0ÞÞ L
2
� in

(D1) by its value calculated in X0 ¼ Dmsi � X because it is a

slowly varying function of X0 in comparison to the two other

factors.

In Sec. 2 of Appendix D, we show that the value of

sinc2½ð2kpðxpÞ � ksðXÞ � kiðDmsi � XÞÞ L
2
� can safely be

approximated by 1 for all relevant values of X when ms¼mi,

which is applicable in this case. This means that validating

the approximation (D1) is equivalent to proving that

ðþ1
�1

dX0
sinc2 ðXþ X0 � DmsiÞ

Dt

2

� �

ci

2

� �2

þ X02
" #

� 1

ci

2

� �2

þ Dmsi � Xð Þ2
" #

�
ðþ1
�1

dX0sinc2 ðXþ X0 � DmsiÞ
Dt

2

� �
:

The most defavorable case for the assumption under

validation is when the sinc2 function is centered in the inter-

val where ððci

2
Þ2 þ X02Þ�1

varies the fastest, that is, when the

sinc2 function is centered on X0 ¼ ci=2
ffiffiffi
3
p

.

With ci ¼ 300 GHz, when numerically computing the

value of the integral

ðþ1
�1

dX0
sinc2 X0 � ci=2

ffiffiffi
3
p
 �Dt

2

� �

ci

2

� �2

þ X02
" # ;

one finds that the approximation described by (D1) results in

a relative error on the integral of 3� 10�4 for a value of

Dt ¼ 10�8s and a relative error on the integral of 3� 10�3

when Dt ¼ 10�9s.

For ci ¼ 300 GHz, we will consider that the approxima-

tion is valid as soon as Dt � 10�8s.

2. Approximate value of
sinc2½ð2kpðxpÞ2ksðXÞ2kiðDmsi2XÞÞ L

2
�

The value jSsiðX;Dmsi � XÞj2 where SsiðX;X0Þ is defined

by Eq. (10) appears in a number of equations, multiplied by

a Lorentzian centered on X ¼ 0 and integrated from X
¼ �1 to X ¼ þ1 [such as in Eq. (13) where Dmsi ¼ 0]. In

those cases, it is approximated by 1 when ms¼mi.

We validate this approximation in the case of the

VCSEL described in Appendix A. We first note that the

argument of the sinc function is 0 when X¼ 0 (because ksð0Þ
and kiðDmsiÞ are resonant modes that ensure phase matching

when ms¼mi). We then try to evaluate the maximum value

that the argument of the sinc function can take for non-zero

values of X in the case where X � cs, where cs is the full

width at half maximum of the Lorentzian.

The dispersion in the cavity is the highest at high fre-

quencies, and we calculate the argument of the sinc function

in the region ms ¼ mi ¼ 4 for X ¼ cs.

2kpðxpÞ � ksðXÞ � kiðDmsi � XÞ
� � L

2

� 2kpðxpÞ � ksð0Þ � kið0Þ � X
@ks

@X
þ X

@ki

@X
Þ

� �
L

2

�X
@ki

@X
� @ks

@X

� �				
X¼0

L

2
� X

@k

@x

				
x¼xmi

� @k

@x

				
x¼xms

 !
L

2
:

For our VCSEL, we calculate numerically that @k
@x jx¼xmi

< @k
@x jx¼xms

. Both values have the same sign, and we can

write

j2kpðxpÞ � ksðcsÞ�kið�csÞj
L

2

� cs

				 @k

@x

				
x¼xms

j L
2
� csj

xms

c

@n

@x

				
x¼xms

þ nðxms
Þ

c

				L2 :
For xms

¼ 2:69� 1015s�1, we obtain numerically

@n

@x

				
x¼xms

� 3� 10�16s and

j2kpðxpÞ � ksðcsÞ�kiðDmsi � csÞj
L

2
� 0:0016:

This validates the approximation

jSsi X;Dmsi � Xð Þj2

¼ sinc2 2kpðxpÞ � ksðXÞ � kiðDmsi � XÞ
� �L

2

� �
� 1

for relevant values of X (that is, X � cs) when ms¼mi.

3. Validity of perturbative treatment

The assumption Dt � 10�8s obtained in the large Dt
approximation in Sec. 1 of Appendix D combined with the

assumptions allowing a perturbative treatment, which were

Dt	 Dt=hwjwi and hwjwi=Dt	 cs=i, results in a limited

range of acceptable values for the calculated two-photon pro-

duction rate. The values obtained for the two-photon produc-

tion rate, in the range of 10�5 < hwjwi=Dt < 3� 105 with

cs ¼ ci ¼ 300 GHz (see Table I), are compatible with all the

assumptions.
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