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Abstract
We show that a proper expression of the uncertainty relation for a pair of 
canonically-conjugate continuous variables relies on entropy power, a standard 
notion in Shannon information theory for real-valued signals. The resulting 
entropy-power uncertainty relation is equivalent to the entropic formulation 
of the uncertainty relation due to Bialynicki-Birula and Mycielski, but 
can be further extended to rotated variables. Hence, based on a reasonable 
assumption, we give a partial proof of a tighter form of the entropy-power 
uncertainty relation taking correlations into account and provide extensive 
numerical evidence of its validity. Interestingly, it implies the generalized 
(rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the 
original entropy-power uncertainty relation implies Heisenberg relation. It is 
saturated for all Gaussian pure states, in contrast with hitherto known entropic 
formulations of the uncertainty principle.

Keywords: entropic uncertainty relation, entropy power, continuous variable, 
quantum optics

(Some figures may appear in colour only in the online journal)

1.  Introduction

The uncertainty principle lies at the heart of quantum physics. It exhibits one of the key diver-
gences between a classical and a quantum system. Classically, it is in principle possible to 
specify the precise value of all measurable quantities simultaneously in a given state of a 
system. In contrast, whenever two quantum observables do not commute, it is impossible to 
define a quantum state for which their values are simultaneously specified with infinite preci-
sion. A paradigmatic example is given by Heisenberg’s original formulation of the uncertainty 

A Hertz et al

Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states

Printed in the UK

385301

JPHAC5

© 2017 IOP Publishing Ltd

50

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/aa852f

Paper

38

1

20

Journal of Physics A: Mathematical and Theoretical

IOP

2017

1751-8121/17/385301+20$33.00  © 2017 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 50 (2017) 385301 (20pp) https://doi.org/10.1088/1751-8121/aa852f

mailto:ahertz@ulb.ac.be
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/aa852f&domain=pdf&date_stamp=2017-08-30
publisher-id
doi
https://doi.org/10.1088/1751-8121/aa852f


2

principle expressed in terms of variances of two canonically-conjugate variables [1, 2], such 
as position x̂ and momentum p̂, which was later generalized to a rotation-invariant form 
by Schrödinger [3] and Robertson [4]. A different kind of uncertainty relations, originated 
by Bialynicki-Birula and Mycielski [5] again for canonically-conjugate variables, relies on 
Shannon entropy instead of variances as a measure of uncertainty (it was later on developed 
for discrete observables of finite-dimensional systems [6–8], but we restrict to continuous-
variable observables here).

This entropic formulation of the uncertainty principle has recently attracted much attention 
in quantum information sciences because entropies are the natural quantities of interest in this 
area (see [9, 10] for a survey). In particular, an extended version of the entropic uncertainty 
relation was derived, where some available quantum side-information (e.g. a quantum mem-
ory) is taken into account [11, 12]. It expresses the tradeoff between the information that two 
parties may have on non-commuting observables, which is of particular relevance to quantum 
key distribution. A variant version of this uncertainty relation formulated in terms of smooth 
entropies [13] indeed provides a very useful tool for finite-key security analysis [14], going 
beyond asymptotic proofs. In the special case of continuous-variable quantum key distribu-
tion, the original entropic uncertainty relation [5] was first applied to proving the optimality of 
Gaussian individual attacks at the asymptotic key limit [15]. More recently, a finite-key analy-
sis for certain continuous-variable protocols was performed based on the smooth-entropy for-
malism extended to infinite dimensions [16].

Entropic uncertainty relations find other applications, for example, in the context of 
separability criteria. The Duan-Simon separability criteria [17, 18] based on variances for 
continuous-variables systems can be reformulated with entropies [19], yielding a more sensi-
tive detection of entanglement in some cases. Even more generally, a deep conceptual link 
between the entropic uncertainty relation and the wave-particle duality has been pointed out 
[20], which emphasizes the pivotal role of entropies in the uncertainty principle.

In this article, we investigate whether tighter entropic uncertainty relations can be derived, 
which, by taking correlations into account, are saturated for all Gaussian pure states (in anal-
ogy with the Schrödinger–Robertson uncertainty relations). To reach this goal, we make use 
of the entropy power, which is a standard notion in Shannon information theory for real-
valued signals. In section 2, we first review variance- and entropy-based uncertainty relations, 
and then define what we coin the entropy-power uncertainty relation for a pair of canonically-
conjugate variables, namely Nx Np � (�/2)2, where Nx and Np are entropy powers. It trivially 
implies the Heisenberg relation as a simple consequence of the definition of entropy power 
(actually, they coincide for Gaussian states). Then, in section 3, we find an extended form of 
the entropy-power uncertainty relation, which is stronger than the regular form for rotated 
variables as it builds on the covariance matrix γ. It reads as

Nx Np �
σ2

x σ
2
p

|γ|
(�/2)2� (1)

where σ2
x  and σ2

p  are variances. It is partially proven by making use of variational calculus, 
supplemented with some natural assumption on the concavity of the uncertainty functional. 
We also find an extended version of the above entropy-power (or entropic) uncertainty relation 
that is valid for n modes and is saturated for all n-mode Gaussian pure states (the proof is given 
in appendix B). In appendix A, we conduct extensive numerical tests in order to illustrate the 
validity of our extended uncertainty relations and conjectured concavity.
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2.  From variance-based to entropy-power uncertainty relations

2.1.  Variance-based uncertainty relations

The original uncertainty relation, due to Heisenberg [1] and Kennard [2], relies on the vari-
ances of x̂ and p̂. In the rest of this paper, we use quantum optics notations, so variables x̂ 
and p̂ stand for the quadrature components of a bosonic field (but they can, of course, also be 
viewed as the position and momentum variables of a mechanical degree of freedom). Using 
[x̂, p̂] = i�, the Heisenberg uncertainty relation is written as

σ2
x σ

2
p � (�/2)2� (2)

with variances σ2
x = 〈(x̂ − x̄)2〉 and σ2

p = 〈(p̂ − p̄)2〉, and mean values x̄ = 〈x̂〉 and p̄ = 〈p̂〉. 
Here, 〈·〉 ≡ Tr(ρ̂ ·) denotes the expectation value of ‘·’ in quantum state ρ̂ . With this conven-
tion, the vacuum noise variances are σ2

x,vac = σ2
p,vac = �/2. Relation (2) is invariant under 

(x, p)-displacements in phase space, since it only depends on central moments (esp. second-
order moments of the deviations from the means). Furthermore, it is saturated by all pure 
Gaussian states provided that they are squeezed in the x or p direction only. More precisely, if 
we define the covariance matrix

γ =

(
σ2

x σxp

σxp σ2
p

)
� (3)

where σxp = 〈{x̂, p̂}〉/2 − x̄p̄ is the symmetrized form of the central second-order cross 
moment, we note that the Heisenberg relation is saturated for pure Gaussian states provided 
the principal axes of γ are aligned with the x- and p-axes, namely σxp = 0. The principal axes 
are the xθ- and pθ-axes for which σxθ pθ = 0, where

x̂θ = cos θ x̂ + sin θ p̂ p̂θ = − sin θ x̂ + cos θ p̂� (4)

are obtained by rotating x and p by an angle θ as shown in figure 1.
The Heisenberg relation was improved by Schrödinger and Robertson [3, 4] by taking into 

account the anticommutator between the observables1. For two canonically-conjugate vari-
ables x̂ and p̂, it is written as

|γ| � (�/2)2� (5)

where |γ| = σ2
xσ

2
p − σ2

xp is the determinant of the covariance matrix. Importantly, relation (5) 
is saturated by all pure Gaussian states, regardless of the orientation of the principal axes of 

Figure 1.  Principal axes (xθ, pθ) of the covariance matrix γ, defined in such a way that 
σxθ pθ = 0.

1 For any pair of observables Â and B̂, the generalized form of the uncertainty relation is 

σ2
A σ

2
B � 1

4 |〈[Â, B̂]〉|2 + 1
4 |〈{Â′, B̂′}〉|2, where Â′ = Â − 〈Â〉 and B̂′ = B̂ − 〈B̂〉.
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the covariance matrix. Thus, this uncertainty relation has the nice property of being invariant 
under all Gaussian unitary transformations (displacements and symplectic transformations).

2.2.  Entropy-based uncertainty relations

The uncertainty principle may also be expressed using the entropy as a measure of uncertainty. 
In particular, Bialynicki-Birula and Mycielski [5] proved the following entropic uncertainty 
relation

h(x) + h( p) � ln(πe�)� (6)

where h(x) and h( p) are the Shannon differential entropies of the x- and p-quadratures, namely

h(x) = −
∫

Wx(x) lnWx(x) dx, h( p) = −
∫

Wp( p) lnWp( p) dp.

� (7)
Here, Wx(x) =

∫
W(x, p) dp and Wp( p) =

∫
W(x, p) dx denote the marginals of the Wigner 

function of state ρ̂ ,

W(x, p) =
1

2π�

∫ ∞

−∞
e−

ipy
� 〈x + y/2|ρ̂|x − y/2〉 dy� (8)

so they are classical probability densities.
Note that equation (6) may look wrong at first sight as we take the logarithm of a quantity 

with dimension �. This may be viewed as a feature of the differential entropy itself, since we 
have a similar issue in equation (7) itself, but the problem actually cancels out in equation (6) 
since we have dimension � on both sides of the equality. More rigorously, equation (6) may 
be understood as the limit of a discretized version of the entropic uncertainty relation, with a 
discretization step tending to zero [9]. This problem was absent in the original expression of 
this uncertainty relation [5] because the variable k = p/� was considered instead of p, giving 
h(x) + h(k) � ln(πe). Being aware of this slight abuse of notation, we prefer to keep � in the 
rest of this paper.

Just as the Heisenberg uncertainty relation, equation  (6) is saturated by pure Gaussian 
states whose principal axes are aligned with the x- and p-axes (i.e. σxp = 0). Indeed, for a 
Gaussian-distributed variable xG of variance σ2

x  and a Gaussian-distributed variable pG of vari-
ance σ2

p , we have

h(xG) =
1
2
ln(2πeσ2

x ), h( pG) =
1
2
ln(2πeσ2

p).� (9)

Hence, summing up these two entropies and using the fact that σ2
x σ

2
p = (�/2)2 for any pure 

Gaussian state whose principal axes are aligned with the x- and p-axes, we get

h(xG) + h( pG) = ln(πe�).� (10)

Remark that we may also re-express the entropic uncertainty relation in terms of relative 
entropies2. More precisely, using a measure of non-Gaussianity that relies on the relative 
entropy [21], we have

D(x‖xG) = h(xG)− h(x) � 0, D( p‖ pG) = h( pG)− h( p) � 0� (11)

2 The relative entropy between two probability densities f (x) and g(x) is defined as 
D( f‖g) =

∫
f (x) ln( f (x)/g(x)) dx. It exhibits the property that D( f‖g) � 0 and D( f‖g) = 0 if and only if 

f (x) = g(x), ∀x  (almost everywhere).
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so that the entropic uncertainty relation is equivalent to

D(x‖xG) + D( p‖ pG) � ln

(
σxσp

�/2

)
.� (12)

We see immediately that if the Heisenberg relation is saturated, σxσp = �/2, then 
D(x‖xG) = D( p‖ pG) = 0, which means that the x- and p-quadratures must both be Gaussian 
distributed. Thus, as emphasized in [22], the entropic uncertainty relation may also been 
viewed as an improved version of the Heisenberg relation where the lower bound is lifted up 
by exploiting an entropic measure of the non-Gaussianity of the state, namely

σ2
x σ

2
p � (�/2)2 e2D(x‖xG)+2D( p‖ pG).� (13)

2.3.  Entropy-power uncertainty relations

We will show now that it is possible to rewrite the entropic uncertainty relation in a form simi-
lar to the one expressed in terms of variances, provided we make use of the notion of entropy 
power3. The entropy power of the x- and p-quadratures are defined as

Nx =
1

2πe
e2 h(x), Np =

1
2πe

e2 h( p) ,� (14)

and we have Nx = σ2
x and Np = σ2

p  if and only if the x- and p-quadratures are Gaussian dis-
tributed. Thus, equation (6) can be simply reexpressed as

Nx Np � (�/2)2 ,� (15)

which is what we call an entropy-power uncertainty relation for a pair of canonically-conju-
gate variables, as presented in the introduction. It closely resembles the Heisenberg relation 
(2), but with entropy powers instead of variances.

Since Nx � σ2
x and Np � σ2

p , which reflects the fact that the Gaussian distribution maxi-
mizes the entropy for a fixed variance, we have the chain of inequalities

σ2
x σ

2
p � Nx Np � (�/2)2.� (16)

Hence, the entropy-power uncertainty relation implies the Heisenberg uncertainty relation, 
and they coincide for Gaussian x- and p-distributions (this was already mentioned in [5]). This 
can also be connected to relative entropies as a measure of non-Gaussianity. From the defini-
tion of Nx and Np, we get

h(x) =
1
2
ln(2πeNx), h( p) =

1
2
ln(2πeNp)� (17)

which implies that

D(x‖xG) =
1
2
ln

(
σ2

x

Nx

)
, D( p‖ pG) =

1
2
ln

(
σ2

p

Np

)
� (18)

or equivalently

3 The entropy power N(X) of a real-valued random variable X is defined as the variance of a Gaussian-distributed 
random variable having the same entropy as X (the mean of X plays no role since the entropy is translation-invari-
ant). Since the distribution with highest entropy for a given variance is the Gaussian distribution, N(X) � σ2

X , the 
equality being reached if and only if X is Gaussian distributed.

A Hertz et alJ. Phys. A: Math. Theor. 50 (2017) 385301
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σ2
x = Nx e2 D(x‖xG), σ2

p = Np e2 D( p‖ pG) .� (19)

It is clear that equation (15) becomes more stringent than equation (2) as soon as we deviate 
from a Gaussian state.

3.  Extended forms of entropic uncertainty relations

3.1.  Motivation

Our goal is to address the problem that, unlike the Schrödinger–Robertson uncertainty rela-
tion, the entropic uncertainty relation (6)—or equivalently the entropy-power uncertainty rela-
tion (15)—is not saturated by all pure Gaussian states but only by those whose principal axes 
are aligned with the x- and p-axes. In other words, we would like to make equation (6) or (15) 
depend on the possible correlations between x and p (as witnessed, for instance, by σxp �= 0). 
Ideally, the new inequality should have the property of being invariant under all Gaussian 
unitary transformations (displacements and symplectic transformations) and being saturated 
by all pure Gaussian states, regardless of the orientation of the principal axes.

A first natural idea is to make use of the joint differential entropy, which is defined as

h(x, p) = −
∫

f (x, p) ln f (x, p) dx dp� (20)

where f (x, p) is the joint probability density of the random variables x and p. The joint entropy 
can also be expressed as h(x, p) = h(x) + h( p)− I(x : p) where I(x : p) � 0 is the mutual 
information. Thus, one may think of improving the entropic uncertainty relation (6) by replac-
ing h(x) + h( p) with h(x, p). Moving the mutual information I(x : p) on the right-hand side 
of the inequality, it thus corresponds to an improvement of the lower bound. Moreover, h(x, p) 
has the invariance property that we seek. Indeed, if we transform the coordinates according 
to (x′ p′)T = S · (x p)T , where S is the transformation matrix, the joint differential entropy 
transforms as [23]

h(x′, p′) = h(x, p) + ln |S|.� (21)

Thus, if S corresponds to a symplectic transformation, |S| = 1, then the joint differential 
entropy remains invariant. Of course, h(x, p) is also invariant under (x,p)-displacement, so it 
looks like a good uncertainty functional.

However, we deal with quantum states, so the Wigner function W(x, p) is not a genuine 
probability density and may admit negative values. Hence, the joint differential entropy of 
W(x, p) is not always defined (one would need to compute the logarithm of negative values), 
and so is the mutual information I(x : p). Nevertheless, we conjecture that the joint differential 
entropy obeys a valid uncertainty relation if we restrict to states admitting a Wigner function 
that is non-negative everywhere, namely

h(x, p) � ln(πe�) ∀ states s.t. W(x, p) � 0.� (22)

This conjecture can equivalently be written as

h(x) + h( p) � ln(πe�) + I(x : p) ∀ states s.t. W(x, p) � 0,� (23)

which is an improvement over equation (6) since I(x : p) � 0.
A difficulty, however, is related to the fact that characterizing the set of states with posi-

tive Wigner functions is not an easy task [24]. In addition, for states admitting negative 
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Wigner functions, equations  (22) or (23) is useless. In appendix A, we run numerics to 
check the validity of equation  (23), and provide examples of states where equation  (23) 
gives a slightly better bound than equation  (6) although the correlation between x and p 
is not accessible via the second-order moments (σxp = 0) but via the mutual information 
I(x : p) only.

3.2. Tight entropy-power uncertainty relation involving the covariance matrix

Equations (22) or (23) are not valid for states with negative Wigner functions, but they give us 
a hint on how to proceed in order to infer an entropic uncertainty relation that is valid for all 
states and takes correlations into account. While the joint entropy and mutual information are 
not defined for all states, they are well defined for Gaussian states (since their Wigner function 
is always positive). In particular, the Gaussian mutual information is expressed as a function 
of the covariance matrix,

IG(x : p) =
1
2
ln
(
σ2

xσ
2
p/|γ|

)
� 0.� (24)

We obtain our tight entropic uncertainty relation simply by substituting I(x : p) with IG(x : p) 
in equation (22), namely

h(x) + h( p)− 1
2
ln

(
σ2

xσ
2
p/|γ|

)
� ln(πe�).� (25)

We will show below that (under some assumptions) this inequality holds for all states, regard-
less of whether the Wigner function is positive everywhere or not. Unlike equation (22), how-
ever, it is not invariant under rotations. Note that IG(x : p) vanishes if the principal axes of 
the covariance matrix are the x- and p-axes, i.e. σxp = 0, so that equation (25) reduces to the 
regular entropic uncertainty relation (6) in this case.

As before, it is useful to rewrite our new relation in terms of entropy powers (as we pre-
sented it in the introduction), resulting in

Nx Np �
σ2

x σ
2
p

|γ|
(�/2)2� (26)

which can be viewed as an improved version of the entropy-power uncertainty relation (15), 
where the lower bound (�/2)2 is lifted up when the principal axes differ from the x- and p-axes 
(σxp �= 0). If the principal axes correspond to the x- and p-axes, we recover equation  (15). 
Alternatively, we may also reexpress our new relation as

Nx Np

σ2
x σ

2
p
|γ| � (�/2)2.� (27)

Then, using Nx � σ2
x and Np � σ2

p , we see that our tight entropy-power inequality (26) implies 
the Schrödinger–Robertson uncertainty relation, namely

|γ| �
Nx Np

σ2
x σ

2
p
|γ| � (�/2)2.� (28)

These two inequalities coincide for Gaussian x- and p-distributions. Furthermore, they are 
both saturated for pure Gaussian states regardless the orientation of the principal axes (since 
|γ| = (�/2)2 and Nx = σ2

x, Np = σ2
p).

A Hertz et alJ. Phys. A: Math. Theor. 50 (2017) 385301
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In addition, we may reexpress equation (26) as

|γ| �
σ2

x σ
2
p

Nx Np
(�/2)2� (29)

which can be viewed as an improved version of the Schrödinger–Robertson uncertainty rela-
tion where the lower bound (�/2)2 is lifted up when the x- and p-distributions deviate from 
Gaussian distributions. In terms of non-Gaussianity measures based on relative entropies, it 
transforms into

D(x‖xG) + D( p‖ pG) � ln

(√
|γ|

�/2

)
� (30)

which is the counterpart of equation (12) but having replaced σ2
x σ

2
p  with |γ|, just as we do 

when going from the Heisenberg to the Schrödinger–Robertson relation. It also corresponds 
to a stronger version of equation (13), which reads

|γ|1/2 � (�/2) eD(x‖xG)+D( p‖ pG).� (31)

To be complete, let us mention that we can express our tight entropic uncertainty relation 
(25) as

h(x) + h( p) � h(xG) + h( pG) + ln(µG)� (32)

where xG (pG) is Gaussian distributed with variance σ2
x  (σ2

p) and µG = trρ 2
G  is the purity of the 

Gaussian state ρG  associated to the covariance matrix γ.
Finally, note that our conjectured rotation-invariant uncertainty relation (22) based on the 

joint entropy is obviously equivalent to equation (25) for Gaussian states, so in both cases 
the bound is reached by any pure Gaussian state, regardless of the orientation of the principal 
axes. Thus, by taking the exponential of the joint entropy h(x, p) and using the fact that the 
maximum entropy is reached for a Gaussian distribution, a similar derivation shows that rela-
tion (22) also implies the Schrödinger–Robertson uncertainty relation.

3.3.  Partial proof of relation (25)

We now give a partial proof of our tight entropic uncertainty relation (25) by use of a varia-
tional method, in analogy to the procedure used in [25] to prove a noise-dependent entropic 
uncertainty relation. More precisely, we will prove that any squeezed vacuum state rotated by 
an arbitrary angle is a local minimum of the uncertainty functional

F(ρ̂) = h(x) + h( p)− 1
2
ln

(
σ2

xσ
2
p/|γ|

)
.� (33)

Since F(ρ̂) is invariant under (x, p)-displacements, it will imply that all Gaussian pure states 
are similarly local minima. We assume that these are the unique solutions of our minimization 
problem. By assuming that the uncertainty functional F(ρ̂) is concave in ρ, which we have 
verified numerically in section 4, we also conclude that relation (25) is valid for mixed states 
as well. We know that this situation prevails for the regular entropic uncertainty relation (6) 
as well as for our conjectured relation (22), so the above assumptions (unicity and concavity) 
are very natural.

Let us seek a pure state |ψ〉 that minimizes the functional F(|ψ〉〈ψ|). For this, we use 
the Lagrange multiplier method and insert the normalization of |ψ〉 as a constraint. Since 
F(|ψ〉〈ψ|) is invariant under displacements, we may also impose with no loss of generality the 
constraint that mean values vanish, 〈x̂〉 = 〈p̂〉 = 0. We define

A Hertz et alJ. Phys. A: Math. Theor. 50 (2017) 385301
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J = F(|ψ〉〈ψ|) + λ(〈ψ|ψ〉 − 1) + µ〈ψ|x̂|ψ〉+ ν〈ψ|p̂|ψ〉� (34)

where λ, μ and ν are Lagrange multipliers. Since we impose the state to be normalized and 
centered on zero, we can express the second-order moments as σ2

x = 〈ψ|x̂2|ψ〉, σ2
p = 〈ψ|p̂2|ψ〉, 

and σxp = 1
2 〈ψ|{x̂, p̂}|ψ〉, so that we may replace the functional F(|ψ〉〈ψ|) in J by

F̃(|ψ〉〈ψ|) = h(x) + h( p)− 1
2
ln

(
〈ψ|x̂2|ψ〉〈ψ|p̂2|ψ〉

〈ψ|x̂2|ψ〉〈ψ|p̂2|ψ〉 − 1
4 〈ψ|{x̂, p̂}|ψ〉2

)
.

� (35)
Now, in order to solve the variational equation

∂J
∂〈ψ|

= 0� (36)

we start by expressing the variational derivative of each term of J separately. The first term 
gives

∂h(x)
∂〈ψ|

=
∂

∂〈ψ|

(
−
∫

Wx(x) lnWx(x)dx
)

=
∂

∂〈ψ|

(
−
∫
〈ψ|x〉〈x|ψ〉 ln(〈ψ|x〉〈x|ψ〉)dx

)

= − (lnWx(x̂) + 1) |ψ〉

�

(37)

and, similarly, the second term gives

∂h( p)
∂〈ψ|

= − (lnWp(p̂) + 1) |ψ〉.� (38)

For the third term, we use

∂

∂〈ψ|
ln

(
〈ψ|x̂2|ψ〉〈ψ|p̂2|ψ〉

〈ψ|x̂2|ψ〉〈ψ|p̂2|ψ〉 − 1
4 〈ψ|{x̂, p̂}|ψ〉2

)

=

[
x̂2

σ2
x
+

p̂2

σ2
p
−

x̂2σ2
p + p̂2σ2

x − {x̂, p̂}σxp

|γ|

]
|ψ〉

�

(39)

while the last terms give

∂

∂〈ψ|

(
λ(〈ψ|ψ〉 − 1) + µ〈ψ|x̂|ψ〉+ ν〈ψ|p̂|ψ〉

)
= (λ+ µx̂ + νp̂) |ψ〉.� (40)

Putting all this together, the variational equation (36) can be rewritten as an eigenvalue equa-
tion for |ψ〉,
[
− lnWx(x̂)− lnWp(p̂)− 2 + λ+ µx̂ + νp̂ − x̂2

2σ2
x
− p̂2

2σ2
p
+

x̂2σ2
p + p̂2σ2

x − {x̂, p̂}σxp

2|γ|

]
|ψ〉 = 0.

� (41)

Let us check that equation (41) is verified by |ψ〉 = Ŝ|0〉, that is, by a squeezed vacuum state 

with Ŝ = exp{ 1
2 (z

∗â2 − zâ†2
)}, where z = reiφ is a complex number. For such a state, the 

marginals of the Wigner functions are given by

Wx(x) = (2πσ2
x )

− 1
2 e

− x2

2σ2
x , Wp( p) = (2πσ2

p)
− 1

2 e
− p2

2σ2
p ,� (42)
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so that

lnWx(x̂) + lnWp(p̂) = − ln(2πσxσp)−
x̂2

2σ2
x
− p̂2

2σ2
p

.� (43)

Hence, we can simplify the eigenvalue equation as
[
ln(2πσxσp)− 2 + λ+ µx̂ + νp̂ + Â

]
|ψ〉 = 0� (44)

where we have defined the operator

Â =
x̂2σ2

p + p̂2σ2
x − {x̂, p̂}σxp

2|γ|
=

1
2
(
x̂ p̂

)
γ−1

(
x̂
p̂

)
.� (45)

Let us now compute the action of Â on the squeezed vacuum state, that is, 
Â|ψ〉 = ÂŜ|0〉 = Ŝ(Ŝ†ÂŜ)|0〉. For this, we use the canonical transformation of x̂ and p̂ in the 
Heisenberg picture, namely

(
Ŝ†x̂Ŝ
Ŝ†p̂Ŝ

)
= M

(
x̂
p̂

)
� (46)

with

M =

(
cos θ − sin θ

sin θ cos θ

)(
e−r 0
0 er

)(
cos θ sin θ

− sin θ cos θ

)

=

(
cosh r − cosφ sinh r − sinφ sinh r

− sinφ sinh r cosh r + cosφ sinh r

)

�

(47)

with φ = 2θ. The covariance matrix γ of state |ψ〉 can be expressed with transformation M 
applied onto the covariance matrix of the vacuum state γvac, namely

γ = MγvacMT .� (48)

Using equations (46) and (48), we get

Â|ψ〉 = 1
2

Ŝ
(
x̂ p̂

)
MTγ−1M

(
x̂
p̂

)
|0〉

=
1
2

Ŝ
(
x̂ p̂

)
γ−1

vac

(
x̂
p̂

)
|0〉 = Ŝ|0〉 = |ψ〉

�

(49)

implying that the squeezed vacuum state |ψ〉 is an eigenvector of Â with eigenvalue 1. 
Therefore, the eigenvalue equation can be written as

[ln(2πσxσp)− 1 + λ+ µx̂ + νp̂] |ψ〉 = 0.� (50)

We can determine the value of λ by multiplying this equation on the left by 〈ψ| and using the 
constraints 〈ψ|ψ〉 = 1 and 〈ψ|x̂|ψ〉 = 〈ψ|p̂|ψ〉 = 0, namely

〈ψ| ln(2πσxσp)− 1 + λ+ µx̂ + νp̂|ψ〉 = ln(2πσxσp)− 1 + λ = 0.� (51)

Therefore, state |ψ〉 is indeed a solution of our extremization problem if we set 
λ = 1 − ln(2πσxσp). We are left with equation

[µx̂ + νp̂] |ψ〉 = 0� (52)

which is satisfied if we set µ = ν = 0. Summing up, we have proven that, with the appropri-
ate choice of λ, μ and ν, the squeezed vacuum states (with arbitrary squeezing and rotation) 
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are solutions of equation (41), so they minimize our uncertainty functional F(|ψ〉〈ψ|). Since 
F(|ψ〉〈ψ|) is invariant under displacements, the displaced squeezed states are also solutions, 
so this result includes all pure Gaussian states. We find the minimum value ln(πe�) simply by 
evaluating F for any of these states.

As mentioned above, this proof does not imply that the pure Gaussian states are the only 
minimum-uncertainty states, and we also need to assume the concavity of our uncertainty 
functional in order to extend the proof to mixed states. However, these are very natural 
assumptions, which are verified in the special case of states with σxp = 0 since then we are 
back to the regular entropic uncertainty relation. Moreover, in appendix A, we give strong 
numerical evidence that our tight entropic uncertainty relation is valid. Other numerical tests 
also corroborate the concavity property of the uncertainty functional, while this property is 
proven in the special case when two states with the same covariance matrix are mixed.

3.4.  Generalization to n modes

In [5], Bialynicki-Birula and Mycielski also extended the entropic uncertainty relation to n 
modes, namely

h(�x) + h(�p) � n ln(πe�)� (53)

where the joint differential entropies h(�x) and h(�p) are computed from the marginals of the 
Wigner functions Wx(�x) and Wp(�p), with �x = (x1, x2, · · · , xn) and �p = ( p1, p2, · · · , pn). In 
addition, another n-mode uncertainty relation was expressed in [26] for two observables Â and 
B̂ defined as linear combinations of the x̂i and p̂i variables.

Naturally, both our entropic uncertainty relations can also be extended to n modes. First, 
our conjectured rotation-invariant uncertainty relation based on the joint entropy (22) becomes

h(�r) � n ln(πe�) ∀ states s.t. W(�r) � 0� (54)

where �r = (x1, p1, x2, p2, ..., xn, pn). Here, the joint differential entropy h(�r) is invariant under 
Gaussian n-mode unitaries (all symplectic transformations and displacements) and our con-
jectured uncertainty relation (54) is saturated for all n-mode Gaussian pure states.

Second, our tight entropic uncertainty relation (25) can also be extended to

h(�x) + h(�p)− 1
2
ln

(
|γx‖γp|
|γ|

)
� n ln(πe�)� (55)

where the covariance matrix γ is defined as γij = Tr[ρ̂ {ri, rj}]/2 − Tr[ρ̂ ri]Tr[ρ̂ rj] and γx (γp) 
is the reduced covariance matrix of the x ( p ) quadratures. The proof of this relation can be 
found in appendix B (it is obtained following the same variational method as in the one-mode 
case). Equation (55) is again saturated by all n-mode Gaussian pure states, as we can easily 
check by using the fact that

h(�x) =
1
2
ln((2πe)n|γx|), h(�p) =

1
2
ln((2πe)n|γp|)� (56)

for Gaussian distributions, while |γ| = (�/2)2n for Gaussian pure states.
In particular, relation (55) is thus saturated by the two-mode vacuum squeezed state with 

covariance matrix

γ =
�
2




cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r


 ,� (57)
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obtained by injecting an x-squeezed state and a p-squeezed state (both with a squeezing 
parameter r) on a balanced beam splitter. This is easy to check by computing the entropies 
with equation  (56) and using |γx| = |γp| = (�/2)2 and |γ| = (�/2)4. However, the regular 
entropic uncertainty relation (53) is already saturated for this state, which is expected since 
the state exhibits no x-p correlations. More interestingly, the state resulting from two rotated 
squeezed states (one being rotated by π/4, the other by −π/4) injected on a balanced beam 
splitter still saturates relation (55), while it does not any more saturate relation (53). Indeed, 
the covariance matrix of this state reads

γ =
�
2




cosh 2r 0 0 − sinh 2r
0 cosh 2r − sinh 2r 0
0 − sinh 2r cosh 2r 0

− sinh 2r 0 0 cosh 2r


 .� (58)

so that we get h(�x) + h(�p) = 2 ln (πe� cosh 2r) > 2 ln (πe�). But since |γx| = |γp| =
(�/2)2 cosh2 2r  and |γ| = (�/2)4, we get − 1

2 ln
(

|γx‖γp|
|γ|

)
= −2 ln (cosh 2r), implying that 

relation (55) is saturated by this state.
In this context, it is also interesting to rewrite the tight entropic uncertainty relation (55) 

in terms of entropy powers, defined this time for the joint entropy in n dimensions, namely

N(n)
x =

1
2πe

e
2
n h(�x), N(n)

p =
1

2πe
e

2
n h(�p).� (59)

Equation (53) then transforms into a n-mode entropy-power uncertainty relation

N(n)
x N(n)

p � (�/2)2 ,� (60)

which has the same form as relation (15) but for n modes, while equation (55) transforms into 
a tight version of the n-mode entropy-power uncertainty relation

N(n)
x N(n)

p �

(
|γx| |γp|
|γ|

)1/n

(�/2)2 ,� (61)

which is the n-mode counterpart of equation (26).
Here too, we can use the fact that the maximum entropy for a fixed covariance matrix 

is given by the Gaussian distribution, which implies that N(n)
x � |γx|1/n and N(n)

p � |γp|1/n. 
Rewriting equation (61) as

(
N(n)

x N(n)
p

)n

|γx| |γp|
|γ| � (�/2)2n ,� (62)

we then see that the n-mode entropy-power uncertainty relation implies the standard (vari-
ance-based) n-mode uncertainty relation, namely

|γ| �

(
N(n)

x N(n)
p

)n

|γx| |γp|
|γ| � (�/2)2n.� (63)

4.  Conclusion

We have shown that the entropic uncertainty relation derived by Bialynicki-Birula and Mycielski 
can be expressed as an entropy-power uncertainty relation, which makes a straightforward 
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connection with Heisenberg uncertainty relation : the variances in the latter are simply replaced 
with entropy powers in the former. Moreover, the entropic version of the uncertainty relation 
implies the variance-based one as a consequence of the fact that the entropy power of a vari-
able cannot exceed its variance. Then, we have found a tighter form of the entropic uncertainty 
relation, which takes the correlation between the x- and p-variables into account. It can also be 
expressed as a tighter entropy-power uncertainty relation, equation (1), and is saturated for all 
pure Gaussian states. It is the entropic counterpart of the Schrödinger–Robertson uncertainty 
relation, which it implies. We have provided a partial proof of equation (1) based on variational 
calculus together with some reasonable assumptions, and have provided, in the appendix A, 
strong numerical evidence that it is correct. Interestingly, this tighter entropic and entropy-
power uncertainty relations can be extended to n modes, and all the above-mentioned proper-
ties remain true. Our main result was inspired from another conjectured uncertainty relation 
involving the joint entropy, equation (22), which is more elegant (it is explicitly invariant under 
all Gaussian unitaries – displacements, squeezing, and rotations) but is only defined for states 
with a non-negative Wigner function. We have numerically verified its validity, but leave its 
proof for further work. Its n-mode extension is also straightforward.

Possible applications of these new entropic uncertainty relations include the elaboration 
of stronger separability criteria for continuous-variable systems. Both variance- and entropy-
based uncertainty relations can be translated into a sufficient entanglement condition (a neces-
sary and sufficient condition for Gaussian states) as they can be used to express a condition 
on the physicality of the partially-transposed state [17–19]. For example, in [28] it was shown 
that an uncertainty relation that is tight for all Fock states [29] yields an entanglement crite-
rion that enables the detection of certain non-Gaussian entangled states whose entanglement 
remains undetected by the Duan-Simon criterion. Thus, a natural direction for further work 
would be to exploit our tighter entropic uncertainty relations in order to improve our tools for 
discriminating entangled from separable states in continuous-variable quantum systems.

Note: The present paper was presented at the 23rd Central European Conference on Quantum 
Optics (CEWQO 2016), Kolymbari, Greece, June 2016. After completion of this work, we 
learned about an independent work where the entropy power is mentioned in the context of 
uncertainty relations [30].
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Appendix A.  Numerical tests

A.1.  Numerical tests of the uncertainty relation (22)

We have not been able to find an analytical proof of our conjectured rotation-invariant uncer-
tainty relation (22) based on the joint entropy, so we have turned to numerical tests. Since 
relation (22) is restricted to states with positive Wigner functions, we have tested, in particular, 
passive states of the harmonic oscillator, i.e. mixtures of Fock states with decreasing weight 
for increasing photon number [27].
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In figure A1, we consider extremal passive states (i.e. passive states with equal weights up to 
a certain photon number N and vanishing weights for larger photon numbers) and have plotted 
the joint entropy h(x, p) as a function of N, see red crosses. The dashed line is the lower bound 
ln(πe�), so we clearly see that the uncertainty relation (22) is obeyed. Since h(x, p) is concave 
in the state, proving (22) for extremal passive states would actually suffice to prove it for all 
passive states. For comparison with the regular entropic uncertainty relation (6), we have also 
plotted h(x) + h( p), see blue dots, which illustrates that our rotation-invariant uncertainty 

Figure A1.  Test of the uncertainty relation (22) based on the joint entropy for extremal 
passive states, with N being the highest photon number of the state. The blue dots 
correspond to h(x) + h( p), the red crosses correspond to h(x, p), while the dashed line 
is the lower bound ln(πe) (we take � = 1).

Figure A2.  Test of the tight entropic uncertainty relation (25) for random pure states 
generated by applying a 4 × 4 random unitary onto the vacuum state. The blue dots 
correspond to h(x) + h( p), while the red curve represents the improved lower bound 
ln(πe) + IG(x : p) (we take � = 1). All quantities are plotted as a function of the 
correlation coefficient ρ.
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relation provides an improvement. Although the improvement is minor in this example, it is 
worth noting that equation (22) takes into account some x-p correlations that are not visible in 
the second-order moments (all passive states have σxp = 0), so no improvement at all would 
be obtained with our entropic uncertainty relation (25) relying on the covariance matrix.

Figure A3.  Test of the tight entropic uncertainty relation (25) for slightly non-Gaussian 
states of the form |ψ〉 ∝ (|s〉+ ε|φ〉) where |s〉 is a squeezed state (with s = 1.5) along 
an axis rotated by an angle of θ = π/4, |φ〉 is a random pure state as in figure A2, and 
ε = 0.01. The blue dots correspond to h(x) + h( p), while the red curve represents the 
improved lower bound ln(πe) + IG(x : p) (we take � = 1). All quantities are plotted as 
a function of the correlation coefficient ρ. A zoom in of the interesting region is shown 
in this figure .

Figure A4.  Test of the concavity of the uncertainty functional F(ρ) used in 
relation (25). We consider three different binary mixtures tuned by parameter λ: 
λ|0〉〈0|+ (1 − λ)|1〉〈1|, λ|2〉〈2|+ (1 − λ)|0〉〈0|, and λ|ψ〉〈ψ|+ (1 − λ)|φ〉〈φ|, where 
|ψ〉 = 7i|0〉+ |2〉 and |φ〉 = (3i + 1)|0〉+ (2 + 5i)|1〉+ (1 + 3i)|2〉+ (6 + 8i)|3〉.
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We have also numerically tested other states with positive Wigner functions which are 
closer to the bound, such as mixtures of two squeezed states, and relation (22) was verified in 
every tested case.

A.2.  Numerical tests of the uncertainty relations (25) and (26)

We have also conducted many numerical tests in order to verify the accuracy of the tight 
entropic uncertainty relation. For numerical purposes, it was simpler to consider the uncer-
tainty relation in its form with differential entropies, equation (25). First, we have considered 
random pure states, which we generated by applying a random unitary transformation to the 
vacuum state. In figure A2, each blue dot corresponds to h(x) + h( p) as computed for a ran-
dom state generated with a 4 × 4 unitary matrix (each state belongs to the space spanned by 
the Fock states |n〉 with n = 0, 1, 2, 3). The red curve represents the improved lower bound on 
h(x) + h( p) that results from equation (25), namely ln(πe�) + IG(x : p). Here, the Gaussian 
mutual information is expressed as

IG(x : p) = −1
2
ln
(
1 − ρ2)� (A.1)

where ρ = σxp/(σxσp) stands for the correlation parameter. We clearly see that all points lie 
above the improved lower bound, corroborating the new entropic uncertainty relation (25). 
Note that other tests have been carried out with unitary transformations of greater dimensions, 
but this generally yields states with greater values of h(x) + h( p), which are less interesting 
for verification purposes.

As a more stringent test, we have computed h(x) + h( p) for some slightly non-Gaussian 
pure states lying in the neighborhood of the Gaussian pure states that saturate the uncertainty 
relation. To do so, we generated states of the form |ψ〉 ∝ (|s〉+ ε|φ〉) where |s〉 is a squeezed 
state, |φ〉 is any other pure state and ε � 1. In figure A3, we have chosen |φ〉 as some random 
pure state generated by the above method, ε = 0.01, and a squeezed state |s〉 along an axis 
rotated by an angle of θ = π/4 with the x-axis (with a squeezing parameter s ≡ er = 1.5).  
Its wave function has the form

〈x|s〉 = 4

√
2s2

π (s4 + 1)
exp

(
i
(
s2 + i

)
x2

2 (s2 − i)

)
� (A.2)

which is non-Gaussian, implying that it cannot saturate the ordinary entropic uncertainty rela-
tion (6). We have verified that, even if they lie very close to the boundary, all states |ψ〉 verify 
the tight entropic uncertainty relation. Similar simulations have also been performed with 
squeezed states of different parameters and with different values of ε, yet no counterexample 
was found.

A.3.  Concavity of the uncertainty functional

The regular entropic uncertainty relation (6) was proven for pure states in [5]. However, since 
the differential entropy is a concave function of the probability distribution, it is valid to 
mixed states as well (as mentioned in [5]). Decomposing a mixed state into pure states, the 
concavity implies that pure states are the ‘worst cases’, i.e. the lowest value of the functional 
h(x) + h( p). Naturally, we also need to investigate the concavity of our new uncertainty func-
tionals. For our conjectured rotation-invariant uncertainty relation based on the joint entropy, 
we know that the joint differential entropy is concave since we limit ourselves to positive 
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Wigner functions, which can be viewed as classical joint probability distributions. Hence, the 
left-hand side term of equation (22) is a concave function of the state.

In contrast, it seems hard to prove the concavity of the uncertainty functional F(ρ̂) 
of equation  (33) which appears in the left-hand side of the tight entropic uncertainty 
relation (25). This is because while h(x) and h( p) are concave, IG(x : p) is not con-
vex. And even if it is known that log(|γ|) is concave [23], nothing can be said about 
log(σ2

xσ
2
p). Nevertheless, numerical tests corroborate the fact that F(ρ̂) is a concave func-

tion of the state. As an example, we have analyzed mixtures of two pure states of the form 
λ|ψ1〉〈ψ1|+ (1 − λ)|ψ2〉〈ψ2|, with 0 � λ � 1. In figure A4, we have numerically verified that 
F(λ|ψ1〉〈ψ1|+ (1 − λ)|ψ2〉〈ψ2|) � λF(|ψ1〉〈ψ1|) + (1 − λ)F(|ψ2〉〈ψ2|).

Interestingly, we can prove the concavity of F(ρ̂) in some special case by using the expres-
sion of the entropic uncertainty relation in terms of non-Gaussianity measures based on 
relative entropies, equation (30). We consider the mixture of two states that have the same 
first- and second-order moments. Hence, the right-hand side term of equation (30) is constant 
and we need to prove that

D(λx1 + (1 − λ)x2 ‖ [λx1 + (1 − λ)x2]G) � λD(x1 ‖ [x1]G) + (1 − λ)D(x2 ‖ [x2]G)
� (A.3)

where [x]G  means that we take the Gaussian distribution that leads to the same variance as the 
probability distribution of x. (Of course, we have an identical inequality for the p quadrature.) 
By comparison, the convexity of the relative entropy implies that

D(λx1 + (1 − λ)x2 ‖λ[x1]G + (1 − λ)[x2]G) � λD(x1 ‖ [x1]G) + (1 − λ)D(x2 ‖ [x2]G)
� (A.4)

which is equivalent to the previous inequality since we mix up distributions with the same 
first- and second-order moments.

Remark that the uncertainty relation (25) is invariant under displacements, so that, with 
no loss of generality, we only need to consider states with zero mean values. Thus, we have 
proven the concavity of F(ρ̂) when two states with the same covariance matrix are mixed.  
Yet, in the general case, we have not been able to prove the concavity.

Appendix B.  Partial proof of equation (55)

The proof follows the same variational method used in the one-mode case, that is, we prove 
that any n-mode squeezed vacuum state is a local minimum of the uncertainty functional

F(ρ̂) = h(�x) + h(�p)− 1
2
ln

(
|γs‖γp|
|γ|

)
.� (B.1)

Since F(ρ̂) is invariant under (�x,�p)-displacements, it will imply that all Gaussian pure states 
are similarly local minima. Note that we assume, as for the one-mode case, that these are the 
unique solutions of our minimization problem and that the uncertainty functional F(ρ̂) is con-
cave in ρ̂ , so that (55) is valid for mixed states as well.

We seek an n-mode pure state |ψ〉 that minimizes the functional F(|ψ〉〈ψ|) with constraints 
on the normalization of |ψ〉 and mean values of �x  and �p  quadratures. We use the Lagrange 
multiplier method with

J = h(�x) + h(�p)− 1
2
ln |γx| −

1
2
ln |γp|+

1
2
ln |γ|+ λ(〈ψ|ψ〉 − 1) +

2n∑
i=1

µi〈ψ|r̂i|ψ〉.

� (B.2)
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Here, λ and µi are Lagrange multipliers, while the elements of the covariance matrix γ can be 
expressed as γij = 〈ψ|̂rir̂j + r̂jr̂i|ψ〉/2 since the states are normalized and centered on 0. As 

in the one-mode case, we solve the variational equation  ∂J
∂〈ψ| = 0, so we write the derivative 

of each term

∂h(�x)
∂〈ψ|

= − (lnWx(�x) + 1) |ψ〉 ∂h(�p)
∂〈ψ|

= − (lnWp(�p) + 1) |ψ〉.� (B.3)

For the three terms involving the derivative of the determinant of a matrix, we use Jacobi’s 
formula so that

∂

∂〈ψ|
ln |γx| =

1
|γx|

∂

∂〈ψ|
|γx| =

1
|γx|

Tr
[
|γx|γ−1

x
∂γx

∂〈ψ|

]

=

n∑
i=1

n∑
j=1

γ−1
xik

∂γxki

∂〈ψ|
=

n∑
i=1

n∑
j=1

γ−1
xik

(x̂kx̂i + x̂ix̂k)

2
|ψ〉

=




n∑
i=1

n∑
j=1

x̂kγ
−1
xik

x̂i

2
+

n∑
i=1

n∑
j=1

x̂iγ
−1
xik

x̂k

2


 |ψ〉 = �xTγ−1

x �x |ψ〉.

�

(B.4)

where we used the fact that γ−1
ik = γ−1

ki  since the matrix is symmetric. Similary, we find

∂

∂〈ψ|
ln |γp| = �pTγ−1

p �p |ψ〉, ∂

∂〈ψ|
ln |γ| = �rTγ−1�r |ψ〉.� (B.5)

Finally, the last terms give

∂

∂〈ψ|

(
λ(〈ψ|ψ〉 − 1) +

2n∑
i=1

µi〈ψ|̂ri|ψ〉
)

=

(
λ+

2n∑
i=1

µir̂i

)
|ψ〉.� (B.6)

so that the variational equation can be rewritten as an eigenvalue equation for |ψ〉,
[
−lnWx(�x)− lnWp(�p)− 2 + λ+

2n∑
i=1

µix̂i −
1
2
�xTγ−1

x �x − 1
2
�pTγ−1

p �p +
1
2
�rTγ−1�r

]
|ψ〉 = 0.

� (B.7)

We now check that equation (B.7) is verified by |ψ〉 = Ŝ|0〉, that is, by any n-mode squeezed 
vacuum state. For such a state, the marginals of the Wigner functions are given by

Wx(�x) = ((2π)n|γx|)−
1
2 e−

1
2�x

Tγ−1
x �x, Wp(�p) = ((2π)n|γp|)−

1
2 e−

1
2�p

Tγ−1
p �p,

� (B.8)
so that

lnWx(�x) + lnWp(�p) = − ln

(
(2π)n

√
|γx‖γp|

)
− 1

2
�xTγ−1

x �x − 1
2
�pTγ−1

p �p.

� (B.9)

We apply 1
2 �r

T γ−1�r  on the squeezed vacuum state |ψ〉 by using the canonical transformation 
of �r  in the Heisenberg picture, namely Ŝ†�r Ŝ = M�r , we find

1
2
�rT γ−1�r |ψ〉 = 1

2
�rT γ−1�r Ŝ|0〉 = 1

2
Ŝ�rT MTγ−1M�r |0〉

=
1
2

Ŝ�rT γ−1
vac�r |0〉 = Ŝ|0〉 = |ψ〉

�

(B.10)
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since the covariance matrix γ of state |ψ〉 can be expressed as γ = MγvacMT. This implies that 
state |ψ〉 is an eigenvector of 12 �r

T γ−1�r  with eigenvalue 1. Therefore, using this result together 
with equation (B.9), the eigenvalue equation for |ψ〉 can be written as[

ln

(
(2π)n

√
|γx‖γp|

)
− 1 + λ+

2n∑
i=1

µir̂i

]
|ψ〉 = 0.� (B.11)

The value of λ is found by multiplying this equation on the left by 〈ψ| and by using the con-
straints 〈ψ|ψ〉 = 1 and 〈ψ|̂ri|ψ〉 = 0 for all i, namely

〈ψ|

[
ln

(
(2π)n

√
|γx‖γp|

)
− 1 + λ+

2n∑
i=1

µir̂i

]
|ψ〉 = 0 ⇒ λ = 1 − ln

(
(2π)n

√
|γx‖γp|

)
.

� (B.12)
We are now left with equation

[
2n∑

i=1

µir̂i

]
|ψ〉 = 0� (B.13)

which is satisfied if we set all the µi = 0.
In conclusion, we have proven that, with the appropriate choice of λ and µi, the n-mode 

squeezed vacuum states are solutions of equation (B.7), so they minimize our uncertainty func-
tional F(|ψ〉〈ψ|). Since F(|ψ〉〈ψ|) is invariant under displacements, the displaced squeezed 
vacuum states are also solutions, so this minimization result encapsulates all pure Gaussian 
states. We find the minimum value n ln(πe�) by evaluating F for any of these states.
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