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Abstract

This report applies the theory of continuous majorization to quantum phase distri-
butions. To this purpose, we restrict our study to nonnegative Wigner distributions.
The physicality conditions in phase space formalism are addressed. Wigner entropy is
introduced as the differential entropy of nonnegative Wigner distributions. The initial
objective of this report is to prove the conjecture of Hertz, Jabbour and Cerf show-
ing that vacuum is the state of least Wigner entropy. That aim is not reached here, but
a scheme of demonstration is proposed. The demonstration involves the properties of
pure loss channels and decreasing rearrangements. A majorization criterion is derived
using Lindblad equation applied to pure loss channels. That criterion ensures that the
instantaneous output of a pure loss channel majorizes its input, under some conditions.
Finally, numerical simulations are presented to illustrate the validity of the conjecture.

Keywords : Continuous majorization, decreasing rearrangements, phase space represen-
tation, nonnegative Wigner distributions, physicality, entropy, pure loss channels, Lind-
blad equation.



Résumé

Ce rapport applique la théorie de la majorisation continue aux distributions quantiques
dans l’espace des phases. Dans ce but, nous restreignons notre étude aux distributions de
Wigner non négatives. Nous abordons les conditions de physicalité dans le formalisme de
l’espace des phases. Nous introduisons l’entropie de Wigner comme l’entropie différentielle
des fonctions de Wigner non négatives. L’objectif initial de ce rapport est de prouver la
conjecture de Hertz, Jabbour et Cerf indiquant que le vide est l’état à l’entropie de
Wigner la plus faible. Ce but n’est pas atteint ici, mais nous proposons un schéma de
démonstration. La démonstration a recours aux propriétés des canaux à perte pure et des
réarrangements décroissants. Un critère de majorisation est établi à partir de l’équation
de Lindblad appliquée aux canaux à perte pure. Ce critère assure que la sortie instantanée
d’un canal à perte pure majorise son entrée, sous certaines conditions. Pour finir, nous
présentons des simulations numériques illustrant la validité de la conjecture.

Mots-clés : Majorisation continue, réarrangements décroissants, représentation dans l’es-
pace des phases, distributions de Wigner non négatives, physicalité, entropie, canaux à
perte pure, équation de Lindblad.
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Introduction

Information, however abstract it can be, is part of any system which obeys the laws
of physics. Information is physical [18]. What then when these laws are the laws of
quantum mechanics, rather than classical physics ? The question is the core of quantum
information theory. Quantum information theory is a field of study at the border of
quantum mechanics and information theory. It has encountered a major growth in the last
forty years, and remarkable discoveries keep being exposed. As examples, let us mention
quantum teleportation [6], dense coding [24], quantum cryptography [3] and the no-cloning
theorem [32]. The most famous application of quantum information theory is probably
the quantum computer. Quantum computers exploit quantum parallelism to perform
some tasks faster than any classical computer could ever do. Quantum information is
bound to have a bright future.

Quantum mechanics brought to light a phenomenon non-existent in classical mechan-
ics : the Heisenberg uncertainty principle. That fundamental principle is a limitation
intrinsic to quantum mechanics. This report is part of a process towards improving our
understanding of that limitation. In information theory, entropy is a very appropriate
quantity to characterize uncertainty. It can be used to define an entropic uncertainty
principle. In this report, we investigate a recent conjecture which is a very natural exten-
sion to the entropic uncertainty principle [13].

That conjecture involves the phase space representation of quantum mechanics. A
central part of this report is thus devoted to the Wigner quasi-probability distribution.
We assign a particular interest to the conditions that it must satisfy in order to ensure
its physicality. Also, we look for nonnegative Wigner distributions, as the conjecture only
applies to them.

Majorization is a mathematical tool which is subtly designed to compare the un-
certainty of distributions; it has already proved to be a powerful theory applicable to
quantum physics. We expect majorization will cast new perspectives on the conjecture.

Demonstrating the conjecture hasn’t been achieved here. However, we present inter-
esting results, such as a majorization criterion, which constitutes an equivalent condition
for the conjecture to be satisfied. In chapter 1, we introduce the general theory of ma-
jorization and apply it to 2D probability distributions. Chapter 2 is dedicated to phase
space formalism. We give its formulation, and apply it to the field of quantum optics.
In chapter 3, we introduce Lindblad equation to describe irreversible quantum processes.
This enables us to define pure loss channels, which are physical objects of particular inter-
est as regards disorder. We explain the conjecture and develop how we propose to prove
it in chapter 4. We present analytic derivations leading to a majorization criterion. This
is our main contribution. Finally, we conclude this report with numerical simulations in
chapter 5. We illustrate the validity of the conjecture and make some further observations.
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Chapter 1

Theory of majorization

1.1 Introduction and motivation

In this first chapter, we introduce a mathematical theory known as majorization.
The main objective of majorization is to provide a tool to compare the randomness of
distributions. Randomness is a rather vague term that requires clarifications. Roughly,
randomness is what makes a distribution wider, more spread-out, than a more localized,
definite one. Majorization gives a precise formulation of what makes a distribution more
random than another.

Majorization takes different forms depending on the type of distributions it is applied
to. We talk about discrete majorization when we consider discrete distributions, such as
vectors. We talk about continuous majorization when the distributions are continuous
functions. Discrete majorization has already found applications to quantum mechanics
[25]. Yet, we are not dealing with discrete majorization in this report. One of our aims
is to apply the theory of continuous majorization to quantum phase space. This has not
been investigated yet.

In section 1.2, we introduce discrete majorization. Discrete majorization is indeed
easier to deal with than continuous majorization. The intention is to present the main
properties of the discrete case, since they remain in general valid for the continuous case.
In section 1.3, we give the generalization of discrete majorization to the continuous case.
This requires the introduction of some new notions. Finally, we particularize the results
of continuous majorization to 2D distributions in section 1.4.

The main reference that we use is [23]. We also refer to [30] for continuous majoriza-
tion.
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1.2 Discrete majorization

1.2.1 Definition

Definition 1.1. Vector x = (x1, ..., xn) majorizes vector y = (y1, ..., yn), written x � y,
if and only if 

k∑
i=1

x↓i ≥
k∑
i=1

y↓i for k = 1, ..., n− 1

n∑
i=1

x↓i =
n∑
i=1

y↓i

(1.2.1a)

(1.2.1b)

with x,y ∈ Rn, and x↓i is the ith highest component of x.

If vectors x and y describe probability distributions, we have:

xi ≥ 0, yi ≥ 0,
n∑
i=1

xi =
n∑
i=1

yi = 1 (1.2.2)

so that equation 1.2.1b is always satisfied.

1.2.2 Disorder

It may not yet appear clearly that x � y translates to ”x is more ordered than y”.
A condition equivalent to 1.2.1 can be derived, and exhibits more openly the difference
of randomness [12]. This condition involves the concept of bistochastic matrices, that we
define hereafter. In this subsection we consider that x and y are probability distributions
so that equation 1.2.2 is satisfied.

Definition 1.2. The square matrix B is bistochastic if its elements are nonnegative and
if its rows and columns each sum up to 1.

B = (bij) bistochastic ⇔


bij ≥ 0 ∀i, j∑

j bij = 1 ∀i∑
i bij = 1 ∀j

(1.2.3)

Thanks to bistochastic matrices, majorization condition 1.2.1 can be written alterna-
tively [23].

Property 1.1. x majorizes y if and only if there exists a bistochastic matrix B such that
y = Bx.

x � y ⇔ y = Bx (1.2.4)

where B is a bistochastic matrix, and x and y are probability distributions.

The key to understand that the effect of a bistochastic matrix is comparable to an
increase of disorder resides in permutations. Permutations are operations that switch two
or more components of a vector. A bistochastic matrix can be expressed as a combination
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of permutations weighted by probabilities [12]. If B is a bistochastic matrix, then there
exists a probability distribution {pi} such that

B =
∑
i

piΠi (1.2.5)

where Πi are permutation matrices. Therefore, x majorizes y means that y is the average
between several mixing of x. This pictures well the fact that y is more disordered than
x.

Let us now consider two extreme cases of distributions : the completely determined
distribution a = (1, 0, ..., 0) and the uniformly random distribution b =

(
1
n
, ..., 1

n

)
. Obvi-

ously, a � b. Moreover,

(1, 0, ..., 0) � x �
(

1

n
, ...,

1

n

)
(1.2.6)

for all probability distribution x. Indeed, for every vector x, there exist bistochastic
matrices A and B such that x = Aa and b = Bx [23].

1.2.3 Convexity

What makes majorization a powerful tool is the strong property that it implies. If a
majorization relation exists between two vectors, then the following property involving
all convex functions holds [23].

Property 1.2. If φ : R→ R is a convex function:

x � y ⇒
n∑
i=1

φ(xi) ≥
n∑
i=1

φ(yi) (1.2.7)

where x = (x1, ..., xn),y = (y1, ..., yn) ∈ Rn.

If φ is concave, inequality is reversed. Property 1.2 can be extended to a wider class
of functions. We introduce the concept of Schur-convexity hereafter. It is closely linked
with majorization.

Definition 1.3. Function φ : Rn → R is Schur-convex if and only if:

x � y ⇒ φ(x) ≥ φ(y) (1.2.8)

where x,y ∈ Rn.

Conversely, function ψ is Schur-concave if its opposite −ψ is Schur-convex. In this case
we have x � y ⇒ ψ(x) ≤ ψ(y). A function φ that is Schur-convex has to be symmetric,
i.e. φ(x) is invariant under permutation of components of x. Also, all convex functions
that are symmetric are Schur-convex, but a Schur-convex function needn’t to be convex
[28].

1.2.4 Further considerations

Majorization is reflexive:
x � x ∀x. (1.2.9)
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It is transitive: {
x � y

y � z
⇒ x � z. (1.2.10)

However, it is not anti-symmetric:{
x � y

y � x
; x = y. (1.2.11)

For these reasons, majorization is a pre-order. Moreover, it can happen that both x � y
and x ⊀ y hold. In this case, x and y are said incomparable.

1.3 Continuous majorization

In this section we generalize the previous results to continuous distributions.

1.3.1 Decreasing rearrangement

In the discrete case, we use the notation x↓ to signify that we rearranged vector x.
Rearranging a continuous distribution is slightly more subtle, and requires some definitions
that we introduce in this subsection. In what follows, we consider a function f : Rn → R+

which is nonnegative and integrable. Decreasing rearrangements are only defined for
functions satisfying these conditions.

Subsets of a n-dimensional space can be represented by the topological notion of Borel
sets. A Borel set is associated to a n-dimensional volume through a Lebesgue measure.
We will use the notation ν (A) to designate the volume of the Borel set A. We note the
open ball of radius r centered at the origin as B(0, r). We define the spherically decreasing
rearrangement of a Borel set as follows [30]:

Definition 1.4. Let A be a Borel set with volume ν (A). Its spherical rearrangement A↓

is the open ball of radius r centered at the origin with volume ν (A):

A↓ = B(0, r) (1.3.1)

We are going to use this definition to introduce the decreasing rearrangement of a func-
tion. To this purpose, we make use of the layer cake representation [30]. A nonnegative
integrable function f can be written as:

f(x) =

f(x)∫
0

dt =

+∞∫
0

1[0,f(x)](t)dt (1.3.2)

where we have used the indicator function 1[0,f(x)](t). This function of t is equal to unity
when 0 ≤ t < f(x) and is zero otherwise.

We now define the Borel set At as the set of points that have a value higher than t:

At = {x : f(x) > t}, (1.3.3)

so that we can write the indicator function as:

1[0,f(x)](t) = {x ∈ At} (1.3.4)

11



Figure 1.1 – Schematic representation of the rearrangement of a continuous function. f ↓

is the decreasing rearrangement of f . f ↓ is a decreasing function symmetric with respect
to the origin, such that it has the same level function as f . On the figure, the portion of
the axis that has a value higher than t has the same length for f and f ↓. Formally, this
reads : ν ({x : f(x) > t}) = ν

(
{x : f ↓(x) > t}

)
.

where {x ∈ At} is equal to unity when x belongs to the set At and is zero otherwise. The
layer cake representation of function f then resumes to:

f(x) =

+∞∫
0

{x ∈ At}dt. (1.3.5)

Definition 1.5. The decreasing rearrangement f ↓ of the nonnegative integrable function
f is

f ↓(x) =

+∞∫
0

{x ∈ A↓t}dt (1.3.6)

1.3.2 Level function

Definition 1.6. The level function of the nonnegative integrable function f is

mf (t) = ν({x : f(x) > t}) (1.3.7)

where t ≥ 0.

The level function mf (t) gives the n-dimmensional volume of points x that have a
value f(x) higher than t [20].

Property 1.3. The level function mf is invarriant under rearrangement:

mf (t) = mf↓(t) (1.3.8)

From its construction, the decreasing rearrangement of a function preserves its level
function. Building the decreasing rearrangement of a function consists in computing a
decreasing function that has the same level function. Figure 1.1 illustrates the notions of
decreasing rearrangements and level functions in a one-dimensional case.

12



1.3.3 Definition

Definition 1.7. Function f majorizes function g, written f � g, if and only if

∫
B(0,r)

f ↓(x)dx ≥
∫

B(0,r)

g↓(x)dx ∀r ≥ 0

∫
Rn

f ↓(x)dx =

∫
Rn

g↓(x)dx

(1.3.9a)

(1.3.9b)

This definition is a generalization of definition 1.2.1. It holds for continuous and
multidimensional distributions. If f and g are defined on R2, we are in the case of 2D
distributions and ν is a measure of area.

1.3.4 Convexity

Property 1.4. If φ : R→ R is a continuous convex function such that φ(0) = 0:

f � g ⇒
∫
Rn

φ (f(x)) dx ≥
∫
Rn

φ (g(x)) dx. (1.3.10)

The inequality is reversed for concave functions. This property is the analogue of
property 1.2. We now define Schur-convexity in the context of continuous distributions.

Definition 1.8. Function Φ : A → R is Schur-convex if and only if

f � g ⇒ Φ(f) ≥ Φ(g), (1.3.11)

where A is the set of integrable nonnegative functions Rn → R+ and f, g ∈ A.

Conversely, function Ψ is Schur-concave if its opposite −Ψ is Schur-convex, and we
have f � g ⇒ Ψ(f) ≤ Ψ(g).

1.4 Application to 2D distributions

Previous section is quite abstract and very mathematical. We now particularize the
general results of continuous majorization to 2D probability distributions. A probability
distributions is a normalized nonnegative distribution. In what follows, we will consider
that these properties are respected:

+∞∫
−∞

+∞∫
−∞

F (x, y)dxdy = 1, F (x, y) ≥ 0 ∀(x, y) (1.4.1)

1.4.1 Symmetric decreasing rearrangement

The symmetric decreasing rearrangement of a 2D distribution is the decreasing circu-
lar symmetric distribution that has the same level function as the original distribution
[9]. A symmetric decreasing rearrangement is completely defined by its decreasing radial
function.
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The level function of a 2D distribution F (x, y) follows from definition 1.3.7:

mF (t) = Area({(x, y) : F (x, y) > t}) (1.4.2)

mF (t) is the area of the distribution that has a value higher than t. We want to create
the symmetric decreasing distribution that has the same level function. Taking advantage
of the symmetry of the rearrangement, we can compute its level function from its radial
function. Let F ↓(r) be the radial function of the decreasing rearrangement. Since it is
decreasing, we know that all the points higher than a certain value t are inside a disc of

radius
(
F ↓
)−1

(t).
(
F ↓
)−1

is the inverse of function F ↓. We can thus write:

mF ↓(t) = π
[(
F ↓
)−1

(t)
]2

(1.4.3)

where t can be evaluated between 0 and supF . Moreover, the level function is invariant
under rearrangement : mF ↓ = mF . Using inversion rule for compositions of functions, we
can rewrite previous equation as:

F ↓(r) = m−1F
(
πr2
)
. (1.4.4)

Equation 1.4.4 links the radial function F ↓ to the level function mF of the original
distribution F . It tells us the recipe to build symmetric decreasing rearrangements of
nonnegative 2D distribution. Computing the level function is an inevitable step. Indeed,
majorization compares the level functions of distributions.

1.4.2 Cumulative sum

Note that for normalized distributions, equation 1.3.9b is always satisfied. Majoriza-
tion condition resumes to 1.3.9a and reads as follows for 2D distributions:

F � G ⇔ 2π

r∫
0

F ↓(R)RdR ≥ 2π

r∫
0

G↓(R)RdR ∀r ≥ 0. (1.4.5)

We now introduce the cumulative sum of a function as the integral of its decreasing
rearrangement:

SF (r) = 2π

r∫
0

F ↓(R)RdR. (1.4.6)

Cumulative sums allow us to write condition of majorization in the following form:

F � G ⇔ SF (r) ≥ SG(r) ∀r ≥ 0 (1.4.7)

In practice we will use the latter condition to check majorization.
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Chapter 2

Continuous-variable quantum
information

2.1 Introduction and motivation

In quantum mechanics, we distinguish continuous variable systems and discrete vari-
ables systems. A discrete variable system is a quantum system which is described by
observables that have discrete spectra. A qubit is such a system, and is associated to
observables such as spin or polarization. On the contrary, a continuous variable system
is discribed by observables with continuous spectra. In this report, we will consider con-
tinuous variable systems that are described by the continuous observables position and
momentum.

The aim of this chapter is to introduce the phase space representation of quantum
mechanics. To this purpose we define some basics notions of quantum mechanics. We
start this chapter with a succinct overview of the density operator formalism in section 2.2.
We focus on the aspect that we will use in this report, such as physicality and disorder.
Section 2.3 is the central element of this chapter. We introduce there the phase space
formulation of quantum mechanics strictly speaking. We compare this representation
to the density matrix under several aspects. Finally we apply the phase formalism to
quantum optics is section 2.4. Quantum optics is the physical background of this report.
We define several states that have particular properties.

The main references are [2] and [26] for section 2.2. In section 2.3, we have mostly
used [19], [10] and [33]. For section 2.4, we refer to [19], [2] and [31].

For the sake of clarity, we choose to use units such that ~ = 1. We will use this
convention throughout this report.

2.2 Density matrix

In this section, we introduce the basics notions of the density matrix formalism. This
is the most widespread representation of quantum mechanics.

2.2.1 Pure and mixed states

A pure state is described by a ket |ψ〉, which belongs to a Hilbert space H. It has
a wave function in the position basis ψ(q), and a wave function in the momentum basis
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φ(p). These two functions are linked through a Fourier transformation:

ψ(q) =
1√
2π

∞∫
−∞

φ(p)eiqpdp = 〈q|ψ〉 (2.2.1a)

φ(p) =
1√
2π

∞∫
−∞

ψ(q)e−iqpdq = 〈p|ψ〉 = ψ̃(p) (2.2.1b)

A mixed state is a state that is not completely determined and exhibits statistical
properties. It has probabilities to be in different pure states. The formalism of the
density matrix allows us to deal with both pure states and mixed states on a similar way.
A mixed state that has the probabilities {pi} to be in the states {|ψi〉} is represented by
the density operator ρ̂:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

piP̂i (2.2.2)

where the operator P̂i = |ψi〉 〈ψi| is the projector of the state |ψi〉. Pure states are a
particular case of mixed states where there is only one state with probability 1. The
density operator then comes down to a single projector.

2.2.2 Physicality

Any operator ρ̂ is an acceptable density matrix if it is normalized (2.2.3a), hermitian
(2.2.3b) and nonnegative (2.2.3c). A nonnegative operator is an operator whose eigenval-
ues are all nonnegative. We will refer to this property as positivity.

Trρ̂ = 1

ρ̂† = ρ̂

〈u| ρ̂ |u〉 ≥ 0 ∀ |u〉

(2.2.3a)

(2.2.3b)

(2.2.3c)

In terms of eigenvalues {λi}, these conditions mean respectively that
∑

i λi = 1, λi ∈ R
and λi ≥ 0. These conditions are obvious if we remember that the eigenvalues of a density
operator are probabilities. Note that the eigenvalues may differ from the probabilities {pi}
used in equation 2.2.2. Indeed, if the operator ρ̂ is initially defined as a mixture of non
orthogonal states, the diagonalization of ρ̂ will reveal new probabilities. The probabilities
{λi} are associated to orthogonal states.

2.2.3 Purity and entropy

Measures of disorder have a particular interest in this report, as they allow to quantify
uncertainty. In this context, we introduce the purity of a density operator ρ̂ as the quantity
γ.

γ = Tr
[
ρ̂2
]

=
∑
i

λ2i (2.2.4)

The purity of pure states is equal to unity, and is strictly lower than 1 for mixed states.
In practice, the purity scales from 0 to 1 and is a measure of the degree of mixture of

16



the state. Another quantity used to measure the uncertainty of a state is von Neumann
entropy:

S = −Tr [ρ̂ ln ρ̂] = −
∑
i

λi lnλi (2.2.5)

Von Neumann entropy is equal to zero for pure states and can take arbitrarily large
values for mixed states. The higher von Neumann entropy is, the less information we have
about the state of ρ̂.

2.3 Quantum phase probability distribution

Phase space formulation has proved to be a useful representation of statistical phe-
nomenons in classical mechanics. This formalism describes the state of a system as a
probability distribution to be in a certain value of position q and momentum p. However,
this representation appears untenable when it comes to quantum mechanics. Quantum
mechanics indeed forbids the simultaneous knowledge of position q and momentum p.
This observation is known as the uncertainty principle.

We are going to see that it is possible to overcome this apparent complication. A phase
space formulation of quantum mechanics holds, and it proposes an alternative to the usual
density matrix representation that we presented in previous section. This adaptation has
nevertheless fundamental differences with the classical phase space representation, as we
could expect from the quantum world.

2.3.1 Weyl transform

The central element of quantum phase space representation is a transformation that
maps an operator to a corresponding phase distribution. That transformation is the Weyl
transform and is defined hereafter.

Definition 2.1. The Weyl transform of the operator Â is the function A:

A(q, p) =
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ Â ∣∣∣q +
x

2

〉
dx (2.3.1)

Note that even if this is not apparent in definition 2.1, position and momentum oper-
ators play a complementary role in the transformation. Indeed, the Weyl transform of Â
is formally equivalent to:

A(q, p) =
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ Â ∣∣∣p− y

2

〉
dy (2.3.2)

What makes that transformation powerful is a property that we will call the overlap
formula [19].
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Property 2.1. The Weyl transform satisfies the overlap formula:

Tr
[
Â1Â2

]
= 2π

+∞∫
−∞

+∞∫
−∞

A1(q, p)A2(q, p)dqdp (2.3.3)

where A1 and A2 are the Weyl transform of respectively Â1 and Â2.

Let us consider a straight implication of that property. It can be seen from 2.3.1 that
the Weyl transform of identity operator Î is 1/2π. We have thus:

TrÂ =

+∞∫
−∞

+∞∫
−∞

A(q, p)dqdp. (2.3.4)

2.3.2 Wigner distribution function

Let us now turn to the Weyl transform of density operators describing physical states.

Definition 2.2. The Wigner quasi-probability distribution W (q, p) of a state described by
the density operator ρ̂ is the Weyl transform of ρ̂.

W (q, p) =
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉
dx (2.3.5)

Note that for a pure state |ψ〉 with wave functions ψ(q) and φ(p), relation 2.3.5 be-
comes:

W (q, p) =
1

2π

+∞∫
−∞

exp(ipx)ψ
(
q − x

2

)
ψ∗
(
q +

x

2

)
dx (2.3.6a)

=
1

2π

+∞∫
−∞

exp(iqy)φ
(
p+

y

2

)
φ∗
(
p− y

2

)
dy (2.3.6b)

The WDF 1 W of a mixed state ρ̂ having eigenvalues {λi} and eigenstates {|ψi〉} is
the weighted sum of the WDF of each eigenstate:

W =
∑
i

λiWi (2.3.7)

where Wi is the WDF of the state |ψi〉.

2.3.3 Comparison with classical probability distributions

The WDF behaves like a classical phase distribution under several aspects. First, let
us consider the expectation value of operator Â on state ρ̂.

Tr
[
ρ̂Â
]

= 2π

+∞∫
−∞

+∞∫
−∞

W (q, p)A(q, p)dqdp (2.3.8)

1. We refer to Wigner distribution functions through the acronym WDF.
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where W is the WDF of ρ̂ and A the Weyl transform of Â. This relation is another direct
implication of the overlap formula (2.3.3). What is remarkable in this writing is that it is
completely similar to what we would have classically if we wanted to evaluate the physical
quantity 2πA(q, p) in the classical phase space density W (q, p).

Moreover, the marginal distributions of the WDF give the probability distributions for
q and p : ρq and ρp respectively. This is a key feature for a joint probability distribution.

+∞∫
−∞

W (q, p)dp = 〈q| ρ̂ |q〉 = ρq(q),

+∞∫
−∞

W (q, p)dq = 〈p| ρ̂ |p〉 = ρp(p). (2.3.9)

These equalities follow from the application of the overlap formula on operators ρ̂, and
|q〉 〈q| or |p〉 〈p|.

These are some elements that make the WDF look like a probability distribution.
However, some important differences tend to make the WDF a very particular object.
The most surprising feature is that the WDF can take negative values. We can feel this
necessity by looking at the scalar product of two pure states:

Tr [ρ̂ψρ̂φ] = | 〈ψ|φ〉 |2 = 2π

+∞∫
−∞

+∞∫
−∞

Wψ(q, p)Wφ(q, p)dqdp. (2.3.10)

For orthogonal states, this equation has to vanish. This is only possible if the WDFs are
not positive everywhere [16].

Also, the WDF is bounded. This is a consequence of the Cauchy-Schwartz inequality
on equation 2.3.6.

− 1

π
≤ W (q, p) ≤ 1

π
(2.3.11)

That limitation can be interpreted as a consequence of the uncertainty principle, and
forbids very localized states as we could have in a classical point of view.

2.3.4 Physicality of a WDF

We are interested in how the different physicality conditions (2.2.3) translate in phase
space formalism. The normalization condition 2.2.3a translates very simply to a normal-
ization condition on the WDF:

+∞∫
−∞

+∞∫
−∞

W (q, p)dqdp = 1. (2.3.12)

The hermicity condition 2.2.3b implies that the WDF takes real values. One can see from
the definition of the Weyl transform 2.3.1 that A∗(q, p) = A(q, p) for hermitian operators.

W (q, p) ∈ R ∀(q, p) (2.3.13)

The translations of the first two conditions are fairly simple. However, this is not
the case of the last one. There is no criteria in phase space to let us know whether the
corresponding density operator is nonnegative. We have to convert the WDF back in ρ̂
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to check that condition. This is one big drawback of phase space formalism. Expressed
in terms of WDF, that condition reads as follows:

+∞∫
−∞

+∞∫
−∞

W (q, p)Wu(q, p)dqdp ≥ 0 ∀ |u〉 (2.3.14)

where Wu is the WDF of the state |u〉.

2.3.5 Purity and entropy

We now present several way to characterize uncertainty in phase space. As opposed to
the phase space, we will sometimes refer to the density matrix representation as the state
space. We will see in this subsection that uncertainty in phase space and uncertainty in
state space are to very different notions.

Purity in phase space translates easily:

γ = 2π

+∞∫
−∞

+∞∫
−∞

W 2(q, p)dqdp. (2.3.15)

However, no direct translation of von Neumann entropy exists in phase space. Nev-
ertheless, we introduce another entropy that we will call Wigner entropy, and write H.
This entropy is the application to WDFs of the differential entropy defined in information
theory [11]. Note that this definition is only applicable to nonnegative WDFs. This is an
important restriction that we will address later in this report.

Definition 2.3. The Wigner entropy of the nonnegative WDF W is the quantity H:

H = −
+∞∫
−∞

+∞∫
−∞

W (q, p) ln (W (q, p)) dqdp (2.3.16)

Von Neumann entropy and Wigner entropy render two very different aspects of uncer-
tainty. On the one hand, von Neumann entropy corresponds to a statistical uncertainty
about state ρ̂. It means that we are unsure about the state in which our system is. This
entropy can be reduced to zero if we know the state of the system with exactitude. On
the other hand, Wigner entropy is associated to an uncertainty on the position and mo-
mentum of the state. In quantum mechanics, the uncertainty principle teaches us that
a perfect knowledge of position and momentum at the same time of a quantum system
is forbidden. That uncertainty is inherent to quantum behavior. In phase space, this
translates to the fact that the Wigner function cannot be arbitrarily sharp, and thus that
its Wigner entropy cannot be arbitrarily low. Our long run objective is precisely to show
that Wigner entropy has a minimal boundary, conjectured as lnπ + 1. We will explain
this conjecture in detail in chapter 4.

We take advantage of this subsection to introduce Rényi entropies.

Definition 2.4. Rényi entropy of order α of the nonnegative WDF W is the quantity
Hα:

Hα =
1

1− α
ln

 +∞∫
−∞

+∞∫
−∞

(W (q, p))α dqdp

 (2.3.17)

with α ≥ 0 and α 6= 1.
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Rényi entropies form a set of Schur-concave functions. Moreover, in the limit of α
approaching 1, Hα tends to Wigner entropy [27]. In the limit of α arbitrarily large, Hα

tends to − ln (sup |W |). Some physical constraints on physical WDFs find a very natural
expression in terms of Rényi entropies.

H1 ≥ lnπ + 1 (2.3.18a)

H2 ≥ lnπ + ln 2 (2.3.18b)

H∞ ≥ lnπ (2.3.18c)

In equation 2.3.18a, one can recognize the conjecture that we are investigating in
this report. Equation 2.3.18b is another formulation of purity 2.3.15. Equation 2.3.18c
translates the fact that the WDF is bounded as shows equation 2.3.11.

2.3.6 Further definitions

In this subsection we present some other definitions that we will use in this report.
First, we introduce the characteristic function W̃ (u, v), which is defined as the Fourier
transform of the WDF.

Definition 2.5. The characteristic function W̃ (u, v) is the Fourier transform of the WDF
W (q, p):

W̃ (u, v) =

+∞∫
−∞

+∞∫
−∞

W (q, p) exp(−iuq − ivp)dqdp = FT [W (q, p)] (2.3.19)

Conversely, the WDF is the inverse Fourier transform of the characteristic function:

W (q, p) =
1

4π2

+∞∫
−∞

+∞∫
−∞

W̃ (u, v) exp(iuq + ivp)dudv = FT−1
[
W̃ (u, v)

]
(2.3.20)

In some cases, the convolution of the WDF with a Gaussian can present interest-
ing properties. Hereafter, we introduce a wide class of convolved WDFs, known as s-
parameterized distributions [19]. The definition of such distributions is done through
their characteristic function.

Definition 2.6. The characteristic function of a s-parameterized probability distribution
is the function W̃ (u, v; s):

W̃ (u, v; s) = W̃ (u, v) exp
(s

4
(u2 + v2)

)
(2.3.21)

Performing an inverse Fourier transform on the characteristic function W̃ (u, v; s) gives
us the s-parameteized distribution W (q, p; s).

Definition 2.7. The s-parameterized function is the function W (q, p; s):

W (q, p; s) =
1

4π2

+∞∫
−∞

+∞∫
−∞

W̃ (u, v; s) exp (iuq + ivp) dudv (2.3.22)

A WDF is a s-parameterized distribution of parameter s = 0.
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2.4 Application to quantum optics

In this section, we apply phase space formalism to quantum optics. We first introduce
bosonic systems, which describe the electromagnetic field. We then consider several single
modes states.

2.4.1 Bosonic systems

The electromagnetic field is efficiently described by bosonic systems. In physics, the
particle associated to the electromagnetic field is the photon, which is a boson. We say
that a mode of the electromagnetic field is a bosonic mode. A bosonic system is composed
of several bosonic modes, each of them corresponding to a quantum harmonic oscillator
[31]. Hereafter, we introduce the harmonic oscillator. We then expose how it relates with
the electromagnetic field and bosonic systems.

The harmonic oscillator

We first present some results of a widely used problem of quantum mechanics. We
don’t give the derivations of the results, as they can be found in every introductory
quantum mechanics book, such as [2]. The aim is to clarify notations and to introduce
results that we will use later.

A harmonic oscillator is a physical system whose Hamiltonian has the following form:

Ĥ =
1

2

(
q̂2 + p̂2

)
. (2.4.1)

Hereafter, we define the annihilation operator â, creation operator â† and number
operator N̂ .

â =
1√
2

(q + ip) , â† =
1√
2

(q − ip) , N̂ = â†â (2.4.2)

Ĥ and N̂ share the same eigenstates. N̂ is a hermitian operator, contrarily to â and
â†. This means that the eigenvalues of N̂ are real, whereas they are complex for â and
â†. The spectrum of operator N̂ is the set of nonnegative integers N. From the canonical
commutation relation of q̂ and p̂, we have the commutation relation of â and â†:

[q̂, p̂] = i,
[
â, â†

]
= 1. (2.4.3)

The electromagnetic field as a bosonic system

What gives the harmonic oscillator a particular importance is that it governs the
behavior of the electromagnetic field. Each mode of the electromagnetic field oscillates
like an harmonic oscillator. Appendix A is dedicated to that development.

Hereafter, we are going to explicit how the different modes relate to each other. To
this purpose, we follow the development of [31]. N modes of the electromagnetic field
form a bosonic system of N modes, which belongs to the tensor product of N Hilbert
spaces H⊗N :

H⊗N =
N⊗
k=1

Hk (2.4.4)

The total electromagnetic field contains an infinity of modes, and belongs therefore to an
infinite-dimensional Hilbert space.
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Each of the Hilbert spaces Hk possesses an annihilation operator âk and a creation
operator â†k. The commutations rules of these operators can be expressed in a compact

form using the vectorial operator b̂:

b̂ =
(
â1, â

†
1, ..., âN , â

†
N

)T
(2.4.5)

where the superscript T expresses the transposition. The commutations rules read as:[
b̂i, b̂j

]
= Ωij, i, j = 1, ..., 2N (2.4.6)

where Ωij is an element of the 2N × 2N matrix Ω:

Ω =
N⊕
k=1

ω =

ω
. . .

ω

 , ω =

(
0 1
−1 0

)
. (2.4.7)

In short, two operators acting on different Hilbert spaces commute. The annihilation
and creation operators of the same Hilbert space obey the commutation relation 2.4.3.
Throughout this report, we will only consider single mode states, which belong to a unique
Hilbert space H.

2.4.2 Fock states

Fock states are the eigenstates of number operator N̂ and hamiltonian Ĥ. They
correspond to states having a number of photons and an energy exactly defined. Therefore,
these states have a highly quantum behavior.

Definition 2.8. The nth Fock state |n〉 is the eigenstate of operator N̂ with eigenvalue n.

N̂ |n〉 = n |n〉 (2.4.8)

with n ∈ N.

Note here that we use a convention such that there exists a 0th Fock state, which is
the Fock state having the eigenvalue 0.

Their wave functions ψF
n are

ψF
n(q) = π−

1
4 2−

n
2 (n!)−

1
2 Hn(q) exp

(
−q

2

2

)
(2.4.9)

where Hn is the nth Hermit polynomial.
Their WDFs can be computed from their wave functions and have the following form:

WF
n (q, p) =

1

π
(−1)n Ln

(
2q2 + 2p2

)
exp

(
−q2 − p2

)
(2.4.10)

where Ln is the nth Laguerre polynomial. We see from the q2 + p2 dependence that all
Fock states have a circular symmetric WDF. Consequently, this is also the case for any
mixture of Fock states. We will often use the radial function WF

n (r) to describe them,
using the parameter r =

√
q2 + p2.

We also note that the maximum of their WDF in absolute value is localized at (q, p) =
(0, 0). The value of the WDF at this position is equal to 1/π for even Fock states, and
−1/π for odd Fock states. In both cases, this is the extremal value allowed for a WDF.
The radial function of the nth Fock state vanishes n times.
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Vacuum

Vacuum is the 0th Fock state and has a mean number of photons equal to 0. The
WDF of the vacuum is a simple Gaussian:

W0(q, p) =
1

π
exp

(
−q2 − p2

)
(2.4.11)

The WDF of the vacuum is nonnegative everywhere. In fact, it is proven that the only
pure states having nonnegative WDFs are described by Gaussian WDFs [14]. The Wigner
entropy of the vacuum is precisely equal to lnπ + 1. Vacuum has indeed the property to
saturate the uncertainty principle. Throughout this report, we will always refer to the
vacuum WDF with W0.

2.4.3 Coherent states

Coherent states are eigenstates of the annihilation operator.

Definition 2.9. The coherent state |α〉 is the eigenstate of the annihilation operator â
with eigenvalue α.

â |α〉 = α |α〉 (2.4.12)

with α ∈ C.

Introducing the displacement operator D̂(α), it can be shown that any coherent state
is a displaced vacuum [19].

D̂(α) = exp
(
αâ† − α∗â

)
, |α〉 = D̂(α) |0〉 (2.4.13)

The WDF of a coherent state is:

Wα(q, p) =
1

π
exp

(
−(q − qα)2 − (p− pα)2

)
(2.4.14)

where α = (qα + ipα) /
√

2.
Coherent states are often said to be the most classical quantum states. Indeed, they

correspond to a minimum uncertainty state localized around (qα, pα). These are the
quantum states that approach the most classical delta distributions.

2.4.4 Passive states

While Fock states and coherent states are pure states, passive states are mixed states.
A passive state is a decreasing mixture of Fock states. This means that in the Fock basis,
they are diagonal with decreasing eigenvalues.

Definition 2.10. A passive state ρ̂p is a decreasing mixture of Fock states.

ρ̂p =
∑
n

cn |n〉 〈n| , cn ≥ cn+1 ∀n ≥ 0 (2.4.15)

where cn are decreasing nonnegative coefficients.

A widely used example of passive states are thermal states. They correspond to
the particular case where the coefficients cn follow an exponentially decreasing law, in
accordance with Boltzmann distribution of energies.
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Extremal passive states

Extremal passive states are a subset of passive states. In the Fock basis, the eignevalues
of extremal passive states are all equal.

Definition 2.11. The nth extremal passive state ρ̂en is the equal mixture of the first n
Fock states.

ρ̂en =
1

n+ 1

n∑
k=0

|k〉 〈k| (2.4.16)

The interest of extremal passive states is that they form a basis for the set of passive
states. Indeed, it can easily be seen that any passive state may be expressed as a mixture
of extremal passive states.

Property 2.2. Any passive state can be expressed as a mixture of extremal passive states.

ρ̂p =
∑
n

cnρ̂
e
n (2.4.17)

where cn ≥ 0.

Moreover, extremal passive states have nonnegative WDFs. The latter property im-
plies that every passive state has a nonnegative WDF. This consequence is particularly
interesting in the frame of this report, as we limit our study to nonnegative distributions.
We will highlight this property later in this report.
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Chapter 3

The pure loss channel as an open
quantum system

3.1 Introduction and motivation

In this chaper, we introduce a physical object that we will use in our further devel-
opments. A pure loss channel is a medium that can only absorb photons. For example,
optical fibers and beam splitters can be modeled as PLCs 1. PLCs play a particular role
in our report, as we believe that they decrease the disorder of WDFs. To this purpose, we
are going to investigate how the action of PLCs affects WDFs. We will use an important
result of quantum mechanics known as Lindblad’s theorem. This theorem formulates
irreversible quantum processes in the density matrix representation. We are going to
translate this to the phase space formalism.

In section 3.2, we describe how irreversibility emerges from open systems. We then
introduce the PLC as a particular open quantum system. Section 3.3 is dedicated to
Lindblad equation. We introduce the equation in order to apply it to the PLC. Finally,
we develop in section 3.4 the action of PLCs in the pase space formalism.

In section 3.2, we mainly use [8] and [31]. For section 3.3, we refer to [7], [17], [1] and
[26]. The derivations of section 3.4 come from [19]. We explain them in detail in appendix
B.

3.2 Open quantum systems

In this section, we present open systems from a quantum mechanical point of view.
We explain why they obey irreversible dynamics. We then give a qualitative definition of
the PLC, and highlight an important property of PLCs.

3.2.1 Quantum irreversibility

Reversible dynamics studies the evolution of systems under reversible transformations.
In quantum mechanics, these transformations are unitary operations. Let us consider two
different observations:

— Elementary interactions obey reversible dynamics.
— Some processes are irreversible.

1. We refer to pure loss channels through the acronym PLC.

26



How can irreversibility emerge from reversible operations ? It is possible to conciliate this
apparent paradox using a description that we present hereafter.

First, we introduce the notions of closed and open systems. A closed system is a
system that doesn’t interact with its environment. It can be considered independently of
its environment. On the contrary, an open system is a system which interacts with its
environment: their evolutions are linked.

We consider a system of interest ρ̂S coupled with an environment ρ̂E. The global system
is ρ̂SE. The system of interest is an open system, as it interacts with the environment.
The global system is a closed system and evolves according to reversible dynamics.

In this report, the quantum states of interest we consider are photons of one electro-
magnetic mode. The environment consists in all the other modes of the electromagnetic
field.

We use the subscript t to denote the temporal evolution of the state. Let ρ̂SE0 be
initially described by a tensor product of ρ̂S0 and ρ̂E0 :

ρ̂SE0 = ρ̂S0 ⊗ ρ̂E0 . (3.2.1)

The global system undergoes a unitary evolution. Let Ût be the unitary operator
describing the evolution of ρ̂SE until time t. The state of ρ̂S corresponds to a partial trace
over the environment on state ρ̂SE:

ρ̂SEt = Ûtρ̂
SE
0 Û †t , ρ̂St = TrE

[
ρ̂SEt
]

(3.2.2)

If we restrict our field of view to the system of interest, we may feel that its evolution
is not reversible. Indeed, evolution of ρ̂S is not governed by unitary operator, but by
a partial trace over the environment. Generally, open systems do not follow reversible
dynamics. As it appears from our description, this does not contradict the fact that the
global system undergoes a unitary evolution. We will see later that an irreversible process
can be described by a mapping Pt, which has to satisfy several conditions.

3.2.2 The pure loss channel

We now use the representation that we introduce above to present the PLC. Note that
in this subsection, we give a qualitative definition of the PLC. A more rigorous description
will be given after introducing the appropriate theory.

Roughly, a pure loss channel is a channel that mixes an input state with vacuum. This
mixing is represented by a unitary operation U that acts on the joint system composed
of the input ρ̂ and the vacuum |0〉 〈0|. We write the action of a PLC as E :

E (ρ̂) = TrE
[
U (ρ̂⊗ |0〉 〈0|E)U †

]
. (3.2.3)

Figure 3.1 illustrates this formula.
As we know, vacuum is the state of least energy. This explains the denomination

“pure loss” of PLCs. Indeed, a state passing in a PLC can only see its energy decrease.
This consideration allows us to introduce an important property of PLCs:

Property 3.1. The vacuum is the fixed point of the PLC.

En (ρ̂) −→
n→+∞

|0〉 〈0| (3.2.4)

where En is the successive application of n times the PLC.
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Figure 3.1 – Schematic representation of a PLC. |0〉E is a pure state of the environment,
which is chosen to vacuum. ρ̂ is the input of the channel, and E (ρ̂) is the output of the
channel. Ẽ (ρ̂) is the complementary output for the environment. U is a unitary operation.
This figure comes from [31].

That property is the reason why we have interest in PLCs. It is conjectured that
vacuum is the state of least entropy. We expect to find in the operation performed by a
PLC keys to a proof that vacuum is the most ordered state.

3.3 Lindblad master equation

In this section, we address an important result of quantum mechanics. Lindblad master
equation formulates irreversible quantum processes in the density matrix representation.
We don’t give a complete derivation of the equation, as this goes beyond the scope of this
report. Rather, we present the main hypothesis assumed, and interpret the final form of
the equation.

3.3.1 Markov hypothesis

A major assumption that we lay is that the irreversible process we characterize is
Markovian. This means that the evolution of the system only depends on its present
state : we don’t need to know its past to determine its future. The evolution of the
system can then be determined through a mapping Pt [1]:

ρ̂t = Pt (ρ̂0) (3.3.1)

3.3.2 Physicality

The mapping Pt has to verify some conditions in order to ensure the physicality of the
system at any time. Obviously, Pt has to be trace-preserving and positivity-preserving.
That is to say that a state ρ̂0 which is initially normalized and non-negative must be
mapped on another normalized and non-negative state. These two conditions are however
not sufficient. The mapping Pt has to satisfy a condition stronger than positivity, known
as complete positivity [26]. This condition becomes important when we consider the
evolution of entangled states. As an example, if we consider the evolution of a bipartite
entangled state, the evolution of one part through a positive mapping can lead to a non-
physical state for the bipartite system.
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3.3.3 The equation

Bearing these assumptions in mind, we present the result known as Lindblad equation
[7]. This result is the most general form of irreversible processes that satisfies the previous
requirements. As usual, we use units such that ~ = 1.

dρ̂

dt
= L (ρ̂) = i

[
ρ̂, Ĥ

]
+
∑
i

Γi

(
L̂iρ̂L̂

†
i −

1

2
L̂†i L̂iρ̂−

1

2
ρ̂L̂†i L̂i

)
(3.3.2)

where Ĥ is the Hamiltonian of the system, L̂i arbitrary operators, and Γi nonnegative
factors. L is the Linbladian of the system.

We now interpret that equation and give its physical meaning. The term i
[
ρ̂, Ĥ

]
contains the usual, unitary evolution of the system. Operators L̂i describe the coupling
of the system to its environment. They represent quantum jumps that make ρ̂ jump to
L̂iρ̂L̂

†
i at the rate Γi [19]. Irreversibility happens each time a quantum jump occurs.

It can be shown that the time evolution of a WDF evolving under a harmonic Hamil-
tonian is identical to the classical case : the WDF moves in elliptical paths in phase
space [10]. Therefore, we will only consider the part of the time evolution linked to the

irreversible process. In what follows, we simply omit the term i
[
ρ̂, Ĥ

]
in equation 3.3.2.

3.4 Phase distributions in a pure loss channel

In this section, we establish how a state propagating through a PLC sees its WDF
affected.

3.4.1 Evolution equation

First, we derive the evolution equation of the WDF in a PLC. The development is
rather long, and we choose only to present the key results here. The complete derivation
is however done in appendix B. Should any precision be needed, the reader is strongly
encouraged to read it.

Absorption is described by the annihilation operator â. The irreversible part of Lind-
blad equation 3.3.2 applied to a PLC writes as follows:

dρ̂

dt
= Γ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
(3.4.1)

where Γ is the rate of absorption.
This equation describes the evolution of the density matrix. We want to translate it

into an evolution equation on the WDF. In order to do so, we need to know the effect of
the operators â and â† on the WDF. First, we consider the operators q̂ and p̂. They have
the following correspondence rules [19]:

q̂ρ̂↔
(
q +

i

2

∂

∂p

)
W, ρ̂q̂ ↔

(
q − i

2

∂

∂p

)
W,

p̂ρ̂↔
(
p− i

2

∂

∂q

)
W, ρ̂p̂↔

(
p+

i

2

∂

∂q

)
W.

(3.4.2)
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Using the definition of â and â† in terms of q̂ and p̂, these correspondence rules enable
us to find the evolution equation of the WDF:

∂W

∂t
= Γ

(
W +

q

2

∂W

∂q
+
p

2

∂W

∂p
+

1

4

∂2W

∂q2
+

1

4

∂2W

∂p2

)
. (3.4.3)

This equation governs the evolution of the WDF. One can check that the vacuum
WDF cancels this expression, as we could expect. Vacuum is indeed stationary in a PLC.
That equation can be solved analytically in Fourier space. It is done in appendix B. The
solution for the characteristic function reads as follows:

W̃ (u, v, t) = W̃ (u
√
η, v
√
η, 0) exp

(
−(1− η)

u2 + v2

4

)
(3.4.4)

where η = exp (−Γt) and W̃ (u, v, t) is the characteristic function at time t. In this
equation, we have introduced the parameter η that contains the temporal dependence. In
practice, a PLC is associated to a certain value of η, which is the parameter of the PLC
and scales from 0 to 1. We will refer to the WDF at t = 0 as the input of the PLC W (in)

and the WDF at time t = − ln η/Γ as the output W (out). In this picture, the temporal
dependence disappears.

From equation 3.4.4, we see that the characteristic function undergoes a rescaling and
a multiplication by a Gaussian. In real space, the WDF undergoes a rescaling and a
convolution. We now introduce the norm preserving rescaling operator Rs:

Rs [A(x, y)] =
1

s2
A
(x
s
,
y

s

)
. (3.4.5)

This operator enables us to describe the operation performed by a PLC in an elegant
way:

W (out) = R√η
[
W (in)

]
∗R√1−η [W0] . (3.4.6)

The output of a PLC is the convolution between the rescaled input and the rescaled
vacuum. In the extreme case where η = 1, W (in) is convoluted with a delta and W (out) =
W (in). Conversely, if η = 0, W (out) = W0.

3.4.2 Disorder

We now consider the transformation performed by the PLC in terms of disorder. A
rescaling and a convolution are two very different mechanisms, and have opposed effects
as regards disorder.

On the one hand, rescaling is an operation that reduces the support of W (in). It makes
it more localized around the origin while preserving its initial shape. This operation lowers
the disorder of W (in). On the other hand, a convolution blurs W (in) and modifies its shape.
It increases the support of W (in) by making it more diffuse. That operation heightens the
disorder of W (in).

In this report, we use the PLC as a tool that inevitably brings WDF closer to the
vacuum. It is conjectured that vacuum is the state of least disorder. Therefore, we expect
that the operation performed by the PLC decreases the disorder. The disorder increase
from the convolution and the disorder decrease from the rescaling should result in a net
decrease of disorder.
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This condition is deeply linked to the physicality of WDFs. Indeed, we can easily
imagine distributions that would undergo an increase of disorder after the action of a
PLC. As a simple example, we consider a delta distribution. The increase of disorder it
gains from the convolution is not compensated by the rescaling. In this report, we state
the hypothesis that all the distributions that gain disorder in a PLC are non-physical.
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Part II

Results
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Chapter 4

Derivation of a majorization
criterion

4.1 Introduction and motivation

In this report, we try to give elements of proof to a recent conjecture proposed in [13].
This chapter is the first one were we present new elements. We suggest here a scheme of
demonstration to prove the conjecture. We then expose some analytic derivations towards
this aim.

In section 4.2, we give the context of the conjecture. We present a plan of demonstra-
tion in section 4.3. This demonstration uses the properties of decreasing rearrangements
and pure loss channels. In section 4.4 we give a proof that decreasing rearrangements
evolving in PLCs stay decreasing rearrangements. We then derive the equation of evolu-
tion of decreasing rearrangements in PLCs in section 4.5. This leads us to a majorization
criterion that we explicit in section 4.6. This is the main contribution we give in this
report. Finally, we try to give elements that could lead to a complete proof in section 4.7.

4.2 Formulations of uncertainty

In this section, we present several expressions of the observation that we can’t have a
perfect knowledge of both q̂ and p̂ at the same time. Each expression formulates a lower
bound on the uncertainty of these operators. We are trying to get this bound as tight as
quantum physics allows us.

4.2.1 Heisenberg principle

Let us consider two observables that don’t commute.[
Â, B̂

]
= iĈ (4.2.1)

where Â, B̂ and Ĉ are hermitian operators. Showing that the following inequality holds
for any state ρ̂ is a simple derivation [2].

∆A ·∆B ≥ 1

2

∣∣∣〈Ĉ〉∣∣∣ (4.2.2)

33



where we have used the notation

〈X̂〉 = Tr
[
ρ̂X̂
]
, ∆X =

√〈
X̂ − 〈X̂〉

〉
. (4.2.3)

Equation 4.2.2 tells us that it is not possible to have at the same time a perfect
knowledge of two observables that don’t commute. This inequality finds its most famous
writing when applied to the observables position q̂ and momentum p̂. These operators
have the canonical commutation relation [q̂, p̂] = i. Heisenberg uncertainty principle reads
as follows:

∆q∆p ≥ 1

2
. (4.2.4)

4.2.2 Entropic uncertainty

A less known yet tighter inequality can be derived in terms of entropy. The derivation
is done for pure states in [4]. Extension to mixed states can be found in [5]. The demon-
stration is based on relations existing between a function and its Fourier transform. The
entropic uncertainty principle reads as follows:

H [ρq] +H [ρp] ≥ ln π + 1 (4.2.5)

where ρq and ρp are the probability densities for position and momentum respectively. For
a state ρ̂ having eigenvalues {λi} and eigenstates {|ψi〉}, they are given by the following
formulas:

ρq(q) =
∑
i

λi|ψi(q)|2, ρp(p) =
∑
i

λi|φi(p)|2. (4.2.6)

H [ρ] is the entropy of the distribution ρ and is defined as:

H [ρ] = −
+∞∫
−∞

ρ(x) ln (ρ(x)) dx. (4.2.7)

What is remarkable about equation 4.2.5 is that it formulates uncertainty by means of
entropy, which is, in information theory, a much more usable tool than standard deviation.
Moreover, it can be shown that Heisenberg uncertainty principle is a consequence of
that inequality [5]. Entropic uncertainty principle is stronger than Heisnberg uncertainty
principle.

4.2.3 Uncertainty in phase space

In this subsection, we borrow some notions of information theory [11]. A well known
equation of information theory links the entropy of a joint distribution to its marginal
entropies:

H [ρxy] = H [ρx] +H [ρy]− I [ρxy] (4.2.8)

where ρxy(x, y) is a joint probability distribution, and ρx(x) and ρy(y) its marginal proba-
bility distributions. I [ρxy] is the mutual information of the distribution. Without entering
into details, we underline an important property of this quantity : the mutual information
is always nonnegative.
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It appears thus natural to transcribe the entropic uncertainty principle to a lower
bound on the entropy of a joint distribution ρqp, from which inequality 4.2.5 would directly
follow. Wigner quasi-probability distribution is a perfect candidate for ρqp, since we have
seen that its marginal distributions are ρq and ρp.

However, we encounter a major problem in this interpretation : WDFs can take
negative values. The entropy of partially negative distributions is not defined, due to
the logarithm function. To make this interpretation complete, one should then define a
generalized entropy which would fulfill this gap. This report postpones this necessity, and
chooses to only consider nonnegative WDFs.

Baring these considerations in mind, we introduce the conjecture proposed in [13].

Conjecture 4.1. The Wigner entropy H of a physical nonnegative WDF W satisfies the
inequality

H [W ] ≥ lnπ + 1 (4.2.9)

That conjecture is stronger than the entropic uncertainty principle. In this report, we
present some tracks towards a demonstration. We also give numerical evidences that the
conjecture is satisfied.

4.3 Plan of demonstration

In this section, we present a plan that we established in order to prove conjecture 4.1.
It is build from four steps, which each constitutes a progress towards a proof. Note that
in the process of our research, we had to give slight modifications to this plan. We present
here the scheme of demonstration as it was when we started our investigations. All the
WDFs that we consider are assumed to be nonnegative.

4.3.1 A stronger conjecture

We propose to use theory of majorization to prove conjecture 4.1. To this purpose,
we introduce another conjecture:

Conjecture 4.2. Any physical nonnegative WDF W is majorized by the vacuum

W ≺ W0 (4.3.1)

where W0 is the WDF of the vacuum.

As we have seen, a relation of majorization is a stronger relation than a difference
of entropy. Conjecture 4.1 would be a direct consequence of conjecture 4.2. Entropy is
indeed a Schur-concave function, and the Wigner entropy of vacuum is precisely equal to
lnπ + 1.

4.3.2 Rearrangements in a PLC

The main idea of the demonstration is to use a PLC as a disorder decreasing tool. We
believe that a WDF passing through a PLC sees its disorder decreased. Indeed, we know
from property 3.1 that a WDF in a PLC tends to vacuum.
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However, the evolution of a WDF in a PLC may be complicated to characterize in
its generality, as WDFs can have very various shapes. To get around this difficulty, we
suggest to study the decreasing rearrangements of the WDFs. We know indeed that
a relation of majorization is preserved under rearrangement. Therefore, we propose to
consider the evolution of the rearrangement in a PLC. We hope that the symmetry of
decreasing rearrangements will make the task easier.

The first step of our demonstration is to prove that a decreasing rearrangement evolv-
ing in a PLC stays a decreasing rearrangement. In what follows, we denote the evolution
through a PLC of parameter η by the operator Eη.

Step 4.1. Prove that PLCs preserve decreasing rearrangements.

Eη
(
W ↓) = Eη

(
W ↓)↓ (4.3.2)

We believe this step should be straightforward to prove, since it appears to our intuition
that rescalings and convolutions preserve dereasing rearrangements.

The second step of the demonstration is then to prove that the decreasing rearrange-
ment of a physical WDF is still a physical WDF.

Step 4.2. Prove that rearranging a nonnegative WDF preserves its physicality.

W physical ⇒ W ↓ physical (4.3.3)

This will reveal its importance later. It would ensure us that we study the evolution
of a physical system. Note that that step is only a speculation, since we have no clue
whether it is the case or not. Rearranging is indeed a rather uncommon operation that no
known physical operation uses as a mechanism, on the contrary of convolution, rescaling
or rotation for example.

4.3.3 Criterion for majorization

The third step of our demonstration is to find a criterion that a WDF should satisfy in
order to be majorized by its instantaneous PLC output. The instantaneous PLC output
of a WDF is the output of the WDF through an infinitesimal PLC. This instantaneous
evolution is precisely described by Lindblad equation.

Step 4.3. Formulate a criterion that is a sufficient condition to a majorization by the
instantaneous PLC output.

crit (W ) ⇒ Eη(dt) (W ) � W (4.3.4)

We hope to find a criterion that would have a form simple enough to be readily
applicable to WDFs.
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4.3.4 Physicality as a proof

Finally, last step of this demonstration is to prove that any physical nonnegative WDF
satisfies the criterion found in step 4.3.

Step 4.4. Prove that any physical nonnegative WDF satisfies the criterion.

W physical ⇒ crit(W ) (4.3.5)

The achievement of the four steps would result to a proof of conjecture 4.2. Indeed,
step 4.2 would prove that the rearrangement of any physical WDF is physical. This would
mean that the evolution of that rearrangement in a PLC would also be physical at all
time. It would thus ensure that the criterion is satisfied at all time, from step 4.4.

If the criterion is satisfied at all time, this would mean from step 4.3 that the evolution
of the decreasing rearrangement forms a majorization chain:

W ↓(t = 0) ≺ W ↓(t = t1) ≺ ... ≺ W ↓(t = +∞) (4.3.6)

Since we know from property 3.1 that vacuum is the fixed point of a PLC, any state
tends to vacuum after a long enough time in a PLC. In equation 4.3.6, we have thus
W ↓(t = +∞) = W0. Since a function and its rearrangement are identical from the point
of view of majorization, we have:

W ↓ ≺ W0 ⇔ W ≺ W0. (4.3.7)

Consequently, this would lead to a proof of conjecture 4.2. Note that step 4.1 isn’t nec-
essary for the proof. However, since it would ensure that the WDF stays a rearrangement
in its evolution, it would allow us to formulate a criterion that only relates to decreasing
rearrangements.

4.4 Rearrangement in a PLC

As we explained in the previous section, we will restrict our study to the evolution of
decreasing rearrangements in a PLC. The fact that a rearrangement is circular symmetric
enables us to make some useful simplifications. From now on, we will only consider
rearranged WDFs. For readability, we will omit the decreasing symbol, and design W ↓ by
W . Decreasing rearrangements have circular symmetry. For this reason, we can describe
them with a one argument function.

W (q, p) = Wr(r) (4.4.1)

where r =
√
q2 + p2. Formally, we should make the difference between W (q, p) and Wr(r),

which are respectively a two arguments function and a one argument function. However,
in what follows, we will designate these two functions by W , without distinction. We
use the notation W ′(r) = ∂

∂r
W (r). Since W is a decreasing rearrangement, the derivative

of its radial function is negative. In what follows, we will consider that the following
properties are respected: {

W ′(r) ≤ 0 ∀r ≥ 0

W (r) ≥ 0 ∀r ≥ 0
(4.4.2)
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In this section, we prove step 4.1. We remember that the action of a PLC Eη can be
decomposed in two distinct operations : a rescaling and a convolution. We are going to
prove that the output of these two operations is a decreasing rearrangement if its input
is so.

The proof that rescaling preserves decreasing rearrangement is straightforward. It is
trivial to show that it preserves circular symmetry. Moreover, we can write:

∂

∂r
(Rs [W ]) =

∂

∂r

(
1

s2
W
(r
s

))
=

1

s3
W ′
(r
s

)
(4.4.3)

which has the same sign as W ′(r). The radial function stays decreasing under rescaling.
The proof that the convolution of a decreasing rearrangement with a Gaussian stays a

decreasing rearrangement is slightly trickier. For that reason, we choose not to present this
demonstration here. In appendix C, we introduce the notion of bell shaped function, which
generalizes the idea of decreasing rearrangement. We then prove that the convolution of
two 2D bell shaped functions is a 2D bell shaped function.

We don’t dwell on this part of the demonstration, as we would like to focus on the
application of majorization in phase space.

4.5 Polar evolution equation

In this section, we derive the evolution of decreasing rearrangements in a PLC, taking
its symmetry into account. We then compute its explicit expression.

4.5.1 Evolution equation

We now establish the differential equation of evolution of a polar WDF in a PLC. For
readability purpose, we introduce the dimensionless variable τ = Γt.

∂W

∂τ
=

(
1 +

q

2

∂

∂q
+
p

2

∂

∂p
+

1

4

∂2

∂q2
+

1

4

∂2

∂p2

)
W (4.5.1)

The derivation of the following relations is straightforward:

∂

∂q
W (r) = W ′(r)

q

r

∂2

∂q2
W (r) = W ′′(r)

q2

r2
+W ′(r)

(
1

r
− q2

r3

)
∂

∂p
W (r) = W ′(r)

p

r

∂2

∂p2
W (r) = W ′′(r)

p2

r2
+W ′(r)

(
1

r
− p2

r3

) (4.5.2)

Injecting previous relations in the evolution equation gives us the polar evolution
equation:

∂W

∂τ
= W +

(
r

2
+

1

4r

)
W ′ +

1

4
W ′′ (4.5.3)

This partial differential equation describes the evolution of W (r, t) in a PLC. Here,
we have only assumed that the WDF is circular symmetric. This equation is also valid
for non-decreasing radial functions.
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Stationary solution

We may interest ourselves to the polar WDFs that are stationnary in a PLC. In order
to do so, we study the ordinary differential equation obtained when equaling the left hand
side of 4.5.3 to zero. The equation has two independent solutions:

y′′ +

(
2x+

1

x

)
y′ + 4y = 0 ⇒


y = C1y1 + C2y2

y1 = exp(−x2)
y2 = exp(−x2)Ei(x2)

(4.5.4)

Ei is the exponential integral. Solution y2 is not physical since it is unbounded in x = 0.
Solution y1 corresponds to the WDF of vacuum. As expected, the vacuum is thus the
only polar WDF stationary in a PLC.

4.5.2 Explicit expression

Here, we compute the explicit expression of the evolution. We remember that the
evolution of a WDF in a PLC is governed by a rescaling and a convolution. A rescaling
is a fairly trivial operation. A convolution of two 2D distributions implies the resolution
of two integrals. We will see that when the WDF are circular symmetric, the convolution
can be reduced to a unique integral. Using the vectorial notation r = (q, p), we can write:

W (out)(r) =
1

π (1− η)

∫∫
R∈R2

W (in)(R) exp

(
−
(
r−√ηR

)2
1− η

)
dR (4.5.5)

The norm of a vector a + b is
√
a2 + b2 + 2ab cos θ where a, b and θ are respectively

the norm of a, the norm of b and the angle between a and b. Some rewriting then gives
us:

W (out)(r) =
1

π (1− η)

+∞∫
0

2π∫
0

exp

(
2
√
ηrR cos θ

1− η

)
dθ

︸ ︷︷ ︸
2πI0

(
2
√
ηrR

1−η

)
W (in)(R) exp

(
−r

2 + ηR2

1− η

)
RdR

(4.5.6)
I0 is the modified Bessel function of the first kind. Finally, we find the explicit expression
of a polar WDF in a PLC:

W (out)(r) =
2

1− η
exp

(
− r2

1− η

) +∞∫
0

W (in)(R) exp

(
− ηR2

1− η

)
I0

(
2
√
ηrR

1− η

)
RdR

(4.5.7)
This equation will be useful for numerical simulations.

4.6 Majorization criterion

In the plan of our demonstration, we aim to prove that rearranged physical WDFs
are majorized by their instantaneous output through a PLC. We are going to see how
this conditions reads using the evolution equation. We consider that conditions 4.4.2 are
respected.
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4.6.1 Cumulative sum

The majorization condition can be expressed in terms of cumulative sums. The output
of a PLC W (out) majorizes its input W (in) if:

W (out) � W (in) ⇔ S(out)(r) ≥ S(in)(r) ∀r (4.6.1)

The cumulative sums S(in) and S(out) can be expressed as functions of W (in) and W (out),
respectively. Let W (t) describe the evolution of W in the PLC, so that W (in) = W (t) and
W (out) = W (t+ δt). Similarly, we write S(in) = S(t) and S(out) = S(t+ δt).

Now, we consider an infinitesimal PLC. This means thatW (in) andW (out) are separated
by an infinitesimal interval of time. We need thus to consider the limit case where δt tends
to 0 with positive values. According to this, we rewrite the condition for majorization as:

lim
δt→0+

(W (t+ δt)) � W (t) ⇔ lim
δt→0+

(S(t+ δt)− S(t)) ≥ 0

⇔ lim
δt→0+

(
S(t+ δt)− S(t)

δt
δt

)
≥ 0

⇔ ∂S

∂t

(
lim
δt→0+

δt

)
≥ 0.

Since δt tends to zero with positive values, the condition for instantaneous majorization
resumes to the nonnegativity of the time derivative of the cumulative sum:

W (out) � W (in) ⇔ ∂S

∂t
≥ 0 ∀r ⇔ 2π

r∫
0

∂W

∂t
(R)RdR ∀r

where W (out) is the instantaneous PLC output of W (in).
Let us now explicit the time evolution of the cumulative sum S for a decreasing

rearrangement in a PLC:

∂S

∂τ
= 2π

r∫
0

∂W

∂τ
RdR

= 2π

r∫
0

[
W +

(
R

2
+

1

4R

)
W ′ +

1

4
W ′′
]
RdR

= 2π

 r∫
0

WRdR +
1

2

r∫
0

W ′R2dR +
1

4

r∫
0

W ′dR +
1

4

r∫
0

W ′′RdR


(4.6.2)

Using integration by parts, we can state:

r∫
0

W ′R2dR = Wr2 − 2

r∫
0

WRdR,

r∫
0

W ′′RdR = W ′r −
r∫

0

W ′dR (4.6.3)
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These expressions simplify surprisingly well, so that 4.6.2 resumes to:

∂S

∂τ
= 2π

(
r2

2
W +

r

4
W ′
)

(4.6.4)

And the majorization criterion becomes:

W ′ + 2rW ≥ 0 (4.6.5)

Theorem 4.1. Let W (r) be the radial function of a decreasing rearrangement. If W
satisfies

W ′(r) + 2rW (r) ≥ 0 ∀r ≥ 0, (4.6.6)

then the decreasing rearrangement is majorized by its output through an infinitesimal PLC.

Note that in our hypothesis, W ≥ 0 and W ′ ≤ 0. This criterion can be seen has a an
upper bound on the derivative of W :

|W ′| ≤ 2rW (4.6.7)

It teaches us that a function whose rearrangement decreases too abruptly does not satisfy
the criterion. We presume that this type of function are non physical. Moreover, one can
easily check that the vacuum cancels the expression of the criterion.

4.6.2 Level function

We have to keep in mind that majorization is first and foremost a condition on the
level function. Decreasing rearrangements have a particular interest as they are directly
connected to that level function.

W (r) = m−1(πr2) (4.6.8)

for decreasing rearrangements, where m(t) is the level function of W as defined in chapter
1. We can write the majorization criterion in term of level function:

π
∂

∂t
m−1(t) +m−1(t) ≥ 0 (4.6.9)

where t is evaluated at πr2. Since this equation has to be satisfied for all r ≥ 0, it also has
to be the case for all t ≥ 0. On can here recognize the logarithmic derivative of function
m−1. Indeed, previous equation can be written as:

∂

∂t

(
lnm−1(t)

)
≥ − 1

π
(4.6.10)

where this inequality has to be satisfied for all t ≥ 0 to ensure majorization by vacuum. By
construction, the level function has a negative derivative. This equation is the translation
of 4.6.5 to the level function. It has the advantage to be directly applicable to any WDF,
without passing by its decreasing rearrangement. Indeed, we know that the level function
is invariant under rearrangement.
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4.6.3 Other formulation

Equation 4.6.5 can be written in an elegant way using an artifice of calculation. The
product rule for derivatives tells us that the criterion is equivalent to the following con-
dition:

∂

∂r

(
exp
(
r2
)
W (r)

)
≥ 0 (4.6.11)

Now, we remember that the WDF of vacuum is precisely a Gaussian of unitary stan-
dard deviation. The criterion can equivalently be written:

∂

∂r

(
W

W0

)
≥ 0 (4.6.12)

where W0 is the WDF of vacuum. This writing is remarkable inasmuch as it explicitly
involves vacuum. This reinforces us in the idea that this criterion is indeed an equivalent
condition to majorization by vacuum.

4.7 Towards a proof

We have proved step 4.1 and found the criterion of step 4.3. We now have to prove steps
4.2 and 4.4. Unfortunately, this ambition couldn’t be achieved in this report. Attempts
were made to prove step 4.4, but it has been unsuccessful for the moment. Concerning
step 4.2, we have quite bad news, since it appears from our numerical simulations that
decreasing rearrangements of physical WDFs are not necessarily physical. We will address
this problem in the next chapter.

We may thus think that our demonstration is doomed to fail. We argue that it is not
the case, through some adaptations of our initial scheme. To this purpose, we suggest to
introduce two new steps that would replace steps 4.2 and 4.4. These are the following:

Step 4.5. Prove that the decreasing rearrangement of any physical nonnegative WDF
satisfies the criterion.

W physical ⇒ crit
(
W ↓) (4.7.1)

Step 4.6. Prove that if a decreasing rearrangement satisfies the criterion, then its evolu-
tion in a PLC satisfies the criterion at all time.

crit
(
W ↓(t = 0)

)
⇒ crit

(
W ↓(t = t1)

)
∀t1 ≥ 0 (4.7.2)

where W ↓(t) describes the evolution of W ↓ in a PLC.

The proof of these two steps would give a complete demonstration of conjecture 4.2.
Indeed, this would imply that the evolution of the decreasing rearrangements form a
majorization chain, as schematized in equation 4.3.6. The difference here is that the
majorization chain would contain non physical WDFs. Majorization is a very mathemat-
ical condition, and can be applied on physical as well as non-physical WDFs. What we
are aiming to prove is a majorization relation between two physical distributions. The
starting point and the ending point of the PLC evolution correspond to rearrangement of
physical WDFs. Therefore, it is not a problem if the intermediate distributions are not
physical.
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Chapter 5

Numerical simulations

5.1 Introduciton and motivation

This last chapter gives a numerical overview of the considerations we introduced in
chapter 4. The presence of a chapter devoted to numerical simulations in a very theoretical
report may surprise. We know indeed that a numerical simulation will never be enough
to serve as a proof. In this chapter, we aim to a better understanding of the mechanisms
involved in the evolution of Wigner distributions.

In section 5.2 we describe the method we use to generate nonnegative WDFs that are
physically acceptable. In section 5.3, we verify numerically that the different conjectures
we exposed are satisfied. Section 5.4 addresses the question of the physicality of decreasing
rearrangements. Section 5.5 is devoted to the evolution of WDFs in a PLC. Finally, we
expose in section 5.6 an observation involving another kind of majorization, known as
Fock majorization.

Our simulations were conducted in Matlab. Program files were coded for the purposes
of this project, and can be found in appendix D.

As usual, we use the convention to chose units such that ~ = 1, so that we can express
q and p without dimensions. When the WDF has circular symmetry, we use the parameter
r =

√
q2 + p2.

5.2 Random nonnegative WDF

The first step required to verify numerically our conjecture is to generate random
physical states. In this report, we restrict our study to states that have a nonnegative
WDF, since majorization is only defined for nonnegative distributions. As we learned
previously, it is difficult to check the physicality of a WDF. We cannot simply generate
normalized 2D distributions, since they will generally correspond to operators that have
negative eigenvalues. We need to build nonnegative WDF that are physical. We present
three different ways to achieve that.

5.2.1 Passive states

We stated previously that passive states have the property to have circular symmetric
nonnegative WDFs. The 10 first passive extremal states are plotted in figure 5.1. We can
thus generate a continuum of random passive states. We take a random set of nonnegative
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Figure 5.1 – Radial function of the 10 first extremal states. W e
n is the nth extremal passive

state.

numbers that sum up to 1. We then create a mixture of extremal passive states with the
so-obtained eigenvalues.

5.2.2 Husimi function

In chapter 2, we briefly introduced the s-parameterized probability distributionW (q, p; s).
The Husimi function Q is the s-parameterized distribution of parameter s = −1 [19].

Q(q, p) = W (q, p;−1) (5.2.1)

From the definition of s-parameterized distributions, one can see that Husimi function is
the convolution of the WDF with vacuum. It has been shown that smoothing a WDF
with a Gaussian produces another physically acceptable WDF [22]. Moreover, one can
see that Husimi function is necessarily nonnegative:

Q(q, p) =
1

π

+∞∫
−∞

+∞∫
−∞

W (q′, p′) exp
(
−(q − q′)2 − (p− p′)2

)
dq′dp′

=

+∞∫
−∞

+∞∫
−∞

W (q′, p′)Wα(q′, p′)dq′dp′

=
1

2π
Tr [ρ̂ |α〉 〈α|] =

1

2π
〈α| ρ̂ |α〉 ≥ 0

(5.2.2)

where Wα is the WDF of the coherent state |α〉, α = (q + ip) /
√

2, and we use the overlap
formula. We see that the Husimi function is directly proportional to the probability of
measuring a coherent state, which must be nonnegative.

We now have another technique to produce random nonnegative WDF that are phys-
ically acceptable. We compute the WDF of an arbitrary pure state. To create a random
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pure state, we start from its wave function and compute its WDF. Theoretically, any
normalized function whose derivative is continuous is acceptable. However, we restrict
ourselves to wave functions that are superpositions of the 10 first Fock states in this re-
port. This way, we can ensure that WDFs don’t expand too far from the origin. This
WDF will in general be partly negative. We then convolve this WDF with the vacuum
and get a physical nonnegative WDF.

In comparison with passive states, we have here access to a wider set of random
WDFs. Indeed, while passive states had circular symmetric WDF, the WDF that we
generate hereby are in general non symmetric.

5.2.3 Pure Loss Channel

The previous result can be slightly improved. For this, we take interest to the evolution
of WDF through a PLC of parameter η = 1/2. The evolution is governed by equation:

W(out) = R√ 1
2

[
W(in)

]
∗R√ 1

2

[
W0

]
= R√ 1

2

[
W(in) ∗W0

]
= R√ 1

2

[
Q(in)

] (5.2.3)

where we used that Rs [W1] ∗Rs [W2] = Rs [W1 ∗W2], which is straightforward:

Rs [W1] ∗Rs [W2] =
1

s4

+∞∫
−∞

+∞∫
−∞

W1

(
q′

s
,
p′

s

)
W2

(
q′ − q
s

,
p′ − p
s

)
dq′dp′

=
1

s2

+∞∫
−∞

+∞∫
−∞

W1 (q′′, p′′)W2

(
q′′ − q

s
, p′′ − p

s

)
dq′′dp′′

= Rs [W1 ∗W2]

(5.2.4)

It appears that the output of such a PLC is the Husimi function of the input, rescaled
by a factor 1/

√
2. Since this WDF is the result of a physical operation, it must correspond

to a physical state.
From now on, we designate the output of the PLC of parameter η = 1/

√
2 as W plc,

and the Husimi function of the input as Q. What makes this solution more interesting
than the mere Husimi function is precisely the rescaling. It means that W plc has a smaller
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extent and is more localized than Q. This translate to a difference in their entropies:

H[W plc] = −
+∞∫
−∞

+∞∫
−∞

W plc(q, p) ln
(
W plc(q, p)

)
dqdp

= −
+∞∫
−∞

+∞∫
−∞

2Q
(√

2q,
√

2p
)

ln
(

2Q
(√

2q,
√

2p
))

dqdp

= −
+∞∫
−∞

+∞∫
−∞

Q (q′, p′) ln (2Q (q′, p′)) dq′dp′

= −
+∞∫
−∞

+∞∫
−∞

Q (q′, p′) ln (Q (q′, p′)) dq′dp′ − ln 2

+∞∫
−∞

+∞∫
−∞

Q (q′, p′) dq′dp′

= H [Q]− ln 2

(5.2.5)

We can even go further and prove that W plc � Q. Obviously, their decreasing rear-
rangement obey the relation : W plc↓(r) = 2Q↓

(√
2r
)
.

W plc � Q ⇔ 2π

r∫
0

W plc↓(R)RdR ≥ 2π

r∫
0

Q↓(R)RdR ∀r (5.2.6)

⇔ 2

r∫
0

Q↓
(√

2R
)
RdR ≥

r∫
0

Q↓(R)RdR ∀r (5.2.7)

⇔

√
2r∫

0

Q↓ (R′)R′dR′ ≥
r∫

0

Q↓(R)RdR ∀r (5.2.8)

The last equation is obviously satisfied, since Q↓ is nonnegative everywhere. What we
learn from these considerations is that, between W plc and Q, the WDF which is the more
susceptible to break our conjecture is W plc. We will thus prefer the output of a PLC of
parameter η = 1/

√
2 over the Husimi function in our simulations.

In order to generate the PLC output, we proceed the same way as to create the Husimi
function, and we rescale it with a factor 1/

√
2.

5.3 Verification of the conjectures

In this section we present the first numerical evidences for the conjectures we intro-
duced previously. Let us first underline that through the entirety of our simulations,
whenever we have generated and tested physical states using one of the methods we
introduced above, we have found that:

— Wigner entropy is higher than lnπ + 1.
— The WDF is majorized by the vacuum WDF.
— Majorization criterion is satisfied.

This section is mainly illustrative, and we try to give appropriate examples. In what
follows, when we don’t specify the parameter η of the PLC, it is assumed η = 1/2.
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Figure 5.2 – Wigner entropy of the PLC output of superpositions of the first n Fock states.
Superpositions are generated using formula 5.3.1. The simulation is repeated 100 times
for each value of n. Each dot corresponds to a simulation. Red line is Wigner entropy of
vacuum.

5.3.1 Wigner entropy

The first simulation we present is a computation of Wigner entropy for randomly
generated states. We create random superpositions of Fock state using the following
formula:

|ψn〉 =
1√
n+ 1

n∑
k=0

exp (iφk) |k〉 (5.3.1)

where φk is a random phase uniformly distributed between 0 and 2π. These superpositions
have equal amplitude in modulus. The randomness is limited to the phase. This choice
has been done in order to enhance the reproductibility of the simulation.

We then compute the Wigner entropy for the PLC output of |ψn〉. Results are shown
in figure 5.2 for values of n going from 1 to 10. We see that superpositions of a higher
number of Fock states have in average a higher entropy. This is not surprising as higher
order Fock states have a larger extent.

Note that even if the initial superpositions have the same amplitudes in modulus,
they can result to very different entropies. These differences are only due to the phases
of the amplitudes. Note also that when |ψ〉 is a superposition of |0〉 and |1〉 with equal
amplitudes in modulus, the entropy of its PLC output is independent of the phase.

We often consider specific WDFs, such as extremal passive states W e
n. Let us introduce

another set of physical nonnegative WDF : the Fock states PLC outputs. We refer to the
output of the nth Fock state in a PLC of parameter η = 1/2 as W plc

n :

W plc
n = E 1

2

(
WF
n

)
(5.3.2)

We compare the Wigner entropy of Fock states PLC outputs to the entropy of extremal
passive states in figure 5.3. We note that W plc

0 = W e
0 = W0. Our simulations showed that

47



Figure 5.3 – Wigner entropy of Fock states PLC outputs W plc
n and extremal passive states

W e
n. It appears that the entropy of Fock states PLC ouputs is lower or equal to the entropy

of extremal passive states.

WDFs W plc
1 and W e

1 coincide.

5.3.2 Majorization by vacuum

To check if a WDF is majorized by vacuum, we use formula 1.4.7. We first build the
decreasing rearrangement of the WDF. Then, we compute its cumulative sum, that we
compare with the one of vacuum. We cannot be very illustrative in this process. We may
only insist on the fact that every physical state that we have tested was majorized by
vacuum.

5.3.3 Criterion

Here, we check that Fock states PLC outputs verify the majorization criterion. We
consider the states W plc

n for n = 0 to 5. To obtain the criterion, we compute decreasing
rearrangements and extract their radial functions. We then compute the criterion, which
is illustrated in figure 5.4.

5.4 Physicality of a rearrangment

Whether the decreasing rearrangement of a physical WDF is still a physical WDF is
an important question. Actually, no obvious argument would let us think that a rear-
rangement preserves the physicality.

5.4.1 How to check physicality

We are now presenting the method that we use to check the physicality of a WDF. We
know that the physicality resumes to 3 conditions. The WDF must be real and normalized,
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Figure 5.4 – Majorization criterion for the 5 first Fock states PLC outputs W plc
n . As

expected, the criterion is nonnegative for all value of r. It appears that for vacuum W0,
the criterion is equal to zero for all r. This result can be found analytically.

and it must correspond to a nonnegative operator ρ̂. The latter condition cannot be
checked directly on the WDF, and requires that we compute the density operator ρ̂.

To check the physicality of a normalized real-valued WDF, we compute ρ̂ in the Fock
basis, and then diagonalize it. Finally, we check that the eigenvalues are positive. In
order to compute ρ̂ in the Fock basis, we use the overlap formula:

〈i| ρ̂ |j〉 = Tr [ρ̂ |j〉 〈i|]

= 2π

+∞∫
−∞

+∞∫
−∞

W (q, p)Wij(q, p)dqqp
(5.4.1)

where Wij is the Weyl transform of operator |j〉 〈i| and can be obtained using the formula:

Wij(q, p) =
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣j〉〈i∣∣∣q +
x

2

〉
dx

=
1

2π

+∞∫
−∞

exp(ipx)ψj

(
q − x

2

)
ψ∗i

(
q +

x

2

)
dx

(5.4.2)

where ψn(x) is the wave function of the nth Fock state, vacuum being the 0th Fock state.
Using this method, we should be able to reverse the Weyl transformation and get the

operator associated to any WDF. However, we might need to browse a large number of
Wij. If we want to compute ρ̂ until the nth Fock state, we have to compute (n+1)(n+2)/2
WDFs, taken into account that ρ̂ is hermitian.
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i λi
i∑

k=0

λk

0 0.4441 0.4441
1 0.3117 0.7558
2 0.1845 0.9402
3 0.0583 0.9985
4 0.0138 1.0123
5 -0.0204 0.9919
6 0.0054 0.9973
7 0.0010 0.9983
8 0.0027 1.0010
9 -0.0077 0.9933
10 0.0085 1.0018

Table 5.1 – Fock decomposition of the rearrangement of the second extremal passive state
(W e

2 )↓. λi is calculated using formula 5.4.4. Simulations bring out that 5th and 9th Fock
states have negative components. (W e

2 )↓ does not correspond to a physical WDF.

Yet, we can simplify this matrix reconstruction if the WDF possesses a circular sym-
metry. We remember the expression of Fock states WDF:

Wn(r) =
1

π
(−1)n Ln

(
2r2
)

exp
(
−r2

)
(5.4.3)

Laguerre polynomials have the interesting property that the set of functions {exp (−x/2)
Ln(x)} form a complete orthogonal basis in L2 (0,∞) [29]. This means that every circular
symmetric WDF can be expressed on the basis of Fock WDFs. Because of the orthogo-
nality of the Wij, this also implies that all Wij such that i 6= j have a zero scalar product
with circular symmetric WDFs. If we want to test the physicality of a decreasing rear-
rangement, we can thus limit ourselves to check that all the Fock WDFs have nonnegative
components. Fock components λn are calculated using the following formula:

λn = 4π2

+∞∫
0

W (r)Wn(r)rdr (5.4.4)

5.4.2 Evidence of non-physicality

Hereafter we present a numerical example of non-physical rearrangement. That ex-
ample is the decreasing rearrangement of the second extremal state (W e

2 )↓. Its radial
function is pictured in figure 5.5. Table 5.1 shows the numerical decomposition of (W e

2 )↓

on the 10 first Fock states. We see that some Fock states have negative components in this
rearrangement. This is a blatant evidence of the non-physicality of this rearrangement.

Note that the radial function of (W e
2 )↓ presents abrupt changes in its derivative. This

means that its decomposition in Fock states includes quickly variating states, which are
Fock states of high order. We highlight that consideration to explain that the sum of the
10 first Fock components is different from unity.

We may thus think that there is no sense in performing a physical operation on a non-
physical WDF. It is indeed true that no physical meaning should be given to the evolution
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Figure 5.5 – Radial functions of the second extremal passive state W e
2 and its decreasing

rearrangement (W e
2 )↓.

of the rearrangement. We have to consider the action of the PLC has a mathematical
operation.

5.5 Evolution in a PLC

This section resumes the numerical results of WDFs evolution in a PLC.

5.5.1 Entropy evolution

Naturally, we expect Wigner entropy of a decreasing rearrangement to decrease in
a PLC. Our simulations revealed that it is indeed the case. Nevertheless, we are less
sure about the fact that this property is also satisfied for non-rearranged WDF. As an
example, von Neumann entropy may increase for a state passing through a PLC : a
pure state usually exits a PLC as a mixed state. In this subsection, we show numerical
illustrations that Wigner entropy seems to always decrease for physical nonnegative WDF
passing through a PLC. We have seen that von Neumann and Wigner entropies are very
different physical quantities. One applies to state space while to other applies to phase
space, and we are not surprised that they behave differently.

To show this phenomenon, we consider the five first Fock states PLC ouputs W plc
n .

Figure 5.6 shows the evolution of their respective entropy in time, as well as the entropy
of their decreasing rearrangements. From this figure, we can see that Wigner entropy is
decreasing at all time. In the limits where t tends to infinity, Wigner entropy H(t) tends
to ln π + 1. We also note that the entropies of the decreasing rearrangements decrease
faster than the non-rearranged WDFs.
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Figure 5.6 – Time evolution of Wigner entropy for Fock states PLC outputs W plc
n . Dotted

curves correspond to the entropy evolution of rearranged WDFs
(
W plc
n

)↓
.

5.5.2 Majorization

As for Wigner entropy, we expect the decreasing rearrangement of a physical WDF to
be majorized by its PLC ouput, whatever the value of parameter η. This was confirmed by
our simulations. We could even go further, and our simulations showed that the relation
of majorization is also valid for a non-rearranged physical WDF and its PLC output.
Once again, we cannot be very illustrative here.

5.6 Fock majorization

In this last section, we expose another observation we encountered, which involves
Fock majorization. It is not directly connected to previous sections, but it presents
enough interest for us to explain it hereafter.

Let us first define Fock majorization and clarify its difference with Wigner majoriza-
tion. On the one hand, Wigner majorization is the majorization that we have been using
throughout this report. It uses the theory of continuous majorization in the Wigner dis-
tribution. On the other hand, Fock majorization is a majorization relation between two
density operators. It uses the theory of discrete majorization, with the difference that
eigenvalues are ordered in terms of Fock states rather than in a decreasing order [15]. We
distinguish Fock majorization, that we note as �F, and Wigner majorization, that we
note as �. Fock majorization reads as follows:

ρ̂ �F σ̂ ⇔
k∑
i=0

λi ≥
k∑
i=0

µi ∀k ≥ 0 (5.6.1)

where λi = 〈i| ρ̂ |i〉 and µi = 〈i| σ̂ |i〉 are the eigenvalue of the ith Fock state for ρ̂ and
σ̂ respectively. When considering passive states, Fock majorization resumes to regular
discrete majorization.
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Figure 5.7 – Radial function of 3rd and 4th extremal passive states. It appears that the
maximum of W e

4 is higher than the maximum of W e
3 . These two WDF are incomparable.

Our simulations showed that Fock majorization does not imply Wigner majorization.
To illustrate this phenomenon, we consider extremal passive states. We designate the nth

extremal passive state with its density matrix ρ̂en and its WDF W e
n.

Using discrete majorization, we have the very straightforward majorization chain:

ρ̂e0 �F ρ̂
e
1 �F ... �F ρ̂

e
n �F ρ̂

e
n+1 (5.6.2)

We may think that this Fock majorization chain translates naturally to Wigner ma-
jorization. It is indeed the case for the first extremal passive states:

W e
0 � W e

1 � W e
2 � W e

3 (5.6.3)

However, this chain soon breaks off, and we have:

W e
3 � W e

4 , W e
5 � W e

6 , W e
7 � W e

8 , W e
9 � W e

10. (5.6.4)

These non-majorization relations can be seen from the fact that the maxima of W e
4 ,

W e
6 , W e

8 and W e
10 are higher than the maxima of respectively W e

3 , W e
5 , W e

7 and W e
9 .

Figure 5.7 illustrates the case of W e
3 and W e

4 . WDFs mentionned in equation 5.6.4 form
4 couples of incomparable WDFs. Until the 10th extremal passive state, majorization
relations resume to the majorization chain:

W e
0 � W e

1 � W e
2 �

W e
3

W e
4

� W e
5

W e
6

� W e
7

W e
8

� W e
9

W e
10

(5.6.5)
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Conclusion

In this report, we investigated conjecture 4.1 in the hope of finding tracks towards
a demonstration. To this purpose, we made the decision to use the powerful theory of
majorization. We were confident that it would be of great use as majorization has already
proved to be applicable to quantum mechanics in its discrete form. However, the use of
continuous majorization in quantum mechanics is unprecedented. We expected that this
fresh approach would give us new results.

In the first part of this report, we tried to give a thorough though concise overview
of the different issues involved. The aim was to give to the reader the elements required
to understand the conjecture as well as our attempts to demonstrate it. We presented
theory of majorization in chapter 1, which focussed on its application to 2D distributions.
We introduced notions such as symmetric decreasing rearrangements and level functions,
which would be of crucial use in our developments. Chapter 2 was dedicated to the fun-
damental concepts of quantum mechanics involved in this report. The density matrix
was presented. We then defined Wigner distributions functions, highlighting how physi-
cality reads in comparison to the density matrix formalism. Wigner differential entropy
was defined for nonnegative phase distributions. We presented different quantum optical
states with particular properties. Pure loss channels were introduced in chapter 3. We
addressed the origin of irreversibility in quantum mechanics. Lindblad equation was used
to derive the evolution of Wigner distributions in pure loss channels.

In the second part of this report, we presented our contribution to a start of proof for
the conjecture. Chapter 4 was dedicated to our analytic developments. We first explained
the context of the conjecture. Then, we gave a scheme of demonstration to prove it. Our
main contribution was the derivation of a majorization criterion. Under some conditions,
this criterion ensures that a phase distriubtion is majorized by its output through a
pure loss channel. We proposed several tracks that could lead to a complete proof. We
conducted numerical simulations in chapter 5. Different methods to generate nonnegative
physical phase distributions were presented. We gave several examples to show that the
conjecture is respected. Finally, through numerical evidence we showed that decreasing
rearrangements of physical Wigner distribution are not necessarily physical.

If one result should be retained from this report, it is without a doubt the majoriza-
tion criterion. This result is impressive by the simplicity of its formulation. A thinkable
hypothesis is that this criterion formulates another physicality condition on Wigner dis-
tributions. We dare hope that this constitutes a first step towards a simple expression of
physicality in the phase space formalism.
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Appendix A

Second quantization

In this appendix, we make a summary of the derivation that leads to the second quan-
tization. Quantum optics is the physical background that we use in this report. Therefore,
we consider useful to reminds the origin of the quantization of the electromagnetic field.
We use mainly [21] and [17].

A.1 Classical Maxwell equations

The Maxwell equations in vacuum read

∇× E = −∂B

∂t
, ∇ · E = 0,

∇×B =
1

c2
∂E

∂t
, ∇ ·B = 0.

(A.1.1)

E(r, t) is the electrical field and B(r, t) is the magnetic field. c = (ε0µ0)
−1/2 is the

speed of light in vacuum, ε0 is the vacuum permittivity and µ0 is the vacuum permeability.
Introducing the vector potential A(r, t) and the Coulomb gauge ∇·A = 0, we can deduce
both E and B from A.

E = −∂A

∂t
, B = ∇×A (A.1.2)

Using these relations in A.1.1 leads us to the wave equation for the vector potential :(
1

c2
∂2

∂t2
−∆

)
A = 0 (A.1.3)

We can restrict ourselves to the study of the vector potential. A common derivation
leading to the second quantization consist in considering a large cube of volume V with
periodic boundary conditions. Assuming this, we may expand A on the plane wave modes.

A(r, t) =
∑
kλ

[Akλ(t)vkλ(r) + A∗kλ(t)v
∗
kλ(r)] (A.1.4)

where

Akλ(t) =

√
~

2ε0ωk

αkλ exp(−iωkt), vkλ = êkλ
exp(ikr)√

V
(A.1.5)

The summation in A.1.4 is done over every possible mode. The index k browse all
the possible wave vectors, and the index λ has two different values accounting for the
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two possible orthogonal polarizations. ωk is linked to k through the dispersion relation :
ωk = ‖k‖c.

The relations A.1.5 are chosen according to the plane wave expansion. êkλ is a unit
vector such that êkλ · êkλ′ = δλλ′ and êkλ · k = 0. A dimensional prefactor is chosen in
the temporal dependence, in order to show up the adimensional number αkλ. The spatial
modes are normalized :

∫
V

v∗kλvkλd
3r = 1.

We now introduce the quantities qkλ and pkλ :

qkλ =

√
~

2ωk

(αkλ + α∗kλ) , pkλ = −i

√
~ωk

2
(αkλ − α∗kλ) (A.1.6)

In light of these elements, we may calculate the total energy H in the field. Using the
orthogonality of the spatial modes, we have :

H =

∫
V

(
ε0
2

E2 +
1

2µ0

B2

)
d3r (A.1.7a)

=
∑
kλ

~ωk|αkλ|2 (A.1.7b)

=
1

2

∑
kλ

~ωk (α∗kλαkλ + αkλα
∗
kλ) (A.1.7c)

=
1

2

∑
kλ

(
ω2
kq

2
kλ + p2kλ

)
(A.1.7d)

A.2 Quantization

The quantum step can now happen if we notice that each mode of the electromagnetic
field behaves like an harmonic oscillator. Having in mind the resolution of the harmonic
oscillator, we replace qkλ and pkλ with the canonically conjugate operators q̂kλ and p̂kλ.
Conversely to A.1.6, we introduce the annihilation operator âkλ and creation operator
â†kλ.

âkλ =
1√

2~ωk

(ωkqkλ + ipkλ) , â†kλ =
1√

2~ωk

(ωkqkλ − ipkλ) (A.2.1)

These operators obey the following commutation rules :[
qkλ, pk′λ′

]
= i~δkk′δλλ′ ,

[
qkλ, qk′λ′

]
=
[
pkλ, pk′λ′

]
= 0 (A.2.2a)

[
âkλ, â

†
k′λ′

]
= δkk′δλλ′ ,

[
âkλ, âk′λ′

]
=
[
â†kλ, â

†
k′λ′

]
= 0 (A.2.2b)

The quantum scalar potential operator Â is obtained from A.1.4 and A.1.5 where αkλ

has been replaced with âkλ. The quantum electrical field operator Ê and the quantum
magnetic field operator B̂ are then obtained from A.1.2.

We introduce the photon number operator N̂kλ = â†kλâkλ. Using equation A.1.7c and
the commutation rules that we established, the total field energy operator may write :

Ĥ =
∑
kλ

~ωk

(
N̂kλ +

1

2

)
(A.2.3)
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Appendix B

Evolution of Wigner distributions in
a pure loss channel

In this appendix, we derive the evolution of a WDF evolving in a PLC.

B.1 Correspondence rules

First, we derive the correspondence rules which give us the effect of the operator q̂
and p̂ on the WDF. Hereafter, we explict the derivation proposed in [19].

Let W be the WDF associated to the state ρ̂, and Wq̂ρ̂ the WDF associated to the
state q̂ρ̂.

Wq̂ρ̂ =
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ q̂ρ̂ ∣∣∣q +
x

2

〉
dx

=
1

2π

+∞∫
−∞

exp(ipx)
(
q − x

2

)〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉
dx

=

(
q +

i

2

∂

∂p

)
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉
dx

=

(
q +

i

2

∂

∂p

)
W

(B.1.1)
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For Wρ̂q̂ we have similarly :

Wρ̂q̂ =
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ ρ̂q̂ ∣∣∣q +
x

2

〉
dx

=
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉(
q +

x

2

)
dx

=

(
q − i

2

∂

∂p

)
1

2π

+∞∫
−∞

exp(ipx)
〈
q − x

2

∣∣∣ ρ̂ ∣∣∣q +
x

2

〉
dx

=

(
q − i

2

∂

∂p

)
W

(B.1.2)

To compute Wp̂ρ̂, we use the definition of W in the momentum basis :

Wp̂ρ̂ =
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ p̂ρ̂ ∣∣∣p− y

2

〉
dy

=
1

2π

+∞∫
−∞

exp(iqy)
(
p+

y

2

)〈
p+

y

2

∣∣∣ ρ̂ ∣∣∣p− y

2

〉
dy

=

(
p− i

2

∂

∂q

)
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ ρ̂ ∣∣∣p− y

2

〉
dy

=

(
p− i

2

∂

∂q

)
W

(B.1.3)

Similarly for Wρ̂p̂, we have :

Wρ̂p̂ =
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ ρ̂p̂ ∣∣∣p− y

2

〉
dy

=
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ ρ̂ ∣∣∣p− y

2

〉(
p− y

2

)
dy

=

(
p+

i

2

∂

∂q

)
1

2π

+∞∫
−∞

exp(iqy)
〈
p+

y

2

∣∣∣ ρ̂ ∣∣∣p− y

2

〉
dy

=

(
p+

i

2

∂

∂q

)
W

(B.1.4)

Brought back together, these four relations give the following correspondence rules:

q̂ρ̂↔
(
q +

i

2

∂

∂p

)
W ρ̂q̂ ↔

(
q − i

2

∂

∂p

)
W

p̂ρ̂↔
(
p− i

2

∂

∂q

)
W ρ̂p̂↔

(
p+

i

2

∂

∂q

)
W

(B.1.5)
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B.2 Lindblad equation for the WDF

Now, we derive the evolution equation of the WDF. We start from the evolution
equation of the density matrix in a PLC :

dρ̂

dt
= Γ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
(B.2.1)

We remember the definition of â and â† in terms of q̂ and p̂ :

â =
1√
2

(q̂ + ip̂), â† =
1√
2

(q̂ − ip̂). (B.2.2)

We can rewrite B.2.1 as :

1

Γ

∂ρ̂

∂t
= âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

=
1

2
(q̂ + ip̂)ρ̂(q̂ − ip̂)− 1

4
(q̂ − ip̂)(q̂ + ip̂)ρ̂− 1

4
ρ̂(q̂ − ip̂)(q̂ + ip̂)

=
1

2
(q̂ρ̂q̂ + p̂ρ̂p̂+ ip̂ρ̂q̂ − iq̂ρ̂p̂)− 1

4

(
q̂2 + p̂2 − 1

)
ρ̂− 1

4
ρ̂
(
q̂2 + p̂2 − 1

) (B.2.3)

where we have used the commutation relation [q̂, p̂] = i.
The latter equation may seem quite stodgy, but it actually leads to the evolution equa-

tion of the WDF in a PLC. In order to do so, we use the previously derived correspondence
rules. We translate the evolution equation of the density matrix to the evolution equation
of the WDF.

1

Γ

∂W

∂t
=

1

2

((
q +

i

2

∂

∂p

)(
q − i

2

∂

∂p

)
+

(
p− i

2

∂

∂q

)(
p+

i

2

∂

∂q

))
W

+
i

2

((
p− i

2

∂

∂q

)(
q − i

2

∂

∂p

)
−
(
q +

i

2

∂

∂p

)(
p+

i

2

∂

∂q

))
W

− 1

4

((
q +

i

2

∂

∂p

)2

+

(
q − i

2

∂

∂p

)2

+

(
p+

i

2

∂

∂q

)2

+

(
p− i

2

∂

∂q

)2

− 2

)
W

(B.2.4)

Fortunately, the previous equation can be simplified to :

1

Γ

∂W

∂t
=

1

2

(
q2 + p2 +

1

4

∂2

∂p2
+

1

4

∂2

∂q2

)
W

+
1

2

(
1

2
q
∂

∂q
+

1

2
p
∂

∂p
+

1

2

∂

∂q
q +

1

2

∂

∂p
p

)
W

− 1

4

(
2q2 + 2p2 − 1

2

∂2

∂q2
− 1

2

∂2

∂p2
− 2

)
W

(B.2.5)

So that it finally resumes to :

∂W

∂t
=

Γ

2

(
2 + q

∂

∂q
+ p

∂

∂p
+

1

2

∂2

∂q2
+

1

2

∂2

∂p2

)
W (B.2.6)
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B.3 Lindblad equation for the characteristic function

In this section we compute the evolution equation of the characteristic function W̃ (u, v).
To do so, we investigate how equation B.2.6 translates to the characteristic function. Let
us consider the following relations :

∂

∂u

+∞∫
−∞

+∞∫
−∞

W (q, p) exp(−iuq − ivp)dqdp = −i
+∞∫
−∞

+∞∫
−∞

qW (q, p) exp(−iuq − ivp)dqdp

(B.3.1a)

∂

∂v

+∞∫
−∞

+∞∫
−∞

W (q, p) exp(−iuq − ivp)dqdp = −i
+∞∫
−∞

+∞∫
−∞

pW (q, p) exp(−iuq − ivp)dqdp

(B.3.1b)

∂

∂q

+∞∫
−∞

+∞∫
−∞

W̃ (u, v) exp(iuq + ivp)dudv = i

+∞∫
−∞

+∞∫
−∞

uW̃ (u, v) exp(iuq + ivp)dudv (B.3.1c)

∂

∂p

+∞∫
−∞

+∞∫
−∞

W̃ (u, v) exp(iuq + ivp)dudv = i

+∞∫
−∞

+∞∫
−∞

vW̃ (u, v) exp(iuq + ivp)dudv (B.3.1d)

qW ↔ i
∂

∂u
W̃ pW ↔ i

∂

∂v
W̃

∂

∂q
W ↔ iuW̃

∂

∂p
W ↔ ivW̃

(B.3.2)

We now inject this in equation B.2.6 and get the following result:

∂W̃

∂t
=

Γ

2

(
2− ∂

∂u
u− ∂

∂v
v − 1

2
u2 − 1

2
v2
)
W̃ (B.3.3)

∂W̃

∂t
= −Γ

2

(
u
∂

∂u
+ v

∂

∂v
+

1

2
u2 +

1

2
v2
)
W̃ (B.3.4)

B.4 Evolution of the characteristic function

Here, we show the explicit expression of the characteristic function. The solution of
the evolution equation B.3.4 has the following form:

W̃ (u, v, t) = W̃ (in) (u
√
η, v
√
η) exp

(
(η − 1)

u2 + v2

4

)
(B.4.1)

where η = exp (−Γt) and W̃ (in)(u, v) is the characteristic function at t = 0. As a proof,
we calculate calculate explicitly that it verifies the evolution equation. For readability,
we introduce the following variables u′ and v′:

u′ = u
√
η, v′ = v

√
η. (B.4.2)
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B.4.1 Temporal dependence

First we calculate
∂

∂t
W̃ (u, v, t). Using the relation

∂

∂t
F (x(t), y(t)) =

∂F

∂x

∂

∂t
x(t) +

∂W

∂y

∂

∂t
y(t) (B.4.3)

and the notation

W̃ ′u(u, v) =
∂W̃

∂u
(u, v) W̃ ′v(u, v) =

∂W̃

∂v
(u, v) (B.4.4)

We have :

∂

∂t
W̃0 (u′, v′) = −Γ

2

√
η
(
uW̃ ′u

0 (u′, v′) + vW̃ ′v
0 (u′, v′)

)
(B.4.5)

∂

∂t
W̃ (u, v, t) =− Γ

2

√
η
(
uW̃ ′u

0 (u′, v′) + vW̃ ′v
0 (u′, v′)

)
exp

(
(η − 1)

u2 + v2

4

)
− Γη

(
u2 + v2

4

)
exp

(
(η − 1)

u2 + v2

4

)
W̃0 (u′, v′)

(B.4.6)

B.4.2 Coordinate dependence

We are now going to calculate −Γ

2

(
u
∂

∂u
+ v

∂

∂v
+

1

2
u2 +

1

2
v2
)
W̃ (u, v, t) and verify

that it is indeed equal to
∂

∂t
W̃ (u, v, t).

∂

∂u
W̃ (u, v, t) = exp

(
(η − 1)

u2 + v2

4

)(
(η − 1)

u

2
W̃0 (u′, v′)

√
ηW̃ ′u

0 (u′, v′)
)

(B.4.7)

∂

∂v
W̃ (u, v, t) = exp

(
(η − 1)

u2 + v2

4

)(
(η − 1)

v

2
W̃0 (u′, v′)

√
ηW̃ ′v

0 (u′, v′)
)

(B.4.8)

Finally, we have :

−Γ

2

(
u
∂

∂u
+ v

∂

∂v
+

1

2
u2 +

1

2
v2
)
W̃ (u, v, t) = −Γ

2
exp

(
(η − 1)

u2 + v2

4

)
×
(
η
u2 + v2

2
W̃0 (u′, v′) + u

√
ηW̃ ′u

0 (u′, v′) + v
√
ηW̃ ′v

0 (u′, v′)

) (B.4.9)

Obviously, equations B.4.6 and B.4.9 are equal.

B.5 Evolution of the WDF

We see from equation B.4.1 that the evolution of the characteristic function in governed
by two different mechanisms. W̃ (in)(u, v) first undergoes a rescaling, and is then multiplied
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with a Gaussian. The multiplication in Fourier space corresponds to a convolution in real
space.

We introduce the function G̃η as :

G̃η(u, v) = exp

(
(η − 1)

u2 + v2

4

)
(B.5.1)

so that W (q, p, t) can be expressed as :

W (q, p, t) = FT−1
[
W̃ (u, v, t)

]
= FT−1

[
W̃ (in)(u

√
η, v
√
η) · G̃η

]
= FT−1

[
W̃ (in)(u

√
η, v
√
η)
]
∗ FT−1

[
G̃η

] (B.5.2)

B.5.1 Rescaling

Let us introduce the norm preserving rescaling operator Rs :

Rs [A(x, y)] =
1

s2
A
(x
s
,
y

s

)
(B.5.3)

FT−1
[
W̃ (in)(u

√
η, v
√
η)
]

=
1

4π2

+∞∫
−∞

+∞∫
−∞

W̃ (in) (u
√
η, v
√
η) exp(iuq + ivp)dudv

=
1

η

1

4π2

+∞∫
−∞

+∞∫
−∞

W̃ (in)(u′, v′) exp

(
iu′

q
√
η

+ iv′
p
√
η

)
du′ds′

=
1

η
W (in)

(
q
√
η
,
p
√
η

)
= R√η

[
W (in)(q, p)

]
(B.5.4)

B.5.2 Convolution

In real space, the rescaled WDF is convoluted with the inverse transform of G̃η(u, v).
Hereafter, we compute the real function Gη(q, p).

Gη = FT−1
[
G̃η

]
=

1

4π2

+∞∫
−∞

+∞∫
−∞

exp

(
(η − 1)

u2 + v2

4

)
exp (iuq + ivp) dudv

=
1

π

1

1− η
exp

(
−q

2 + p2

1− η

)
= R√1−η

[
1

π
exp

(
−q2 − p2

)]
= R√1−η [W0(q, p)]

(B.5.5)

where W0 is the WDF of the vacuum.
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B.5.3 Evolution of the WDF

The evolution of the WDF in a PLC is now fully determined. It can be expressed on
the short form :

W (out) = R√η
[
W (in)

]
∗R√1−η [W0] (B.5.6)

where the time dependence is included in η = exp (−Γt), W (out) is the WDF at time t,
W (in) is the WDF at t = 0 and W0 is the WDF of vacuum.

It has the following explicit form :

W (out)(q, p) =
1

π(1− η)

+∞∫
−∞

+∞∫
−∞

W (in)(q′, p′) exp

(
−

(q −√ηq′)2 + (p−√ηp′)2

1− η

)
dq′dp′

(B.5.7)
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Appendix C

Bell shaped functions

C.1 1D Bell shaped functions

Definition C.1. Function f(x) is a bell shaped function if and only if :{
f(x) = f(−x) (C.1.1a)

f ′(x) ≤ 0 if x ≥ 0 (C.1.1b)

Lemma C.1. The convolution of two bell shaped functions is a bell shaped function.

Proof. Let f, g be bell shaped functions and h = f ∗ g. To be a bell shaped function, h
must satisfy and C.1.1a and C.1.1b. The proof of C.1.1a is straightforward :

h(−x) =

∫ +∞

−∞
f(t)g(−x− t)dt =

∫ +∞

−∞
f(−t)g(x+ t)dt =

∫ +∞

−∞
f(t′)g(x− t′)dt′ = h(x)

(C.1.2)
To prove C.1.1b, we calculate the sign of h′(x) :

h′(x) =

∫ +∞

−∞
f(t)g′(x− t)dt =

∫ +∞

−∞
g′(t)f(x− t)dt

=

∫ +∞

0

g′(t)f(x− t)dt+

∫ +∞

0

g′(−t)f(x+ t)dt

(C.1.3)

From the definition C.1.1a, it is easily seen that f ′(−x) = −f ′(x) and g′(−x) = −g(x).
We have :

h′(x) =

∫ +∞

0

g′(t)︸︷︷︸
≤0

[f(x− t)− f(x+ t)] dt (C.1.4)

We are now going to prove that [f(x− t)− f(x+ t)] ≥ 0 if x ≥ 0. Let’s rewrite
[f(x− t)− f(x+ t)] as a function of f ′ :

f(x− t)− f(x+ t) = −
∫ x+t

x−t
f ′(z)dz (C.1.5a)

= −
∫ t+x

t−x
f ′(z)dz (C.1.5b)

where we have use the fact that f ′(−x) = −f ′(x).
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If x ≥ t, it appears from the equality C.1.5a and C.1.1b that f(x− t)− f(x+ t) ≥ 0.
If 0 ≤ x ≤ t, it appears from the equality C.1.5b and C.1.1b that f(x− t)− f(x+ t) ≥ 0.
We see that when x ≥ 0, f(x− t)− f(x+ t) ≥ 0. From equation C.1.4, we conclude that
h′(x) ≤ 0 if x ≥ 0. Since h satisfies C.1.1a and C.1.1b, h is a bell shaped function.

C.2 2D Bell shaped functions

Definition C.2. Function f(x, y) is a 2D bell shaped function if and only if :{
f(x, y) = fr(r) where r =

√
x2 + y2 (C.2.1a)

fr(r) is a bell shaped function (C.2.1b)

Lemma C.2. The convolution of two 2-D bell shaped functions is a 2-D bell shaped
function.

Proof. Let f, g be 2-D bell shaped functions and h = f ∗ g.

h(x, y) =

+∞∫∫
−∞

f(u, v)g(x− u, y − v)dudv (C.2.2)

For symmetry reasons, it is clear that h must satisfy C.2.1a, so that h(x, y) = hr(r).
Since h(x, 0) = hr(x), we can restrict ourselves to prove that h(x, 0) is a bell shaped
function.

h(x, 0) =

+∞∫
−∞

 +∞∫
−∞

f(u, v)g(x− u,−v)du

 dv

=

+∞∫
−∞

 +∞∫
−∞

fv(u)g−v(x− u)du

 dv

=

+∞∫
−∞

[fv ∗ g−v] (x)dv

(C.2.3)

where fy(x) is another writing of f(x, y).
We now prove that if f(x, y) is a 2-D bell shaped function, fy(x) is a bell shaped

function. We study fy(−x) and f ′y(x) :

fy(−x) = fr

(√
(−x)2 + y2

)
= fr

(√
x2 + y2

)
= fy(x) (C.2.4a)

f ′y(x) =
∂

∂x
fr

(√
x2 + y2

)
= f ′r

(√
x2 + y2

)
︸ ︷︷ ︸

≤0

x√
x2 + y2

≤ 0 if x ≥ 0 (C.2.4b)
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Since fy(x) satisfies C.2.4a and C.2.4b, fy(x) is a bell shaped function. The same
argument is used for gy(x). By lemma C.1, hv = fv ∗ g−v is a bell shaped function. We
can write C.2.3 as :

h(x, 0) =

+∞∫
−∞

hv(x)dv (C.2.5)

We see that h(x, 0) is an integral of bell shaped functions. By linearity of the derivative,
the sum of bell shaped functions is a bell shaped function. Therefore, h(x, 0) = hr(x) is a
bell shaped function. Since h satisfies C.2.1a and C.2.1b, h is a 2-D bell shaped function.
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Appendix D

Matlab codes

D.1 Generation of Wigner distributions

D.1.1 fx_fock.m

1 function y = fx fock(n,x)
2 %Gives the wave function of the nth Fock state at position x
3 y = exp(-x.ˆ2/2).*hermiteH(n,x)/(piˆ(1/4)*2ˆ(n/2)*sqrt(factorial(n)));
4 end

D.1.2 fx_fock_sup.m

1 function f = fx fock sup(D,x)
2 %Gives the wave function of a superposition of Fock states at ...

position x
3 %D is the list of each complex amplitude
4 D = D/sqrt(sum(abs(D).ˆ2));
5 f = zeros(size(x));
6 for i=1:length(D)
7 if D(i)~=0
8 f=f+D(i)*fx fock(i-1,x);
9 end

10 end
11 f = f/sqrt(trapz(x,abs(f).ˆ2));
12 end

D.1.3 weyl_trans.m

1 function W = weyl trans(f,nr,rL,int)
2 %Computes the Weyl transform of the wave function f
3 dxdp = (rL/nr)ˆ2;
4 g = linspace(-rL/2,rL/2,nr); %intervalles grille
5 [X,P] = meshgrid(g);
6 W=zeros(nr);
7 dint = (max(int)-min(int))/(length(int)-1);
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8 for i=1:nr
9 for j=1:nr

10 x = X(i,j);
11 p = P(i,j);
12 W(i,j) = (dint/pi) *sum(real(exp(-2*1i*p*int) ...

.*interp1(int,f,x-int,'spline',0) ...

.*conj(interp1(int,f,x+int,'spline',0))));
13 end
14 end

D.1.4 wig_fock.m

1 function W = wig fock(n,nr,rL)
2 %Computes the WDF of the Fock state n
3 g = linspace(-rL/2,rL/2,nr);
4 [X,P] = meshgrid(g);
5 W = (1/pi)*(-1)ˆn*laguerreL(n,2*X.ˆ2+2*P.ˆ2).*exp(-X.ˆ2-P.ˆ2);
6 end

D.1.5 wig_fock_mix.m

1 function W = wig fock mix(D,nr,rL)
2 %Gives the WDF of a mixture of Fock states
3 D = D/sum(D);
4 W = zeros(nr);
5 for i=1:length(D)
6 if(D(i)~=0)
7 W = W+D(i)*wig fock(i-1,nr,rL);
8 end
9 end

10 end

D.1.6 wig_pass_extr.m

1 function W = wig pass extr(n,nr,rL)
2 %Gives the WDF of the nth extremal passive state
3 dxdp = (rL/nr)ˆ2;
4 W = zeros(nr);
5 for i=0:n
6 W = W+wig fock(i,nr,rL);
7 end
8 W = W/(n+1);
9 end

D.1.7 wig_fock_sup.m
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1 function W = wig fock sup(D,nr,rL,int)
2 %Computes the WDF for a superposition of Fock states
3 f = fx fock sup(D,int);
4 W = weyl trans(f,nr,rL,int);
5 end

D.1.8 wig_coh.m

1 function W = wig coh(n,nr,rL,a,s)
2 %Computes the Wigner function of the displaced nth Fock states with ...

parameter a
3 if(nargin==4)
4 s=1;
5 end
6 dx = sqrt(2)*real(a);
7 dp = sqrt(2)*imag(a);
8 g = linspace(-rL/2,rL/2,nr);
9 [X,P] = meshgrid(g);

10 X = X-dx;
11 P = P-dp;
12 W = (1/sˆ2) *(1/pi) *(-1)ˆn*laguerreL(n,(2*X.ˆ2+2*P.ˆ2)/sˆ2) ...

.*exp((-X.ˆ2-P.ˆ2)/sˆ2);
13 end

D.1.9 rad_fock.m

1 function [f,r] = rad fock(n,nr,rL)
2 %Gives the radial function of the nth Fock state
3 r = linspace(0,rL,nr);
4 f = laguerreL(n,2*r.ˆ2).*exp(-r.ˆ2);
5 f = (-1)ˆn*f/pi;
6 end

D.1.10 rad_fock_mix.m

1 function [f,r] = rad fock mix(D,nr,rL)
2 %Computes the radial function of a mixture of Fock states
3 D = D/sum(D);
4 r = linspace(0,rL,nr);
5 f = zeros(1,length(r));
6 for i=1:length(D)
7 if D(i) ~= 0
8 [fi,ri] = rad fock(i-1,nr,rL);
9 f = f + D(i)*fi;

10 end
11 end
12 end
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D.2 Pure loss channel

D.2.1 conv_gauss.m

1 function Wg = conv gauss(W,rL,sigma)
2 %Wg is the result of the convolution of a Gaussian with parameter ...

sigma and
3 %matrix W
4 if(nargin==2)
5 sigma = 1;
6 end
7 if(sigma ~= 0)
8 nr = length(W);
9 dxdp = (rL/nr)ˆ2;

10 g = -linspace(-rL,rL,2*nr+1);
11 [X,P] = meshgrid(g);
12 gauss = dxdp*exp(-(X.ˆ2+P.ˆ2)/sigmaˆ2)/(sigmaˆ2*pi);
13 Wg = conv2(W,gauss,'same');
14 else
15 Wg = W;
16 end

D.2.2 rescale_mat.m

1 function Ws = rescale mat(W,s,interp)
2 %Contracts matrix W with a factor s
3 %interp determines the type of interpolation
4 if nargin == 2
5 interp = 'spline';
6 end
7 nr = length(W);
8 [X,Y] = meshgrid(linspace(-1/2,1/2,nr));
9 Xr = X*s;

10 Yr = Y*s;
11 Ws = interp2(X,Y,W,Xr,Yr,interp,0);
12 Ws(isnan(Ws))=0;
13 end

D.2.3 plc.m

1 function Wplc = plc(W,rL,eta)
2 %Gives the result of W passing through a PLC of parameter eta
3 nr = length(W);
4 dxdp = (rL/nr)ˆ2;
5 if(nargin == 2)
6 eta = 1/2;
7 end
8 if(eta == 0)
9 Wplc = wig fock(0,nr,rL);

10 elseif(eta == 1)
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11 Wplc = W;
12 else
13 W = rescale mat(W,sqrt(1/eta))/eta;
14 Wplc = conv gauss(W,rL,sqrt(1-eta));
15 end
16 end

D.2.4 plc_rad.m

1 function [Fc,Fint] = plc rad(F,Fint,eta)
2 %Gives the radial function after passing through a PLC of parameter eta
3 Fc = zeros(size(F));
4 R = Fint;
5 for i=1:length(Fint)
6 r = Fint(i);
7 tot = F .*exp(-eta*R.ˆ2/(1-eta)) ...

.*besseli(0,(2*sqrt(eta)*r.*R)/(1-eta)).*R;
8 Fc(i) = (2/(1-eta))*trapz(R,tot)*exp(-rˆ2/(1-eta));
9 end

10 end

D.3 Other functions

D.3.1 distr_phase.m

1 function D = distr phase(n)
2 %Generates a distribution of n complex numbers, with equal modulus ...

and random phases
3 %The distribution is normalized
4 D = zeros(1,n);
5 for i = 1:n
6 D(i) = exp(1i*2*pi*rand);
7 end
8 D = D/sqrt(n);
9 end

D.3.2 distr_compl.m

1 function D = distr compl(n)
2 %Generates a distribution of n complex numbers, with random phases and
3 %amplitudes
4 %The distribution is normalized
5 D = zeros(1,n);
6 for i = 1:n
7 D(i) = rand*exp(1i*2*pi*rand);
8 end
9 D = D/sqrt(sum(abs(D).ˆ2));

10 end
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D.3.3 integ_mat.m

1 function int = integ mat(W,dxdp)
2 %Evaluates the volume under the surface determined by W
3 n = length(W);
4 x = linspace(0,n,n);
5 int = trapz(x,trapz(x,W))*dxdp;

D.3.4 H.m

1 function H = H(W,dxdp,alpha)
2 % Evaluates Renyi entropy of parameter alpha for W
3 % Computes Wigner entropy if alpha = 1
4 if(nargin==2)
5 alpha=1;
6 end
7 n = length(W);
8 x = linspace(0,n,n);
9 if(alpha==Inf)

10 H = -log(max(max(W)));
11 elseif(alpha == 1)
12 if(sum(sum(W==0)))==0
13 H = -trapz(x,trapz(x,W.*log(W)))*dxdp;
14 else
15 H = -sum(sum(W(W~=0).*log(W(W~=0))))*dxdp;
16 end
17 else
18 int = dxdp*trapz(x,trapz(x,W.ˆalpha));
19 H = (1/(1-alpha))*log(int);
20 end
21 end

D.3.5 majorizes.m

1 function [bool,min diff] = majorizes(W,w,tol)
2 %Returns true if W majorizes w, false otherwise
3 n2 = length(W)ˆ2;
4 if(nargin==2)
5 tol=10;
6 end
7 FdM = fx dec(W);
8 Fdm = fx dec(w);
9 FdM = FdM/sum(FdM);

10 Fdm = Fdm/sum(Fdm);
11 FdMcum = zeros(1,n2);
12 Fdmcum = zeros(1,n2);
13 FdMcum(1)=FdM(1);
14 Fdmcum(1)=Fdm(1);
15 for i=2:n2
16 FdMcum(i) = FdM(i)+FdMcum(i-1);

74



17 Fdmcum(i) = Fdm(i)+Fdmcum(i-1);
18 end
19 bool = true;
20 diff = FdMcum-Fdmcum;
21 min diff = min(diff);
22 if(min diff<-(10ˆ(-tol)))
23 bool = false;
24 end
25 end

D.3.6 wig_dec.m

1 function Wd = wig dec(W,rL)
2 %Computes the decreasing rearrangement of W
3 nr = length(W);
4 dxdp = (rL/nr)ˆ2;
5 int = linspace(-rL/2,rL/2,nr);
6 [X,Y]= meshgrid(int);
7 A = pi*(X.ˆ2+Y.ˆ2);
8 W = (W+abs(W))/2;
9 [Fd,Fdint] = fx dec(W,dxdp);

10 Wd = interp1(Fdint,Fd,A,'nearest','extrap');
11 end

D.3.7 wig_char.m

1 function Wcar = wig char(W,rL)
2 %Computes the characteristic function of W
3 nr = length(W);
4 dxdp =(rL/nr)ˆ2;
5 g = linspace(-rL/2,rL/2,nr);
6 [U,V] = meshgrid(g);
7 Wcar = zeros(nr);
8 E = zeros(nr);
9 for i=1:nr

10 for j=1:nr
11 u = U(i,j);
12 v = V(i,j);
13 E = exp(-2*1i*(u*U+v*V));
14 Wcar(i,j) = trapz(g,trapz(g,W.*E));
15 end
16 end

D.3.8 wig_fock_ij.m

1 function W = wig fock ij(i,j,nr,rL,int)
2 %Computes W ij
3 f i = fx fock(i,int);
4 f j = fx fock(j,int);
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5 [X,P] = meshgrid(int);
6 W=zeros(nr);
7 dint = (max(int)-min(int))/(length(int)-1);
8 for i=1:nr
9 for j=1:nr

10 x = X(i,j);
11 p = P(i,j);
12 W(i,j) = (dint/pi) *sum(exp(2*1i*p*int) ...

.*interp1(int,f j,x-int,'spline',0) ...

.*conj(interp1(int,f i,x+int,'spline',0)));
13 end
14 end
15 end

D.3.9 rad_from_wig.m

1 function [f,int] = rad from wig(W,rL)
2 %Computes the radial function of the decreasing rearrangement of W
3 nr = length(W);
4 if nargin == 2
5 int = linspace(0,rL,nr);
6 else
7 int = 1:nr;
8 end
9 F = reshape(W,1,nrˆ2);

10 F = sort(F,'descend');
11

12 f = zeros(1,nr);
13 for i = 1:nr
14 ind = round(pi*iˆ2);
15 if ind<nrˆ2
16 f(i) = F(round(pi*iˆ2));
17 end
18 end
19 end

D.3.10 wig_from_rad.m

1 function W = wig from rad(nr,rL,f,int)
2 %Computes Wigner function from its radial function
3 dxdp = (rL/nr)ˆ2;
4 g = linspace(-rL/2,rL/2,nr);
5 [X,P] = meshgrid(g);
6 W = (X.ˆ2+P.ˆ2).ˆ(1/2);
7 W = interp1(int,f,W,'spline',0);
8 end
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