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Linear canonical transformations of bosonic modes correspond to Gaussian unitaries, which comprise
passive linear-optical transformations as effected by a multiport passive interferometer and active Bogoliubov
transformations as effected by a nonlinear amplification medium. As a consequence of the Bloch-Messiah
theorem, any Gaussian unitary can be decomposed into a passive interferometer followed by a layer of
single-mode squeezers and another passive interferometer. Here, it is shown how to circumvent the need for
active transformations. Namely, we provide a technique to simulate sampling from the joint input and output
distributions of any Gaussian circuit with passive interferometry only, provided two-mode squeezed vacuum
states are available as a prior resource. At the heart of the procedure, we exploit the fact that a beam splitter
under partial time reversal simulates a two-mode squeezer, which gives access to an arbitrary Gaussian circuit
without any nonlinear optical medium. This yields, in particular, a procedure for simulating with linear optics an
extended boson sampling experiment, where photons jointly propagate through an arbitrary multimode Gaussian
circuit followed by the detection of output photon patterns.
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I. INTRODUCTION

Recent advances in the theory and technology of quantum
photonics have established it as one of the most promising
candidate platforms to realize operational quantum technolo-
gies [1]. The growing interest towards photonic architectures
was originally triggered by the seminal protocol of Knill,
Laflamme, and Milburn (KLM) [2], which demonstrates that
universal quantum computation is possible using only pas-
sive linear optics components (i.e., beam splitters and phase
shifters), single photon sources, photodetectors, and adap-
tive measurements upon ancillary resources. More recently,
another wave of remarkable progress in quantum photonics
came, in part, after Aaronson and Arkhipov proved that highly
demanding measurement-induced circuit control is not neces-
sary to outperform a classical computer, i.e., to achieve the
regime of a quantum advantage [3]. Namely, sampling from
the probability distribution of detecting single photons at the
output of a linear-optical circuit, a task known as boson sam-
pling, represents a problem that is intractable for a classical
computer (see, e.g., Ref. [4] for its small-scale realizations).

Although the boson sampling paradigm, as opposed to
universal photonic quantum computing, does not require
measurement-induced nonlinearities, ancillary modes, nor
postselection, it still faces major challenges. In particular,
entering the regime with quantum advantage would neces-
sitate ~50 photons distributed among ~2500 modes [5,6],
whereas the record is five photons in 16 modes [7]. Moreover,
such a linear optical device, despite being of fundamental
importance, suffers from a lack of practical applications. It
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can actually be used for calculating molecular spectra [8],
which has recently motivated proof-of-principle demonstra-
tions [9,10], but very few applications are available otherwise.

A possible strategy to overcome this state of affairs is to
develop specialized subuniversal photonic setups, which lie
in-between linear optics and universal quantum computation.
That is, identify a class of photonic circuits augmented with
postprocessing so as to implement a restricted set of non-
linearities. Here, we adopt this very approach and develop
an optical scheme enabling us to simulate sampling from an
arbitrary Gaussian circuit, i.e., any Gaussian unitary acting
on bosonic modes. More precisely, our simulation provides
a method for sampling from the joint input and output dis-
tributions of an arbitrary Gaussian circuit where the inputs
are photon number states (with a specified probability distri-
bution) and the outputs result from photon counting. For the
sake of simplicity, we refer to this method as “simulation of a
Gaussian circuit.” Importantly, Gaussian transformations have
arisen to a privileged status in continuous-variable quantum
information (where bosonic modes play the role of qubits,
while Gaussian gates replace Clifford qubit gates), and have
proven to be of a great practical interest in quantum compu-
tation, simulation, and communication, as well as metrology
[8,11-15] (we briefly recall Gaussian states and transforma-
tions in Appendix A).

Our method for simulating Gaussian circuits relies on the
Bloch-Messiah decomposition [16] but introduces a major
improvement. This decomposition implies that an arbitrary
Gaussian transformation can always be mapped onto two
linear-optical circuits intermitted by a layer of single-mode
squeezers, hence requiring nonlinear optical media. In con-
trast, our approach circumvents the need for in-line nonlin-
earity and requires two-mode squeezed vacuum states as a
prior resource only. The building block of our procedure lies
in that a two-mode squeezer is equivalent to a beam splitter
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FIG. 1. Beam splitter (red segment) of transmissivity ¢ is con-
verted into a two-mode squeezer of gain 1/¢ under partial time
reversal. The evolution of the first mode is described in the predictive
picture (4; — a}), while that of the second mode is expressed in the

Al

retrodictive picture (@5 — a3). The output @) is accessed via an EPR
state (yellow star).

undergoing partial time reversal [17], allowing the conversion
between passive and active optics (the degree of squeezing
can be chosen arbitrarily, simply by tuning the beam-splitter
transmissivity). Then, by making use of time symmetry con-
siderations similar to those leading to the twofold version
of scattershot boson sampling [18,19] supplemented with
a random-walk sampling algorithm for data processing, we
eventually construct a linear-optical simulator of the Bloch-
Messiah decomposition. Our setup therefore reveals a special
class of linear-optical circuits augmented with postprocessing,
which can simulate any Gaussian circuit. Furthermore, cur-
rent photonic technologies, including integrated light sources,
on-chip photodetectors, and programmable circuitry, should
make the implementation of our scheme feasible [20-25].

II. BEAM SPLITTER UNDER PARTIAL TIME REVERSAL

In the usual, predictive approach of quantum mechanics,
one deals with the preparation of a system followed by its time
evolution, and ultimately its measurement. The probability
of the measurement outcome conditional on the preparation
variable is given by Born’s rule. In the retrodictive approach of
quantum mechanics [26], one postselects the instances where
a particular measurement outcome was observed and consid-
ers the probability of the preparation variable conditional on
this outcome. The reverse Born’s rule is then interpreted as
if the actually measured state had propagated backwards in
time to the preparer (see Appendix B for more details). We
consider here an intermediate picture, which we call partial
time reversal, where a bipartite system is partly propagated
forwards and backwards in time. The intuition behind this
picture comes from comparing the Hamiltonian generating a

beam-splitter transformation Hpg o &I&z + alfz; and a two-

mode squeezer Hys &I&; + aja,, where a; and a, denote
bosonic mode operators. Evidently, by interchanging a, and
&ZT we convert Hgg into Hrg, suggesting that these two Gaus-
sian transformations are dual under partial time reversal [17].

More precisely, consider a beam splitter which effects the
linear coupling between a@; and @, as shown in Fig. 1. Mode
a is prepared in state |y) in the predictive picture, while
mode 4, is prepared in state |¢) in the retrodictive picture

(physically, the output mode & is postselected in state [¢)). A
photon-number measurement on mode @, in the retrodictive
picture based on the resolution of identity ), |n)n| =1
would induce an (unnormalized) uniform mixture of Fock
states |n) in mode &,. Physically, we need to prepare an
(unnormalized) EPR state ), |n),, [n)sy and use its other leg
aj as the output in the retrodictive picture; see Fig. 1. As a
simple example, take |[¢) = |¢) = |0). If modes d, and &, are
in state |n), then the joint output state is

n
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n : —i . .
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with ¢ being the beam-splitter transmissivity. By postselect-
ing mode &, in the retrodicted state |0), we get the output
state (1 — 1)"/?|n)y|n),;. Summing over n, we recognize
a two-mode squeezed vacuum state, oczzozo §"n)a;In)ay (of

parameter £ = /1 — ), which is precisely the state resulting
from applying a two-mode squeezer onto |{r)|¢) = [0)]0).
This extends to any inputs |¢) and |¢), so we conclude that a
beam splitter of transmissivity ¢ is converted into a two-mode
squeezer of parameter £ = tanhr = /1 — ¢, i.e., of gain g =
cosh’? r = 1/t (see Appendix B).

Remarkably, an active transformation is thus simulatable
with a passive linear-optics interferometer. Note that an EPR
state is used in order to access the output mode a;, so we still
need an active medium. However, this is a prior resource only,
and no in-line nonlinearity is needed during the process itself.
Physically, the EPR state must be approached with a two-
mode squeezed vacuum state, and finite squeezing manifests
itself as an additional filtering in Fock basis in the circuit
(as we shall see, it can be counteracted in the simulation
procedure). In contrast, if we do not need to access a;, we
may simply prepare @, in a random state and get rid of any
active medium (cf. the implementation of an optical amplifier
without nonlinearity [27]). In this case, the nonlinearity solely
originates from the postselection process.

III. TIME-UNFOLDED LINEAR OPTICAL CIRCUIT

We now exploit partial time reversal and build a
linear-optical circuit that can be mapped onto any Gaus-
sian circuit. Our construction utilizes a set of M equally
squeezed two-mode squeezed vacuum states (TMSs) |Yi,) =
®§4=1 [¥;) as a resource, where each state |¢;) = (1 —
£2)1/2 ZZ?:O €"|n;)|n;) has a squeezing parameter £ (0 <
& < 1). As illustrated in Fig. 2(a), for each pair of ad-
jacent TMSs {[yn), [¥2)}, {1¥3), 1Y)}, . {l¥m—1), [¥m)),
we combine the lower leg of |v;) with the upper leg of [/;1)
on a beam splitter ul(s']s) of transmissivity #; (we assume that
M is even). The upper legs of the emerging modes are then
combined pairwise in a row of balanced beam splitters Ups
and then injected into the M-port linear-optical circuit Ua,
while the lower legs are similarly combined pairwise in a row
of balanced beam splitters and sent to Ug. We call Ug the
resulting 2M-mode linear-optical circuit, namely

Us = Un ® U US (& U). 2)
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FIG. 2. (a) Linear-optical circuit Ug simulates the Gaussian cir-
cuit U depicted in panel (b). The adjacent modes of M two-mode
squeezed vacuum states (yellow stars) are combined pairwise on
beam splitters of transmissivity #; (red segments) and then sent onto
two linear-optical circuits I/, and U, preceded by a row of balanced
beam splitters (green segments). The black lines refer to the physical
time evolution from left to right, while the pink arrows show the
information flow in the time-unfolded picture. (b) The Gaussian
circuit Ug corresponds to the time-unfolded version of Ug. The
two-mode squeezers (TS) result from partial time reversal. The inset
shows the equivalence of a two-mode squeezer sandwiched between
two balanced beam splitters (green segments) and two single-mode
squeezers (SS).

As depicted in Fig. 2(a), let us consider the event of
detecting a pattern of single photons k = {ki, ..., ky} at the
output of circuit U, given a set of single-photon detections
m = {m,...,my} at the output of Uz. We will prove that
this event is equivalent (in a sense that is made precise below)
to the situation where the pattern k is detected at the output of
an M-mode Gaussian circuit presented with input state |m),
as shown in Fig. 2(b). The proof of this statement makes use
of three building blocks: the symmetry of quantum mechanics
under time reversal, the conversion of a beam-splitter transfor-
mation into a two-mode squeezer under partial time reversal,
and the Bloch-Messiah reduction theorem.

We start our proof by unfolding the setup depicted in
Fig. 2(a). That is, we backpropagate the state |m) emerging

upon detection at the output of circuit Ug, so that quantum
information flows from the output of circuit U towards the
output of circuit U, [pink arrows in Fig. 2(a)]. More precisely,
state |m) evolves through the time-reversed circuit Z/{g (the
time reversal of the transformation Ug corresponds to its
transposition in the Fock basis), followed by a set of two-mode
squeezers L{;’S), sandwiched between two rows of balanced
beam splitters and concluded by the circuit /4. We call the
resulting M-mode circuit Ug, see Fig. 2(b),

Ul = Un[ O (Unsld i) 4. ®
The two-mode squeezers appear in Ug due to the crucial
fact that, in the time-unfolded picture, the beam splitters
L{é’s) are partially time reversed (each beam splitter of trans-
missivity #; is converted into a two-mode squeezer of gain
gj = 1/t;). We further notice that, as illustrated in the inset
of Fig. 2(b), a two-mode squeezer Uéjs) of gain g; pre-
ceded and followed by a balanced beam splitter is equiva-
lent to two single-mode squeezers Llé’s‘) and Z/{s(f) of param-
eters r'" = arccosh,/g; and r2) = —arccosh,/g;, namely
UpsUUL, = U ® UL . Consequently, the circuit U rep-
resents an instance of the Bloch-Messiah decomposition and
thus encodes a set of Gaussian transformations. Apparently,
this set is restricted since r") = —r"2) (in general, the de-
composition requires single-mode squeezers of arbitrary pa-
rameters). However, a slight modification of U allows one
to achieve any M /2-mode Gaussian transformation, i.e., at
the expense of decreasing by half the number of simulated
modes. As detailed in Appendix D, this can be achieved
by replacing the M-mode circuit U (Up) with two disjoint
M /2-mode circuits, each of which is injected with a subset
of the output modes of the row Upg, thus yielding two fully
general M /2-mode Bloch-Messiah decompositions.

Note that, in the limit ¢; = 1, V, the circuit Ug reduces
to twofold scattershot boson sampling [19]. Its time-unfolded
version then simulates the linear-optical boson sampling
problem. Thus we have shown that a simple coupling of
adjacent TMSs within a linear-optical circuit gives access to
an extended (active) boson sampling setup. Further, the depth
of the circuit Ug is equal to the sum of the depths of I/, and
Up, which may be interesting for practical implementations
(see also Ref. [28]).

IV. SIMULATION PROCEDURE

Having established the link between our time-unfolded
linear optical circuit and arbitrary Gaussian transformations,
we go on to establish the procedure for simulating the photon-
counting probability distribution of circuit U via that of
circuit Ug. We first express the joint probability p(k, m) of
detecting the pattern k of N4 single photons at the output of
circuit U, and the pattern m of Np single photons at the output
of circuit Up (see Appendix C),

2\M £2N
plc, m) = | (K| mitds )P = L5 5

j=1"%
where Ny = Zzﬁil ki, Ng = Zzﬂil m;, 2N = Na + Npg, and
~ ~ 2
p(kim) = [(k|Ug|m)]

p(Kjm),

is the conditional probability of
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detecting pattern k upon evolving the input state |m) through
Us. Thus we observe a proportionality factor A(k, m) =
(1 —2)Mg2N /TT¥/2 1;, which depends both on k (via Nj)
and m (via Np) and may be interpreted as an extra layer
effecting filtering in the Fock basis preceding and following
the row of two-mode squeezers U}js) in Ug. We compen-
sate this factor A(k, m) in the simulation by adapting a
random-walk sampling algorithm upon the space of single-
photon detection events {k, m} registered at the output of .
More specifically, we apply the Metropolized independence
sampling algorithm [29] (see also [30]), which allows us to
get a sampling statistics of {k, m} according to p(k, m) =
po(m) p(kjm) starting from the actual distribution p(k, m).
Here, po(m) is some arbitrary distribution of input states
|m), which we wish to engineer. Thus we use p(k, m) as a
trial distribution and p(k, m) = po(m) p(k, m)/A(k, m) as
the target one. Starting from a sample {k, m} obtained at the
output of circuit Ug, we accept the next sample {k’, m’} with
a transition probability

T({K, m'}|(k, m}) = min{l, (k' m') p(k, m) }

p(k,m) p(k’,m’)

:min{l,EAAJFABliLm/)}, “)
Po(m)

where Ay = Y7 (ki — k]) and Ag = Y, (m; — m). This
procedure generates a Markov chain, which, after conver-
gence, samples the target distribution p(k, m), hence simu-
lating the evolution through I{g of an input state [m) taken at
random from po(m). Remark that the outlined postprocessing
algorithm can also be considered as generalized postselection:
postselection involves discarding results that do not match the
corresponding conditions, while we deal with an acceptance-
based random walk on the space of detected events.

The probability distribution py(m) can be chosen before-
hand. For instance, we may consider a setup where input states
|m) are uniformly distributed over a shell with a fixed photon
number N by setting jo(m) = (SNB,N/(N+AA;[_1 ). In this case,
T({k’,m’}|{k, m}) = min{1, £24}. Such a scenario is in the
spirit of scattershot boson sampling [18]. In particular, in the
limit ¢; = 1, V¥, our setting is equivalent to twofold scatter-
shot boson sampling [19] and Ay = Ag = 0. Hence every
sample from the circuit Ug is accepted. We also emphasize
that choosing po(m) as a Gibbs distribution is equivalent to
simulating an ensemble of thermally excited bosonic modes.
Given the analogy between photons distributed among optical
modes and molecular phonons among vibrational modes, this
approach is highly relevant to simulating spectra of molecular
vibronic transitions at a nonzero temperature [8].

V. CONCLUSION

In this paper, we report on a linear-optical scheme for sim-
ulating sampling from arbitrary Gaussian circuits. We show
that, by making use of two-mode squeezed vacuum states
as a prior resource, such a simulation of the Bloch-Messiah
decomposition of an arbitrary Gaussian transformation can
be achieved with linear optics. Our setup therefore shares
some similarities with (a Gaussian counterpart of) the KLM
scheme: here, we simulate (at a sampling level) Gaussian

circuits with linear optics (with the additional need for prior
Gaussian entanglement but no need for ancillary resources).
The building block of our construction is the equivalence
between a two-mode squeezer and a partially time-reversed
beam splitter [17]. Time-symmetry considerations also play
a main role in our construction, demonstrating once again
how the notion of time reversal can contribute to the de-
velopment of quantum computing [19]. We also introduce a
postprocessing random-walk sampling algorithm, which can
be considered as generalized postselection. This probabilistic
algorithm has an average acceptance rate larger than 1/2
independent of the number of photons and modes involved
for a certain set of probability distributions, which ensures fair
convergence (see also Appendix C).

Our work identifies a class of quantum circuitry with
postprocessing that yields a specialized—Gaussian—set of
programmable simulators. This result contributes to the under-
standing of the hierarchy of restricted photonic nonlinearities.
In fact, our subuniversal scheme lies in-between purely linear
optical and full-fledged universal photonic setups. We there-
fore expect that it may be better suited to achieve the regime
of quantum advantage (despite the need for data postpro-
cessing) and may find more practical applications than, e.g.,
the original boson sampling setup. In particular, we believe
that our scheme can be utilized for quantum simulations of
molecular spectra, deep neural networks, and in quantum
metrology, where single-mode nonlinearities and Gaussian
operations play a crucial role [8,15,31]. For instance, given the
analogy between photonic and phononic modes, our setting
makes a natural platform for the implementation of Duschin-
sky rotations, which consist of two passive transformations
intermitted by single-mode squeezers [8,32]. In addition, our
postprocessing random-walk sampling algorithm allows one
to engineer arbitrary prior (e.g., thermal) distribution of input
vibrational excitations. Hence the proposed circuit can be
seen as a tool for molecular vibronic spectra simulations
at nonzero temperatures. From the resource point of view,
simulating a given number of vibrational modes would require
twice as many two-mode squeezed vacuum states (current
photonic simulations deal with up to six-mode molecules
[9,33], while computationally hard simulations are expected
to require more than ten modes [5,6]).

Importantly, since our simulation scheme involves non-
Gaussian resources in the form of Fock states and photon
counting, it goes beyond the classically simulatable Gaussian
computational model [34]. (Note that even classically simulat-
able but nontrivial setups can be beneficial to the development
of quantum-inspired classical computational algorithms [35].)
Furthermore, our scheme might be generalizable to a setting
with arbitrary input states and detection, including a hybrid
combination of discrete- and continuous-variable resources,
which may yield another path for generalizing the boson
sampling paradigm. It also finds additional connection to
measurement-based continuous-variable quantum computing,
where prior Gaussian resources can be used for building
cluster states [36].

Finally, we emphasize that current and emerging integrated
photonic technologies, such as lithium-niobate and silicon
based photonic hardware, are candidate platforms for the
realization of our scheme. The on-chip strong nonlinearities
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enable one to generate resource two-mode squeezed vacuum
states via nondegenerate three-wave mixing (in lithium-
niobate) or degenerate spontaneous four-wave mixing (in sili-
con) processes. The state evolution and detection can, in turn,
be implemented by means of manufacturable programmable
photonic circuitry and (integrated) superconducting photode-
tectors [23,25,37]. We remark, however, that optical losses
remain a crucial challenge in this context. In particular, it is
important to realize how the circuit transmission and coupling
losses (e.g., chip-to-fiber coupling loss for off-chip detection),
as well as detection inefficiencies will affect experimental
fidelities (unlike finite squeezing, losses cannot be compen-
sated in a straightforward way via our data postprocessing
algorithm). Nevertheless, we believe that current silicon and
lithium-niobate based (reconfigurable) integrated photonic
technologies with ~(0.2 dB loss per beam splitter transfor-
mations, robust multiphoton interferometers reaching 99%
efficiencies for circuits with up to tens of modes [24,37-39],
low-loss grating couplers [40], and superconducting nanowire
single-photon detectors (reaching 70%—-80% efficiencies) sug-
gest the feasibility of our proposed architecture, at least at a
moderate-size level. We will further address the practicability
of our setting with existing photonic platforms in a future
work.
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APPENDIX A: PHASE-SPACE REPRESENTATION

Here we recall the phase-space description of Gaussian
states and transformations. Any M-mode Gaussian state can
be described in terms of its 2M x 2M covariance matrix o,
with matrix elements defined as

o = LR, R1Y) — (R)(R))", (A)

where the 2M-component vector R= {ai, ..., ay, &I, e,
&L} contains the M creation and annihilation operators of
the photonic modes (we are interested here in states with zero
displacement only, i.e., (R;) = 0, Vi). The Gaussian evolution
of a state may be expressed in terms of the evolution of its

covariance matrix o, namely

(A2)

Oout = SainST,

where S is the complex symplectic matrix that defines the
Gaussian transformation and satisfies SXST = X, with ¥ =
[I(’Y _(;M] (I is the M x M identity matrix). The matrix S
can also be seen as the transformation that maps the input
mode operators AR; (with [ =1,...,2M) onto the output
mode operators Q; (withk =1,...,2M):
oM
Ox=Y SuRi. (A3)
I=1
The symplectic matrix S therefore encapsulates the phase-

space representation of the corresponding Gaussian transfor-
mation.

In this work, we are interested in three types of Gaussian
transformations: beam-splitter transformation, two-mode, and
single-mode squeezers. In phase-space representation, a
beam-splitter transformation of transmissivity #; is defined as

()
sp=|" (A4)
0 Ugy
o= | VU VI (AS5)
N NI TR

The beam splitter is a linear-optical (or passive) transforma-
tion, which means that it conserves the number of photons.
Note also that an arbitrary M-mode linear-optical (passive)
transformation can be decomposed into a set of beam splitters
and phase shifters [41].

The phase-space representation of a two-mode squeezer of
gain g; reads

V8 0 0 gi—1
0 V& Vgi—1 0
0 gi—1 V& 0
gj—1 0 NG

) _
STS -

(A6)

The gain is related to the squeezing parameter &; via the re-
lation g; = (1 — Sf)’l. Two-mode squeezing operation does
not conserve the total photon number, but it does conserve
the difference of the input and output photon numbers. That
is, if a two-mode squeezer is injected with the Fock state
|my, m,) and the state |k, kp) is detected at its output, then
nm; —mp =k1 —k2.

Finally, the single-mode squeezer of a squeezing degree
r) has the following phase-space representation:

coshr)  sinhr®)
sinhr)  coshr |’
Importantly, due to the Bloch-Messiah reduction theorem
[16], an arbitrary M-mode Gaussian transformation S can be
represented as a set of single-mode squeezers, sandwiched

between two M-mode linear-optical (passive) circuits S
and S,:

() _

Ss = (A7)

S =si[ @, $&Sn. (A8)
APPENDIX B: BEAM SPLITTER UNDER PARTIAL
TIME REVERSAL

In order to make the notion of partial time reversal more
precise, we must first recall the retrodictive picture of quantum
mechanics [26], which is the time-reversed version of the
(usual) predictive picture. In the latter picture, one makes
predictions about the outcomes of some POVM measurement
{IT,} from the prior knowledge of the state p, (prepared
with probability p,,). Born’s rule then gives us the condi-
tional probabilities P(n|m) = Tr(p,I1,). In the retrodictive
picture, one takes the opposite viewpoint and starts from
the actually observed outcome n (which is associated with
a retrodicted state o,), and makes retrodictions about the
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preparation of the system by applying a POVM measurement
{®,,} (whose outcome m is associated with the prepared state
Oom)- Choosing o, = I1,,/Tr(I1,) and ®,, «x p,, o, (assuming
that ) pupm o 1), we may apply Born’s rule in the back-
wards direction and get conditional probabilities P(m|n) =
Tr(0,0,,), which are consistent with Bayes rule.

The retrodictive picture can be successfully exploited in
quantum optics; see, e.g., Ref. [42]. As a simple illustration,
let us consider the preparation of a coherent state p, = |o)«|
followed by its photon-number measurement, associated with
I1,, = |n)n|. The conditional probability of observing n when
preparing « is

e*|a|2|a|2n

p(nja) = Tr(peIl,) = (BI)

n!
with > p(n|a) =1, Ya. In the retrodictive picture, one
prepares the retrodicted state o,, = |n)(n| and applies the (con-
tinuous) POVM measurement ®, = p,|a)«|, using the res-
olution of identity f d*a py pe = 1 with the (unnormalized)
probability p, = 1/m. Thus we backpropagate a number state
and apply an eight-port homodyne (also called heterodyne)
detection, resulting in the conditional probabilities

e—|a|2|a|2n

paln) =Tr(06,0q) = (B2)

an!
with f d*a p(aln) = 1, Vn. The connection between the
probability distribution (B1) of measuring a given photon
number 7 in a coherent state and the probability density (B2)
of measuring a specific « in a Fock state originates from the
duality between the predictive and retrodictive pictures.

Coming back to partial time reversal, we now investigate
an intermediate situation involving two bosonic modes, one of
them being described in the predictive picture while the other
is analyzed in the retrodictive picture. In the main text, we
have seen that a beam splitter of transmissivity ¢ is converted
into a two-mode squeezer with gain g = 1/t under such a
partial time reversal [17]. Let us now show that, by adding
a second EPR state on the other input mode, we reach a
symmetric scheme that can be used as a building block in our
simulation procedure; see Fig. 3.

Consider now two two-mode squeezed vacuum states

Vi) = (1= &%) > "™ |ny ny.ny.m)  (B3)

ny,ny=0

and let us express the probability amplitude corresponding to
the detection pattern {k;, k», m1, m,} shown in Fig. 3, namely

<kls kz’ m]a mzlu](}ts)|’¢/1n>
= (1 — EHERT™ m ), kU k1, ma),  (B4)

where L{gg is a beam splitter of transmissivity ¢. Using the

correspondence with a two-mode squeezer Z/{;]S/ D of gain 1/¢,
namely,

0) _ 1 (/1)
(my, ka|Ugglk1, ma) = ﬁ(kl,kﬂum |my, ma), (BS)

we can reverse time for the first mode (k; <> m;). Thus
the probability of detecting pattern {k;, k», m;, m,} can be

ky

n,

FIG. 3. Beam splitter of transmissivity ¢ (red segment) is fed
by two modes originating each from a two-mode squeezed vac-
uum state (yellow stars), and we focus on the probability of the
photon-counting event ki, ky, m;, m,. By unfolding this linear op-
tical circuit in time, the two-mode squeezed vacuum states can
be viewed as “wires,” and we get a two-mode squeezer of gain
1/t with inputs m,, m, and outputs ki, k, (the pink arrows in-
dicate the information flow in this time-unfolded picture). In or-
der to account for the finite squeezing of the two-mode squeezed
vacuum states, the two-mode squeezer of gain 1/f must actu-
ally be preceded and followed by a filtering operation in Fock
basis.

written as

plki, ko, my, my)
(1 _ %;2)2§2(k1+mz) 2
= t (ki kol )| . (B6)
By photon number conservation in the beam splitter, we
have

ki+my=ky+m =k +ky+my+my)/2, (BT)

so that the probability of detecting pattern {k;, ks, m, m»}
becomes

plky, ky, my, my)

(1—&%)? Artin 7 (1)1 ghy+a
=f(k1,k2|$' MU T EMTmy, my).  (BY)

It is thus proportional to the probability of detecting the
pattern {k, k»} at the output of the two-mode squeezer L{%ls/ &
when sending the input pattern {m,, m,}, except for the fact
that a filtration operation in Fock basis £”172 must be inserted
before and after the two-mode squeezer. This filtration ac-
counts for the finite squeezing of the input two-mode squeezed
vacuum states, and must be compensated in the simulation
algorithm as explained in Appendix C.

Note that while in Fig. 1 one of the two modes feeding
the beam splitter is a conventional input (state |y/)) and the
other one is a time-reversed input (state |¢)) implemented via
a measurement, in Fig. 2 (as well as in Fig. 4) both inputs
of the equivalent two-mode squeezer are time reversed (i.e.,

062314-6



SIMULATING ARBITRARY GAUSSIAN CIRCUITS WITH ... PHYSICAL REVIEW A 98, 062314 (2018)

implemented via a measurement). This is because we need APPENDIX C: PHOTON-COUNTING PROBABILITY
both these input modes of the equivalent two-mode squeezer DISTRIBUTION OF THE TIME-UNFOLDED
to emerge from a unitary U} in the (time-unfolded) circuit LINEAR-OPTICAL CIRCUIT

of Fig. 2(b). Consequently, they need to be both of the same
kind in Fig. 2(a) (and in the building block depicted in Fig. 3),
i.e., both are time reversed, which thus necessitates an extra
two-mode squeezed vacuum state as compared to the situation

Here we prove the relation between photon-counting prob-
ability distributions of circuits g and Ug defined in the
main text and depicted in Figs. 2(a) and 2(b). Consider the
joint probability p(k, m) of detecting the pattern of single

of Fig. 1. photons k = {ki, ..., ky} at the output of the circuit U and
the pattern m = {m, ..., my} at the output of Uy (Ziﬁil ki =
Na, 3-M m; = N, and Ny 4+ Ng = 2N),
|
M 2
p(k,m) = [(k[(mUs|ya)* =] [ (1 - Z g £ (kM [Wa @ Wel[Ugs ® -+ ® Uy ?]Im)m)
i=1 ni,..., ny=0
2
= (1 —gHMe Z Z (K| Walq) (m| W p) (pl(al[Uss ® - ® Usg’> [Im)m)]| (C1)
ni,..., ny=0p,..., =0
qrs -y qm =0

where Wy = L{AL[];@SM/ 2 and Wh = Uplpg ®M/2 (U®M/ 2 is the transformation corresponding to the row of balanced beam splitters

preceding the linear-optical circuits U and {/g). In turn, Z/{](gs and Ugg stand for the beam-splitter transformation of transmissivity
t; and the balanced beam-splitter transformation, respectively [cf. Fig. 2(a) and the main text]. In the above equation we have also

assumed that the squeezing degrees of all two-mode squeezed vacuum states (TMSs) are equal, i.e., & = - - - = &y = &. Further,
due to the linearity of the circuit Ug, it conserves the total photon number: 2 37 n; = S m; + M ki = Na + Ng = 2N.
Finally, we have also introduced the closure relation for Fock states |p) = |p1, ..., py) and |q) = |q1, - .., gu) in Eq. (C1).

Note that each Ul;js) acts on the Hilbert space of the lower leg of the jth TMS and the upper leg of the (j + 1)th TMS, while Wy
(Ws) acts on the Hilbert space of the upper (lower) set of the emerging modes.

Now, we rewrite Eq. (C1) in the time-unfolded picture introduced in the main text. That is, we first take into account that
the time reversal of the transformation Vg corresponds to its transposition in the Fock basis, (m|Wg|p) = (pIVVB |m). Second,
we recall that under partial time reversal a beam- sphtter transformation Z/{](gjs) of transmissivity ¢; is converted into a two-mode
squeezer Z/{}’S) of a gain g; = 1/1t;, i.e, <C1C2|Z/[Bs |d1d2 =1//%( d1€2|UTS |c1dy) for any ¢y, ¢», di, and d,. Performing this
manipulation for every beam-splitter transformation Z/{BS and taking into account that (n;|p;) = 6,,, p; and (nilq;) = dn, 4, (with
d;,j being the Kronecker delta), we arrive at the following expression:

_(—g)Men - (1) (M/2) T
plem) = ——7=—| 3" (kIWala)(Ql[lhs © - ®Usg’”]Ip) (P53 Im)
njzl tj Pls-ees pmu =0
qi1s---s4m =
(1 E2)M§-2N M) 2

Finally, we recall that a two-mode squeezer Z/l%), preceded and followed by two balanced beam splitters, is equivalent to two
single-mode squeezers Z/IS(’S‘) and Ué’SZ) of squeezing degrees ré’ Y = arccosh /g; and rém = —arccosh /g7,

sty = U UL ©
Consequently, Eq. (C2) reads
(1 —gH)MgN j ; 2 (A —gHMenN 2 N
p(k, m) = 1_[M#‘aqw,\[@jﬁ’fh:l (ugfs‘)eaugf;’)]wgm)’ = |kl Im)|” = Ak, m) j(kjm). (C4)
j=1"% j=1"%

(

Here, p(k|m) = | (k|lg|m) |2 is the conditional probability of simulate sampling from the probability distribution
Qetecting the photon pattern k upon the Gaussian evolution p(k,m) = po(m)p(klm), where po(m) is a specific
Ug of the input state |m). Recall that our goal is to (arbitrarily chosen) probability distribution over input
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states |m), which we are able to engineer. As explained
in the main text, to achieve this we adopt a random-walk
sampling algorithm, taking into account that p(k, m) =
Po(m)p(k, m)/A(k, m). That is, the algorithm acts upon
the space of photon detection events {k, m} registered
at the output of Us and we consider p(k,m) as the
proposal distribution while p(k, m) is the target distribution.
Consequently, starting from a tuple {k, m} obtained via
the circuit Ug, we accept the next sample {k’, m’} with a
transition probability

mmmebm+ﬁ@mmmm}
p(ks m) p(k/, m/)

= min{l,éA“‘ABéLm,)}, (C5)
Po(m)

where Ay = Y7 (ki — k) and Ag = Y, (m; — m!). This
procedure generates a Markov chain, which, once converged,
samples from the target distribution p(k, m). As discussed
in the main text, the outlined probabilistic postprocessing
algorithm can also be considered as generalized postselection:
postselection involves discarding results that do not match the
corresponding conditions, while we deal with an acceptance-
based random walk on the space of detected events.

The probability distribution po(m) can be chosen, in prin-
ciple, arbitrarily. For instance, one may consider a regime
where input states |m) are uniformly distributed over a shell
with a fixed photon number A. This is in the spirit of
scattershot boson sampling. In such a case (i.e., within this
shell), T({k’, m'}|{k, m}) = min{1, £44}. Consequently, the
average acceptance rate (7T) is lower bounded as follows:

J

cosh 2r
; ; 1 0
M/2 _(j) ()
op=@®;.,0g , O =§ 0

/1 —t;sinh2r

where the parameter r is defined such that tanh r = £. Given
this covariance matrix, the corresponding probability p(m)
reads [12]

Haf Ay,

my!---myl/det Goue

In the above expression, Gy = 1/2SBJBS}; (Sg is the
phase-space representation of the transformation Wg); Am
is a 2Np x 2Np matrix obtained from the matrix A =

0
[ Iy
M)th columns and rows. Finally, oy = oou + I2ar/2 and the
Hafnian of a 2K x 2K matrix X is defined as [43]

K
HatX = ) [ Xuei-vwei.

neCg j=1

p(m) =

Ig[][IZM — 5(;1}] by repeating m; times its ith and (i +

(€7

where Cyi is the set of canonical permutations on 2K el-
ements, obeying w(2j — 1) < w(2j) and u(2j) < p[2(j +

J/T—1;sinh2r cosh 2r 0 ’

(T) = (min{1, £24}) > 1/2, since A can be seen as a ran-
dom variable which takes nonnegative (nonpositive) values
with probability 1/2. In other words, the average acceptance
probability in this case is necessarily larger than 1/2, which
ensures the fair convergence of our postprocessing algorithm
(similar arguments hold as well, e.g., for a thermal distribution
over Fock states |m)). On the other hand, in a purely linear
optics regime (e.g., in the limit ¢; = 1, V) the detection of a
single-photon pattern m at the output of /g can be seen as a
random pattern of single photons input to the boson sampling
circuit UaUg, yielding a detection of Ny = Np photons at its
output (in general, however, the photon number in a Gaus-
sian circuit is not conserved, i.e., Nao # Np). Alternatively,
if we desire to simulate the evolution of a specific fixed
input state |mg), we choose pp(m) = ]_[f‘il Sy mo, » yielding
T({k’, m'}|{k, m}) = min{1, £24}. The probability of detect-
ing a tuple {k, mg} at the output of U will be exponentially
smaller than in the case of uniformly distributed tuples m.
Nevertheless, the technique remains valid.

For the sake of completeness, we also present here the
marginal probability p(m) of detecting a pattern m of single
photons at the output of the circuit Up:

o0

pm)y =Y [(K|(m| Vo) = (mWs oW [m),

where pp = Trapin = Tra|¥in) (¥in| denotes the Gaussian
state obtained after tracing out |yr,) over the modes entering
the transformation YW, . The state pg can be easily described
in its phase-space representation using the formalism of Ap-
pendix A. Namely, its covariance matrix reads

0 0 /1 —tjsinh2r
cosh 2r /1 —t;sinh2r 0

(Co)

0 0 cosh 2r

(

1)], Vj. Although this probability p(m) is given in terms
of a computationally hard matrix Hafnian, its evaluation is
not required for implementing our Metropolized independent
sampling algorithm as defined in the main text.

Note also that, in the limit #; = 1 (Vj), op is the covariance
matrix of M thermal states and p(m) = (1 — £2)Mg2N yield-
ing p(k, m) = p(k, m). This regime corresponds to twofold
scattershot boson sampling [19]. Indeed, if z; =1 (Vj), we
have a set of M/2 two-mode squeezed vacuum states [/;)
injected into the circuits Ug in Fig. 2(a).

APPENDIX D: ARBITRARY GAUSSIAN CIRCUITS

As already stated, the simulated circuit Z;IG represents a
special instance of the Bloch-Messiah decomposition since
the corresponding single-mode squeezers are equal by pairs
rU) = —r(2) whereas, in general, a Gaussian transforma-
tion necessitates a set of single-mode squeezers of arbitrary
squeezing degrees. However, a slight modification of the
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U@

FIG. 4. (a) Depicted linear-optical circuit I/, & which is a slight
modification of the circuit Ug [cf. Fig. 2(a)], simulates arbitrary
Gaussian transformations. Here, the lines and arrows have the same
meaning as in Fig. 2(a): the black lines illustrate the evolution of
input TMSs, which propagate from left to right; the pink arrows
show the information flow in our time-unfolded formalism. (b) The
time unfolded version of the circuit Z/Ié ) is equivalent to two disjoint
arbitrary Gaussian transformations Z/{é " and L{’G , each achieved by
means of the Bloch-Messiah decomposition.

2M-mode circuit U allows one to achieve any M /2-mode
Gaussian transformation, i.e., at the expense of decreasing
by half the number of its modes. We now construct the
corresponding 2 M -mode linear-optical circuit L{((}z) by slightly
modifying Ug. Namely, we replace the M-mode circuit Uy
(Ug) with two disjoint circuits Vo and V, (Vg and V), as
illustrated in Fig. 4(a). In turn, as opposed to Ug, where all
the modes entering {/y emerge from the preceding balanced

beam splitters, in I;{g) we inject the upper output port of
every balanced beam splitter to Va while the lower one to V}
(similarly for the modes entering Ug). Next, we consider a
pattern of photons k (k') detected at the output of Vo (V)
and a pattern m (m’) at the output of Vg (V}). Additionally,
we use notations Z “ki = Ka, ZM/Z kl =K, Zl\f/lz m; =
K, Y2 m) = Ky, KA +Kp=K,and K| + K} = K.
Following the same time-unfolding formalism as in Sec. I1I
and taking into account the relation between the two- and
single-mode squeezers [inset in Fig. 2(b)], we find that the
2M-mode circuit Z/lg) is equivalent to two disjoint circuits
L{/(z) d Z;léz). Namely, Z:{’(G2 " and Z:léz) are injected with the
states |m) and |m’), respectively, and the respective single

photon patterns k and kK’ are detected at their outputs. These
circuits read

ur(z) V/A[ ®$‘Z/21 (JZ)]V/T, (D2)

where 4 and U differ by the sign of their squeezing
degrees for every pair j; = j,. Importantly, each of the above
equations represents the Bloch-Messiah decomposition of an
M /2-mode Gaussian transformation with no restrictions. In
other words, by means of a 2M-mode linear-optical circuit
Z/lg) injected with M TMSs, one can simulate sampling from
the joint input and output distributions of any target M /2-
mode Gaussian transformation by means of its Bloch-Messiah
decomposition, which, in turn, is realized via Z;{éz). Although
we decrease by half the number of available modes, we are
able to implement two Gaussian transformations simultane-
ously. That is, we can choose the pairs {Va, Vg} and {V,, V}}
of two linear-optical circuits independently.

Following the same reasoning as in Appendix C, the joint
photon-counting probability distribution p(k, k’, m, m’) for
the circuit L{éz) can be written down as

p(k, K, m,m') = [(k, K[ (m, m' UL |0
_ (1 _ EZ)M&-ZN

M2
j=1 Ij

| (kIA2 1m) || (k142 ') |

=AK, k', m,m)pkm)p (k'|lm’). (D3)
Consequently, a random-walk sampling algorithm can be
adapted here, analogous to the case of the circuit Ug, in
order to simulate sampling from the probability distribu-
tion p(k, m)p'(k’, m’) = po(m, m")p(kjm)p’'(k’, m"), with
a beforehand chosen distribution po(m, m’) of input states
m, m’).

Finally, it is worth noting that Gaussian circuits Ug and
Z;lg) do not conserve the number of photons. However, if
photon detection happens immediately after the row of beam
splitters Ué’s), the resulting time-unfolded circuit, both for Z;IG

and S, corresponds to a set of M disjoint two-mode squeez-
ers. For a two-mode squeezer, the photon number difference at
its input is equal to the photon number difference at its output.
Thatis, m; —miy1 = ki — ki+1 (l = 1, P M)
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