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Mémoire présenté en vue de l’obtention du diplôme
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Résumé / Summary in French

La théorie des systèmes ouverts offre de nombreux outils de modélisation mathématique de
systèmes quantiques en interaction avec un environnement. Ce mémoire donne un aperçu de
la manière dont une classe de ces outils peut être utilisée pour la modélisation de machines ther-
modynamiques quantiques. Il porte sur des systèmes simples, comportant deux cavités unimodes
non corrélées, chacune en interaction avec un environnement. Le système contient une composante
mécanique soumise aux pressions de radiation des modes des cavités. Par ailleurs, contrairement
aux machines conventionnelles qui comportent en général un ou plusieurs rotors, ne sont con-
sidérés ici que des degrés de liberté mécaniques linéaires, par exemple un piston quantique ou une
membrane opto-mécanique. Ceci rend les systèmes plus aptes à une modélisation mathématique
complète. L’effet d’un couplage entre les deux cavités via un beam-splitter est aussi analysé.
A notre connaissance, les contributions d’une telle interaction n’ont jamais été étudiées dans le
contexte des machines quantiques auparavant. Si le couplage entre chaque cavité et son envi-
ronnement est adéquat, l’intervention d’un operateur(humain) externe n’est alors pas nécessaire
et ces machines sont dites autonomes. Ceci les rend particulièrement intéressantes et elles font
l’objet de nombreuses recherches. La méthodologie proposée ici consiste, dans un premier temps,
à dériver l’équation mâıtresse décrivant l’évolution temporelle de l’opérateur densité du système
réduit. La procédure d’application de la trace partielle sur les environnements sous certaines
hypothèses est état de l’art. Il est alors possible d’en déduire des équations d’évolution portant
sur des distributions quantiques de quasi-probabilité dans l’espace des phases. En particulier,
une généralisation de la distribution de Glauber-Sudarshan appelée ’positive P distribution’ peut
être définie dans un espace des phases étendu. Son équation d’évolution est alors équivalente
à un système différentiel stochastique décrivant l’évolution temporelle quantique des variables
définissant l’espace des phase. Il est aussi possible de faire la même chose dans le cas de la dis-
tribution de Wigner, à condition de tronquer les dérivées d’ordre trois ou plus dans son équation
d’évolution. Le système d’équations différentielles ainsi obtenu correspond alors à la limite quasi-
classique du système précédent. Ces systèmes d’équations sont résolus numériquement à l’aide de
XMDS2 pour différentes conditions initiales, notamment le cas de cavités intriquées. L’exactitude
des simulations peut être évaluée à l’aide de solutions exactes, obtenues grâce aux équations
d’Heisenberg, pour le cas le plus simple. Le dernier chapitre présente les différents résultats des
simulations dans le cas sans environnement. Finalement, une conclusion et des perspectives sur
de futurs travaux possibles, permettant de compléter l’analyse et généraliser les modèles, sont
données à la fin.
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Abstract

This master thesis investigates the mathematical modeling of quantum thermodynamical systems
using the tools of open systems dynamics. As a test case, we study two double-cavity models
of unconventional linear thermodynamical machines, differing in their mechanical component:
a quantum piston and a membrane. Unlike conventional thermodynamical machines based on
circular motion (rotors), these machines exploit a linear mechanical degree of freedom, making
them very convenient for a precise mathematical modeling. In addition, as with most current
studies of quantum thermodynamics, they are autonomous, that is, they are not operated by any
external agent. For each machine, we derive a master equation describing the time evolution of its
density operator using state-of-the-art assumptions. Then, we derive two equivalent phase-space
evolution equations, one for the Wigner distribution and one for the positive P -distribution. From
these evolution equations in phase space, we finally obtain two systems of stochastic differential
equations describing the time evolution. The one based on the positive P is equivalent to a
fully quantum description, while the other one corresponds to a sort of classical limit. We also
analyze the effect of adding a strong coupling between the two cavities through a beam-splitter
interaction, showing that this can have a big impact on the master equation. We perform numerical
simulations of the stochastic equations for different initial conditions, and benchmark them against
exact solutions available in certain limits. The tools developed in this thesis will be determinant
to understand the role of quantum coherence and entanglement when extending our models to
more complicated autonomous machines based on linear mechanical degrees of freedom, which is
our goal in the long term.

Keywords: quantum thermodynamics, optomechanics, open quantum systems, phase-space tech-
niques, Wigner distribution, positive P distribution, master equations, stochastic simulations.
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1 Context and motivation

1.1 Introduction: thermodynamics in the era of quantum mechanics

Converting heat into useful mechanical work or using mechanical work in order to heat or cool,
that is the purpose of thermodynamical machines. Such machines rule our everyday routine and
are at the heart of the technological advent of modern society. Thermodynamics has formalized in
one single theory the results of most of the experiments and experiences acquired through trial and
error since the early years of human evolution. Nowadays, the analysis of different ways in which
different forms of energy can be transformed into each other efficiently, or physical/mathematical
concepts such as entropy, do not seem so mysterious anymore.

Since the last two centuries though, new physical theories have come into play. The biggest
paradigm shift was quantum physics, which was born from the observation of unseen, until then,
phenomena, specially when microscopic systems were involved. Coherence and entanglement are
major discoveries of modern physics, which have yet to unravel their full potential, but are already
creating an impact in modern quantum technologies. To complete our understanding of how to
use these phenomena for concrete applications, thermodynamics has to be extended with these
quantum mechanical phenomena. Quantum information theory already allowed to quickly lay
solid foundations for this new field of study, coined quantum thermodynamics. There is a lot
of extremely flourishing work being carried out nowadays [1]. One of the major goals of current
research is to reassess the theoretical limitations of efficiency displayed by classical machines.
Thus, there is a particularly significant effort of the scientific community directed towards possible
contributions of quantum effects such as coherence, entanglement, or squeezing in that prospect.

But this time things are being done the other way around. The research is first being con-
ducted on the theoretical aspects and limitations of quantum machines, hoping that technological
applications will be able to follow soon after. For example, one proposal suggests that cooling can
be seen as a form of error correction, which shows how ideas from quantum thermal machines can
be incorporated directly in quantum technologies as a way to fight decoherence. It is thus possible
that in the near future thermodynamical machines may become important from the perspective
of nanotechnology and the implementation of quantum information processing devices [1].

Of course, on the way to that promising future, one may wonder what exactly could be called
a quantum thermodynamical machine today. On a broad scale, one can define it as a quantum
system in contact with several thermal baths (environments). For example, a maser can be
interpreted as a heat engine [1]. Currently, thermal machines comprised of a single qutrit or a
few qubits have been constructed [1], and moreover, it was shown that they can approach Carnot
efficiency. Further than that, however, there are not many practical examples yet.

Although the study of quantum thermodynamical machines is a relatively new field, it is
rapidly evolving into a broad and vast discipline. Though a bit more concrete, the title of this
thesis is still similarly broad and ambitious. However, rather than focusing on studying the various
thermodynamical machines that fall into the category of autonomous, and proposing new ones,
we have focused as a first step on the modeling of the basic ingredients that such devices contain,
and the development of tools capable of analyzing efficiently the corresponding models. In the
remaining of this introductory chapter we elaborate on these points.
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1.2 Warm up models for quantum thermodynamical machines

The initial motivation for this thesis stems from [2], where the authors analyze the thermody-
namical cycle of an autonomous quantum rotor heat engine inspired in classical piston engines.
The engine is sketched in Fig. 1. A rotor, characterized by an angular variable, is connected to a
piston that also acts as a mirror of a cavity. The cavity field exerts a radiation pressure force onto
the piston, and this way gets effectively coupled to the rotor’s motion. On the other hand, the
cavity is connected to two separate heat baths at different temperatures. Crucially, the coupling
to each bath depends on the angular position of the rotor: the coupling to the hot (cold) bath
is larger when the clamping point of the rotor is on the left (right) side. Hence, starting from
the position shown in the figure and no coupling to the cold bath, radiation pressure pushes the
piston down, which makes the rotor rotate clockwise. Once the bottom turning point is reached,
the coupling to the cold bath starts opening (and the one to the hot bath starts closing), such
that the photon number decreases in the cavity, and the rotor has enough inertia to overcome the
radiation pressure force and reach the upper turning point. At that point the coupling strengths
start to invert again, and this way unidirectional continuous rotation is achieved. This system
acts then as an autonomous quantum thermodynamical machine, which allows to convert heat
into work through the rotor.

The authors analyze the model both in the classical limit and in a fully quantum mechanical
fashion. The main result turns out to be rather unsatisfying, though, since it states that the
quantum analysis exhibits consistently lower efficiency than the corresponding classical one due
to quantum noise. Specifically, in the conclusions the authors state: “We have also explored the
role of quantum effects, and our results show, in the case of our engine, they meanly give rise to
additional noise in the motion of the rotor. It is a relevant question whether other quantum effects
such as entanglement and coherence can lead to a better performance compared to a fully classical
version of the engine”.

While this model is very interesting for its direct connection with practical classical engines,
the use of a quantum rotor makes the theoretical analysis of the system very challenging. Indeed,
in the paper the authors are limited to the analysis of the extremely low-temperature regime, in
which the cold bath is assumed at zero temperature and the hot bath at an average of a single
quantum. This is due to the fact that for systems containing a rotor, the only general techniques
available for their analysis are based on brute-force simulations of the dynamical equations for the
state represented in the Hilbert space [3].

Figure 1: Sketch of the autonomous rotor heat engine considered in [2] (taken from it).
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Now, even for the low temperatures considered in the paper, the Hilbert-space dimension required
to capture the physics accurately is at the edge of what we can simulate with current computers.
Moreover, it is a known fact that the Hilbert-space dimension increases exponentially with the
number of elements considered in the system. Hence, it seems that the analysis of quantum effects
such as entanglement will be extremely challenging in this system or generalizations of it.

On the long term, the project presented in this thesis aims at providing models that are still
equally rich physics wise, but are based on mechanical elements that allow for a wider range of
mathematical tools for their analysis. Among these, mechanical systems based on linear continuous
degrees of freedom such as position or momentum would be the most desirable ones. In regimes
where the evolution equations are quadratic in these degrees of freedom, a vast toolbox based
on symplectic analysis and Gaussian states has been developed since a few decades ago [4, 5].
But even when the dynamics are beyond quadratic in positions and momenta, one can go around
Hilbert-space simulations by using phase-space representations and related stochatic tools [6, 7].
We will elaborate on this in the next section, and in far greater depth along the next chapters,
since these techniques are the main focus of this thesis.

While our long term ambition is providing an autonomous heat engine based solely on bosonic
or linear degrees of freedom, where the role of quantum effects can be analyzed in a more transpar-
ent way, the specific aim of this thesis is a bit more humble. We aim at developing the tools that
will be used to analyze theoretically such ambitious machines, specifically, phase-space stochastic
techniques. For this, we introduce two models that, although cannot be considered heat engines,
are autonomous thermodynamical machines that contain what we believe will be the main in-
gredients expected to appear in engine models: mechanical and optical elements interacting via
radiation pressure, and heat baths.

We present the models in Figure 2. Both models have two cavities separated by a perfectly
reflecting mechanical element, which can be a piston (left) or a membrane (right). In both cases,
each cavity is coupled to their own heat bath. Presumably, the autonomous rotor heat engine of
[2] could be generalized to linear degrees of freedom by allowing the coupling to the heat baths to
depend on the position of the mechanical element, although we still don’t explore this possibility
in this thesis.

Let us comment on why we consider two different mechanical elements. Note that a piston is
modeled as a rigid solid characterized by a single degree of freedom, the position of its center of
mass, which is assumed to move as a free particle. Obviously, this is a not very realistic situation
for experiments, where friction is unavoidable for such bulky elements. Moreover, because the
displacement of the piston is not bounded by any potential, the usual assumption of a radiation
pressure force independent of the displacement cannot realistically model the optomechanical
interaction, since it assumes small displacements [8].

Figure 2: Sketch of the toy models considered in this thesis. In both cases a perfectly reflecting
mechanical element separates the field of two cavities, each in turn connected to a heat bath. The
mechanical element feels a radiation pressure force exerted by the cavity fields, and can be either
a piston (left) or a membrane (right).
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All these reasons motivate the introduction of a more realistic mechanical element, a membrane,
or in general a mechanical element harmonically bound to a certain position. Since a little over
a decade ago [8], we indeed have such mechanical harmonic oscillators operating deep at the
quantum regime in various labs all over the world. In addition, a membrane has an intrinsic cycle
linked to its periodic motion, so it might be more suited for the definition of thermodynamical
cycles.

1.3 Open systems and phase-space techniques

At the most basic level, the description of the dynamics of the state of a thermal machine is based
on open systems theory [1, 9]. This is the theory that aims at describing the dynamics of a system
when it is in contact with a large environment [10], as it is the case of the cavities of the previous
section in contact with a heat bath. Since the system exchanges energy with the environment,
phenomena such as dissipation appears, which forces us to abandon pure states in favor of mixed
states. Under certain typical conditions (known as Born-Markov, which we will introduce in detail
later) one can find a simple linear differential equation for the dynamics of the density operator,
the so-called master equation. This contains terms that cannot be written as a commutator with
the state, meaning that the system dynamics are no longer described by just a Hamiltonian.

The master equation is usually found by formally integrating out the environment, starting
from a Hamiltonian model for its interaction with the system. Once we have it, ideally it can be
solved by representing the state in a basis of the Hilbert space (density matrix), and solving the
system of coupled linear equations for its components. Unfortunately, this is only possible when
the system doesn’t explore too many basis states of its Hilbert space, as otherwise the dimension
of the linear problem becomes too large for state-of-the-art computers.

One can alternatively opt for a Heisenberg picture description, which leads to the so called
quantum Langevin equations [11]. These are stochastic nonlinear dynamical equations for the sys-
tem operators, which are in general very hard to treat analytically, or even numerically, requiring
again a representation in a basis of the Hilbert space.

These high cost of the numerical simulations in the Hilbert space motivates us to seek for
alternative descriptions. For bosonic systems, one can describe the state of the system through
a phase-space quasiprobability distribution [6], that is, a function dependent on the phase-space
variables, which satisfies many properties of usual probability distributions, except for crucial ones
such as positivity or absence of strong divergences. One can turn the master equation into an
evolution equation for these quasiprobability density functions. While the remaining equation is
a partial differential equation as difficult to solve as the original master equation in general, one
can devise approximations that allow to treat it at least numerically.

One usual numerical route consists in finding approximate limits where the evolution equation
of the quasiprobability distribution can be mapped to a set of stochastic equations for the phase-
space variables, so that the evolution of the quantum state can be sampled stochastically with
a computer. We will see that the so-called truncated Wigner representation allows precisely for
this. However, the approximation required is in general too strong, and leads to a model in
which quantum noise is mimicked with additive classical noise, what is acceptable only in the
high-temperature limit and when quantum coherence is not very relevant.

One can wonder whether there exists a way of sampling quantum dynamics with classical
stochastic variables without approximations. Remarkably, the answer is yes, but with a catch:
it requires defining a distribution, the positive P representation, that lives in an extended phase
space with twice the number of variables [7, 12]. While for numerical purposes this is not a
huge overhead, conceptually it is a very daring idea: a bosonic mode is no longer described only
by position and momentum, but also by two more variables with no intuitive interpretation in
general. Nevertheless, from a purely practical point of view, this is a very useful technique, that
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allows treating the full quantum mechanical evolution via a set of classical stochastic equations,
whose complexity does not scale with the Hilbert space dimension required to describe the states
explored by the system.

The biggest part of this thesis is devoted to develop these stochastic techniques for the models
presented in the previous section, setting the stage for the analysis of the more complicated
autonomous heat engines that we plan on developing in the future.

1.4 Structure of the thesis and original contributions

Let us conclude this introductory chapter by offering a guide through the structure of the thesis
and what we consider are its main original contributions.

We have divided the thesis in three main chapters. In Chapter 2 we review the basics of open
systems theory, using our models of Figure 2 as the guiding examples. In particular we derive the
master equation that governs the evolution of the state of the cavity modes and the mechanical
element.

As a first original contribution, in Section 2.2.5 we derive the master equation when a beam-
splitter interaction between the cavities is included. To the best of our knowledge, this case hasn’t
been treated in the literature, and we show that it is a neat example of how the energy spectrum
of the system has a strong influence on the final form of the master equation. In particular, we
show that deriving first the master equation in the absence of interaction, to add the interaction
later as an extra Hamiltonian is only correct when the beam-splitter coupling is much weaker than
the coupling to the environments. In the opposite case, we actually show that the cavities see
identical effective environments, at a temperature which is the average of the temperatures of the
heat baths. Our general master equation allows to interpolate between these two regimes.

In Chapter 3 we introduce rigorously phase-space quasiprobability distributions. Using the
master equations derived in the previous chapter as the guiding example, we explain in detail how
to find evolution equations for these distributions, and analyze whether these can be mapped to
dynamical stochastic equations for the phase space variables. These examples will allow us to show
that only one specific distribution, the Wigner distribution, allows for such map and only after a
specific approximation (truncation of third order phase-space derivatives) is performed. We show
that, as is well known [13], such an approximation leads to a set of equations in which quantum
noise is simulated as additive classical noise that provides half a quantum of noise even at zero
temperature, which is known as stochastic electrodynamics. For high temperatures, this model
converges then to the expected classical one, and therefore it is not expected to capture the effects
of quantum coherent effects. This motivates us to resort to the positive P representation in a
doubled phase space, and show that it allows for the stochastic map without any approximations.

As small original contribution in this part, we adapt the use of phase-space methods to the
piston (or, in general, to any mechanical element which is not harmonically bound). Conceptually,
this is not a completely trivial procedure, since phase-space representations are naturally defined
only for harmonic oscillators (except the Wigner representation). We show that the way to
generalize phase-space techniques to such cases is by choosing a reference harmonic oscillator,
and use its corresponding distribution to represent the state of the mechanical element. The
situation is equivalent to analyzing the dynamics of a particle in a general potential in the basis
of eigenfunctions of a reference harmonic oscillator. Of course, this might be very complicated
in general (think of describing the evolution of the initial wave packet of a free particle in the
Hermite-Gauss basis of a harmonic oscillator). Hence an interesting and nontrivial part of this
thesis is showing that phase-space representations can indeed capture the quantum dynamics of
the piston. To our knowledge, this is a subtle point that no one has explicitly mentioned before.

Chapter 4 contains our main original results: we show that the stochastic equations we develop
are indeed capable of sampling the dynamics of our models. Specifically, in order to benchmark the
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simulations, we consider an analytical limit: absence of coupling to the environment. We show that
in this limit the dynamics are analytically solvable in the Heisenberg picture, if we further neglect
the beam splitter interaction between the cavities. We use this analytical solution to benchmark
our stochastic simulations, showing that they agree very well. Since in this limit the dynamics
are very sensitive to the initial conditions, we consider two initial conditions that showcase how
entanglement can make a big difference when optomechanical interactions are considered. In
particular, we show that starting with the cavities in a two-mode squeezed state, the mechanical
element becomes completely insensitive to the cavities. Finally, we move away from the analytical
case by considering the effect of the beam splitter. We show that the simulations provide results
consistent with what we can expect from physical arguments, and show that the optomechanical
interaction if effectively suppressed for large beam-splitter couplings, what we also manage to
explain analytically.

We use the final chapter to offer some conclusions and comment on the future steps that we
will take.

6



2 Open quantum systems

Open quantum systems theory is one of the distinctive features of quantum optics. It was intro-
duced in order to deal with the fact that real physical systems cannot be described as completely
isolated from their environment. Implementations in real systems always include some interaction
with the external world. This interaction is typically a source of energy dissipation, although
it can also involve energy provision, both processes usually characterized by the impossibility of
creating quantum coherence through them (incoherent energy exchange). The question is how to
describe such processes. The state of the external world is in general too complex to be monitored
by experimentalists, and hence it is useful to find effective descriptions involving only the experi-
mentally accessible system. A very powerful way is through so-called ‘master equations’, which is
what we concentrate on in this chapter.

By definition, an open quantum system is a system S coupled to another quantum system
called the environment [9] (S is sometimes also denoted by the ‘reduced system’). In most cases,
it is assumed that the combined system S plus environment is closed, hence evolving according
to some Hamiltonian H = HS ⊗ IB + IS ⊗HB + Hint, where Hj and Ij are the Hamiltonian and
identity operator in the corresponding subspace in the absence of interaction, the latter being
fully encoded in Hint. Then, the evolution of the combined system is described by a unitary
U(t) = exp (Ht/i~). From a general point of view, the reduced density operator ρS(t) at time t is
obtained from the density operator ρ(t) of the total system using

ρS(t) = trB
{
U(t)ρ(t0)U †(t)

}
, (1)

As we will see in section 2.1, under certain conditions, we can neglect the effects of the system
dynamics on the environment, and completely integrate the environmental degrees of freedom out.

The interaction of the system with its environment leads to correlations between them. Thus,
even if the total system starts in a separable state, the state of the reduced system will become
mixed over time. To generalize the description of the time evolution to an open quantum system,
some superoperators1 called dynamical maps are used. Let’s say that at time t = 0 the state of
the total system S plus its environment is in an uncorrelated product state ρ0 = ρS(0)⊗ρB where
ρS(0). The transformation describing the change of the reduced system from its initial time t = 0
to some time t > 0 is described by the dynamical map V (t) defined by

ρS(t) = V (t)ρS(0) ≡ trB
{
U(t) [ρS(0)⊗ ρB]U †(t)

}
. (2)

It’s possible to show that, as long as the system and environment are initially uncorrelated,
a dynamical map represents a convex-linear, completely positive and trace-preserving quantum
operation [9]. It is also interesting to note that {V (t)|t ≥ 0} is a continuous one-parameter family
of dynamical maps where V(0) is the identity map. Such a family describes the whole future
time evolution of the open system. If furthermore, V (t) satisfies the following property called the
semigroup property

V (t1)V (t2) = V (t1 + t2), t1, t2 ≥ 0, (3)

then {V (t)|t ≥ 0} is called a quantum dynamical semigroup [9]. As we shall see, this naturally
occurs in quantum optics under suitabble approximations (Born-Markov).

The ultimate goal of this formalism is to derive an equation describing the dynamics of the open
system. The study of open quantum systems is a very broad field though, and many approaches are
possible, the choice usually depending on the system that one wants to analyze. For example, the
effective integration of the environmental degrees of freedom can be done either in the Schrödinger

1We denote them by superoperators because they are a map between operators, not between Hilbert space
vectors.
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picture or in the Heisenberg picture. The obtained equations that describe the dynamics of the
system are called master equation or quantum Langevin equations, respectively. The tools and
methods used to describe the open quantum optical system described above are presented in the
following sections, where we focus on the Schrödinger picture approach.

2.1 Interaction with a reservoir, heat bath and Gibbs states

Reservoir and heat bath are terms used to describe some type of environments. The term reservoir
refers to an environment with an infinite number of degrees of freedom. It may consist of particles
with 3 degrees of freedom each, for example. In our case we focus on a reservoir consisting on the
electromagnetic field in free space. The electromagnetic field can be described as a collection of
harmonic oscillators (modes) which represent the degrees of freedom of the electromagnetic field
[10, 14]. In 3D, these generally labeled by 4 indices (e.g., wave vector and polarization). However,
when we only care about the modes outside a cavity, it is enough to consider the external modes
matching the cavity mode we work with in transverse profile and polarization, so that they form
a quasi-1D reservoir of harmonic oscillators completely characterized by a single label: their
frequency ω [10]. When treated as a reservoir, the frequencies form a continuum (in fact, it can
be shown that a rapid decay of the reservoir correlations needed for the Markov approximation,
requires such a continuum of frequencies [9]). On the other hand, the term bath or heat bath is
used for a reservoir which is in a thermal equilibrium state.

In what follows, we consider the open system coupled to a heat bath of harmonic oscillators
representing a radiation field. The bath is supposed to be much larger than the system. This
means that, in the weak-coupling limit (assumed in what follows), the environment isn’t really
affected by the system. In contrast, the reduced system is strongly influenced by its coupling to
the bath.

In quantum optical scenarios, the following assumptions are almost always universally made:

• The system-bath interactions are linear in the bath annihilation and creation operators.

• The effects of any frequency dependence in the coupling constant are neglected. This, as will
be clear later, is usually allowed because of energy conservation (only reservoir frequencies
close to the system’s transitions contribute). Moreover, in certain common experimental
situations the coupling can be designed to be frequency-independent. Let us point out that
such a frequency-independent coupling constant is a stronger condition than Markovianity.

• In the final master equation, there may be some rapidly oscillating terms. It’s possible to
show that these terms do not contribute to the dynamics of ρS, and thus they are usually
neglected. This is the so-called rotating-wave approximation [10].

Now, let’s clarify these assumptions with the example of an open optical single mode cavity,
with annihilation operator a. We denote by b(ω) the annihilation bosonic operators for each mode
of the bath, which satisfy the continuous canonical commutation relations [b(ω), b†(ω)] = δ(ω−ω′).
The Hamiltonian of the system and the reservoir in the absence of interaction is then

HS = ~ωca†a, (4a)

HB =

∫ ∞
0

dω~ωb†(ω)b(ω), (4b)

where ωc is the cavity frequency.
It is common to model the interaction between the cavity and the external modes by a beam-

splitter interaction, that is, a coherent process that transfers photons from the cavity to the
external field and vice versa. Indeed, this is an exact model in the case of a partially transmitting
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mirror. As there is a continuous set of frequencies, the sum of all possible processes must be
considered. The interaction Hamiltonian is then

Hint = i~
∫ ∞

0

dωκ(ω)[b†(ω)a− a†b(ω)], (5)

where κ(ω) is the coupling function between the environment and the cavity. It depends on the
transmissivity of the mirror at frequency ω and is in full generality frequency dependent. We
will however assume, as is usually the case, that it is small (large mirror reflectivity) and can be
consider approximately frequency independent over a large frequency domain, see below.

On the other hand, note that in the weak coupling case that we are dealing with, the energy
of the full system is still mainly defined by the free Hamiltonians (4). Hence, energy conserva-
tion implies that only reservoir frequencies close to the cavity frequency will contribute to the
interaction, which is thus called a resonant interaction. Specifically, rewriting the coupling as
κ(ω) =

√
γ/π, weak coupling (or large mirror reflectivity) means that we assume γ � ωc. There-

fore, only reservoir frequencies around the interval [ωc − γ, ωc + γ] will contribute, around which
we can assume the mirror reflectivity to be frequency-independent. Indeed, the transmissivity of
typical mirror can be made pretty flat as a function of the frequency, so this will be correct as long
as the allowed interval is small enough [10]. In addition, we can extend the integration limits to
] −∞,∞[ which will simplify the upcoming integrals. The unphysical negative frequency modes
will not contribute, as they are very off-resonant. After these considerations, the Hamiltonian of
the system reads then

H = Hsys +HB +Hint, (6a)

HB =

∫ ∞
−∞

dω~ωb†(ω)b(ω), (6b)

Hint = i~
√
γ

π

∫ ∞
−∞

dω[b†(ω)a− a†b(ω)]. (6c)

We will consider a bath that is initially in a thermal state, such that ρB is the Gibbs state
defined as the equilibrium distribution of the canonical ensemble

ρB =
e−HB/kBT

tr {e−HB/kBT}
= ⊗
∀ω
ρth[n̄(ω)], (7)

where ⊗∀ω denotes a continuous tensor product over all frequencies, and

ρth(n̄) =
e−(~ω/kBT )b†b

tr
{
e−(~ω/kBT )b†b

} , (8)

is the thermal state for a single harmonic oscillator with annihilation operator b, parametrized
by its average photon number n̄(ω) = tr{b†bρth} = [exp(~ω/kBT )− 1]−1 which follows the Bose-
Einstein distribution as a function of the frequency.

Note that for such a thermal state the first and second moments of the multimode reservoir
read

〈b(ω)〉 = tr {b(ω)} ρB = 0, (9a)

〈b(ω)b(ω′)〉 = tr {b(ω)b(ω′)ρB} = 0, (9b)

〈b†(ω)b(ω′)〉 = tr
{
b†(ω)b(ω′)ρB

}
= n̄(ω)δ(ω − ω′), (9c)

〈b(ω)b†(ω′)〉 = tr
{
b(ω)b†(ω′)ρB

}
= [n̄(ω) + 1]δ(ω − ω′). (9d)

These relations are easy to prove by taking into account that different reservoir modes are uncor-
related, and thermal states are phase invariant.

Finally, let us point out that we will work at temperatures where the Bose-Einstein distribution
is approximately flat in the relevant interval ω ∈ [ωc−γ, ωc+γ], so that we can make a frequency-
independent approximation n̄(ω) = n̄(ωc) ≡ n̄ in the equations above.
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2.2 Master equations and Lindblad form

The aim of this section is to derive an equation describing the dynamics of the open system.
Since we do it in the Schrodinger picture, the resulting equation is called a master equation.
These differential equations are very similar to their counterparts in classical physics. All the
quantumness is contained in the variables, which in the quantum formalism correspond to the
entire density matrix, including off-diagonal elements. Otherwise, a density matrix with only
diagonal elements can be modeled as a classical random process, and there is nothing quantum
in the equation. This section shows how the master equation is derived, first considering one
single-mode cavity in contact with a piston or a membrane, and then adding a second cavity as
in Figure 2.

2.2.1 The piston-cavity Hamiltonian

As a first step let’s derive the Hamiltonian of the system. It is the sum of the piston Hamiltonian
(which we model as that of a free particle, it’s center of mass, given by P 2/2m) and the cavity
Hamiltonian, given by ~ω(X)a†a. Here X and P are the position and momentum of the piston,
respectively, which satisfy the commutation relation [X,P ] = i~. The frequency ω(X) of the
cavity is inversely proportional to its length l = lc +X, where lc is the length of the cavity at time
zero. Using the expansion (1 +X/lc)

−1 ≈ 1−X/lc, valid for small piston displacements, X � lc,
and denoting by ωc the cavity frequency at time zero, we then obtain the system Hamiltonian

Hsys =
P 2

2m
+ ~ωca†a− ~GXa†a, (10)

where we have defined the optomechanical coupling G = ωc/lc.
This system Hamiltonian replaces in (6) the simple single-mode cavity Hamiltonian of the

previous section. Note, however, that we will assume that GX0 � γ (where X0 is some mea-
sure of the mechanical displacement, for example its average position plus uncertainty, |〈X〉| +√
〈X2〉 − 〈X〉2), such that the piston does not change the cavity appreciably from the point of

view of the environment, as otherwise the elimination of the latter becomes more complicated (we
will see this clearly when considering a similar situation in Section 2.2.5, specifically an interaction
between cavities that changes the Hamiltonian’s spectrum considerably).

2.2.2 Elimination of the bath

We can proceed now to eliminate the environmental degrees of freedom. Our starting point is the
von Neumann equation for the full system

i~
dρ

dt
= [Hsys +HB +Hint, ρ] ≡ [H0 +Hint, ρ]. (11)

Since we are going to use a perturbative approach valid under weak-coupling conditions, let us
move to a picture where we remove the free dynamics induced by H0. With full generality, given
a density operator ρ evolving according to dρ/dt = [H/i~, ρ] and a unitary transformation of the
form U = exp(HU t/i~), the transformed density operator ρ̃(t) = U †(t)ρ(t)U(t) is easily shown to
obey the evolution equation

dρ̃/dt = [HI(t)/i~, ρ̃], with HI(t) = U †(t)HU(t)−HU (12)

Considering (11) and choosing the change of picture defined by HU = H0, the interaction Hamil-
tonian becomes

HI(t) = e−H0t/i~(H0 +Hint)e
H0t/i~ −H0 = e−H0t/i~Hinte

H0t/i~

= i~
√
γ

π

∫
dωe−(Hsys+HB)t/i~[b†(ω)a− a†b(ω)]e(Hsys+HB)t/i~. (13)
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Since [Hsys, HB] = 0, we have

HI(t) = i~
√
γ

π

∫
dω
(
e
i
~HBtb̂†(ω)e−

i
~HBte

i
~Hsystâe−

i
~Hsyst − e

i
~Hsystâ†e−

i
~Hsyste

i
~HBtb(ω)e−

i
~HBt

)
.

(14)

We can calculate each term independently:

e
i
~HBtb̂†(ω)e−

i
~HBt = b̂†(ω) +

it

~
[HB, b̂

†(ω)] +
(it)2

2~2

[
HB, [HB, b̂

†(ω)]
]

+ . . . (15)

= b̂†(ω) +
it

~

∫ ∞
0

dω′~ω′b̂†(ω′)δ(ω − ω′) + · · · = b̂†(ω)
∞∑
n=0

(iωt)n

n!
= b̂†(ω)eiωt. (16)

Similarly,

e
i
~HBtb̂(ω)e−

i
~HBt = b̂(ω)e−iωt.

If we further define the interaction picture cavity annihilation operator ã(t) ≡ e−Hsyst/i~âeHsyst/i~,
we obtain

HI(t) = i~
√
γ

π

∫ ∞
−∞

dω
[
ã(t)b†(ω)eiωt − ã†(t)b(ω)e−iωt

]
(17)

The master equation follows directly from the von Neumann equation by solving formally,
replacing the solution into the equation, and tracing out the environment. Let us show this next.
Formal integration of equation (12) gives us

ρ̃(t) = ρ̃(0) +
1

i~

∫ t

0

dt′ [HI(t
′), ρ̃(t′)] , (18)

which reintroduced in (12) leads to

dρ̃S
dt

=
1

i~
trB {[HI(t), ρ̃(0)]} − 1

~2

∫ t

0

dt′ trB {[HI(t), [HI(t
′), ρ̃(t′)]]}

= − 1

~2

∫ t

0

dτ trB {[HI(t), [HI(t− τ), ρ̃(t− τ)]]} , (19)

where the term depending on the initial condition disappears because trB {[HI(t), ρ̃(0)]} ∝ 〈b(ω)〉 =
0 according to (9). Up to here all the derivations are exact. To go further, two more approxima-
tions are made.

The first one is the Born approximation [10], which consists in considering only terms up
to second order in the interaction, and is equivalent to setting ρ̃(t − τ) = ρ̃S(t − τ) ⊗ ρB in
equation (19), as we argue next. Initially the environment and the system are in a separable
state. As time goes by the interaction induces correlations between them, but these are therefore
at least of order one in the interaction. Furthermore, the environment is a huge system barely
perturbed by the weak interaction with the system, so we expect deviations with respect to its
initial state ρB to appear only at a large order in the interaction. These then justifies the use of
the ρ̃(t− τ) = ρ̃S(t− τ)⊗ ρB ansatz.

The second approximation is the Markov approximation [6, 10]: we assume that the evolution
equation of the state at a given time, depends only on the state at that same time (memoryless
evolution). This is justified when the two-time reservoir correlation functions decay much faster
than the characteristic rate at which the system evolves. However, in our case it naturally appears
as a direct consequence of the frequency-independent approximation for γ, which is therefore an
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even stronger condition than Markovianity. We therefore proceed without explicitly applying the
Markov approximation, which will come naturally at a later stage.

Applying the Born approximation, equation (19) becomes

dρ̃S
dt

=
1

~2

∫ t

0

dτ trB {[HI(t), [HI(t− τ), ρ̃S(t− τ)⊗ ρB]]} . (20)

In order to perform the time integral (20), let’s now write down all the terms contained in the
kernel. Since the Hamiltonian has 2 terms and there are two nested commutators, we will have
(2 · 1 + 2 · 1) · 2 + 2 · 1 + (2 · 1) · 2 = 16 terms in total. Putting the frequency integrals, the partial
trace over the environment, and the constant γ/π aside, the integral’s kernel is the sum of the
following terms:

Q1 = eiω
′(t−τ)+iωtã(t)ã(t− τ)ρ̃S(t− τ)⊗ b†(ω)b†(ω′)ρ̃B, (21a)

Q2 = −eiωte−iω′(t−τ)ã(t)ã†(t− τ)ρ̃S(t− τ)⊗ b†(ω)b(ω′)ρ̃B, (21b)

Q3 = −eiωteiω′(t−τ)ã(t)ρ̃S(t− τ)ã(t− τ)⊗ b†(ω)ρ̃Bb
†(ω′), (21c)

Q4 = eiωte−iω
′(t−τ)ã(t)ρ̃S(t− τ)ã†(t− τ)⊗ b†(ω)ρ̃Bb(ω

′), (21d)

Q5 = −e−iωteiω′(t−τ)ã†(t)ã(t− τ)ρ̃S(t− τ)⊗ b(ω)b†(ω′)ρ̃B, (21e)

Q6 = e−iωte−iω
′(t−τ)ã†(t)ã†(t− τ)ρ̃S(t− τ)⊗ b(ω)b(ω′)ρ̃B, (21f)

Q7 = e−iωteiω
′(t−τ)ã†(t)ρ̃S(t− τ)ã(t− τ)⊗ b(ω)ρ̃Bb

†(ω′), (21g)

Q8 = −e−iωte−iω′(t−τ)ã†(t)ρ̃S(t− τ)ã†(t− τ)⊗ b(ω)ρ̃Bb(ω
′), (21h)

Q9 = −eiω′(t−τ)eiωtã(t− τ)ρ̃S(t− τ)ã(t)⊗ b†(ω′)ρ̃Bb†(ω), (21i)

Q10 = eiω
′(t−τ)e−iωtã(t− τ)ρ̃S(t− τ)ã†(t)⊗ b†(ω′)ρ̃Bb(ω), (21j)

Q11 = e−iω
′(t−τ)eiωtã†(t− τ)b(ω′)ρ̃S(t− τ)ã(t)⊗ ρ̃Bb†(ω), (21k)

Q12 = −e−iω′(t−τ)e−iωtã†(t− τ)ρ̃S(t− τ)ã†(t)⊗ b(ω′)ρ̃Bb(ω), (21l)

Q13 = eiω
′(t−τ)eiωtρ̃S(t− τ)ã(t− τ)ã(t)⊗ ρ̃Bb†(ω′)b†(ω), (21m)

Q14 = −eiω′(t−τ)e−iωtρ̃S(t− τ)ã(t− τ)ã†(t)⊗ ρ̃Bb†(ω′)b(ω), (21n)

Q15 = e−iω
′(t−τ)eiωtρ̃S(t− τ)ã†(t− τ)ã(t)⊗ ρ̃Bb(ω′)b†(ω), (21o)

Q16 = e−iω
′(t−τ)e−iωtρ̃S(t− τ)ã†(t− τ)ã†(t)⊗ ρ̃Bb(ω′)b(ω). (21p)

The trace over the environment is now easily performed with the help of (9). We see that
Q1, Q3, Q6, Q8, Q9, Q12, Q13, Q16 all vanish. The remaining terms are found as

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q4} (22)

=
γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′eiωt−iω
′(t−τ)ã(t)ρ̃S(t− τ)ã†(t− τ)trB

{
b†(ω)ρBb(ω

′)
}︸ ︷︷ ︸

trB{b(ω′)b†(ω)ρB}

=
γ(n̄+ 1)

π

∫ t

0

dτ

∫ ∞
−∞

dωeiωτ︸ ︷︷ ︸
2πδ(τ)

ã(t)ρ̃S(t− τ)ã†(t− τ)

= 2γ(n̄+ 1)

∫ t

0

dτδ(τ)ã(t)ρ̃S(t− τ)ã†(t− τ)

= γ(n̄+ 1)ã(t)ρ̃S(t)ã†(t),
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where we have used the property
∫ t

0
dτδ(τ)f(τ) = f(0)/2. Proceeding in a similar way, we can

evaluate the rest of the terms, obtaining

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q5} = −γ(n̄+ 1)ã†ãρ̃S, (23a)

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q7} = γn̄ã†ρ̃S ã, (23b)

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q10} = γ(n̄+ 1)ãρ̃S ã
†, (23c)

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q11} = γn̄ã†ρ̃S ã, (23d)

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q14} = −γn̄ρ̃S ãã†, (23e)

γ

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q15} = −γ(n̄+ 1)ρ̃S ã
†ã. (23f)

Adding all these terms we get the master equation

dρ̃S
dt

= γ(n̄+ 1)[2ãρ̃S ã
† − ã†ãρ̃S − ρ̃S ã†ã] + γn̄[2ã†ρ̃S ã− ãã†ρ̃S − ρ̃S ãã†]. (24)

This is the master equation for the single open cavity mode in the interaction picture. We can
write it in the more compact form

dρ̃S
dt

= γ(n̄+ 1)Dã[ρ̃S] + γn̄Dã† [ρ̃S], (25)

where DJ [ρ] = 2JρJ† − {J†J, ρ}, and DJ is known as Lindblad superoperator. We then say that
the master equation is written in Lindblad form.

Now let’s to come back to the initial picture. In order to do this, we simply find the evolution
equation of the original state ρS(t) = US(t)ρ̃S(t)U †S(t), with US = exp(Hsyst/i~), which is easily
shown to be

dρS
dt

=
Hsys

i~
US ρ̃SSU

†
S − US ρ̃SU

†
S

Hsys

i~
+ US

dρ̃S
dt

U †S (26)

=

[
Hsys

i~
, ρS

]
+ γ(n̄+ 1)USDã[ρ̃S]U †S + γn̄USDã† [ρ̃S]U †S

=

[
Hsys

i~
, ρS

]
+ γ(n̄+ 1)DUS ãU

†
S
[ρS] + γn̄DUS ã†U

†
S
[ρS]

=

[
Hsys

i~
, ρS

]
+ γ(n̄+ 1)Da[ρS] + γn̄Da† [ρS].

This master equation is similar to the von Neumann equation of the system plus some more terms
(the Lindblad terms) which stem from the interaction with the environment. For this reason they
are called dissipative terms. Note that in many open system problems the dissipative terms can
be written in Lindblad form.

In full generality, a Markov process is usually formulated in terms of the Chapman-kolmogorov
equation 2 which has similarities with the semigroup property. In fact, it is possible to show that

2If T (x|x′) is a transition probability from state x′ ≡ x(t′) to state x ≡ x(t), the Chapman-kolmogorov equation
states that T (x|x′) =

∫
dx′′T (x|x′′)T (x′′|x). For discrete Markov processes, it can be written in matrix form as

T (x(t+ t′)) = T (x(t))T (x(t′)).

13



the semigroup property (3) is the property of any Markov process [9]. Then, if it is justified to
neglect memory effects in the reduced system dynamics, the family of dynamical maps describing
the evolution of the reduced system forms a quantum dynamical semigroup. Furthermore, if we
assume no explicit time dependence in the Hamiltonian of the whole system, it’s the possible to
show that the generator of this group L, such that V (t) = eLt ⇔ dρS/dt = L[ρS], is

L[ρS] = −i[H, ρS] +
N2−1∑
k=1

γk
2
DJk(ρS), (27)

where N is the dimension of the system’s Hilbert space and Jk are operators that are usually
denoted by jump operators.

Furthermore, note that in the absence of optomechanical coupling, the thermal state ρth(n̄)
is the stationary state of the problem, L[ρth(n̄)] = 0, as expected: the cavity reaches thermal
equilibrium with the environment.

2.2.3 Double cavity model

We are now in conditions to write down the master equation corresponding to the model shown
in Figure 2 (left): the piston acts as a moving mirror shared by two cavities (coupled to indepen-
dent heat baths), which then exert radiation pressure forces onto it in opposite directions. The
Hamiltonian of the full system is in this case is

Hsys =
P 2

2m
+ ~ωca†a− ~GXa†a+ ~ωcb†b+ ~GXb†b, (28a)

HB =

∫ ∞
−∞

dω~ωe†(ω)e(ω) +

∫ ∞
−∞

dω~ωd†(ω)d(ω), (28b)

Hint = i~
√
γ

π

∫ ∞
−∞

dω[e†(ω)a− a†e(ω)] + i~
√
γ

π

∫ ∞
−∞

dω[d†(ω)b− b†d(ω)]. (28c)

Where we have denoted the annihilation operators of the left (right) cavity and its bath by a and
e (b and d). Note that for simplicity we have assumed that the cavities are identical, including
their coupling strengths to the piston and their respective baths.

We can trace out the baths following the same procedure as in the previous section. Since
the baths are independent, and the cavities interact only through their common coupling to the
piston, which we assumed weak as explained above (GX0 � γ), the master equation will just
trivially combine the terms corresponding to each independent cavity. We get:

dρS
dt

=

[
Hsys

i~
, ρS

]
+ γ(n̄a + 1)Da[ρS] + γn̄aDa† [ρS] + γ(n̄b + 1)Db[ρS] + γn̄bDb† [ρS], (29)

where we have denoted by n̄a and n̄b the thermal photon number of the corresponding cavity.

2.2.4 The membrane model

So far we have considered the mechanical component to be a piston whose center of mass moves
freely. Although this is a very interesting model that already contains a lot of the physics we
ought to explore, it’s not experimentally realizable. From this point of view, a more interesting
mechanical element consists of a membrane3 as shown in Figure 2 (right). The resulting model is
still very close to the previous one, except that now the free mechanical Hamiltonian is replaced

3Technically, the membrane has many mechanical modes, similarly to an optical cavity. Here, as in most
optomechanics works, we assume to work only with one specific mode.
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with a harmonic oscillator. Such type of models have been experimentally implemented with
actual membranes or other types of mechanical oscillators, and are ubiquitous to the young field
of quantum cavity optomechanics [8].

The Hamiltonian of the membrane reads

Hmem =
P 2

2m
+
mΩ2

2
X2 = ~ωm

(
c†c+

1

2

)
, (30)

where we have defined the annihilation and creation operators ([c, c†] = 1) through X = x0(c+ c†)
and P = −ip0(c− c†). x0 =

√
~/2mΩ and p0 = ~/2x0 =

√
~mΩ/2 are, respectively, the position

and momentum uncertainties of the membrane in its ground state (zero-point fluctuations).
The models, including the optical cavities and their heat baths, take the same form as in (26)

and (29), for the single-cavity and double-cavity cases, respectively, with a system Hamiltonian
that reads

Hsys = ~Ωc†c+ ~ωa†a+ ~ωb†b− ~g(c† + c)
(
a†a− b†b

)
, (31)

where we have defined optomecanical coupling rate g = Gx0, which is assumed small similarly
to the piston case, g � γ. Changing the mechanical component between the two cavities does
not influence the way they interact with their environment. Thus, the dissipative Lindblad terms
remain exactly the same. The master equation is still of the form (29) but the Hsys term is now
given by (31).

2.2.5 Coupling the optical modes through a beam splitter

The previous examples allowed for the naive procedure of modeling the open system just adding
terms of the form (25) for any mode coupled to a bath. This, however, is only allowed when the
effect of the coupling between the modes of the reduced system is negligible from the point of
view of the reservoirs. In this section we consider a relevant example that shows how this naive
approach has to be modified in the presence of strong coupling. In particular, we analyze what
happens when we add a beamsplitter interaction between the two cavities.

Since the optomechanical coupling is still treated as a small perturbation that can be added
at the end, we don’t consider it now, so we focus on the optical modes. The Hamiltonian of the
full system is then

Hsys = ~ωca†a+ ~ωcb†b+ ~λ(ab† + a†b), (32a)

HB =

∫ ∞
0

dω~ωe†(ω)e(ω) +

∫ ∞
0

dω~ωd†(ω)d(ω), (32b)

Hint = i~
∫ ∞

0

dω

√
γ(ω)

π
[e†(ω)a− e(ω)a†] + i~

∫ ∞
0

dω

√
γ(ω)

π
[d†(ω)b− d(ω)b†], (32c)

where λ > 0 characterizes the strength of the beam splitter. If the condition λ� γ is satisfied, then
the model of the previous section (modified just by the addition of the beam splitter Hamiltonian)
works. Here, however, we are interested in understanding what happens when λ > γ (the so-called
strong coupling regime), so we derive a new master equation that will work in this regime.

To this aim, let us first write the evolution equations of a and b under the action of Hsys,

d

dt

(
a
b

)
= −i

(
ωc λ
λ ωc

)
︸ ︷︷ ︸

M

(
a
b

)
. (33)
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The matrix M is readily diagonalized, yielding the eigenvalues ΩA,B = ωc±λ. Defining the normal
modes (

A
B

)
=

1√
2

(
1 1
−1 1

)(
a
b

)
, (34)

and similarly for the reservoir modes,(
E(ω)
D(ω)

)
=

1√
2

(
1 1
−1 1

)(
e(ω)
d(ω)

)
. (35)

The Hamiltonian is then rewritten as

Hsys = ~ΩAA
†A+ ~ΩBB

†B, (36a)

HB =

∫ ∞
0

dω~ω
[
E†(ω)E(ω) +D†(ω)D(ω)

]
, (36b)

Hint = i~
∫ ∞

0

dω

√
γ(ω)

π

[
E†(ω)A+D†(ω)B − E(ω)A† −D(ω)B†

]
. (36c)

It might look as if by moving to the normal mode basis, we have turned the problem into two
modes (A and B) interacting with independent reservoirs (D and E, respectively). However, this
is not the case, since the reservoirs are now correlated. Consider, for example, the term

tr
{
E(ω′)D†(ω)ρB

}
=

1

2
tr
{

[e(ω′) + d(ω′)]
[
−e†(ω) + d†(ω)

]
ρB
}

=
1

2

−tr
{
e(ω′)e†(ω)ρB

}︸ ︷︷ ︸
(n̄a+1)δ(ω−ω′)

− tr
{
d(ω′)e†(ω)ρB

}︸ ︷︷ ︸
0

+ tr
{
e(ω′)d†(ω)ρB

}︸ ︷︷ ︸
0

+ tr
{
d(ω′)d†(ω)ρB

}︸ ︷︷ ︸
(n̄b+1)δ(ω−ω′)

 (37)

=
1

2
(n̄b − n̄a)δ(ω − ω′),

which is only zero when the heat baths are at the same temperature, while in any other case,
shows non-zero correlations between the heat baths. Similarly4, we can evaluate all the other
non-zero reservoir correlation functions, obtaining

tr
{
E†(ω)E(ω′)ρB

}
= tr

{
D†(ω)D(ω′)ρB

}
=

1

2
(n̄a + n̄b)δ(ω − ω′), (38a)

tr
{
E(ω)E†(ω′)ρB

}
= tr

{
D(ω)D†(ω′)ρB

}
=

1

2
(n̄a + n̄b + 2)δ(ω − ω′), (38b)

tr
{
E†(ω)D(ω′)ρB

}
= tr

{
D(ω)E†(ω′)ρB

}
= tr

{
D†(ω)E(ω′)ρB

}
=

1

2
(n̄b − n̄a)δ(ω − ω′). (38c)

The rest of the correlation functions, specifically the ones containing two annihilation or two
creation operators, are zero.

It is also important to comment on one subtle point: since we have modified the spectrum
of the Hamiltonian Hsys, the Born-Markov conditions have to be reassessed. For example, the
weak coupling approximation means now that ΩB � γ. Note that this condition, automatically
implies λ� ωc, that is, as the beam splitter interaction must stay away from the so-called ultra-
strong coupling regime. We assume to work in these limits in the following. These conditions also
allow us to extend the frequency integrals to −∞, as well as applying the frequency-independent
approximation for γ(ω). However, note that since the resonant frequencies of A and B are different,

4See Appendix A for more details on the calculations.
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when λ � γ we can allow for different reference values for each of the interactions. Specifically,
the interaction-picture Hamiltonian, defined by (12) with HU = Hsys +HB, takes the form

HI(t) = i~
∫ ∞
−∞

dω

√
γA
π
E†(ω)Ã(t)eiωt + i~

∫ ∞
−∞

dω

√
γB
π
D†(ω)B̃(t)eiωt + H.c., (39)

where γj = γ(Ωj). Note that we are allowed to take γA 6= γB only when λ� γA,B.
With these considerations at hand, it is now simple (but slightly lengthy) to trace out the

reservoirs5 following the same steps as in Section 2.2.2, starting from expression (20). Let us
present and discuss the final form of the master equation in the interaction picture, that is, for
the state ρ̃S(t) = U †S(t)ρS(t)US(t), with US(t) = exp(Hsyst/i~). The equation reads

dρ̃S
dt

= γA(n̄+ 1)DÃ[ρ̃S] + γAn̄DÃ† [ρ̃S] + (n̄+ 1) γBDB̃[ρ̃S] + γBn̄DB̃† [ρ̃S]

+
√
γAγB∆n̄

(
2Ãρ̃SB̃

† −
{
ρ̃S, B̃

†Ã
}

+ 2B̃†ρ̃SÃ−
{
ρ̃S, ÃB̃

†
}

+ H.c.

)
, (40)

where we have defined n̄ = (n̄a + n̄b)/2 and ∆n̄ = (n̄b − n̄a)/2. Note that the interaction-picture
operators can be written as Ã = U †(t)AU(t) = e−iΩAtA and B̃ = U †(t)BU(t) = e−iΩBtB, where
we remind that A and B are time-independent because we started in the Schrodinger picture.
Using this expressions, the previous equation is rewritten as

dρ̃S
dt

= γA(n̄+ 1)DA[ρ̃S] + γAn̄DA† [ρ̃S] + (n̄+ 1) γBDB[ρ̃S] + γBn̄DB† [ρ̃S] (41)

+
√
γAγB∆n̄

[
e−2iλt

(
2Aρ̃SB

† −
{
ρ̃S, B

†A
}

+ 2B†ρ̃SA−
{
ρ̃S, AB

†})+ H.c.

]
.

This form of the master equation allows us to discuss the different regimes of the beam-splitter
interaction λ in a very transparent way. In particular, note that while the terms in the first line are
time-independent, the terms in the second line oscillate at a frequency proportional to λ. Hence,
how much they contribute to the dynamics will depend on how slow is the oscillation. Two limits
are particularly interesting:

• First, the limit λ→ 0, where the oscillations disappear. As expected, replacing A and B by
their relations with a and b, we recover the naive terms appearing in (29) corresponding to
modes a and b seeing their independent environments. The steady state in this limit is then
ρth(n̄a)⊗ ρth(n̄b), so that each oscillator thermalizes to its respective temperature.

• The second limit is λ � γA,B∆n̄, where the second line of (41) can be neglected within
the rotating wave approximation. Hence, we are left with the terms of the first line that
describe two modes that see two identical heat baths (but might exchange energy with
them at different rates γA,B), which can be described as the average of the previous two
environments (average thermal photon number n̄). The steady state in this limit is then
ρth(n̄)⊗ ρth(n̄), so that both oscillators thermalize to the same effective temperature.

We then see that the beam-splitter interaction radically changes the character of the open model.
Let is finally come back to the original Schrödinger picture, where the master equation reads

dρS
dt

= −i
[
ΩAA

†A+ ΩBB
†B +

P 2

2m~
−GX(A†B + AB†), ρS

]
(42)

+ γA(n̄+ 1)DA[ρS] + γAn̄DA† [ρS] + (n̄+ 1) γBDB[ρS] + γBn̄DB† [ρS]

+
√
γAγB∆n̄

(
2AρSB

† −
{
ρS, B

†A
}

+ 2B†ρSA−
{
ρS, AB

†}+ H.c.
)
,

5See detailled calculations in Appendix A.2.
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where we have included the piston motion and the corresponding optomechanical coupling, which
we remind we are allowed to do as long as G� γA,B.

One final remarkable fact is that, if we allow the transmissivity of the cavity mirrors to be
completely flat over the whole 2λ interval, so that γA = γB ≡ γ, this master equation takes keeps
the naive form (29) when written in the original modes a and b. Specifically, for the piston model
we get

dρS
dt

= −i
[
ωca

†a+ ωcb
†b+ λ(ab† + a†b) +

P 2

2m~
−GX(a†a− b†b), ρS

]
(43)

+ γ(n̄a + 1)Da[ρS] + γn̄aDa† [ρS] + γ(n̄b + 1)Db[ρS] + γn̄bDb† [ρS],

while for the membrane we get

dρS
dt

= −i
[
ωca

†a+ ωcb
†b+ λ(ab† + a†b) + Ωc†c− g(c+ c†)(a†a− b†b), ρS

]
(44)

+ γ(n̄a + 1)Da[ρS] + γn̄aDa† [ρS] + γ(n̄b + 1)Db[ρS] + γn̄bDb† [ρS].

For definiteness, we will consider this limit in the following, so that these are the most general
master equations that we will consider in this thesis.

18



3 Phase space stochastic techniques

In the previous section we derived the master equation of our system. This equation provides the
evolution of the density operator. While ideally it is interesting to have the full state of the system,
most of the time it is enough to consider simpler quantities or observables with more intuitive
interpretation, that can even have a classical interpretation (take the average photon number or
the quadrature fluctuations as examples). One of the main uses of phase-space techniques in
quantum optics is to derive different types of evolution equations from the master equation. In
many situations, these equations are simpler to solve and easier to interpret. They also offer a
natural route towards the classical limit.

The goal of this section is to introduce such phase-space techniques. We first introduce the
concept of phase-space quasi-probability distributions. Then, we explain how to find evolution
equations for them, when given as a starting point the master equation. Later, we make the
connection between these phase-space evolution equations and a system of stochastic equations,
both in the classical limit and the quantum regime.

3.1 Phase space distributions

Phase space distributions are an alternative way to represent quantum states [6]. There are usually
three main distributions that are used. The oldest one is the Wigner distribution. The two others
are the Glauber-Sudarshan P distribution and the Husimi Q distribution.

Similarly to what is done in classical mechanics, the Wigner distribution was introduced in
order to visualize quantum states in phase space, the space (x, p) spanned by position and mo-
mentum (we consider a single degree of freedom for concreteness). In classical physics these two
quantities are enough to completely describe the physical state. In quantum physics though, posi-
tion and momentum do not commute, and therefore obey Heisenberg’s uncertainty principle. As it
is not possible to have them perfectly defined simultaneously, quantum states will be intrinsically
fuzzy in phase space: they cannot be represented by a point. The function representing such fuzzy
state is called the Wigner distribution. As a result, quantum noise implies that there are no well
defined trajectories in phase space. Moreover, the Wigner distribution can be negative, reason
why it cannot be considered as a true probability distribution, which shows that quantum noise
cannot be simulated with classical phase-space noise.

Let us now introduce formally the Wigner distribution. If we want the phase-space formalism to
be equivalent to quantum mechanics, the Wigner distribution must contain the same information
as quantum states. Accordingly, one way of building the Wigner distribution associated to a
quantum state ρ is by asking for the functionW (x, p) whose marginals coincide with the probability
distribution of obtaining an outcome for x or p. It’s possible to show [10] that these conditions
uniquely define the Wigner distribution

W (x, p) =

∫
R2

dx′dp′

(4π)2
e
i
2

(x′p−p′x) tr {ρD(x′, p′)} , (45)

where we use dimensionless versions of position and momentum (quadratures) with commutator

[x̂, p̂] = 2i and D(x′, p′) = e
i
2

(px̂−xp̂) is the displacement operator. Note that in the following
we will include the hats in the operators whenever they can be confused with classical variables.
The object χ(x′, p′) = tr {ρD(x′, p′)} is called the quantum characteristic function, because of its
Fourier transform relation with the Wigner distribution. This will allow us to draw conclusions
on the relations with the two other distributions.

It is easy to check that these expression has the right marginals,
∫

R dpW (x, p) = 〈x|ρ|x〉 for
example, and is therefore normalized. It’s also easy to see that it is real and bounded (W 2 <∞),
but nothing prevents it from being negative.
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Sometimes, it is useful to express the distribution in terms of the complex variable α =
(x + ip)/2. Performing the change of variables in equation (45), imposing the normalization∫

C d
2αW (α), we get

W (α) =

∫
C

d2β

π2
eβ
∗α−βα∗ tr

{
ρeβa

†−β∗a
}
. (46)

The characteristic function χρ = 〈D(β)〉ρ = tr
{
ρeβa

†−β∗a
}

is the expectation value of the

displacement operator D(α) = eαa
†−α∗a. The different distributions appear when we generalize

it as Dz(β) = D(β)ez|β|
2/2, where z ∈ [−1, 1]. For the following values of z we obtain the most

common distributions:

• For z = 0 we get the Wigner function.

• For z = −1 we get the Husimi distribution, Q(α) = 〈α|ρ|α〉 (|α〉 is a coherent state), which
is always positive and bounded.

• For z = 1 we get the Glauber-Sudarshan distribution, defined through ρ =
∫

C dαP (α)|α〉〈α|.
In this case, P (α) can be negative or even have strong divergences. For example, for a
coherent state ρ = |α0〉〈α0| it is a delta function P (α) = δ(2)(α− α0).

Let’s call χz(β) ≡ 〈Dz(β)〉ρ the generalized characteristic function. Its Fourier transform
provides then a generalized quasi-probability distribution

Fz(α) =

∫
C

d2β

π2
eβ
∗α−βα∗χz(β) =

∫
C

d2β

π2
eβ
∗α−α∗β tr{ρDz(β)}, (47)

where z = {1, 0,−1} correspond to the common choices exposed above.
For our purposes, apart from their definition, the most important property of these distri-

butions is their connection to quantum expectation values. It is possible to show [6] from (47)
that the choices z = 0, 1, and − 1 are related, respectively, to symmetrically, normally, and
antinormally ordered moments, that is,∫

C
d2αW (α)α∗mαn = 〈(a†man)(s)〉, (48a)∫

C
d2αP (α)α∗mαn = 〈a†man〉, (48b)∫

C
d2αQ(α)α∗mαn = 〈ana†m〉, (48c)

where the notation (a†man)(s) means taking the weighted sum of all possible orderings. For exam-
ple, (a†a)(s) = (a†a+ aa†)/2.

All the expressions presented in this section can be trivially generalized to multimode situations
such as the one we considered in the previous chapter.

3.2 Fokker-Planck equations and stochastic representations

Before proceeding let’s introduce the concept of Fokker-Planck equations. A Fokker–Planck equa-
tion is a particular type of partial differential equation describing the time evolution of a probability
density function. One famous example is the Smoluchowski equation describing the time evolution
of the probability density function of the position of particles undergoing Brownian motion in a
force field.
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More precisely, let’s call P (x, t) the probability density function for x ∈ RN , satisfying the
following equation:

∂tP (x, t) =

[
−

N∑
i=1

∂jAj(x) +
1

2

N∑
j,l=1

∂j∂lDjl(x)

]
P (x, t). (49)

When the matrix D is positive semidefinite, then this is called a Fokker-Planck equation. A is
then called the drift vector and D is called the diffusion matrix.

Fokker-Planck equations are equivalent to the following system of equations describing a
stochastic process [6]

dx

dt
= A(x) +B(x)η(t), (50)

where D(x) = B(x)BT (x), and the components of η(t) are independent real white Gaussian
noises, that is, their multi-time stochastic correlation functions are given by

ηj(t) = 0, (51a)

ηj(t)ηl(t′) = δjlδ(t− t′), (51b)

ηj1(t1)ηj2(t2)ηj3(t3) = 0, (51c)

ηj1(t1)ηj2(t2)ηj3(t3)ηj4(t4) = ηj1(t1)ηj2(t2) ηj3(t3)ηj4(t4) + ηj1(t1)ηj3(t3) ηj2(t2)ηj4(t4), (51d)

... + ηj1(t1)ηj4(t4) ηj2(t2)ηj3(t3).

Note that we denote stochastic averages with an overbar. B is usually called the noise matrix.
The equivalence between the Fokker-Planck equation (49) and the stochastic Langevin equa-

tions (50) can be understood in the statistical sense, that is, given any function f(x), its average
at a given time t is given by

f [x(t)] =

∫
RN
dNxP (x, t)f(x). (52)

As shown in the next section, we can turn the master equation into a partial differential
equation describing the evolution of the quasi-probability distribution Fz. Was this equation of
the form of a Fokker-Planck, we would then be able to obtain a system of stochastic equations to
describe the quantum dynamics, which are in general easier to treat than master equations.

3.3 Phase-space dynamical equations from the master equation

Here we derive some equivalence rules allowing us to write the evolution equation of Fz. In order
to introduce them, let us consider the single-cavity system (26), governed by the master equation

dρ

dt
=

[
− i

2m~
P 2 − iωca†a+ iGXa†a, ρS

]
+ γ(n̄+ 1)Da[ρ] + γn̄Da† [ρ]. (53)

The addition of the second cavity or the membrane will be trivial, and the rules we will provide
can also be easily applied to the model including a beam-splitter interaction between the cavities,
as we will show later.
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3.3.1 General phase space correspondences

In the following we prove that each of the following fundamental terms in the master equation
correspond to very specific differential operators in the evolution equations for the phase-space
distribution:

aρ→
(
α− z − 1

2
∂α∗

)
Fz(α), (54a)

ρa→
(
α− z + 1

2
∂α∗

)
Fz(α), (54b)

ρa† →
(
α∗ − z − 1

2
∂α

)
Fz(α), (54c)

a†ρ→
(
α∗ − z + 1

2
∂α

)
Fz(α). (54d)

For example, consider the equation dρ
dt

= aρ. Then

∂tFz(α) =

∫
C

d2β

π2
eβ
∗α−α∗β tr{ρ̇Dz(β)} =

∫
C

d2β

π2
eβ
∗α−α∗β tr{aρDz(β)} (55)

=

∫
C

d2β

π2
eβ
∗α−α∗β tr{ρDz(β)a}

Now, noting that

∂β∗Dz(β) = ∂β∗
[
eβa

†−β∗aez
ββ∗
2

]
= ∂β∗

[
eβa

†
e−β

∗ae(z−1)ββ
∗

2

]
(56)

= eβa
†
(−a)e−β

∗ae(z−1)ββ
∗

2 + eβa
†
e−β

∗a z − 1

2
βe(z−1)ββ

∗
2 = Dz(β)

[
−a+

z − 1

2
β

]
⇓

Dz(β)a =

(
−∂β∗ +

z − 1

2
β

)
Dz(β),

we obtain

∂tFz(α) =

∫
C

d2β

π2
eβ
∗α−α∗β tr

{
ρ

(
−∂β∗ +

z − 1

2
β

)
Dz(β)

}
(57)

=

∫
C

d2β

π2
eβ
∗α−α∗β

(
−∂β∗ +

z − 1

2
β

)
tr{ρDz(β)}

=

∫
C

d2β

π2
tr{ρDz(β)}

(
∂β∗ +

z − 1

2
β

)
eβ
∗α−α∗β −

∫
C

∂β∗
[
eβ
∗α−α∗βtr{ρDz(β)}

]
,

where in the last step we have integrated by parts. The second term goes to zero if we assume
that the characteristic function χz(β) = tr{ρDz(β)} falls sufficiently fast to zero at the boundaries
of phase space. Therefore, we finally obtain the desired result by operating on the exponential of
the first term:

∂tFz(α) =

∫
C

d2β

π2
tr{ρDz(β)}

(
α− z − 1

2
∂α∗

)
eβ
∗α−α∗β =

(
α− z − 1

2
∂α∗

)
Fz(α), (58)

which is the result we wanted to prove.
It is interesting to consider the correspondence rules in terms of the quadratures. Let us define

them both in operator form, x̂ = a† + a and p̂ = i(a† − a), and stochastic form, x = α∗ + α and
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p = i(α∗ − α). From the later relations, it is easy to find the relations between the derivatives:{
∂x = 1

2
(∂α + ∂α∗)

∂p = i
2
(∂α − ∂α∗)

⇔

{
∂α = ∂x − i∂p
∂α∗ = ∂x + i∂p

(59)

leading to the correspondence rules

x̂ρ→ (x+ i∂p − z∂x)Fz(x, p), (60a)

ρx̂→ (x− i∂p − z∂x)Fz(x, p), (60b)

ρp̂→ (p+ i∂x − z∂p)Fz(x, p), (60c)

p̂ρ→ (p− i∂x − z∂p)Fz(x, p). (60d)

The set of equations (54) and (60) provide the general equivalence rules to go from the master
equation to the evolution equation in phase space. Next we apply them to the terms relevant for
our master equation.

3.3.2 Harmonic oscillator terms

Let’s take as a first example the harmonic oscillator term that appears in (53):[
−ia†a, ρ

]
→
[
∂α(iα) + ∂α∗(−iα∗)

]
Fz(α). (61)

There is no diffusion at all since there are no second order derivatives.

3.3.3 Lindblad terms

Let us now consider the Lindblad terms of (53), which we consider separately:

2aρa† − a†aρ− ρa†a→
[
∂α (α) + ∂α∗ (α∗)− (z − 1) ∂α∂α∗

]
Fz(α), (62a)

2a†ρa− aa†ρ− ρaa† →
[
∂α (−α) + ∂α∗ (−α∗) + (z + 1) ∂α∂α∗

]
Fz(α). (62b)

The two cases have positive semidefinite diffusion. In order to see this we have to move to a real
(quadrature) representation. Using the correspondences (59), we obtain

∂α∂α∗ = ∂2
x + ∂2

p ⇒ D = ∓2(z ∓ 1)

(
1 0
0 1

)
≥ 0 ∀z ∈ [−1, 1], (63)

which is indeed positive definite.
Adding up the the Lindblad terms with their corresponding prefactors as they appear in (26),

we get the correspondece

(n̄+ 1)Da[ρ] + n̄Da† [ρ]→
[
∂α(α) + ∂α∗(α

∗) + ∂α∂α∗
(
2n̄+ 1− z

)]
Fz(α). (64)

3.3.4 Free piston motion

Let’s analyse now the term in (26) accounting for the free motion of the piston, which is described
in terms of the position X̂ and momentum P̂ of its center of mass, satisfying [X̂, P̂ ] = i~.

In order to use the equivalence rules as defined before, we have to define annihilation and
creation operators for the piston. This means that we have to work in the basis of a harmonic
oscillator. Of course, the choice of oscillator is arbitrary. Specifically, the choice is effected by
fixing a single parameter such as the width of its ground-state wave function, x0. Once this choice
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is made, the relation between position and momentum of the piston and the annihilation and
creation operators of the oscillator (denoted by c and c†, respectively) is fixed to

X̂ = x0(ĉ+ ĉ†), P̂ = −ip0(ĉ− ĉ†), (65)

where p0 = ~/2x0. Let us point out that in the case of the membrane, the choice of x0 is fixed by
the frequency of the harmonic potential, unlike for the piston, which is truly arbitrary. We will
keep however the same notation for both cases, as it will be convenient later.

We can find the correspondence rules for position X and momentum P from those of the
quadratures (60), simply using the replacements x = X/x0 and p = P/p0, leading to

X̂ρ→
(
X + i

~
2
∂P − zx2

0∂X

)
Fz(R), (66a)

ρX̂ →
(
X − i~

2
∂P − zx2

0∂X

)
Fz(R), (66b)

ρP̂ →
(
P + i

~
2
∂X − zp2

0∂P

)
Fz(R), (66c)

p̂ρ→
(
P − i~

2
∂X − zp2

0∂P

)
Fz(R), (66d)

where we have collected the stochastic position and momentum in a single vector R = (X,P )T

for future convenience.
As an important remark, note that for z = 0 the correspondences do not depend on the choice

of harmonic oscillator basis, x0. This means that only in the Wigner representation one has a
unique way of defining evolution equations in the phase space spanned by position and momentum.

Using these correspondence rules, we then obtain[
− i

2m~
P̂ 2, ρ

]
→
[
∂X

(
−P
m

)
+ ∂X∂P

(
z
p2

0

m

)]
Fz(R). (67)

We have second order derivatives for z 6= 0. Moreover, in such case the matrix D is not positive
semidefinite, since it is given by

D = z
p2

0

m

(
0 1
1 0

)
, (68)

with eigenvalues ±zp2
0/m, one of which is negative for all z 6= 0.

Hence, in this case, we don’t obtain a Fokker-Planck equation in the P or Q representations. So
it seems that to describe the system with a set of stochastic Langevin equations we should use the
Wigner distribution for which the diffusion term vanishes (z = 0). However, as we show next, the
optomechanical interaction destroys the Fokker-Planck form for the Wigner distribution, unless
we introduce some approximations. Nevertheless, we will introduce in section 3.5 a generalization
of the Glauber-Sudarshan distribution called the positive P distribution, which will allow the
desired stochastic mapping without any approximations.
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3.3.5 Optomechanical interaction

Finally we analyse the term in (26) accounting for the optomechanical interaction. Combining
the correspondence rules (54) and (66), we get[
−iX̂a†a, ρ

]
= −i

[(
X + i

~
2
∂P − zx2

0∂X

)(
α∗ − z + 1

2
∂α

)(
α− z − 1

2
∂α∗

)
(69)

−
(
α− z + 1

2
∂α∗

)(
α∗ − z − 1

2
∂α

)(
X − i~

2
∂P − zx2

0∂X

)]
Fz(α,R)

=

[
∂α(−iαX) + ∂α∗(iα

∗X) + ∂P

(
−~|α|2 + ~

z − 1

2

)
+ ∂P∂α

(
~
z

2
α
)

+ ∂P∂α∗
(
~
z

2
α∗
)

+ ∂X∂α
(
izx2

0α
)
− ∂X∂α∗

(
izx2

0α
∗)

−~z
2 − 1

4
∂P∂α∂α∗

]
Fz(α,R).

We see that there is a term involving third order derivatives in the Wigner representation. As
mentioned above, we will have to neglect it if we want to get a Fokker-Planck equation. This is
what we will call the truncated Wigner approximation. In contrast, the P and Q distributions
provide only up to second order derivatives. Unfortunately, the corresponding diffusion matrix is
not positive semidefinite. In order to show this, we have to go to a real (quadrature) representation
again using (59). Specifically, we need to transform the following terms:

∂αα + ∂α∗α
∗ =

1

2
(∂x − i∂p)(x+ ip) +

1

2
(∂x + i∂p)(x− ip) = ∂xx+ ∂pp, (70a)

∂αα− ∂α∗α∗ =
1

2
(∂x − i∂p)(x+ ip)− 1

2
(∂x + i∂p)(x− ip) = i∂xp− i∂px. (70b)

The diffusion terms can now be written as

∂P∂α

(
~
z

2
α
)

+ ∂P∂α∗
(
~
z

2
α∗
)

+ ∂X∂α
(
izx2

0α
)

+ ∂X∂α∗
(
izx2

0α
∗) ,

= ∂P∂x

(
~
z

2
x
)

+ ∂P∂p

(
~
z

2
p
)

+ ∂X∂x
(
−zx2

0p
)

+ ∂X∂p
(
zx2

0x
)
, (71)

leading to the diffusion matrix

D = z


0 0 −x2

0p ~x
2

0 0 x2
0x ~p

2

−x2
0p x2

0x 0 0
~x

2
~p

2
0 0

 . (72)

The eigenvalues of this matrix are ±z ~
2

√
p2 + x2 and ±x2

0

√
p2 + x2, which show that, indeed, the

matrix is not positive semidefinite.
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3.3.6 Phase-space evolution equation for the single-mode case

Combining all terms together as they appear in the master equation (53), we obtain the equivalent
evolution equation for the phase-space representations:

∂tFz(α,R, t) =

[
∂α

(
(γ + iω − iGX)α

)
+ ∂α∗

(
(γ − iω + iGX)α∗

)
(73)

+ ∂X

(
−P
m

)
+ ∂P

(
− ~G

(
|α|2 +

1− z
2

))

+ ∂α∂α∗
(

(2n̄+ 1− z)γ
)

+ ∂X∂P

(
z
p2

0

m

)
+ ∂P∂α

(
~G

z

2
α
)

+ ∂P∂α∗
(
~G

z

2
α∗
)

+ ∂X∂α
(
iGzx2

0α
)
− ∂X∂α∗

(
iGzx2

0α
∗)

− ~G
z2 − 1

4
∂P∂α∂α∗

]
Fz(α,R, t).

3.3.7 Phase-space evolution equations for our most general models

We are now in conditions to present the phase-space evolution equations equivalent to our most
general models with two cavities (43) and (44). Apart from the ingredients introduced above, we
need to apply the correspondence rules to beam-splitter interaction term, which leads to[

−i(ab† + a†b), ρ
]
→
[
∂α(iβ) + ∂α∗(−iβ∗) + ∂β(iα) + ∂β∗(−iα∗)

]
Fz(α, β), (74)

where we have denoted by β the complex stochastic variable associated to the second cavity.
Taking this into account, the phase-space evolution equation associated to the most general

piston model (43) reads

∂tFz(α, β,R, t) =

[
∂α

(
(γ + iω − iGX)α + iλβ

)
+ ∂α∗

(
(γ − iω + iGX)α∗ − iλβ∗

)
(75)

+ ∂β

(
(γ + iω + iGX)α + iλα

)
+ ∂β∗

(
(γ − iω − iGX)α∗ − iλα∗

)
+ ∂X

(
−P
m

)
+ ∂P

(
− ~G

(
|α|2 − |β|2

))

+ ∂α∂α∗
(

(2n̄a + 1− z)γ
)

+ ∂β∂β∗
(

(2n̄b + 1− z)γ
)

+ ∂X∂P

(
z
p2

0

m

)
+ ∂P∂α

(
~G

z

2
α
)

+ ∂P∂α∗
(
~G

z

2
α∗
)

+ ∂X∂α
(
iGzx2

0α
)
− ∂X∂α∗

(
iGzx2

0α
∗)

− ∂P∂β
(
~G

z

2
β
)
− ∂P∂β∗

(
~G

z

2
β∗
)
− ∂X∂β

(
iGzx2

0β
)

+ ∂X∂β∗
(
iGzx2

0β
∗)

− ~G
z2 − 1

4
∂P∂α∂α∗ + ~G

z2 − 1

4
∂P∂β∂β∗

]
Fz(α, β,R, t).

On the other hand, the phase-space evolution equation for the most general membrane model
(44) is easily obtained from the previous one as follows. First, we replace the terms related to
the free piston motion by terms related to the mechanical harmonic oscillator Hamiltonian. This
amounts to ∂X (−P/m) + ∂X∂P (zp2

0/m) −→ ∂χ(iΩχ) + ∂χ∗(−iΩχ∗), where we denote by χ the
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complex stochastic variabble associated to the membrane. Second, we use the change of variables
and derivatives {

∂X = (∂χ + ∂χ∗)/2x0

∂P = i(∂χ − ∂χ∗)/2p0

,

{
X = x0(χ+ χ∗)

P = −ip0(χ− χ∗)
(76)

finally leading to

∂tFz(α, β, χ, t) =

[
∂α

((
γ + iω − ig(χ+ χ∗)

)
α + iλβ

)
+ ∂α∗

((
γ − iω + ig(χ+ χ∗)

)
α∗ − iλβ∗

)
+ ∂β

((
γ + iω + ig(χ+ χ∗)

)
α + iλα

)
+ ∂β∗

((
γ − iω − ig(χ+ χ∗)

)
α∗ − iλα∗

)
+ ∂χ

(
iΩχ− ig

(
|α|2 − |β|2

))
+ ∂χ∗

(
− iΩχ∗ + ig

(
|α|2 − |β|2

))
+ ∂α∂α∗

(
(2n̄a + 1− z)γ

)
+ ∂β∂β∗

(
(2n̄b + 1− z)γ

)
(77)

+ ∂χ∂α(izgα) + ∂χ∗∂α∗(−izgα∗) + ∂χ∂β(−izgβ) + ∂χ∗∂β∗(izgβ
∗)

− ig z
2 − 1

4
(∂χ − ∂χ∗)∂α∂α∗ + ig

z2 − 1

4
(∂χ − ∂χ∗)∂β∂β∗

]
Fz(α, β, χ, t).

3.4 Truncated Wigner

As we showed above, in order to obtain a positive semidefinite diffusion matrix we have to use
the Wigner distribution which contains third order derivatives. Neglecting those terms, gives
a Fokker Planck equation which is the truncated Wigner evolution equation. There is strong
evidence pointing out that this is the same as considering a sort of classical limit, with quantum
noise replaced by a source of classical noise that tries to mimic quantum uncertainties, a scenario
known as stochastic electrodynamics [13]. We will see this correspondence explicitly in the form
of our final stochastic equations. Let us introduce this approach by considering the single-cavity
model (73). Setting z = 0 in Eq (73) and truncating up to second order derivatives yields

∂tW (α,R, t) =

[
∂α

(
(γ + iω − iGX)α

)
+ ∂α∗

(
(γ − iω + iGX)α∗

)
(78)

+ ∂X (−P/m) + ∂P

(
− ~G

(
|α|2 + 1/2

) )
+ ∂α∂α∗

(
γ(2n̄+ 1)

)]
W (α,R, t).

Keeping the complex representation (see below for a proof of why we can do that), using equation
(63) and ordering the variables as (α, α∗, X, P ), the diffusion matrix reads

D = (2n̄+ 1)γ


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (79)

leading to a noise matrix

B =
√

(2n̄+ 1)γ


1 i
1 −i
0 0
0 0

 . (80)
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Hence, using (50) we find the system of stochastic equations

α̇ = −(γ + iωc − iGX)α +
√

(2n̄+ 1)γξ(t), (81a)

Ẋ = P/m, (81b)

Ṗ = ~G
(
|α|2 + 1/2

)
, (81c)

where ξ(t) is a complex, white, Gaussian noise, with ξ(t) = 0 = ξ(t)ξ(t′) and ξ(t)ξ∗(t′) = δ(t− t′).
Note here that for γ = 0 the equations are fully deterministic. On the other hand, a complex

additive noise term is what one expects from classical thermal noise. Hence, this shows that,
as mentioned above, these equations are very close to the classical limit. There are a couple of
subtle differences though. First, because of the symmetric order of the Wigner representation,
the equations have small differences with respect to the fully classical ones, for example the factor
1/2 in the last equation. On the other hand, even when the heat bath is at zero temperature
(n̄ = 0), the noise term is different than zero. This comes from the fact that the truncated Wigner
accounts for the quantum vacuum fluctuations, which are present even at zero temperature. Note
however that all these differences are negligible in the limit |α|2, n̄� 1, which one may regard as
the true classical limit.

Let us now discuss why we can stay with the complex variables {α, α∗} when writing the
stochastic equations, instead of moving to the quadrature representation {x, p}, as we did in the
previous section when analyzing the positivity of the diffusion matrix. To this aim, let us first
define the matrix that connects these representations:(

α
α∗

)
︸ ︷︷ ︸
α

=
1

2

(
1 1
i −i

)
︸ ︷︷ ︸

R

(
x
p

)
︸︷︷︸

r

. (82)

Note that this matrix also allows us to connect the derivatives as ∂ = RT ∂̄, where we have defined
∂ = (∂x, ∂p)

T and ∂̄ = (∂α, ∂α∗)
T . Plugging these relations into the real Fokker-Planck equation

(we show only the differential operator),

−
∑
j

∂jAj +
1

2

∑
jk

∂j∂kDjk = −
∑
m

∂̄m
∑
j

RmjAj︸ ︷︷ ︸
Ām

+
1

2

∑
mn

∂̄m∂̄n
∑
jk

RmjRnkDjk︸ ︷︷ ︸
D̄mn

, (83)

provides the relation between the drift vector and the diffusion matrix in the real and complex
representations:

Ā = RA, D̄ = RDRT . (84)

Since R is not orthogonal (RRT 6= I), it is clear that the eigenvalues of D̄ and D are different.
On the other hand, given a noise matrix for the real case, D = BBT , the noise matrix B̄ = RB
decomposes the complex diffusion matrix, since D̄ = RDRT = RBBTRT = B̄B̄T . Moreover,
given the stochastic equations in real form, ṙ = A + Bη(t), the complex form reads α̇ = Rṙ =
RA +RBη(t). This shows that the complex drift vector Ā and noise matrix B̄ defined above are
indeed the ones appearing in the complex form of the stochastic equations.

Let us finally write down the truncated-Wigner stochastic equations associated to the general
two-cavity models (75) and (77). Based on the previous derivations, it is straightforward to write
the following stochastic equation associated to the piston model (75):

α̇ = −(γ + iωc − iGX)α− iλβ +
√

(2n̄a + 1)γξa(t), (85a)

β̇ = −(γ + iωc + iGX)β − iλα +
√

(2n̄b + 1)γξb(t), (85b)

Ẋ = P/m, (85c)

Ṗ = ~G
(
|α|2 − |β|2

)
, (85d)
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where the noises are complex, white, Gaussian, and independent, hence obeying the following
statistics:

ξj(t) = 0 = ξj(t)ξl(t′), ξj(t)ξ∗l (t
′) = δjlδ(t− t′). (86)

Similarly, for the membrane model (77) we obtain

α̇ = −
(
γ + iωc − ig(χ+ χ∗)

)
α− iλβ +

√
(2n̄a + 1)γξa(t), (87a)

β̇ = −
(
γ + iωc + ig(χ+ χ∗)

)
β − iλα +

√
(2n̄b + 1)γξb(t), (87b)

χ̇ = −iΩχ+ ig
(
|α|2 − |β|2

)
. (87c)

3.5 Positve P representation

The positive P distribution is a generalization of the Glauber-Sudarshan P distribution [7, 12].
Let us introduce it through the example of the single-cavity model (73). We will generalize the
result to our models of interest (75) and (77) at the end of the section.

Remember that the good thing of the P distribution is that we didn’t get third order deriva-
tives, see (73) with z = 1. It had a problem though: the diffusion matrix is not positive semidefi-
nite. Anyhow, suppose that we ignore the negativity of the diffusion matrix and we try to find a
noise matrix satisfying the required diffusion matrix decomposition, D = BBT . Indeed, it is possi-
ble to find such a noise matrix, but the remaining equations would not lead to complex-conjugate
trajectories for α and α∗, signaling that something went wrong. This, on the other hand, can be
interpreted as the oscillator trying to go out of its true phase space, into an extended one, where
α∗ is not the conjugate of α. The positive P distribution formally generates a representation
where the oscillator is allowed to move in such an extended phase space. The drawback is that
this means using two independent complex variables for each mode, instead of one. However, we
will see that the payout is big: now we will be able to find stochastic equations representing the
quantum dynamics without any approximations.

The rigorous definition of the positive P distribution in terms of a quantum characteristic
function, as well as the corresponding correspondence rules to find phase-space equations from
master equations, can be consulted in [6]. For our purposes, it is enough to point out that the
phase-space equation can be retrieved from the Glauber-Sudarshan one simply by replacing α∗ by
a complex variable independent of α, which we usually denote by α+.

Here, we also need to extend the phase space in the mechanical mode. Using the correspon-
dences (76), the complex form of the evolution equation (73) for the Glauber-Sudarshan case
(z = 1) takes the form

∂tP (α, χ, t) =

[
∂α

((
γ + iωc − iGx0(χ+ χ∗)

)
α
)

+ ∂α∗
((
γ − iωc + iGx0(χ+ χ∗)

)
α∗
)

(88)

+ (∂χ + ∂χ∗)

(
ip0

2x0m
(χ− χ∗)

)
+ (∂χ − ∂χ∗)

(
−i~G
2p0

|α|2
)

+ (∂χ + ∂χ∗) (∂χ − ∂χ∗)
(

ip0

4mx0

)
+ ∂α∂α∗(2n̄γ) + (∂χ − ∂χ∗) (∂α + ∂α∗)

(
i~G
4p0

α

)
+ (∂χ + ∂χ∗) (∂α − ∂α∗)

(
iGx0

2
α

)]
P (α, χ, t).

From this equation, the evolution equation of the positive P distribution is found simply by
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replacing χ∗ and α∗ by the independent complex variables χ+ and α+, respectively, obtaining

∂tP
+(α, t) =

[
∂α

((
γ + iωc − iGx0(χ+ χ+)

)
α
)

︸ ︷︷ ︸
−Aα

+ ∂α+

((
γ − iωc + iGx0(χ+ χ+)

)
α+
)

︸ ︷︷ ︸
−Aα+

(89)

+ ∂χ

(
ip2

0

m~
(
χ− χ+

)
− iGx0α

+α

)
︸ ︷︷ ︸

−Aχ

+ ∂χ+

(
ip2

0

m~
(
χ− χ+

)
+ iGx0α

+α

)
︸ ︷︷ ︸

−Aχ+

+ ∂2
χ

(
ip2

0

2m~

)
+ ∂2

χ+

(
−ip2

0

2m~

)
+ ∂α∂α+(2n̄γ) + ∂χ∂α(iGx0α) + ∂χ+∂α+(−iGx0α

+)

]
P+(α, t),

where we have gathered all the complex stochastic variables into α = (α, α+, χ, χ+)T and denoted
by P+ the positive P distribution. Note that the complex-conjugate of these variables do not
appear anywhere in the equation or the distribution, and therefore, everything is analytic (in the
complex sense) in this equation. This means that we can choose the direction of derivation in the
complex plane at will (e.g., ∂α = ∂Re{α} = −i∂Im{α}), and it is possible to show [7, 12, 14] that
there is always a choice that turns this equation into a true Fokker-Planck equation. Therefore,
P+ stays a probability density function if it is so initially (we will show later in Section 4.3.2 that
it is indeed a true probability density function for all quantum state). This is the virtue of the
positive P representation.

Let’s proceed now to find the corresponding set of stochastic equations. Ordering the variables
as in α, the (complex) diffusion matrix reads

D =


0 2n̄γ iGx0α 0

2n̄γ 0 0 −iGx0α
+

iGx0α 0 ip2
0/m~ 0

0 −iGx0α
+ 0 −ip2

0/m~

 . (90)

Finding a 4×4 noise matrix that satisfies D = BBT is not easy. We use the following trick. First,
we write the diffusion matrix as the sum of two matrices, D = D1 +D2, with

D1 =


0 2n̄γ 0 0

2n̄γ 0 0 0
0 0 ip2

0/m~ 0
0 0 0 −ip2

0/m~

 , (91a)

D2 =


0 0 iGx0α 0
0 0 0 −iGx0α

+

iGx0α 0 0 0
0 −iGx0α

+ 0 0

 . (91b)

Each of these matrices is easy to decompose as D1 = B1B
T
1 and D2 = B2B

T
2 , specifically with

B1 =


√
n̄γ i

√
n̄γ 0 0√

n̄γ −i
√
n̄γ 0 0

0 0
√
ip2

0/m~ 0

0 0 0
√
−ip2

0/m~

 , (92a)

B2 =

√
iGx0

2


i
√
α
√
α 0 0

0 0 −
√
α+ i

√
α+

−i
√
α
√
α 0 0

0 0
√
α+ i

√
α+

 . (92b)
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Then if we use a noise matrix B = (B1 B2) with dimensions 4×8, we get the desired decomposition

BBT = (B1 B2)

(
BT

1

BT
2

)
= B1B

T
1 +B2B

T
2 = D1 +D2 = D.

The fact that the ‘internal’ dimension of B is larger than the dimension of D, means that the
stochastic representation will be more expensive (in terms of number of noises required for the
simulation) than it could be.

The system of stochastic equations equivalent to the Fokker-Planck equation (89) is then given
by:

α̇
4×1

= A(α)
4×1

+B(α)
4×8

η(t)
8×1

, (93)

where the components of η(t) are real, white, independent, Gaussian noises satisfying the statistics
(51). It is interesting to note at this point that the positive P distribution allows to evaluate ex-
pectation values in normal order, similarly to the Glauber-Sudarshan representation. For example,
considering a single oscillator for simplicity, we have

〈a†man〉 =

∫
C2

d2αd2α+P+(α, α+)α+mαn = α+mαn. (94)

Let us now write down the explicitly form of the stochastic equations. We start by identifying
the form of the noise terms:

α̇ = Aα +
√
n̄γ
(
η1(t) + iη2(t)

)
+
√
iGx0α/2

(
iη5(t) + η6(t)

)
, (95a)

α̇+ = Aα+ +
√
n̄γ
(
η1(t)− iη2(t)

)
+
√
iGx0α+/2

(
− η7(t) + iη8(t)

)
, (95b)

χ̇ = Aχ +
√
ip2

0/m~ η3(t) +
√
iGx0α/2

(
− iη5(t) + η6(t)

)
, (95c)

χ̇+ = Aχ+ +
√
−ip2

0/m~ η4(t) +
√
iGx0α+/2

(
η7(t) + iη8(t)

)
. (95d)

Instead of working with 8 real noises, it feels then natural to define 4 independent complex noises,

ξ1(t) =
(
η1(t) + iη2(t)

)
/
√

2, (96a)

ξ2(t) =
(
η3(t) + iη4(t)

)√
2, (96b)

ξ3(t) =
(
η6(t) + iη5(t)

)√
2, (96c)

ξ4(t) =
(
η8(t) + iη7(t)

)√
2, (96d)

which satisfy the statistics (125). Let us also define position and momentum variables defined by

X = x0(χ+ χ+), (97a)

P = −ip0(χ− χ+), (97b)

which we remark are in general not the real position and momentum of the piston, but complex
variables (χ and χ+ are not complex-conjugate) living in the extended positive-P phase space.
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The final system of stochastic equations associated to the master equation (26) is then given
by

α̇ = −(γ + iωc − iGX)α +
√

2γn̄ξ1(t) +
√
iGx0αξ3(t), (98a)

α̇+ = −(γ − iωc + iGX)α+ +
√

2γn̄ξ∗1(t) +
√
−iGx0α+ξ4(t), (98b)

Ẋ =
P

m
+

√
i~
2m

ξ2(t) +
√
iGx3

0

(
i
√
α+ξ∗4(t) +

√
αξ∗3(t)

)
, (98c)

Ṗ = ~Gα+α− i
√

2ip4
0

m~
ξ∗2(t) +

√
−iGx0p2

0

(
i
√
α+ξ∗4(t)−

√
αξ∗3(t)

)
. (98d)

Note that, as mentioned above, even if we set (α, χ) and (α+, χ+) complex conjugate initially, the
equations will quickly destroy those relations. This is easy to see, for example, by realizing that
the noise terms of α̇ and α̇+ are not complex-conjugate.

Note that each noise term comes from a well-defined physical process that can be identified from
the nature of the coefficients: ξ1(t) is the thermal noise entering the cavity from the environment,
while ξ2(t) and ξ3,4(t) are associated to the free motion of the piston and the optomechanical
interaction, respectively.

Let us finally provide the positive-P stochastic equations associated to the most general model
(75) and (77). The generalization is straightforward. In the case of the piston (75) we get:

α̇ = −(γ + iωc − iGX)α− iλβ +
√

2γn̄aξa(t) +
√
iGx0αξ1(t), (99a)

α̇+ = −(γ − iωc + iGX)α+ + iλβ+ +
√

2γn̄aξ
∗
a(t) +

√
−iGx0α+ξ2(t), (99b)

β̇ = −(γ + iωc + iGX)β − iλα +
√

2γn̄bξb(t) +
√
−iGx0βξ3(t), (99c)

β̇+ = −(γ − iωc − iGX)β+ + iλα+ +
√

2γn̄bξ
∗
b (t) +

√
iGx0β+ξ4(t), (99d)

Ẋ =
P

m
+

√
i~
2m

ξm(t) +
√
iGx3

0

(
i
√
α+ξ∗2(t) +

√
αξ∗1(t) + i

√
−β+ξ∗4(t) +

√
−βξ∗3(t)

)
, (99e)

Ṗ = ~G(α+α− β+β)− i
√

2ip4
0

m~
ξ∗m(t) (99f)

+
√
−iGx0p2

0

(
i
√
α+ξ∗2(t)−

√
αξ∗1(t) + i

√
−β+ξ∗4(t)−

√
−βξ∗3(t)

)
,

where all the noises are independent, complex, white, and Gaussian.
In the case of the membrane, replacing (α∗, β∗, χ∗) by (α+, β+, χ+) in (77), we obtain

∂tP
+(α, t) =

[
∂α

((
γ + iω − ig(χ+ χ+)

)
α + iλβ

)
+ ∂α+

((
γ − iω + ig(χ+ χ+)

)
α+ − iλβ+

)
+ ∂β

((
γ + iω + ig(χ+ χ+)

)
α + iλα

)
+ ∂β+

((
γ − iω − ig(χ+ χ+)

)
α+ − iλα+

)
+ ∂χ

(
iΩχ− ig

(
α+α− ββ+

))
+ ∂χ+

(
− iΩχ+ + ig

(
α+α− ββ+

))
(100)

+ ∂α∂α+

(
2n̄aγ

)
+ ∂β∂β+

(
2n̄bγ

)
+ ∂χ∂α(igα) + ∂χ+∂α+(−igα+)

+ ∂χ∂β(−igβ) + ∂χ+∂β+(igβ+)

]
P+(α, t),

where we have again collected in a single vector α = (α, α+, β, β+, χ, χ+) all the complex stochastic
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variables. The diffusion matrix can be written in this case as D = D1 +D2 +D3, with

D1 =


0 2n̄aγ 0 0 0 0

2n̄aγ 0 0 0 0 0
0 0 0 2n̄bγ 0 0
0 0 2n̄bγ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (101a)

D2 =


0 0 0 0 igα 0
0 0 0 0 0 −igα+

0 0 0 0 0 0
0 0 0 0 0 0
igα 0 0 0 0 0
0 −igα+ 0 0 0 0

 , (101b)

D3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −igβ 0
0 0 0 0 0 igβ+

0 0 −igβ 0 0 0
0 0 0 igβ+ 0 0

 . (101c)

Each of these matrices can be easily decomposed as Dj = BjB
T
j similarly to what we did above:

B1 =



√
n̄aγ i

√
n̄aγ 0 0√

n̄aγ −i
√
n̄aγ 0 0

0 0
√
n̄bγ i

√
n̄bγ

0 0
√
n̄bγ −i

√
n̄bγ

0 0 0 0
0 0 0 0

 , (102a)

B2 =

√
ig

2



i
√
α
√
α 0 0

0 0 −
√
α+ i

√
α+

0 0 0 0
0 0 0 0

−i
√
α
√
α 0 0

0 0
√
α+ i

√
α+

 , (102b)

B3 =

√
−ig

2


0 0 0 0
0 0 0 0

i
√
β
√
β 0 0

0 0 −
√
β+ i

√
β+

−i
√
β
√
β 0 0

0 0
√
β+ i

√
β+

 . (102c)

The total noise matrix is then built as B = (B1 B2 B3), leading to the stochastic equations

α̇ = −
(
γ + iωc − ig(χ+ χ+)

)
α− iλβ +

√
2n̄aγξa(t) +

√
igαξ1(t), (103a)

α̇+ = −
(
γ − iωc + ig(χ+ χ+)

)
α+ + iλβ+ +

√
2n̄aγξ

∗
a(t) +

√
−igα+ξ2(t), (103b)

β̇ = −
(
γ + iωc + ig(χ+ χ+)

)
β − iλα +

√
2n̄bγξb(t) +

√
−igβξ3(t), (103c)

β̇+ = −
(
γ − iωc − ig(χ+ χ+)

)
β+ + iλα+ +

√
2n̄bγξ

∗
b (t) +

√
igβ+ξ4(t), (103d)

χ̇ = −iΩχ+ ig
(
α+α− ββ+

)
+
√
igαξ∗1(t) +

√
−igβξ∗3(t), (103e)

χ̇+ = iΩχ+ − ig
(
α+α− ββ+

)
+
√
−igα+ξ∗2(t) +

√
igβ+ξ∗4(t). (103f)
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3.6 Relation between the covariance matrix and stochastic averages

In the previous sections we have found the stochastic equations that we will use to simulate the
dynamics of the system numerically. Reconstructing the full state (density operator) from the
stochastically sampled variables is in most situations impossible. Instead, we have to focus on the
evaluation of expectation values of specific observables. For Gaussian states, the first and second
order moments of the basic bosonic operators of the system would indeed suffice to characterize
the full state [4, 5]. Even for non-Gaussian states, these lowest order moments are usually the most
interesting ones, as they are related to the expectation value and uncertainty of the electromagnetic
field or the mechanical variables. Higher-order moments can be evaluated to check how much the
state differs from a Gaussian one. In this section we explain how to find these important first
and second order moments from the different phase-space stochastic representations that we have
developed (truncated Wigner in Section 3.4 and positive P in Section 3.5).

3.6.1 The covariance matrix

Let us start with some definitions (for clarity, in this section we bring back the ‘hat’ notation
for operators so we don’t confuse them with their associated stochastic variables). We define the
vector of quadratures r̂ = (x̂a, p̂a, x̂b, p̂b, x̂c, p̂c), where x̂m = m̂+ m̂† and p̂m = −i(m̂− m̂†). Note
that in the piston case, we have x̂c = X̂/x0 and p̂c = P̂ /p0. The first and second order moments of
these modes are then compactly expressed through the mean vector d and the covariance matrix
V , with elements

dj = 〈r̂j〉, Vjl =
1

2
〈δr̂jδr̂l + δr̂lδr̂j〉, (104)

where given any operator Â we denote its fluctuations around the mean by δÂ = Â− 〈Â〉.
Sometimes it is useful to work with a different representation for the moments, a complex one

defined through annihilation and creation operators. Let us introduce it now as well. Define the
vector operator α̂ = (â, â†, b̂, b̂†, ĉ, ĉ†), where the relations m̂ = (x̂m + ip̂m)/2 with the quadratures
hold. Then, we define the complex mean vector ∆ and covariance matrix Λ, with elements

∆j = 〈α̂j〉, Λjl = 〈δα̂jδα̂l〉, (105)

Our goal now is to connect these expressions to stochastic averages. Because the Wigner
and positive P representations correspond to different orderings of quantum expectation values
(symmetric and normal order, respectively), we have to be careful.

Before we proceed, it is useful to remark that the commutation relations can be written in the
compact form

[r̂j, r̂l] = 2iΩjl, [α̂j, α̂l] = Ωjl, (106)

where we have defined the so-called symplectic form

Ω =

w 0 0
0 w 0
0 0 w

 , with w =

(
0 1
−1 0

)
, (107)

and 0 is a matrix of zeros.

3.6.2 Connection with Wigner stochastic averages

Let us define the vector of stochastic quadratures r = (xα, pα, xβ, pβ, xχ, pχ), with xµ = µ+µ∗ and
pµ = −i(µ− µ∗) within the Wigner representation. From it, we define the stochastic mean vector
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d(W ) and covariance matrix V (W ) with elements

d
(W )
j = rj, V

(W )
jl = δrjδrl, (108)

where for any stochastic variable A we define a corresponding fluctuation δA = A − A. Now,
recalling that within the Wigner representation stochastic averages correspond to symmetrically
ordered quantum expectation values, and noting that expressions (104) are already in symmetric
order, we then get the simple relation

d = d(W ), V = V (W ). (109)

Let us now define the complex vector α = (α, α∗, β, β∗, χ, χ∗), and the corresponding complex
stochastic mean vector ∆(W ) and covariance matrix Λ(W ), with elements

∆
(W )
j = αj, Λ

(W )
jl = δαjδαl. (110)

In order to relate these with (105), we first need to write the covariance matrix in symmetric
order. This is easy using the commutation relations (106), specifically

Λjl = 〈δα̂jδα̂l〉 =
1

2
(〈δα̂jδα̂l〉+ 〈δα̂lδα̂j〉+ Ωjl) = δαjδαl + Ωjl/2. (111)

Hence, we obtain the relations

∆ = ∆(W ), Λ = Λ(W ) +
Ω

2
. (112)

As interesting specific relations, note that (109) tells us that the variance of any quadrature is
directly related to the corresponding stochastic expression, 〈δx̂2

a〉 = δx2
α, while (112) shows that

the mean photon numbers are related by a 1/2 shift, 〈δâ†δâ〉 = δα∗δα− 1/2.

3.6.3 Connection with positive-P stochastic averages

Let’s proceed similarly now with the stochastic variables associated to the positive P represen-
tation. We define again the vector of stochastic quadratures r = (xα, pα, xβ, pβ, xχ, pχ), but now
with xµ = µ + µ+ and pµ = −i(µ− µ+). From it, we define the stochastic mean vector d(P ) and
covariance matrix V (P ) with elements

d
(P )
j = rj, V

(P )
jl = δrjδrl. (113)

Before connecting these with (104), we need to bring the covariance matrix to normal order. This
is very easy, because in the expression of the covariance matrix only terms of the form ââ† = 1+â†â
(and similarly for the other modes) are not in normal order. But these appear only in the diagonal,
e.g., x̂2

a = â2 + â†2 + â†â + ââ† = 1+ : x̂2
a :, where the notation ‘: :’ means arranging in normal

order as if operators would commute, e.g., : ââ† : = â†â. Hence, we find the relations

d = d(P ), V = 1 + V (P ), (114)

where 1 is the identity matrix.
We define next the complex vector α = (α, α+, β, β+, χ, χ+), and the corresponding complex

stochastic mean vector ∆(P ) and covariance matrix Λ(P ), with elements

∆
(P )
j = αj, Λ

(P )
jl = δαjδαl. (115)

In order to relate these with (105), we first need to write the complex covariance matrix in normal
order. Note that only the upper triangular of Λ contains terms that are not in normal order.
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Specifically, it contains antinormal terms such as ââ† = â†â + 1 (and similarly for the other
modes). Defining the matrix Υ containing only the upper triangular of Ω and zeros everywhere
else, we then obtain

∆ = ∆(P ), Λ = Λ(P ) + Υ, (116)

with

Υ =

s 0 0
0 s 0
0 0 s

 , with s =

(
0 1
0 0

)
. (117)

Equations (109), (112), (114), and (116) provide us with the relations we need to evaluate
any desired quantum moments up to second order from the corresponding phase-space stochastic
representation.
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4 Benchmarking stochastic simulations: isolated systems

In the previous chapters we introduced the tools and the mathematical description of the au-
tonomous thermodynamical machines we are interested in: two cavities interacting with heat
baths, and coupled to a mechanical element that can be a piston or a membrane. In both cases we
have developed stochastic Langevin equations that should allow us to sample both the classical
and quantum dynamics of the system, see, respectively, (85) and (99) for the piston, or (87) and
(103) for the membrane. In order to benchmark the simulation of these stochastic equations, we
would like to have some analytic results to which we can compare to. As we show in Section
4.2, this is indeed possible if we forget about the environments and the beam splitter, setting
γ = 0 = λ. Then, in Section 4.3 we solve numerically the corresponding stochastic equations, and
compare with the exact results. This will also provide the first opportunity to analyze the effects
of entanglement by comparing separable with entangled initial conditions.

4.1 Dimensionless equations

Before performing numerical simulations, it is important to identify the relevant free parameters
of the equations. In this section we introduce some variable changes that will allow us to find
these easily. For starters, we move to a picture rotating at the cavity frequency for the optical
variables, that is, we make the variable change ᾱ = eiωctα, and similarly for the rest of optical
variables. Since the noises are delta-correlated (white), this change does not affect the form of the
equations, except for now the terms with ωc go away. Moreover, in order to ease the notation, we
don’t add the ‘bar’ in the variables.

4.1.1 Classical limit: dimensionless truncated Wigner equations

In the absence of coupling to the environment (γ = 0), the stochastic equations of the piston
model within the truncated Wigner representation (85) read

α̇ = iGXα− iλβ, (118a)

β̇ = −iGXβ − iλα, (118b)

Ẋ = P/m, (118c)

Ṗ = ~G
(
|α|2 − |β|2

)
. (118d)

In order to make the equations dimensionless, we simply introduce arbitrary length scales for
position and momentum, x0 and p0 = ~/2x0, and then define the mechanical quadratures x = X/x0

and p = P/p0. Note these quadratures were called xχ and pχ in Section 3.6, but here we drop the
subindex χ since we don’t need to distinguish them from the optical quadratures. A comment on
x0: while it is arbitrary, in our case it will be chosen to match the width of the initial wavefunction
of the piston, as we will see later. Introducing this change, we get

α̇ = iGx0xα− iλβ, (119a)

β̇ = −iGx0xβ − iλα, (119b)

ẋ = (p0/mx0)p, (119c)

ṗ = ~Gp0

(
|α|2 − |β|2

)
. (119d)
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Hence, defining the frequency Ω = p0/mx0 = ~/2mx2
0 and the optomechanical coupling rate

g = Gx0, we get

α̇ = igxα− iλβ, (120a)

β̇ = −igxβ − iλα, (120b)

ẋ = Ωp, (120c)

ṗ = 2g
(
|α|2 − |β|2

)
. (120d)

Finally, we see that defining a new dimensionless time t̄ = Ωt, and normalizing all the rates to Ω,
that is, ḡ = g/Ω and λ̄ = λ/Ω, we obtain the equations

α̇ = iḡxα− iλ̄β, (121a)

β̇ = −iḡxβ − iλ̄α, (121b)

ẋ = p, (121c)

ṗ = 2ḡ
(
|α|2 − |β|2

)
, (121d)

where now the ‘dot’ must be understood as derivative with respect to t̄. These equations depend
only on two parameters, the normalized optomechanical interaction ḡ and beam-splitter coupling
λ̄. Of course, we will also have any parameters that may come from the initial condition, e.g.,
the width of the piston’s wavefunction, the photon number of the cavities if we consider thermal
states, or the entanglement if we consider entangled states, etc. Later we will provide specific
examples.

Note that we could even remove ḡ from the equations by normalizing all the stochastic variables
to it. However, we prefer not to do this, because this is specific to the truncated Wigner, and
moreover makes the limit ḡ → 0 rather obscure.

Applying the same changes to the membrane equations (87), we obtain

α̇ = iḡ(χ+ χ∗)α− iλ̄β, (122a)

β̇ = −ig(χ+ χ∗)β − iλ̄α, (122b)

χ̇ = −iχ+ iḡ
(
|α|2 − |β|2

)
, (122c)

which, as it turns out, depend on exactly the same parameters as (121).

4.1.2 Quantum dynamics: postive P equations

Let us now do a similar derivation for the stochastic equations associated with the positive P
representation, which should capture the full quantum dynamics. As in the previous section, let
us start with the piston equations (99). In terms of the mechanical quadratures x = X/x0 and
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p = P/p0, which we remind are complex in this representation, the equations read

α̇ = iGx0xα− iλβ +
√
iGx0αξ1(t), (123a)

α̇+ = −iGx0xα
+ + iλβ+ +

√
−iGx0α+ξ2(t), (123b)

β̇ = −iGx0xβ − iλα +
√
−iGx0βξ3(t), (123c)

β̇+ = iGx0xβ
+ + iλα+ +

√
iGx0β+ξ4(t), (123d)

ẋ =

(
p0

mx0

)
p+

√
i~

2mx2
0

ξm(t), (123e)

+
√
iGx0

(
i
√
α+ξ∗2(t) +

√
αξ∗1(t) + i

√
−β+ξ∗4(t) +

√
−βξ∗3(t)

)
,

ṗ =
~G
p0

(α+α− β+β)− i
√

2ip2
0

m~
ξ∗m(t) (123f)

+
√
−iGx0

(
i
√
α+ξ∗2(t)−

√
αξ∗1(t) + i

√
−β+ξ∗4(t)−

√
−βξ∗3(t)

)
.

Using x0p0 = ~/2, we see that the frequency Ω = ~/2mx2
0 appears rather naturally in the equa-

tions, together with the optomechanical coupling rate g = Gx0. In terms of these, the equations
read

α̇ = igxα− iλβ +
√
igαξ1(t), (124a)

α̇+ = −igxα+ + iλβ+ +
√
−igα+ξ2(t), (124b)

β̇ = −igxβ − iλα +
√
−igβξ3(t), (124c)

β̇+ = igxβ+ + iλα+ +
√
igβ+ξ4(t), (124d)

ẋ = Ωp+
√
iΩξm(t) +

√
ig
(
i
√
α+ξ∗2(t) +

√
αξ∗1(t) + i

√
−β+ξ∗4(t) +

√
−βξ∗3(t)

)
, (124e)

ṗ = 2g(α+α− β+β)− i
√
iΩξ∗m(t) (124f)

+
√
−ig

(
i
√
α+ξ∗2(t)−

√
αξ∗1(t) + i

√
−β+ξ∗4(t)−

√
−βξ∗3(t)

)
.

As before, we can use Ω to define a dimensionless time t̄ = Ωt. However, in this case it becomes
then convenient to define new noises ξ̄(t̄) = ξ(t)/

√
Ω, so that the two-time correlators remain the

usual ones (125), but now with respect to the dimensionless time,

ξ̄j(t̄)ξ̄l(t̄′) = 0, ξ̄j(t̄)ξ̄∗l (t̄
′) = δjlδ(t̄− t̄′). (125)

In the following, we remove the hats from the noises though, in order to ease the notation. With
this change, the final dimensionless equations for the piston read

α̇ = iḡxα− iλ̄β +
√
iḡαξ1(t̄), (126a)

α̇+ = −iḡxα+ + iλ̄β+ +
√
−iḡα+ξ2(t̄), (126b)

β̇ = −iḡxβ − iλ̄α +
√
−iḡβξ3(t̄), (126c)

β̇+ = iḡxβ+ + iλ̄α+ +
√
iḡβ+ξ4(t̄), (126d)

ẋ = p+
√
iξm(t̄) +

√
iḡ
(
i
√
α+ξ∗2(t̄) +

√
αξ∗1(t̄) + i

√
−β+ξ∗4(t̄) +

√
−βξ∗3(t̄)

)
, (126e)

ṗ = 2ḡ(α+α− β+β)− i
√
iξ∗m(t̄) (126f)

+
√
−ig

(
i
√
α+ξ∗2(t̄)−

√
αξ∗1(t̄) + i

√
−β+ξ∗4(t̄)−

√
−βξ∗3(t̄)

)
.
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Remarkably, even though in this case we have many more (noise) terms, these equations depend
on the same dimensionless parameters as their truncated Wigner counterparts, ḡ = g/Ω and
λ̄ = λ/Ω.

We can apply the same changes to the membrane equations (103), obtaining

α̇ = iḡ(χ+ χ+)α− iλ̄β +
√
iḡαξ1(t̄), (127a)

α̇+ = −iḡ(χ+ χ+)α+ + iλ̄β+ +
√
−iḡα+ξ2(t̄), (127b)

β̇ = −iḡ(χ+ χ+)β − iλ̄α +
√
−iḡβξ3(t̄), (127c)

β̇+ = −iḡ(χ+ χ+)β+ + iλ̄α+ +
√
iḡβ+ξ4(t̄), (127d)

χ̇ = −iχ+ iḡ
(
α+α− ββ+

)
+
√
iḡαξ∗1(t̄) +

√
−iḡβξ∗3(t̄), (127e)

χ̇+ = iχ+ − iḡ
(
α+α− ββ+

)
+
√
−iḡα+ξ∗2(t̄) +

√
iḡβ+ξ∗4(t̄). (127f)

Unlike in the truncated Wigner case, we see that now normalizing the stochastic variables to ḡ
doesn’t remove the latter from the equations, as the noise terms would get a factor ḡ.

4.2 Analytic solutions for λ = 0

We now proceed to the derivation of some analytic solutions. This can only be done in the absence
of beam-splitter coupling between the cavities, so we set λ = 0. Also, for the first time in the thesis,
we will work in the Heisenberg picture. The analytic expressions for X̂(t), P̂ (t), â(t), and b̂(t)
will allow us to find any desired observables, and use them to benchmark the stochastic equations
that we have developed. Note that in the reminder of the section we remove hats from operators,
since being in the Heisenberg picture, no confusion is possible (we always refer to operators).

4.2.1 The piston model

The Hamiltonian for the piston model can be written as

H =
P 2

2m
− ~GX( a†a︸︷︷︸

na

− b†b︸︷︷︸
nb

) =
P 2

2m
− ~GX∆n, (128)

where we have denoted the photon number difference operator by ∆n = na − nb. Using the
Heisenberg equation of motion dA(t)/dt = [A(t), H/i~] (valid for any operator A), we obtain the
conservation of the number of photons of each cavity

dna
dt

= 0 =
dnb
dt

⇒ na(t) = na(0), nb(t) = nb(0), (129)

which of course implies the conservation of the photon number difference

∆n(t) = ∆n(0). (130)

Since this photon number difference is a constant of motion, the equations for position and mo-
mentum are trivial to solve. Specifically, we get for the momentum

dP

dt
= [P, iGX∆n] = ~G∆n(t) ⇒ P (t) = P (0) + ~G∆n(0)t, (131)

which leads to a position

dX

dt
=

[
X,

P 2

2i~m

]
=
P (t)

m
⇒ X(t) = X(0) +

P (0)

m
t+

G~
2m

∆n(0)t2. (132)
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With this equations at hand, it is easy to evaluate the expectation value of any mechanical
observable. We will focus on the first and second order moments, that is, the mechanical mean
vector and covariance matrix. As discussed in Section 3.6, we consider normalized versions of
the position and momentum, x = X/x0 and p = P/p0, with x0p0 = ~/2. In terms of these, the
solutions read

x(t̄) = x(0) + p(0)t̄+ ḡ∆n(0)t̄2, (133a)

p(t̄) = p(0) + 2ḡ∆n(0)t̄, (133b)

where we have introduced dimensionless time t̄ and optomechanical rate ḡ as introduced in the
previous section. Taking the expectation value of these expressions, the mechanical mean vector
d = (dx, dp) is found to be

dx(t̄) = 〈x(t̄)〉 = dx(0) + dp(0)t̄+ ḡd∆nt̄
2, (134a)

dp(t̄) = 〈p(t̄)〉 = dp(0) + 2ḡd∆nt̄, (134b)

where we have defined the average photon number difference d∆n = 〈∆n(0)〉. As a first thing
to see here, note that the momentum will increase or decrease in time at a constant rate, which
makes sense since the force applied to the piston is proportional to the radiation pressure, which
is constant as n(t) = n(0). If the piston is initially at rest, this leads to unidirectional motion,
with constant acceleration, describing a parabola over time.

Let us now compute the mechanical covariance matrix, which we write as

V =

(
Vxx Vxp
Vxp Vpp

)
=

(
〈δx2〉 〈{δx, δp}〉/2

〈{δx, δp}〉/2 〈δp̂2〉

)
. (135)

where we remind that, for any operator A, its fluctuation reads δA = A− 〈A〉. Note that, in our
case, the position and momentum fluctuations at time t can be written in terms of the fluctuations
at time zero as

δx(t̄) = δx(0) + δp(0)t̄+ ḡδ∆n(0)t̄2, (136a)

δp(t̄) = δp(0) + 2ḡδ∆n(0)t̄. (136b)

This allows to trivially connect the covariance matrix at time t with that at time zero as

Vxx(t̄) = Vxx(0) + 2Vxp(0)t̄+ Vpp(0)t̄2 + ḡ2V∆nt̄
4, (137a)

Vpp(t̄) = Vpp(0) + 4ḡ2V∆nt̄
2, (137b)

Vxp(t̄) = Vxp(0) + Vpp(0)t̄+ 2ḡ2V∆nt̄
3, (137c)

where we have defined the variance of the photon number difference V∆n = 〈δ∆n2(0)〉, and we have
assumed that initially the optical cavities and the piston are uncorrelated, such that 〈δx∆n〉 =
0 = 〈δp∆n〉.

For concreteness, we will assume that the piston starts with a Gaussian wave function of width
x0 and centered at X = 0. This corresponds then to the vacuum state of the annihilation operator
c = (x+ ip)/2, such that the initial mean vector and covariance matrix are

d(0) =

(
0
0

)
, V (0) =

(
1 0
0 1

)
, (138)

leading to

dx(t̄) = ḡd∆nt̄
2, (139a)

dp(t̄) = 2ḡd∆nt̄, (139b)

Vxx(t̄) = 1 + t̄2 + ḡ2V∆nt̄
4, (139c)

Vpp(t̄) = 1 + 4ḡ2V∆nt̄
2, (139d)

Vxp(t̄) = t̄+ 2ḡ2V∆nt̄
3, (139e)
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As for the state of the cavities, we will use this opportunity to show that quantum correlations can
make a huge difference. Specifically, we consider two different families of states, both characterized
by the average photon number in the cavities, which we take the same, and call n̄. The first family
then corresponds to separable thermal states ρ = ρth(n̄)⊗ ρth(n̄). Note that for this state

〈na〉 = n̄ = 〈nb〉, (140a)

〈n2
a〉 = 〈a†aa†a〉 =

Gaussian
with 〈a〉=0

〈a†a〉〈a†a〉+ 〈a†a〉 〈aa†〉︸ ︷︷ ︸
〈a†a〉+1

+ 〈a†2〉〈a2〉︸ ︷︷ ︸
0

= 2n̄2 + n̄ = 〈n2
b〉. (140b)

And hence, we get

d∆n = 0, (141a)

V∆n = 〈(δna − δnb)2〉 = 〈δn2
a〉+ 〈δn2

b〉 − 2〈δnaδnb〉︸ ︷︷ ︸
〈δna〉〈δnb〉

= 2n̄(n̄+ 1), (141b)

leading to

dx(t̄) = 0 = dp(t̄) (142a)

Vxx(t̄) = 1 + t̄2 + 2ḡ2n̄(n̄+ 1)t̄4, (142b)

Vpp(t̄) = 1 + 8ḡ2n̄(n̄+ 1)t̄2, (142c)

Vxp(t̄) = t̄+ 4ḡ2n̄(n̄+ 1)t̄3. (142d)

On average, the position and momentum of the piston do not change, since the average photon
number difference is zero. However, the variance of the photon number difference is different
than zero (since the thermal photon-number fluctuations of each cavity are uncorrelated), which
is revealed as a strong modification of the mechanical covariance matrix as time goes by.

In contrast with the previous case, we then consider now a family of states in which the cavities
have perfect photon-number correlations: two-mode squeezed vacuum states. These are defined
as [4, 5]

|TMSV〉 = er(a
†b†−ab)|0〉 =

1

cosh r

∞∑
n=0

tanhn r|n, n〉, with r ∈ [0,∞[. (143)

Note that the reduced state of each cavity is just a thermal state,

trb{|TMSV〉〈TMSV|} =
∞∑
n=0

tanh2n r

cosh2 r
|n〉〈n| =

∞∑
n=0

(
sinh2 r

)n(
1 + sinh2 r

)n+1 |n〉〈n| = ρth(sinh2 r). (144)

Hence, taking sinh2 r = n̄, locally |TMSV〉 is indistinguishable from the the product of thermal
states considered before. The difference lays now in the correlations between the cavities. In
particular, note that (143) is an eigenstate of the photon number difference operator ∆n, with zero
eigenvalue. Hence, in this case all the moments of these operator are identically zero, 〈∆nm〉 = 0
∀m (signaling perfect photon number correlations between the cavities), leading to

d∆n = 0, V∆n = 0. (145)

Hence, in this case the optomechanical interaction plays absolutely no role in the dynamics of the
piston, that is,

dx(t̄) = 0 = dp(t̄) (146a)

Vxx(t̄) = 1 + t̄2, (146b)

Vpp(t̄) = 1, (146c)

Vxp(t̄) = t̄. (146d)
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4.2.2 The membrane model

Now, let’s see what happens in the case of the membrane. We remind that the Hamiltonian reads
in this case

H = ~Ωc†c− ~g(c+ c†)∆n. (147)

As before, the photon number difference is a conserved quantity, ∆n(t) = ∆n(0). Hence, the
Heisenberg equation of motion of the mechanical annihilation operator reads

dc

dt
= −iΩc+ ig∆n(0), ⇒ c(t̄) = e−it̄

(
c(0)− ḡ∆n(0)

)
+ ḡ∆n(0), (148)

where we have introduced the dimensionless time and optomechanical coupling. In this case, it is
more natural to evaluate the complex mean vector and covariance matrix, whose relevant elements
we define as

∆ = 〈c〉, Λc†c = 〈δc†δc〉, Λcc = 〈δcδc〉. (149)

We can easily evaluate these from (148). In the case of the mean vector, we get

∆(t̄) = e−it
(
∆(0)− ḡd∆n

)
+ ḡd∆n. (150)

As for the covariance matrix elements, first we note that we can write the fluctuation operator as

δc(t̄) = e−it̄
(
δc(0)− ḡδ∆n(0)

)
+ ḡδ∆n(0), (151)

from which we easily obtain

Λc†c(t̄) = Λc†c(0) + 2ḡ2(1− cos t̄)V∆n, (152a)

Λcc(t) = e−2it̄Λcc(0)− 2ḡ2e−it̄(1− cos t̄), (152b)

again assuming that the cavities and the membrane are uncorrelated initially.
If we assume that the membrane is on its ground state initially, characterized by ∆ = 0 =

Λc†c = Λcc, we then get

∆(t̄) = ḡ
(
1− e−it

)
d∆n, (153a)

Λc†c(t̄) = 2ḡ2(1− cos t̄)V∆n, (153b)

Λcc(t̄) = −2ḡ2e−it̄(1− cos t̄)V∆n. (153c)

Finally, we consider the same initial states for the cavities as we did for the piston. For the
separable thermal state, we obtain

∆(t̄) = 0, (154a)

Λc†c(t̄) = 4ḡ2n̄(n̄+ 1)(1− cos t̄), (154b)

Λcc(t̄) = −4ḡ2n̄(n̄+ 1)e−it̄(1− cos t̄)V∆n. (154c)

whereas for the two mode squeezed vacuum state we have

∆(t̄) = 0 = Λc†c(t̄) = Λcc(t̄). (155)

Hence, again, the optomechanical interaction has no effect when the photon-number correlated
state is considered, while thermal cavity fluctuations show up in the mechanical covariance matrix.
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4.3 Stochastic Simulations

In this section we solve the system of stochastic Langevin equations numerically, comparing with
the analytical expressions that we derived in the previous section. While we have developed very
carefully the stochatic equations that describe the evolution of the system, we still haven’t said
anything about how to sample the required initial states within each representation (Wigner or
positive P ). In the first part of this section we address this issue for the initial states considered
in the previous section: thermal states and two-mode squeezed vacuum states. Then we perform
numerical simulations using the XMDS2 package [15], which is the leading numerical software in
the field of stochastic equations.

4.3.1 Initial state sampling with the Wigner distribution

Let us start explaining how to sample with the Wigner distribution the initial states we are
interested in. Since we consider Gaussian initial states, this is particularly easy with the Wigner
distribution. Specifically, the Wigner function of a Gaussian state with covariance matrix V (we
take zero mean vector, since that’s the case in both initial states we consider) is [4, 5, 10]

W (r) =
1√

(2π)N detV
e−

1
2
rTV −1r, (156)

where N is the number of modes we consider, and r = (x1, p1, ..., xN , pN)T is a column vector
collecting all the phase space variables. The general idea to sample Gaussian states is simple:
since the covariance matrix is real and symmetric, it can be diagonalized with an orthogonal
transformation. Then, moving to the phase-space coordinates defined by such transformation, the
Wigner function turns into a product of simple one-dimensional Gaussians that can be sampled
with independent variables normally distributed. Let’s see this in our specific cases.

Let us remark that in the following we use the notation ηj for real independent random numbers
normally distributed with unit variance, that is,

ηj = 0, ηjηl = δjl. (157)

In the case of a single-mode thermal state, the covariance matrix is [4, 5, 10]

Vth(n̄) = (2n̄+ 1)

(
1 0
0 1

)
, (158)

which is already diagonal. The Wigner function reads then (we omit normalization factors in the
following)

W (r) = e−x
2/2(2n̄+1)e−p

2/2(2n̄+1). (159)

which is the product of two Gaussians with variance 2n̄+1. These can be sampled from stochastic
position and momentum as

x =
√

2n̄+ 1 η1, p =
√

2n̄+ 1 η2, (160)

or in terms of a single complex stochastic variable α = (x+ ip)/2 as

α =

√
n̄+

1

2

η1 + iη2√
2

. (161)

Note that vacuum is sampled in this exact way with n̄ = 0.
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Next we consider the two-mode squeezed vacuum state, with covariance matrix [5, 4]

VTMSV =

(
cosh(2r)1 sinh(2r)Z
sinh(2r)Z cosh(2r)1

)
, (162)

where Z =
(
1 0
0 −1

)
, 1 is the identity matrix, and we order the phase space variables as r =

(xa, pa, xb, pb)
T . This covariance matrix is readily diagonalized with an orthogonal transformation,

BTVTMSVB =


e2r 0 0 0
0 e−2r 0 0
0 0 e−2r 0
0 0 0 e2r

 , with B =
1√
2


1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

 . (163)

Hence, defining the transformed phase space variables

x =


x̂+

x̂−
p̂+

p̂−

 = Br, (164)

the Wigner function is decomposed into a product of four one-dimensional Gaussians,

W (x) = e−x+/2e
2r

e−x−/2e
−2r

e−p+/2e
−2r

e−p−/2e
2r

. (165)

These variables are then sampled as

x+ = erη1, (166a)

x− = e−rη2, (166b)

p+ = e−rη3, (166c)

p− = erη4, (166d)

or transforming back to the original variables, and defining the complex stochastic variables as
usual,

α =
1

2
√

2
(x+ + x− + ip+ + ip−) =

1√
8

(erη1 + e−rη2 + ie−rη3 + ierη4), (167a)

β =
1

2
√

2
(x+ − x− + ip+ − ip−) =

1√
8

(erη1 − e−rη2 + ie−rη3 − ierη4). (167b)

4.3.2 Initial state sampling with the positive P distribution

Sampling with the positive P distribution is in general more complicated. For Gaussian states,
however, one can still find Gaussian functional forms for P+, which make the task relatively simple.
One important thing worth remarking here is that, contrary to the Wigner distribution (or any
of the other quasi-probability distributions defined in the standard phase space), the positive P
distribution is not unique [7, 12]. In other words, different functional forms of the distribution can
sample the same quantum state. In order to see this, let us introduce two important properties
connecting the positive P distribution with quantum states. First, any quantum state can be
expanded as [7, 12]

ρ̂ =

∫
C2N

d2Nαd2Nα+P+(α,α+)
|α〉〈α+∗|
〈α+∗|α〉

, (168)
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where N is again the number of modes, α = (α1, ..., αN)T and α+ = (α+
1 , ..., α

+
N)T collect the

complex extended phase-space variables, and |α〉 refer to multi-mode coherent states [6, 10]. The
second expression goes in the opposite direction: P+ can be written in terms of the state as

P+(α,α+) =
1

4π
e−
|α∗−α+|

4

〈
α∗ +α+

2

∣∣∣∣ ρ ∣∣∣∣α∗ +α+

2

〉
. (169)

Consider now the vacuum state for a single mode, ρ = |0〉〈0|. Expression (168) tells us that
P+(α, α+) = δ(α)δ(α+ − α∗). On the other hand, plugging ρ = |0〉〈0| in (169) we get a very
different expression, involving a product of Gaussian functions for α∗ − α+ and α∗ + α+. Hence,
if both expressions are to hold, this shows that the positive P distribution is not unique.

But let’s move on now to more practical matters: how to sample the initial states we are
interested in. Let us start with thermal states of a single mode. Expression (168) tells us that
whenever a well-behaved Glauber-Sudarshan P (α) distribution exists, a valid choice of positive P
is

P+(α, α+) = P (α)δ(α+ − α∗). (170)

Now, since the P distribution of a thermal state ρth(n̄) is the Gaussian [6] (as before, we omit
normalizations)

Pρth(n̄)(α) = e−2|α|2/n̄ = e−x
2/2n̄e−p

2/2n̄, (171)

where as usual α = (x + ip)/2, we can easily sample a thermal state within the positive P
representation based on the following stochastic variables:

α =
√
n̄
η1 + iη2√

2
, α+ = α∗. (172)

In the n̄→ 0 limit, the distribution (171) tends to a delta function δ(α) as corresponds to vacuum.
Hence, the vacuum state is sampled as

α = 0 = α+. (173)

Sampling the two-mode squeezed vacuum state is a bit more involved. We cannot use the
relation (170), since the P distribution of the two-mode squeezed state has negativities and diver-
gences beyond a delta function. Nevertheless, since the overlap of Gaussian states with coherent
states is always a quadratic form of the coherent-state amplitudes [10], expression (169) always
allows us to write the corresponding positive P distribution as a Gaussian probability distribution
that can be sampled similarly to how we sampled in the Wigner case. This is the route that we
follow here. Indeed, we follow a shortcut. In [16], the authors already used this expression to
sample a single-mode squeezed state |eiθr〉 = exp[r(eiθa†2 + e−iθa2)]|0〉 as

α =

√
cosh r

2
ei
θ
2

(
e
r
2η1 + ie−

r
2η2

)
+

1√
2

(η3 + iη4), (174a)

α+ =

√
cosh r

2
e−i

θ
2

(
e
r
2η1 − ie−

r
2η2

)
− 1√

2
(η3 − iη4). (174b)

On the other hand, we use the fact that a two mode squeezed vacuum state can be written as a
50/50 beam splitter acting on two single mode-squeezed states [5]

|TMSV〉 = B̂ (| − r〉 ⊗ |r〉) , (175)
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where B = e
π
4

(â†b̂−âb̂†). Next, we use

P+

B̂ρ̂B̂†
(α,α+) = P+

ρ̂ (B̃α, B̃α+), (176)

where we have defined the matrix B̃ = 1√
2

(
1 1
−1 1

)
. We prove this expression at the end of this

section. Identifying ρ in this expression with the state | − r〉 ⊗ |r〉, and noting that

P+
|−r〉⊗|r〉(α,α

+) = P+
|−r〉
(
α, α+

)
P+
|r〉
(
β, β+

)
, (177)

(175) leads to

P+
|TMSV〉(α,α

+) = P+

B̂(|−r〉⊗|r〉)(α,α
+)

= P+
|−r〉

(
α + β√

2
,
α+ + β+

√
2

)
P+
|r〉

(
β − α√

2
,
β+ − α+

√
2

)
, (178)

which based on (174) can be sampled as

α + β√
2

= i

√
cosh r

2

(
e
r
2η1 + ie−

r
2η2

)
+

1√
2

(η3 + iη4), (179a)

α+ + β+

√
2

= −i
√

cosh r

2

(
e
r
2η1 − ie−

r
2η2

)
− 1√

2
(η3 − iη4), (179b)

β − α√
2

=

√
cosh r

2

(
e
r
2η5 + ie−

r
2η6

)
+

1√
2

(η7 + iη8), (179c)

β+ − α+

√
2

=

√
cosh r

2

(
e
r
2η5 − ie−

r
2η6

)
− 1√

2
(η7 − iη8). (179d)

Solving for the independent complex variables, we finally get

α =

√
cosh r

2

(
i
(
e
r
2η1 + ie−

r
2η2

)
−
(
e
r
2η5 + ie−

r
2η6

))
+

1

2
(η3 − η7 + iη4 − iη8), (180a)

β =

√
cosh r

2

(
i
(
e
r
2η1 + ie−

r
2η2

)
+
(
e
r
2η5 + ie−

r
2η6

))
+

1

2
(η3 + η7 + iη4 + iη8), (180b)

α+ =

√
cosh r

2

(
− i
(
e
r
2η1 − ie−

r
2η2

)
−
(
e
r
2η5 − ie−

r
2η6

))
+

1

2
(η7 − η3 + iη4 − iη8), (180c)

β+ =

√
cosh r

2

(
− i
(
e
r
2η1 − ie−

r
2η2

)
+
(
e
r
2η5 − ie−

r
2η6

))
+

1

2
(−η3 − η7 + iη4 + iη8). (180d)

Let us finally prove expression (176). We will use the following property of a beam-splitter
acting on a coherent state coherent:

B̂|α〉 = B̂eαa
†+βb†−H.c.|0〉 = B̂eαa

†+βb†−H.c.B̂†B̂|0〉 = eαB̂a
†B̂†+βB̂b†B̂†−H.c.|0〉

= e

(
α−β√

2

)
a†+

(
α+β√

2

)
b†−H.c.|0〉 = |B̃Tα〉, (181)

where we have used B̂aB̂† = (a + b)/
√

2 and B̂bB̂† = (b − a)/
√

2. Using then expression (168),
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we get

B̂ρB̂† =

∫
C4

d4αd4α+P+
ρ (α,α+)

B̂|α〉〈α+∗|B̂†

〈α+∗|α〉

=

∫
C4

d4αd4α+P+
ρ (α,α+)

|B̃Tα〉〈B̃Tα+∗|
〈α+∗|α〉

=︸︷︷︸
α=B̃u

∫
C4

d4ud4u+P+
ρ (B̃u, B̃u+)

|u〉〈u+∗|
〈B̃u+∗|B̃u〉︸ ︷︷ ︸

〈u+∗|B̂B̂†|u〉=〈u+∗|u〉

≡
∫

C4

d4αd4α+P+

B̂ρB̂†
(α,α+)

|α〉〈α+∗|
〈α+∗|α〉

,

⇓
P+

B̂ρB̂†
(α,α+) = P+

ρ (B̃α, B̃α+), (182)

which is the expression we wanted to prove.
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4.3.3 Stochastic simulations I: comparison with the analytic case λ = 0

We proceed now to the simulation of the stochastic equations discussed in Section 4.1, and their
comparison with the exact results of Section 4.2. We have performed the numerical simulations
using the XMDS2 package [15]6. The choice of this package is justified by its user-friendliness
since it uses an XML-based code generator, and also by its efficiency since it generates C++ code,
which is a low-level language much more efficient than Matlab. Additionally, let us note that
we have compared it with our own codes written in Matlab from scratch following [14, 17], and
with the XSPDE Matlab package, also developed by Peter Drummond and collaborators [18]. We
found these were outperformed by XMDS2 in all the instances we studied.

The goal of this section is checking the validity of our derivation of the stochastic equations and
the related codes, which we give in Appendix C. As representative cases, we present 8 simulations,
corresponding to all the possible combination of mechanical element (membrane or piston), phase-
space representation (positive P or truncated Wigner), and initial optical state (uncorrelated
thermal ρth(n̄) ⊗ ρth(n̄), or entangled |TMSV〉). In all cases we set7 λ = 0 (in order to compare
with the analytic solution), ḡ = 0.001, and n̄ = 1000. We choose these parameters because they
are close to the classical limit (large photon number and small optomechanical coupling), so that
the truncated Wigner representation should be close to the analytical results. For the piston we
simulate until t̄ = 2, since according to (142a), deviations from the g = 0 can only be appreciated
if ḡn̄t ≥ 1. For the membrane, we consider up to t = 2π, based on the periodicity of the analytical
solution (154a). Note that XMDS2 outputs the data in an h5 file, which we convert to the desired
plots with Octave (codes also provided at the end of Section C).

Before showing the results of the simulations, let us also introduce some more general remarks.
When γ = 0, the truncated Wigner equations of Section 4.1 are completely deterministic, which
allows for a very big number of stochastic paths with high tolerance8 on the order of 10−15. On the
other hand, the positive P equations have multiplicative noise terms and are therefore much harder
to simulate. Thus, we perform less paths for this simulations, and set a much larger tolerance of
10−7.

We present the results in a total of 4 figures: membrane within the truncated Wigner (Fig. 3)
and positive P (Fig. 4), and piston within the truncated Wigner (Fig. 5) and positive P (Fig.
6). We consider both initial conditions within the same figure: uncorrelated thermal on the left
column and entangled state on the right column. Each column has six plots: the top one shows the
number of photons (〈na〉 in dashed red, and 〈nb〉 in dashed-dotted green), while the next two ones
show the first order moments and the last three the second order moments forming the covariance
matrix (Re{∆}, Im{∆}, Λc†c, Re{Λcc}, and Im{Λcc} for the membrane; dx, dp, Vxx, Vpp, and Vxp
for the piston). All the stochastic curves are shown in dashed red, and we also show the analytic
solution in solid blue for comparison.

We start with the membrane model, specifically with its truncated Wigner simulation in Figure
3. As expected, the number of photons in the cavities stay constant in time. As the number of
paths is quite large (106), they average very close to the exact value of n̄ = 1000. We also see that
the mean vector (represented through Re{∆}) stays close to 0. It’s interesting though, to note
that the truncated Wigner simulation gives a very small (but well-defined) oscillation around 0.
This is due to the fact that d∆n is not perfectly sampled to 0 initially, and thus equation (153a)
gives a slight oscillation. For thermal initial conditions, the stochastic covariance matrix matches
perfectly the exact one. In the case of the entangled initial condition, all (complex) second order

6This package was created by Peter Drummond and Greg Collecutt in 1997. Let us remark that Peter Drummond
is one of the leading figures in the field of quantum noise in nonlinear optical systems, and hence the use of this
package seems pretty adequate.

7In real experiments ḡ is usually even smaller [8].
8The program uses adaptive stepsize algorithm which requires a tolerance attribute that defines the tolerated

relative error per integration step
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moments should be 0. However, again because V∆n is not exactly sampled to 0 initially, we find
oscillations around zero that follow the form of equations (153b), and become smaller and smaller
the larger the number of stochastic paths is.

Figure 3: Result of the simulations of Eqs. (122), corresponding to the membrane model within
the truncated Wigner representation. We consider initial uncorrelated thermal optical states
(right column) and an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000,
and λ = 0. We average over 106 stochastic paths, and show the simulations in dashed red and the
analytical solutions of section 4.2 in blue.
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In Figure 4 we show the positive P simulations. The results are similar to those of the truncated
Wigner. Even the oscillating behaviour around 0 seems to be displayed, although the number of
paths is not big enough to see it clearly. Thus, in this idealized case with γ = 0 and a relatively
large photon number, there is not much difference between the quasi-classical truncated Wigner
and the fully quantum positive P , as expected.

Figure 4: Same as in the previous figure, but for Eqs. (127), corresponding to the membrane
model within the positive P representation. Again, we consider initial uncorrelated thermal optical
states (right column) and an entangled state (left column), and the parameters are ḡ = 0.001,
n̄ = 1000, and λ = 0. In this case we average over 103 stochastic paths, with the simulations
shown in dashed red and the analytical solutions of section 4.2 in blue.
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Next we present the simulations for the piston, starting again with the truncated Wigner in
Figure 5 and the positive P in Figure 6. The results are comparable to the ones of the membrane.
In particular, we see that all the predictions of the analytic result are matched, within the accuracy
with which we sample the initial state: again, any small deviations are explained by the form of
equations (134) and (137), and the fact that d∆n and V∆n are not sampled perfectly to their
analytical values.

Figure 5: Result of the simulations of Eqs. (121), corresponding to the piston model within the
truncated Wigner representation. As in previous plots, we consider initial uncorrelated thermal
optical states (right column) and an entangled state (left column). The parameters are ḡ = 0.001,
n̄ = 1000, and λ = 0. We average over 106 stochastic paths, and show the simulations in dashed
red and the analytical solutions of section 4.2 in blue.
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Figure 6: Result of the simulations of Eqs. (126), corresponding to the piston model within
the positive P representation. Once again, we consider initial uncorrelated thermal optical states
(right column) and an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000,
and λ = 0. We average over 2× 104 stochastic paths, and show the simulations in dashed red and
the analytical solutions of Section 4.2 in blue.
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4.3.4 Stochastic simulations II: beyond the λ = 0 case

Now that we have tested he accuracy of the stochastic simulations, we can analyze cases without
analytic solution. As a warm up, we still consider the closed-system limit (γ = 0), but now add a
beam-splitter coupling between the cavities (λ 6= 0).

We have checked that if we set λ = 0.01 or smaller, the previous results are virtually unaffected
(see Appendix B). Going to larger values, we start seeing differences, and we present here results
for λ = 0.2. Note that we keep the λ = 0 plots in the figure in order to appreciate the effect
introduced by the beam-splitter.

In Figures 7 and 8 we present the results for the membrane model, within the truncated
Wigner and positive P representations, respectively. Let us first note that the thermal state
ρth(n̄)⊗ρth(n̄) is invariant under the beam-splitter operation, contrary to the entanglement of the
two-mode squeezed vacuum state |TMSV〉, which is very sensitive [5]. Hence, we would expect
a larger impact of the beam splitter in the case of initial entangled conditions. However, note
that in both cases the beam-splitter leaves the number of photons on each cavity invariant, and
hence we still expect the force felt by the membrane to be zero on average. Indeed, we appreciate
in the plots photon numbers and a ∆ that oscillate in time with a very small amplitude that
can be attributed to the sampling error of the initial states. Moreover, we have checked that the
amplitude decreases as we increase the number of stochastic paths.

On the other hand, differences between the thermal and entangled initial states are more
noticeable in the covariance matrix. Specifically, while we can appreciate a change with respect
to the λ = 0 case for both initial conditions, the change is far more dramatic in the entangled
case. Nevertheless, in both cases we see that the addition of the beam splitter breaks the simple
periodic behavior that the system was showing for λ = 0.

The robustness of the thermal initial state against the beam-splitter interaction is even more
evident in the case of the piston, shown in Figures 9 and 10 for the truncated Wigner and the
positive P , respectively. For the thermal state (left columns) the effect of the beam-splitter remains
almost negligible in the observed time interval, although we can see how it starts deviating for
longer times. On the other hand, beam-splitter effects appear much faster for the entangled initial
state.

Let us also note that in all cases there doesn’t seem to be much differences between the
truncated Wigner and the positive P representations, as expected from the fact that we are
working in the classical limit of large photon number and small optomechanical coupling.
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Figure 7: Result of the simulations of Eqs. (122), corresponding to the membrane model within
the truncated Wigner representation, with λ̄ = 0.2, and the rest of parameters as in the previous
section: ḡ = 0.001 and n̄ = 1000. Once again, we consider initial uncorrelated thermal optical
states (right column) and an entangled state (left column). We average over 107 stochastic paths,
and show the simulations in dashed red and the λ = 0 analytical solutions of Section 4.2 in blue.
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Figure 8: Result of the simulations of Eqs. (127), corresponding to the membrane model within
the positive P representation, with λ̄ = 0.2, and the rest of parameters as in the previous section:
ḡ = 0.001 and n̄ = 1000. As usual, we consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). We average over 104 stochastic paths, and show
the simulations in dashed red and the λ = 0 analytical solutions of Section 4.2 in blue.
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Figure 9: Result of the simulations of Eqs. (126), corresponding to the piston model within
the truncated Wigner representation, with λ̄ = 0.2, and the rest of parameters as in the previous
section: ḡ = 0.001 and n̄ = 1000. We consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). We average over 106 stochastic paths, and show
the simulations in dashed red and the λ = 0 analytical solutions of Section 4.2 in blue.
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Figure 10: Result of the simulations of Eqs. (126), corresponding to the piston model within
the positive P representation, with λ̄ = 0.2, and the rest of parameters as in the previous section:
ḡ = 0.001 and n̄ = 1000. Once again, we consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). We average over 3×104 stochastic paths, and show
the simulations in dashed red and the λ = 0 analytical solutions of Section 4.2 in blue.
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In order to confirm that our simulations do not contain errors, we consider now a limit in
which we can analytically solve the problem: the large λ limit. Let us first prove that for large
enough values of λ, the effects of the optomechanical coupling should be effectively suppressed,
irrespective of the initial state. In order to show this, let us move to the eigenmodes of the
beam-splitter Hamiltonian, which we introduced in (34):

H = Hm − ~gx(a†a− b†b) + ~λ(a†b+ ab†) = Hm + ~gx(AB† + A†B) + ~λ(A†A−B†B), (183)

where Hm = ~Ωc†c for the membrane and Hm = P 2/2m = Ωp2/4 for the piston. Let us
consider first the membrane. Moving to the interaction picture defined by the transformation
U = exp[−i(Ωc†c+ λa†a− λb†b)t], the transformed state evolves according to the Hamiltonian

HI = ~g
(
e−iΩtc+ eiΩtc†

) (
e−2iλtAB† + H.C

)
. (184)

For λ� Ω, we obtain a rotation at frequency 2λ, which will make the interaction negligible when
it becomes much larger than the interaction strength (rotating-wave approximation). While it is
difficult to evaluate the strength of the interaction in general, we can provide the conservative
limit λ � gn̄ for our case (interaction dressed by the number of photons). In this limit, the
optomechanical interaction is effectively suppressed, so that the evolution of the membrane should
follow the free case g = 0.

Similarly, in the case of piston we obtain in the interaction picture

HI = ~g(x+ pΩt)
(
e−2iλtAB† +H.C

)
. (185)

Now the effective strength of the interaction increases linearly with time. Hence, in this case
the rotating-wave approximation in the limit λ � g tells us that the optomechanical interaction
will be suppressed only until a certain time, that (being conservative again) we can bound by
t̄ < λ/gn̄. Staying within this time limit should ensure that the optomechanical interaction is
effectively suppressed. We have verified that this is the case by simulating the piston model for
the same parameters as before (ḡ = 0.001 and n̄ = 1000), except for λ̄ = 10, see Figures 11 and
12 for the truncated Wigner and the positive P , respectively. It can be appreciated how both
simulations (dashed red curves) agree very well within the stochastic accuracy with the analytic
result with ḡ = 0 (solid blue curves).
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Figure 11: Result of the simulations of Eqs. (121), corresponding to the piston model within the
truncated Wigner representation, with λ̄ = 10, and the rest of parameters as in the previous cases:
ḡ = 0.001 and n̄ = 1000. Once again, we consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). We average over 106 stochastic paths, and show
the simulations in dashed red and the analytical solutions of Section 4.2 in blue for ḡ = 0 = λ̄.
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Figure 12: Result of the simulations of Eqs. (126), corresponding to the piston model within
the positive P representation, with λ̄ = 10, and the rest of parameters as in the previous cases:
ḡ = 0.001 and n̄ = 1000. Once again, we consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). We average over 103 stochastic paths, and show
the simulations in dashed red and the analytical solutions of Section 4.2 in blue for ḡ = 0 = λ̄.
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5 Conclusions and outlook

In this thesis we have made a step forward towards the long term goal of finding an autonomous
quantum heat engine based solely on linear degrees of freedom. Specifically, we have introduced
the two models of Fig. 2, which in spite of not being useful as thermodynamical machines (in the
sense of having a well-defined thermodynamical cycle in which heat is transformed into work),
contain all the basic ingredients that the final heat engine should have: a mechanical element
coupled to cavities, with heat baths providing the energy required to extract work, making them
autonomous.

These examples have allowed us to develop in depth the techniques that we will use for the
analysis of quantum thermodynamical machines based on linear degrees of freedom. We have pro-
ceeded in three steps. First, by tracing out the heat baths under the Born-Markov approximation,
we have derived the master equation governing the evolution of the state of the system. Then, we
have introduced the concept of phase-space quasiprobability distributions, and have turned the
master equation into a partial differential equation for such distributions. Finally, we have put this
in correspondence with a set of stochastic dynamical equations for the phase space variables. We
have shown that this last step is only possible either by using a truncated Wigner representation
equivalent to stochastic electrodynamics (which for high-temperature is nothing but the classical
limit), or by using the positive P representation that reproduces the full quantum dynamics, but
making use of an extended phase space with twice the number of variables.

In order to benchmark the simulations based on these stochastic equations, we have considered
the limit of zero coupling to the environments, which is analytically solvable. We considered
two different initial conditions for the cavities: separable and entangled. In both cases, the
reduced state of each cavity is thermal, and we have worked in the large photon number and
small optomechanical coupling limit (classical regime), where both the truncated Wigner and the
positive P representations should work. We showed that indeed the simulations agree with the
analytics, but a large number of stochastic paths is usually required for accurate results, typically
on the tens of millions or beyond. This means that future analysis will require the use of parallel
computing facilities.

As a case that cannot be treated analytically, we consider the addition of the beam-splitter
coupling between the cavities (but still without environments). We showed that the stochastic
simulations provide results that agree with intuitive expectations, and even with an analytical
prediction in the large beam-splitter coupling regime: the optomechanical coupling gets effectively
suppressed.

Looking forward, there is still a lot of interesting work to do in the models that we have
introduced here. Specifically, from the point of view of quantum optomechanical phenomena it will
be very interesting to understand the asymptotic state reached by the system when we introduce
coupling to the environments. Specifically, since we assume that the mechanical element is free of
friction, it is not yet clear under which conditions the system will reach a steady state, and also,
whether the initial state of the cavities will play an important role (usually, it is washed out by
the dissipation).

Once this warm up models are fully understood, together with the limits of our stochastic
simulations, we will move forward towards our long term goal: developing an autonomous heat
engine. While it’s still early to devise the exact model that will be required, we want to mention
here two possibilities. The first one consists in using a similar strategy as that considered in
[2], that is, introducing mechanical-position dependent couplings to the environments. This is
known in the optomechanics community as dissipative optomechanical coupling, which has indeed
become available in experiments in recent times [19]. A second route would consist on introducing
more mechanical or optical elements, something that our stochastic techniques allow because their
complexity scales only linearly or quadratically with the number of elements (in contrast to Hilbert-
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space based techniques, which scale exponentially). This would allow to consider more complicated
scenarios in which entanglement between optical modes coupled to different mechanical elements,
or even between the mechanical elements themselves could play a role in boosting the efficiency
of the thermodynamical machine.

Overall, we believe that the tools developed in this master thesis will be of great relevance for
the analysis of thermal machines working in the quantum regime.
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A Beam-splitter interaction

In this appendix we give further details on the calculations concerning the Beam-splitter interac-
tion

A.1 Detailed initial conditions

This section contains the detailled initial conditions. The non vanishing initial terms are:
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tr
{
d†(ω)d(ω′)ρB

}
=

1

2
(n̄a + n̄b)δ(ω − ω′), (192)

tr
{
D†(ω)ρBD(ω′)

}
= tr

{
D(ω′)D†(ω)ρB

}
= tr

{
1√
2

(
− e(ω′) + d(ω′)

) 1√
2

(
− e†(ω) + d†(ω)

)
ρB

}
=

1

2
tr
{
e(ω′)e†(ω)ρB

}
− 1

2
tr
{
d(ω′)e†(ω)ρB

}
0

− 1

2
tr
{
e(ω′)d†(ω)ρB

}
+

1

2
0

tr
{
d(ω′)d†(ω)ρB

}
=

1

2
(n̄a + n̄b + 2)δ(ω − ω′). (193)

The other initial conditions are of the form

tr {E(ω)E(ω′)ρB} = tr

{
1√
2

(
e(ω) + d(ω)

) 1√
2

(
e(ω′) + d(ω′)

)
ρB

}
=

1

2
tr {e(ω)e(ω′)ρB}+

1

2
tr {e(ω)d(ω′)ρB}+

1

2
tr {d(ω)e(ω′)ρB}+

1

2
tr {d(ω)d(ω′)ρB}

= 0 + 0 + 0 + 0 = 0, (194)

and will all give zero.

A.2 Derivation of the master equation with beam-splitter

In this section we perform the detailled derivation of Eq (40) from the interaction Hamiltonian in
the interaction picture of Eq (39), HI .
To calculate the master equation, we have to calculate the terms in the commutator[

HI(t), [HI(t− τ), ρ̃(t− τ)]
]
. (195)

In order to do this, we decompose the Hamiltonian into two parts: HI(t) = V (t) + V (t)†, and we
replace in (195): [

V (t) + V †(t),
[
V †(t− τ) + V (t− τ), ρ̃(t− τ)

] ]
=
[
V (t),

[
V †(t− τ) + V (t− τ), ρ̃(t− τ)

] ]
+
[
V (t)†,

[
V †(t− τ) + V (t− τ), ρ̃(t− τ)

] ]
=
[
V (t),

[
V †(t− τ) + V (t− τ), ρ̃(t− τ)

] ]
+
[
V (t),

[
V †(t− τ) + V (t− τ), ρ̃(t− τ)

] ]†
, (196)
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where in the last step we used the following property:
[
L, [K, ρ]

]†
=
[
[K, ρ]†, L†

]
[K, ρ]† = [ρ†, K†] = [ρ,K] = −[K, ρ]

⇒
[
L, [K, ρ]

]†
=
[
L†, [K, ρ]

]
, (197)

where K is an Hermitian operator.

Now we observe that the terms in
[
V (t), [V (t− τ), ρ̃(t− τ)]

]
are 0 since they only contain initial

conditions of the form (194).
In other words, we only need to calculate[

V (t),
[
V †(t− τ), ρ̃(t− τ)

]]
. (198)

The other terms coming from
[
V †(t), [V (t− τ), ρ̃(t− τ)]

]
will only be their complex conjugate9.

The calculation of Q, where by definition

Q ≡
[
V (t),

[
V †(t− τ), ρ̃(t− τ)

]]
=
[
E†(ω)Ãeiωt +D†(ω)B̃eiωt,

[
V †(t− τ), ρ̃(t− τ)

]]
=
[
E†(ω)Ãeiωt +D†(ω)B̃eiωt,

[
Ã†E(ω′)e−iω

′(t−τ) + B̃†D(ω′)e−iω
′(t−τ), ρ̃(t− τ)

]]
, (199)

gives 16 terms:

Q1 = eiωte−iω
′(t−τ)(ω)ÃÃ†ρ̃S(t− τ)⊗ E†E(ω′)ρ̃B, (200a)

Q2 = eiωte−iω
′(t−τ)ÃB̃†ρ̃S(t− τ)⊗ E†(ω)D(ω′)ρ̃B, (200b)

Q3 = −eiωte−iω′(t−τ)Ãρ̃S(t− τ)Ã† ⊗ ρ̃BE†(ω)E(ω′), (200c)

Q4 = −eiωte−iω′(t−τ)(ω)Ãρ̃S(t− τ)B̃† ⊗ E†ρ̃BD(ω′), (200d)

Q5 = eiωte−iω
′(t−τ)B̃Ã†ρ̃S(t− τ)⊗D†(ω)E(ω′)ρ̃B, (200e)

Q6 = eiωte−iω
′(t−τ)B̃B̃†ρ̃S(t− τ)⊗D†(ω)D(ω′)ρ̃B, (200f)

Q7 = −eiωte−iω′(t−τ)B̃ρ̃S(t− τ)Ã† ⊗D†(ω)ρ̃BE(ω′), (200g)

Q8 = −eiωte−iω′(t−τ)B̃ρ̃S(t− τ)B̃† ⊗D†(ω)ρ̃BD(ω′), (200h)

Q9 = −e−iω′(t−τ)eiωtÃ†ρ̃S(t− τ)Ã⊗ E(ω′)ρ̃BE
†(ω), (200i)

Q10 = −e−iω′(t−τ)eiωtÃ†ρ̃S(t− τ)B̃ ⊗ E(ω′)ρ̃BD
†(ω), (200j)

Q11 = −e−iω′(t−τ)eiωtB̃†ρ̃S(t− τ)Ã⊗D(ω′)ρ̃BE
†(ω), (200k)

Q12 = −e−iω′(t−τ)eiωtB̃†ρ̃S(t− τ)B̃ ⊗D(ω′)ρ̃BD
†(ω), (200l)

Q13 = e−iω
′(t−τ)eiωtρ̃S(t− τ)Ã†Ã⊗ ρ̃BE(ω′)E†(ω), (200m)

Q14 = e−iω
′(t−τ)eiωtρ̃S(t− τ)Ã†B̃ ⊗ ρ̃BE(ω′)D†(ω), (200n)

Q15 = e−iω
′(t−τ)eiωtρ̃S(t− τ)B̃†Ã⊗ ρ̃BD(ω′)E†(ω), (200o)

Q16 = e−iω
′(t−τ)eiωtρ̃S(t− τ)B̃†B̃ ⊗ ρ̃BD(ω′)D†(ω). (200p)

(200q)

9
[
V, [V †, ρ]

]†
=
[
[V †, ρ]†, V †

]
=
[
[ρ†, V ], V †

]
=
[
V †, [V, ρ]

]
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As before, using the initial conditions we get:

γA
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q1} =
1

2
γA(n̄b + n̄a)ÃÃ

†ρ̃S, (201a)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q2} =
1

2

√
γAγB(n̄b − n̄a)ÃB̃†ρ̃S, (201b)

γA
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q3} = −1

2
γA(n̄b + n̄a + 2)Ãρ̃SÃ

†, (201c)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q4} = −1

2

√
γAγB(n̄b − n̄a)Ãρ̃SB̃†, (201d)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q5} =
1

2

√
γAγB(n̄b − n̄a)B̃Ã†ρ̃S, (201e)

γB
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q6} =
1

2
γB(n̄b + n̄a)B̃B̃

†ρ̃S, (201f)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q7} = −1

2

√
γAγB(n̄b − n̄a)B̃ρ̃SÃ†, (201g)

γB
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q8} = −1

2
γB(n̄b + n̄a + 2)B̃ρ̃SB̃

†, (201h)

γA
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q9} = −1

2
γA(n̄b + n̄a)Ã

†ρ̃SÃ, (201i)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q10} = −1

2

√
γAγB(n̄b − n̄a)Ã†ρ̃SB̃, (201j)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q11} = −1

2

√
γAγB(n̄b − n̄a)B̃†ρ̃SÃ, (201k)

γB
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q12} = −1

2
γB(n̄b + n̄a)B̃

†ρ̃SB̃, (201l)

γA
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q13} =
1

2
γA(n̄b + n̄a + 2)ρ̃SÃ

†Ã, (201m)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q14} =
1

2

√
γAγB(n̄b − n̄a)ρ̃SÃ†B̃, (201n)

√
γAγB

π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q15} =
1

2

√
γAγB(n̄b − n̄a)ρ̃SB̃†Ã, (201o)

γB
π

∫ t

0

dτ

∫ ∞
−∞

dω

∫ ∞
−∞

dω′ trB {Q16} =
1

2
γB(n̄b + n̄a + 2)ρ̃SB̃

†B̃. (201p)

(201q)

Adding those terms (+H.C) we get:
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dρ̃S
dt

= γA

(
−Ãρ̃SÃ† + ρ̃SÃ

†Ã
)

+ γB

(
−B̃ρ̃SB̃† + ρ̃SB̃

†B̃
)

+ γA
n̄a + n̄b

2

(
ÃÃ†ρ̃S − Ã†ρ̃SÃ− Ãρ̃SÃ† + ρ̃SÃ

†Ã
)

+ γB
n̄a + n̄b

2

(
B̃B̃†ρ̃S − B̃†ρ̃SB̃ − B̃ρ̃SB̃† + ρ̃SB̃

†B̃
)

+
√
γAγB

n̄a − n̄b
2

(
ÃB̃†ρ̃S + ρ̃SB̃

†Ã+ B̃Ã†ρ̃S + ρ̃SÃ
†B̃ − Ã†ρ̃SB̃ − B̃ρ̃SÃ† − B̃†ρ̃SÃ− Ãρ̃SB̃†

)
+H.C, (202)

which can be written

dρ̃S
dt

= γA

(
n̄a + n̄b

2
+ 1

)
DÃ[ρ̃S] + γA

n̄a + n̄b
2

DÃ† [ρ̃S] +

(
n̄a + n̄b

2
+ 1

)
γBDB̃[ρ̃S] + γB

n̄a + n̄b
2

DB̃† [ρ̃S]

+
√
γAγB

n̄a − n̄b
2

(
2Ãρ̃SB̃

† −
{
ρ̃S, B̃

†Ã
}

+ 2B̃†ρ̃SÃ−
{
ρ̃S, ÃB̃

†
}

+ H.c.

)
, (203)

which is Eq(40) .
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B Additional figures

We mentioned in the main text that our simulations show that the beam splitter interaction
produces no effect when λ̄ is too small. In the following figures we show that this is indeed the
case for the case λ̄ = 0.01.

Figure 13: Result of the simulations of Eqs. (122), corresponding to the membrane model within
the truncated Wigner. We consider initial uncorrelated thermal optical states (right column) and
an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000, and λ = 0.01. We
average over 106 stochastic paths, and show the simulations in dashed red and the analytical
solutions of section 4.2 in blue.
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Figure 14: Result of the simulations of Eqs. (127), corresponding to the membrane model
within the positive P representation. We consider initial uncorrelated thermal optical states
(right column) and an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000,
and λ = 0.01. We average over 103 stochastic paths, and show the simulations in dashed red and
the analytical solutions of section 4.2 in blue.
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Figure 15: Result of the simulations of Eqs. (121), corresponding to the piston model within the
truncated Wigner representation. We consider initial uncorrelated thermal optical states (right
column) and an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000, and
λ = 0.01. We average over 106 stochastic paths, and show the simulations in dashed red and the
analytical solutions of section 4.2 in blue.
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Figure 16: Result of the simulations of Eqs. (126), corresponding to the piston model within the
positive P representation. We consider initial uncorrelated thermal optical states (right column)
and an entangled state (left column). The parameters are ḡ = 0.001, n̄ = 1000, and λ = 0.01.
We average over 106 stochastic paths, and show the simulations in dashed red and the analytical
solutions of section 4.2 in blue.
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C Codes

This appendix gives the XML codes of the simulations as well as indications on the way to use
them under Linux. It is divided into 3 sections. The first two sections are dedicated to the
membrane and the piston, respectively. The third section shows how to compile the codes and
extract the data for plots. All the codes have a similar structure. Thus, we start by showing a
complete example and then we just show which parts have to be replaced in order to change the
representation or the initial condition.

C.1 Membrane

A first code is displayed below. As written in the description, it simulates the case of the Wigner
representation for thermal initial conditions. (Notice that the outputs can only be real).

1 <?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>
2 <s imu la t i on xmds−ve r s i on=”2”>
3 <name>2MemWigTher</name>
4

5 <author>Grigor iou Emmanouil</ author>
6 <d e s c r i p t i o n>
7 System o f s t o o c h a s t i c d i f f e r e n t i a l equat ions f o r :
8 − Wigner d i s t r i b u t i o n
9 − No environments

10 − Membrane + Beam−s p l i t t e r
11 − 2 c a v i t i e s
12 − Thermal s t a t e f o r c a v i t i e s
13 − Gaussian s t a t e f o r p i s ton
14 </ d e s c r i p t i o n>
15

16 < f e a t u r e s>
17 <g l o b a l s>
18 < ! [CDATA[
19 r e a l g = 0 . 0 0 1 ;
20 r e a l lambda = 10 ;
21 r e a l n = 1000 ;
22 ] ]>
23 </ g l o b a l s>
24 </ f e a t u r e s>
25

26 <geometry>
27 <propagat ion dimens ion> t </ propagat ion dimens ion>
28 </geometry>
29

30 < !−− This l i n e d e f i n e s the number o f s t o c h a s t i c paths −−>
31 <d r i v e r name=” multi−path” paths=”1000000” />
32

33 < !−− Next we d e f i n e a no i s e vec to r f o r the sampling o f the i n i t i a l c o n d i t i o n s
−−>

34 <n o i s e v e c t o r name=” i n i t i a l C o n d i t i o n s S a m p l i n g ” dimensions=”” kind=” gauss ” type
=”complex” method=” s o l i r t e ”>

35 <components>n1 n2 n3 </components>
36 </ n o i s e v e c t o r>
37

38 < !−− ’ v ec to r ’ d e s c r i b e s the v a r i a b l e s that we w i l l be evo lv ing . −−>
39 <vec to r name=” s t o c h a s t i c V a r i a b l e s ” type=”complex”>
40 <components>
41 a b x
42 </components>
43 < i n i t i a l i s a t i o n>
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44 <dependenc ies>i n i t i a l C o n d i t i o n s S a m p l i n g</ dependenc ies>
45 < ! [CDATA[
46 a = s q r t (n+0.5)∗n1 ;
47 b = s q r t (n+0.5)∗n2 ;
48 x = n3∗ s q r t ( 0 . 5 ) ;
49 ] ]>
50 </ i n i t i a l i s a t i o n>
51 </ vec to r>
52

53 <sequence>
54 < i n t e g r a t e a lgor i thm=”ARK89” i n t e r v a l=” 6 .2 ” t o l e r a n c e=”1e−15”>
55 <samples>100</ samples>
56 <ope ra to r s>
57 < i n t e g r a t i o n v e c t o r s>s t o c h a s t i c V a r i a b l e s</ i n t e g r a t i o n v e c t o r s>
58 < ! [CDATA[
59 da dt = i ∗g ∗( x+conj ( x ) ) ∗a − i ∗ lambda∗b ;
60 db dt = − i ∗g ∗( x+conj ( x ) ) ∗b − i ∗ lambda∗a ;
61 dx dt = − i ∗x + i ∗g ∗( a∗ conj ( a )−b∗ conj (b) ) ;
62 ] ]>
63 </ ope ra to r s>
64 </ i n t e g r a t e>
65 </ sequence>
66

67 < !−− This part d e f i n e s what data w i l l be saved in the output f i l e −−>
68 <output format=” hdf5 ” f i l ename=”2MemWigTher g0001 l10 n1000FINAL . x s i l ”>
69 <sampl ing group i n i t i a l s a m p l e=” yes ”>
70 <moments>anorm bnorm cR cI ccR cc I cnorm </moments>
71 <dependenc ies>s t o c h a s t i c V a r i a b l e s</ dependenc ies>
72 < ! [CDATA[
73 anorm = a . Re ( ) ∗a . Re ( ) + a . Im ( ) ∗a . Im ( ) ;
74 bnorm = b . Re ( ) ∗b . Re ( ) + b . Im ( ) ∗b . Im ( ) ;
75 cR = x . Re ( ) ;
76 c I = x . Im ( ) ;
77 ccR = x . Re ( ) ∗x . Re ( )−x . Im ( ) ∗x . Im ( ) ;
78 c c I = 2∗x . Re ( ) ∗x . Im ( ) ;
79 cnorm = x . Re ( ) ∗x . Re ( ) + x . Im ( ) ∗x . Im ( ) ;
80 ] ]>
81 </ sampl ing group>
82 </ output>
83 </ s imu la t i on>
84

To change the initial conditions of the simulation, one has to change the content of the tags
< initialisation >< /initialisation >. Entangled intitial conditions as sampled in section 4.3 are
obtained by replacing them with the following piece of code:

1 < i n i t i a l i s a t i o n>
2 <dependenc ies>i n i t i a l C o n d i t i o n s S a m p l i n g</ dependenc ies>
3 < ! [CDATA[
4 a = 1/ s q r t (8 ) ∗ ( exp ( r ) ∗ xplus+exp(−r ) ∗xminus +
5 i ∗exp(−r ) ∗pplus+i ∗exp ( r ) ∗pminus ) ;
6 b = 1/ s q r t (8 ) ∗ ( exp ( r ) ∗xplus−exp(−r ) ∗xminus+
7 i ∗exp(−r ) ∗pplus−i ∗exp ( r ) ∗pminus ) ;
8 x = ( n1 +i ∗n2 ) ∗ 0 . 5 ;
9 ] ]>

10 </ i n i t i a l i s a t i o n>
11
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where we defined r in

1 <g l o b a l s>
2 < ! [CDATA[
3 r e a l g = 0 . 0 0 1 ;
4 r e a l lambda = 10 ;
5 r e a l n = 1000 ;
6 r e a l r = as inh ( s q r t (n) ) ;
7 ] ]>
8 </ g l o b a l s>
9

In the case of the P distribution, we have to define a longer vector for the variables of the extended
phase space10. For example in the thermal case the code will be:

1 <vec to r name=” s t o c h a s t i c V a r i a b l e s ” type=”complex”>
2 <components>
3 a ap b bp x xp
4 </components>
5 < i n i t i a l i s a t i o n>
6 <dependenc ies>i n i t i a l C o n d i t i o n s S a m p l i n g</ dependenc ies>
7 < ! [CDATA[
8 a = s q r t (n) ∗n1 ;
9 ap = conj ( a ) ;

10 b = s q r t (n) ∗n2 ;
11 bp = conj (b) ;
12 x = 0 ;
13 xp = 0 ;
14 ] ]>
15 </ i n i t i a l i s a t i o n>
16 </ vec to r>
17

The system of equations (127) is:

1 <sequence>
2 < i n t e g r a t e a lgor i thm=”ARK89” i n t e r v a l=” 6 .2 ” t o l e r a n c e=”1e−7”>
3 <samples>100</ samples>
4 <ope ra to r s>
5 < i n t e g r a t i o n v e c t o r s>s t o c h a s t i c V a r i a b l e s</ i n t e g r a t i o n v e c t o r s>
6 <dependenc ies>QuantumNoise</ dependenc ies>
7 < ! [CDATA[
8 da dt = i ∗g ∗( x+xp ) ∗a − i ∗ lambda∗b + s q r t ( i ∗g∗a ) ∗ k s i 1 ;
9 dap dt = − i ∗g ∗( x+xp ) ∗ap + i ∗ lambda∗bp +s q r t (− i ∗g∗ap ) ∗ k s i 2 ;

10 db dt = − i ∗g ∗( x+xp ) ∗b − i ∗ lambda∗a + s q r t (− i ∗g∗b) ∗ k s i 3 ;
11 dbp dt = i ∗g ∗( x+xp ) ∗bp + i ∗ lambda∗ap + s q r t ( i ∗g∗bp) ∗ k s i 4 ;
12 dx dt = − i ∗x + i ∗g ∗( ap∗a−bp∗b) + s q r t ( i ∗g∗a ) ∗ conj ( k s i 1 )
13 + s q r t (− i ∗g∗b) ∗ conj ( k s i 3 ) ;
14 dxp dt = i ∗xp − i ∗g ∗( ap∗a−bp∗b) + s q r t (− i ∗g∗ap ) ∗ conj ( k s i 2 )
15 + s q r t ( i ∗g∗bp) ∗ conj ( k s i 4 ) ;
16 ] ]>
17 </ ope ra to r s>
18 </ i n t e g r a t e>
19 </ sequence>

10We use substrict p for the new variables, for example, ap ≡ α+.
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Finally, we also have to change the outputs :

1 < !−− This part d e f i n e s what data w i l l be saved in the output f i l e −−>
2 <output format=” hdf5 ” f i l ename=”2MemPdisTher g0001 l10 n1000 1000FINAL . x s i l ”>
3 <sampl ing group i n i t i a l s a m p l e=” yes ”>
4 <moments>photonNumberaR photonNumberaI photonNumberbR photonNumberbI cR c I
5 ccR cc I phononNumberR phononNumberI na2R na2I nb2R nb2I nanbR nanbI</moments>
6 <dependenc ies>s t o c h a s t i c V a r i a b l e s</ dependenc ies>
7 < ! [CDATA[
8 photonNumberaR = ap . Re ( ) ∗a . Re ( ) − ap . Im ( ) ∗a . Im ( ) ;
9 photonNumberaI = ap . Im ( ) ∗a . Re ( ) + ap . Re ( ) ∗a . Im ( ) ;

10 photonNumberbR = bp . Re ( ) ∗b . Re ( ) − bp . Im ( ) ∗b . Im ( ) ;
11 photonNumberbI = bp . Im ( ) ∗b . Re ( ) + bp . Re ( ) ∗b . Im ( ) ;
12 cR = x . Re ( ) ;
13 c I = x . Im ( ) ;
14 ccR = x . Re ( ) ∗x . Re ( )−x . Im ( ) ∗x . Im ( ) ;
15 c c I = 2∗x . Re ( ) ∗x . Im ( ) ;
16 phononNumberR = xp . Re ( ) ∗x . Re ( ) − xp . Im ( ) ∗x . Im ( ) ;
17 phononNumberI = xp . Im ( ) ∗x . Re ( ) + xp . Re ( ) ∗x . Im ( ) ;
18 na2R = ( ap . Re ( ) ∗ ap . Re ( ) − ap . Im ( ) ∗ap . Im ( ) )
19 ∗( a . Re ( ) ∗ a . Re ( ) − a . Im ( ) ∗a . Im ( ) )
20 − 4∗ap . Re ( ) ∗ap . Im ( ) ∗a . Re ( ) ∗a . Im ( ) ;
21 na2I = 2∗ap . Re ( ) ∗ap . Im ( ) ∗( a . Re ( ) ∗ a . Re ( ) − a . Im ( ) ∗a . Im ( ) )
22 + a . Re ( ) ∗a . Im ( ) ∗( ap . Re ( ) ∗ ap . Re ( ) − ap . Im ( ) ∗ap . Im ( ) ) ;
23 nb2R = ( bp . Re ( ) ∗ bp . Re ( ) − bp . Im ( ) ∗bp . Im ( ) )
24 ∗( b . Re ( ) ∗ b . Re ( ) − b . Im ( ) ∗b . Im ( ) )
25 − 4∗bp . Re ( ) ∗bp . Im ( ) ∗b . Re ( ) ∗b . Im ( ) ;
26 nb2I = 2∗bp . Re ( ) ∗bp . Im ( ) ∗( b . Re ( ) ∗ b . Re ( ) − b . Im ( ) ∗b . Im ( ) )
27 + b . Re ( ) ∗b . Im ( ) ∗( bp . Re ( ) ∗ bp . Re ( ) − bp . Im ( ) ∗bp . Im ( ) ) ;
28 nanbR = ( ap . Re ( ) ∗a . Re ( )−ap . Im ( ) ∗a . Im ( ) ) ∗(bp . Re ( ) ∗b . Re ( )−bp . Im ( ) ∗b . Im ( ) )
29 − ( ap . Im ( ) ∗a . Re ( ) + ap . Re ( ) ∗a . Im ( ) ) ∗(bp . Im ( ) ∗b . Re ( )
30 + bp . Re ( ) ∗b . Im ( ) ) ;
31 nanbI = ( ap . Im ( ) ∗a . Re ( )+ap . Re ( ) ∗a . Im ( ) ) ∗(bp . Re ( ) ∗b . Re ( )−bp . Im ( ) ∗b . Im ( ) )
32 + ( ap . Re ( ) ∗a . Re ( ) − ap . Im ( ) ∗a . Im ( ) ) ∗(bp . Im ( ) ∗b . Re ( )
33 + bp . Re ( ) ∗b . Im ( ) ) ;
34 ] ]>
35 </ sampl ing group>
36 </ output>
37

C.2 Piston

The codes of the piston are similar to those of the membrane. But the variables and their
initialization, the equations and the outputs are different. Thus, we start with a complete example.
We give the one of the positive P representation for entangled initial conditions as it may be the
more complicated and the most different from the previous one.

1 <?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>
2 <s imu la t i on xmds−ve r s i on=”2”>
3 <name>2 PistPdisEnt</name>
4

5 <author>Grigor iou Emmanouil</ author>
6 <d e s c r i p t i o n>
7 System o f s t o o c h a s t i c d i f f e r e n t i a l equat ions f o r :
8 − p o s i t i v e P d i s t r i b u t i o n
9 − No environments

10 − Piston + Beam−s p l i t t e r
11 − Entangled s t a t e f o r c a v i t i e s
12 </ d e s c r i p t i o n>
13
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14

15 < f e a t u r e s>
16 <g l o b a l s>
17 < ! [CDATA[
18 r e a l g = 0 . 0 0 1 ;
19 r e a l lambda = 10 ;
20 r e a l n = 1000 ;
21 r e a l r = as inh ( s q r t (n) ) ;
22 r e a l c r = cosh ( r ) ;
23 ] ]>
24 </ g l o b a l s>
25 </ f e a t u r e s>
26

27 <geometry>
28 <propagat ion dimens ion> t </ propagat ion dimens ion>
29 </geometry>
30

31 <d r i v e r name=” multi−path” paths=”10000” />
32

33

34 <n o i s e v e c t o r name=” i n i t i a l C o n d i t i o n s S a m p l i n g ” dimensions=”” kind=” gauss ” type=”
r e a l ” method=” s o l i r t e ”>

35 <components>n1 n2 n3 n4 n5 n6 n7 n8</components>
36 </ n o i s e v e c t o r>
37

38 <vec to r name=” s t o c h a s t i c V a r i a b l e s ” type=”complex”>
39 <components>
40 a ap b bp x p
41 </components>
42 < i n i t i a l i s a t i o n>
43 <dependenc ies>i n i t i a l C o n d i t i o n s S a m p l i n g</ dependenc ies>
44 < ! [CDATA[
45 a = s q r t ( cr ) ∗0 .5 ∗( i ∗exp ( r ∗0 . 5 ) ∗n1− exp(−r ∗0 . 5 ) ∗n2 − exp ( r ∗0 . 5 ) ∗n5
46 − i ∗exp(−r ∗0 . 5 ) ∗n6 ) + 0 . 5∗ ( n3 − n7 + i ∗n4 − i ∗n8 ) ;
47 ap = s q r t ( cr ) ∗0 . 5∗ ( i ∗exp ( r ∗0 . 5 ) ∗n1 − exp(−r ∗0 . 5 ) ∗n2 + exp ( r ∗0 . 5 ) ∗n5
48 + i ∗exp(−r ∗0 . 5 ) ∗n6 ) + 0 . 5∗ ( n3 + n7 + i ∗n4 + i ∗n8 ) ;
49 b = s q r t ( cr ) ∗0 . 5∗ ( − i ∗exp ( r ∗0 . 5 ) ∗n1 − exp(−r ∗0 . 5 ) ∗n2 − exp ( r ∗0 . 5 ) ∗n5
50 + i ∗exp(−r ∗0 . 5 ) ∗n6 ) + 0.5∗(− n3 + n7 + i ∗n4 − i ∗n8 ) ;
51 bp= s q r t ( cr ) ∗0 .5 ∗( − i ∗exp ( r ∗0 . 5 ) ∗n1 − exp(−r ∗0 . 5 ) ∗n2 + exp ( r ∗0 . 5 ) ∗n5
52 − i ∗exp(−r ∗0 . 5 ) ∗n6 ) + 0.5∗(− n3 − n7 + i ∗n4 + i ∗n8 ) ;
53 x = 0 ;
54 p = 0 ;
55 ] ]>
56 </ i n i t i a l i s a t i o n>
57 </ vec to r>
58

59 <n o i s e v e c t o r name=”QuantumNoise” dimensions=”” kind=” wiener ” type=”complex”
method=” s o l i r t e ” >

60 <components>k s i 1 k s i 2 k s i 3 k s i 4 ksim</components>
61 </ n o i s e v e c t o r>
62

63

64 <sequence>
65 < i n t e g r a t e a lgor i thm=”ARK89” i n t e r v a l=”2” t o l e r a n c e=”1e−7”>
66 <samples>100</ samples>
67 <ope ra to r s>
68 < i n t e g r a t i o n v e c t o r s>s t o c h a s t i c V a r i a b l e s</ i n t e g r a t i o n v e c t o r s>
69 <dependenc ies>QuantumNoise</ dependenc ies>
70 < ! [CDATA[
71 da dt = i ∗g∗x∗a − i ∗ lambda∗b + s q r t ( i ∗g∗a ) ∗ k s i 1 ;
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72 dap dt = − i ∗g∗x∗ap + i ∗ lambda∗bp +s q r t (− i ∗g∗ap ) ∗ k s i 2 ;
73 db dt = − i ∗g∗x∗b − i ∗ lambda∗a + s q r t (− i ∗g∗b) ∗ k s i 3 ;
74 dbp dt = i ∗g∗x∗bp + i ∗ lambda∗ap + s q r t ( i ∗g∗bp) ∗ k s i 4 ;
75 dx dt = p + s q r t ( i ) ∗ksim +
76 s q r t ( i ∗g ) ∗( i ∗ s q r t ( ap ) ∗ conj ( k s i 2 )+s q r t ( a ) ∗ conj ( k s i 1 )
77 + i ∗ s q r t (−bp) ∗ conj ( k s i 4 )+s q r t (−b) ∗ conj ( k s i 3 ) ) ;
78 dp dt = 2∗g ∗( ap∗a−bp∗b)− i ∗ s q r t ( i ) ∗ conj ( ksim )+
79 s q r t (− i ∗g ) ∗( i ∗ s q r t ( ap ) ∗ conj ( k s i 2 )−s q r t ( a ) ∗ conj ( k s i 1 )
80 + i ∗ s q r t (−bp) ∗ conj ( k s i 4 )−s q r t (−b) ∗ conj ( k s i 3 ) ) ;
81 ] ]>
82 </ ope ra to r s>
83 </ i n t e g r a t e>
84 </ sequence>
85

86 < !−− This part d e f i n e s what data w i l l be saved in the output f i l e −−>
87 <output format=” hdf5 ” f i l ename=”2 PistPdisEnt g0001 l10 n1000 10000FINAL . x s i l ”>
88 <sampl ing group i n i t i a l s a m p l e=” yes ”>
89 <moments>photonNumberaR photonNumberaI photonNumberbR photonNumberbI xR xI

x2R x2I pR pI p2R p2I xpR xpI na2R na2I nb2R nb2I nanbR nanbI </moments>
90 <dependenc ies>s t o c h a s t i c V a r i a b l e s</ dependenc ies>
91 < ! [CDATA[
92 photonNumberaR = ap . Re ( ) ∗a . Re ( ) − ap . Im ( ) ∗a . Im ( ) ;
93 photonNumberaI = ap . Im ( ) ∗a . Re ( ) + ap . Re ( ) ∗a . Im ( ) ;
94 photonNumberbR = bp . Re ( ) ∗b . Re ( ) − bp . Im ( ) ∗b . Im ( ) ;
95 photonNumberbI = bp . Im ( ) ∗b . Re ( ) + bp . Re ( ) ∗b . Im ( ) ;
96 xR = x . Re ( ) ;
97 xI = x . Im ( ) ;
98 x2R = x . Re ( ) ∗x . Re ( )−x . Im ( ) ∗x . Im ( ) ;
99 x2I = 2∗x . Re ( ) ∗x . Im ( ) ;

100 pR = p . Re ( ) ;
101 pI = p . Im ( ) ;
102 p2R = p . Re ( ) ∗p . Re ( )−p . Im ( ) ∗p . Im ( ) ;
103 p2I = 2∗p . Re ( ) ∗p . Im ( ) ;
104 xpR = x . Re ( ) ∗p . Re ( )−x . Im ( ) ∗p . Im ( ) ;
105 xpI = x . Re ( ) ∗p . Im ( )+x . Im ( ) ∗p . Re ( ) ;
106 na2R = ( ap . Re ( ) ∗ ap . Re ( ) − ap . Im ( ) ∗ap . Im ( ) )
107 ∗( a . Re ( ) ∗ a . Re ( ) − a . Im ( ) ∗a . Im ( ) )
108 − 4∗ap . Re ( ) ∗ap . Im ( ) ∗a . Re ( ) ∗a . Im ( ) ;
109 na2I = 2∗ap . Re ( ) ∗ap . Im ( ) ∗( a . Re ( ) ∗ a . Re ( ) − a . Im ( ) ∗a . Im ( ) )
110 + a . Re ( ) ∗a . Im ( ) ∗( ap . Re ( ) ∗ ap . Re ( ) − ap . Im ( ) ∗ap . Im ( ) ) ;
111 nb2R = ( bp . Re ( ) ∗ bp . Re ( ) − bp . Im ( ) ∗bp . Im ( ) )
112 ∗( b . Re ( ) ∗ b . Re ( ) − b . Im ( ) ∗b . Im ( ) )
113 − 4∗bp . Re ( ) ∗bp . Im ( ) ∗b . Re ( ) ∗b . Im ( ) ;
114 nb2I = 2∗bp . Re ( ) ∗bp . Im ( ) ∗( b . Re ( ) ∗ b . Re ( ) − b . Im ( ) ∗b . Im ( ) )
115 + b . Re ( ) ∗b . Im ( ) ∗( bp . Re ( ) ∗ bp . Re ( ) − bp . Im ( ) ∗bp . Im ( ) ) ;
116 nanbR = ( ap . Re ( ) ∗a . Re ( )−ap . Im ( ) ∗a . Im ( ) ) ∗(bp . Re ( ) ∗b . Re ( )−bp . Im ( ) ∗b . Im ( ) )
117 −(ap . Im ( ) ∗a . Re ( )+ap . Re ( ) ∗a . Im ( ) ) ∗(bp . Im ( ) ∗b . Re ( )+bp . Re ( ) ∗b . Im ( ) ) ;
118 nanbI = ( ap . Im ( ) ∗a . Re ( )+ap . Re ( ) ∗a . Im ( ) ) ∗(bp . Re ( ) ∗b . Re ( )−bp . Im ( ) ∗b . Im ( ) )
119 + ( ap . Re ( ) ∗a . Re ( )−ap . Im ( ) ∗a . Im ( ) ) ∗(bp . Im ( ) ∗b . Re ( )+bp . Re ( ) ∗b . Im ( ) ) ;
120 ] ]>
121 </ sampl ing group>
122 </ output>
123 </ s imu la t i on>
124

For completeness we also give the equations and the outputs of the Wigner distribution

1 <sequence>
2 < i n t e g r a t e a lgor i thm=”ARK89” i n t e r v a l=”2” t o l e r a n c e=”1e−15”>
3 <samples>100</ samples>
4 <ope ra to r s>
5 < i n t e g r a t i o n v e c t o r s>s t o c h a s t i c V a r i a b l e s</ i n t e g r a t i o n v e c t o r s>
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6 < ! [CDATA[
7 da dt = i ∗g∗x∗a − i ∗ lambda∗b ;
8 db dt = − i ∗g∗x∗b − i ∗ lambda∗a ;
9 dx dt = p ;

10 dp dt = 2∗g ∗( a∗ conj ( a )−b∗ conj (b) ) ;
11 ] ]>
12 </ ope ra to r s>
13 </ i n t e g r a t e>
14 </ sequence>
15

16

1 <output format=” hdf5 ” f i l ename=”2 PistWigTher g0001 l10 n1000FINAL . x s i l ”>
2 <sampl ing group i n i t i a l s a m p l e=” yes ”>
3 <moments>anorm bnorm xR x2R pR p2R xpR </moments>
4 <dependenc ies>s t o c h a s t i c V a r i a b l e s</ dependenc ies>
5 < ! [CDATA[
6 anorm = a . Re ( ) ∗a . Re ( ) + a . Im ( ) ∗a . Im ( ) ;
7 bnorm = b . Re ( ) ∗b . Re ( ) + b . Im ( ) ∗b . Im ( ) ;
8 xR = x . Re ( ) ;
9 x2R = x . Re ( ) ∗x . Re ( )−x . Im ( ) ∗x . Im ( ) ;

10 pR = p . Re ( ) ;
11 p2R = p . Re ( ) ∗p . Re ( )−p . Im ( ) ∗p . Im ( ) ;
12 xpR = x . Re ( ) ∗p . Re ( )−x . Im ( ) ∗p . Im ( ) ;
13 ] ]>
14 </ sampl ing group>
15 </ output>
16

C.3 Compiling and plotting under Linux

In order to compile an xmds program, you must first save your code in a xmds file. Then you can
open a terminal in the adequate repertory and enter the command11

xmds2 fileName.xmds

And that’s it, the simulation is compiled. To launch it you can then use

./fileName

This will execute the simulations and output an .xsil file and an .h5 file containing the data.
In order to plot the data of the simulation, you can convert the .xsil file to a Matlab file using

xsil2graphics2 -m fileName.xsil

This generates a Matlab file that loads the h5 file and transform it into readable Matlab ar-
rays. For example, the generated code for the case of the piston within the Wigner representation
with thermal initial conditions is

1 i f ( e x i s t ( ’OCTAVE VERSION ’ , ’ b u i l t i n ’ ) ) % Octave
2 load 2 PistWigTher g0001 l0 n1000FINAL . h5
3 t 1 = eva l ( ’ 1 . t ’ ) ;
4 mean anorm 1 = eva l ( ’ 1 . mean anorm ’ ) ;
5 mean anorm 1 = permute ( mean anorm 1 , ndims ( mean anorm 1 ) :−1:1) ;
6 mean bnorm 1 = eva l ( ’ 1 . mean bnorm ’ ) ;

11For more detailled information you can consult the site of XMDS2: http://www.xmds.org/

81



7 mean bnorm 1 = permute ( mean bnorm 1 , ndims ( mean bnorm 1 ) :−1:1) ;
8 mean xR 1 = eva l ( ’ 1 . mean xR ’ ) ;
9 mean xR 1 = permute ( mean xR 1 , ndims ( mean xR 1 ) :−1:1) ;

10 mean x2R 1 = eva l ( ’ 1 . mean x2R ’ ) ;
11 mean x2R 1 = permute ( mean x2R 1 , ndims ( mean x2R 1 ) :−1:1) ;
12 mean pR 1 = eva l ( ’ 1 . mean pR ’ ) ;
13 mean pR 1 = permute ( mean pR 1 , ndims ( mean pR 1 ) :−1:1) ;
14 mean p2R 1 = eva l ( ’ 1 . mean p2R ’ ) ;
15 mean p2R 1 = permute ( mean p2R 1 , ndims ( mean p2R 1 ) :−1:1) ;
16 mean xpR 1 = eva l ( ’ 1 . mean xpR ’ ) ;
17 mean xpR 1 = permute ( mean xpR 1 , ndims ( mean xpR 1 ) :−1:1) ;
18 s tderr anorm 1 = eva l ( ’ 1 . s tderr anorm ’ ) ;
19 s tderr anorm 1 = permute ( stderr anorm 1 , ndims ( s tderr anorm 1 ) :−1:1) ;
20 s tderr bnorm 1 = eva l ( ’ 1 . stderr bnorm ’ ) ;
21 s tderr bnorm 1 = permute ( stderr bnorm 1 , ndims ( stderr bnorm 1 ) :−1:1) ;
22 s tde r r xR 1 = eva l ( ’ 1 . s tderr xR ’ ) ;
23 s tde r r xR 1 = permute ( stderr xR 1 , ndims ( s tde r r xR 1 ) :−1:1) ;
24 s tder r x2R 1 = eva l ( ’ 1 . s tderr x2R ’ ) ;
25 s tder r x2R 1 = permute ( stderr x2R 1 , ndims ( s tder r x2R 1 ) :−1:1) ;
26 s tder r pR 1 = eva l ( ’ 1 . s tderr pR ’ ) ;
27 s tder r pR 1 = permute ( stderr pR 1 , ndims ( s tder r pR 1 ) :−1:1) ;
28 s tder r p2R 1 = eva l ( ’ 1 . s tderr p2R ’ ) ;
29 s tder r p2R 1 = permute ( stderr p2R 1 , ndims ( s tder r p2R 1 ) :−1:1) ;
30 s tder r xpR 1 = eva l ( ’ 1 . stderr xpR ’ ) ;
31 s tder r xpR 1 = permute ( stderr xpR 1 , ndims ( s tderr xpR 1 ) :−1:1) ;
32 c l e a r 1 ;
33 e l s e % MATLAB
34 t 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ t ’ ) ;
35 mean anorm 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean anorm ’ ) ;
36 mean anorm 1 = permute ( mean anorm 1 , ndims ( mean anorm 1 ) :−1:1) ;
37 mean bnorm 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean bnorm ’ ) ;
38 mean bnorm 1 = permute ( mean bnorm 1 , ndims ( mean bnorm 1 ) :−1:1) ;
39 mean xR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean xR ’ ) ;
40 mean xR 1 = permute ( mean xR 1 , ndims ( mean xR 1 ) :−1:1) ;
41 mean x2R 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean x2R ’ ) ;
42 mean x2R 1 = permute ( mean x2R 1 , ndims ( mean x2R 1 ) :−1:1) ;
43 mean pR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean pR ’ ) ;
44 mean pR 1 = permute ( mean pR 1 , ndims ( mean pR 1 ) :−1:1) ;
45 mean p2R 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean p2R ’ ) ;
46 mean p2R 1 = permute ( mean p2R 1 , ndims ( mean p2R 1 ) :−1:1) ;
47 mean xpR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/mean xpR ’ ) ;
48 mean xpR 1 = permute ( mean xpR 1 , ndims ( mean xpR 1 ) :−1:1) ;
49 s tderr anorm 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/

stderr anorm ’ ) ;
50 s tderr anorm 1 = permute ( stderr anorm 1 , ndims ( s tderr anorm 1 ) :−1:1) ;
51 s tderr bnorm 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/

stderr bnorm ’ ) ;
52 s tderr bnorm 1 = permute ( stderr bnorm 1 , ndims ( stderr bnorm 1 ) :−1:1) ;
53 s tde r r xR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ stderr xR ’ ) ;
54 s tde r r xR 1 = permute ( stderr xR 1 , ndims ( s tde r r xR 1 ) :−1:1) ;
55 s tder r x2R 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ stderr x2R ’ ) ;
56 s tder r x2R 1 = permute ( stderr x2R 1 , ndims ( s tder r x2R 1 ) :−1:1) ;
57 s tder r pR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ stderr pR ’ ) ;
58 s tder r pR 1 = permute ( stderr pR 1 , ndims ( s tder r pR 1 ) :−1:1) ;
59 s tder r p2R 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ stderr p2R ’ ) ;
60 s tder r p2R 1 = permute ( stderr p2R 1 , ndims ( s tder r p2R 1 ) :−1:1) ;
61 s tder r xpR 1 = hdf5read ( ’ 2 PistWigTher g0001 l0 n1000FINAL . h5 ’ , ’ /1/ stderr xpR ’ ) ;
62 s tder r xpR 1 = permute ( stderr xpR 1 , ndims ( s tderr xpR 1 ) :−1:1) ;
63 end
64
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