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Abstract

The uncertainty principle lies at the heart of quantum physics. It exhibits one of the
key divergences between a classical and a quantum system: it is impossible to define
a quantum state for which the values of two observables that do not commute are si-
multaneously specified with infinite precision. A paradigmatic example is given by
Heisenberg’s original formulation of the uncertainty principle expressed in terms of
variances of two canonically-conjugate variables, such as position x and momentum
p, which was later generalized to a symplectic-invariant form by Schrédinger and
Robertson. A different kind of uncertainty relations, originated by Biatynicki-Birula
and Mycielski, again for canonically-conjugate variables, relies on Shannon entropy
instead of variances as a measure of uncertainty. In this thesis, we suggest several
improvements of these entropic uncertainty relations and highlight the fact that they
are better formulated in terms of entropy power, a notion borrowed from the infor-
mation theory of real-valued signals. Our first novel entropic uncertainty relation
takes x-p correlations into account and is consequently saturated by all pure Gaus-
sian states in an arbitrary number of modes, improving on the original formulation
by Biatynicki-Birula and Mycielski. Our second main result is the derivation of an
entropic uncertainty relation that holds for any n-tuples of not-necessarily canoni-
cally conjugate variables based on the matrix of their commutators. We then define
a general form of the entropic uncertainty principle that combines both previous re-
sults. It expresses the incompatibility between two arbitrary variable n-uples and
is saturated by all pure Gaussian states. Interestingly, we can also deduce from it
the most general form of the Robertson uncertainty relation based on the covariance

matrix of n variables.

This line of research underlines the interest of defining an entropic uncertainty rela-
tion that is intrinsically invariant under symplectic transformations. Then, as a first
attempt to reach this goal, we conjecture a symplectic-invariant uncertainty relation
that is based on the joint differential entropy of the Wigner function. This conjecture
is, however, only legitimate for states with a non-negative Wigner function. We also
suggest a complex extension of this so-called Wigner entropy, which could provide
the way towards an extension (and proof) of the above conjecture for all states. As
a second attempt, we introduce the notion of multi-copy uncertainty observables,

exploiting a connection with the algebra of angular momenta. Expressing the posi-

ix



tivity of the variance of our multi-copy observable coincides with the Schrodinger-
Robertson uncertainty relation, which suggests that the discrete Shannon entropy
of such an uncertainty observable provides a new symplectic-invariant measure of

uncertainty.

Currently available separability criteria for continuous-variable systems imply a nec-
essary and sufficient condition for a two-mode Gaussian state to be separable, but
leave many entangled non-Gaussian states undetected. In this thesis, we introduce
two improved separability criteria that enable a stronger entanglement detection.
The first improved condition is based on the knowledge of an additional parame-
ter, namely the degree of Gaussianity, and exploits a connection with Gaussianity-
bounded uncertainty relations by Mandilara and Cerf. We exhibit families of non-
Gaussian entangled states whose entanglement remains undetected by the Duan-
Simon criterion. The second improved separability criterion is based on our im-
proved entropic uncertainty relation that takes x-p correlations into account, and has
the main advantage over the one proposed by Walborn et al. that it does not require

any optimization procedure.



Titre

Etude des relations d’incertitude entropiques a variables continues et des critéres de
séparabilité dans 'espace des phases quantique.

Résumé

Le principe d’incertitude se situe au cceur de la physique quantique. II représente
I'une des différences majeures entre des systemes classiques et quantiques, soit qu'il
est impossible de définir un état quantique pour lequel deux observables qui ne
commutent pas auraient des valeurs spécifiées simultanément et avec une préci-
sion infinie. La formulation originale du principe d’incertitude est due a Heisen-
berg et est exprimée en termes des variances de deux variables canoniquement con-
juguées, telles que la position x et I'impulsion p. Cela fut par la suite généralisé
par Schrodinger et Robertson qui ont donné au principe d’incertitude une forme in-
variante sous transformations symplectiques. Si l'incertitude est mesurée a l'aide
de I’entropie différentielle de Shannon plutdt que des variances, il est alors possible
de définir d’autres types de relations d’incertitude. Originellement introduites par
Biatynicki-Birula et Mycielski, elles expriment également I'incompatibilité entre deux
variables canoniquement conjuguées. Dans cette these, nous proposons différentes
améliorations de ces relations d’incertitude entropiques et mettons particulierement
I'accent sur le fait qu’elles s’expriment mieux sous forme de puissances entropiques,
une notion empruntée a la théorie de l'information. En premier lieu, nous intro-
duisons une nouvelle relation d’incertitude entropique qui tient compte des corréla-
tions x-p et qui est par conséquent saturée par tous les états purs Gaussiens, ce qui
représente une amélioration par rapport a la formulation originale de Biatynicki-
Birula et Mycielski. En second lieu, nous dérivons une relation d’incertitude en-
tropique valide pour tous les n-uplets de variables non nécessairement canonique-
ment conjuguées et basée sur la matrice de leurs commutateurs. Nous définissons
ensuite une forme plus générale du principe d’incertitude entropique qui combine
les deux résultats précédents. Il exprime l'incompatibilité entre deux n-uplets arbi-
traires de variables et est saturé par tous les états purs Gaussiens. Notons que de ce
principe d’incertitude entropique, nous pouvons déduire la forme la plus générale
de la relation d’incertitude de Robertson, basée sur la matrice de covariance de n

variables.
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Les résultats précédents soulignent un des points essentiels de notre axe de recherche:
définir une relation d’incertitude entropique intrinsequement invariante sous trans-
formations symplectiques. Afin d’atteindre cet objectif, notre premiere tentative est
de conjecturer une relation d’incertitude — invariante sous transformations symplec-
tiques — basée sur 1'entropie différentielle jointe de la fonction de Wigner. Cette
conjecture n’est cependant légitime que pour des états décrits par une fonction de
Wigner non-négative. Nous proposons aussi une extension complexe de cette en-
tropie dite entropie de Wigner, qui pourrait ouvrir la voie vers une extension (et une
preuve) de la conjecture proposée ci-dessus qui serait alors valide pour tous les états
quantiques. Comme seconde tentative, en exploitant une connexion avec 1’algebre
des moments angulaires, nous introduisons la notion d’observables d’incertitude
agissant sur plusieurs copies d"un état. Exprimer la positivité de la variance de notre
observable coincide avec la relation d’incertitude de Schrodinger-Robertson, ce qui
suggere que l’entropie discrete de Shannon d’une telle observable fournit une nou-
velle mesure de l'incertitude. Cette relation d’incertitude est invariante sous trans-
formations symplectiques.

Les criteres de séparabilité actuellement disponibles pour les variables continues
donnent une condition nécessaire et suffisante afin qu’un état Gaussien bimodal
soit séparable, mais laissent de nombreux états intriqués non-Gaussiens non détec-
tés. Dans cette these, nous introduisons deux nouveaux criteres de séparabilité qui
permettent une meilleure détection de l'intrication. La premiere nouvelle condition
est basée sur la connaissance d'un parameétre supplémentaire, a savoir le degré de
Gaussianité de 1’état, et exploite une connexion avec les relations d’incertitude de
Mandilara et Cerf bornées par ce degré de Gaussianité. En particulier, nous donnons
I'exemple de familles d’états intriqués non Gaussiens dont l'intrication est détectée
par notre critére, mais pas par celui de Duan-Simon. Le second critere de séparabil-
ité entropique que nous proposons est basé sur notre nouvelle relation d’incertitude
entropique qui tient compte des corrélations x-p. Son principal avantage par rapport
au critere de Walborn et al. est de ne nécessiter aucune procédure d’optimisation.
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1 Introduction, motivation and
scope

In quantum mechanics, everything is about probabilities. While classically a particle
is localized at a very specific point, in quantum mechanics, it will be described by
a wave function (x, t) and we will find the particle at the point xo, at time fy with
probability density |((xo, to)|>. This statistical interpretation of quantum mechanics
generates the notion of uncertainty. If one measures the position of a quantum parti-
cle, one cannot know with certainty the outcome of the measurement, but will only
get a statistical distribution of all possible results. Yet, the notion of uncertainty goes
even further. If there exists some situations when one knows precisely the position
of a particle, then, quantum mechanics tells us that the momentum of this very same
particle cannot been known exactly. This principle, at the foundation of quantum me-
chanics, is known as the uncertainty principle. It was first expressed by Heisenberg,

in 1927, for position and momentum [1] and formalized by Kennard [2] as
hZ
2 2
020y = (1.1)

where 02 and (Trz, denote the variance of the position and momentum, respectively,
and 7 is the reduced Planck constant. Shortly after, it was generalized to any pair of
observables! that do not commute [3, 4]. The uncertainty principle then states that

their values cannot be both sharply defined?.

This fundamental, yet quite mysterious uncertainty principle is still studied exten-
sively today. First of all simply because it is at the root of this branch of physics which
is quantum mechanics, but also because it has many important implications. For ex-
ample, in the last years we have witnessed the rise of quantum information theory,
a field which brings together quantum mechanics, quantum optics and information
theory. Probably one of its forefront application is quantum cryptography. Without
going into details, it is important to know that the security of cryptographic protocols

1By observable, we mean any variable that can be measured.

’Note that there are actually two views on the uncertainty principle. It can either be seen as a
property of the state itself or refer to the disturbance that is due to the measurement process. More
details are given in Chapter 4.



CHAPTER 1. INTRODUCTION, MOTIVATION AND SCOPE

relies on the uncertainty principle. Typically, the uncertainty on the data acquired by
an eavesdropper is conjugated, in the sense of the uncertainty principle®, to the data
that flows to the authorized receiver. This means that by comparing (a subset of) his
data with the original data as sent by the emitter, the receiver can estimate the error
(i.e. the uncertainty) that is due to the eavesdropper’s interception, and infer from it
the error on the eavesdropper’s side, hence estimating an upper limit on the tapped
information [5, 6]. Studying and developing new uncertainty relations can only help
developing new protocols or improving security proofs.

Uncertainty relations find other applications, for example, in the context of separa-
bility criteria, that is criteria that enable us to distinguish between entangled and
non-entangled states. Indeed, the most famous separability criteria, the positive-
partial-transposed criterion [7] and its equivalent form for continuous variables [8, 9]
are based on uncertainty relations. In short, they say that a state is entangled when
its partial transposed state is not physical. And how do we check this condition?
We use uncertainty relations. The more the uncertainty relation is tight, the more we
can detect entangled states. It is thus obvious that seeking new uncertainty relations
leads to better separability criteria.

We said that quantum information is at the crossroad of quantum optics and informa-
tion theory. It means that entropies must play a key role because they are the natural
quantity of interest in this area. They are of relevant importance in many different
facets of quantum information, but in particular for uncertainty relations. Indeed,
entropy is another way of measuring uncertainty and, in 1957 Hirschman stated the
first entropic uncertainty relation [10], which was proven by Biatynicki-Birula and
Mycielski in 1975 [11]. This result is interesting not only because it highlights the fact
that notions of information theory can help better understand fundamental concepts
of quantum mechanics, but it also opened the way to a new and fruitful formulation
of uncertainty relations. Why such a success? We believe that an entropic formula-
tion of uncertainty is more robust. In particular, it can be shown that the entropic
uncertainty relation implies the one of Heisenberg and so is stronger. It seems thus
more natural to try developing entropy-based rather than variance-based uncertainty
relations. Moreover, entropic uncertainty relations can be generalized in a way such
that (non classical) correlations with the environment are taken into account [12].
Typically, entanglement between a system and its environment can be exploited in
order to reduce uncertainty. If an observer has access to a quantum memory system,
the entropic formulation also allows to establish more accurate uncertainty relations
and this is particularly useful in quantum key distribution, an important protocol of

quantum cryptography.

The first steps of quantum information were mainly focused on qubits, that is discrete

(binary) variables such as the spin state of an electron or the polarization state of a

3 About measurement.



photon. Of course, it seems natural since it is simply the quantum analog of the classi-
cal bits. However, quantum information can also be expressed in terms of continuous
variables and can sometimes even be more interesting. Indeed, if qubits seem easier
to manipulate on a theoretical level, they are in fact harder to use in experimental
setups because it is difficult to isolate and manipulate single particles. Continuous-
variable quantum information, on the other hand, offers a framework which is more
easily accessible in a lab as no single-particle source or detection are needed. We will
then talk about observables with continuous spectrum and variables will be encoded
in the quadratures of the electromagnetic field. Using the basics of quantum optics,
many protocols can now be realized. Interestingly, continuous-variable quantum in-
formation does not give only experimental advantage, but also suggests a different
way to study quantum information. We will use a phase-space representation and
give prominent place to Gaussian states as they exhibit very interesting and useful
properties. The basic notions of quantum optics in phase space will be explained in
Chapter 2, while Chapter 3 will be devoted to information theory. Note that we do
not aim to give an exhaustive review of those fields, but simply introduce the main
concepts that will be useful to this thesis. We also assume that the reader is familiar
with quantum mechanics. In Chapter 4 and 5 we explain, in more detail, uncertainty
relations and separability criteria, respectively. Even though we do not introduce
any new notions, we will sometimes present some elements in a way different from
the usual path taken by standard textbooks because we believe it will help the reader
better understand the contribution of this thesis. Those four introductory chapters

form the first part of the thesis. Parts II and III are devoted to new results.

In Part II, we focus on entropic uncertainty relations and give several improvements.
As it will be explained in Chapter 4, the original formulation of the entropic un-
certainty relation of Biatynicki-Birula and Mycielski exhibits some weaknesses since
it is not invariant under Gaussian transformations and is not saturated by all pure
Gaussian states, two conditions that are respected by the variance-based uncertainty
relations®. To remedy to the second point, we propose in Chapter 6 an entropic un-
certainty relation that takes x-p correlations into account. This chapter is the result
of a publication in Journal of Physics A [b]. We first show that a proper expression of
the uncertainty relation for a pair of canonically conjugate continuous variables relies
on entropy power, a standard notion in Shannon information theory for real-valued
signals. The resulting entropy-power uncertainty relation is equivalent to the en-
tropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski,
but can be further extended to rotated variables. Hence, based on two reasonable
assumptions, we give a proof of a tighter form of the entropy-power uncertainty
relation taking correlations into account. Interestingly, it implies the generalized
(rotation-invariant) Robertson-Schrddinger uncertainty relation exactly as the orig-

inal entropic uncertainty relation implies Heisenberg relation. It is saturated for all

4We are not talking here about the Heisenberg uncertainty relation, but about its extension by
Robertson-Schrodinger.
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Gaussian pure states, in contrast with hitherto known entropic formulations of the

uncertainty relations.

Another improvement of the entropic uncertainty relation is given in Chapter 7. The
uncertainty relation for continuous variables due to Biatynicki-Birula and Mycielski
expresses the complementarity between two n-tuples of canonically conjugate vari-
ables (x1,x2,- -+ ,x,) and (p1,p2,- -+, pn) in terms of Shannon differential entropy.
Here, we consider the generalization to variables that are not canonically conjugate
and derive an entropic uncertainty relation expressing the balance between any two
n-variable Gaussian projective measurements. The bound on entropies is expressed
in terms of the determinant of a matrix of commutators between the measured vari-
ables. This uncertainty relation also captures the complementarity between any two
incompatible linear canonical transforms, the bound being written in terms of the
corresponding symplectic matrices in phase space. We also extend this uncertainty
relation to Rényi entropies. The results of this chapter form a publication accepted in
Physical Review A [c].

As a logical continuation, we propose in Chapter 8 to combine both results in order
to suggest the most general entropic uncertainty relations which combines both of
the previous results, that is, our entropic uncertainty relation is defined for any n-
tuples of quadrature observables and is saturated by all pure Gaussian states. We
also prove that the generalized version of the Robertson uncertainty relation based
on the covariance matrix can be deduced from this entropic uncertainty relations.
This work is in preparation and will be soon submitted to a peer-reviewed scientific

journal [d].

At this point, we have solved the first one of the weaknesses of the original entropic
uncertainty relation, but not the second one: we are still looking for a relation invari-
ant under Gaussian transformations. In Chapter 9 we make an attempt and suggest
a conjecture which answers this problem. However, this is only applicable to states
with a positive Wigner function. In order to consider all quantum states, we make a
complex extension of the definition of the joint differential entropy. We then study
the properties of this so-called Wigner entropy, but were not able to find any new en-
tropic uncertainty relation. When the quantum state has a positive Wigner function,

we recover our conjecture, which is verified numerically.

As a second attempt, in Chapter 10, we introduce two multi-copy uncertainty ob-
servables. First, we define a 2-copy observables denoted [, that acts on two iden-
tical replica of a state and takes on integer or half-integer values from —n/2 to n/2
for a n-boson state. It is invariant under any symplectic transformation (rotation
and squeezing), and vanishes with probability one if and only if it is applied onto
a minimum-uncertainty state (Gaussian pure state). The obvious condition that its
variance must be positive actually translates into the usual Robertson-Schrodinger

uncertainty relation based on the determinant of the covariance matrix. The Shan-



non entropy of this two-copy observable provides a new measure of uncertainty.
However, the framework we develop only works for state that are centered at the
origin in phase space. To overcome this problem, we then define a 3-copy observable
denoted L*. Its spectrum is one half of the spectrum of an angular momentum and,
here too, the positivity of its variance coincides with the variance-based uncertainty
relation. We therefore derive an entropic uncertainty relation based on the Shannon
entropy of this 3-copy observable. For Gaussian states, the entropy of both multi-
copy observables are equal. This work too will be soon submitted to a peer-reviewed
scientific journal [e].

The third part of this thesis is dedicated to separability criteria, which, as we already
mentioned, directly depend on uncertainty relations. We thus show how improve-
ments in uncertainty relations lead to better entanglement detection. Chapter 11 was
actually the first result we obtained during the realization of this thesis and it is the
subject of a publication in Physical Review A [a]. We introduce an improved sepa-
rability criterion based on an additional parameter of the state: its degree of Gaus-
sianity. Entanglement detection is improved thanks to the fact that the degree of
Gaussianity allows to establish more accurate uncertainty relations. We exhibit fam-
ilies of non-Gaussian entangled states whose entanglement remains undetected by
the Duan-Simon criterion. In Chapter 12, we use the improved entropic uncertainty
relation of Chapter 6 to enhance the already existing entropic separability criteria.
Our main contribution here is that it is no longer necessary to make an optimization
to find the optimal correlations and possibly detect entanglement since it is already
included in the uncertainty relation.

Note that in the conclusion of this thesis (Chapter 13), we provide the reader with
two summarizing tables. Table 13.1 gives an overview of all the entropic uncertainty
relations encountered throughout the thesis while Table 13.2 exhibits the separability

criteria and their associated uncertainty relations.
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2 Quantum optics in
phase space

Quantum optics is a field of research that uses quantum mechanics to describe phe-
nomena involving light, whose energy is quantized according to an integer number
of particles known as photons. Roughly speaking, one makes the transition from
classical to quantum mechanics by turning the position and momentum observables
into non-commuting Hermitian operators. In the following chapter, we give a brief
introduction to quantum optics. First, we show how one can quantize the electro-
magnetic field and give the phase-space representation of a quantum state. Then,
we introduce Gaussian unitaries and Gaussian states as well as the symplectic for-
malism. This chapter is not exhaustive and we decided to focus on the notions in
quantum optics that will be useful to understand the results of the present thesis. For
more details, we suggest references [13, 14, 15, 16, 17, 18]. In fact, most of the defini-
tions of this chapter come from those references. Note that for simplicity, we will fix
It = 1 throughout the rest of this thesis.

2.1 Quantization of the electromagnetic field

Classically, the electromagnetic field is described by Maxwell equations. Solving
them allows us to describe the electromagnetic field as

E(I‘,t) = EEkek(A) |:Dék,/\€i(kr_wkt) + “l*(/)\e—i(kr—wkt)] ’ (21)
kA

where k is the index of the mode, Ey a constant containing all the dimensional pref-
actors, A the polarization, wy the angular frequency, ey ) the polarization vector and
ax and &y are the complex amplitudes. To quantize the electromagnetic field, we
replace the complex amplitudes by the annihilation and creation operators, namely

an — A,

sa oAb, 22)

9
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Those mode operators satisty the commutation relation of bosons

[t aly ] = Skwdan,
[ G y] = 0,
[af v al ] = 0. (2.3)

For brevity, let us study one single mode with fixed polarization and thus drop the
subscripts k and A. From the single-mode operators 4 and 4f, we can define the

(dimensionless) quadratures of the electromagnetic field
t=-——=(a+a") and p=-—=(a—a"), (2.4)

which are equivalent to the position and momentum of a harmonic oscillator. It is

easy to see that the quadratures satisfy the commutation relation
(%,p] =i (2.5)

and therefore the uncertainty relation !

1
2 2
030, 2 1 (2.6)
In terms of those quadratures, the Hamiltonian of the harmonic oscillator reads
2 2
p=rrx 2.7)
2
or, in terms of the creation and annihilation operators,
N 1 ~ 1
A=dta+-=N+= 2.8
ata+ 5 + > (2.8)

where N is called the number operator. The eigenvectors of N are called Fock states
and denoted by |n). The associated eigenvalue willbe n = 0,1,2, - - - and we say that
a Fock state |11) contains 1 photons (or quanta of light), with the state containing no
photons at all being the vacuum state |0). From this, the mode operators can be un-
derstood as operators that add (creation operator) or remove (annihilation operator)

a photon from the state. Formally, we define them as
atln) = vn+1n+1) and  an) = Vnjn —1). (2.9)

Remark that N has a discrete spectrum while £ and p, in contrast, have continuous
spectra. Indeed, their eigenvectors are defined as

[x) =x[x) and  p[p) = plp) (2.10)

IThe uncertainty relation is expressed as U%Uf, > 1|{[x, p])|*>. More details are given in chapter 4.

10
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with x,p € Rand {|x)}, {|p)} representing two bases connected by a Fourier trans-
form

1 [~
x) = 5o [ e,

_ i * —ixp
P = 5o [ e (2.11)
These bases are orthogonal
(x[x') = o(x = x'), (plp") = o(p = 1", (212)
and complete
| lixldx =1, | _ipplap=t. (2.13)

The wave function of any given state is (x) = (x|¢) and its Fourier transform is

given by ¢(p) = (ply).

A continuous-variable system is a quantum system living in an infinite-dimensional
Hilbert space and described by observables with continuous spectra. In this chapter
(and the rest of this thesis), a continuous-variable system is represented by n modes
of the quantized electromagnetic field. It can be understood as a system correspond-
ing to n quantum harmonic oscillators. We will usually associate 7 modes to a tensor
product of n Hilbert spaces. Each mode is associated with a Hilbert space spanned
by the Fock basis and has its own mode operators 4; and 41 which verify the commu-
tation relations (2.3).

2.2  Wigner function

If one follows a classical particle in a phase space, it is represented by a single point
since a classical particle can be ascribed a definite position and momentum. How-
ever, if we want to do the same for a quantum particle, due to the uncertainty rela-
tions?, we will not have a point anymore since position and momentum cannot be
known precisely, simultaneously. Rather, the quantum particle will be described by
a quasi-probability distribution® in phase space called the Wigner function after Eu-
gene Wigner [19]. There is an exhaustive literature on the Wigner function, but we
mainly follow the paper of Case [20] and all the following formulas are taken from
this article®.

2More details are given in Chapter 4 since it is its main subject.

3To be more accurate, we should call it a probability density function, since we deal with continu-
ous variable, but in the thesis, and like it is done in many papers on the subject, we choose to call it
probability distribution, having in mind that we talk about a continuous distribution.

“Note however, that we do not use the same convention so the equations differ slightly between this
thesis and the paper.

11



CHAPTER 2. QUANTUM OPTICS IN PHASE SPACE

Why is the Wigner function called a "quasi"-probability distribution? Because even
though its integration over the entire space gives one — like any probability dis-
tribution — the Wigner function can have negative parts. Some will say that this
is a signature of the quantum character of the state [21]. Note however that some
states with Wigner function positive everywhere can be entangled5 , which is clearly
a quantum behavior, while there are states with negative Wigner function that exhibit

no specific quantum behavior.

Every quantum state p (of n modes) is associated to one Wigner function® defined as
_ 1 © —ipy
WO p) = e |y e Y bty 2ok —y/2) 214
and which is normalized to one
/ dxdpW (x,p) = 1. (2.15)

Here the vectors x = (£1,%2,---,%,) and p = (p1, P2, -+, Pu) contain the position
and momentum quadratures of all modes.

For pure states, Eq. (2.14) can be simplified and the Wigner function is computed
through the wave function ¥(x) = (x|y),

Wp) = g |4y e PV p(x+y/ 20 (x—y/2). @.16)

Equivalently, the Wigner function can be defined in the momentum representation

1 [ .
W(x,p) = (271)"/—00 dq e™%p+q/2lplp — q/2). (2.17)

Another explanation for the name “quasi-probability distribution” is that, unlike a
classical probability distribution, the Wigner function cannot take arbitrary large val-
ues. Indeed, using the inequality of Cauchy-Schwarz on a one-mode Wigner func-

tion, we have

1 .
Wepl = | [dve Pyt /2 (- y/2)

< o) 1wty Py [ 19— yr2)lay

- ;n\/ 210 Rz [ 21y @) (2.18)

5More details about entanglement will be given in Chapter 5.
®The proof of uniqueness is given in [22].

12
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Since the wave functions are normalized, we thus get

[W(x,p)| < (2.19)

ql=

If the Wigner function is integrated over p or over x, we obtain the marginals of the
Wigner function which are the probability distributions of the position and momen-

tum quadratures:

[ apWixe) = W = (il

["axwip) = Wip) = (plolp). 2.20)

Those probability distributions are true classical distributions. In particular, they are

always positive and normalized to 1.

It is also possible to retrieve the wave function given a Wigner function using the

following formula

¥(x) = 1/1*1(0) / W (x/2, p)elP dp. 2.21)

The Wigner function can also be used to compute the mean value of an operator A

in a quantum state p
(A) = Tr(pA) = l °; dxdp W(x, p)A(x,p) 2.22)
where A(x, p) is the Weyl transform of the operator A,
Alop) = [dy e P (x+y/2|Adx - y/2), (2.23)
and A is the symmetrized version of the operator A which is also a polynomial in

x and p (see [23, 24] for more details). As an example, Table 2.1 lists some Weyl

transforms of useful polynomials of £ and p.

Operator A | Weyl transform A(x, p)
£ x
p p
22 x?
P 7
(£ + p2) /2 xp

Table 2.1: Example of some Weyl transforms.

13
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Finally, we are often interested in the purity 4 = Tr(p?) of a state p which describes
its mixedness. A pure state will have y = 1 while mixed state will have 0 < u < 1.

In terms of the Wigner function, the purity of a state is given by

u="Tr(p*) = (2m)" /_O:o dxdp W (x, p). (2.24)

Fock states

As an example, and because they will be useful in the following chapters, especially
for numerical simulations, we give here the wave functions ¢, (x) and the Wigner

functions Wy, (x, p) of Fock states |n), withn = 0,1,2,- - -. They are expressed as
1 —x2/2
P (x) = WHAX)E (2.25)

where H,(x) are the Hermite polynomials and

Wa(x, p) = (_;)"exzm 2 (2 +p?)) (2.26)

where L,(x) are the Laguerre polynomials. On Figure 2.1 we plotted the Wigner
function of the vacuum |0) as well as the Fock states |1) and |5). In the two last

examples, we see clearly that the Wigner functions have some negative parts.

Figure 2.1: Wigner functions of different Fock states. From left to right: the vacuum
|0), |1) and |5).

Let us mention that the Wigner function of Fock states is invariant under rotations.

7

Fock states have no covariance, but their variances’ increase with the number of

photon since they are given by 02 = (7,2, = n+1/2. Note also that for all Fock states,

the value of the Wigner function at the origin is given by

W, (0,0) = (_;)n. (2.27)

7Variances and covariance are introduced formally in the next section.
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2.3 Gaussian states

In quantum information with continuous variables, we focus particularly on one
class of states: the Gaussian states. They inherited their name from their Wigner
quasi-distribution function which, itself, is a Gaussian distribution. A Gaussian state
is completely characterized by its mean value vector and its covariance matrix. The

mean-value vector of a state p, also called the displacement vector, is defined as
(r) = Tr(rp) (2.28)

where r = {®1, p1, %2, P2, - - , Xn, Pu} is the quadratures vector, and, throughout this
thesis, (-) stands for the expectation value Tr(-p). The second moments make up the

covariance matrix oy whose elements are given by

({Pi, 7}) — (i) (7))- (2.29)

NI —

Yij =

Here {-, -} stands for the anti-commutator. For one-mode states, in the present thesis,
we will usually express the covariance matrix as

2
7= 5 (2.30)
pr Up
where 0’% and 0’% are the variances of position and momentum and oy, is the covari-

ance. Remark that a covariance matrix is a real, symmetric, and positive semi-definite
matrix [25].

As we already pointed out, the Wigner function of a Gaussian state is a Gaussian
distribution given by

1 1 T, —1
Welx,p)= — ¢ 20=)" 7 (x={r) 231
G( p) (27_[)” \/m ( )
Once again, we see that the only information needed is the displacement vector and
the covariance matrix. It is interesting to note that we can easily compute the purity
u of a Gaussian state through its Wigner function (see Eq. (2.24)) and we simply find

that
1

He = v Jdety

(2.32)

As we will see in Section 4.1.2, not all real symmetric positive semi-definite 2n x 2n
matrices can be a legitimate covariance matrix of a quantum state. Indeed, they must
respect the uncertainty relation 7y +i(2/2 > 0 (see Eq. (4.9)) which is the only neces-
sary and sufficient constraint -y has to fulfill to be the covariance matrix of a physical
state [25].
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In 1974, Hudson [26] proved that the Wigner function of a pure state is everywhere
positive if and only if the state has a (complex) Gaussian wave function (thus a Gaus-
sian Wigner function). In other words, the only pure states whose Wigner functions
are positive everywhere are Gaussian states. As we will see in Chapter 4, Gaussian
states are also the only ones to saturate the uncertainty principle. This will imply that

the only pure states that have dety = 1/4" are necessarily Gaussian.

The simplest example of a Gaussian state is the vacuum state |0). Its Gaussian Wigner
function is plotted in Figure 2.1. The vacuum state has a mean value vector equal to

0 and its covariance matrix is given by

_(1/2 0
Yvac = ( 0 1/2> (2.33)

which means that the uncertainty on the quadratures x and p is equal to 1/2 as it can
be seen in Figure 2.2 where we plotted a projection of the Wigner function in phase
space.

Vacuum state Coherent state

a2=1/2

» |
a?2=1/2 -

l o3=1/2 A N1
V2R(a)

Squeezed state

A

W

a2 < 1/2

2_ 1
ap—r';> 1/2

Figure 2.2: Examples of Gaussian states in phase space.

Of course, the vacuum state is not the only Gaussian state. Other examples are the
coherent and squeezed states, the two-mode squeezed state or the thermal state. We
will talk about them more in details in section 2.5, but we first introduce Gaussian

unitaries that are used to create® those Gaussian states.

8Starting usually from the vacuum |0).

16



2.4. GAUSSIAN UNITARIES

2.4 Gaussian unitaries

Let us consider a unitary transformation U = e~'H where H is the Hamiltonian of
the system (and we conventionally consider a unit time interval). Obviously, since

the transformation is unitary, we have Ut = U1 and it transforms a state as
p—upu'. (2.34)

If the unitary is such that it maps a Gaussian state onto another Gaussian state, it
is called a Gaussian unitary. They divide into two categories: the passive Gaussian
unitaries that preserve the mean number of photons (1) and the active Gaussian uni-
taries, which do not. All Gaussian unitaries are generated by Hamiltonians which are
second-order polynomials in the mode operators. Namely, if we define the vector of

mode operators @ = {@1,4y,- - - , 4, }, the Hamiltonian has to be of the form
A=a'a+atFa+atGa® +he (2.35)

(h.c. stands for hermitian conjugate) where « is a complex vector and F, G are some

symmetric, complex n X n matrices.

In the Heisenberg picture, Gaussian unitaries correspond to a Bogoliubov transfor-
mation
a—Ual=Aa+a'B+a (2.36)

where A, B are matrices that satisfy ABT = BAT and AAT = BBT + 1 (in order
to preserve the commutation relations). However, rather than expressing this linear
transformation at the mode operators level, we will usually prefer to analyze it at the

quadratures level.

241 Symplectic transformations

In terms of the quadrature operators, a Gaussian unitary is more simply described.
Let us define the quadrature vector r = {£1, p1, - - , £, Pn }- Then, a Gaussian unitary
is defined as

P— St+d (2.37)

where d is a real vector of dimension 2n and S is a real 2n x 2n matrix. Once again,
the commutation relations have to be preserved and this is respected if the matrix S
is symplectic, that is if

SQST =0 (2.38)
with

" 0 1
Q=Pow, w = (_1 0) . (2.39)

17



CHAPTER 2. QUANTUM OPTICS IN PHASE SPACE

and Q) being the symplectic form. Note that QT = Q! = —Q and O? = —1.

Be aware that this definition of symplectic matrices is linked to the definition of ri.e.
the order of the entries in r. If one choses to definer = {%1,--- , 24, P1,- -, ﬁn}g, then
the matrix S is symplectic if

SJST =]  with ]:(0 1). (2.40)

Here too, note that [T = 7! = —J and J? = —1.

Clearly, the eigenvalues of r must also follow the same transformation rule and so
the quadratures transform as
r— Sr+d (2.41)

under a symplectic transformation. Regarding the mean values and the covariance

matrix, the transformation rule is
() >S{)+d and ¢ — SyST. (2.42)

In addition, any symplectic matrix has the following properties:

For any symplectic transformation S, ST, S~ and —& are also symplectic.

e The inverse of S is givenby S7! = —QSTQ (or S7! = —]STJ, depending on
the definition of r).

e detS = 1, which implies that det y is conserved by any symplectic transforma-
tion.

o Ilfr={%, -+, %0, p1,- -, Pu}and S = (*4), then SJST = ] implies that ab”
and cd” are symmetric matrices and ad” — bc! = 1.

e We said earlier that a Gaussian unitary is passive if it conserves the mean pho-
ton number. In term of symplectic transformations, a Gaussian unitary will be
passive if and only if

d=0 and S'S=1, (2.43)

which means that the symplectic matrix must be orthogonal.

Williamson’s theorem

An important result of the symplectic analysis is Williamson’s theorem [27] which
states that, after the appropriate symplectic transformation, every positive real ma-
trix of even dimension can be brought to a diagonal form ®, with its symplectic values

9As it will be done in chapter 7.
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V¢ on the diagonal. In other words, there exists a symplectic matrix S such that!

n
v =8y°ST, where 7% = P vlaso. (2.44)
k=1

Obviously, since the determinant of a symplectic matrix is equal to 1, v and v have
the same determinant. Therefore, for a one-mode state, its symplectic value is simply
equal to /dety. For a two-mode state, the two symplectic values v can be found
using the following formula [28]

vy — \/A + \/A22—4det('y) (2.45)

where the covariance can be written in the block form

A C
v = (CT B> (2.46)

and A = |A| + |B| +2|C|. In general, one can find the symplectic values by diagonal-
izing the matrix i{)y and taking the absolute value of its eigenvalues. Indeed, let us
define the matrix M = Q)y. Using the fact that O = STQS for all symplectic matrices
S, we can write

STMS™T = STQysT

= QS lys7T
= Oy®
0 1n
—v; 0
= . (2.47)
0 vy
—v, 0

where ST means (ST)~!. The eigenvalues of the matrix STMS~T are thus given by
{+iv;}. But M and STMS T have the same eigenvalues since S is symplectic!! and
so {%iv;} are also the eigenvalues of ().

As we will see in chapter 4, the uncertainty relation y 4 i(2/2 > 0 can also be ex-
pressed in terms of symplectic values. A state is physical if and only if all its sym-
plectic values satisfy v; > 1/2fori=1,--- ,n.

10We use here the definition r = (21, P1, -, Zn, Pn)-

HTo prove this, we have to know that every symplectic matrix can be decomposed into a product
of one orthogonal matrix (a rotation), one diagonal matrix (corresponding to N single-mode squeezing
transformations) and another orthogonal matrix. Since the spectrum of a matrix is conserved under an
orthogonal or a diagonal matrix transformation, it is conserved under a symplectic transformation.
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2.5 Examples of Gaussian unitaries and Gaussian states

2,51 Coherent states and displacement operator

Let us start by discovering some single-mode Gaussian states. If we take a suitable
superposition of Fock states, we can create a family of minimal uncertainty states
in the sense that they saturate the Heisenberg uncertainty relation (T,%Ug = 1/4 (see
Eq. (2.6)). Moreover, if we take both variances o2 and (7’% to be equal, those states are
called coherent states |a). A first way to define a coherent state is as an eigenstate of
the annihilation operator,

ala) = wla) (2.48)

with & complex. A coherent state can also be seen as a displaced vacuum state. It

means that we can apply a displacement operator

+

D(a) = M —a'4 (2.49)

to the vacuum state |0) so that

_lal? ad o
la) = D(a)|0) =e |2 /zrgﬁ]n) (2.50)

Since we applied a Gaussian unitary to a Gaussian state (the vacuum), the output
state which is our coherent state is also Gaussian. Note that D(«) is unitary so that

D'(a) = D }(a) = D(—a). (2.51)
DY (a)aD(a) = 4 +a D'(a)a'D(a) = a" + a* (2.52)

DY(a)2D(x) = £+V2R(a)

DY (a)pD(x) = p+V23(«) (2.53)
where R(a) and () stand for the real and imaginary part of the complex number
«. The two last equations clearly show that the displacement operator translates the
vacuum state in phase space as illustrated in Figure 2.2. In other words, a displace-

ment operator will displace the mean value vector, but will not modify the covariance

matrix, which will be the one of the vacuum state, that is
R(x 1
(r) = V2 ( ( ;) and Y = Yoac = E]l. (2.54)
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Therefore, the Wigner function of the coherent state is the same as the one of the

vacuum given in Figure 2.1, but not centered at the origin anymore.

In contrast to a Fock state, a coherent state has an undefined number of photons. Fol-
lowing definition (2.50), we see that the probability of measuring n photons follows

a Poisson distribution
) | A |2n
|

P(n) = [(nfa)? = 7 e

(2.55)
where the mean value and the variance of the distribution are both given by |a|?.

Let us mention that coherent states are not orthogonal

(Blay = e~la=PF/2, (2.56)
but are over complete

1

p / ) (a| > = 1 (2.57)

which means they form an over-complete basis.

2.5.2 Squeezed states and squeezing operator

Coherent states are part of the family of states that minimizes the uncertainty relation,
but have the particularity that the variances of both quadratures are equal. If we still
want to minimize the uncertainty but allow different values of 02 and (7 we can

introduce the squeezed states. They can be generated using the squeezing operator

42 A‘PZ)

S(z) = e2(@'#—=d (2.58)

where z = re'? is a complex number, 7 is the squeezing parameter and ¢ the squeez-
ing angle. Thus, a general squeezed state |, z) is defined as

la, z) = D(a)S(2)]0). (2.59)

When there is no displacement, the squeezed vacuum state will be written as

12) = S(2)[0) = VC;W > Vzn , i1 (tanh r)" [21). (2.60)

Remark, once again, that the squeezed state is Gaussian since we applied a Gaussian

unitary to a Gaussian state. Note also that the squeezed vacuum contains only Fock

states with an even number of photons.

Just like for the displacement operator, it also holds for the squeezing operator that

St(z) = S71(z) = S(—2). (2.61)
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The action of S(z) on the mode operators is given by

St(2)aS(z) = acoshr —ate?sinhr
a

S*(z)a%S(z) = a'coshr —ae ?sinhr. (2.62)
Now, if we fix ¢ = 0 so that z = r, the action of S(r) on the quadratures is given by

St ()2S(r) = e’
St npsS(r) = €p. (2.63)

=

The last two equations clearly show that, this time, the squeezing operator squeezes
one quadrature and anti-squeezes the other one in phase space, as it is shown in

Figure 2.2. Therefore, the associated symplectic transformation is

e 0
S = ( 0 er> (2.64)

and the covariance matrix of a squeezed state is given by

1(e? 0
Y = SYoac ST = 5 ( 0 €2r> . (2.65)

Later in this thesis, we will need to use squeezed states for numerical computations.
We thus give here the wave function of a squeezed state with squeezing along an
arbitrary axis, characterized by the angle ¢,

h(x) = < 1 )1/4exp{_xzcosqb—ie_zrsin(p}

2702 2 e 2 cos¢p —ising
B 174 _ x?coshr + e*#sinhr (2.66)
-~ \2n02 2 coshr — e2¢sinhr | '
The associated covariance matrix is then given by
1 e sin® g + e 2 cos’ ¢ cos¢psin(e 2 — )
i 2 \cosgsing(e™? —e*) e 2 sin® P + €% cos® ¢
_ 1 (cosh2r —cos2¢ sinh 2r —sin2¢ sinh 2r 2.67)
2 — sin2¢ sinh 2r cosh 27 + cos2¢ sinh2r ) - '

Obviously, if the squeezing is along the axis so that ¢ = 0, we fall back on the covari-
ance matrix Eq. (2.65).
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2.5.3 Phase-shift operator

The free evolution of an harmonic oscillator induces the unitary
R(0) = e 00'0 — o~ 10N (2.68)

called the phase-shift operator. Its name comes from the fact that it adds a phase to the
mode operator
4 — ae 0. (2.69)

In phase space, it has the effect of rotating the quadratures by an angle 6

£ — Xcost+ psind
p — —%Xsinf+ pcoso. (2.70)

The associated symplectic matrix is then simply given by the rotation matrix

R(6) = ( cos 6 sin@) . @71)

—sinf cos®

2.5.4 Beam splitter

We now introduce unitary transformations which transform two-mode states. The

first one is induced by the beam splitter operator
B(ﬁ) = eﬁ(ﬁlﬁzfﬁiﬁz)_ (272)

The transmissivity of the beam splitter is given by T = cos? f and its value is between
0 and 1. In the Heisenberg picture, the beam splitter operator transforms the mode

- e

while the quadratures transform according to

operators as

>

>
>

X1 bel
P Sps | 7 (2.74)
X2 X2
p2 P2
where
JT 0 Vi-t 0
0 0 V1-—
Sps = VT K (2.75)
Vit 0 JT 0
0 —V1-71 0 VT
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is a symplectic matrix.

An interesting property of the beam splitter is that if the input is composed of two
coherent states, the output will remain a two-mode coherent state, but with different

values of displacements (thus behaving as classical light fields).

2.5.5 Two-mode squeezer

Another important two-mode unitary is induced by the two-mode squeezing operator'?
STMS = E%(ﬁlﬁz_ﬁ{[ﬁ). (276)

The two-mode squeezing transformation can be seen as a combination of a balanced
beam splitter (T = 1/2), a one-mode squeezer and a one-mode antisqueezer, and
another balanced beam splitter, as depicted in Figure 2.3.

S—l

50 :50 50 :50

Figure 2.3: Physical realization of a two-mode squeezer.

Using the symplectic matrices for the beam splitter and the one-mode squeezing op-

erator, we can compute the symplectic transformation of the two-mode squeezing

operator
Srms = Sps(S71©8)Sps
1 0 -1 O e 0 0 0 1 0 10
B 1 01 0 -1 0 e 0 O 0 1 01
210 1 o 0 0 e” 0|]-1 0 10
01 0 1 0 0 0 e 0 -1 0 1
coshr 0 sinh r 0
h —sinh
_ 0 coshr 0 sinhr ‘ 2.77)
sinhr 0 coshr 0
0 —sinhr 0 coshr

12To be precise, the two-mode squeezing operator Stys(z) also depends on a squeezing angle ¢ such
that z = re’?, but by simplicity, we chose to consider ¢ = 0. Note that one can always add some
rotations before and/or after the squeezing in order to change the squeezing orientation axis.
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Therefore, the transformation of the quadratures is given by

X1 be]
rjl — STMS p}\l . (278)
X2 2
p2 p2

When we apply the two-mode squeezing operator on a vacuum state, we obtain a
well known Gaussian state: the two-mode squeezed vacuum state. Also called the EPR
state (for Einstein-Podolski-Rosen13), it is defined as

— — 1 n
|EPR) = Stpms(r)]0,0) = p— ngo(tanhr) |n,n). (2.79)

Note that we will sometimes prefer the following notation
|[EPR) = /1 =A%) _ A"|n,n) (2.80)
n=0

where we simply used A = tanh r. The covariance matrix of this state is given by

cosh 2r 0 sinh 2r 0
1 0 cosh 2r 0 —sinh 27
=5 STve == . 2.81
i TMS Yvac STMs 2 | sinh2r 0 cosh 2r 0 ( )

0 —sinh 27 0 cosh 2r

The EPR state is famous because in the limit of infinite squeezing (r — ©0), it rep-
resents a maximally entangled state: we obtain perfect correlations between the £
quadratures and perfect anti-correlations between the p quadratures as in the origi-
nal EPR state.

2.5.6 Thermal states

If we trace out one of the modes of the two-mode squeezed vacuum state, we obtain

the mixed state
1
Pt = Toosh T Z (tanh7)*"|n) (n]| (2.82)

called the thermal state. We can compute its mean photon number
(n) = (N) = sinh?r (2.83)

and using this equivalence, we can rewrite the thermal state as

13See Chapter 5.
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=3 ) (2.84)

YOS () e
This last expression is precisely the formulation of a thermal state in thermodynam-
ics. The thermal state is another example of a Gaussian state and so is completely

described by its covariance matrix, given by

_(m+3 0
Yin = ( 0 (n) + %> . (2.85)

As we can see in Figure 2.2, the thermal state is similar to the vacuum state in the
sense that the uncertainties are the same for both quadratures. However, it is not a
minimal uncertainty state anymore since the product of the variances is greater than
1/4 (see Eq. (2.6)). Note that for integer (1), a thermal state with (1) mean number

of photons has the same covariance matrix as the Fock state |n).

It is worth to remark that the symplectic diagonal form of the covariance matrix,
Eq. (2.44), can be seen as the covariance matrix of a tensor product of thermal states,

each of them with a mean number of photon (n) = v; —1/2.

2.6 Passive states

Finally, even if they are not Gaussian states'*, we would like to introduce here the pas-
sive states [29]. They are defined as a mixture of Fock states with decreasing weights
for increasing photon number

Ppassive = Zci|i> (il with ¢ >c1>-->¢cp >+ (2.86)
i=0
so their Wigner function is given by
Wpassive(x/ p) = Z ciWi(x, p) (2.87)
i=0

where W;(x, p) is the Wigner function of the Fock state |i). Interestingly the Wigner
function of a passive state is positive everywhere [29]. We can also define the extremal
passive states, i.e. passive states with equal weights up to a certain number of photon
1 n
=——) |i)(i. 2.88
Pextremal n+1 1:20 ’ >< ‘ ( )
Note that all passive states can be expressed as a convex mixture of these extremal

passive states.

14Except when ¢y = 1 and ¢; = 0 for all i # 0 since it is then the vacuum state.
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3 Shannon information theory

Shannon information theory owes its name to Claude E. Shannon who developed
this theory in 1948 [30]. One of the principal quantities in information theory is en-
tropy. But, not only is this quantity central to the information theory field, it is also
one of the main subject of this thesis since entropy allows us to measure the uncer-
tainty of a random variable. Information theory is a large field, but we chose in this
chapter to present only the elements that will be relevant to this thesis. For more
information, we refer the reader to the book of Cover and Thomas [31] from which
most of the equations of this chapter are taken.

Shannon information theory was first developed for discrete variables, using discrete
probability distributions and was then extended to continuous variables. Therefore,
even though we are interested in the latter, we will first introduce some important
formulas for the discrete case.

3.1 Discrete variables

3.1.1 Shannon entropy

Let X be a random discrete variable, x € X’ the possible values that X can take and
p(x) its probability distribution. The Shannon entropy of X, H(X) is defined as

H(X) = H(p) = = ) p(x)log, p(x). (3.1)

xeX
Note that the logarithm is in base 2 so the entropy is expressed in bits. From this
definition, we understand that the entropy is a measure of the uncertainty in the
random variable X. We can understand H(X) as the number of bits, on average,

required to describe an instance of the random variable.

For example, let us compute the entropy of a fair coin toss. In this case, both prob-
abilities to obtain head (X = 0) or tail (X = 1) are equal. Thus, H(X) = 1 which
means that 1 bit of information is needed to describe the variable X. This one bit can
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also be understood as the amount of information gained by flipping the coin.

Intuitively, adding terms with zero probability should not change the entropy. There-
fore, we use the convention 0log 0 = 0, which is justified by the limit of x log x when
x tends to 0. An important property of the discrete entropy is that H(X) > 0, since
0 < p(x) < 1. As we will see, this property will no longer be true for continuous

variables.

Let us mention that the entropy H(p) is a concave function which means that

H(Ap1+ (1= A)p2) > AH(p1) + (1 — A)H(p2). (3.2)

3.1.2 Joint entropy

Equation (3.1) can be generalized to n variables { Xy, - - - , X, }. We then speak of joint
entropy and it is defined as

H(Xy,--,Xy) = — Z E p(x1, -+, xn)log, p(x1,- -+, xn). (3.3)

X1EX X, EXy

where p(x1,- -+, x,) is the joint probability distribution and each variable X; can take
discrete values x; € X]. Since, the variables X; might be correlated, the joint entropy
can only be lower than the entropies of the individual variables. We say that the joint
entropy is subadditive:

H(Xy, -, X,) < Y H(X;) (3.4

The equality is obtained if and only if all variables are independent.

3.1.3 Relative entropy

If one desires to measure the distance between two distributions p and g, one can
use the relative entropy D(p||q). The relative entropy is a measure of how different
two distributions are. To better understand this notion, let us suppose we want to
construct a code for a variable X with its true probability distribution p(x). We would
need H(p) bits on average to describe the variable. Suppose now that, instead, we
use the probability distribution g(x), we would now need H(p) + D(p||q) bits on
average to describe the random variable.

The relative entropy, also called the Kullback-Leibler distance between two probability
distributions p(x) and g(x) is defined as

Diplln) = ¥ plx) log’;(ﬂ’j} (35)
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An important property of the relative entropy is that D(p||q) > 0 and we reach the
equality if and only if p(x) = q(x), Vx. Note that D(p||q), however, is not a genuine

distance in the mathematical sense.

In contrast to the Shannon entropy, the relative entropy D(p||q) is a convex function

since

D(Ap1+ (1 = A)p2||Agr + (1 = A)g2) < AD(p1||q1) + (1 — A)D(p2llg2).  (3.6)

3.1.4 Mutual information

Another quantity which is worth mentioning is the mutual information. It gives the
amount of information that one random variable contains about another random
variable. In other words, due to the knowledge of one variable, the mutual infor-
mation is the amount by which we are able to reduce the uncertainty of the other

variable. For two random variables X and Y, the mutual information is defined as

10:7) = T T plaw log P~ Do) Ip(Dpw). 67)

From the second equality, we understand that the mutual information is simply the
relative entropy between the joint distribution p(x,y) and the product of marginal
distributions p(x)p(y). Therefore, we can conclude that I(X : Y) > 0 with equality if
and only if X and Y are independent. The mutual information can also be expressed

in terms of the joint and individual entropies:

I(X:Y)=H(X)+H(Y) - H(X,Y). (3.8)

3.2 Continuous variables

3.2.1 Shannon differential entropy

Let us now introduce similar concepts for continuous random variables. We will
thus speak of differential Shannon entropy. In general, it is similar to the discrete case,
in particular in the sense that the differential entropy still represents the uncertainty
of the random variable. However, as we will see, some important differences arise in

some properties of the differential entropies.

The differential entropy of a continuous variable X with probability distribution p(x)
is defined as

h(X)=h(p) =— lm dx p(x)Inp(x). (3.9)
The definition is the continuous extension of the discrete case, where we simply re-
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placed the sum by an integral.1 To distinguish them, we will use a small letter for the
differential entropy h(X) and a capital letter for the discrete entropy H(X).

As we mentioned earlier, the discrete entropy cannot take negative values. This is no
longer true for the continuous entropy which can take any real value and can thus be
negative. Indeed, let us, for example, take a random variable distributed uniformly
on an interval from 0 to 1/2. Its probability density is thus

2 ifxel0,1/2
p(x) = : ] (3.10)
0 elsewhere.

The computation of its entropy then gives h(x) = — 01/2 dx2In2 = —In2 which is

negative.

3.2.2 Joint entropy, relative entropy, mutual information and properties

Here too, if we have a probability distribution of n continuous variables p(x1, - - -, x,),
we can define the joint differential entropy

h(Xy, -, Xn) = — /dx1 coedxy p(x1, 0 xn) Inp(xg, -0, xp). (3.11)

The relative entropy between two probability distributions p and g as well as the
mutual information have definitions similar to the discrete case, where we basically

replace the summation by an integration

_ p(x)
D(pllq) = /dxp(x) In () (3.12)
y) — p(x)py)

In addition,
I(X:Y)=h(X)+h(Y)—h(X,Y) (3.14)

still holds and the properties of D(p||q) and I(X : Y) are the same as in the discrete
case. In particular, they are both always positive and D(p||g) = 0 if and only if
p(x) = q(x), Vx. The subadditivity of the joint entropy is also still true

WXy, Xa) < Y R(X). (3.15)

Under a translation, the value of the differential entropy does not change

h(X +¢) = h(X), (3.16)

To be more precise, 1(X) is the limit of H(X%) + log A when A — 0 and H(X") is the quantized
entropy of the variable X. More details can be found in [31].
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however, under a dilation the differential entropy changes as
h(aX) = h(X) +In|a|. (3.17)
For a multivariate distribution, the equivalent expression is
h(AX) = h(X) +1In|det A| (3.18)

where A is an invertible matrix that transforms the vector X.

3.2.3 Entropy of Gaussian distributions

In the previous chapter, we introduced Gaussian states and their properties. In quan-
tum information theory, Gaussian states, or we should say for now, Gaussian distri-
butions also have interesting properties. Let X be a Gaussian distributed variable,

1 a2
X ~ p(x) = 728 202 (319)
and let us compute its entropy

h(X) = —/dxp(x)lnp(x)

/d 1 _il ( 1 _x2>
= — X e 22 In e 2072
V27o? 2702
1 _ a2 x2 1 _ i
= ln\/ZmTZ/dx e 2 +/dx— e 272

V2mo? 202 /27102
= InV2mo?+ %
= % In(27tec?). (3.20)

In general, for n variables, the Gaussian distribution is given by

(x) = ;e
peiy = (27r)" dety

NI

(x= ()T (x=(x)) (3.21)

and the entropy is equal to % In((27te)" dety) where 7 is the covariance matrix.

What is the main interest of those Gaussian distributions? If we compare the en-
tropy of all distributions with same covariance matrix, the maximum is given by the
Gaussian distribution, that is

h(p) < h(pg) = 5 In((27e)" det-). (3:22)

One can prove this relation by evaluating the relative entropy between a Gaussian
distribution pg(x) and any other distribution p(x) with same covariance and then
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using the fact that D(p(x)||pc(x)) > 0. Note that the equality is reached only if p(x)
is Gaussian too.

From the subadditivity of the entropy applied to a multivariate Gaussian distribu-
tion, we can derive an interesting inequality named Hadamard's inequality. Indeed, if

we apply Eq. (3.15) to the multivariate Gaussian distribution Eq. (3.21) we find

n
dety <[ (3.23)
i

3.2.4 Entropy power

Sometimes it is useful to speak of entropy powers instead of entropies. The entropy
power of a distribution of n random variables X is defined as

N(X) = - e3h(X). (3.24)

It is the variance (power) of a set of n independent Gaussian variables that produce

the same entropy as X.

In particular, we can derive the well-known entropy power inequality
N(X+Y) > N(X) + N(Y). (3.25)

In Chapter 6, we will show that entropy powers are more suitable to express entropic
uncertainty relations. In particular, the latter are then written in a form similar to the

variance-based uncertainty relations.

3.2.5 Rényi entropy

Since the beginning of this section, we only talked about Shannon differential en-
tropies. However, they belong to a wider family called Rényi entropies. The Rényi

entropy 11, (X) of order a is defined as

he(X) = 5 1 ~log [ [ O:O dx p“(x)} . (3.26)

For & = 1, we need to take the limit of this expression and we fall back on the def-
inition of the Shannon entropy. Rényi entropies are monotonically decreasing as a
function of «. Note that they also satisfy the scaling property so that

ha(AX) = hy(X) + In | det A| (3.27)
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when X transforms as AX. Rényi entropies are Schur-concave? but they do not satisfy
subadditivity.

3.2.6 Wehrl entropy

Finally, let us mention the Wehrl entropy [32] defined as

hw(x,p) = = [ dxdp Q(x,p) n Q(x,p) (3.28)

where .
Qw) = —(wlpla) (329)

is the Husimi Q-representation [33]. Just as the Wigner function, the Q-representation
is normalized. However, in contrast to the Wigner function, it is always positive for
all quantum states. Indeed, Q(«) can be seen as proportional to the probability of
finding the system in the coherent state |a) and so 0 < Q(«) < 1/m. In particular,
this implies that the Wehrl entropy is always positive, unlike the Shannon differential
entropy. In his paper, Wehrl actually conjectured that iy (x, p) > 1 and this was
proven a bit later by Lieb [34]. The equality occurs if and only if the density matrix p
is a pure state projector onto any coherent state, i.e. p = |a) («|.

2 A Schur-convex function is a function such that for all x, y such that x is majorized by v, f satisfies
f(x) < f(y). A function f is Schur-concave if — f is Schur-convex.
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4 Uncertainty relations

The uncertainty principle lies at the heart of quantum physics. It exhibits one of the
key divergences between a classical and a quantum system. Classically, it is in princi-
ple possible to specify the precise value of all measurable quantities simultaneously
in a given state of a system. In contrast, whenever two quantum observables do not
commute, it is impossible to define a quantum state for which their values are si-
multaneously specified with infinite precision. First formulated by Heisenberg for
position and momentum, the uncertainty principle has been generalized to variables
which are non canonically conjugate and has been extended to include correlations.
In addition, while it was first formulated in terms of variances, uncertainty relations
have been extended to an entropic formulation. In this chapter, we give an overview

of uncertainty relations and review some of the most important formulations.

4.1 Variance-based uncertainty relations

4.1.1 Heisenberg uncertainty relation

In 1927, Heisenberg was the first to express an uncertainty relation between the posi-
tion and momentum of a particle. In his paper [1], he exposed a thought experiment
— known as the Heisenberg’s microscope — for measuring the position of an elec-
tron. The idea was to send a y-ray on the particle and to measure the position of
the scattered photon. We can then deduce from it the position of the electron, but
with a small indeterminacy éx due to the wave property of the photon. According to
Compton’s effect [35], we can also compute the momentum of the scattered photon,
but we cannot know precisely its direction. This generates an indeterminacy dp on
the measurement of the momentum of the particle. From this experiment, Heisen-
berg explained that there is a trade-off about how precisely both the position and the

momentum can be measured, and it is expressed as
Oxép ~ h (4.1)
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where £ is the Planck constant. Shortly after, Kennard [2] mathematically formalized
the uncertainty relation and proved that

oRoy > (4.2)

SEE

where 02 and ar% represent the variances of the position and momentum of a quantum
particle and /i = h/27 is the reduced Plank constant.

Note that, as expressed by Kennard, the uncertainty relation is actually a property
of Fourier transforms and thus has many applications in classical physics. What
makes it quantum then? It is the wave description of the particle. More precisely, the
uncertainty relation connects the position x of the particle and the wavelength A of
its associated wave, but thanks to de Broglie formula p = h/A [36], the wavelength
is related to the momentum p which implies the uncertainty relation for position and

momentum.

Remark also that Heisenberg made a statement about measurements, while Ken-
nard’s formulation is really expressing an intrinsic property of the state. Indeed,
Kennard uses the variances which only depend on the state itself. His inequality does
not concern any trade-off relation between the knowledge on the position and distur-
bance on the momentum due to the quantum measurement. Following Heisenberg’s
view, where the uncertainty originates from the measurement, many works have fo-
cused on finding an appropriate definition for measurement uncertainties (see [37]
for a review). In particular, let us mention Ozawa [38] who derived an inequality
about error-disturbance and claimed that this was a rigorous version of Heisenberg’s
formulation of the uncertainty principle. Nevertheless, this claim is still a matter of
debate (for more details, see for example [39, 40]). Nowadays, most textbooks adopt
the view of Kennard, even though Eq. (4.2) is widely called the Heisenberg’s uncer-
tainty relation.

If the uncertainty relation was first formulated for position and momentum, it is well-
known that it holds not just for the position and momentum of a particle, but for any
pair of canonically-conjugate variables'. In fact, in 1928, Robertson [41] extended the

formulation of the uncertainty principle to two arbitrary observables A and B as

1
305 > (WA, Blly)[* (43)
where [+, -] stands for the commutator. Obviously, if A = x and B = p, since
[x,p] = i, we retrieve the Heisenberg uncertainty relation. Note that being aware

that uncertainty relations are expressed in terms of 71, for simplicity, we now fix 1 = 1
throughout the chapter.

Relation (4.2) is invariant under (x, p)-displacements in phase space, since it only

IThat is variables related to each other by a Fourier transform.
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depends on central moments (esp. second-order moments of the deviations from the
means). Furthermore, it is saturated by all pure Gaussian states provided that they

are squeezed in the x or p direction only. More precisely, if we define the covariance

2
e G (4.4)
pr Up

as in Eq. (2.30), we note that the Heisenberg relation is saturated for pure Gaussian

matrix

states provided the principal axes of -y are aligned with the x- and p-axes, namely

0xp = 0. The principal axes are the x4- and pg-axes for which oy, , = 0, where
Xg = cosO X +sinf p po = —sin@ X 4 cosf p (4.5)
are obtained by rotating x and p by an angle 6 as shown in Figure 4.1.

Pe P

Xp

X

Figure 4.1: Principal axes (xp, pp) of the covariance matrix -y, defined in such a way
that oy, », = 0.

4.1.2 Robertson-Schrédinger uncertainty relation

The fact that Eq. (4.2) is saturated only by certain Gaussian states is linked to the

fact that this uncertainty relation is not invariant under rotation. The problem of

invariance was solved in 1930 by Schrodinger [3] and Robertson [4] who added an

anticommutator to the relation (4.3). The new uncertainty relation, for any two arbi-
trary observables now reads

, o1 2 1 2

choh > 7| ({4, BY) —2(A)(B)| + 7]([4,B])| (46)

and its proof is given in Section 4.1.3. In the special case of position and momentum,

A = x and B = p and the Robertson-Schrodinger uncertainty relation reads

det(y) > 4.7)

| =

This uncertainty relation is now invariant under symplectic transformations and so
is saturated by all pure Gaussian states, regardless of the orientation of the principal
axes of the covariance matrix. Indeed, in Section 2.4.1, we mentioned that under
a symplectic transformation S, the new covariance matrix is given by 7/ = SyST.
Now, remember that the determinant of a symplectic matrix is equal to 1, so that

det(7’) = det(S) det(vy) det(S) = det(7) (4.8)
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which shows that Eq. (4.7) is invariant under symplectic transformations, hence un-
der all Gaussian unitary transformations (since it is also invariant under displace-

ments).

In n modes, the generalization of the Robertson-Schrodinger uncertainty relation for
position and momentum is due to Simon et al. [42]. It is formulated as an inequality

for the covariance matrix 7

v+ éQ >0 (4.9)

where
" 0 1
QO=Pow, w = (4.10)
=1 -1 0

as already defined in Eq. (2.39). For one mode, Eq. (4.9) reduces to the Robertson-
Schrodinger uncertainty relation, but in general, we can understand Eq. (4.9) as n
inequalities that must be satisfied in order for a covariance matrix to represent a
physical state. Remember that according to Williamson’s theorem (see Section 2.4.1)
we can always diagonalize v in its symplectic form ¥ with the symplectic values v;
on the diagonal. Therefore, if <y is the covariance matrix of a physical state, it satisfies
Eq. (4.9) and so must ¢ since

7+ 10 > 0
& SySt+isast > o0
& ¢+ 50 > 0 (4.11)

where S is a symplectic matrix and () is, by definition, invariant under a symplectic

transformation. This means that the eigenvalues of the matrix

1 1/2
—1/2 1 0
1%) 1/2
—i/2 v (4.12)
0 v, i/2

—i/2 vy
must all be positive. In other words, Eq. (4.9) is equivalent to

v; > fori=1,---,n. (4.13)

N —

In Section 5.3.1 we give an example where we check the physicality of a state with
the help of the symplectic values.
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Among others, an inequality easy to derive is

det(y?) = ﬁvf > (i)n. (4.14)
i=1

More interestingly, since the covariance matrix is invariant under symplectic trans-
formations, det(y) = det(y®) and we thus have, for all quantum states, the follow-

ing inequality
det(y) > (i) (4.15)

which is the straightforward generalization of Robertson-Schrédinger uncertainty

relation.

Finally, we mention that in 1934, Robertson [43] introduced a covariance-based un-
certainty relation for N observables which generalizes Eq. (4.6). If we define the
vector R = (Rj,- -, Ry) containing N observables, then the uncertainty relation is
expressed as

det(o(R)) > det(C(R)) (4.16)

where o (R) is a covariance matrix and C(R) th