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Bosonic systems in quantum information theory
Gaussian-dilatable channels, passive states, and beyond

Abstract

The symplectic formalism applied to the phase-space representation of bosonic quantum sys-
tems provides us with a powerful mathematical tool for the characterisation of Gaussian states
and transformations. As a consequence, quantum information protocols involving the latter
are very well understood from a theoretical point of view. Nevertheless, it has become clear
in recent years that the use of non-Gaussian resources is necessary in order to perform various
crucial information-processing tasks. An illustration of this fact can for instance be found in
situations where a Gaussian no-go theorem precludes the use of Gaussian transformations in
order to achieve a task involving Gaussian states, such as quantum entanglement distillation,
quantum error correction, or universal quantum computation. In the first part of this thesis,
we develop a new method based on the generating function of a sequence, which gives rise to
an elegant description of intrinsically non-Gaussian objects. Building on the generating func-
tion of the matrix elements of Gaussian unitaries in Fock basis, our approach gives access to
the multi-photon transition probabilities via unexpectedly simple recurrence equations. The
method is developed for Gaussian unitaries effecting both passive and active linear coupling
between two bosonic modes. It predicts an interferometric suppression term which generalises
the Hong-Ou-Mandel effect for more than two indistinguishable photons impinging on a bal-
anced beam splitter. Furthermore, it exhibits an unsuspected 2-photon suppression effect in op-
tical parametric amplification of gain 2, which originates from the indistinguishability between
the input and output photon pairs. Finally, we extend our method to Bogoliubov transforma-
tions acting on an arbitrary number of modes. In the second part of this thesis, we introduce
a class of Gaussian-dilatable bosonic quantum channels (characterised by a Gaussian unitary
in their Stinespring dilation) called passive-environment channels. These channels are inter-
esting from a quantum thermodynamical viewpoint because they correspond to the coupling
of a bosonic system with a bosonic environment that is passive in the Fock-basis (that is, no
energy can be extracted from it by using unitary transformations) followed by discarding the
environment. Making use of the generating function, we provide a description of these chan-
nels in terms of Gaussian bosonic channels. We then introduce a new preorder relation called
Fock-majorization, which coincides with regular majorization for passive states but also induces
another relation in terms of mean boson number, thereby connecting the concepts of energy
and disorder of a quantum state. We prove various properties of Fock-majorization, showing in
particular that the latter can be interpreted as a relation indicating the existence of a heating or
amplifying map between two quantum states. This new preorder relation happens to be relevant
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in the context of passive-environment bosonic channels. Indeed, we show that these channels
are Fock-majorization-preserving, so that any two input states that obey a Fock-majorization re-
lation are transformed into output states respecting a similar relation. As a consequence, it also
implies that passive-environment channels are majorization-preserving over the set of passive
states of the harmonic oscillator. The consequences of majorization preservation are discussed
in the context of the so-called entropy photon-number inequality. Most of our results being in-
dependent of the specific nature of the system under investigation, they could be generalised to
other quantum systems and Hamiltonians, providing new tools that may prove useful in quan-
tum information theory. In the last part of our thesis, we lay out a resource theory of local
activity for bosonic systems. We introduce a notion of local-activity distance, and compare it
with the work that can be extracted from a quantum state under local unitaries assisted by pas-
sive global unitaries. With this framework, we hope to connect the area of continuous-variable
bosonic channels together with quantum thermodynamics.
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Systèmes bosoniques en théorie de l’information quantique
Canaux gaussiens-dilatables, états passifs, et au-delà

Résumé

Le formalisme symplectique appliqué à la représentation des systèmes bosoniques dans l’espace
des phases donne accès à un outil mathématique puissant pour la caractérisation des états gau-
ssiens et transformations gaussiennes. Les protocoles d’information quantique impliquant ces
derniers sont d’ailleurs très bien compris d’un point de vue théorique. Toutefois, il s’est avéré
clair durant ces dernières années que l’utilisation de ressources non-gaussiennes est nécessaire
afin d’effectuer des tâches cruciales de traitement de l’information. En effet, certaines tâches —
telles que la distillation d’intrication quantique, le codage quantique ou encore le calcul quan-
tique — impliquant des états gaussiens ne peuvent être effectuées avec des transformations
gaussiennes. Dans la première partie de cette thèse, nous développons une nouvelle méthode
basée sur la fonction génératrice d’une suite qui donne lieu à une description élégante d’objets
intrinsèquement non-gaussiens. Se basant sur la fonction génératrice des éléments de matrice
d’unitaires gaussiens dans la base de Fock, notre approche donne accès aux probabilités de
transition multi-photon via des équations de récurrence étonnamment simples. La méthode
est développée pour des unitaires gaussiens produisant des couplages linéaires passifs et actifs
entres deux modes bosoniques. Elle prédit un terme d’interférence destructive qui généralise
l’effet Hong-Ou-Mandel pour plus de deux photons indistinguables pénétrant dans un diviseur
de faisceau équilibré. De plus, elle met en évidence un effet inattendu de suppression de deux
photons dans un amplificateur paramétrique optique de gain 2. Cette suppression résulte de
l’indistinguabilité entre les paires de photons d’entrée et de sortie. Finalement, nous étendons
notre méthode à des transformations de Bogoliubov agissant sur un nombre de modes arbi-
traire. Dans la seconde partie de cette thèse, nous introduisons une classe de canaux quantiques
bosoniques gaussiens-dilatables (caractérisés par un unitaire gaussien dans leur Stinespring di-
lation) appelés canaux à environnement passif. Ces canaux sont intéressants du point de vue de
la thermodynamique quantique puisqu’ils correspondent au couplage d’un système bosonique
avec un environnement bosonique qui est passif dans la base de Fock (en d’autres termes, il
est impossible d’en extraire de l’énergie avec des transformations unitaires), suivi du rejet de
l’environnement. Grâce à la fonction génératrice, nous fournissons une description de ces trans-
formations en termes de canaux quantiques bosoniques gaussiens limités par le bruit du vide.
Nous introduisons ensuite une nouvelle relation de pré-ordre appelé majorization de Fock, qui
coïncide avec lamajorizationusuelle pour les états passifs mais induit une autre relation en terme
du nombre moyen de bosons, connectant ainsi les concepts d’énergie et de désordre d’un état
quantique. Dans ce contexte, nous prouvons des propriétés variées de lamajorizationde Fock et
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montrons en particulier que cette dernière peut être interprétée comme une relation indiquant
l’existence d’une transformation d’amplification entre deux états quantiques. Cette nouvelle re-
lation de pré-ordre s’avère appropriée dans le contexte des canaux bosonique à environnement
passif. En effet, nous montrons que ces canaux conservent lamajorization de Fock, de sorte que
n’importe quels deux états d’entrée obéissant une relation de majorization de Fock sont trans-
formés en états de sortie vérifiant une relation similaire. En particulier, cela implique que les
canaux à environnement passif préservent la majorization pour l’ensemble des états passifs de
l’oscillateur harmonique. Les conséquences de la préservation de la majorization sont exam-
inées dans le contexte de la entropy photon-number inequality. Étant indépendants de la nature
spécifique du système étudié, la plupart de nos résultats peuvent être généralisés à d’autres sys-
tèmes et hamiltoniens quantiques, donnant lieu à de nouveaux outils qui pourraient s’avérer
utiles en théorie de l’information quantique. Dans la dernière partie de notre thèse, nous met-
tons en place une théorie de l’activité locale pour les système bosoniques. Nous introduisons
une notion de distance en terme d’activité locale et la comparons avec le travail qui peut être
extrait d’un état quantique avec des unitaires locaux assistés par des unitaires globaux passifs.
Le but à long terme est de se baser sur cette théorie afin de connecter les domaines des canaux
bosoniques à variables continues et de la thermodynamique quantique.

xii



List of Publications

Work related to the present thesis

[a] Majorization preservation of Gaussian bosonic channels, Michael G. Jabbour, Raúl García-
Patrón and Nicolas J. Cerf, New J. Phys. 18, 073047 (2016).
DOI:10.1088/1367-2630/18/7/073047, arXiv:1512.08225.

[b] Multiphoton interference effects in passive and active Gaussian transformations, Michael
G. Jabbour and Nicolas J. Cerf (2018).
arXiv:1803.10734.

[c] Fock majorization in bosonic quantum channels with a passive environment, Michael G.
Jabbour and Nicolas J. Cerf (2018).
arXiv:1806.06044.

[d] A resource theory of local activity for bosonic quantum systems, Michael G. Jabbour,
Uttam Singh, Evgueni Karpov and Nicolas J. Cerf, in preparation.

Work not related to the present thesis

[e] Interconversion of pure Gaussian states requiring non-Gaussian operations, Michael G.
Jabbour, Raúl García-Patrón and Nicolas J. Cerf, Phys. Rev. A 91, 012316 (2015).
DOI:10.1103/PhysRevA.91.012316, arXiv:1409.8217.

[f] Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure
states, Anaelle Hertz, Michael G. Jabbour and Nicolas J. Cerf, J. Phys. A: Math. Theor.
50, 385301 (2017).
DOI:10.1088/1751-8121/aa852f, arXiv:1702.07286.

xiii

https://doi.org/10.1088/1367-2630/18/7/073047
https://arxiv.org/abs/1512.08225
https://arxiv.org/abs/1803.10734
https://arxiv.org/abs/1806.06044
https://doi.org/10.1103/PhysRevA.91.012316
https://arxiv.org/abs/1409.8217
https://doi.org/10.1088/1751-8121/aa852f
https://arxiv.org/abs/1702.07286




Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

1 Introduction 1

I Preliminaries 9

2 Disorder in information theory 11
2.1 Discrete probability distributions . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Shannon entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Rényi entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Majorization relations and Schur-convex functions . . . . . . . . . . 17

2.2 Continuous probability densities . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Differential Shannon entropy . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Continuous Rényi entropies . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Continuous majorization relations and Schur-convex functions . . . 24

2.3 Extension to quantum information theory . . . . . . . . . . . . . . . . . . . 30
2.3.1 Quantum entropies . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Majorization relations for density matrices . . . . . . . . . . . . . . 33
2.3.3 Measures of entanglement and LOCC . . . . . . . . . . . . . . . . 35

3 Bosonic quantum systems 39
3.1 Bosonic systems in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 State space versus phase space representation . . . . . . . . . . . . . . . . . 41
3.3 From Gaussian unitaries to Gaussian quantum states . . . . . . . . . . . . . 44

xv



CONTENTS

3.3.1 Gaussian unitaries and symplectic transformations . . . . . . . . . . 44
3.3.2 Definition of a Gaussian state . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Archetypes of Gaussian unitaries and states . . . . . . . . . . . . . . 45

3.3.3.1 Vacuum state and thermal states . . . . . . . . . . . . . . 45
3.3.3.2 Displacement unitary and coherent state . . . . . . . . . 47
3.3.3.3 Squeezing unitary and squeezed state . . . . . . . . . . . 48
3.3.3.4 Phase rotation unitary . . . . . . . . . . . . . . . . . . . 49
3.3.3.5 Beam-splitter unitary . . . . . . . . . . . . . . . . . . . 50
3.3.3.6 Two-mode squeezing unitary and Gaussian EPR state . . 51

3.3.4 Bloch-Messiah decomposition of canonical unitaries . . . . . . . . . 52
3.3.5 Thermal decomposition of Gaussian states . . . . . . . . . . . . . . 53

3.4 Gaussian bosonic quantum channels . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Definition of a Gaussian channel . . . . . . . . . . . . . . . . . . . 56
3.4.2 General form of one-mode Gaussian channels . . . . . . . . . . . . 58
3.4.3 Phase-insensitive and phase-conjugate one-mode Gaussian channels 60

3.4.3.1 Classical-noise channel . . . . . . . . . . . . . . . . . . 61
3.4.3.2 Lossy channel . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3.3 Amplifier channel . . . . . . . . . . . . . . . . . . . . . 62
3.4.3.4 Phase-conjugate channel . . . . . . . . . . . . . . . . . . 63

3.4.4 Quantum-limited decomposition of one-mode Gaussian channels . . 65
3.4.5 Master equations for one-mode Gaussian channels . . . . . . . . . . 66

4 Entropic inequalities for bosonic quantum systems 69
4.1 The entropy power inequality and beyond . . . . . . . . . . . . . . . . . . . 70

4.1.1 Stam’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 The entropy power . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.3 Equivalent forms of the entropy power inequality . . . . . . . . . . . 73
4.1.4 Beyond the entropy power inequality via rearrangements . . . . . . . 74

4.2 The entropy photon-number inequality . . . . . . . . . . . . . . . . . . . . 75
4.2.1 The entropy photon-number . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 The entropy photon-number inequality: a conjecture . . . . . . . . . 76

II Gaussian bosonic unitaries 79

5 The generating function for Gaussian unitaries 81
5.1 The generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Definition of the generating function . . . . . . . . . . . . . . . . . 82
5.1.2 Properties of the generating function . . . . . . . . . . . . . . . . . 83

xvi



CONTENTS

5.2 Generating functions for two-mode Gaussian unitaries . . . . . . . . . . . . 85
5.2.1 Generating function for the modified transition amplitudes . . . . . 85

5.2.1.1 Beam splitter . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.1.2 Two-mode squeezer . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Partial time reversal . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Computing the transition amplitudes . . . . . . . . . . . . . . . . . 90
5.2.4 Generating function for the transition probabilities . . . . . . . . . . 91

5.2.4.1 Beam splitter . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.4.2 Two-mode squeezer . . . . . . . . . . . . . . . . . . . . 93

5.2.5 Asymptotic analysis of the transition probabilities . . . . . . . . . . 94
5.2.5.1 Generating function of B(i,i)

n . . . . . . . . . . . . . . . . 95
5.2.5.2 Asymptotical behaviour of B(i,i)

n for η = 1/2 . . . . . . . . 96
5.3 Generating functions for N-mode passive Gaussian unitaries . . . . . . . . . 99

6 Multi-photon interference effects in Gaussian transformations 103
6.1 Transition probabilities of two-mode Gaussian unitaries . . . . . . . . . . . . 104

6.1.1 Recurrence for the transition probabilities in a beam splitter . . . . . 104
6.1.2 Comparison between distinguishable and indistinguishable photons . 107
6.1.3 Recurrence for the transition probabilities in a two-mode squeezer . 109

6.2 Generalised Hong-Ou-Mandel effects . . . . . . . . . . . . . . . . . . . . . 111
6.2.1 Multi-photon Hong-Ou-Mandel effect in a beam splitter . . . . . . . 112
6.2.2 Hong-Ou-Mandel effect in a two-mode squeezer . . . . . . . . . . . 113

6.3 Transition probabilities of N-mode passive Gaussian unitaries . . . . . . . . . 115

III Gaussian dilatable bosonic channels 119

7 Gaussian-dilatable channels with passive environment 121
7.1 Passive-environment bosonic channels . . . . . . . . . . . . . . . . . . . . . 122

7.1.1 Bosonic passive states . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.2 Non-Gaussian bosonic channels . . . . . . . . . . . . . . . . . . . 123
7.1.3 Definition of passive-environment bosonic channels . . . . . . . . . 124

7.2 Gaussian decomposition of passive-environment bosonic channels . . . . . . 125
7.3 Dual map of passive-environment bosonic channels . . . . . . . . . . . . . . 130

8 Fock-majorization relations 135
8.1 Definition of the Fock-majorization relation . . . . . . . . . . . . . . . . . . 136
8.2 Properties of the Fock-majorization relation . . . . . . . . . . . . . . . . . . 137

8.2.1 Fock-majorization as an amplifying map . . . . . . . . . . . . . . . 138

xvii



CONTENTS

8.2.2 Behaviour of Fock-majorization in quantum channels . . . . . . . . 142

9 Fock-majorization in Gaussian-dilatable channels 147
9.1 Motivation: the precursor of the EPnI . . . . . . . . . . . . . . . . . . . . . 148
9.2 Preservation of a majorization relation in Gaussian channels . . . . . . . . . 152
9.3 Preservation of Fock-majorization in passive-environment channels . . . . . 155

IV Perspectives 161

10 A resource theory of local activity for bosonic systems 163
10.1 Introduction to resource theories . . . . . . . . . . . . . . . . . . . . . . . . 164
10.2 Basic framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2.1 Free states and operations . . . . . . . . . . . . . . . . . . . . . . . 165
10.2.2 Properties of the set of free states . . . . . . . . . . . . . . . . . . . 166
10.2.3 Comparison with resource theories of passivity . . . . . . . . . . . . 167

10.3 Local-activity distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
10.3.1 Definition of the local-activity distance . . . . . . . . . . . . . . . . 170
10.3.2 Properties of the local-activity distance . . . . . . . . . . . . . . . . 170
10.3.3 Calculation of the local-activity distance for a single mode . . . . . . 172

10.4 Future directions of research . . . . . . . . . . . . . . . . . . . . . . . . . . 175

11 Conclusions and future work 177

Appendix 181
A Continuous majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.1 Alternative definition of the rearrangement of function . . . . . . . . 182
A.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B The Wigner function of a one-mode quantum state . . . . . . . . . . . . . . 184
C Quantum-limited decomposition of one-mode Gaussian channels . . . . . . 186

C.1 Phase-insensitive channels . . . . . . . . . . . . . . . . . . . . . . 186
C.2 Phase-conjugate channels . . . . . . . . . . . . . . . . . . . . . . . 187

D Description of a beam splitter in Fock space . . . . . . . . . . . . . . . . . . 189
D.1 Transition amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . 189
D.2 Transition probabilities . . . . . . . . . . . . . . . . . . . . . . . . 190

E Transition probabilities of N-mode passive Gaussian unitaries . . . . . . . . . 192
E.1 Derivation of the generating function of the transition probabilities . 192
E.2 Proof of the recurrence relation for the transition probabilities . . . . 201

F Fock-majorization in passive-environment channels . . . . . . . . . . . . . . 207
F.1 Fock-majorization preservation in phase-conjugate channels . . . . . 207

xviii



CONTENTS

F.2 Theorem 34 for passive-environment channels . . . . . . . . . . . . 207
G Conservation of passivity after passive post-selection . . . . . . . . . . . . . 209

References 211

Index 219

xix





List of Symbols

Miscellaneous

N Number of modes
N0 Set of all natural numbers (including zero)
R≥0 Set of all non-negative real numbers
1N N× N identity matrix
I Identity operator
Ω N-mode symplectic form
n̂ Number operator
κ Transmittance of pure-loss channel or gain of quantum-limited amplifier
p↓ Vector containing the elements of p sorted in non-increasing order
A↓ Spherically decreasing symmetric rearrangement of a Borel set A
f ↓ Spherically decreasing symmetric rearrangement of a measurable non-negative function f
≻ Majorization symbol
≡ Equivalence in terms of majorization
≻F Fock-majorization symbol
≻T Catalytic majorization symbol

fX ⋆ fY Convolution of the two functions fX and fY
P(X) Entropy power of the random variable X
N(ρ) Entropy photon-number of the quantum state ρ
T Generating function
gBS Generating function of amplitudes for the beam splitter
gTMS Generating function of amplitudes for the two-mode squeezer
f BS Generating function of probabilities for the beam splitter
f TMS Generating function of probabilities for the two-mode squeezer
f PI Generating function of probabilities for the interferometer

xxi



LIST OF SYMBOLS

States

|n⟩ Number (Fock) state if n ∈ N0

|α⟩ Gaussian coherent state if α ∈ C
ζ n̄ Gaussian thermal state of mean number of photon n̄
τx Gaussian thermal state of inverse temperature − log x
Γx Tensor product of Gaussian thermal states τxi , x = (x1, x2, . . .)
Vx Covariance matrix of Γx if x ∈ RN

Vρ Covariance matrix of a quantum state ρ if ρ is a density matrix
|ψEPR

r ⟩ Two-mode squeezed vacuum state with squeezing parameter r
|φEPRλ ⟩ Two-mode squeezed vacuum state with λ = tanh2 r
|ψBS

i,k⟩ Double Fock state |i, k⟩ evolved through a beam splitter
|ψTMS

i,k ⟩ Double Fock state |i, k⟩ evolved through a two-mode squeezer
ρ↓ Fock-passive state with the same spectrum as ρ
P↓k Extremal-Fock-passive state
Σ(ρ) Vector whose elements constitute the spectrum of ρ

Channels

UBS
η Beam-splitter unitary of transmittance η acting on density matrices

UPI Passive interferometer unitary acting on density matrices
UPI Passive interferometer unitary characterising the evolution of the bosonic field operators
UTMS

λ Two-mode squeezing unitary of parameter λ acting on density matrices
B(ε)
η Lossy channel

B[k]
η Extremal passive beam-splitter channel
Bη Pure-loss channel Bη = B(0)

η = B[0]
η

A(ε)
G Amplifier channel

A[k]
G Extremal passive two-mode squeezer channel

AG Quantum-limited amplifier AG = A(0)
G = A[0]

G
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1
Introduction

Quantum mechanics provides us with an elegant mathematical framework for the description
of the Standard Model. As such, it remains one of the most successful theories ever built and can
arguably be labelled as one of the most precisely tested in the history of Science. From solving
mysteries such as the one shrouding the phenomenon of black-body radiation to being at the
very origin of numerous theories, ranging from quantum computing to superconductivity, the
assertion that quantum theory enjoys a plethora of applications is far from being an overstate-
ment. One of the most fruitful theories originating from quantum mechanics can be found in
quantum information theory, which can actually be seen as a refinement of classical informa-
tion theory. In 1948, Claude Shannon published a seminal article in which he established a
mathematical theory of information [1], a concept which was not precisely measurable until
that time. He brought forward some definitions, as well as two revolutionary theorems char-
acterising the information transmission through any classical communication system. The two
key pillars of Shannon’s theory are the entropy, a measure of uncertainty or information con-
tent, and the channel capacity, which sets a limit on the transmission rate achievable over a noisy
communication channel. At that time, a consistent theory of quantum mechanics had already
been established, and John von Neumann had long given a definition of the quantum entropy
[2]. Still, one had to wait more than 40 years until the combination of the classical theory of
information and quantum mechanics resulted in a truly new field focusing on the manipulation
of information quanta (qubits). In the mid-’90s, Holevo, Schumacher and Westmoreland [3, 4]
further generalised Shannon’s communication theory to the quantum case, redefining quanti-
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1. INTRODUCTION

ties such as the classical capacity of quantum channels in the process. They brought forward
some entropic quantities, making it possible to compute the capacity of a quantum channel
when maximised over all sources.

One could say that quantum information theory comes in two flavours, depending on the
way information is chosen to be encoded in a physical system. Indeed, one can adopt a pro-
cedure in which information is encoded using either discrete or continuous variables. The
state of a quantum mechanical system can always be mathematically described by a density ma-
trix characterised by a discrete eigenspectrum. As such, its eigenvalues can be used in order
to store information in some way. This is the paradigm of a system in the framework of dis-
crete quantum information. An example of such a system can readily be found in spin 1/2 par-
ticles, such as an atom, which can be used to register a qubit. On the other hand, the archetype
of a continuous-variable quantum system involves bosons, which are described in an infinite-
dimensional Hilbert space. Its relevant degrees of freedom are given by the so-called bosonic
field operators and corresponding quadrature observables, which admit a continuous eigen-
spectrum and can be employed to encode continuous information. It is important to under-
stand that, in this case, the spectrum of the density matrix describing the state of the system
is still discrete, even though it is infinite dimensional. An example of such a bosonic system is
provided by a quantised mode of the electromagnetic field. In the framework of bosonic quan-
tum information, the so-called Gaussian quantum states and transformations play a major role,
as they closely model a great amount of systems handled in experimental conditions, especially
in quantum optics and atomic physics. Furthermore, powerful analytical tools are available for
treating Gaussian quantum systems, based on the symplectic formalism in phase space.

Aside from information theory, another key tool for characterising a quantum system from
the point of view of its disorder content consists in the mathematical theory of majorization
[5]. The latter is an algebraic theory which provides a mean to compare two probability distri-
butions in terms of randomness. Since the density matrices describing the states of quantum
mechanical systems are characterised by eigenvalues forming discrete probability distributions,
majorization theory beautifully extends to the quantum realm. The power of majorization the-
ory can, for instance, be witnessed through its connexion with both classical (Shannon) and
quantum (von Neumann) entropies. Indeed, whenever a state ρ majorizes another state σ, de-
noted as ρ ≻ σ, then σ is more disordered than ρ so that S(ρ) ≤ S(σ), where S represents
the von Neumann entropy. The first application of majorization proper to quantum systems
was discovered by Nielsen [6], long after the establishment of the algebraic theory. Indeed, he
showed that majorization can be employed in order to compare pure bipartite entangled state
or, more precisely, to investigate the possibility to transform a state into another using local op-
erations assisted by classical communication. Since then, majorization theory has proven to be
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quite a powerful tool for the study of quantum systems.

When Claude Shannon introduced the notions of entropy and capacity in his mathematical
theory of communication, he proposed and partially proved an entropic inequality which al-
lowed him to compute bounds on the capacity of non-Gaussian additive-noise channels. The
inequality is based on the entropy power of a random variable, which can be understood as the
variance of the normal distribution having the same Shannon differential entropy as the dis-
tribution of the original variable. With this in mind, the so-called entropy power inequality
asserts that the entropy power of the sum of independent random variables is at least the sum
of their entropy powers. In an attempt to compute the classical capacities of certain types of
quantum channels acting on bosonic systems, Guha conjectured the so-called entropy photon-
number inequality (EPnI) [7], which can be understood as an similar relation to the entropy
power inequality, but describing quantum states. Similarly to the entropy power, the entropy
photon-numberN(ρ) of a quantum state ρ describes the mean number of photons of the Gaus-
sian thermal state having the same von Neumann entropy as the original state ρ. If one inputs
two quantum states ρa and ρb in a beam splitter UBS

η of transmittance η, then according to the

entropy photon-number inequality, the state ρc = Tr2
[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
at one output of

the beam splitter satisfies

N(ρc) ≥ ηN(ρa) + (1− η)N(ρb). (1.1)

If one defines the map Φη
[
ρa, ρb

]
= Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
, the entropy photon-number

inequality can be restated as

S
(
Φη
[
ρa, ρb

])
≥ S

(
Φη [τa, τb]

)
, (1.2)

where τa and τb are two thermal Gaussian states having the same entropies as ρa and ρb, respec-
tively. Despite a large research effort, the entropy photon-number inequality remains a conjec-
ture as of today.

In the first part of this thesis, we introduce the theoretical background as well as the various
notions on which the present work is based. In Chapter 2, we begin by presenting the math-
ematical framework of classical and quantum information theory, focusing on the concept of
disorder through the notions of entropy and majorization. We assume that the reader is famil-
iar with the basic notions of quantum mechanics. Chapter 3 is dedicated to the description of
bosonic quantum systems, with a particular emphasis on Gaussian bosonic systems. We end
the first part of the manuscript with Chapter 4, in which we present both the entropy power
and entropy photon-number inequalities in more details, introducing continuous majorization
in the context of the former. This first part does not contain any of the new results introduced in
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1. INTRODUCTION

the context of this thesis. Experienced researchers in quantum information in general can skip
Chapter 2, while researchers familiar with continuous-variable quantum information need not
read Chapter 3. One of the reasons we have chosen to write a detailed introductory part is in
the hope that it will serve future students in the field.

Bosonic quantum systems are characterised by an infinite-dimensional Hilbert space. As a
consequence, their physical states are described by density operators with an infinite eigenspec-
trum, making the treatment of some theoretical problems involving bosonic systems rather in-
volved. In some interesting cases, this difficulty can be circumvented by means of the sym-
plectic formalism applied to the phase-space description of quantum systems, whose central
object is the Wigner function. The latter provides us with a representation of quantum states
which happens to be completely equivalent to the characterisation provided by density matri-
ces. Whenever one has to deal with Gaussian states and transformations, the symplectic for-
malism in phase space provides us with a powerful mathematical tool for their study, based on
finite-dimensional matrices. However, as soon as either of the state or the transformation is
non-Gaussian, the analytical description based on the symplectic formalism becomes power-
less. Nevertheless, the investigation of non-Gaussian systems is clearly imperative, since it has
been demonstrated in recent years that non-Gaussian resources are essential in order to per-
form various information-theoretic tasks, as depicted for instance by several Gaussian no-go
theorems [8–10]. In Chapter 5 of this thesis, we develop a theoretical framework that is particu-
larly suited to Gaussian unitaries describing both the passive and active linear coupling between
bosonic modes (i.e., all Bogoliubov transformations). Our technique relies on the generating
function of Gaussian matrix elements in Fock space, which can be expressed in a simple form
involving Gaussian states and the symplectic formalism, while it enables accessing intrinsically
non-Gaussian features such as multi-photon transition probabilities. Our method also brings
forth an elegant relation between the two fundamental two-mode Gaussian unitaries, i.e., the
beam splitter and the two-mode squeezer. We demonstrate that either one of the two Gaussian
unitaries can be obtained by performing a partial time reversal on the other, a fact which can be
used in order to describe the behaviour of one of the objects by exploiting knowledge about the
other.

In Chapter 6, we make use of our method in order to investigate quantum interferences,
which are a cornerstone of quantum physics. Over the last years, there has been a vigorous ac-
tivity on harnessing multi-mode multi-photon interferences as it may be a key for implementing
future quantum technologies with photonic integrated devices, see e.g. [11]. This is also signifi-
cant in connection with the boson sampling paradigm [12], which builds on the computational
hardness of simulating the coherent propagation of many identical bosons through a multimode
linear interferometer and holds the promise of substantiating the advantage of quantum com-
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puters [13–16]. More generally, this has led to a revived interest for quantum interferometry
going beyond the celebrated Hong-Ou-Mandel effect [17], e.g., the generalised bunching effect
in linear networks [18], the signatures of nonclassicality in a multimode interferometer [19],
the observation of intrinsically 3-photon interference [20, 21], or the suppression laws in a 8-
mode optical Fourier interferometer [22]. The technique we develop in Chapter 5 allows us to
derive fundamental recurrence relations for the transition probabilities in a beam splitter and
in a two-mode squeezer. In particular, it exhibits a suppression term that generalises the Hong-
Ou-Mandel effect to many photons. Remarkably, applying this tool to active transformations,
we find an analogue suppression effect that had been left unnoticed in an optical amplification
medium of gain 2. The results we present in Chapters 5 and 6 are based on [b].

Another interesting problem that cannot be addressed with the symplectic formalism con-
cerns the characterisation of non-Gaussian channels. Such a theoretical description turns out
to be necessary, as several crucial quantum information processes cannot be performed solely
with Gaussian transformations. With this in mind, we introduce in Chapter 7 of this thesis a
new class of bosonic quantum channels. In order to take advantage of the methods developed
earlier and the knowledge acquired in the context of Gaussian unitaries, we focus on channels
characterised in their Stinespring dilation by such unitaries, as well as an environment that is
passive. Passive states are those quantum states from which no work can be extracted using uni-
tary transformations, making them ubiquitous in theories in which the concept of energy plays
a crucial role, such as quantum thermodynamics. We call our non-Gaussian channels passive-
environment Gaussian-dilatable channels. By exploiting the generating function of some spe-
cific passive-environment channels, we show how any of these maps can be written in terms
of quantum-limited Gaussian bosonic channels. This provides us with a way to study passive-
environment channels starting from the formalism of Gaussian maps. For instance, we make use
of this method to show that the dual map of a passive-environment channel based on a beam
splitter is proportional to a similar passive-environment channel based on a two-mode squeezer.

The theory of majorization was originally introduced in the framework of continuous-variable
quantum systems by Guha in the context of the EPnI [7]. The idea was that in the specific case in
which the environment ρb is thermal while the signal ρa has an entropy equal to zero, Equation
(1.2) can be seen as a consequence of a majorization relation between the two outputs corre-
sponding to state ρa and the vacuum state. In an attempt to generalise this idea, we conjecture
what we call the precursor of the EPnI, which states that

Φη

[
ρ↓a , ρ

↓
b

]
≻ Φη

[
ρa, ρb

]
, (1.3)

where the map Φη is the same as the one appearing in Equation (1.2), and ρ↓a and ρ↓b are the
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1. INTRODUCTION

passive state with the same eigenspectra as ρa and ρb, respectively. If one fixes the environment
ρb to be in a passive state, Equation (1.3) can be restated in terms of any passive-environment
channel C↓ as

C↓ [ρ↓] ≻ C↓ [ρ] . (1.4)

Inspired by the conjectured majorization relation of Equation (1.4), we ask the question whether
a majorization relation is preserved in any passive-environment channel, meaning that if two
states verify some majorization relation, they will verify a similar relation at the output of the
channel. This happens not to be verified in general, as one can easily find counter-examples
to such a statement. Nevertheless, we describe another fundamental majorization-like relation
which is preserved through a passive-environment channel. To this aim, we introduce in Chap-
ter 8 a new preorder relation on quantum states called Fock-majorization and denoted as ≻F . We
show several properties of the latter and demonstrate that the existence of such a relation be-
tween two states implies the existence of an amplifying, or heating map connecting the two. As
a consequence, it happens to be closely connected to the concept of energy of a quantum state.
We then prove in Chapter 9 that Fock-majorization is precisely the relation that is preserved
through any passive-environment channel, including of course Gaussian bosonic channels. In
other words, we show that

ρ ≻F σ ⇒ C↓[ρ] ≻F C↓[σ], (1.5)

which is to be compared with Equation (1.4). The two states ρ and ρ↓ are equivalent from the
point of view of majorization, in the sense that both ρ ≻ ρ↓ and ρ ≺ ρ↓ are verified. In the con-
text of Fock-majorization however, the two states are ordered, i.e., ρ↓ ≻F ρ. As a consequence,
Equation (1.5) implies C↓[ρ↓] ≻F C↓[ρ], which is also implied by Equation (1.4) in this partic-
ular case. Nonetheless, Equation (1.5) deals with all quantum states and does not only concern
passive ones. Furthermore, it implies in particular that passive-environment channels preserve
majorization among the set of passive states. We conclude the chapter by discussing the impli-
cations of Equation (1.5) in the context of the entropy photon-number inequality. The results
we present in Chapters 8 and 9 are based on [a] and [c].

Finally, having developed a method for the characterisation of Gaussian unitaries applied to
non-Gaussian states and having studied passive states of the harmonic oscillator in the context
of passive-environment channels and Fock-majorization, we undertake the establishment of a
non-trivial resource theory for bosonic quantum systems in which passive states are free. In
Chapter 10, we outline the guiding lines of such a theory, in which we also choose passive Gaus-
sian transformations, or passive interferometers, to be free operations. As a consequence, our
free states are given by products of single-mode passive states transformed by any passive Gaus-
sian unitary. In doing so, our goal is to compare our theory to one in which the central quantity
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would be the work Wl,PG
max which is extractable locally using unitary transformations, but assisted

by passive Gaussian global unitaries. To achieve this goal, we introduce a notion of local-activity
distance Al of a state, which is the relative entropy distance of the latter to the closest free state
as we defined earlier. We then compare this new quantity to the work Wl,PG

max . Our hope is to de-
velop a resource theory which would connect the frameworks of continuous-variable quantum
information theory and quantum thermodynamics by building on the notions of Gaussian uni-
taries and passive states. The results presented in Chapter 10 are based on a paper in preparation
[d].
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You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechan-
ics under that name, so it already has a name. In the second
place, and more important, no one really knows what entropy
really is, so in a debate you will always have the advantage.

John von Neumann to Claude Shannon,
Scientific American (1971) [23].

2
Disorder in information theory

Entropy may be understood as a measure of the disorder, uncertainty, or randomness in a phys-
ical system. As such, it is one of the most fundamental quantities derived in physics. Depending
on its exact interpretation, the entropy plays a critical role in various fields of physics, from sta-
tistical mechanics and thermodynamics to classical and quantum information theory. Further-
more, the definition of entropy can be adapted to the different mathematical frameworks de-
scribing the physics of systems, characterising discrete or continuous objects, classical or quan-
tum. Although the entropy happens to to be the only function satisfying some specific chosen
properties altogether, it can still be extended to general measures which characterise the disor-
der in a system. This line of thought gives rise to the algebraic theory of majorization, which
provides a pre-order among vectors that proves to be more general than entropic inequalities.

In this chapter, we introduce the mathematical framework of information theory, in which
entropy is viewed as a measure of the concept of information contained in a physical system. We
present several entropy-like functionals in the process, such as the so-called Rényi entropies. By
doing so, we attempt to connect these different quantities to the notions of disorder and uncer-
tainty, specifically through the theory of majorization. In Section 2.1, we begin by exploring
the realm of discrete information theory, in which random variables are associated to discrete
probability distributions. Section 2.2 is concerned with Shannon’s theory in the framework
of variables having a continuous probability density. It might be worthwhile to note that the
concept of majorization for continuous variables has, to our knowledge, never been explored
in the context of quantum information theory, to which this manuscript is dedicated. Still, an
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important part of the research we carried out was exactly about this notions of continuous ma-
jorization, even though we chose not to present it in this manuscript. Furthermore, continuous
majorization is interesting as such, which is why we explore it in Section 2.2. Finally, we intro-
duce von Neumann’s entropy in Section 2.3, along with the corresponding notions of quantum
information theory. Majorization happens to play a crucial role in the quantum theory, specif-
ically as a consequence of its relation with local operations and classical communication. This
will lead us to present notions related to the latter, such as measures of entanglement.

This chapter is based on the very well-written book on majorization [5]. We also draw inspi-
ration from [24] and [25]. Note that, in order to be consistent will all the existing literature, we
write majorization instead of majorisation.

2.1 Discrete probability distributions

2.1.1 Shannon entropy

We begin by introducing the concept of Shannon entropy, a measure of the uncertainty of a
random variable. Consider a discrete random variable X, whose realisations x belong to an al-
phabet X , and define its probability mass function as p(x). The information content i(x) of a
particular realisation x of X can be seen as the measure of the surprise one has upon learning
the outcome of a random experiment [25],

i(x) = − log p(x), (2.1)

where the logarithm is chosen to be base two, meaning that the measure is done in bits. This
choice of the information content is, of course, not random. It happens to behave as hoped.
Indeed, it is lower for higher probability events, which tend to be expected, while it is higher
for lower probability events, which tend to surprise us. Furthermore, it is additive when taking
products of probabilities, which is expected from an informational measure. However, i(x) is
obviously a “one-shot” quantity, and cannot be a measure of the uncertainty of the random
variable X as such. In order to capture this, one actually needs to take the expected value of the
information content i(X),

E {i(X)} = −
∑
x∈X

p(x) log p(x). (2.2)

This is exactly the entropy H(X) of the variable X.

Definition1 (Shannon entropy). Consider a variable Xwhose realisations x belong to an alphabet
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X , with probability mass function p(x). The Shannon entropy of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x). (2.3)

Note that there is no problem in the definition of the entropy if we rely on the fact that

lim
ε→0

ε log ε = 0. (2.4)

We already used the word uncertainty to characterise the entropy. There are actually two ways
to view the latter. It can either be seen as the amount of information one gains upon learning the
value ofX (hence the measure of surprise after some experiment), or the amount of uncertainty
one has about the variable X before the experiment.

The entropy was introduced by Shannon in his seminal work of 1948 [1], but it was already
a well-established quantity in several other fields of physics at that time, even though it had
never been connected to the concept of information. The word entropy was actually created by
Rudolph Clausius around 1864, in the work that led him to postulate that the entropy of a closed
system cannot decrease, which is nowadays known as the second law of thermodynamics [26].
In the context of his work, Clausius had therefore already associated his entropy to the concept
of disorder of a thermodynamical system [27]. This was clarified by Ludwig Boltzmann in the
following years, when he gave a probabilistic view of the concept of disorder of a system.

Shannon’s entropy has several interesting properties, which we list hereafter.

Property 1 (Positivity). The Shannon entropy of any random variable X is non-negative, i.e.,

H(X) ≥ 0. (2.5)

This is expected, since the entropy is related to the measure of uncertainty of X.

Property 2 (Concavity). The Shannon entropy of any random variable X is concave in its proba-
bility density p(x).

This means that if one mixes two random variables, the resulting variable’s uncertainty will
be greater than the expected uncertainty of the two initial variables. It simply reflects the fact
that the process of mixing creates uncertainty.

Property 3 (Symmetry). The Shannon entropy is invariant under permutations of the realisations
of any random variable X.

This seemingly trivial fact is actually of importance, since it expresses that the entropy of X
does not depend on the values of the realisations x of X, unlike other measures of uncertainty,
like the variance for instance. Since we are interested in entropy-like measures in this work, we
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2. DISORDER IN INFORMATION THEORY

will forget about the alphabet X from now on, focusing on the probability density of X instead.
As a consequence, we will consider vectors of probabilities p ∈ Rn, whose elements pi are
non-negative and sum to one, i ranging from one to the number of elements n of the vector p.
Furthermore, we will define the entropy as

H(p) = −
n∑
i=1

pi log pi, (2.6)

taking it to be a functional of the vector of probabilities, instead of the variable X itself. Note
that we will often label the vector of probabilities p simply as a probability distribution in the
following sections.

Since we will be using it later on, let us introduce another concept closely related to the Shan-
non entropy. The so-called relative entropy is a measure of the distance between two probability
distributions [28].

Definition 2 (Relative entropy). The relative entropy, or Kullback-Leibler divergence between two
probability distributions p ∈ Rn and q ∈ Rn is defined as

D (p||q) =
n∑
i=1

pi log
pi
qi
. (2.7)

One could describe the relative entropy as an expected log-likelihood ratio of the probabil-
ities p and q. According to its definition, it can become infinite when the support of p is not
contained in the support of q, or in other words, when pi ̸= 0 but qi = 0 for some i between
1 and n. Similarly to Equation (2.4), we use the conventions 0 log 0

0 = 0, 0 log 0
qi

= 0 and
pi log

pi
0 = ∞ for any pi and qi. An important property of the relative entropy concerns its

positivity.

Property 4 (Positivity). The relative entropy between any two probabilities p ∈ Rn and q ∈ Rn

is non-negative, i.e.,
D (p||q) ≥ 0. (2.8)

It is equal to zero if and only if p = q.

Despite this, the relative entropy is not a true distance in the mathematical sense, as it is not
symmetric (in its two arguments p and q), and does not satisfy the triangle inequality. Unlike
the Shannon entropy, it is a convex quantity.

Property 5 ( Joint convexity). The relative entropy is jointly convex; that is, if
(
p(1), q(1)

)
and(

p(2), q(2)
)
are two pairs of probability distributions, then

D
(
λp(1) + (1− λ)p(2)||λq(1) + (1− λ)q(2)

)
≤ λD

(
p(1)||q(1)

)
+(1−λ)D

(
p(2)||q(2)

)
, (2.9)
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2.1. DISCRETE PROBABILITY DISTRIBUTIONS

for all λ such that 0 ≤ λ ≤ 1.

2.1.2 Rényi entropies

Until now, we focused on the best-known entropy, the Shannon entropy. It is however in our
interest for the present dissertation to introduce other specific measures of uncertainty. The
Rényi entropies, which generalise the Shannon entropy, will be crucial in understanding the
fundamental relation between entropies and the theory of majorization. These functionals were
put forward by Alfréd Rényi in his seminal paper of 1961 [29] in which he was investigating
other approaches to derive the Shannon entropy.

Definition 3 (Rényi entropy). For any vector of probabilities p ∈ Rn, the Rényi entropy of order
α ∈ (0, 1) ∪ (1,∞) is defined as

Hα(p) =
1

1− α
log

(
n∑
i=1

pαi

)
. (2.10)

The Shannon entropy of p can be recovered from the Rényi entropies of p, as intended by
Alfréd Rényi. This can be done by taking the limit

lim
α→1

Hα(p) = H(p). (2.11)

From now on, we will extend the definition of Hα to α = 1, by setting

H1(p) := H(p). (2.12)

Apart from this connection, there are actually other interesting special cases of Rényi’s uncer-
tainty function. The Hartley entropy, or max-entropy,

H0(p) := lim
α→0

Hα(p) = log n, (2.13)

represents the information revealed after picking a sample from a set of finite length n, uniformly
at random. As such, it coincides with all the Rényi entropies (as well as the Shannon entropy)
in the case of a uniform probability distribution. Similarly, the min-entropy

H∞(p) := lim
α→∞

Hα(p) = − logmax
i

pi, (2.14)

is yet another way to evaluate the uncertainty contained in a variable. These two extreme cases
are of particular interest because of the behaviour of the Rényi entropy when its order α changes.
This is encompassed in the following property.

Property 6. The Rényi entropy of a fixed probability distribution p is non-increasing in its order α.
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2. DISORDER IN INFORMATION THEORY

This actually means that the two extremal values for the Rényi entropies of a fixed probability
distribution are given by the min-entropy and the max-entropy, as their names actually suggest.
As an obvious consequence, they constitute bounds for the more interesting Shannon entropy.
We now list some useful properties of the Rényi entropies.

Property 7 (Positivity). The Rényi entropies of any probability distribution p are positive for all
α ≥ 0, i.e.,

Hα(p) ≥ 0, ∀α ≥ 0. (2.15)

We already know that the Shannon entropy is always positive, meaning that this property
simply extends to all Rényi entropies. On the other hand, the property of concavity of the for-
mer is not simply transferred to all α ≥ 0 [30].

Property 8 (Concavity). TheRényi entropies of any probability distribution p are concave in p for
α ∈ [0, 1].

This property is not verified for α > 1. Rényi entropies of these orders are neither convex nor
concave in general. This actually makes them less likely to be chosen as uncertainty measures,
since concavity would be expected from such functionals. Nevertheless, we will show later that
all Rényi entropies are still good candidates for measures of disorder, a concept closely related
to uncertainty. Finally, we just mention that all Rényi entropies are also symmetrical, which can
obviously be seen from their definition, but is still an important fact.

Property 9 (Symmetry). The Rényi entropies of the probability distribution p are invariant under
permutations of p.

One can always generalise Definition 2 to Rényi entropies. This can be done as follows [29].

Definition 4 (Rényi divergence). TheRényi divergence of order α ∈ [0, 1)∪ (1,∞) between two
probability distributions p ∈ Rn and q ∈ Rn is defined as

Dα (p||q) =
1

α − 1
log

(
n∑
i=1

pαi q
1−α
i

)
. (2.16)

It becomes infinite if α > 1 and if the support of p is not a subset of the support of q. Like
the relative entropy, it has some useful properties [31].

Property 10 (Positivity). The Rényi divergence of order α ∈ [0, 1) ∪ (1,∞) between any two
probabilities p ∈ Rn and q ∈ Rn is non-negative, i.e.,

Dα (p||q) ≥ 0. (2.17)

For α > 0, it is equal to zero if and only if p = q. For α = 0, Dα (p||q) = 0 if and only if the
support of q is a subset of the support of p.
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2.1. DISCRETE PROBABILITY DISTRIBUTIONS

It is jointly convex for some α.

Property 11 ( Joint convexity). The Rényi divergence of order α ∈ [0, 1) is jointly convex; that is,
if
(
p(1), q(1)

)
and
(
p(2), q(2)

)
are two pairs of probability distributions, then

Dα
(
λp(1) + (1− λ)p(2)||λq(1) + (1− λ)q(2)

)
≤ λDα

(
p(1)||q(1)

)
+ (1− λ)Dα

(
p(2)||q(2)

)
,

for all λ such that 0 ≤ λ ≤ 1.

The Rényi divergence happens to be a crucial tool with various applications which can be
found in, for instance, hypothesis testing and multiple source adaptation [31].

2.1.3 Majorization relations and Schur-convex functions

The Rényi entropies (including the Shannon entropy) we have presented until now can be seen
as functionals which measure the uncertainty of a probability distribution p ∈ Rn. We ex-
plained that this uncertainty is related to the surprise one would gain upon learning the value
of a realisation of some alphabet X whose random variable X had a probability mass function
given by p. The functionals all happen to be symmetric. Furthermore, some of them are con-
cave, but not all. We will now see that they are however all related to the concept of disorder,
through the mathematical theory of majorization [32], which provides a means to compare two
probability distributions in terms of disorder or randomness. Before clarifying what we mean
by disorder, let us begin by introducing the algebraic theory of majorization. In order to do so,
we first need to fix some notations. Let p be a probability distribution vector. We will denote
by p↓ the vector containing the elements of p sorted in non-increasing order. With this in mind,
we give the definition of a majorization relation [5].

Definition 5 (Majorization). Let p ∈ Rn and q ∈ Rn be two vectors of dimension n. We say that
pmajorizes q, i.e. p ≻ q, if

k∑
i=1

p↓i ≥
k∑
i=1

q↓i , k = 1, ..., n, (2.18)

with equality when k = n.

Let us give a few remarks about the last definition.

Remark 1. The definition of majorization can be applied to any two vectors whose elements
are real. The vectors do not necessarily have to be probability distributions.

Remark 2. If the two vectors which are being compared have a different number of elements,
we may always append zeros to the vector with the lowest dimension in order to compare them
in terms of majorization.
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Remark 3. If p and q are probability distributions, the equality for k = n in Equation (2.18) is
always satisfied.

It is important to realise that majorization only provides a pre-order on vectors, in the sense
that if p � q, this does not necessarily mean that p ≺ q. When both p � q and p ⊀ q are
satisfied, p and q are said to be incomparable. When two vectors p and q satisfy both p ≻ q
and p ≺ q, we will say that they are equivalent in terms of majorization, and will denote this by
p ≡ q. It will simply mean that they have the same spectrum.

We mentioned earlier that majorization was related both to uncertainty measures like the
Rényi entropies and to the concept of disorder. We may now explain its connection to the latter.
This can be understood using the notion of doubly-stochastic, or bistochastic matrix.

Definition 6 (Bistochastic matrix). AmatrixD ∈ Rn×n is said to be bistochastic if all its elements
are non-negative, and if its columns and rows all sum to one, i.e.,

Dij ≥ 0 ∀i, j = 1, . . . , n,
n∑
i=1

Dij = 1, ∀j = 1, . . . , n,
n∑
j=1

Dij = 1, ∀i = 1, . . . , n.

The set of bistochastic matrices of a given dimension is convex and its extremal points are given
by permutation matrices of the same dimension. Consequently, we have the following theorem.

Theorem 1 (Birkhoff ’s theorem). Any doubly-stochastic matrixD ∈ Rn×n can be decomposed as
a convex combination of permutation matrices, i.e.,

D =
∑
k

ωkΠk, (2.19)

where {ωk} represents a probability distribution and theΠk are n-dimensional permutationmatrices.

Any bistochastic matrix can therefore be written as a convex mixture of permutation matrices.
In order to understand why majorization allows one to compare probability distributions in

terms of disorder, let us introduce an alternative way of detecting majorization, which is given
by the following theorem [33].

Theorem 2 (Hardy, Littlewood and Pólya). Let p ∈ Rn and q ∈ Rn be two probability distri-
butions. pmajorizes q if and only if there exists a bistochastic matrixD such that

q = Dp. (2.20)

If we combine Theorem 2 with Birkhoff ’s theorem, we end up with the fact that, for any two
probability distributions p ∈ Rn and q ∈ Rn, p majorizes q if and only if we can relate them
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through a mixture of permutations, i.e.,

p ≻ q ⇔ ∃{ωk} s.t. q =
∑
k

ωkΠkp, (2.21)

where {ωk} is a probability distribution and the Πk are n-dimensional permutation matrices.
This last equation clearly shows the relation between disorder and majorization. Indeed, we see
that if p majorizes q, then q can be obtained by applying random permutations to p, making q
more disordered than p.

As we mentioned already, majorization theory is closely related to entropy-like measures.
They, or rather their negatives, are actually part of a larger set of functions which preserve the
ordering of majorization. These functions, which we thereby define, where introduced by Schur
in 1923 [34].

Definition 7 (Schur-convex function). A real-valued function G defined on a setR ∈ Rn is said
to be Schur-convex onR if

p ≻ q on R ⇒ G(p) ≥ G(q). (2.22)

The negative of a Schur-convex function is called Schur-concave. As their name would sug-
gest, some Schur-convex functions can be built using convex functions. This is the content of
the following theorem [33, 34].

Theorem 3. If g : R → R is convex, then

G(p) =
n∑
i=1

g(pi) (2.23)

is Schur-convex onRn.

The function g(x) = x log x is easily shown to be convex. Combining this fact with Theorem
3 allows us to conclude that the Shannon entropy is Schur-concave. This implies the following
corollary.

Corollary 1. If p ∈ Rn and q ∈ Rn are two probability distributions,

p ≻ q ⇒ H(p) ≤ H(q). (2.24)

Corollary 1 demonstrates the clear connection between the Shannon entropy and disorder.
This is consistent with the fact that the process of mixing increases the Shannon entropy. As
a matter of fact, Corollary 1 can be strengthened using the relative entropy between the two
probabilities [35].
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Theorem 4. If p ∈ Rn and q ∈ Rn are two probability distributions,

p ≻ q ⇒ H(q)− H(p) ≥ D
(
p↓||q↓

)
. (2.25)

This shows that not only is majorization “stronger” than a Shannon entropy inequality (2.24)
in the sense that it implies it, it even implies something stronger.

Theorem 3 can actually be generalised by relaxing the form of the Schur-convex function
G. The following theorem was essentially proved by Schur [34] for a restricted domain of the
Schur-convex function.

Theorem 5. If G : Rn → R is symmetric and convex, then G is Schur-convex.

The Rényi entropies of order α ∈ [0, 1) cannot be written as a sum over concave functions,
like the Shannon entropy. They are however all concave, as mentioned before. Since they are
all symmetric, the following Corollary is true.

Corollary 2. If p ∈ Rn and q ∈ Rn are two probability distributions,

p ≻ q ⇒ Hα(p) ≤ Hα(q), ∀α ∈ [0, 1]. (2.26)

The other Rényi entropies are neither convex, nor concave. Corollary 2 can nevertheless be
generalised as well.

Theorem 6. If p ∈ Rn and q ∈ Rn are two probability distributions,

p ≻ q ⇒ Hα(p) ≤ Hα(q), ∀α ∈ [0,∞). (2.27)

This actually means that Theorem 5 is only an implication, as a Schur-convex function is not
necessarily convex, although it is always symmetric. It would be interesting to obtain an in-
equality similar to the one of Theorem 4, using the Rényi divergence of Definition 4. One can
however find an example which demonstrates that this is not possible [36]. Still, the generalisa-
tion can be done by considering the so-called Tsallis entropies (which we choose not to define
here) and some corresponding measures of divergence [36].

Theorem 6 relates all our uncertainty functions, the Rényi entropies, to the concept of dis-
order inherent to majorization. One could ask the question whether all the inequalities on the
Rényi entropies imply a majorization relation. In other words, can Relation (2.27) be gener-
alised to an equivalence instead of an implication? This happens to be impossible, as one can
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always find a couple of probability distributions p ∈ Rn and q ∈ Rn which are incomparable,
but whose Rényi entropies follow the same inequality for all α ∈ [0,∞). It actually means that
the knowledge of all the Rényi entropies of p and q is not sufficient to conclude whether the
two vectors are comparable. It is however possible to check that G(p) ≥ G(q) for some spe-
cific Schur-convex functions G in order to investigate whether p ≻ q. These specific functions
of the vectors of probabilities typically output the cumulated sums of Equation (2.18). This
fact is contained in the following theorem, which was proved by Hardy, Littlewood and Pólya
[33, 37].

Theorem 7. Let p ∈ Rn and q ∈ Rn be two probability distributions. The inequality

n∑
i=1

g(pi) ≥
n∑
i=1

g(qi) (2.28)

holds for all continuous convex functions g : R → R if and only if p ≻ q.

One needs the information on all the cumulated sums (Equation (2.18)) of two vectors p
and q in order to compare them in terms of majorization, while the information on the Rényi
entropies is not enough in general for such a task. It can however be exploited on the context of
so-called catalytic majorization, which is defined as follows [38].

Definition 8 (Catalytic majorization). Let p ∈ Rn and q ∈ Rn be two vectors of dimension n.
We say that p trump-majorizes q, i.e. p ≻T q, if there exists a vector c ∈ Rm for some m ≥ 0, such
that p⊗ c ≻ q⊗ c.

One understands the reason it is called catalytic majorization, as the catalyst c in Definition
8 remains unchanged when comparing p ⊗ c and q ⊗ c. The role of c will be made clearer
when catalytic majorization will be exploited in the context of quantum information theory
(see Section 2.3.3). The importance of Rényi entropies in this context can now be witnessed
through the following theorem [39], which generalises Theorem 6.

Theorem 8. If p ∈ Rn and q ∈ Rn are two probability distributions,

p ≻T q ⇔ Hα(p) ≤ Hα(q), ∀α ≥ 1. (2.29)

Theorem 8 was originally expressed in terms of lp norms, which are essentially equivalent to
the Rényi entropies.

Until now, all the definitions and theorems we presented applied to vectors with a finite di-
mension n. Nevertheless, the theory of majorization nicely adapts to the infinite-dimensional
case. Thus, Definition 5 of majorization in terms of cumulated sums stays unchanged, with
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n “simply” going to infinity. Bistochastic matrices, however, should be swapped for column-
stochastic and row-substochastic matrices in this context. For completeness, we state the cor-
responding definition.

Definition 9 (Column-stochastic and row-substochastic matrix). A infinite matrixD is said to
be column-stochastic and row-substochastic if all its elements are non-negative, and if its columns all
sum to one and its rows all sum to a value less than one, i.e.,

Dij ≥ 0 ∀i, j = 1, . . . ,
∞∑
i=1

Dij = 1, ∀j = 1, . . . ,
∞∑
j=1

Dij ≤ 1, ∀i = 1, . . . . (2.30)

The most important theorem concerning majorization is arguably Theorem 2. It was gener-
alised to the infinite-dimensional case in [40] and [41], as follows.

Theorem 9. Let p and q be two infinite probability distributions. pmajorizes q if and only if there
exists a column-stochastic and row-substochastic matrixD such that

q = Dp. (2.31)

The interested reader can find a nice review of these notions in [42], which also generalises
some other well known majorization results to infinite dimensions.

2.2 Continuous probability densities

2.2.1 Differential Shannon entropy

Although the meaning of continuous variables should be understood from its denomination,
we begin by clarifying some concepts to which it relates. Take X to be a random variable with
cumulative distribution function

F(x) = Pr (X ≤ x) . (2.32)

We will say that the random variable X is continuous whenever F is continuous. If F is differen-
tiable almost everywhere, we define the probability density function for X as f(x) = F′(x). It
verifies ∫ ∞

−∞
dx f(x) = 1. (2.33)

The differential entropy came as an attempt by Shannon to extend the idea of his Shannon en-
tropy to continuous variables. He defined it as follows [24].

Definition 10 (Differential entropy). The differential entropy h( f ) of a continuous random vari-
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able X with density f(x) is defined as

h( f ) = −
∫ ∞

−∞
dx f(x) log f(x). (2.34)

As we did in the discrete case, we took the differential entropy to be a function of the density
f(x) rather than the variable X itself, as it only depends on f(x). Furthermore, the log is taken to
base 2 (this can be generalised to other bases).

Remark 4. The definition of the differential entropy obviously only applies to situations in
which both the density f(x) and the integral given by h( f ) exist.

The differential entropy is an extension of the Shannon entropy to the continuous case. The
definitions of the two quantities are similar, with discrete summations being replaced by in-
tegrations when going from the Shannon entropy to the differential one. Although we expect
them to share some properties, the differential entropy is not always positive, even for a genuine
random variable, unlike in the discrete case. It is however still concave.

Property 12 (Concavity). Thedifferential entropy of any randomvariableX is concave in its density
f(x).

Another interesting property concerns the entropy of a vector of random variables X which
is transformed by a matrix A.

Property 13. Suppose a vector of random variables X with density f is transformed into AX with
density fA, where A is a matrix. The entropy of the new variable is given by

h( fA) = h( f ) + log | det[A]|, (2.35)

where the log is taken to base 2.

In the last equation, det[A] stands for the determinant of a matrix A. This property will be
interesting in the context of Bosonic Gaussian transformations, which are characterised in phase
space by a matrix whose determinant equals one.

It is in our interest to introduce the definition of continuous relative entropy, as it will be
useful in the context of entropy power inequalities, which will be introduced in Chapter 4. It is
as follows.

Definition 11 (Continuous relative entropy). The continuous relative entropy between two ran-
dom variables X and Y with respective densities fX and fY is defined as

D( fX|| fY) =
∫ ∞

−∞
dx fX(x) log

fX(x)
fY(x)

. (2.36)
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As in the discrete case, it is always positive.

Property 14 (Positivity). The continuous relative entropy between any two continuous random
variables X and Y with respective densities fX and fY is non-negative, i.e.,

D ( fX|| fY) ≥ 0. (2.37)

It is equal to zero if and only if fX(x) = fY(x), for almost all x ∈ R (i.e. all x outside a set of Lesbegue
measure zero).

2.2.2 Continuous Rényi entropies

In this section, we simply define the Rényi entropies in the continuous case, since they will serve
as interesting examples when describing continuous majorization.

Definition 12 (Continuous Rényi entropy). The continuous Rényi entropy hα( f ) of order α ∈
(0, 1) ∪ (1,∞) of a continuous random variable X with density f(x) is defined as

hα( f ) =
1

1− α
log
(∫ ∞

−∞
dx f α(x)

)
. (2.38)

Like in the discrete case, we extend the definition of hα to α = 1, by setting

h1( f ) := h( f ). (2.39)

2.2.3 Continuous majorization relations and Schur-convex functions

As we did for the Shannon entropy, we are now going to extend the concept of majorization to
continuous variables. In the discrete case, it was applied to probability vectors which had first
been reordered. In order to apply the theory to continuous probability densities, these should
similarly be reordered in some way. In order to be able to do so, we begin by presenting the
concept of rearrangement of a non-negative function, which is based on the rearrangement of a
set [43].

Definition 13 (Rearrangement of a Borel set). For a Borel set A with volume |A|, one can define
its spherically decreasing symmetric rearrangement A↓ by

A↓ = B(0, r), (2.40)

where B(0, r) stands for the open ball of radius r centred at the origin with volume |A|.

We choose the convention that if |A| = 0, then A↓ = ∅. Figure 2.2.1 depicts an example of
rearrangement of a set in R2.
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↓

Figure 2.2.1: Example of rearrangement of a Borel set in R2. The figure on the left
represents a Borel set A. The figure on the right represents its rearrangement A↓, which is
simply a disk having the same area as A.

The rearrangement of a non-negative function can be understood from its layer cake rep-
resentation [44]. Before presenting the latter, let us introduce a functional which will be of
importance later on. For any non negative real-valued measurable function f defined on a n-
dimensional Euclidean space Rn, we define [5]

mf(t) = | {x : f(x) > t} |, t ≥ 0. (2.41)

This function represents the volume of the set of elements x such that f(x) > t. The layer cake
representation of f is the formula

f(x) =
∫ ∞

0
1{y∈Rn|f(y)≥t}(x)dt, (2.42)

where 1A denotes the indicator function of a subset A ⊆ Rn. This can be obtained from the fact
that

1{y∈Rn|f(y)≥t}(x) = 1[0,f(x)](t), (2.43)

and the identity

f(x) =
∫ f(x)

0
dt =

∫ ∞

0
1[0,f(x)](t)dt. (2.44)

Alternatively, we can write

f(y) =
∫ ∞

0
{y ∈ Bt} dt, (2.45)

where

{y ∈ Bt} =

{
1 if y ∈ Bt,

0 else,
(2.46)

and Bt = {x : f(x) > t}. Now that we know how the layer cake representation works, we are
able to define the rearrangement of a non-negative function [43].

Definition 14 (Spherically decreasing symmetric rearrangement of a non-negative function).
For a measurable non-negative function f, one can define its spherically decreasing symmetric rear-
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rangement f ↓ by

f ↓(y) =
∫ ∞

0

{
y ∈ B↓

t

}
dt, (2.47)

where {
y ∈ B↓

t

}
=

{
1 if y ∈ B↓

t

0 else
(2.48)

and Bt = {x : f(x) > t}.

By construction, this kind of rearrangement moves the mass of the function towards the
origin. As an illustration, Figure 2.2.2 shows an example of such an operation, applied to a
non-negative function in R. As a second illustration, Figure 2.2.3 shows two examples of the

↓

Figure 2.2.2: Example of spherically decreasing symmetric rearrangement in one dimension.
The figure on the left represents a non-negative function defined f on R. The figure on the
right represents its spherically decreasing symmetric rearrangement f ↓. As one can see, some
discontinuities in the derivatives can in general appear when constructing the rearrangement.
These discontinuities are highlighted by the red dotted lines. The green plain lines represent
the fact that the volumes of the level sets of the function remain unchanged.

spherically decreasing symmetric rearrangement, applied to two-dimensional probability dis-
tributions. The latter actually represent the Wigner function of two normalised extremal Fock-
passive states, which will be defined in Section 7.1, in the context of bosonic quantum systems.
The definition of the rearrangement can actually be extended to negative functions, but they
would have to have a finite support in order to do so. Note that there is an alternative definition
of the rearrangement of a non-negative function, which produces an asymmetric non-negative
function of a single real argument. We refer the interested reader to Appendix A.1 for such a
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( , )

(a)

↓( , )

(b)

( , )

(c)

↓( , )

(d)

Figure 2.2.3: (a) Wigner function of the third normalised extremal Fock-passive state. (b)
Spherically decreasing symmetric rearrangement of the Wigner function of the third nor-
malised extremal Fock-passive state. (c) Wigner function of the eighth normalised extremal
Fock-passive state. (d) Spherically decreasing symmetric rearrangement of the Wigner func-
tion of the eighth normalised extremal Fock-passive state. As one can see, in the case of (b)
and (d), the mass of the functions has been moved towards the origin.

definition.
Using one’s intuition, it is possible to understand that

{x : f(x) > t}↓ =
{
x : f ↓(x) > t

}
. (2.49)

This simply means that a non-negative function and its spherically decreasing symmetric rear-
rangement have the same rearranged level sets. As a consequence, one can see that

mf(t) = mf ↓(t), ∀ t ≥ 0. (2.50)

Another direct implication is that two non-negative functions f and g have the same rearrange-
ments, i.e., f ↓ = g ↓, if and only if they satisfy

mf(t) = mg(t), ∀ t ≥ 0. (2.51)

In the discrete case, the Rényi entropies Hα played a special role in the context of the theory
of majorization. One of their simplest properties was that they were symmetrical. This can be
retrieved in the context of continuous distributions, as Rényi entropies are preserved by rear-
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rangements.

Lemma 1. For any α ∈ (0,∞),
hα( f ) = hα( f ↓). (2.52)

Indeed, in the continuous case, the spherically decreasing symmetric rearrangement plays
the role of the operation which transforms vectors into their reordered versions through per-
mutations. Lemma 1 is actually a particular case of the following theorem involving convex
functions.

Theorem10. Let f be a probability density andφ(x)be a convex functiondefined on the non-negative
real line such that φ(0) = 0 and it is continuous at 0. Then∫

φ( f(x))dx =
∫

φ( f ↓(x))dx, (2.53)

provided that the two integrals are well-defined.

An elegant proof of Theorem 10 can be found in [43].
Using the concept of a decreasing rearrangement, we are now able to introduce majorization

theory for continuous variables. Similarly to discrete majorization, continuous majorization is
a partial order on probability densities [43].

Definition 15 (Continuous majorization). For probability densities f and g on Rn, we say that f
majorizes g, i.e. f ≻ g if∫

{x:||x||<r}
f ↓(x)dx ≥

∫
{x:||x||<r}

g↓(x)dx, ∀ r ≥ 0. (2.54)

Like in the discrete case, majorization consists in comparing all the “cumulated” integrals of
the rearranged probability densities. Note that, by construction, two probability densities f and
g which verify

mf(t) = mg(t), ∀ t ≥ 0, (2.55)

will satisfy f ≻ g and f ≺ g, meaning that they will be equivalent in terms of majorization,
since they will have the same rearrangements. This is comparable to the situation in which two
probabilities have the same spectrum in the discrete case. We will be denoting this by f ≡ g in
the following.

In the context of continuous majorization, the notion of Schur-convex function can be ex-
tended as follows [5].
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Theorem11. Let φ(x) be a convex function defined on the non-negative real line such that φ(0) = 0
and it is continuous at 0. Consider two probability densities f and g. If f ≻ g then∫

φ( f(x))dx ≥
∫

φ(g(x))dx, (2.56)

provided that both sides are well-defined.

One could ask the question whether majorization can still be clearly related to the concept
of disorder in the continuous case. Using Jensen inequality, we show in appendix A.2 that when
a density g can be related to functions which are equivalent to a density f, through a continuous
mixture, f and g obey a majorization relation. This is encompassed in the following Lemma.

Lemma 2. If f and g are probability densities, and there exists a distribution K : R → R≥0 such
that

∫
R K = 1 and

g(x) =
∫ ∞

−∞
dy K(y)fy(x), ∀x ∈ R, (2.57)

where fy has the same rearrangement as f, for all y ∈ R, then f ≻ g.

Like in the discrete case, this is an intuitive way of considering that g is more disordered than f.
It turns out it is possible to define a so-called doubly stochastic function for continuous variables
[5].

Definition 16 (Bistochastic function). A function k : R×R → R≥0 is said to be bistochastic if∫ ∞

−∞
dy k(x, y) = 1, ∀x ∈ R,

∫ ∞

−∞
dx k(x, y) = 1, ∀y ∈ R. (2.58)

We restricted the definition to a function k : R×R → R≥0, but it can easily be generalised
to functions k : A × A → R≥0, where A is any set on which the probability densities we
consider are defined. One can readily use Jensen’s inequality to prove the following theorem.

Theorem12. If f and g are probability densities, and there exists a bistochastic function k : R×R →
R≥0 such that

g(x) =
∫ ∞

−∞
dy k(x, y)f(y), ∀x ∈ R, (2.59)

then f ≻ g.

Note that unlike in the discrete case, Theorem 12 is not an equivalence.
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2.3 Extension to quantum information theory

2.3.1 Quantum entropies

In 1932, von Neumann introduced a mathematical formalism of quantum mechanics [2]. He
had already associated an entropy quantity to a statistical operator in 1927 [45], but later dis-
cussed it in more details in his book on the quantum theory. Before Shannon’s work, the con-
cept of entropy had no connection with the notion of information. von Neumann actually de-
fined his entropy in the framework of a thought experiment on the ground of phenomenological
thermodynamics [26].

A quantum state will in general be described by a density operator (or density matrix) ρ, i.e. a
positive semi-definite Hermitian operator of trace one in a Hilbert space H of the system [46].
In this context, the von Neumann entropy is defined as follows [2].

Definition17 (von Neumann entropy). ThevonNeumann entropy of a densitymatrix ρ is defined
as

S(ρ) = −Tr [ρ log ρ] . (2.60)

Remark 5. In Equation (2.60), the function x log x of an operator is well-defined by functional
calculus.

If the state ρ is written using its spectral decomposition

ρ =
∑
i

λi
∣∣ψ i

⟩ ⟨
ψ i

∣∣ , (2.61)

where the
{
|ψ i⟩
}
i∈N represent a basis of pure states, one can readily check that its von Neumann

entropy can be computed to be the Shannon entropy of the classical probability distribution λ,
the vector containing all the λi for i ∈ N, i.e.,

S(ρ) = H(λ). (2.62)

The reason the state ρ we are attempting to describe is usually mixed, and written in the form of
Equation (2.61), is that it can actually be in any of the pure states

∣∣ψ i

⟩ ⟨
ψ i

∣∣. We may however
not know exactly which of the

∣∣ψ i

⟩ ⟨
ψ i

∣∣ is the actual state of our system, which is why we rely
on a distribution {λi} to describe it. The von Neumann entropy captures exactly this idea by
evaluating how uncertain we are of the exact pure state of our system. As such, this uncertainty
is actually completely classical. If there was a way to know in which pure state our system is, the
von Neumann entropy of ρ would always be zero.

The von Neumann entropy shares many properties with its classical counterpart. We list
some of these properties below.
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Property 15 (Positivity). The von Neumann entropy of any density matrix ρ is non-negative, i.e.,

S(ρ) ≥ 0. (2.63)

It is zero if and only if the state ρ is pure.

This is in accordance with the interpretation of von Neumann’s functional we gave above.

Property 16 (Concavity). The vonNeumann entropy is a concave function of its inputs, i.e., for any
probability distribution {pi}, and corresponding density matrices ρi,

S

(∑
i

piρi

)
≥
∑
i

piS(ρi). (2.64)

Similarly to what we explained earlier, the expression
∑

i piρi is a signature of the fact that we
do not know the exact state of our system, which might be described by any of the ρi. As such,
not only does it express our ignorance due to the ρi themselves, there is actually a contribution
due to our ignorance of the index i. Consequently, our uncertainty of the mixture

∑
i piρi should

logically be greater than the average uncertainty of the states ρi, which is what the property of
concavity of the von Neumann entropy captures.

Suppose a quantum system is comprised of two subsystemA andB. One can ask the question
whether one can compare the von Neumann entropies of the latter with the whole system AB.
This can be done using the notion of quantum conditional entropy, which we define now [47].

Definition 18 (Quantum conditional entropy). Consider a quantum system in a state ρAB, com-
posed of two subsystems in respective states ρA and ρB. The quantum conditional entropy is defined
as

S
(
ρA|ρB

)
ρAB

= S
(
ρAB
)
− S

(
ρA
)
. (2.65)

The reason we introduce this notion is because it will later serve as an interesting way to
compare the von Neumann entropy with the concept of majorization in the quantum realm.

The goal of the present section is to generalise entropy measures, among which the Shannon
entropy, to the quantum setting. It seems natural to try and do the same for the relative entropy,
given how powerful a tool it is in classical information theory. This can be done as follows [46].

Definition 19 (Quantum relative entropy). The quantum relative entropy between two density
operators ρ and σ is defined as

S (ρ||σ) = Tr [ρ log ρ]− Tr [ρ log σ] . (2.66)

Remark 6. According to our conventions, whenever supp(ρ) ∩ ker(σ) ̸= 0, S (ρ||σ) = ∞.
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Again, many properties of the relative entropy can be extended to the quantum realm.

Property 17 (Klein’s inequality). The quantum relative entropy between any two states ρ and σ is
non-negative, i.e.,

S (ρ||σ) ≥ 0. (2.67)

It is equal to zero if and only if ρ = σ.

Property 18 ( Joint convexity). The quantum relative entropy is jointly convex in its arguments;
that is, if

(
ρ(1), σ(1)

)
and
(
ρ(2), σ(2)

)
are two pairs of density matrices, then

S
(
λρ(1) + (1− λ)ρ(2)||λσ(1) + (1− λ)σ(2)

)
≤ λS

(
ρ(1)||σ(1)

)
+(1− λ)S

(
ρ(2)||σ(2)

)
, (2.68)

for all λ such that 0 ≤ λ ≤ 1.

Finally, it is in our interest in the present dissertation to extend the Rényi entropies to the
quantum realm as well. As expected, they will play an interesting role in the generalisation of
majorization to the quantum theory.

Definition 20 (Quantum Rényi entropy). For any density matrix ρ, the quantum Rényi entropy
of order α ∈ (0, 1) ∪ (1,∞) is defined as

Sα(ρ) =
1

1− α
log (Tr [ρα]) . (2.69)

Like in the classical realm, the von Neumann entropy can be recovered from Expression
(2.69) by taking the limit for α → 1. As a consequence, we extend Definition 20 to α = 1
by setting

S1(ρ) := S(ρ). (2.70)

Since the quantum Rényi entropy of any state ρ can be seen as the Rényi entropy of the probabil-
ity distribution given by its eigenvalues, the properties we listed in section 2.1.2 trivially extend
to the quantum case. We hereby present them for completeness.

Property 19. The quantum Rényi entropy of a fixed density matrix ρ is non-increasing in its order
α.

Property 20 (Positivity). The quantum Rényi entropies of any density matrix ρ are positive for all
α ≥ 0, i.e.,

Sα(ρ) ≥ 0, ∀α ≥ 0. (2.71)

Property 21 (Concavity). The quantum Rényi entropies of any density matrix ρ are concave in ρ
for α ∈ (0, 1].
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It is interesting to mention that the property of symmetry of the Rényi entropies (among
which the Shannon entropy) can be generalised to the quantum realm by actually considering
any unitary transformation.

Property 22 (Unitary invariance). The quantum Rényi entropies of the density matrix ρ are in-
variant under any unitary transformation applied to ρ.

2.3.2 Majorization relations for density matrices

We will denote by Σ(ρ) the vector whose elements constitute the spectrum of the density ma-
trix ρ. Since Σ(ρ) is a well-defined probability distribution, the definition of majorization can
naturally be extended to quantum states through their spectra.

Definition 21 (Majorization for quantum states). Let ρ and σ be two density matrices. We say
that ρ majorizes σ, i.e. ρ ≻ σ, whenever Σ(ρ) ≻ Σ(σ).

Like in the classical case, we will say that two states ρ and σ are equivalent in terms of ma-
jorization when both ρ ≻ σ and ρ ≺ σ are satisfied. We will denote this as ρ ≡ σ.

As we showed, it was rather trivial to generalise the definitions of the Shannon and Rényi
entropies to quantum information theory. Definition 21 does so for majorization, but we would
like to have a direct generalisation of Definition 5. In order to do this, consider a state ρ written
in its spectral decomposition as

ρ =
n∑
i=1

λ↓i
∣∣ψ i

⟩ ⟨
ψ i

∣∣ , (2.72)

meaning that the
{
|ψ i⟩
}
i∈N have been chosen so that λ↓i ≥ λ↓i+1 for all i = 1, . . . , n− 1. Define

Q(ρ)k as

Q(ρ)k =
k∑
i=1

∣∣ψ i

⟩ ⟨
ψ i

∣∣ , (2.73)

which is a projector on the k first eigenvectors of ρ corresponding to its k highest eigenvalues.
We then have the following trivial lemma.

Lemma 3. If ρ and σ are two density matrices, then ρ ≻ σ if and only if

Tr [Q(ρ)k ρ] ≥ Tr [Q(σ)k σ] , k = 1, . . . , n. (2.74)

Our goal in introducing such an obvious lemma is to stress that, unlike in the definition of the
quantum Rényi entropies, one needs to diagonalise both the states ρ and σ in order to compare
them in terms of majorization. This actually reminds us of the fact that one needs to reorder
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the elements of a probability distribution in order to use it in the context of Definition 5 (it is
actually the reason why the diagonalisation needs to be done in the quantum case).

When looking at Definition 21, one may wonder about the purpose of such a generalisation
to the quantum realm, since the theory seems to be dealing solely with the classical probability
distribution of the eigenvalues of a quantum state. As we are going to show later, majoriza-
tion theory and the corresponding notion of disorder constitute a powerful tool for the study
of some primary, purely quantum resource. For this reason, a characterisation of majorization
for quantum states seems important enough in itself. One of the most relevant properties of the
theory is arguably the one relating it to the notion of disorder, through the concept of mixture of
permutations of Equation (2.21). This raises the question whether such a mixture can be gen-
eralised when it involves quantum objects. The following theorem, due to Uhlmann, provides
us with a non-trivial answer [46, 48–50].

Theorem 13 (Uhlmann’s theorem). Consider two density matrices ρ and σ. The relation ρ ≻ σ
holds if and only if there exists a probability distribution {pi} and unitary matrices Ui such that

σ =
∑
i

piUiρU†
i . (2.75)

Equation (2.75) is a generalisation of the fact that when two probability vectors are related
by a majorization relation, one of them can be obtained from the other by applying a mixture
of permutations. As a consequence, it allows us to make sense of the concept of disorder in
quantum information theory. Furthermore, Theorem 13 is an elegant explanation of the fact
that majorization relations arise frequently in quantum mechanics, which can be seen as a result
of the fundamental role played by unitarity in the quantum theory.

The mixture of unitaries of Equation (2.75) is a particular case of unital channels. A channel
is a linear, completely positive and trace-preserving map (see Section 3.4.1 for the detailed defi-
nition of a channel), while a unital map can be defined as follows for finite-dimensional systems
[51].

Definition 22 (Unital map). Denote as T (H) the space of all operators in a finite-dimensional
Hilbert spaceH equipped with the trace norm. A mapM : T (H) → T (H) is called unital if

M[I] = I, (2.76)

where I represents the identity operator inT (H).

A unital channel can alternatively be called a bistochastic completely positive map (which is
by definition trace-preserving). Whenever two states are related by such a channel, they can be
ordered using a majorization relation. Note that a unital channel cannot always be written as a
mixture of unitaries. The following theorem can however be proved for finite dimensions [51].
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Theorem 14. Denote by Mn the set of n× n density matrices. A channel C : Mn → Mn is unital if
and only if it can be written as an affine combination of unitaries, i.e.,

C[ρ] =
∑
i

aiUiρU†
i , ∀ρ ∈ Mn, (2.77)

where the ai are all real and sum to one, and each Ui ∈ Mn is unitary.

As we already explained, von Neumann did not connect his concept of entropy to informa-
tion theory. The relation can best be understood through Schumacher’s noiseless channel cod-
ing theorem [52], which quantifies the resources needed to perform quantum data compression
[46]. Consider a source producing orthogonal states |ψ j⟩ with probabilities pj. Schumacher’s
theorem tells us that it may be compressed down to the Shannon entropyH(p). However, if the
states |ψ j⟩ are not orthogonal, Schumacher’s theorem certifies that the source may actually be

compressed down to the von Neumann entropy S
(∑

j pj
∣∣∣ψ j

⟩⟨
ψ j

∣∣∣), which may be less than

H(p). The entropic inequality relating S
(∑

j pj
∣∣∣ψ j

⟩⟨
ψ j

∣∣∣) andH(p) is actually a consequence
of a stronger relation involving majorization theory. It is encompassed in the Schur-Horn the-
orem [34], which is as follows.

Theorem15 (Schur-Horn theorem). IfH is ann×nHermitianmatrixwith eigenvalues λ1, . . . , λn
and diagonal elements h1, . . . , hn, then

λ ≻ h. (2.78)

2.3.3 Measures of entanglement and LOCC

One of the most important resources put forward by quantum mechanics resides in the notion
of entanglement of two particles [53]. This “spooky” action at a distance was first noticed by
Einstein, Podolsky and Rosen in their famous paper of 1935 [54], and originally called Ver-
schränkung (now translated as entanglement) by Schrödinger [55]. Einstein, Podolsky and
Rosen argued that this particular effect was a result of the fact that the quantum description
of physical reality was not complete, and needed to be extended using some hidden variables.
Bell later proved that the predictions of quantum mechanics cannot be explained by any local
hidden variable theory [56]. The major consequence is that entanglement cannot be simulated
within any classical formalism. A mixed state ρ of n systems will be called separable if it can be
written as a convex combination of product states, i.e.,

ρ =
∑
i

piρ(1)i ⊗ . . .⊗ ρ(n)i , (2.79)

where ρ(j)i is a state of subsystem j. A state which is not separable is called entangled [57]. En-
tanglement is nowadays considered as the most substantial resource of quantum mechanics. Its
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first application as such was discovered by Ekert, who explained in 1991 that it could be used
in the context of quantum key distribution [58]. Entanglement has since been shown to be
a resource for a plethora of applications, such as quantum dense coding [59], quantum tele-
portation [60] and others. One then understands the importance of being able to quantify, or
measure entanglement as a resource. Several measures of entanglement have been proposed in
the last 20 years. As it happens, quantum correlations in a quantum system share a close con-
nection with the disorder or uncertainty of the corresponding subsystems. Thus, many of the
measures put forward are based on the concept of entropy. Furthermore, all of these quantities
(the ones based on entropy) coincide whenever the quantum system is in a pure state.

Definition 23 (Entropy of entanglement). The entropy of entanglement of a bipartite pure state
|ψ⟩ is defined as

E(|ψ⟩) = S(ρ), (2.80)

where ρ is the state of one of the subsystems of |ψ⟩.

In Equation (2.80), it does not matter which subsystem we consider, as the two subsystems of
a pure state have the same entropy (as a matter of fact, they share the same spectrum). The con-
nection between entanglement and disorder goes deeper than what is exhibited by Definition
23. This can be witnessed by introducing the concept of local operations with classical commu-
nication (LOCC) [61], under which entanglement should never increase. Any function which
does not increase on average under LOCCs is called an entanglement monotone. Since entropy
seems to play a particular role in the theory of entanglement, one could ask whether the latter
could be investigated in the framework of the theory of majorization. As it happens, the latter
can be linked to the concept of LOCCs through the following result proved by Nielsen [6].

Theorem 16. A pure bipartite state |φ⟩ transforms to another pure bipartite state |ψ⟩ using local
operations and classical communication, i.e. |φ⟩ LOCC−−−→ |ψ⟩, if and only if

ρψ ≻ ρφ, (2.81)

where ρψ and ρφ are respective states of subsystems of |ψ⟩ and |φ⟩.

A consequence of Theorem 16 is that all Schur-concave functions of the state ρψ of any sub-
system of a pure bipartite state |ψ⟩ are entanglement monotones, the entropy of entanglement
of Definition 23 being such a function. As it happens, there are situations in which entangle-
ment can help LOCCs, without being consumed. Indeed, it is possible to find states |φ⟩ and |ψ⟩
such that |φ⟩ cannot be transformed to |ψ⟩, while the transformation can be performed with the
help of a catalyst state |χ⟩, as

|φ⟩ ⊗ |χ⟩ LOCC−−−→ |ψ⟩ ⊗ |χ⟩ . (2.82)
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This is called entanglement-assisted LOCC, which we denote as

|φ⟩ ELOCC−−−−→ |ψ⟩ . (2.83)

If one exploits the theory of catalytic majorization through Theorem 8, it can be shown that the
transformation of Equation (2.83) is possible if and only if [39]

ρψ ≻T ρφ, (2.84)

where ρψ and ρφ are respective states of subsystems of |ψ⟩ and |φ⟩.
Theorem 16 and Equation (2.84) are some ways to compare the entanglement of two bipar-

tite states by comparing the disorder of their respective subsystems. Majorization can however
also be used as a witness of the presence of entanglement in any mixed state of a system. This
fact can already be anticipated by considering the relation between separable states and the no-
tion of quantum conditional entropy defined in Equation (2.65). Indeed, the following Lemma
holds [62].

Lemma4. Consider a quantum system in a bipartite state ρ12, composed of two subsystems in respec-
tive states ρ1 and ρ2, where ρ1 = Tr2[ρ12] and ρ2 = Tr1[ρ12]. If ρ12 is separable, then

S
(
ρ1|ρ2

)
ρ12

≥ 0 and S
(
ρ2|ρ1

)
≥ 0. (2.85)

As it happens, the conditional entropy of a quantum system can be negative, if quantum cor-
relations are involved. Equation (2.85) can actually be seen as an implication of the following
theorem, proved by Nielsen and Kempe [63].

Theorem 17. If a bipartite state ρ12 is separable, then

ρ1 ≻ ρ12 and ρ2 ≻ ρ12, (2.86)

where ρ1 = Tr2[ρ12] and ρ2 = Tr1[ρ12].

As expressed by Nielsen and Kempe in the title of their paper [63], separable states are more
disordered globally than locally. The criterion they present is a witness of entanglement, in the
sense that if a bipartite mixed state does not majorize its two subsystems, than it has to be en-
tangled. Theorem 17 was further strengthened by Hiroshima as follows [64].

Theorem 18. If a bipartite state ρ12 is not distillable, then

ρ1 ≻ ρ12 and ρ2 ≻ ρ12, (2.87)

where ρ1 = Tr2[ρ12] and ρ2 = Tr1[ρ12].
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Entanglement distillation represents the process of extracting pure maximally entangled states
from several copies of a given entangled state. A state which is not distillable is one from which
no pure entangled state can be extracted, even though it may be entangled. In particular, a sep-
arable quantum state can be seen as a specific case of a state which is not distillable.
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3
Bosonic quantum systems

Bosons make up one of the two fundamental classes of particles in the universe. In the quantum
theory, a system of such bodies is composed of a collection of non-interacting indistinguishable
particles described by Bose-Einstein statistics. In this chapter, we introduce the mathematical
formalism of bosonic systems. We focus particularly on the so-called Gaussian systems, which
are of great importance in quantum optics and continuous-variables quantum information the-
ory. Gaussian states are easy to produce and manipulate experimentally. Furthermore, they can
be mathematically described by only using the first two statistical moments of the quadrature
operators in phase space. Similarly, Gaussian transformations are ubiquitous in quantum optics
set-ups, and need only a few parameters for their theoretical description. We begin by introduc-
ing general bosonic systems in Section 3.1. In Section 3.2, we present the phase-space formal-
ism of quantum states, as an alternative but equivalent representation to the one described in
Chapter 2. Finally, section 3.3 is devoted to the detailed characterisation of Gaussian states and
unitaries, while Section 3.4 concerns the generalisation of the latter to Gaussian channels.

Our overview relies on the very nicely written review of Gaussian quantum information [65].
Note that in the following, we choose natural units so that the value of Planck’s constant ~ is set
to 2. As a consequence, the variance of the ground state of our bosonic system is normalised to
1.

39



3. BOSONIC QUANTUM SYSTEMS

3.1 Bosonic systems in a nutshell

The state of a quantum system can always be described using a density matrix ρ in a Hilbert
space; that is, a Hermitian operator with a discrete spectrum. As such, the eigenvalues of ρ can
be used in order to encode information in some way. A quantum system is called a continuous
variables system when its relevant degrees of freedom are associated to observables with con-
tinuous spectra, which might alternatively be used to encode information. A collection of N
bosonic modes is an archetype of such a quantum system [65, 66]. In the framework of quan-
tum optics, each of these canonical modes corresponds to a quantised radiation mode of the
electromagnetic field, and is mathematically modelled by a quantum harmonic oscillator. The
whole bosonic system is associated with a tensor-product Hilbert space H =

⊗N
k=1 Hk, each

of the Hk corresponding to one of the individual modes, which are furthermore described by
bosonic field operators âk and â†k , respectively called annihilation and creation operator. These
operators satisfy the bosonic commutation relations[

âk, â†l
]
= δkl,

[
âk, âl

]
= 0,

[
â†k, â

†
l

]
= 0, k, l = 1, . . . ,N. (3.1)

They can be used to define the Hamiltonian of the complete bosonic system,

Ĥ =
N∑
k=1

Ĥk, Ĥk = ~ωk

(
â†kâk +

1
2

)
, (3.2)

where each Ĥk is the Hamiltonian of the individual mode k, ωk is the frequency of excitation in
mode k, and n̂k = â†kâk represents the so-called number operator in mode k.

The eigenstates of each of the number operators n̂k form a countable basis for each of the
corresponding infinite dimensional Hilbert spacesHk. Each of these eigenbasis is called a Fock
basis, or number basis, and is labelled {|n⟩k}n∈N0

, N0 being the set of all natural numbers (in-
cluding zero). Note that we choose to omit the index k of |n⟩k in the following, since the tensor
product notations will allow us to differentiate between the different Hilbert spaces. As one
would expect, the eigenvalues of n̂ correspond to the different boson numbers n, i.e.,

n̂ |n⟩ = n |n⟩ . (3.3)

The effect of the annihilation and creation operators on the elements of the Fock basis is also
well defined, and is such that â |0⟩ = 0 and

â |n⟩ =
√
n |n− 1⟩ , ∀n ≥ 1, (3.4)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , ∀n ≥ 0. (3.5)

40



3.2. STATE SPACE VERSUS PHASE SPACE REPRESENTATION

The bosonic field operators can be used to derive other mathematical objects of great impor-
tance in specific bosonic system (e.g., Gaussian ones, see later). The so-called quadrature field
operators q̂k and p̂k are related to the creation and annihilation operators as

q̂k = âk + â†k, p̂k = i(â†k − âk). (3.6)

They equivalently completely characterise bosonic quantum systems. As a consequence, they
satisfy the canonical commutation relations

[
q̂k, p̂l

]
= 2iδkl, (3.7)

where we chose natural units so that ~ = 2. For future convenience, we arrange the quadrature
field operators in the vector

x̂ = (q̂1, p̂1, . . . , q̂N, p̂N)
T , (3.8)

and define the so-called N-mode symplectic form Ω as

Ω =
N⊕
k=1

ϖ, ϖ =

(
0 1
−1 0

)
. (3.9)

In this case, Equation (3.7) can be equivalently rewritten

[
x̂k, x̂l

]
= 2iΩkl. (3.10)

The bosonic field operators â and â†, and the quadrature field operators q̂ and p̂ will all play
an important role later on. However, the first two will prove more suitable in some situations
(when being applied on Fock states for instance) while the other two will definitely make cal-
culations more practical in other cases (when investigating Gaussian systems in phase space).

3.2 State space versus phase space representation

In Section 2.3, which concerned the description of a theory of disorder applied to quantum in-
formation theory, we always described the state of our quantum system using a density matrix ρ
on a Hilbert spaceH. Furthermore, most of the definitions and theorems we presented applied
to density operators of a fixed finite dimension n, meaning that the Hilbert space itself was of fi-
nite dimension. We explained at the end of Section 2.1 that these notions could be generalised to
infinite dimensional systems, although dealing with the latter does not seem very handy. In the
conclusion of Section 2.2, which was about a characterisation of disorder in the case of continu-
ous objects, i.e., continuous probability distributions, we hinted at the fact that such functionals
could be employed in order to overcome such a difficulty. One actually needs to generalise
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these “classical” objects so that they can be used to characterise quantum systems, especially
continuous variables systems, which are characterised by infinite dimensional Hilbert spaces.
As a matter of fact, apart from density operators, there exists a completely equivalent represen-
tation of quantum states in terms of quasiprobability distributions, which are defined over a real
symplectic space, called phase space [65], in opposition with the state space of density matrices.
These generalised distributions can be introduced using the so-called Weyl operator

D̂ (ξ) = exp
(
ix̂TΩξ

)
, (3.11)

where ξ ∈ R2N. A quantum state described by a density operator ρ can equivalently be charac-
terised by a Wigner characteristic function

χρ (ξ) = Tr
[
ρD̂ (ξ)

]
, (3.12)

which is itself equivalent (in terms of representation of a quantum state) to its Fourier transform
W(x), called the Wigner function of the state. It is defined as follows.

Definition 24 (Wigner function). TheWigner function of a state ρ can be defined through its char-
acteristic function χρ as

Wρ(x) =
1

(2π)2N

∫
R2N

d2Nξ exp
(
−ixTΩξ

)
χρ (ξ) . (3.13)

The continuous variables x ∈ R2N which appear in Equation (3.13) can be seen as the dif-
ferent eigenvalues of the quadrature field operators x̂. In order for the Wigner function to char-
acterise an actual quantum state, it has to take real values, this being a consequence of the fact
that the corresponding density matrix is Hermitian. However, it does not have to be positive,
meaning that it is not an actual probability distribution, but rather a quasiprobability distri-
bution. Note that the fact that it can take negative values is not necessarily a signature of its
quantum “nature”. Some quantum states have a Wigner function which is positive everywhere
(e.g., Gaussian states, see below), even though they enjoy properties that clearly go beyond clas-
sical mechanics, such as superposition and entanglement. Since a density matrix is of trace 1,
the Wigner function is normalised to 1, i.e.,∫

R2N
d2NxWρ(x) = 1. (3.14)

Figure 3.2.1 exhibits an example of a Wigner function taking negative values, namely the Fock
state with 5 photons.

Mathematically, the Wigner function (as well as the corresponding characteristic function)
can be completely characterised by the statistical moments of the quantum state. As we will see
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( , )

Figure 3.2.1: The Wigner function of the Fock state with 5 photons. As expected, it takes
negative values, making it a quasiprobability distribution.

later, the first two moments are of paramount importance in the study of some specific quantum
states [65]. The first one, called the displacement vector, is defined as

x̄ = ⟨x̂⟩ρ = Tr [x̂ρ] , (3.15)

while the second moment, or covariance matrix V, is defined through its elements

Vij =
1
2
⟨{

Δx̂i,Δx̂j
}⟩

ρ , Δx̂i = x̂i − ⟨x̂i⟩ρ , (3.16)

where {A,B} represents the anticommutator between the operators A and B. Note from its
definition that the covariance matrix is real and symmetric. We explained earlier that the Wigner
function should be real and normalised, as a consequence of the fact that the corresponding
density matrix is Hermitian and normalised. This is obviously not enough to guaranty that the
Wigner function characterises a physical state, as the density matrix furthermore satisfies an
uncertainty principle. This condition is difficult to verify for a Wigner function. However, it
implies a rather simple condition at the level of the covariance matrix, that is [67],

V+ iΩ ≥ 0. (3.17)

Among other things, Equation (3.17) implies the positive definiteness of the covariance matrix
of a quantum state.

Before ending this section, let us just give the definition of the purity of a quantum state.

Definition 25 (Purity). The purity μρ of a quantum state ρ is defined as

μρ = Tr[ρ2]. (3.18)

As one would expect, it is readily seen from its definition that the purity is one for a pure state,
while it is less than one for a state which is in a non-trivial mixture. The purity can be rewritten
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in terms of the Wigner function as

μρ = (4π)N
∫
R2N

d2Nx
(
Wρ(x)

)2
. (3.19)

3.3 FromGaussian unitaries toGaussian quantum states

3.3.1 Gaussian unitaries and symplectic transformations

A unitary matrix U is a square matrix such that U−1 = U†. When applied on a density matrix
ρ, it mathematically describes a reversible operation which does not modify the spectrum of
ρ, but only changes its eigenbasis. A Gaussian unitary is one which can be generated from a
Hamiltonian which is a second-order polynomial in the field operators [65]. Let us arrange the
annihilation and creation operators of the correspondingN-mode bosonic system in the vectors

â =
(
â1, . . . , âN

)T
, â† =

(
â†1 , . . . , â

†
N
)T
. (3.20)

Any Gaussian unitary UG can be written in the form

UG = exp
[
−iĤ

]
, Ĥ = i

(
â†c+ â†C(1)â+ â†C(2)â†T

)
+H.c., (3.21)

where c ∈ CN, C(1) and C(2) are two N × N complex matrices, and H.c. stands for Hermi-
tian conjugate. While the action of a Gaussian unitary might be difficult to characterise in state
space, as the dimension of the latter’s Hilbert space is infinite, it produces a rather elementary
transformation in phase space. Indeed, the corresponding operation on the quadrature field
operators amounts to a simple affine mapping [65]

x̂ → Sx̂+ d, (3.22)

where d ∈ R2N and S is an N × N real matrix. Obviously, this map should preserve the com-
mutation relations (3.10). This will be the case if the matrix S is symplectic, i.e.,

SΩST = Ω, (3.23)

Ω being the symplectic form defined in Equation (3.9). Clearly, the eigenvalues xof the quadra-
ture operators x̂ must follow the same rules. As a consequence, the evolution of the first two
statistical moments x̄ and V which corresponds to a Gaussian unitary evolution in state space
can be shown to be of the form

x̄ → Sx̄+ d, V → SVST. (3.24)
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3.3.2 Definition of a Gaussian state

Gaussian quantum states ϱ are those whose Wigner function is given by a normal distribution,
i.e.,

Wϱ (x) =
1

(2π)N
1√

detVϱ

exp
(
− 1
2
(x− x̄ϱ)

T V−1
ϱ (x− x̄ϱ)

)
, (3.25)

where x̄ϱ represents the displacement vector ofϱ, whileVϱ is its covariance matrix. In particular,
Gaussian states are completely characterised by their first two statistical moments, making them
rather easy to study when adopting the phase space representation. If a Gaussian unitary is
applied on a Gaussian state, the latter remains Gaussian. A direct consequence of this is the fact
that the effect of a Gaussian unitary on a Gaussian state is completely characterised by Equations
(3.24), making the study of such transformations on such states quite practical in phase space.
When introducing Wigner functions, we mentioned that these quasiprobability distributions
can be negative in general, although it is not necessarily a signature of the “quantumness” of the
state characterised by the Wigner function in question. By this, we mean that the state should
not necessarily have a negative Wigner function in order to exhibit quantum characteristics.
A precise illustration of such a phenomenon is found in Gaussian states. Since their Wigner
function is, by definition, a normal distribution, it is positive. Gaussian states will however often
exhibit a purely quantum behaviour, as we will see later. As a matter of fact, pure Gaussian
states happen to be the only pure quantum states with a positive Wigner function [68]. For any
Gaussian state ϱ, the purity defined in Equation (3.19) depends only on the second statistical
moment of the state. It can readily be computed to be

μϱ =
1√

det [Vϱ]
. (3.26)

The most simple pure Gaussian state, which we introduce in the next section, is the so-called
vacuum state. All pure Gaussian states can be generated by applying a chosen Gaussian unitary
on the vacuum state. After introducing the latter, as well as a relevant class of mixed Gaus-
sian states (thermal states), we will present specific important Gaussian unitaries, as well as the
Gaussian states they generate upon action on the vacuum state.

3.3.3 Archetypes of Gaussian unitaries and states

3.3.3.1 Vacuum state and thermal states

The vacuum state |0⟩ is the most fundamental Gaussian bosonic state, as it corresponds to the
ground state of each quantised mode of a bosonic field. As such, it has zero photons (if one
considers the electromagnetic field), and is an eigenvector of the annihilation operator, with
eigenvalue zero, i.e.,

â |0⟩ = 0. (3.27)
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In the natural notations we chose, the covariance matrix of the vacuum state is normalised to
the identity, V|0⟩⟨0| = 12, and it has a zero displacement vector. Its Wigner function can be
found to be

W|0⟩⟨0| (q, p) =
1
2π

exp
(
−q2 + p2

2

)
. (3.28)

The vacuum state saturates the uncertainty relation of Equation (3.17), meaning that it has the
minimum product of variances in position and momentum reachable by a physically acceptable
quantum state. It actually saturates several continuous variables uncertainty relations, some of
which are based on the differential entropies of the marginals of the Wigner function. For a very
concise review on continuous variables uncertainty relations, see e.g. Reference [69].

In the statistical mechanics of a quantum mechanical system, a system in thermal equilibrium
is described by a so-called Kubo–Martin–Schwinger (KMS) [70], or Gibbs state. In the context
of bosonic systems, it corresponds to a thermal Gaussian state, defined as

τε =
e−βn̂

Tr [e−βn̂]
, β = − ln ε ≥ 0, (3.29)

where n̂ is the number operator (which is, up to a constant, the Hamiltonian of one mode of the
bosonic system defined in Equation (3.2)), and β can be interpreted as the inverse temperature
of the system in equilibrium. As it happens, the thermal state is the bosonic state which max-
imises the von Neumann entropy (2.60) for a fixed energy. Define the function g : R≥0 → R≥0

(R≥0 being the set of all non-negative real numbers) as

g(x) = (x+ 1) log (x+ 1)− x log (x) , (3.30)

where the log is taken to the same base as the one considered in the von Neumann entropy
(2.60). If the mean number of photons of a thermal state is n̄, its von Neumann entropy can be
computed to be g(n̄). A more explicit form of the thermal state τε can be expressed in the Fock
basis as

τε = (1− ε)
∞∑
n=0

εn |n⟩ ⟨n| , 0 ≤ ε ≤ 1, (3.31)

which explains why we chose to parametrise it with ε = e−β. It will sometimes be in our interest
to parametrise it using its mean number of photons, which is why we will also define it as

ζ n̄ =
∞∑
n=0

n̄n

(n̄+ 1)n+1 |n⟩ ⟨n| , n̄ ≥ 0. (3.32)

The relation between Equations (3.31) and (3.32) is readily computed to be such that

ε =
n̄

n̄+ 1
, n̄ =

ε
1− ε

. (3.33)
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The thermal state is actually a generalisation of a vacuum state, as the former reduces to the latter
when it has a zero mean number of photon. The displacement vector of the thermal state is the
null vector, while its covariance matrix is proportional to the identity, and is given by

Vζ n̄ = (2n̄+ 1)12. (3.34)

Let us add that the thermal state is the only type of one-mode phase-invariant Gaussian state.
A one-mode phase-invariant state ρd is one which is not affected by any one-mode rotation in
phase space. As such, it is diagonal in the Fock basis, i.e.,

ρd =
∑
i

λi |i⟩ ⟨i| , (3.35)

and obviously has a Wigner function which is rotation-invariant. An example of such a phase-
invariant state is found in the Fock state with 5 photons, shown in Figure 3.2.1.

As mentioned already, any pure Gaussian state can be obtained by applying a Gaussian uni-
tary on the vacuum state. As a matter of fact, this can be further generalised by stating that any
one-mode mixed Gaussian state can be obtained by applying a Gaussian unitary to a thermal
Gaussian state. This is actually a result of Williamson’s theorem, as we will see in Section 3.3.5,
in which we provide a way to decompose any Gaussian state in terms of thermal states. Before
doing so, we are going to introduce elementary examples of one or two-mode Gaussian uni-
taries, along with the states they generate upon action on the vacuum state, as they play a major
role in quantum optics.

3.3.3.2 Displacement unitary and coherent state

The only Gaussian unitary generated by a Hamiltonian which is a first order polynomial in the
bosonic field operators is of the form

Dα = exp
[
αâ† − α∗â

]
, (3.36)

where α ∈ C. This so-called displacement operator can be understood as the complex ver-
sion of the Weyl operator introduced earlier. Its action on the field operators in phase space is
characterised by the equation

â → â+ α. (3.37)

As a trivial consequence, the displacement operator does not modify the covariance matrix of
a state it acts on, while it transforms its displacement vector x̄ as

x̄ → x̄+ dα, (3.38)
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with dα = (q, p)T, such that α = (q + ip)/2. In the case of Gaussian states, the displacement
unitary increases their energy when it moves them away from the origin of phase space.

The vacuum state is obviously not the only eigenstate of the annihilation operator. By dis-
placing it, one generates the so-called coherent states defined as

|α⟩ = Dα |0⟩ , (3.39)

which verify â |α⟩ = α |α⟩. Since the displacement unitary does not modify the second statisti-
cal moment, and since the vacuum has a null displacement vector, the first two moments of the
coherent state are found to be

x̄|α⟩⟨α| = 2 (ℜ(α),ℑ(α))T and V|α⟩⟨α| = 12. (3.40)

The coherent state can be decomposed as a superposition of Fock states as

|α⟩ = e−
1
2 |α|

2
∞∑
n=0

αn√
n!

|n⟩ . (3.41)

Different coherent states |α⟩ and |β⟩ are not orthogonal, although their overlap verifies

⟨β|α⟩ = e−
1
2 (|α|

2+|β|2)eβ
∗α. (3.42)

As such, coherent states form an overcomplete continuous basis, in which one can derive the
closure relation

1
π

∫
d2α |α⟩ ⟨α| = I, (3.43)

I being the identity operator.

3.3.3.3 Squeezing unitary and squeezed state

The first one-mode Gaussian unitary generated by a Hamiltonian which is quadratic in the
bosonic field operators is the so-called squeezing operator, defined as

US
r = exp

[ r
2
(
â2 − â†2

)]
, (3.44)

where r ∈ R is the squeezing parameter. When applied to a state ρ, the squeezing unitary
decreases the variance of one of ρ’s quadrature. Since the uncertainty relation (3.17) must be
verified, the other quadrature of ρ has to be increased accordingly. In the Heisenberg picture,
the annihilation operator is transformed by the squeezing operator as

â → (cosh r)â− (sinh r)â†. (3.45)
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Consequently, the quadrature operators are transformed as

x̂ → Srx̂, (3.46)

where

Sr =

(
e−r 0
0 er

)
. (3.47)

The last two relations show how the uncertainty property verified by the two quadratures is con-
served upon the action of the squeezing operator on a quantum state. Unlike the displacement
unitary, the squeezing operator does not change the displacement vector of a state, only its co-
variance matrix. As a consequence, it can also increase the energy of a Gaussian state, but in a
different way.

The state which is generated by the action of a squeezing unitary on a vacuum state is simply
called squeezed vacuum state, and can be expressed in the Fock basis as [71]

US
r |0⟩ =

1√
cosh r

∞∑
n=0

√
(2n)!
2nn!

tanh rn |2n⟩ . (3.48)

Its displacement vector is the same as the vacuum, i.e., the null vector, while its covariance matrix
is found to be

VUS
r |0⟩⟨0|U

S†
r
= SrSTr =

(
e−2r 0
0 e2r

)
. (3.49)

3.3.3.4 Phase rotation unitary

We already introduced the Gaussian unitary which induces a phase rotation. Indeed, the free
Hamiltonian (3.2) of the bosonic systems happens to generate such a unitary. If one forgets
about the zero-point energy of the free Hamiltonian, one can define the phase rotation operator
as

UR
θ = exp

[
−iθâ†â

]
. (3.50)

In the Heisenberg picture, it corresponds to applying the transformation

â → ei−θâ, (3.51)

which corresponds to a simple rotation of the (q, p) plane in phase space. Indeed, the quadra-
ture operators are transformed as

x̂ → Rθx̂, (3.52)

where

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
. (3.53)
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One can readily understand that the phase rotation unitary does not affect the vacuum state.
However, it changes displaced and squeezed vacuum states, resulting in the generation of other
types of pure Gaussian states.

3.3.3.5 Beam-splitter unitary

The most important two-mode Gaussian unitary for bosonic systems is the so-called beam split-
ter. As its name suggests, it is the simplest example of an interferometer, which is ubiquitous in
quantum optics. The beam-splitter unitary is defined as

UBS
η = exp

[
θ
(
â†b̂− âb̂†

)]
, η = cos2 θ ∈ [0, 1], (3.54)

where η represents its transmittance (note that it is in our interest to parametrise the unitary
using the transmittance rather than θ). Since we only have two modes, we choose to write â, b̂
instead of â1, â2 for the annihilation operators of the two modes, for convenience. The beam
splitter acts in the Heisenberg picture as{

UBS†
η â UBS

η =
√η â+

√
1− η b̂,

UBS†
η b̂ UBS

η = −
√

1− η â+√η b̂.
(3.55)

As it is the realisation of the energy-conserving unitary acting on bosonic systems, the beam
splitter does not modify a couple of vacua, i.e., UBS

η |0, 0⟩ = |0, 0⟩. In other words, |0, 0⟩ is
an eigenvector of UBS

η for any transmittance η (it is actually an eigenvector of its Hamiltonian,
with eigenvalue zero). As a matter of fact, it can more generally be shown that a product of
coherent states remains so when going through a beam splitter. Some energy will however be
transmitted from one mode to the other in general (if η ̸= 1/2), meaning that the parameters of
the two coherent states will change. It can also be proven that if a product of thermal states is fed
into a beam splitter, the resulting state is not a product state any more, but remains separable,
meaning that the unitary induces no quantum correlations in this particular case. Furthermore,
the two subsystems each remains in a thermal Gaussian state when evolving through the beam
splitter. In Figure 3.3.1, we show the representation of an optical beam splitter, as it will be used
in sketches appearing later on.

Figure 3.3.1: Representation of an optical beam splitter of transmittance η.
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3.3.3.6 Two-mode squeezing unitary and Gaussian EPR state

Another two-mode Gaussian unitary essential for the study of bosonic systems is the two-mode
squeezer, which is defined as

UTMS
λ = exp

[ r
2

(
âb̂− â†b̂†

)]
, λ = tanh2 r ∈ [0, 1]. (3.56)

In this case, we choose to parametrise the unitary with the parameter λ instead of the squeezing
r. The two-mode squeezer unitary UTMS

λ models the generation of pairs of entangled photons
by parametric amplification due to the pumping of a non-linear crystal. The reason it is called
a two-mode squeezer is simply because it involves one-mode squeezers along with a two-mode
interaction effected by a beam splitter. Indeed, as depicted in Figure 3.3.2, it can be obtained
by first applying a balanced beam splitter, before applying a squeezing on one mode and the
corresponding anti-squeezing on the other mode, and finally adding a second balanced beam
splitter.

≡
/ /

−

Figure 3.3.2: Representation of a two-mode squeezer of parameter λ.

In the Heisenberg picture, the annihilation operators undergo the transformation{
UTMS†

λ â UTMS
λ = cosh(r) â+ sinh(r) b̂†,

UTMS†
λ b̂ UTMS

λ = sinh(r) â† + cosh(r) b̂,
λ = tanh2 r. (3.57)

When a two-mode squeezer is applied on a couple of vacua, one obtains the two-mode squeezed
vacuum state, also known as Einstein-Podolski-Rosen (EPR) state |ψEPR

r ⟩, which can be written
in the Fock basis as

|ψEPR
r ⟩ = 1

cosh r

∞∑
n=0

tanhn r |n, n⟩ . (3.58)

It will sometimes be useful to write the EPR state in terms of the parameter λ = tanh2 r, using
the notation

|φEPRλ ⟩ =
√
1− λ

∞∑
n=0

(
√
λ)n |n, n⟩ . (3.59)

The two-mode squeezed vacuum state has a zero displacement vector, and its covariance matrix
is given by

V|ψEPRr ⟩⟨ψEPRr | =

(
(cosh 2r)12 (sinh 2r)Z
(sinh 2r)Z (cosh 2r)12

)
, (3.60)
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where we defined the matrix

Z =

(
1 0
0 −1

)
. (3.61)

Note that each subsytem of the two-mode squeezed state is in a thermal state τλ, of mean num-
ber of photons

n̄ =
λ

1− λ
=

tanh2 r
1− tanh2 r

= (tanh2 r)(cosh2 r) = sinh2 r. (3.62)

As such, the two-mode squeezed state can be understood as the purification of a thermal state.

3.3.4 Bloch-Messiah decomposition of canonical unitaries

Any N-mode Gaussian unitary can actually be decomposed in terms of the ones introduced in
Section 3.3.3. As a consequence, these archetypes of Gaussian unitaries can be thought of as
building blocks for all N-mode Gaussian unitaries. This is known as the Euler decomposition
[72], or the Bloch-Messiah reduction [73]. There are two types of Gaussian unitaries: passive
and active. A passive unitary preserves the energy, or photon number, of the state it trasnforms.
In phase space, it corresponds to a symplectic matrix S which preserves the trace of the covari-
ance matrix V of the state, i.e. [65],

Tr
[
SVST

]
= Tr [V] , (3.63)

which happens when the symplectic matrix is orthogonal, i.e.,

ST = S−1. (3.64)

The beam splitter described in Section 3.3.3.5 is an example of such a passive unitary, while
the latter is more generally described by a multiport interferometer. An active unitary does not
conserve the energy of the state it acts on. The symplectic matrix which describes it in phase
space is not trace-preserving, and cannot be orthogonal. An example of such an object is readily
found in the squeezing operator introduced in Section 3.3.3.3. Indeed, in order for a squeezing
operation to be performed in practice, one needs to pump a non-linear cristal with a laser. If
one takes into account the pump, the energy of the whole system is of course conserved.

Any symplectic matrix S can be decomposed using the canonical symplectic matrices intro-
duced in Section 3.3.3. Indeed, it can always be written as

S = I(2)
(

N⊕
k=1

Srk

)
I(1), (3.65)

where I(1) and I(2) are symplectic and orthogonal matrices, and all the Srk are squeezing ma-
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trices defined in Equation 3.47. In state space, the corresponding Gaussian unitary UG can be
decomposed as

UG = UPI
2

(
N⊗
k=1

US
rk

)
UPI

1 . (3.66)

Each of theUS
rk is a squeezing unitary defined in Equation 3.44, whileUPI

1 andUPI
2 correspond to

multiport passive interferometers. These can be constructed by considering only (two-mode)
beam splitters defined in Section 3.3.3.5, as well as phase rotations.

3.3.5 Thermal decomposition of Gaussian states

We already mentioned (and showed using examples) that any one-mode Gaussian state can
be generated by applying a one-mode Gaussian unitary on a thermal Gaussian state. This can
actually be generalised to any N-mode Gaussian state by considering the so-called thermal de-
composition of Gaussian states. The latter is based on Williamson’s theorem [74], which states
that any positive-definite real matrix of even dimension can be put in a diagonal form using a
symplectic transformation. In particular, the theorem can be applied to covariance matrices
[65].

Theorem 19 (Williamson’s theorem). For any N-mode covariance matrix V, there exists a sym-
plectic matrix S such that

V = SVεST, ε = (ε1, . . . , εN) ∈ RN, (3.67)

whereVε is a diagonal matrix which can be written as a direct sum

Vε =
N⊕
k=1

(
1+ εk
1− εk

)
12. (3.68)

Note that in this case, the subscript ε ofVε is a vector of real elements, in opposition with the
notation Vρ for the covariance matrix of a state ρ (as in Equation (3.34) for instance). We will
be using the two notations in the following, the difference will be understood from the context.
The matrix Vε is called the Williamson form of V, and the N positive quantities

νk =
1+ εk
1− εk

(3.69)

are called the symplectic eigenvalues of V. They can be obtained by computing the modulus of
each of the 2N real eigenvalues of iΩV.

The covariance matrix Vε actually corresponds to a tensor product Γε of thermal states τεk
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defined in Equation (3.31), i.e.,

Γε =
N⊗
k=1

τεk =
N⊗
k=1

[
(1− εk)

∞∑
nk=0

εnkk |nk⟩ ⟨nk|

]
, (3.70)

meaning that in our notations,
Vε = VΓε . (3.71)

Having this in mind, one can express Williamson’s theorem for density operators, or the ther-
mal decomposition for Gaussian states. According to the latter, anyN-mode Gaussian state can
be obtained by starting from a tensor product of thermal states, whose parameters are exactly
the εk appearing in the symplectic eigenvalues of Equation 3.69, before applying some N-mode
unitary. In other words, we have the following corollary.

Corollary 3 (Thermal decomposition of Gaussian states). Any N-mode Gaussian state ϱ of dis-
placement vector x̄ and covariance matrix V can be written as

ϱ = Dx̄ UG Γε U†
G D

†
x̄, (3.72)

where Γε is a tensor product of Gaussian thermal states τεk , UG is a general N-mode Gaussian uni-
tary of the form defined in Equation (3.66), and Dx̄ is a unitary displacing the state so that its final
displacement vector is x̄.

One understands that the part UG Γε U†
G in Equation (3.72) is the translation of Equation

(3.67) to state space. Figure 3.3.3 summarises the thermal decomposition.

�⊗

⊗

⊗

Figure 3.3.3: Representation of the thermal decomposition of an N-mode Gaussian state ϱ.

The thermal decomposition allows one to write any N-mode state as a global Gaussian uni-
tary applied on a product of thermal states. In order to generate an entangled state, one obvi-
ously needs to apply an entangling unitary to the product of thermal states. Consider a pure
Gaussian state shared by two parties, say Alice and Bob, each one havingNmodes. The thermal
decomposition tells us that both of them can transform their state into a product of thermal
states, by applying a local unitary on their side. It can be shown that by applying the right uni-
taries, they can end up sharing a product ofN two-mode squeezed states, whose subsystems on
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Alice and Bob’s side are both in the same product of thermal states. This is encompassed in the
following theorem [75].

Theorem 20 (Standard form of N × N pure Gaussian states). Any pure Gaussian state |ϕ⟩ of
N×Nmodes shared by two partiesA andB can be transformed by local unitary Gaussian operations
into a state which is a tensor product of N pure two-mode squeezed states, i.e.,

|ϕ⟩AB =
(
D(A) ⊗ D(B)) (U(A)

G ⊗ U(B)
G

)( N⊗
k=1

|φEPRλk
⟩
AB

)
, (3.73)

where

|φEPRλ ⟩AB =
√
1− λ

∞∑
n=0

(
√
λ)n |n⟩A |n⟩B , (3.74)

D(A) and D(B) are N-mode displacements, and U(A)
G and U(B)

G are Gaussian unitaries of the form
defined in Equation (3.66).

Each of the two-mode squeezed states in the tensor product of Equation (3.73) is shared by
both Alice and Bob. The situation is summarised in Figure 3.3.4. The standard form of N × N
pure Gaussian states becomes useful when one needs to study the entanglement of a state shared
by Alice and Bob, such as |ϕ⟩AB defined in (3.73). Indeed, since the latter is related to the prod-
uct of two-mode squeezed states via local operations, the two states |ϕ⟩AB and

⊗N
k=1 |φEPRλk

⟩
AB

have the same entanglement (as measured by the entropy of entanglement defined in Equation
2.80).

∣∣∣
〉 ∣∣∣

〉∣∣∣
〉

| 〉

( )

( )

( )

( )

( )

( )

( )

( )

Figure 3.3.4: Representation of the standard form of an N× N pure Gaussian state ϕ.
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3.4 Gaussian bosonic quantum channels

3.4.1 Definition of a Gaussian channel

Unitary transformations, such as the ones effected by the Gaussian unitaries introduced in Sec-
tion 3.3, are reversible. In general, an operation acting on a quantum state does not have to be
so. It should however map density matrices to density matrices. Such a quantum channel can
always be described by a linear and completely positive and trace-preserving (CPTP) map [76].

Definition 26 (Quantum channel). Denote asT (H) the space of all operators in a Hilbert space
H equipped with the trace norm. A quantum channel C : T (H) → T (H) is

(i) linear, i.e.,

C

[∑
i

ci Xi

]
=
∑
i

ci C [Xi] , ci ∈ C ∀i,Xi ∈ T (H)∀i; (3.75)

(ii) trace-preserving, i.e.,
Tr [C[X]] = Tr [X] , ∀X ∈ T (H) ; (3.76)

(iii) completely positive, i.e.,

Y ≥ 0 ⇒ (C ⊗ 1n) [Y] ≥ 0, ∀Y ∈ T
(
H⊗ H̃

)
, (3.77)

whereT
(
H⊗ H̃

)
is the space of all operators in a tensored Hilbert spaceH⊗ H̃ and H̃ is

an n-dimensional Hilbert space for all n = 1, 2, . . .

It is in our interest to also introduce the definition of an adjoint map, or dual map [76], as we
will need it later. It is as follows.

Definition 27. Denote as B (H) the space T (H) equipped with the operator norm. For every
linear, positive and trace-preserving map C : T (H) → T (H), one can define the adjoint map
C† : B (H) → B (H) through the formula

Tr [C[X]Y] = Tr
[
XC†[Y]

]
, X ∈ T (H) , Y ∈ B (H) . (3.78)

The following properties can be proven for the adjoint map of a linear, completely positive
and trace-preserving map.

Theorem 21. The adjoint map C† : B (H) → B (H) of a CPTP map C : T (H) → T (H)

verifies the following properties.

(i) C† is linear;
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(ii) C† is completely positive;

(iii) C† is unital (at least for finite dimensions, Definition 22).

One understands that a channel can be seen as a linear, completely positive trace-preserving
map in the Schrödinger picture, while its dual can be seen as a linear, completely positive unital
map in the Heisenberg picture.

Gaussian channels are linear CPTP maps which transform Gaussian quantum states into
other such states. Particular cases of such channels can precisely be found in the Gaussian
unitaries presented in Section 3.3. Take HS to be the Hilbert space associated to a bosonic
quantum system, and D (HS) to be the set of density operators on HS. Any Gaussian channel
G : D (HS) → D (HS) acting on ρS ∈ D (HS) can be decomposed as

G[ρS] = TrE
[
UG
(
ρS ⊗ ϱE

)
U†

G

]
, (3.79)

where ϱE is a Gaussian state acting in the Hilbert space HE associated to another bosonic sys-
tem (typically, the environment),UG is a Gaussian unitary acting on the tensored Hilbert space
HS⊗HE, andTrE [•] represents the partial trace over the system corresponding toHE (the en-
vironment). According to Equation 3.79, in order to reproduce the effect ofG on ρS, one should
couple the latter with an ancillary Gaussian state ϱE of the environment through a Gaussian uni-
tary UG, before discarding the part of the resulting state corresponding to the environment. If
ϱE is taken to be pure, one obtains the Stinespring dilation of a Gaussian bosonic channel [65].
One could always choose to discard the part corresponding to the main system at the output of
the Gaussian unitary, retrieving the output state of the environment. In that case, one obtains
the effect of the so-called complementary channel G̃, i.e.,

G̃[ρS] = TrS
[
UG
(
ρS ⊗ ϱE

)
U†

G

]
, (3.80)

where TrS [•] represents the partial trace over the system S. This is summarised in Figure 3.4.1.

G
[ ]

G̃
[ ]

�

Figure 3.4.1: Representation of a Gaussian bosonic quantum channel G acting on ρS. UG is
a Gaussian unitary and ϱE is a Gaussian state. G̃ represent the channel complementary to G.

Having in mind that any Gaussian state is completely characterised by its two first statistical
moments, and that such a state remains Gaussian when evolving through a Gaussian channel,
one would expect the latter to be completely characterised by a finite number of parameters as
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well. This is indeed the case, as the action of an N-mode Gaussian channel over an arbitrary
Gaussian state ϱ of displacement vector x̄ and covariance matrix V can always be described in
phase space as [65]

x̄ → Tx̄+ d, V → TVTT + N, (3.81)

whered ∈ R2N is a displacement vector, whileT andN = NT are 2N×2N real matrices, which
must satisfy the condition

N+ iΩ − iTΩTT ≥ 0, (3.82)

in order for the channel to verify the condition of complete positivity.

3.4.2 General form of one-mode Gaussian channels

One-mode Gaussian bosonic channels are of particular importance when its comes to the study
of continuous-variables systems. Unlike one-mode Gaussian unitaries, they characterise the
evolution of one-mode bosonic states when these are subject to the noise introduced by the
environment with which they interact. As a consequence, the entropies (and spectrum) of the
states transformed by noisy channels evolve as well. An arbitrary one-mode Gaussian channel
is fully characterised by the maps of Equation (3.81), where d ∈ R2 and T and N = NT are
2× 2 real matrices, which must satisfy

N ≥ 0, det[N] ≥ (det[T]− 1)2 . (3.83)

As it happens, any one-mode Gaussian channel G can be decomposed as [77]

G[•] = U(2)
G

(
G
[
U(1)

G • U(1)†
G

])
U(2)†

G , (3.84)

where U(1)
G and U(2)

G are one-mode Gaussian unitaries, and G is a specific one-mode Gaussian
channel called the canonical form, as shown in Figure 3.4.2. As explained in [65], the effect of

G [ ]G( ) ( )

Figure 3.4.2: Decomposition of any one-mode Gaussian bosonic quantum channel G acting
on a state ρ. U(1)

G and U(2)
G are one-mode Gaussian unitaries, while G is the canonical form

of a one-mode Gaussian bosonic channel.

the canonical form G can be completely characterised by the 2 × 2 diagonal matrices TG and
NG, which depend on three parameters {κ, r, n̄} that are preserved by the action of Gaussian
unitaries, i.e., the generalised transmissivity

κ = det [TG] ∈ R, (3.85)
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the rank of the channel

r = min (rank [TG] , rank [NG]) ∈ {0, 1, 2}, (3.86)

where rank [TG] represents the rank of the matrix TG, and the thermal number n̄ ≥ 0, defined
by

n̄ =


√

det [NG], for κ = 1,√
det [NG]

2|1− κ|
− 1

2
, for κ ̸= 1.

(3.87)

The canonical form G can be dilated using a three-mode Gaussian unitary ŨG parametrised by
κ and r, and a two-mode squeezed state |φEPRε ⟩, where

2n̄+ 1 =
1+ ε
1− ε

, (3.88)

as depicted in Figure 3.4.3. Furthermore, the three parameters {κ, r, n̄} can be exploited in or-

G [ ]
{ , }
˜

∣∣ 〉

Figure 3.4.3: Dilation of the canonical form G acting on ρ. ŨG is a three-mode Gaussian
unitary. As one can see, the two modes which were initially in an EPR state at the input of
ŨG are both traced out at its output.

der to classify the different possible canonical forms G. The resulting classification is shown in
Table 3.4.1. The description of the different canonical classes is explained in [65]. However,
we summarise it here for completeness. Class A1 represents completely depolarising channels,
as these simply replace the input state by the thermal state of the environment. Classes A2 and
B1 involve canonical forms which transform the quadratures asymmetrically. The most inter-
esting classes are the remaining four. Class B2 represents the so-called classical noise channels,
while class C(Loss) involves CPTP maps known as lossy channels, C(Amp) contains the forms
known as amplifying channels, and D is associated with the so-called phase conjugate channels.
In the following section, we characterise these last four classes in more details, as they are of par-
ticular interest for our work.

Apart from class B2, all the other classes can be dilated using a three-mode unitary of the
form ŨG = UG ⊗ I, where UG acts only on the input state ρ and one mode of the two-mode
squeezed state |φEPRε ⟩ in Figure 3.4.3. Consequently, the other mode of the two-mode squeezed
state remains unchanged, and is no longer needed in the description of the canonical form G.
Since the remaining mode of |φEPRε ⟩ is obviously in a thermal state τε, the canonical forms of
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all the classes but B2 can be described by a single-mode thermal state interacting with the input
state ρ via a two-mode Gaussian unitaryUG, as shown in Figure 3.4.4. As one would expect, the

{ , }

Figure 3.4.4: Dilation of the canonical form G acting on ρ for all classes but B2. UG is a
two-mode Gaussian unitary, while the environment τε is in a thermal state.

thermal state τε, where ε is related to the thermal noise n̄ through Equation (3.88), parametrises
the noise added by the channel. Let us mention that, when dealing with the dilation of a one-
mode Gaussian bosonic channel, the mode of the system is often referred to as the signal mode,
in analogy with quantum optics settings. We will often be using this terminologie later on.

3.4.3 Phase-insensitive and phase-conjugate one-mode Gaussian channels

A phase-insensitive one-mode Gaussian channel GI is such that

GI

[
UR

θ ρU
R†
θ

]
= UR

θGI [ρ]UR†
θ , (3.89)

for any phase rotationUR
θ and any quantum state ρ, while a phase-conjugate one mode Gaussian

channel GC satisfies
GC

[
UR

θ ρU
R†
θ

]
= UR

−θGC [ρ]UR†
−θ, (3.90)

Class κ r TG NG

A1 0 0 0 (2n̄+ 1)12

A2 0 1 12+Z
2 (2n̄+ 1)12

B1 1 1 12
12−Z
2

B2 1 2 12 n̄12

C(Loss) (0, 1) 2
√
κ12 (1− κ)(2n̄+ 1)12

C(Amp) (1,∞) 2
√
κ12 (κ − 1)(2n̄+ 1)12

D (−∞, 0) 2
√
−κ12 (1− κ)(2n̄+ 1)12

Table 3.4.1: Classification of canonical one-mode Gaussian bosonic channels. The first
column represents the canonical class, which is specified by the possible values of the two
parameters κ and r (second and third columns). The fourth and fifth column shows the
expression of the two diagonal matrices TG and NG. Note that one needs to specify the
value of n̄ as well in order to completely characterise the canonical form G. However, this
is not needed in order to fix the canonical class to which G belongs.
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As such, both of these types of channels output a phase-invariant state GI,C[ρd] for any input
state ρd that is phase-invariant. They can be decomposed using the canonical form of Equation
3.84 as

GI,C[•] = Rθ2

(
G
[
Rθ1 • R

†
θ1

])
R†
θ2 . (3.91)

Compared to the decomposition of Equation 3.84,U(1)
G andU(2)

G can only be rotations (in oppo-
sition with displacement or one-mode squeezing operators), as exhibited by Equation 3.91. The
most important one-mode Gaussian channels are the actual canonical forms involved in classes
B2, C(Loss), C(Amp) and D shown in Table 3.4.1, which we characterise in more details in the
following.

3.4.3.1 Classical-noise channel

Class B2 describes the so-called classical-noise channels (or Gaussian channels with additive
classical noise). These phase-insensitive channels transform the quadratures as

x̂ → x̂+ ξ, (3.92)

where ξ is a Gaussian noise with covariance matrix n̄12. In state space, the effect of the classical-
noise channel can be written as

ρ 7→
∫

d2α Qn̄(α)DαρD†
α, (3.93)

where the Dα are displacement operators, and Qn̄(α) is a Gaussian distribution defined as

Qn̄(α) =
1
πn̄

exp
[
−|α|2

n̄

]
. (3.94)

In other words, the channel randomly displaces the input state according to the Gaussian dis-
tribution Qn̄(α). As a result, the displacement vector of the input state is not changed, while its
covariance matrix V is transformed according to

V → V+ n̄12. (3.95)

3.4.3.2 Lossy channel

Class C(Loss) describes the so-called lossy channels, which represent the basic model to de-
scribe communication lines such as optical fibres. In this work, we denote the lossy channels by
B(ε)
η . Notice that the superscript is surrounded by parentheses, which is a reminder of the fact

that it is a real (non-negative) number. This is important, as we will define other channels using
a discrete parameter later in this work. The lossy channel is phase-insensitive, and its effect on
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a state ρ in state space can be written as

B(ε)
η [ρ] = Tr2

[
UBS

η (ρ⊗ τε)UBS†
η

]
, (3.96)

where UBS
η is a beam splitter of transmittance η, while τε is a thermal state of parameter ε. Note

that Tr2 [•] means that the second subsystem is traced out at the output of the beam splitter.
Here, the transmittance η is exactly the parameter κ of Equation (3.85) characterising class
C(Loss). As depicted in Figure 3.4.5, Equation (3.96) simply models the fact that the input
state ρ of the signal mode interacts with a thermal state of the environment through a beam
splitter, before the environment mode is discarded. In phase space it means that the quadra-

B( ) [ ]

Figure 3.4.5: Lossy channel B(ε)
η . The input state interacts with a thermal state of parameter

ε through a beam splitter of transmittance η. The environment is then discarded.

tures x̂ of the input state are transformed according to

x̂ → √ηx̂+
√

1− ηx̂th, (3.97)

where x̂th represent the quadratures of the thermal state τε. The effect of the lossy channel on
the first two statistical moments of the input state can be shown to be

x̄ → √ηx̄, V → ηV+ (1− η)
1+ ε
1− ε

12, (3.98)

since the number of photon of the thermal state in the environment of the dilation of the lossy
channel is n̄ = ε/(1 − ε). If the environment is taken to be in the vacuum state, as shown in
Figure 3.4.6, one obtains the so-called pure-loss channel B(0)

η , which we also label as Bη.

| 〉 〈 | B [ ]

Figure 3.4.6: Pure-loss channel Bη = B(0)
η . The input state interacts with a vacuum state

through a beam splitter of transmittance η. The environment is then discarded.

3.4.3.3 Amplifier channel

Class C(Amp) describes the so-called amplifier channels, which amplify input signals while
adding some thermal noise. We will denote the amplifier channels by A(ε)

G . Again, the super-
script is surrounded by parentheses, since it is a real (non-negative) number. Like the lossy
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channel, the amplifier channel is phase-insensitive. It is deifned as

A(ε)
G [ρ] = Tr2

[
UTMS

λ (ρ⊗ τε)UTMS†
λ

]
, λ =

G− 1
G

, (3.99)

where UTMS
λ is a two-mode squeezer of parameter λ, while τε is a thermal state of parameter ε.

Note that we chose to parametrise the channel using a gainG > 1 rather than the parameter λ of
the two-mode squeezer UTMS

λ . This gain is exactly the parameter κ of Equation (3.85) defining
the class C(Amp), i.e., κ = G in this case. As shown in Figure 3.4.7, it means that the input
state ρ of the signal mode interacts with a thermal state of the environment (called the idler
mode) through a two-mode squeezer, before the idler mode is discarded. In phase space, the

A( )
[ ]

Figure 3.4.7: Amplifier channel A(ε)
G . The input state interacts with a thermal state of

parameter ε through a two-mode squeezer UTMS
λ of gain G = 1/(1− λ). The environment is

then discarded.

quadratures x̂ of the input state evolve following

x̂ →
√
Gx̂+

√
G− 1x̂th, (3.100)

where x̂th represent the quadratures of the thermal state τε. The first two statistical moments of
the input state are transformed according to

x̄ →
√
Gx̄, V → GV+ (G− 1)

1+ ε
1− ε

12. (3.101)

If the idler mode is taken to be in the vacuum state, as shown in Figure 3.4.8, one obtains the
so-called quantum-limited amplifier A(0)

G , which we also label as AG in the following.

| 〉 〈 | A [ ]

Figure 3.4.8: Quantum-limited amplifier AG = A(0)
G . The input state interacts with a

vacuum state through a two-mode squeezer UTMS
λ of gain G = 1/(1− λ). The environment is

then discarded.

3.4.3.4 Phase-conjugate channel

Class D describes the simplest phase-conjugate channels, which are associated with negative
transmissivities κ (we simply call them phase-conjugate channels in the following, as they are
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the ones we happen to be interested in). They will be denoted by Ã(ε)
G in this work. They cor-

respond to the complementary channel (See Equation 3.80) of the amplifier. As such, they are
defined as

Ã(ε)
G [ρ] = Tr1

[
UTMS

λ (ρ⊗ τε)UTMS†
λ

]
, λ =

G− 1
G

, (3.102)

where UTMS
λ is a two-mode squeezer of parameter λ, while τε is a thermal state of parameter

ε. In this case, the partial trace Tr1 [•] is performed over the signal mode at the output of the
two-mode squeezer. Similarly to the case of the amplifier channel, we chose to parametrise the
phase-conjugate channel using the gainG rather than the parameter λ of the two-mode squeezer
UTMS

λ . This time, the relationship between the parameter defining class D and the gain is such
that κ = −(G− 1). As shown in Figure 3.4.9, Equation (3.102) models the fact that the input
state ρ of the signal mode interacts with a thermal state of the idler mode through a two-mode
squeezer, before the signal mode is discarded. In phase space, the quadratures x̂ of the input

Ã( )
[ ]

Figure 3.4.9: Phase-conjugate channel Ã(ε)
G . The input state interacts with a thermal state

of parameter ε through a two-mode squeezer UTMS
λ of gain G = 1/(1− λ). The signal mode

is then discarded.

state are transformed according to

x̂ →
√
Gx̂+

√
G− 1x̂th, (3.103)

where x̂th represent the quadratures of the thermal state τε. The phase-conjugate channel trans-
forms the first two statistical moments of the input state as

x̄ →
√
G− 1x̄, V → (G− 1)V+ G

1+ ε
1− ε

12. (3.104)

Finally, if the idler mode is taken to be in the vacuum state, as shown in Figure 3.4.10, one obtains
the so-called quantum-limited phase-conjugate channel Ã(0)

G , which we also label as ÃG in the
following.

| 〉 〈 |

Ã [ ]

Figure 3.4.10: Quantum-limited phase-conjugate channel ÃG = Ã(0)
G . The input state

interacts with a vacuum state through a two-mode squeezer UTMS
λ of gain G = 1/(1 − λ).

The signal mode is then discarded.
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3.4.4 Quantum-limited decomposition of one-mode Gaussian channels

Among the canonical classes having a channel rank r = 2 (Equation (3.86)), the four classesB2,
C(Loss), C(Amp) and D can be discriminated using the generalised transmissivity κ of Equa-
tion (3.85). The channels with a non-negative value of κ, i.e., the lossy channels and amplifier
channels, are sometimes called gauge-covariant, while the phase-conjugate channels, whose
value of κ is negative, are often called gauge-contravariant. Apart from the generalised trans-
missivity, the channels of the four important classes mentioned above are characterised by the
thermal number n̄. As already mentioned, the latter is exactly the photon number of the thermal
state appearing in the environment mode of the dilation depicted in Figure 3.4.4. Consequently,
this thermal number n̄ can be related to what is thought of as the noise introduced by the chan-
nel. We define this noise as

ℵ =
√

det [NG] =

{
|1− κ|(2n̄+ 1), for C(Loss),C(Amp) and D,

n̄, for B2.
(3.105)

For the channels of classes C(Loss), C(Amp) and D to be physical, their noise must satisfy
Equation (3.83), which is equivalent to stating that ℵ ≥ |1− κ|. This is simply a consequence
of the fact that the thermal number n̄ should be non-negative. When it is zero, the inequality
is saturated, meaning that the channel is quantum-limited. Figure 3.4.11, inspired from [78],
provides a representation of the most important one-mode phase-insensitive Gaussian chan-
nels. It is interesting to mention that the channels for which ℵ ≥ |κ| + 1 can be shown to be

Ã( )
− A( )B( )

ℵ

Figure 3.4.11: Classification of one-mode phase-insensitive Gaussian channels. The grey
zones represent non-physical channels, which do not verify ℵ ≥ |1 − κ|. The parameter ε of
the channels can be related to the noise ℵ using Equations (3.105) and (3.88). The red line
represents pure-loss channels Bκ, the blue one quantum-limited amplifiers Aκ, and the green
one quantum-limited phase-conjugate channels Ã1−κ. The orange line represents general
classical-noise channels. The light blue zone represents entanglement-breaking channels,
characterised by ℵ ≥ |κ|+ 1.
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entanglement-breaking [79], as enough noise is introduced in order for quantum correlations
to break down. As a consequence, all phase-conjugate channels are entanglement-breaking.

When two Gaussian bosonic channels are concatenated, the resulting map can be shown to
be a Gaussian bosonic channel as well [80]. This property can be exploited in order to prove that
any phase-insensitive (phase-conjugate) channel can be obtained by concatenating a pure-loss
channel and a quantum-limited amplifier (quantum-limited phase-conjugate channel) [81]. In
appendix C, we show that any lossy channel B(ε)

η can always be written as

B(ε)
η = AG0 ◦ Bη0 , n̄ =

ε
1− ε

, (3.106)

where η0 ∈ [0, 1] and G0 ≥ 1 are chosen so that
η = G0η0,

n̄ =
G0 − 1
1− η0G0

,
⇔


η0 =

1− ε
1− ηε

η,

G0 =
1− ηε
1− ε

.

(3.107)

Similarly, any amplifier channel A(ε)
G can always be obtained as

A(ε)
G = AG0 ◦ Bη0 , n̄ =

ε
1− ε

, (3.108)

where η0 ∈ [0, 1] and G0 ≥ 1 satisfy
G = G0η0,

n̄ =
G0(1− η0)
η0G0 − 1

,
⇔


η0 =

1− ε
G− ε

G,

G0 =
G− ε
1− ε

.
(3.109)

Finally, any phase-conjugate channel Ã(ε)
G can always be obtained as

Ã(ε)
G = ÃG0 ◦ Bη0 , n̄ =

ε
1− ε

, (3.110)

where η0 ∈ [0, 1] and G0 ≥ 1 satisfy
G = η0(G0 − 1) + 1,

n̄ =
(G0 − 1)(1− η0)
1+ (G0 − 1)η0

,
⇔


η0 =

(G− 1)(1− ε)
ε + G− 1

,

G0 =
G

1− ε
.

(3.111)

3.4.5 Master equations for one-mode Gaussian channels

A general quantum channel represents the evolution of an open quantum system, as it corre-
sponds to the interaction of the system (the signal mode) with some environment. As a result,
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the quantum dynamics of the system can obviously not be reproduced in terms of a unitary
evolution, in contrast to the case of a closed system [82]. In many cases, it turns out to be con-
venient to formulate the dynamics of the open system by means of an equation of motion for the
density matrix, a quantum master equation. This description turns out to be very useful in the
case of Gaussian channels, particularly for one-mode gauge-covariant channels G(ε)

κ . The latter
can be shown to possess a semi-group structure [83], and can consequently be represented as a
one-parameter linear CPTP map

ρ(t) = G(ε)
κ [ρ] = etL [ρ] , t = f(κ) ≥ 0, (3.112)

where the continuous parameter t is some function of the generalised transmissivity κ, t = f(κ),
that can be viewed as a time which characterises the continuous action of the channel on the
input state ρ = ρ(0), resulting in the output state ρ(t). The so-called Lindblad operator L is a
function of the parameter ε that generates the dynamics of G(ε)

κ . The Lindblad operator can be
decomposed as

L = γ+L+ + γ−L−, (3.113)

with L+[ρ] = â†ρa− 1
2
aâ†ρ− 1

2
ρaâ†,

L−[ρ] = aρâ† − 1
2
â†aρ− 1

2
ρâ†a.

(3.114)

Equation (3.112) implies that the gauge-covariant channel G(ε)
κ has a semi-group structure

e(t1+t2)L = et1Let2L = et2Let1L, t1, t2 ≥ 0, (3.115)

and obeys a master equation of the form

∂

∂t
ρ(t) = L [ρ(t)] . (3.116)

In the case of a lossy channel B(ε)
η , one has

γ+ = n̄ =
ε

1− ε
, γ− = n̄+ 1 =

1
1− ε

, (3.117)

while the transmissivity κ = η satisfies η = e−t. For an amplifier channel A(ε)
G ,

γ+ = n̄+ 1 =
1

1− ε
, γ− = n̄ =

ε
1− ε

, (3.118)

while the gain κ = G is related to the time parameter throughG = et. Finally, the classical-noise
channel is such that

γ+ = 1, γ− = 1, (3.119)
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so that it is characterised by a Lindbladian

L0 = L− + L+, (3.120)

with n̄ = t.
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4
Entropic inequalities for bosonic quantum

systems

In this chapter, we focus on a certain type of entropic inequalities for bosonic quantum sys-
tems, specifically the so-called entropy photon-number inequality. In order to do so, we be-
gin by introducing its classical counterpart. The entropy power inequality is one of, if not the
most elegant relation introduced by Claude Shannon in 1948 in his historical paper [1]. It as-
serts that the entropy power of the sum of independent random variables is at least the sum
of their entropy powers. It enjoys many applications, among which the derivation of bounds
for the capacities of certain types of channels, or the proof of some source coding theorems.
The extension of the entropy power inequality to the quantum realm resides in the entropy
photon-number inequality. It was introduced by Guha in his thesis [7] in an attempt to gener-
alise the so-called minimum output entropy conjectures applied to Gaussian bosonic quantum
channels. The conjectures were brought forth in order to find expressions for the capacities of
several of these channels, some of which are the bosonic broadcast channel and the bosonic
multiple-access channel. Despite the general effort carried out towards the proof of the entropy
photon-number inequality, it still remains a conjecture.

For an exhaustive review on the entropy power inequality, the interested reader is referred to
[84]. For more information on the entropy photon-number inequality and its connection with
the computation of the capacity of Gaussian bosonic channel, we suggest Guha’s thesis [7], in
which the conjecture was originally formulated.
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4.1 The entropy power inequality and beyond

4.1.1 Stam’s inequality

We begin by introducing the concept of Fisher information, as it allows one to construct an
elegant proof (essentially proposed by Stam [85]) of the entropy power inequality, even though
we do not present all the details of the proof itself. Consider a random variable X, and suppose
that its probability density f depends on some unknown parameter θ. The Fisher information
provides a way of measuring the amount of information thatX carries about θ. It can be defined
as follows [24].

Definition 28 (Fisher information). Consider a random variable X with a probability density f
depending on some unknown parameter θ. The Fisher information J of X with respect to θ is defined
as

Jθ(X) =
∫ ∞

−∞
dx f(x; θ)

[
∂

∂θ
ln f(x; θ)

]2
. (4.1)

Notice that like the differential entropy, the Fisher information only depends on its probabil-
ity density. Now, suppose the parameter θ we introduce is some “location” parameter, so that
the dependence of the density on the latter is such that f(x; θ) = f(x − θ). In this case, it can
be shown using a simple change of variables that the Fisher information does not depend on θ,
and can be written

J(X) =
∫ ∞

−∞
dx f(x)

[
∂

∂x
ln f(x)

]2
, (4.2)

or,

J(X) =
∫ ∞

−∞
dx

1
f(x)

[
∂

∂x
f(x)
]2

. (4.3)

The Fisher information satisfies an interesting convolution inequality [85], which we state in
the following theorem.

Theorem 22 (Stam’s inequality). If X and Y are two independent real-valued random variables,
then their Fisher information satisfy

1
J(X+ Y)

≥ 1
J(X)

+
1

J(Y)
. (4.4)

Stam’s inequality is crucial in proving some important relations satisfied by Shannon’s differ-
ential entropy. Indeed, the Fisher information shares a fundamental relationship with the latter,
known as de Bruijn’s identity, which is encompassed in the following theorem [24].

Theorem 23 (de Bruijn’s identity). Let X be any random variable with a finite variance and a
density f. Consider an independent normally distributed random variable WG with zero mean and
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unit variance. Then
∂

∂t
he(X+

√
tWG) =

1
2
J(X+

√
tWG), (4.5)

where he is the differential entropy to base e. In particular, if the limit exists as t → 0,[
∂

∂t
he(X+

√
tWG)

]∣∣∣∣
t=0

=
1
2
J(X). (4.6)

Note that, unlike in previous chapters, we chose to write the differential entropy as a func-
tion of the random variable X instead of its probability density, as it makes things clearer when
considering sums of variables. The message conveyed by Equation (4.6) is that when some
Gaussian noise WG of unit variance is added to a variable X, the rate of change of the entropy of
the latter is directly proportional to the Fisher information of Equation (4.3). This fact actually
provides a different interpretation of the Fisher information than the one given in terms of pa-
rameter estimation. Stam introduced his inequality (Theorem 22) in his proof of the so-called
entropy power inequality (EPI). The proof was later further simplified and made more rigorous
by Blachman [86] and others [87, 88]. The entropy power inequality (EPI) was put forth by
Shannon in his seminal work on the theory of communication [1]. It states that if X and Y are
two independent real-valued random variables, then

e2he(X+Y) ≥ e2he(X) + e2he(Y). (4.7)

Shannon first used the entropy power inequality in the classical setting in order to bound the ca-
pacity of non-Gaussian additive noise channels. His relation enjoys many applications, among
which the proofs of converses of channel or source coding theorems.

4.1.2 The entropy power

Equation (4.7) can be restated in terms of the so-called entropy powers (hence the denomina-
tion entropy power inequality). In order to do so, we define them now. Consider a normally
distributed random variable XG of variance σ2X and centred on zero, whose probability density f
is defined similarly to Equation (3.25), i.e.,

XG ∼ N (0, σ2X), f(x) =
1√
2πσ2X

e−
x2
2σ2X . (4.8)

Its differential entropy can readily be computed to be

he(XG) =
1
2
ln (2πeσ2X) . (4.9)

Furthermore, the normally distributed variable happens to be the one with the maximum en-
tropy for a fixed variance. In other words, for any variable X with a variance σ2X, we have the

71
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inequality
he(X) ≤ he(XG). (4.10)

The entropy power of a random variable is defined as follows.

Definition 29 (Entropy power). The entropy power P of a random variable X is defined as the
variance of the normally distributed variable having the same differential entropy as X, i.e.,

P(X) =
1
2πe

e2he(X). (4.11)

Obviously, the entropy power of the normally distributed variableXG is equal to its variance,

P(XG) = σ2X. (4.12)

Equation (4.10) is equivalent to the statement

P(X) ≤ σ2X, (4.13)

whereX has a variance σ2X. One way to show this is by considering the relative entropy between
two random variables defined in Equation (2.36). Equation (4.11) is obviously equivalent to

he(X) =
1
2
ln (2πeP(X)) , (4.14)

which is the same as Equation (4.9) for XG ∼ N (μX, σ
2
X). Using this, it is easy to show that the

continuous relative entropy between X and the normally distributed variable XG is such that

D(X||XG) =
1
2
ln

σ2X
P(X)

, (4.15)

where X and XG both have variances σ2X, and we chose to write the continuous relative entropy
as a function of the variables rather than their densities. The last relation is equivalent to

σ2X = P(X)e2D(X||XG). (4.16)

Since the continuous relative entropy is always non-negative, we end up with (4.13).
A useful property of the entropy power can be obtained by considering the scaling property

(2.35) of the differential entropy. Indeed, for any a ∈ R, one has

P(aX) =
1
2πe

e2he(aX) =
1
2πe

e2he(X)e2 ln |a|, (4.17)

so that
P(aX) = |a|2P(X). (4.18)
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4.1.3 Equivalent forms of the entropy power inequality

Now that we defined the concept of entropy power, we can equivalently restate the entropy
power inequality in terms of the latter. Indeed, equation (4.7) becomes

P(X+ Y) ≥ P(X) + P(Y). (4.19)

As a matter of fact, using the scaling property of Equation (4.18), it can be shown to be com-
pletely equivalent to the following statement [84].

Theorem24 (Entropy power inequality). Let X and Y be two independent random variables tak-
ing values inR and let Z = aX+ bY, where a ∈ R and b ∈ R. Then

P(Z) ≥ a2P(X) + b2P(Y). (4.20)

Notice that if two independent random variables are both normally distributed such that
XG ∼ N (μX, σ

2
X) and YG ∼ N (μY, σ

2
Y), the new variable ZG = aXG + bYG is also normally

distributed, and verifies
ZG ∼ N (aμX + bμY, a

2σ2X + b2σ2Y). (4.21)

The entropy power inequality is saturated for normally distributed variables. Now, suppose that
X and Y defined in Equation (4.20) have the same differential entropies as XG and YG, respec-
tively. In that case,

a2P(X) + b2P(Y) = a2P(XG) + b2P(YG)

= a2σ2X + b2σ2Y,

so that
a2P(X) + b2P(Y) = P(ZG). (4.22)

Using this, we see that Equation (4.20) is in turn equivalent to the statement

P(Z) ≥ P(ZG), (4.23)

or,
he(Z) ≥ he(ZG), (4.24)

where Z = aX + bY, ZG = aXG + bYG, a ∈ R, b ∈ R, and XG and YG are the two normally
distributed variables having the same differential entropies as X and Y, respectively. This is yet
another way of stating the entropy power inequality. Equation (4.24) is however of particular
importance, as it will present the best analogy with some generalisations we introduce later.

Finally, the entropy power inequality can be readily shown to be completely equivalent to the
statement [89]

he(aX+ bY) ≥ a2he(X) + b2he(Y), (4.25)
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for any two independent random variablesX andY, and any a ∈ R, b ∈ R such that a2+b2 = 1.
As mentioned already, Shannon’s original proof was not entirely rigorous. The alternative proofs
which made it so are actually proofs of Equation (4.25).

Table 4.1.1 presents a summary of the most important equivalent forms of the entropy power
inequality. Note that all these forms can readily be generalised to the sum of an arbitrary number
of rescaled variables.

Eq. Statement Conditions

(4.20) P (aX+ bY) ≥ a2P (X) + b2P (Y) \

⇔
(4.24) he (aX+ bY) ≥ he (aXG + bYG)

he (X) = he (XG)

he (Y) = he (YG)

⇔

(4.25) he (aX+ bY) ≥ a2he (X) + b2he (Y) a2 + b2 = 1

Table 4.1.1: Equivalent forms of the entropy power inequality. he(X) is the Shannon dif-
ferential entropy defined with a logarithm in natural basis, computed for the density fx of
the random variable X. For the three forms, we have a ∈ R, b ∈ R.

4.1.4 Beyond the entropy power inequality via rearrangements

Equation (4.24) basically states that if one consider all variablesX having some fixed differential
entropy, and all variables Y having some other fixed differential entropy, the optimal couple
of independent variables will be given by two normally distributed variables. Here, they are
optimal in the sense that they will produce the minimum differential entropy possible after a
rescaling followed by a summation. Since the concept of entropy is closely related to the notion
of disorder introduced in Chapter 2, it seems natural to ask whether some similar statement can
be brought forward in the context of the mathematical theory of majorization. Denote by fX ⋆ fY
the convolution of two functions fX and fY. The following theorem involving rearrangements of
non-negative functions, defined in Chapter 2, was proven in [43].

Theorem 25. If X and Y are two independent random variables with respective densities fX and fY,
then

fX ⋆ fY ≺ f ↓X ⋆ f ↓Y . (4.26)
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Note that Theorem 25 was proven for a convolution of k densities f1 ⋆ f2 ⋆ . . . ⋆ fk, but we only
state it for a convolution of two functions here. In comparison with Equation (4.24) (in which
one chooses a = b = 1), the message conveyed by Equation (4.26) is that if one consider all
densities fX having some fixedmfX (defined in Equation (2.41) of Chapter 2), and all densities fY
having some other fixed mfY , the optimal couple of independent densities will be given by two
spherically decreasing symmetric functions. This time, they are optimal in the sense that they
will produce the minimum disorder possible, or majorize all others, after a convolution of fX
and fY.

4.2 The entropy photon-number inequality

Shannon’s entropy power inequality proved essential for the investigation of the capacities of
noisy classical channels, as it was used to prove bounds for the latter. Similarly, the computation
of the capacities of some specific quantum channels requires the proof of particular quantum
entropic inequalities, akin to the entropy power inequalities. These are the entropy photon-
number inequalities. As we are not interested in the capacities of quantum channels in this work,
we rather choose to focus on the quantum entropic inequalities, which we introduce in the fol-
lowing. In order to do so, we begin by introducing the concept of entropy photon-number,
analogous to the notion of entropy power of classical information theory.

4.2.1 The entropy photon-number

Consider a thermal Gaussian state ζ n̄ defined by its mean number of photons n̄, as defined in
Equation (3.32). As already mentioned, its von Neumann entropy can be computed using the
function g of (3.30) as

S(ζ n̄) = g(n̄). (4.27)

In analogy to the definition of the entropy power with respect to a normal distribution, one can
define the entropy photon-number N : R≥0 → R≥0 of a one-mode bosonic quantum state ρ
to be the mean number of photons of the thermal Gaussian state having the same von Neumann
entropy as ρ. In other words, it is given by the inverse function of g, i.e.,

N(ρ) = g−1 (S(ρ)) . (4.28)

By definition, we have
N(ζ n̄) = n̄. (4.29)

Since the thermal state maximises the entropy for a fixed energy, we have that

N(ρ) ≤ n̄, (4.30)
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for any quantum state ρ whose mean number of photons is Tr [n̂ρ] = n̄.

4.2.2 The entropy photon-number inequality: a conjecture

The entropy power inequality is defined in the context of a map acting as a convolution of two
rescaled random variables. A natural analogy of the latter in the quantum realm consists in tak-
ing the beam-splitter unitary. Indeed, consider a bosonic mode characterised by an annihilation
operator â that interacts with another bosonic mode of annihilation operator b̂ through a beam
splitter. The operations transforming the bosonic field operators correspond to the linear Bo-
goliubov transformations of Equation (3.55). If one discards the mode corresponding to b̂ at
the output of the unitary by tracing it out, one is left with the other mode having evolved as

ĉ = UBS†
η â UBS

η =
√η â+

√
1− η b̂. (4.31)

This is similar to the linear map acting on the random variables of the previous section by rescal-
ing them before taking their sum. It then makes sense to consider the corresponding density
matrices in state space and investigate the way the von Neumann entropies of the states evolve.
Since the entropies are directly connected to the entropy photon-numbers, one can also choose
to study the latter. Guha conjectured the following so-called entropy photon-number inequal-
ity (EPnI) [7, 90].

Conjecture 1 (Entropy photon-number inequality [90]). Let ρa and ρb be two density matrices.
Let ρc = Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
, where UBS

η is a beam-splitting unitary of transmittance η and
Tr2 corresponds to the partial trace over the second mode. Then

N(ρc) ≥ ηN(ρa) + (1− η)N(ρb). (4.32)

The situation described in Conjecture 1 is depicted in Figure 4.2.1. As a matter of fact, if ρa

Figure 4.2.1: Set-up considered for the EPnI. The states ρa and ρb evolve in a beam splitter
of transmittance η. The second mode is then discarded.

and ρb are both thermal Gaussian states, the entropy photon-number inequality of Equation
(4.32) is saturated, i.e.,

N(ζ n̄c) = ηN(ζ n̄a) + (1− η)N(ζ n̄b), (4.33)

where
ζ n̄c = Tr2

[
UBS

η

(
ζ n̄a ⊗ ζ n̄b

)
UBS†

η

]
. (4.34)
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This is actually simply a consequence of the fact that ζ n̄c is indeed thermal Gaussian (which is
why we denoted it as such), and of the way energy is distributed in a beam splitter. Indeed,
Equation (4.33) is exactly

n̄c = ηn̄a + (1− η)n̄b. (4.35)

The entropy photon-number inequality can be shown to be equivalent to the statement [7]

S(ρc) ≥ S
(
ζ n̄c
)
. (4.36)

In analogy with the classical case, Guha conjectured the following third form of the entropy
photon-number inequality [7],

S(ρc) ≥ ηS(ρa) + (1− η)S(ρb). (4.37)

As it happens, Equation (4.37) is implied by Equation (4.32), as a consequence of the concavity
of g. However, it seems to be weaker, unlike in the classical case. Equation (4.37) was actually
proven to be true in [91]. Similarly to what we did in the case of the entropy power inequal-
ity, we summarise the different forms of the entropy photon-number inequality in Table 4.2.1.
Note that all these forms can readily be generalised to an arbitrary number of mode entering an
interferometer. Furthermore, for convenience, we define the operation of the beam splitter and
partial trace as

Φη
[
ρa, ρb

]
= Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
. (4.38)

Eq. Statement Conditions

(4.32) N
(
Φη
[
ρa, ρb

])
≥ ηN(ρa) + (1− η)N(ρb) \

⇔

(4.36) S
(
Φη
[
ρa, ρb

])
≥ S

(
Φη
[
ζ n̄a , ζ n̄b

]) S
(
ρa
)
= S

(
ζ n̄a
)

S
(
ρb
)
= S

(
ζ n̄b
)

⇒

(4.37) S
(
Φη
[
ρa, ρb

])
≥ ηS(ρa) + (1− η)(ρb) \

Table 4.2.1: Equivalent forms of the entropy photon-number inequality. Note that
Φη
[
ρa, ρb

]
= Tr2

[
UBS
η
(
ρa ⊗ ρb

)
UBS†
η

]
, with η ∈ [0, 1] in the three cases.
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The conjecture can be simplified by considering a fixed thermal Gaussian state ρb = ζ n̄b on
the second mode, as shown in Figure 4.2.2. In this case, the map Φη can be seen as a Gaussian

¯

Figure 4.2.2: Set-up considered for the EPnI with a thermal Gaussian environment. The
state ρa evolves in a lossy channel B(εb)

η [ρa].

channel acting on the state ρa of the first mode. It is actually a lossy channel (defined in Equation
(3.96)), i.e.,

Φη
[
ρa, ζ n̄b

]
= B(εb)

η [ρa], (4.39)

with n̄b = εb/(1− εb). In this case, one needs to show that

S
(
B(εb)
η [ρa]

)
≥ S

(
B(εb)
η [ζ n̄a ]

)
, (4.40)

with S
(
ρa
)
= S

(
ζ n̄a
)

, which is basically the simplified version of (4.36) (second row of Table
4.2.1). Equation (4.40) was first proven to be true in [78] for pure states ρa, meaning that one
fixes S(ρa) = 0, so that ζ n̄a is the vacuum state. It was later generalised in [92] for any fixed
entropy of ρa.

Let us conclude by simply adding that all the entropy photon-number inequalities can be
stated in the same way by considering a two-mode squeezer UTMS

λ instead of the beam splitter
UBS

η of the map Φη.

78



II
Gaussian bosonic unitaries
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A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could
be embarrassing, we put them all in a bag, and then we have
only one object to carry, the bag.

George Pólya, Mathematics and plausible reasoning
(1954) [93].

5
Thegenerating function for Gaussian unitaries

The power of the symplectic formalism in phase space resides in the fact that purely Gaussian
systems can always be represented using very few parameters. Indeed, we showed in Chapter 3
that Gaussian states are completely defined by their first two statistical moments, while Gaus-
sian transformations need only few matrices for their characterisation. Consequently, the evo-
lution of Gaussian states through Gaussian operations turns out rather easy to investigate. The
story becomes different however, once either one of the state or the transformation is chosen to
be non-Gaussian, in which case the symplectic formalism becomes powerless. The need to go
beyond the framework of Gaussian systems is nevertheless imperative, since many continuous-
variables quantum information processing tasks rely on non-Gaussian resources. This is remi-
niscent of situations where a Gaussian no-go theorem precludes the use of Gaussian resources
in order to achieve a task involving Gaussian states, such as quantum entanglement distillation
[8–10], quantum error correction [94], and quantum bit commitment [95].

In this chapter, we introduce a technique whose purpose is to circumvent such a difficulty.
By exploiting the notion of generating function, we are able to rely on the knowledge obtained
through the symplectic formalism in order to deal with the study of non-Gaussian states evolv-
ing through Gaussian unitaries. As we are going to show, the method we present will prove espe-
cially useful when including Fock states and Fock-passive states in the picture. These quantum
states are of particular importance in the study of bosonic systems, since Fock states constitute
the eigenbasis of the Hamiltonian of the system, while Fock-passive states play a determining
role in the study of concepts like energy and work extraction.

81



5. THE GENERATING FUNCTION FOR GAUSSIAN UNITARIES

In Section 5.1, we begin by introducing the mathematical notion of generating function, as
well as its most important properties. Section 5.2 is dedicated to the calculation of some gen-
erating functions in the framework of bosonic quantum systems involving two modes, namely
the generating functions of transition amplitudes and probabilities in a beam splitter and a two-
mode squeezer. In the process, we point out some rather interesting facts implied by these cal-
culations, such as the notion of partial time reversal connecting a beam splitter and a two-mode
squeezer, and show how the generating functions can be used to study the asymptotic behaviour
of transition probabilities for instance. Finally, we generalise the notions we deem the most in-
teresting, by considering systems involving N modes and a passive Gaussian transformation in
Section 5.3.

5.1 The generating function

5.1.1 Definition of the generating function

The generating function of an infinite sequence characterised by a discrete index provides a
mean to equivalently describe the sequence using a function of a continuous parameter. There
are different types of generating functions, one of them being the so-called ordinary generat-
ing function. Since we are only interested in the latter in this work, we will simply be calling it
generating function (GF) thereafter. It is defined as follows [96].

Definition 30 (Generating function). Let {cn}n≥0 be a sequence. The generating function for the
sequence is defined as

g(z) := Tn [cn] (z) =
∞∑
n=0

cn zn, (5.1)

where z is a complex number.

The generating function can be viewed in two different manners. On one hand, it can be seen
as a formal power series in a complex number. On the other hand, it can be seen as a function of
the complex variable. The last point of view often comes into play when the power series can be
written in a nice closed form. The generating function (5.1) is a powerful tool as it encapsulates
all information about the sequence {cn}. It can also be defined for a sequence involving more
than one index. For instance, we will write

g(z,w) := Tn,m [cn] (z,w) =
∞∑

n,m=0

cn,m znwm, (5.2)

for the generating function of a sequence involving two indices n and m. In (5.2), the index n
is associated with the variable z, while m is associated with w. This is represented by the fact
that the subscripts n andm follow the same order as the arguments z andw inTn,m [cn] (z,w). In
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general, the generating function gof a sequence cn involving indices arranged in a vectorn ∈ NN
0

will be written as

g(z) := Tn [cn] (z) =
∑
n∈NN

0

cn
N∏
r=1

znrr . (5.3)

Since the generating function involves power series, one may wonder about convergence issues.
The following lemma addresses such a question [96].

Lemma 5. Given a power series
∞∑
n=0

cnzn (5.4)

in a complex variable z, there exists an extended real number 0 ≤ R ≤ ∞ such that

• if |z| < R, the series converges,

• if |z| > R, the series diverges.

The quantity R is called the radius of convergence of the power series, and can be expressed
as

R =
1

lim supn→∞ |cn|1/n
. (5.5)

It determines properties of the power series in the following way.

Lemma 6. If g is a power series defined as

g(z) =
∞∑
n=0

cnzn (5.6)

with a radius of convergence R, then g(z) is an analytic function on the disk |z| < R and has a least
one singularity on the circle |z| = R (the region of convergence).

5.1.2 Properties of the generating function

Since the generating function contains all the information on the corresponding sequence, many
operations applied on the former can be “translated” to transformations on the latter. We list
some of them hereafter [96].

Property 23 (Convolution yields multiplication). Consider two sequences {cn} and {dn}. We
have

Tn [{c• ∗ d•}n] (z) = Tn [cn] (z) Tn [dn] (z) . (5.7)

In the last equation, the convolution between two sequences {cn} and dn is defined as

{c• ∗ d•}n =
n∑

m=0

cmdn−m. (5.8)
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Property 24 (Shifting property). Consider a sequence {cn}. We have

Tn [cn+1] (z) =
1
z
(Tn [cn] (z)− c0) . (5.9)

This can be easily proven, as

Tn [cn+1] (z) =
∞∑
n=0

cn+1zn =
1
z

(
∞∑
n=1

cnzn
)

=
1
z

(
∞∑
n=0

cnzn − a0

)
=

1
z
(Tn [cn] (z)− c0) .

(5.10)

Property 25 (Multiplication of sequences). Consider two sequences {cn} and {dn}. We have

Tn [cndn] (z) =
1
2πi

∮
C
dz̃

1
z̃
Tn [cn] (z̃) Tn [dn]

(z
z̃

)
, (5.11)

where i represents the imaginary unit, and C is a counter-clockwise closed path encircling the origin
and entirely in the region of convergence corresponding to the product cndn.

Another interesting feature of the generating function lies in the fact that the asymptotic be-
haviour of a sequence {cn} for a growing index can be studied by analysing the asymptotic be-
haviour of the corresponding generating function g(z) around its singularities. This is encom-
passed in the Tauberian theorems [97], the most famous of which being due to Hardy, Little-
wood and Karamata [98].

Theorem 26 (HLK Tauberian theorem). Let g(z) be a power series with radius of convergence
equal to 1, satisfying

g(z) ∼ 1
(1− z)α

Λ
(

1
1− z

)
, z → 1, (5.12)

for some α ≥ 0 with Λ a slowly varying function. Assume that the coefficients cn = [zn]g(z) are all
non-negative. Then

n∑
k=0

ck ∼
nα

Γ(α + 1)
Λ(n), n → ∞. (5.13)

A function Λ is said to be slowly varying at infinity if and only if, for any β > 0, one has

Λ(βx)
Λ(x)

→ 1 as x → +∞. (5.14)

Also, the notation cn = [zn]g(z) means that we take the coefficient of the zn term in g(z) =∑∞
n=0 cnz

n.
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5.2 Generating functions for two-modeGaussian unitaries

5.2.1 Generating function for the modified transition amplitudes

The purpose of this section is to compute generating functions associated with the amplitudes
involving two-mode Gaussian unitaries and Fock states. Since our goal is to exploit the sym-
pletic formalism of Gaussian systems, we choose to calculate the 4-variate generating functions
of the modified amplitudes

⟨n,m|UBS
η |i, k⟩

√
i!k!n!m!

,
⟨n,m|UTMS

λ |i, k⟩√
i!k!n!m!

, (5.15)

where |i⟩, |k⟩, |n⟩, and |m⟩ denote Fock states, instead of the amplitudes themselves, as coher-
ent states then naturally appear during the derivations of such generating functions. Indeed,
consider the 4-dimensional sequence

⟨n,m|U |i, k⟩√
i!k!n!m!

(5.16)

for some unitary U. Its 4-variate generating function can easily be written as

g(x, y, z,w) =
∑
i,k,n,m

⟨n,m|U |i, k⟩√
i!k!n!m!

xiykznwm,

or,

g(x, y, z,w) =

(∑
n

zn√
n!

⟨n|

)
⊗

(∑
m

wm
√
m!

⟨m|

)
U

(∑
i

xi√
i!
|i⟩

)
⊗

(∑
k

yk√
k!
|k⟩

)
,

so that
g(x, y, z,w) = e

|x|2+|y|2+|z|2+|w|2
2 ⟨z,w|U |x, y⟩ , (5.17)

where |x⟩, |y⟩, |z⟩, and |w⟩ are coherent states defined in Equation (3.41), with the conventions
shown in Figure 5.2.1. Namely, we obtain a matrix element of U between coherent states. This
makes the generating function g very easy to compute when U is Gaussian, regardless of the
complexity of ⟨n,m|U |i, k⟩.

ˆ

ˆ

| 〉

| 〉 | 〉

| 〉

Figure 5.2.1: Conventions in the definition of g(x, y, z,w).
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5.2.1.1 Beam splitter

Define the generating function gBSη of the modified amplitudes involving a beam-splitter unitary
as

gBSη (x, y, z,w) =
∑
i,k,n,m

⟨n,m|UBS
η |i, k⟩

√
i!k!n!m!

xiykznwm, (5.18)

choosing x, y, z,w ∈ R. It can be rewritten in terms of coherent states in the form of Equation
(5.17). In order to apply the beam splitter to the product of coherent states, we take advantage
of the fact that the beam splitter does not modify a couple of vacua, and

UBS
η |x, y⟩ = UBS

η

(
Dx ⊗ Dy

)
|0, 0⟩ = UBS

η

(
Dx ⊗ Dy

)
UBS†

η |0, 0⟩ , (5.19)

where the displacement operator is defined in Equation (3.36). Now,

UBS
η

(
Dx ⊗ Dy

)
UBS†

η = UBS
η

(
exâ

†−x∗a+yb̂†−y∗b
)
UBS†

η = eU
BS
η (xâ†−x∗a+yb̂†−y∗b)UBS†

η . (5.20)

Exploiting the action of the beam splitter in the Heisenberg picture defined in Equations (3.55),
we get

UBS
η (xâ† − x∗a+ yb̂† − y∗b)UBS†

η = (
√ηx+

√
1− ηy)â† − (

√ηx+
√

1− ηy)∗a

+ (
√ηy−

√
1− ηx)b̂† − (

√ηy−
√

1− ηx)∗b,

meaning that

UBS
η

(
Dx ⊗ Dy

)
UBS†

η = e(
√ηx+

√
1−ηy)â†−(

√ηx+
√
1−ηy)∗a⊗e(

√ηy−√
1−ηx)b̂†−(

√ηy−√
1−ηx)∗b, (5.21)

or, using the definition of the displacement again,

UBS
η

(
Dx ⊗ Dy

)
UBS†

η = D√ηx+
√
1−ηy ⊗ D√ηy−√

1−ηx. (5.22)

Using this information, we end up with

⟨z,w|UBS
η |x, y⟩ =

⟨
z,w
∣∣ √ηx+

√
1− ηy,√ηy−

√
1− ηx

⟩
. (5.23)

Since we have x, y, z,w ∈ R,

⟨z,w|UBS
η |x, y⟩ = e−

|√ηx+
√

1−ηy|2+|z|2

2 e−
|√ηy−

√
1−ηx|2+|w|2

2 ez(
√ηx+

√
1−ηy)ew(

√ηy−√
1−ηx), (5.24)

so that
gBSη (x, y, z,w) = e

√η(xz+yw)+
√
1−η(yz−xw). (5.25)
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Consistency check: conservation of energy It is interesting to notice that the conser-
vation of energy in the beam splitter can be easily verified using the generating function com-
puted above. Define the object

g̃BSη (x, y, z,w, t) =
∑
i,k,n,m

⟨n,m|UBS
η |i, k⟩

√
i!k!n!m!

xiykznwmti+k−n−m, (5.26)

where we chose to add a variable t. In this case,

g̃BSη (x, y, z,w, t) =
∑
i,k,n,m

⟨n,m|UBS
η |i, k⟩

√
i!k!n!m!

(xt)i(yt)k
(z
t

)n (w
t

)m
= gBSη (xt, yt,

z
t
,
w
t
).

Now, using the definition of gBSη , we end up with

g̃BSη (x, y, z,w, t) = gBSη (x, y, z,w), ∀t. (5.27)

This actually means that g̃BSη as defined in Equation (5.26) does not depend on the variable t,
or that the only non-zero elements in the sums of the right-hand side of Equation (5.26) verify
i+ k− n− m = 0. Consequently,

⟨n,m|UBS
η |i, k⟩ = 0 if i+ k ̸= n+ m. (5.28)

From now on, we will define the transition amplitudes of a beam splitter with transmittance η
as

b(i,k)n = ⟨n,m|UBS
η |i, k⟩ , (5.29)

noting that the index m = i+ k− n is redundant.

5.2.1.2 Two-mode squeezer

Define the generating function gTMS
λ of the modified amplitudes in a two-mode squeezer as

gTMS
λ (x, y, z,w) =

∑
i,k,n,m

⟨n,m|UTMS
λ |i, k⟩√

i!k!n!m!
xiykznwm, (5.30)

with x, y, z,w ∈ R. Again, it can be rewritten using coherent states in the form of Equation
(5.17). Using the same techniques as in the case of the beam splitter, we have

UTMS
λ |x, y⟩ = UTMS

λ

(
Dx ⊗ Dy

)
|0, 0⟩ = UTMS

λ

(
Dx ⊗ Dy

)
UTMS†

λ UTMS
λ |0, 0⟩ , (5.31)
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where
UTMS

λ

(
Dx ⊗ Dy

)
UTMS†

λ = eU
TMS
λ (xâ†−x∗a+yb̂†−y∗b)UTMS†

λ . (5.32)

Again, from Equations (3.57),

UTMS
λ (xâ† − x∗a+ yb̂† − y∗b)UTMS†

λ = (x cosh(r) + y∗ sinh(r))â†

− (x cosh(r) + y∗ sinh(r))∗a

+ (y cosh(r) + x∗ sinh(r))b̂†

− (y cosh(r) + x∗ sinh(r))∗b,

where λ = tanh2(r). This leads to

UTMS
λ

(
Dx ⊗ Dy

)
UTMS†

λ = Dx cosh(r)+y∗ sinh(r) ⊗ Dy cosh(r)+x∗ sinh(r), (5.33)

UTMS
λ |x, y⟩ = Dx cosh(r)+y∗ sinh(r) ⊗ Dy cosh(r)+x∗ sinh(r) |φEPRλ ⟩ , (5.34)

where |φEPRλ ⟩ = UTMS
λ |0, 0⟩ is a Gaussian two-mode squeezed state. We then have

⟨z,w|UTMS
λ |x, y⟩ = ⟨z,w|Dx cosh(r)+y∗ sinh(r) ⊗ Dy cosh(r)+x∗ sinh(r) |φEPRλ ⟩ . (5.35)

Since all our coherent states, and therefore displacements, are characterised by real parameters,
we have that DαDβ = Dα+β, meaning that

⟨z,w|UTMS
λ |x, y⟩ = ⟨0, 0|Dx cosh(r)+y∗ sinh(r)−z ⊗ Dy cosh(r)+x∗ sinh(r)−w |φEPRλ ⟩

=
⟨
z− x cosh(r)− y∗ sinh(r),w− y cosh(r)− x∗ sinh(r)

∣∣ φEPRλ

⟩
.

The overlap between a coherent state and a Fock state is such that [99]

⟨α| n⟩ = e−
α2
2
αn√
n!
, α ∈ R (5.36)

so that ⟨
α, β
∣∣ φEPRλ

⟩
=

√
1− λe−

α2+β2

2

∞∑
n=0

(
√
λαβ)n

n!
, α, β ∈ R,

=
√
1− λe−

α2+β2

2 e
√
λαβ, α, β ∈ R.

If one chooses {
α = z− x cosh(r)− y sinh(r),

β = w− y cosh(r)− x sinh(r),
(5.37)

then
α2 + β2 = z2 + (x cosh(r) + y sinh(r))2 − 2z(x cosh(r) + y sinh(r))

+ w2 + (y cosh(r) + x sinh(r))2 − 2w(y cosh(r) + x sinh(r)),
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leading to

ln
(
gTMS
λ (v)√
1− λ

)
=

|x|2 + |y|2 + |z|2 + |w|2

2
− α2 + β2

2
+
√
λαβ, (5.38)

where we set v = (x, y, z,w) ∈ R4. After some calculations, one gets

ln
(
gTMS
λ (v)√
1− λ

)
= sech(r)(xz+ yw) + tanh(r)(zw− xy), (5.39)

and consequently,
gTMS
λ (v) =

√
1− λesech(r)(xz+yw)+tanh(r)(zw−xy). (5.40)

Finally, if we use the fact that λ = tanh2(r), we get

gTMS
λ (v) =

√
1− λe

√
1−λ(xz+yw)+

√
λ(zw−xy). (5.41)

Consistency check: conservation of photon-number difference In the case of the
two-mode squeezer, the conservation of the photon-number difference is reflected by

g TMS
λ (x, y, z,w) = g TMS

λ

(
tx,

y
t
,
z
t
,w
)
, ∀t. (5.42)

From now on, we will define the transition amplitudes of a two-mode squeezer with parameter
λ = tanh2(r) as

a(i,k)n = ⟨n,m|UTMS
λ |i, k⟩ , (5.43)

noting that the index m = n+ k− i is redundant.

5.2.2 Partial time reversal

By comparing the above generating functions, it appears that the two-mode squeezer may be
viewed as a beam splitter undergoingpartial time reversal [100]. By interchanging variables y and
w (which may be interpreted as reverting the arrow of time for mode b̂) and taking η = 1− λ,
we see that the generating functions are connected by

gTMS
λ (x, y, z,w) =

√
1− λ gBS1−λ(x,w, z, y). (5.44)

This means that exchanging the roles of k and m in the matrix elements converts a two-mode
squeezer into a beam splitter, namely

⟨n,m|UTMS
λ |i, k⟩ =

√
1− λ ⟨n, k|UBS

1−λ |i,m⟩ . (5.45)
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Equation (5.44) can be rewritten as

gTMS
λ (x, y, z,w) =

1√
G
gBS1/G(x,w, z, y), (5.46)

where the gain G of the two-mode squeezer is defined such that G = 1/(1 − λ). This is remi-
niscent of the fact that the dual map of the quantum limited amplifier AG is proportional to the
pure-loss channel Bη, where the transmittance of the latter is given by the inverse of the gain
of the former, and the coefficient of proportionality is equal to the inverse of the gain. In other
words,

A†
G[•] =

1
G
B1/G[•]. (5.47)

Indeed, in Equation (5.46), the two generating functions are proportional, and the transmit-
tance η of gBSη is replaced by the inverse of the gain G.

5.2.3 Computing the transition amplitudes

We now exploit the generating functions in order to compute the transition amplitudes. An
obvious, albeit interesting thing to notice is that

gBSη (v) = gBSη (v)
∣∣∣
y=0

gBSη (v)
∣∣∣
x=0

. (5.48)

Since a product of generating functions corresponds to a convolution of their respective se-
quences, we get

b(i,k)n =

min(n,i)∑
ñ=max(0,n−k)

√(
n
ñ

)(
i+ k− n
i− ñ

)
b(i,0)ñ b(0,k)n−ñ , (5.49)

for the transition amplitudes in a beam splitter. Similarly, one can express the transition ampli-
tudes in a two-mode squeezer as

a(i,k)n =

min(i,n)∑
ı̃=max(0,i−k)

√(
i
ı̃

)(
n− i+ k
n− ı̃

)
a(ı̃,0)n a(i−ı̃,k)

0√
1− λ

. (5.50)

Compared to the direct calculation of b(i,k)n as illustrated in Appendix D, the amplitudes b(i,k)n as
well as a(i,k)n can be easily derived from Eqs. (5.49) and (5.50), using the relations

b(i,0)n =

(
i
n

)1/2

ηn/2(1− η)(i−n)/2 (5.51)

and
a(i,0)n =

(
n
i

)
1/2(1− λ)(1+i)/2λ(n−i)/2. (5.52)

90



5.2. GENERATING FUNCTIONS FOR TWO-MODE GAUSSIAN UNITARIES

The method based on generating functions we used here to obtain an expression for b(i,k)n is to
be compared with the approach developed in Appendix D. One can argue that the former tech-
nique is neater, as it exploits the symplectic formalism applied to Gaussian systems. One could
claim that computing the generating function also takes time in itself. However, the generating
functions computed here are standard objects in quantum optics. Furthermore, they need only
be computed once, and can be used as a tool for several derivations and proofs (e.g. calculation
of amplitudes, probabilities, proof of relations they verify, conservation of energy, ...).

5.2.4 Generating function for the transition probabilities

We are also interested in the generating functions of the transition probabilities | ⟨n,m|U |i, k⟩ |2,
involving two-mode Gaussian unitaries. For any unitary U, the generating function is defined
as

f(x, y, z,w) =
∑
i,k,n,m

⟨n,m|U |i, k⟩ ⟨i, k|U† |n,m⟩ xiykznwm. (5.53)

with the conventions shown in Figure 5.2.1 The terms in the last quantity can be rearranged as

f(x, y, z,w) = Tr

[
U

(∑
i

xi |i⟩ ⟨i| ⊗
∑
k

yk |k⟩ ⟨k|

)

× U†

(∑
n

zn |n⟩ ⟨n| ⊗
∑
m

wm |m⟩ ⟨m|

)]
,

so that thermal states naturally appear, leading to

f(v) =
Tr
[
(τz ⊗ τw)U(τx ⊗ τy)U†]

(1− x)(1− y)(1− z)(1− w)
, (5.54)

where v = (x, y, z,w) ∈ R4, τt being a Gaussian thermal state of parameter t such that 0 ≤ t <
1. By means of the sympletic formalism of Gaussian systems, the calculation of f consequently
becomes rather easy for Gaussian unitaries.

5.2.4.1 Beam splitter

The generating function of the probability | ⟨n,m|UBS
η |i, k⟩ |2 is given by

f BSη (x, y, z,w) =
∑
i,k,n,m

| ⟨n,m|UBS
η |i, k⟩ |2xiykznwm. (5.55)

It can be rewritten in terms of thermal Gaussian states in the form of Equation (5.54). Now, the
object UBS

η

(
τx ⊗ τy

)
UBS†

η represents the effect of a beam-splitter unitary on the cross product
of two Gaussian thermal states. Consequently, it represents a two-mode Gaussian state, which
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we label by ϱ1, i.e,
ϱ1 = UBS

η

(
τx ⊗ τy

)
UBS†

η . (5.56)

The object τz ⊗ τw is obviously a two-mode Gaussian state as well. We label it by ϱ2 = τz ⊗ τw.
This means that f BSη (x, y, z,w) is proportional to the overlap Tr [ϱ1ϱ2]between the two Gaussian
states,

f BSη (x, y, z,w) =
1

(1− x)(1− y)(1− z)(1− w)
Tr [ϱ1ϱ2] . (5.57)

Since the first moments of each of the two Gaussian states ϱ1 and ϱ2 is null, their overlap can be
computed using the formula [101]

Tr [ϱ1ϱ2] =
(

det
[
V1 + V2

2

])− 1
2

=
4√

det [V1 + V2]
, (5.58)

whereV1 andV2 are the respective covariance matrices of ϱ1 and ϱ2. Now, the covariance matrix
of τx⊗τy is diagonal, and is equal to [(2nx + 1)12]⊕

[
(2ny + 1)12

]
, where12 is the 2 by 2 identity

matrix, and nt = t/(1 − t) is the mean number of photons of the one-mode Gaussian thermal
state τt of parameter t. The effect of the beam splitter on the covariance matrix of the product
τx ⊗ τy in phase space is characterised by the symplectic matrix

Sη =

( √η12
√
1− η12

−√
1− η12

√η12

)
, (5.59)

so that

V1 =


c11 0 c13 0
0 c11 0 c13
c13 0 c33 0
0 c13 0 c33

 , (5.60)

where we defined c11 = η(2nx + 1) + (1 − η)(2ny + 1), c33 = η(2ny + 1) + (1 − η)(2nx + 1),
and c13 = 2

√
η(1− η)(ny − nx). The covariance matrix V2 is diagonal, and can be written

V2 = [(2nz + 1)12]⊕ [(2nw + 1)12], which means that V = V1 + V2 is also of the form

V =


c11 + (2nz + 1) 0 c13 0

0 c11 + (2nz + 1) 0 c13
c13 0 c33 + (2nw + 1) 0
0 c13 0 c33 + (2nw + 1)

 . (5.61)

After some calculation, we get

Tr [ϱ1ϱ2] =
1

(nx + nw + 1)(ny + nz + 1) + η(nx − ny)(nw − nz)
. (5.62)
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Finally, by using the relation between the mean number of photon of a Gaussian thermal state
and its parameter, we obtain

f BSη (x, y, z,w) =
1

1− ηxz− (1− η)xw− ηyw− (1− η)yz+ xyzw
. (5.63)

As a consistency check, we note that

f BSη (0) = | ⟨0, 0|UBS
η |0, 0⟩ |2 = 1, (5.64)

while normalisation
∞∑

n,m=0

| ⟨n,m|U |i, k⟩ |2 = 1, ∀i, k (5.65)

for the beam splitter translates into

f BS(x, y, 1, 1) =
1

1− x
1

1− y
. (5.66)

From now on, we will define the transition probabilities of a beam splitter of transmittance η as

B(i,k)
n = | ⟨n,m|UBS

η |i, k⟩ |2, (5.67)

with m = i+ k− n.

5.2.4.2 Two-mode squeezer

The generating function of the probability | ⟨n,m|UTMS
λ |i, k⟩ |2 is given by

f TMS
λ (x, y, z,w) =

∑
i,k,n,m

| ⟨n,m|UTMS
λ |i, k⟩ |2xiykznwm. (5.68)

One way to proceed would be to compute it from scratch, following the same procedure as in
the case of the beam splitter. However, there is a much simpler way by taking advantage of the
property of partial time reversal described by Equation (5.44). Using Property 25, as well as the
fact that the amplitudes we consider take real values, we have

f TMS
λ (x, y, z,w) =

1
(2πi)4

∮
C4
dṽ

1
x̃ỹz̃w̃

gTMS
λ (x̃, ỹ, z̃, w̃)gTMS

λ (
x
x̃
,
y
ỹ
,
z
z̃
,
w
w̃
)

=
1

(2πi)4

∮
C4
dṽ

1
x̃ỹz̃w̃

√
1− λgBS1−λ(x̃, w̃, z̃, ỹ)

√
1− λgBS1−λ(

x
x̃
,
w
w̃
,
z
z̃
,
y
ỹ
)

= (1− λ)f BS1−λ(x,w, z, y).
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Consequently,

f TMS
λ (x, y, z,w) =

1− λ
1− (1− λ)xz− λxy− (1− λ)yw− λwz+ xyzw

. (5.69)

As a consistency check, we note that

f TMS
λ (0) = | ⟨0, 0|UTMS

λ |0, 0⟩ |2 = 1− λ, (5.70)

while normalisation for the two-mode squeezer translates into

f TMS(x, y, 1, 1) =
1

1− x
1

1− y
. (5.71)

From now on, we will define the transition probabilities of a two-mode squeezer with parameter
λ = tanh2(r) as

A(i,k)
n = | ⟨n,m|UTMS

λ |i, k⟩ |2, (5.72)

with m = n+ k− i.

5.2.5 Asymptotic analysis of the transition probabilities

Let us analyse the behaviour of the probability B(i,i)
n for a balanced beam splitter, meaning that

we fix η = 1/2. We first need to find the generating function ofB(i,i)
n = | ⟨n,m|UBS

η |i, i⟩ |2 (with
m = 2i − n) in i and n. We defined the generating function of the probabilities in the beam
splitter as

f BSη (x, y, z,w) =
∑
i,k,n,m

| ⟨n,m|UBS
η |i, k⟩ |2xiykznwm. (5.73)

The sum overmwas taken for the sake of of symmetry. Since the probability | ⟨n,m|UBS
η |i, k⟩ |2

will be zero if m ̸= i+ k− n, one readily understands that

B(i,k)
n = | ⟨n, i+ k− n|UBS

η |i, k⟩ |2 =
∞∑
m=0

| ⟨n,m|UBS
η |i, k⟩ |2. (5.74)

It actually means that if one computes the generating function of the sequence B(i,k)
n without

considering the index m, one gets

∑
i,k,n

B(i,k)
n xiykzn =

∑
i,k,n

(∑
m

| ⟨n,m|UBS
η |i, k⟩ |2wm

)∣∣∣∣∣
w=1

xiykzn, (5.75)

so that
f BSη (x, y, z, 1) =

∑
i,k,n

B(i,k)
n xiykzn. (5.76)
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5.2.5.1 Generating function of B(i,i)
n

In order to derive the generating function of the diagonal elements B(i,i)
n , we force the relation

k = i in the generating function of B(i,k)
n by only choosing the elements which verify it, i.e.,

Ti,n
[
B(i,i)
n

]
(x, z) = [y0]

∑
i,k,n

B(i,k)
n xiyk−izn

= [y0]
∑
i,k,n

B(i,k)
n

(
x
y

)i

ykzn

= [y0] f BSη

(
x
y
, y, z, 1

)
.

By Cauchy’s integral formula for any function g(z), one has

g(a) =
1
2πi

∮
g(z)
z− a

dz. (5.77)

Applying this to our case, we get that, for some circle γx around y = 0,

Ti,n
[
B(i,i)
n

]
(x, z) =

1
2πi

∫
γx

f BSη (x/y, y, z, 1)
y

dy. (5.78)

Now, using the Residue Theorem, this can be transformed to

Ti,n
[
B(i,i)
n

]
(x, z) =

∑
l

Res

[
f BSη (x/y, y, z, 1)

y
; y = sl

]
, (5.79)

where the sl are the singularities of f BSη (x/y, y, z, 1) /y satisfying

lim
x→0

sl(x) = 0. (5.80)

The singularities of f BSη (x/y, y, z, 1) /y can be computed to be

s∓(x, z, η) =
1+ xz∓

√
(1+ xz)2 − 4(η + (1− η)z)(x(1− η) + ηxz))

2(η + z(1− η))
. (5.81)

If we take their limits for x going to zero, we obtain

lim
x→0

s−(x, z, η) = 0, lim
x→0

s+(x, z, η) =
1

η + z(1− η)
. (5.82)

The generating function we are interested in is equal to the residue at s−, so that

Ti,n
[
B(i,i)
n

]
(x, z) =

1√
(1+ xz)2 − 4(η + (1− η)z)(x(1− η) + ηxz))

. (5.83)
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If we particularize this to a balanced beam splitter (η = 1/2), we simply get

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) =

1√
(1− x)(1− z2x)

, (5.84)

which is the generating function in i, n of the diagonal sequence B(i,i)
n for η = 1/2.

5.2.5.2 Asymptotical behaviour of B(i,i)
n for η = 1/2

Our aim is now to use Tauberian theorems in order to study the asymptotic behaviour of B(i,i)
n

for η = 1/2. Theorem 26 can be generalised, and in case of multiple singularities, each one can
be analyzed separately, and the different contributions can be combined in the end [97]. In our
case, this must be done in two steps, since our sequence has two indices i and n. We begin by
analyzing the behaviour of

[zn]Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) = Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x) , (5.85)

the generating function in i, by studying the behaviour of

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) , (5.86)

the generating function in i and n. We then investigate the resulting

Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x) (5.87)

in order to conclude about
B(i,i)
n

∣∣
η=1/2 . (5.88)

Behaviour of Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x). The function

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) =

1√
(1− x)(1− z2x)

(5.89)

has two singularities,
z1(x) =

1√
x

and z2(x) = − 1√
x
. (5.90)

On one hand,

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) ∼ 1√

2(1− x)(1−
√
xz)

, z → z1(x). (5.91)
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Define the sequence β(1)i,n such that

∑
i,n

β(1)i,n x
izn =

1√
2(1− x)(1−

√
xz)

. (5.92)

In other words,

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) ∼

∑
i,n

β(1)i,n x
izn, z → z1(x). (5.93)

Equation (5.92) is the same as (x is positive)∑
i,n

β(1)i,n x
i− n

2 zn =
1√

2(1− x)(1− z)
. (5.94)

Now, for n increasing, according to Tauberian theorems,

[zn]
1√

2(1− x)(1− z)
∼ 1√

2(1− x)πn
, (5.95)

so that
[zn]
∑
i,n

β(1)i,n x
i− n

2 zn ∼ 1√
2(1− x)πn

, (5.96)

[zn]
∑
i,n

β(1)i,n x
izn ∼ x

n
2√

2(1− x)πn
. (5.97)

Using Definition (5.92), we end up with

[zn]
1√

2(1− x)(1−
√
xz)

∼ x
n
2√

2(1− x)πn
. (5.98)

On the other hand,

Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) ∼ 1√

2(1− x)(1+
√
xz)

, z → z2(x). (5.99)

We can do the same analysis, and get

[zn]
1√

2(1− x)(1+
√
xz)

∼ (−1)nx
n
2√

2(1− x)πn
. (5.100)

As we explained earlier, in the case of two singularities (with the same absolute value), the two
asymptotic contributions can be added up [97], so that

[zn]Ti,n

[
B(i,i)
n

∣∣
η=1/2

]
(x, z) ∼ x

n
2√

2(1− x)πn
+

(−1)nx
n
2√

2(1− x)πn
, (5.101)
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or,

Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x) ∼ 1+ (−1)n√

2πn
x

n
2

√
1− x

. (5.102)

The zero contribution for odd n is consistent with the fact that the total input photon number
2i is even.

Behaviour of B(i,i)
n

∣∣
η=1/2. The function

1+ (−1)n√
2πn

x
n
2

√
1− x

(5.103)

has only one singularity, x0 = 1. Since the dominant factor is 1/
√
1− x (compared to x

n
2 ) when

x → x0, we can focus on it. We have [97]

[xi]
1√
1− x

∼ 1√
πi
, (5.104)

meaning that

[xi]
(
x−

n
2Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x)
)
∼ 1+ (−1)n√

2πn
1√
πi
. (5.105)

Now,

x−
n
2Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x) =

∞∑
i=0

B(i,i)
n

∣∣
η=1/2 x

i− n
2

=
∞∑

j=−n/2

B(j+ n
2 ,j+

n
2 )

n

∣∣∣
η=1/2

xj,

and B(i,i)
n = 0 if n > 2i, so that

x−
n
2Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x) =

∞∑
j=0

B(j+ n
2 ,j+

n
2 )

n

∣∣∣
η=1/2

xj, (5.106)

⇒ [xi]
(
x−

n
2Ti

[
B(i,i)
n

∣∣
η=1/2

]
(x)
)
= B(i+ n

2 ,i+
n
2 )

n

∣∣∣
η=1/2

. (5.107)

Equation (5.105),

B(i+ n
2 ,i+

n
2 )

n

∣∣∣
η=1/2

∼ 1+ (−1)n√
2πn

1√
πi
, (5.108)

or,

B(i,i)
n

∣∣
η=1/2 ∼

1+ (−1)n√
2πn

1√
π
(
i− n

2

) . (5.109)
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After some simplification, we get

B(i,i)
n

∣∣
η=1/2 ∼

1+ (−1)n

π
√
n (2i− n)

. (5.110)

which exactly coincides with the analysis in [102]. The output terms around n ∼ i are maxi-
mally suppressed, which is reminiscent of the Hong-Ou-Mandel effect (defined later). Interest-
ingly, we can again exploit partial time reversal and extend this analysis to a TMS with λ = 1/2,
giving

A(i,k)
k ∼ 1+ (−1)i

2π
√

i(2k− i)
, k, i → ∞. (5.111)

5.3 Generating functions forN-mode passive Gaussian unitaries

In Chapter 6, the expressions of the generating functions for the transition probabilities will
prove very valuable for the derivation of relations characterising the effect of quantum interfer-
ences. The generating functions we have computed until now always involved two modes. It
seems natural to ask the question whether this analysis can easily be extended to an arbitrary
number of modes N. This is the purpose of this section, in which we choose to focus on N-
mode passive Gaussian unitaries; that is, Gaussian unitaries which preserve the energy, as they
are of particular interest, since they can actually be combined with Gaussian unitaries acting on
a smaller number of modes, in order to generate general N-mode Gaussian unitaries. As we are
going to demonstrate in Chapter 6, the generating function we compute here will be crucial in
the derivation of an equation describing the effect of interferences in N-mode passive Gaussian
unitaries.

Consider an N-mode passive interferometer whose effect on the bosonic field operators in
phase space is characterised by an orthogonal matrix U of dimension N, i.e,

â → Uâ, â = (â1, â2, . . . , âN) . (5.112)

Define the transition probabilities

B(i)
n =

∣∣∣∣∣
(

N∏
r=1

⟨nr|

)
UPI

(
N∏
s=1

|is⟩

)∣∣∣∣∣
2

=
∣∣⟨n1, n2, . . . , nN|UPI |i1, i2, . . . , iN⟩

∣∣2 , (5.113)

where i = (i1, i2, . . . , iN) ∈ NN
0 , n = (n1, n2, . . . , nN) ∈ NN

0 , N0 being the set of all natural
numbers (including zero) and UPI is the unitary which characterises the effect of the interfer-
ometer in state space. The 2N-variate generating function of the transition probabilities is given
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by

f PI(x, z) = Ti,n
[
B(i)
n

]
(x, z) =

∑
i∈NN

0

∑
n∈NN

0

B(i)
n

(
N∏
s=1

xiss

)(
N∏
r=1

znrr

)
, (5.114)

where x = (x1, x2, . . . , xN) ∈ {[0, 1)}N and z = (z1, z2, . . . , zN) ∈ {[0, 1)}N. If we use the
definition of the probabilities B(i)

n , we get

f PI(x, z) =
∑
i∈NN

0

∑
n∈NN

0

∣∣∣∣∣
(

N∏
r=1

⟨nr|

)
UPI

(
N∏
s=1

|is⟩

)∣∣∣∣∣
2( N∏

s=1

xiss

)(
N∏
r=1

znrr

)
. (5.115)

Like we did in the previous section, we introduce thermal states into the picture by rewriting
the generating function as

f PI(x, z) =

(
N∏
s=1

(1− xs)−1
)(

N∏
r=1

(1− zr)−1
)
Tr
[
UPIΓxUPI†Γz

]
, (5.116)

where

Γx =
N⊗
s=1

τxs , (5.117)

and τx is a Gaussian thermal state of mean number of photon μx such that

τx = (1− x)
∞∑
i=0

xi |i⟩ ⟨i| , μx =
x

1− x
, 0 ≤ x < 1. (5.118)

Since the calculations of the generating function are quite involved in the N-mode case, we
choose to include them in the appendix rather than in the main text. The interested reader is
referred to Appendix E.1, in which we prove that f PI has the following form.

Lemma 7. The generating function f PI(x, z) of the probabilities B(i)
n satisfies

f PI(x, z) =

 N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 det [X (α)] det [Z (β)]

−1

, (5.119)

where X and Z are diagonal matrices whose diagonals are given by the vectors x and z, respectively,
M (β, α) is the sub-matrix ofM corresponding to the rows, columns whose indices belong in β, α, re-
spectively ( furthermore, wewriteM (α) forM (α, α)), andR(N)

m is the set of all subsets of{1, 2, . . . ,N}
of cardinality m.

The expression of the 2N-variate generating function in Equation (5.119) is to be compared
with Equation (5.63) which was computed for a beam-splitter unitary. Obviously, Equation
(5.63) can be obtained starting from Equation (5.119) by setting N = 2. A first thing to notice
about Equation (5.119) is that in each term (det [U (β, α)])2 det [X (α)] det [Z (β)] of the de-
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nominator of the generating function, the sets α and β will always have the same cardinalities,
so that the matrices X (α) and Z (β) will always have the same dimensions. This means that
the number of variables zr characterising the outputs will always be accompanied by the same
number of variables xs characterising the inputs. The second thing to understand, is that these
factors det [X (α)] det [Z (β)] will be multiplied by the right squared minor (det [U (β, α)])2 of
the orthogonal matrix U which governs the evolution of the annihilation operators in phase
space. As long as one understands what each term (det [U (β, α)])2 det [X (α)] det [Z (β)] ac-
tually looks like and represents, one can readily acknowledge that Equation (5.119) is actually
quite elegant and simple for such a complex object. As we already mentioned, it will prove very
useful in the proof of some relation characterising quantum interferences for N-mode passive
Gaussian unitaries.
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6
Multi-photon interference effects inGaussian

transformations

In this chapter, we address multi-photon interference by exploiting the framework developped
in Chapter 5, which relies on the generating function of Gaussian matrix elements in Fock basis.
The latter can be expressed in a simple form while it enables accessing intrinsically non-Gaussian
features such as multi-photon transition probabilities. In particular, it exhibits a suppression
term that generalises the Hong-Ou-Mandel effect to many photons. Remarkably, applying this
tool to active transformations, we find an analogous effect that had been left unnoticed in an
optical amplification medium of gain 2. In Section 6.1, we prove a recurrence relation for the
transition probabilities in the case of the most important 2-mode Gaussian unitaries, namely the
beam splitter and the two-mode squeezer. The relation clearly illustrates the effect of quantum
interference as a consequence of the non-distinguishability of bosons. This will lead us to a
generalisation of the Hong-Ou-Mandel effect for both cases in Section 6.2. Finally, in Section
6.3, we prove the existence of a similar relation for the transition probabilities involvingN-mode
passive Gaussian transformations.
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6. MULTI-PHOTON INTERFERENCE EFFECTS IN GAUSSIAN
TRANSFORMATIONS

6.1 Transition probabilities of two-modeGaussian unitaries

6.1.1 Recurrence for the transition probabilities in a beam splitter

In Chapter 5, we illustrated the power of the generating functions in a framework involving
Gaussian unitaries by easily computing expressions for the transition amplitudes. As we are now
going to see, the advantage of generating functions becomes even more evident when turning
to transition probabilities B(i,k)

n = |b(i,k)n |2. Taking the square modulus of Equation 5.49 can be
quite cumbersome, as shown in Appendix D. Yet, the generating functions can be exploited to
prove the following recurrence equation.

Theorem 27. Let B(i,k)
n = | ⟨n,m|UBS

η |i, k⟩ |2 be the transition probabilities of a beam splitter of
transmittance η with m = i+ k− n, then

B(i,k)
n = B̃(i,k,j)

n − B̃(i−1,k−1,j−1)
n−1 , (6.1)

for all j such that 0 ≤ j ≤ i+ k, where

B̃(i,k,j)
n =

min(j,k)∑
l=max(0,j−i)

{
B(j−l,l)
• ∗ B(i−j+l,k−l)

•
}
n . (6.2)

Here, the convolution is noted as {B(i,k)
• ∗ B(j,l)

• }n =
∑n

m=0 B
(i,k)
m B(j,l)

n−m. This recurrence is ob-
vious for j = 0 given that B(0,0)

n = δn,0, and can otherwise be proven easily for either of the
indices (i, k, n) equal to zero by using the property that the convolution of two binomials stays
a binomial.

Proof. Consider the probability

B(i,k)
n = ⟨n|Tr2

[
Uη |i, k⟩ ⟨i, k|U†

η

]
|n⟩ . (6.3)

We need to show that

B(i+1,k+1)
n+1

?
= B̃(i+1,k+1,j+1)

n+1 − B̃(i,k,j)
n , 0 ≤ j ≤ i+ k+ 1, (6.4)

since we know it is obviously true for j = −1. Furthermore, notice that

B̃(i,k,j)
n = 0 if j < 0 or j > i+ k. (6.5)
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Using this information, we need to show that

i+k+1∑
j=0

B(i+1,k+1)
n+1 sj ?

= Tj

[
B̃(i+1,k+1,j+1)
n+1

]
(s)− Tj

[
B̃(i,k,j)
n

]
(s) , ∀s, (6.6)

where, for instance,

Tj
[
B̃(i,k,j)
n

]
(s) =

∞∑
j=0

B̃(i,k,j)
n sj. (6.7)

The shifting property of generating functions leads to

i+k+1∑
j=0

B(i+1,k+1)
n+1 sj ?

=
1
s

(
Tj

[
B̃(i+1,k+1,j)
n+1

]
(s)− B̃(i+1,k+1,0)

n+1

)
− Tj

[
B̃(i,k,j)
n

]
(s) ,

⇔
i+k+1∑
j=0

B(i+1,k+1)
n+1 sj ?

=
1
s

(
Tj

[
B̃(i+1,k+1,j)
n+1

]
(s)− B(i+1,k+1)

n+1

)
− Tj

[
B̃(i,k,j)
n

]
(s) .

Now,
i+k+1∑
j=0

B(i+1,k+1)
n+1 sj =

1
s

i+k+1∑
j=0

B(i+1,k+1)
n+1 sj+1 =

1
s

i+k+2∑
j=1

B(i+1,k+1)
n+1 sj, (6.8)

meaning that what we are trying to show can be written

i+k+2∑
j=0

B(i+1,k+1)
n+1 sj ?

= Tj

[
B̃(i+1,k+1,j)
n+1

]
(s)− sTj

[
B̃(i,k,j)
n

]
(s) , (6.9)

at least for s ̸= 0 (which is sufficient). Next, we take the generating functions in i, getting

Ti

i+k+2∑
j=0

B(i+1,k+1)
n+1 sj

 (x) ?
= Ti,j

[
B̃(i+1,k+1,j)
n+1

]
(x, s)− sTi,j

[
B̃(i,k,j)
n

]
(x, s) . (6.10)

Using the shifting property again for the index i, we have

Ti

i+k+1∑
j=0

B(i,k+1)
n+1 sj

 (x)−
k+1∑
j=0

B(0,k+1)
n+1 sj

?
= Ti,j

[
B̃(i,k+1,j)
n+1

]
(x, s)− Tj

[
B̃(0,k+1,j)
n+1

]
(s)− xsTi,j

[
B̃(i,k,j)
n

]
(x, s) ,

(6.11)

for x ̸= 0. Now, it was shown in [103] that the recurrence relation (6.1) is true for i = 0 and
j = 0, but it can easily be extended for i = 0 to any j such that 0 ≤ j ≤ k, by simply using the
fact that the convolution of two binomials gives another binomial. This means that

B(0,k)
n = B̃(0,k,j)

n , 0 ≤ j ≤ k, (6.12)
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or,
B(0,k+1)
n+1 = B̃(0,k+1,j)

n+1 , 0 ≤ j ≤ k+ 1. (6.13)

Taking the sum over j going from 0 to k+ 1 after multiplying by sj, we get

k+1∑
j=0

B(0,k+1)
n+1 sj = Tj

[
B̃(0,k+1,j)
n+1

]
(s) , (6.14)

which is actually kind of an initial condition for i. This last relation allows us to simplify Equation
(6.11) into

Ti

i+k+1∑
j=0

B(i,k+1)
n+1 sj

 (x) ?
= Ti,j

[
B̃(i,k+1,j)
n+1

]
(x, s)− xsTi,j

[
B̃(i,k,j)
n

]
(x, s) . (6.15)

Obviously, the same can be done with indices k and n, and using what is known for k = 0 or
n = 0, we finally end up with

Ti,k,n

 i+k∑
j=0

B(i,k)
n sj

 (x, y, z) ?
= (1− xyzs)Ti,k,n,j

[
B̃(i,k,j)
n

]
(x, y, z, s) . (6.16)

Now, it can be easily shown that

Tj
[
B̃(i,k,j)
n

]
(s) =

k∑
l=0

i∑
j=0

{
B(j,l)
• ∗ B(i−j,k−l)

•
}
n s

j+l, (6.17)

which is a triple convolution over the indices i, k and n, so that [96]

Ti,k,n,j
[
B̃(i,k,j)
n

]
(x, y, z, s) = f BSη (x, y, z, 1)f BSη (sx, sy, z, 1). (6.18)

Having in mind that
i+k∑
j=0

sj =
1− si+k+1

1− s
, (6.19)

the left-hand side of Equation (6.16) can be computed to be

Ti,k,n

 i+k∑
j=0

B(i,k)
n sj

 (x, y, z) =
1

1− s

(
f BSη (x, y, z, 1)− sf BSη (sx, sy, z, 1)

)
. (6.20)

Finally, the recurrence relation will be true if and only if

f BSη (x, y, z, 1)− sf BSη (sx, sy, z, 1) ?
= (1− xyzs)(1− s)f BSη (x, y, z, 1)f BSη (sx, sy, z, 1). (6.21)
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This will be the case if and only if

1
f BSη (sx, sy, z, 1)

− s
1

f BSη (x, y, z, 1)
?
= (1− xyzs)(1− s), (6.22)

which is readily checked using the definition of f BSη (sx, sy, z, 1).

The right-hand side of Equation (6.1) involves two terms B̃(i,k,j)
n and B̃(i−1,k−1,j−1)

n−1 . Notice that
the second term is multiplied by a negative coefficient. It can actually be identified as interfer-
ences which are specific to the quantum realm, in the sense that the bosons entering the beam
splitter are indistinguishable. This can be made clearer by analysing the “classical” case, which
involves distinguishable photons.

6.1.2 Comparison between distinguishable and indistinguishable photons

In order to identify the effect of quantum interferences, we express a recurrence relation for the
probabilities associated with a classical description of the beam splitter. By this, we mean that
the photons are distinguishable, and can be treated like balls of, say, different colours, which
take different paths in the beam splitter. In this case, the probability p(n|i, k) to find n photons
in one output, given i photons on one input and k on the other, can be computed using standard
probability theory, and can be written as a convolution,

p(n|i, k) = {p(•|i, 0) ∗ p(•|0, k)}n =
n∑

ñ=0

p(ñ|i, 0)p(n− ñ|0, k). (6.23)

In fact, one understands that this relation can be generalised to

p(n|i, k) =
n∑

ñ=0

p(ñ|j, l)p(n− ñ|i− j, k− l), j ≤ i and l ≤ k. (6.24)

One easy way to show this is to take the generating functions of both Equations (6.23) and
(6.24), and check that they are consistent. If one defines the generating function of the classical
probability p(n|i, k) as

f̃(x, y, z) = Ti,k,n [p(n|i, k)] (x, y, z) =
∑
i,k,n

p(n|i, k)xiykzn, (6.25)

the generating function of Equation (6.23) can be found to be

f̃(x, y, z) = f̃(x, 0, z)̃f(0, y, z), (6.26)

where we used the fact that the generating function of a convolution is given by a product. Now,
classically (in the sense defined above), the probability p(n|i, 0) is given by a simple binomial
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in our setup, i.e,

p(n|i, 0) =
(
i
n

)
ηn(1− η)i−n, (6.27)

like in the quantum case. Obviously, the same can be said about the probability p(n|0, k). Using
this, we have that

f̃(x, 0, z) =
1

1− ηxz− (1− η)x
, (6.28)

while
f̃(0, y, z) =

1
1− ηy− (1− η)yz

, (6.29)

implying that
f̃(x, y, z) =

1
(1− ηxz− (1− η)x)(1− ηy− (1− η)yz)

. (6.30)

This expression for the generating function of a beam splitter is to be compared with Equation
(5.63) [taking w = 1], the difference being due to whether photons are distinguishable or not.
Now, in order to show that Equation (6.24) is consistent with Equation (6.23), one only needs
to compute the generating function of the former. We begin by multiplying both its sides by sj1
and sl2, before summing them over both indices j and l, going from 0 to i and k, respectively, i.e,

i,k∑
j,l=0

p(n|i, k)sj1sl2 =
i,k∑

j,l=0

n∑
ñ=0

p(ñ|j, l)p(n− ñ|i− j, k− l)sj1s
l
2, (6.31)

which will be true for all s1 and s2 if and only if Equation (6.24) is true for all i, k such that
0 ≤ j ≤ i and 0 ≤ l ≤ k. Now, the left-hand side of the last equation can trivially be computed
to be

i,k∑
j,l=0

p(n|i, k)sj1sl2 =
(1− si+1

1 )(1− sk+1
2 )

(1− s1)(1− s2)
p(n|i, k), (6.32)

meaning that its generating function in i, k, n is given by

Ti,k,n

 i,k∑
j,l=0

p(n|i, k)sj1sl2

 (x, y, z) =
f̃(x, y, z)− s1 f̃(xs1, y, z)− s2 f̃(x, ys2, z) + s1s2 f̃(xs1, ys2, z)

(1− s1)(1− s2)
.

(6.33)
On another hand, the right-hand side of Equation (6.31) happens to be given by a triple convo-
lution in i, k, n of the two objects p(n|i, k)si1sk2 and p(n|i, k). Consequently, its generating func-
tion can be calculated to be f̃(xs1, ys2, z)̃f(x, y, z). This means that Equation (6.24) will be con-
sistent with Equation (6.23) if and only if

f̃(x, y, z)− s1 f̃(xs1, y, z)

− s2 f̃(x, ys2, z) + s1s2 f̃(xs1, ys2, z) = (1− s1)(1− s2)̃f(xs1, ys2, z)̃f(x, y, z),
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which is easily verified.
Now that we are convinced that Equation (6.24) properly describes a beam splitter which

would involve distinguishable particles, we choose to modify it by replacing j by j− l, getting

p(n|i, k) =
n∑

ñ=0

p(ñ|j− l, l)p(n− ñ|i− j+ l, k− l), (6.34)

where j and l should verify j− l ≤ i and l ≤ k (which implies j ≤ i + k) for the relation to be
true. We can consequently sum it over l, taking the right limits for the sum so that the relation
is true, ending up with

min(j,k)∑
l=max(0,j−i)

p(n|i, k) =
min(j,k)∑

l=max(0,j−i)

n∑
ñ=0

p(ñ|j− l, l)p(n− ñ|i− j+ l, k− l), 0 ≤ j ≤ i+ k,

(6.35)
or,

p(n|i, k) = 1
c(i, k, j)

min(j,k)∑
l=max(0,j−i)

n∑
ñ=0

p(ñ|j−l, l)p(n−ñ|i−j+l, k−l), 0 ≤ j ≤ i+k, (6.36)

where the coefficient c is such that

c(i, k, j) =

{
1− j+ i+ k if j ≥ i and j ≥ k,

1+min(i, k, j) else.
(6.37)

We see that Equation (6.36) is almost identical to Equation (6.1), if the latter only had its
first term B̃(i,k,j)

n on the right-hand side, with a normalisation coefficient c. The second term
B̃(i−1,k−1,j−1)
n−1 of the right-hand side of Equation (6.1) is actually suppressed in what could be

interpreted as a classical description of the beam splitter. As a consequence, it seems natural
to associate B̃(i−1,k−1,j−1)

n−1 with quantum interferences. This will be made even clearer when tak-
ing the particular case of j = 1, as we will do in Section 6.2, in which we will show how these
interferences can lead to the Hong-Ou-Mandel effect.

6.1.3 Recurrence for the transition probabilities in a two-mode squeezer

An even more appealing application of generating functions is to describe multi-photon inter-
ferences in a two-mode squeezer. Given that f BSη and f TMS

λ are linked by a partial time reversal,
their corresponding transition probabilities satisfy

A(i,k)
n = (1− λ)B(n,k)

i , (6.38)

It is then easy to prove the following recurrence.
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Theorem 28. Let A(i,k)
n = | ⟨n,m|UTMS

λ |i, k⟩ |2 be the transition probabilities of a two-mode
squeezer with parameter λ = tanh2(r) and m = n+ k− i, then

(1− λ)A(i,k)
n = Ã(i,k)

n,j − Ã(i−1,k−1)
n−1,j−1 , (6.39)

for all j such that 0 ≤ j ≤ n+ k, where

Ã(i,k)
n,j =

min(j,n)∑
l=max(0,j−k)

{
A(•,j−l)
l ∗ A(•,k−j+l)

n−l

}
i
. (6.40)

Here, the convolution acts on variable i.

Proof. The recurrence relation can be derived in the case of a two-mode squeezer, by taking
advantage of the property of partial time reversal. Indeed, since

f TMS
λ (x, y, z,w) = (1− λ)f BS1−λ(z, y, x,w), (6.41)

one readily understands that the corresponding probabilities verify Equation (6.38), or,

A(n,k)
i = (1− λ)B(i,k)

n . (6.42)

Multiplying the recurrence (6.1) by (1− λ)2 gives

(1− λ)2B(i,k)
n =

min(j,k)∑
l=max(0,j−i)

n∑
m=0

(1− λ)B(j−l,l)
m (1− λ)B(i−j+l,k−l)

n−m

−
min(j,k)−1∑

l=max(0,j−i)

n−1∑
m=0

(1− λ)B(j−1−l,l)
m (1− λ)B(i−j+l,k−1−l)

n−1−m , 0 ≤ j ≤ i+ k.

Using Equation (6.42), it can be rewritten as

(1− λ)A(n,k)
i =

min(j,k)∑
l=max(0,j−i)

n∑
m=0

A(m,l)
j−l A

(n−m,k−l)
i−j+l

−
min(j,k)−1∑

l=max(0,j−i)

n−1∑
m=0

A(m,l)
j−1−lA

(n−1−m,k−1−l)
i−j+l , 0 ≤ j ≤ i+ k.

Exchanging i and n and performing the change of variables l = j− r in the sums over l (before
finally replacing r by l), we end up with

(1− λ)A(i,k)
n = Ã(i,k)

n,j − Ã(i−1,k−1)
n−1,j−1 , 0 ≤ j ≤ n+ k, (6.43)
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where

Ã(i,k)
n,j =

min(j,n)∑
l=max(0,j−k)

i∑
m=0

A(m,j−l)
l A(i−m,k−j+l)

n−l =

min(j,n)∑
l=max(0,j−k)

{
A(•,j−l)
l ∗ A(•,k−j+l)

n−l

}
i
. (6.44)

It is rather interesting to see that the same kind of interference effects can be witnessed in a
two-mode squeezer. This was, of course, to be expected, since the two-mode squeezer is itself
a quantum object based on the beam splitter. Still, the way interferences enter the picture is
very similar to what happens in a simple beam splitter, mainly because of the property of partial
time reversal. Under the circumstances, we are tempted to look for a phenomenon similar to
the Hong-Ou-Mandel effect in an active transformation that is the two-mode squeezer. This is
the purpose of the next section.

6.2 GeneralisedHong-Ou-Mandel effects

The Hong-Ou-Mandel effect was first highlighted in 1987 [17]. It basically describes a phe-
nomenon which is primarily the consequence of the indistinguishability of bosons. As such,
the Hong-Ou-Mandel effect can be considered as a purely quantum effect. It can be witnessed
in a balanced beam splitter (transmittance η = 1/2), in which two identical single photons auto-
matically follow the same path. One can understand the Hong-Ou-Mandel as a consequence of
the destructive interference between two possible situations, one in which both photons cross
the beam splitter and the other in which both are reflected, as depicted in Figure 6.2.1.

In this section, we generalise the mathematical framework which puts forth the Hong-Ou-
Mandel effect in a beam splitter. More interestingly, we show the existence of a similar phe-
nomenon in an active Gaussian transformation, specifically the two-mode squeezer. To our
knowledge, this effect has remained unnoticed until now.

+

Figure 6.2.1: Hong-Ou-Mandel effect as a consequence of the indistinguishability between
two photons impinging on a beam splitter of transmittance η = 1/2. It originates from the
destructive interference between both photons crossing the beam splitter with amplitude√η×√η and being reflected with amplitude −√

1− η×√
1− η.
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6.2.1 Multi-photon Hong-Ou-Mandel effect in a beam splitter

The recurrence (6.1) can be nicely interpreted in the context of the Hong-Ou-Mandel effect by
taking the special case of j = 1 for i, k > 0 and replacing the probabilities B(1,0)

n or B(0,1)
n by their

values, namely η or 1− η (or 0 for n > 1).

Corollary 4. The recurrence for B(i,k)
n when j = 1 is

B(i,k)
n = η B(i−1,k)

n−1 + (1− η)B(i−1,k)
n + η B(i,k−1)

n + (1− η)B(i,k−1)
n−1 − B(i−1,k−1)

n−1 . (6.45)

Proof. If we choose j = 1, i > 0 and k > 0 in Equation (6.1), we end up with

B(i,k)
n = B(1,0)

1 B(i−1,k)
n−1 + B(1,0)

0 B(i−1,k)
n + B(0,1)

0 B(i,k−1)
n + B(0,1)

1 B(i,k−1)
n−1 − B(0,0)

0 B(i−1,k−1)
n−1 . (6.46)

Using the initial conditions

B(0,0)
0 = 1,

{
B(1,0)
1 = η,

B(1,0)
0 = 1− η,

and

{
B(0,1)
0 = η,

B(0,1)
1 = 1− η,

(6.47)

we get (6.45).

As illustrated in Figure 6.2.2, the first four terms of the right-hand side of Equation (6.45)
corroborate the classical intuition one may have about B(i,k)

n : one should add the probabilities
corresponding to the different scenarios in which the nth photon has not reached the beam

≡

+

+

+

+

+

+

+

| − 〉

| − 〉 | 〉

| 〉

| 〉

| − 〉

| − 〉

| 〉

| 〉

| 〉

| − 〉

| − 〉 | 〉

| 〉

| 〉

| − 〉

| − 〉 | 〉

| 〉

| 〉
− −

Figure 6.2.2: Classical component of the recurrence formula (6.45) for the transition prob-
abilities B(i,k)n in a beam splitter.
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splitter yet, multiplied by the right coefficient depending on which path it takes. For example,
B(i−1,k)
n−1 must be multiplied by η since the extra photon must be injected on the input mode â

and exit on the output mode â. Crucially, as a consequence of the bosonic statistics, there exists
a fifth term in Equation (6.45) that accounts for quantum interferences and may be viewed as a
generalised interference suppression term. In the special case when i = k = 1 and η = 1/2, it
gives rise to the standard Hong-Ou-Mandel effect, see Figure 6.2.1. Note that if k = 0 and i > 0,
the interference term disappears and one gets the recurrenceB(i,0)

n = η B(i−1,0)
n−1 +(1−η)B(i−1,0)

n

that was derived in the context of majorization theory applied to bosonic transformations [103].
Note that if we set j = 1 in Equation (6.36), and choose i ≥ 1 and k ≥ 1, we end up with

p(n|i, k) = 1
2

(
p(1|1, 0)p(n− 1|i− 1, k) + p(0|1, 0)p(n|i− 1, k)

+ p(0|0, 1)p(n|i, k− 1) + p(1|0, 1)p(n− 1|i, k− 1)
)
.

(6.48)

Replacing the probability p(1|1, 0) and the like by their values in this expression, we get

p(n|i, k) = 1
2

(
η p(n− 1|i− 1, k) + (1− η) p(n|i− 1, k)

+ η p(n|i, k− 1) + (1− η) p(n− 1|i, k− 1)
)
.

Up to the normalisation constant 1/2, this is exactly Equation (6.45) without the fifth term
(associated with quantum interferences) in the right-hand side.

6.2.2 Hong-Ou-Mandel effect in a two-mode squeezer

By taking j = 1 and k, n > 0 in the recurrence relation of Equation (6.39), one can deduce the
following corollary.

Corollary 5. The recurrence for A(i,k)
n when j = 1 is

A(i,k)
n = λ A(i−1,k−1)

n + (1− λ)A(i−1,k)
n−1 + λ A(i,k)

n−1 + (1− λ)A(i,k−1)
n − A(i−1,k−1)

n−1 . (6.49)

Proof. If we choose j = 1, n > 0 and k > 0 in Equation (6.39), we get

(1−λ)A(i,k)
n = A(0,1)

0 A(i,k−1)
n +A(1,1)

0 A(i−1,k−1)
n +A(0,0)

1 A(i−0,k)
n−1 +A(1,0)

1 A(i−1,k)
n−1 −A(i−1,k−1)

n−1 . (6.50)

In the case of the two-mode squeezer, if one uses Equation (6.38) again, where η = 1− λ in the
probabilities of the beam splitter, the initial conditions can be found to be

A(0,0)
0 = 1− λ,

{
A(0,1)
0 = (1− λ)2,

A(1,1)
0 = (1− λ)λ,

and

{
A(0,0)
1 = (1− λ)λ,

A(1,0)
1 = (1− λ)2,

(6.51)
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Figure 6.2.3: Classical component of the recurrence formula (6.49) for the transition prob-
abilities A(i,k)

n in a two-mode squeezer.

resulting in (6.49).

As illustrated in Figure 6.2.3, the first term of Equation (6.49) (bottom left drawing in the
figure) corresponds to the stimulated annihilation of an input photon pair, while the third term
(bottom right drawing in the figure) corresponds to the stimulated emission of an output pho-
ton pair (both with probability proportional to λ). The second and fourth terms correspond to
the photon crossing the nonlinear medium without stimulating pair emission nor absorption
(both with probability proportional to 1− λ). Again, quantum interferences are responsible for
a fifth term, which give rise to a suppression effect akin to the HOM effect. Note that Equation
(6.49) reduces to the recurrenceA(i,0)

n = (1− λ)A(i−1,0)
n−1 + λ A(i,0)

n−1 obtained for k = 0 in relation
with majorization in an amplifier channel [81].

Remarkably, when i = k = 1 and λ = 1/2, we observe a complete extinction of the out-

+

Figure 6.2.4: Parametric amplification with gain 2 (λ = 1/2) exhibits an analogous Hong-Ou-
Mandel destructive interference effect between both photons crossing a nonlinear medium
with amplitude

√
1− λ ×

√
1− λ and the stimulated annihilation of the input photon pair

accompanied by the stimulated emission of a distinct output pair with amplitude −
√
λ×

√
λ.

The indistinguishability between the input and output photon pairs is responsible for the
suppression effect ⟨1, 1|UTMS

1/2 |1, 1⟩ = 0.
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put state |1⟩ |1⟩ due to destructive interference, as explained in Figure 6.2.4. This heretofore
unknown effect is a direct consequence of quantum indistinguishability. The probability am-
plitude that a photon goes through is a(1,0)1 = a(0,1)0 ∝

√
1− λ for each of the two photons.

In contrast, the probability amplitude that an input photon pair is annihilated is a(1,1)0 ∝ −
√
λ,

while a new photon pair is created with probability amplitude a(0,0)1 ∝
√
λ. If the output pho-

tons were distinguishable from the input photons, the probabilities of the two scenarios would
add up, but quantum indistinguishability requires us to add amplitudes, leading to cancellation
when λ = 1/2.

6.3 Transition probabilities ofN-mode passive Gaussian unitaries

As already hinted at in Chapter 5, we are now going to exploit the generating function computed
for the transition probabilities in the case of an N-mode passive Gaussian unitary in order to
characterise quantum interferences taking place in such a scheme. We could try to generalise
Theorem 27, which provides quite a broad relation in the case of 2-mode passive unitaries. How-
ever, we are going to turn to Corollary 4, since it is easier to handle, while already providing us
with an elegant description of photon interferences in a beam splitter. We therefore generalise
it hereafter.

Consider an N-mode passive interferometer whose effect on the bosonic field operators in
phase space is characterised by the orthogonal matrix U of dimension N, i.e,

â → Uâ, â = (â1, â2, . . . , âN) . (6.52)

We prove the existence of a recurrence relation satisfied by the transition probabilities

B(i)
n =

∣∣∣∣∣
(

N∏
r=1

⟨nr|

)
UPI

(
N∏
s=1

|is⟩

)∣∣∣∣∣
2

. (6.53)

Since the proof is quite involved, we include it in the appendix. The interested reader is referred
to Appendix E.2. Define 1(α)N to be the N dimensional vector with ones at positions j ∈ α and
zeros everywhere else. The relation is encompassed in the following theorem.

Theorem 29. The probabilities B(i)
n , i ∈ NN

+, n ∈ NN
+, obey the recurrence relation

B(i)
n =

N∑
m=1

(−1)m−1
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

, (6.54)

whereR(N)
m is the set of all subsets of {1, 2, . . . ,N} of cardinality m.

As an illustration, we particularise the previous relation for N = 2 in the following example,
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showing that it is indeed consistent with what we did for 2 modes in the previous section.

Example 1. For N = 2,

B(i1,i2)
n1,n2 =

∑
α∈R(2)

1
iα1 ̸=0,iα2 ̸=0

∑
β∈R(2)

1
nβ1 ̸=0,nβ2 ̸=0

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

−
∑
α∈R(2)

2
iα1 ̸=0,iα2 ̸=0

∑
β∈R(2)

2
nβ1 ̸=0,nβ2 ̸=0

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

.

Suppose i1, i2, n1, n2 are all strictly positive. In this case,

B(i1,i2)
n1,n2 =

∑
α∈R(2)

1

∑
β∈R(2)

1

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

−
∑
α∈R(2)

2

∑
β∈R(2)

2

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

,

B(i1,i2)
n1,n2 =

(
(det [U (β, α)])2 B

(
i−1(α)N

)
n−1(β)N

)∣∣∣∣
α={1},β={1}

+

(
(det [U (β, α)])2 B

(
i−1(α)N

)
n−1(β)N

)∣∣∣∣
α={1},β={2}

+

(
(det [U (β, α)])2 B

(
i−1(α)N

)
n−1(β)N

)∣∣∣∣
α={2},β={1}

+

(
(det [U (β, α)])2 B

(
i−1(α)N

)
n−1(β)N

)∣∣∣∣
α={2},β={2}

−
(
(det [U (β, α)])2 B

(
i−1(α)N

)
n−1(β)N

)∣∣∣∣
α={1,2},β={1,2}

,

B(i1,i2)
n1,n2 = u211 B

(i1−1,i2)
n1−1,n2 + u212 B

(i1,i2−1)
n1−1,n2

+ u221 B
(i1−1,i2)
n1,n2−1 + u222 B

(i1,i2−1)
n1,n2−1

− (u11u22 − u12u21)
2 B(i1−1,i2−1)

n1−1,n2−1 ,

B(i1,i2)
n1,n2 = u211 B

(i1−1,i2)
n1−1,n2 + u212 B

(i1,i2−1)
n1−1,n2

+ u221 B
(i1−1,i2)
n1,n2−1 + u222 B

(i1,i2−1)
n1,n2−1

− B(i1−1,i2−1)
n1−1,n2−1 .

116
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If we define the beam-splitter matrix as

U =

( √η
√
1− η

−√
1− η √η

)
, (6.55)

we end up with

B(i1,i2)
n1,n2 = η B(i1−1,i2)

n1−1,n2 +(1− η)B(i1,i2−1)
n1−1,n2 +(1− η)B(i1−1,i2)

n1,n2−1 + η B(i1,i2−1)
n1,n2−1 − B(i1−1,i2−1)

n1−1,n2−1 , (6.56)

which is exactly Equation (6.45).

In each of the terms (det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

appearing in the right-hand side of Equation

(6.54), the sets α and β have the same cardinalities. As a result, the vectors 1(β)N and 1(α)N have
the same number of zero entries, and the same number of one entries. This means that each

probability B
(
i−1(α)N

)
n−1(β)N

is obtained starting from the probability B(i)
n by removing one photon on

the same amount of modes at the output of the interferometer as its input. Furthermore, a
maximum of one photon only is removed from each input and output mode. Each of the corre-
sponding possible probabilities is then multiplied by the right squared minor (det [U (β, α)])2

in the right-hand side of Equation (6.54), as well as the right coefficient +1 or −1. Like in the
2-mode case, this can be viewed as an effect of the interferences due to the indistinguishability
of bosons.

The probabilities B(i)
n involved in the N-mode passive interferometer can be understood to

be quite complex objects. As a consequence, the fact that a relation as simple as Equation (6.54)
exists is actually a pleasant surprise.
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7
Gaussian-dilatable channels with passive

environment

In Chapter 6, we exploited the formalism of the generating function introduced in Chapter 5
in order to investigate the transition probabilities characterising Gaussian unitary transforma-
tions, such as the probabilitiesB(i,k)

n in a beam splitter, and the probabilitiesA(i,k)
n in a two-mode

squeezer. This analysis proved to be fruitful, as it allowed us to bring forth the effect of quan-
tum interferences in such Gaussian operations. It also provided us with a first situation in which
we exploited the symplectic formalism in phase space in order to describe the effect of Gaussian
transformations on non-Gaussian objects, specifically the Fock states of the harmonic oscillator.
In recent years, it has become clear that in order to perform many crucial quantum informations
tasks, not only is it necessary to employ non-Gaussian resources in the form of non-Gaussian
states, one actually often needs to consider non-Gaussian operations in general. The latter are
for instance required in order to perform entanglement distillation or swapping [8–10]. One
then understands the need to build a framework for the characterisation of non-Gaussian chan-
nels.

In this Chapter, we illustrate how the description of Gaussian channels introduced in Chapter
3 can be coupled with the formalism of generating functions of Chapter 5 in order to investi-
gate specific non-Gaussian bosonic channels. We focus on maps constructed using Gaussian
unitaries and specific non-Gaussian states such a Fock-passive states, which we introduce here-
after. This provides us with a description of an important class of so-called Gaussian-dilatable
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channels based on Fock-passive states.

7.1 Passive-environment bosonic channels

7.1.1 Bosonic passive states

Passive quantum states often arise when studying quantum systems from a thermodynamical
point of view. They can be seen as quantum states from which no work can be extracted under
Hamiltonian processes, making them the most stable states among all reachable states through
a unitary transformation [104]. If one defines the ergotropyWmax, or maximal extractable work
under Hamiltonian processes, of a state ρ as [105, 106]

Wmax (ρ) = max
U

Tr
[
Ĥ
(
ρ− UρU†)] , (7.1)

where U is unitary and Ĥ is the Hamiltonian of the system, then the passive states will be those
for which the ergotropy is zero. They can be shown to be diagonal in the eigenbasis of the Hamil-
tonian Ĥ of the system, with non-increasing eigenvalues when the energy of the eigenvector
increases [107]. Consequently, we will denote a passive state using an arrow facing down as a
superscript. Since there is only one passive state for a fixed spectrum, ρ↓ will denote the passive
state having the same spectrum as ρ. In the context of bosonic quantum systems, a passive state
admits a spectral decomposition in the Fock basis, and can be written as

ρ↓ =
∑
i

λ↓i |i⟩ ⟨i| , (7.2)

with λ↓i ≥ λ↓i+1, for all i ≥ 0.
The thermal state defined in Equation (3.29) is the most fundamental passive state, as it usu-

ally characterises a system in thermodynamical equilibrium. As such, it is the passive state with
the minimal energy for a fixed entropy. Thermal states are also the only completely passive
states [104]. By definition, a state ρ is completely passive if ρ⊗n is passive for all n ≥ 1. In-
terestingly, this implies the idea that one can always “activate” the extraction of work from a
non-thermal passive state by jointly acting on it and an ancillary system, using joint unitary pro-
cesses [104, 107]. As an example, suppose one has access to at least two copies of the passive
state ρ↓. A system comprised of two of them (meaning one copy of the state was chosen as the
ancilla described before) is not passive any more in general, allowing one to extract energy from
the joint system.

It is in our interest to introduce the set of linearly independent states
{
P↓k
}

k∈N0
, whose ele-

ments are defined as

P↓k =
1

k+ 1

k∑
i=0

|i⟩ ⟨i| . (7.3)
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We label the P↓k as extremal-(Fock-)passive state. Any one-mode passive bosonic state ρ↓ can
be written as a convex combination of such states,

ρ↓ =
∑
k

dkP↓k , (7.4)

with dk ≥ 0 for all k ≥ 0 and
∑

k dk = 1. As a consequence, the set of passive states defines a
convex polytope, whose vertices are given by the P↓k [106].

As a consequence of the close relationship between the concepts of energy, entropy and pas-
sive states, the latter will play a crucial role in the statement of conjectures related to the evolu-
tion of disorder in quantum bosonic channels (see Section 9.1).

7.1.2 Non-Gaussian bosonic channels

A non-Gaussian bosonic channel C is simply one which does not necessarily output a Gaussian
state for any Gaussian input state. Gaussian channels can mathematically be characterised in an
elegant way, and with a finite number of parameters. As a consequence, they are often studied
using the symplectic formalism of phase space. The same cannot be said about non-Gaussian
channels. In general, the phase space formalism does not introduce any simplification for the
investigation of the latter. One way to define a non-Gaussian channel would be by taking either
a non-Gaussian state of the environment, or a non-Gaussian unitary, or both, in the dilation
of the channel. When only the state of the environment is taken to be non-Gaussian, one ob-
tains a so-called Gaussian-dilatable channel. An example of such a map is readily found in the
photon-added Gaussian channels introduced in [108]. These channels are obtained by consid-
ering Fock states in the environment of the dilation of the channel, while still taking a Gaussian
unitary. The channel is shown in Figure 7.1.1. The Fock state |k⟩ in the environment is produced
by acting on the vacuum with a photon addition, which we represented in the figure using the
operator

(
â†
)k. This is obviously just a notation, since the resulting object is not a state (it is

not normalised).

(
ˆ†
)| 〉 〈 |

Figure 7.1.1: Representation of a photon-added channel using its dilation. The unitary UG
is Gaussian, while the environment is obtained by acting with a photon-addition on a vacuum
state.
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7.1.3 Definition of passive-environment bosonic channels

Passive states often arise in the context of modelling the dynamics of quantum thermodynam-
ical systems, where some specific passive states are usually chosen as free resources. When con-
structing a resource theory, one needs to define the set of allowed state transformations [109].
This can be done by combining the following operations: composing the state with a fixed en-
vironment (in other words, a bath), acting on the joint resulting state with a unitary, which is
usually chosen to conserve the energy, and finally, discarding the environment. The latter is
usually chosen to be thermal, as it is a reasonable physical assumption about its state. Still, one
could choose to construct a simplest, less realistic model, by choosing some maximally mixed
state as an environment. When doing so, one ends up with the resource theory of so-called
noisy operations, which have the form

CNO
[
ρS
]
= TrE

[
USE

(
ρS ⊗

IE
nE

)
U†

SE

]
, (7.5)

where IE is the identity defined on the environment of dimension nE and UAE is an energy con-
serving unitary acting on both the system and the environment. As already mentioned, a more
realistic model can be obtained by choosing a thermal state τE as an environment, constructing
the so-called thermal operations,

CTO
[
ρS
]
= TrE

[
USE

(
ρS ⊗ τE

)
U†

SE

]
. (7.6)

In each of these two situations, the environment is a passive state. An interesting intermediate
case consists in choosing a general passive state in the environment of the dilation of the chan-
nel. This actually generalises the two resource theories we introduced. Since we are interested in
bosonic systems, we obviously choose the state to be passive in the Fock basis. Since the beam
splitter is the realisation of the Gaussian energy-conserving unitary acting on bosonic systems,
we make use of it in order to make our system interact with the passive environment. As de-
picted in Figure 7.1.2, we end up with an operation we label as passive-environment channel, of
the form

B↓
η

[
ρS
]
= TrE

[
UBS

η

(
ρS ⊗ σ↓E

)
UBS†

η

]
, (7.7)

where σ↓E is some passive state. As we have already seen, the two-mode squeezing unitary plays
a dominant role in the study of bosonic systems, for instance in the definition of Gaussian chan-

↓ B↓[ ]

Figure 7.1.2: Passive-environment channel involving a beam splitter.
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nels which cannot be obtained by means of a simple beam splitter, e.g. amplifier channels. As
a consequence, we choose to generalise the map of equation (7.7) by considering a two-mode
squeezer as well, i.e.,

C↓ [ρS] = TrE
[
UG

(
ρS ⊗ σ↓E

)
U†

G

]
, (7.8)

where UG is either a beam-splitting unitary or a two-mode squeezing unitary. Since any passive
state σ↓E can be decomposed by means of extremal-passive states through Equation (7.4), we
also define the so called extremal passive-environment channels (or simply extremal-passive
channels), as

B[k]
η [•] = Tr2

[
UBS

η

(
• ⊗ P↓k

)
UBS†

η

]
, (7.9)

in the case of a beam splitter, and

A[k]
G [•] = Tr2

[
UTMS

λ

(
• ⊗ P↓k

)
UTMS†

λ

]
, λ =

G− 1
G

(7.10)

in the case of a two-mode squeezer. Note that the gain G which appears in the definition of
A[k]

G has nothing to do with G in Equation (7.8) which characterises the fact that the unitary
is Gaussian. Compared to the notations B(ε)

η of a lossy channel and A(ε)
G of an amplifier chan-

nel (introduced in Chapter 3), the superscripts are now surrounded by square brackets, as a
reminder of the fact that it is an integer number characterising the extremal-passive state of the
environment. Any passive-environment channel of the form of Equation (7.8) can be written as
a convex mixture of channels B[k]

η or A[k]
G . As a consequence, it is often sufficient to investigate

the latter when wanting to study some property of general passive-environment channels.

7.2 Gaussian decomposition of passive-environment bosonic

channels

A surprising application of the generating function resides in the characterisation of passive-
environment channels. The extremal-passive channels B[k]

η and A[k]
G both depend on an index

k which characterises the rank of the extremal-passive state of their environments. Since k is a
non-negative integer, taking the generating function of either of B[k]

η and A[k]
G is a well-defined

operation. Let us denote by C[k]
κ any of the two types of extremal passive channels, such that

C[k]
κ = B[k]

κ , if κ < 1, (7.11)

and
C[k]
κ = A[k]

κ , if κ > 1, (7.12)

while κ = 1 corresponds to an identity operation. Lets us compute the generating function of
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the map C̃[k]
κ [ρ] = (k+ 1)C[k]

κ [ρ], which is simply given by∑
k

C̃[k]
κ [ρ]yk, y ∈ R. (7.13)

Now, remember that Gaussian channels can be shown to possess a semi-group structure, and
can be represented using a map of the form of Equation (3.112). As such, they can be charac-
terised by a time t ≥ 0 related to the parameter κ which represents the transmittance η = e−t

of beam splitter when it is less than one, or the gain G = et in a two-mode squeezer if it is
greater than one. Since this representation is quite elegant, we choose to introduce a time t in
the present characterisation of passive-environment channels, setting t = | ln κ|. As a conse-
quence, we parametrise the generating function using the time t, and denote it as

N (t, y)[ρ] =
∑
k

C̃[k]
κ [ρ]yk, t = | ln κ|, y ∈ R. (7.14)

In this context, the extremal-passive channels can simply be retrieved through

C̃[k]
κ [ρ] =

1
k!

∂k

∂yk
N (t, y)[ρ]

∣∣∣∣
y=0

, t = | ln κ|, (7.15)

the derivative being well-defined in this case. Using the definition of extremal-passive channels,
the map N (t, y) can be rewritten

N (t, y)[ρ] =
∑
k

Tr2
[
UG

κ (ρ⊗ (k+ 1)P↓k)U
G†
κ

]
yk, t = | ln κ|, (7.16)

N (t, y)[ρ] = Tr2

[
UG

κ (ρ⊗
∑
k

(k+ 1)P↓ky
k)UG†

κ

]
, t = | ln κ|, (7.17)

where UG
κ is a beam splitter of transmittance κ if κ < 1 and a two-mode squeezer of gain κ if

κ > 1. Now, if y ∈ [0, 1), it can easily be shown that∑
k

(k+ 1)P↓ky
k = (1− y)−2τy, y ∈ [0, 1), (7.18)

where τy is a Gaussian thermal state of parameter y. Using this, we can rewrite the map N (t, y)
as

N (t, y)[ρ] = (1− y)−2Tr2
[
UG

κ (ρ⊗ τy)UG†
κ

]
, t = | ln κ|. (7.19)

We introduce the Gaussian channel

G(y)
κ [•] =

{
B(y)
κ [•], κ < 1,

A(y)
κ [•], κ > 1,

(7.20)
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so that we can rewrite N (t, y) as

N (t, y)[ρ] = (1− y)−2G(y)
κ [ρ], t = | ln κ|. (7.21)

The thermal Gaussian state τy can be obtained starting from the vacuum state by applying a
classical-noise channel with the right amount of noise as

τy = eNyL0 [|0⟩ ⟨0|] , (7.22)

where Ny = y/(1− y), and L0 is the Lindbladian defined in Equation (3.120), so that

G(y)
κ [ρ] = Tr2

[
UG

κ (ρ⊗ eNyL0 [|0⟩ ⟨0|])UG†
κ

]
. (7.23)

It can be shown that the classical-noise channel acting before the beam splitter can actually be
replaced by another classical-noise channel acting after the beam splitter [91], with the right
amount of noise,

G(y)
κ [ρ] = eMy(t)L0

[
Tr2
[
UG

κ (ρ⊗ |0⟩ ⟨0|)UG†
κ

]]
, (7.24)

where My(t) = |κ − 1|Ny, with t = | ln κ|, so that

G(y)
κ [ρ] = eMy(t)L0 [Gκ[ρ]] . (7.25)

where Gκ[•] := G(0)
κ [•]. We now develop the exponential as a series,

G(y)
κ [ρ] =

∞∑
n=0

1
n!
(
My(t)

)n Ln
0 [Gκ[ρ]] , (7.26)

meaning that the map N (t, y) can be written

N (t, y)[ρ] = (1− y)−2
∞∑
n=0

1
n!
(
My(t)

)n Ln
0 [Gκ[ρ]] , t = | ln κ|. (7.27)

Our goal is now to derive an interesting form for the extremal-passive channels, by using Equa-
tion (7.15). In order to do so, we compute the derivatives in y explicitly. We have

∂k

∂yk
N (t, y)[ρ] =

∞∑
n=0

1
n!

∂k

∂yk
[
(1− y)−2Mn

y(t)
]
Ln

0 [Gκ[ρ]] , t = | ln κ|, (7.28)

meaning that we need to compute

∂k

∂yk
[
(1− y)−2Mn

y(t)
]
=

k∑
m=0

(
k
m

)
∂K−m

∂yK−m

[
(1− y)−2] ∂m

∂ym
[
Mn

y(t)
]
, t = | ln κ|,
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∂k

∂yk
[
(1− y)−2Mn

y(t)
]
=

k∑
m=0

(
k
m

)
(k−m+ 1)!(1− y)−(K−m+2) ∂

m

∂ym
[
Mn

y(t)
]
, t = | ln κ|.

Since we only need the derivatives at y = 0, we need only calculate the object

∂k

∂yk
[
(1− y)−2Mn

y(t)
]∣∣∣∣

y=0
=

k∑
m=0

(
k
m

)
(k− m+ 1)!

∂m

∂ym
[
Mn

y(t)
]∣∣∣∣

y=0
, t = | ln κ|.

(7.29)
The function My is defined as

My(t) = |κ − 1|Ny = |κ − 1| y
1− y

, t = | ln κ|. (7.30)

so that
∂m

∂ym
Mn

y(t) = |κ − 1|n ∂
m

∂ym

(
y

1− y

)n

. (7.31)

Some simple mathematical steps lead to

∂m

∂ym
Mn

y(t) = |κ − 1|n ∂
m

∂ym
[
yn(1− y)−n]

= |κ − 1|n
m∑
l=0

(
m
l

)
∂m−l

∂ym−l y
n ∂

l

∂yl
(1− y)−n

= |κ − 1|n
m∑
l=0

(
m
l

)
n!

(n− m+ l)!
yn−m+l (n+ l− 1)!

(n− 1)!
(1− y)−n−l,

so that

∂m

∂ym
Mn

y(t)
∣∣∣∣
y=0

= |κ − 1|n
(

m
m− n

)
n!
(m− 1)!
(n− 1)!

= |κ − 1|nm!
(
m− 1
n− 1

)
, (7.32)

and

∂k

∂yk
[
(1− y)−2Mn

y(t)
]∣∣∣∣

y=0
= |κ − 1|n

k∑
m=n

(
k
m

)
(k− m+ 1)!m!

(
m− 1
n− 1

)
. (7.33)

The derivatives in y of the map N (t, y) can now be computed to be

∂k

∂yk
N (t, y)[ρ]

∣∣∣∣
y=0

=
∞∑
n=0

1
n!

∂k

∂yk
[
(1− y)−2Mn

y(t)
]∣∣∣∣

y=0
Ln

0 [Gκ[ρ]]

=
∞∑
n=0

1
n!
|κ − 1|n

k∑
m=n

(
k
m

)
(k− m+ 1)!m!

(
m− 1
n− 1

)
Ln

0 [Gκ[ρ]] ,
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for t = | ln κ|, meaning that the maps C̃[k]
κ are given by

C̃[k]
κ [ρ] =

1
k!

∞∑
n=0

1
n!
|κ − 1|n

k∑
m=n

(
k
m

)
(k− m+ 1)!m!

(
m− 1
n− 1

)
Ln

0 [Gκ[ρ]] , (7.34)

so that the extremal-passive channels can be written as

C[k]
κ [ρ] =

1
k+ 1

∞∑
n=0

1
n!
|κ − 1|n

k∑
m=n

(k− m+ 1)
(
m− 1
n− 1

)
Ln

0 [Gκ[ρ]] . (7.35)

In the last equation, we define the quantity

c(k)n =
k∑

m=n

(k− m+ 1)
n!(k+ 1)

(
m− 1
n− 1

)
=

(k− n+ 1)
n(n+ 1)!

(
k

n− 1

)
,

c(k)n =
(k− n+ 1)
n(n+ 1)!

k!
(n− 1)!(k− n+ 1)!

=
k!

n!(n+ 1)!
1

(k− n)!
,

and end up with

c(k)n =
1

(n+ 1)!

(
k
n

)
. (7.36)

Since we have

C[k]
κ [ρ] =

k∑
n=0

|κ − 1|nc(k)n Ln
0 [Gκ[ρ]] , (7.37)

we can finally define the zero-trace map

C[k]
κ =

k∑
n=0

|κ − 1|nc(k)n Ln
0, (7.38)

which allows us to write
C[k]
κ [ρ] = C[k]

κ ◦ Gκ[ρ]. (7.39)

As an example, the maps of Equation (7.38) for the few first values of k can readily be found to
satisfy 

C[0]
η = 1,

C[1]
η = 1+

1
2
|κ − 1|L0,

C[2]
η = 1+ |κ − 1|L0 +

1
6
|κ − 1|2L2

0.

(7.40)
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For completeness, we give the following two lemmas in order to stress the difference between
the passive lossy channels and the passive amplifying channels.

Lemma 8. In the case of a beam-splitter unitary, the corresponding extremal passive channel can be
decomposed as

B[k]
η [•] = B[k]

η ◦ Bη[•], (7.41)

where

B[k]
η [•] =

k∑
n=0

(1− η)nc(k)n Ln
0[•], (7.42)

and the Lindbladian is defined as

L0[•] = â† • a− 1
2
aâ† • − 1

2
• aâ† + a • â† − 1

2
â†a • − 1

2
• â†a. (7.43)

Lemma 9. In the case of a two-mode squeezer unitary, the corresponding extremal passive channel
can be decomposed as

A[k]
G [•] = A

[k]
G ◦ AG[•], (7.44)

where

A
[k]
G [•] =

k∑
n=0

(G− 1)nc(k)n Ln
0[•], (7.45)

and the Lindbladian is defined as

L0[•] = â† • a− 1
2
aâ† • − 1

2
• aâ† + a • â† − 1

2
â†a • − 1

2
• â†a. (7.46)

Note that this decomposition can be derived in the case of photon-added Gaussian-dilatable
channels as well.

7.3 Dual map of passive-environment bosonic channels

In order to illustrate the usefulness of the decomposition of extremal-passive channels derived
in Section 7.2, we show some interesting properties of these channels, namely that they verify
the same duality relation as the one exhibited by Gaussian channels. We will actually exploit
this relation later on, in the context of the theory of Fock-majorization, which we introduce in
Chapter 8. We begin by proving the following lemma concerning the map C[k]

κ .

Lemma 10. Themap C[k]
κ is self-adjoint for all k ∈ N, in the sense that C[k]†

κ = C[k]
κ , where C[k]†

κ is
the dual (adjoint) map of C[k]

κ .

130



7.3. DUAL MAP OF PASSIVE-ENVIRONMENT BOSONIC CHANNELS

Proof. Using the cyclic property of the trace, we have that

Tr [YL−[X]] = Tr
[
YâXâ† − 1

2
Yâ†âX− 1

2
YXâ†â

]
= Tr

[
â†YâX− 1

2
Yâ†âX− 1

2
â†âYX

]
= Tr

[
â†YâX− 1

2
ââ†YX− 1

2
Yââ†X+ XY

]
= Tr [(L+[Y] + 1)X] ,

where we used the bosonic commutation relation, so that

L†
0 = L†

+ + L+ + 1 = (L+ + 1)† + L+ = L− + L+ = L0. (7.47)

As a consequence, Ln
0 is self-adjoint for any n ∈ N. Since C[k]

κ is given by a linear combination
of these maps, it it self-adjoint as well for all κ > 0 and all k ∈ N.

In order to find the dual of the extremal-passive channel, we also show the following lemma
concerning the Linbladians of bosonic systems.

Lemma 11. For any n ∈ N,

Ln
−L0 = L0

n∑
k=0

(−1)n−k
(
n
k

)
Lk

−. (7.48)

Proof. Equation (7.48) is obviously true for n = 0. Suppose it is true for some arbitrary n,

Ln+1
− L0 = L−Ln

−L0 = L−L0

n∑
k=0

(−1)n−k
(
n
k

)
Lk

−. (7.49)

It can easily be shown that [L0,L−] = L0, so that L−L0 = L0L− − L0. As a consequence,

Ln+1
− L0 = L0

n∑
k=0

(−1)n−k
(
n
k

)
Lk+1

− + L0

n∑
k=0

(−1)n−k
(
n
k

)
Lk

−

= L0

n+1∑
k=1

(−1)n−k+1
(

n
k− 1

)
Lk

− + L0

n∑
k=0

(−1)n−k
(
n
k

)
Lk

−

= L0Ln+1
− + L0

n∑
k=1

(−1)n−k+1
[(

n
k− 1

)
+

(
n
k

)]
Lk

− + (−1)n+1L0.
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Using the recurrence relation satisfied by binomial coefficients, we get

Ln+1
− L0 = L0Ln+1

− + L0

n∑
k=1

(−1)n−k+1
(
n+ 1
k

)
Lk

− + (−1)n+1L0

= L0

n+1∑
k=0

(−1)n−k+1
(
n+ 1
k

)
Lk

−.

A recursive argument concludes the proof.

We are now in position to prove the following theorem concerning the duality of extremal-
passive channels.

Theorem 30. The extremal-passive channels are connected through the duality relation

A[k]†
G = ηB[k]

η , η =
1
G
, (7.50)

for all k ∈ N and G > 1.

Proof. Consider any map C = C2 ◦ C1. We have that

Tr [C[X]Y] = Tr [(C2 ◦ C1) [X]Y]

= Tr
[
C1[X]C†

2 [Y]
]

= Tr
[
X
(
C†
1 ◦ C†

2

)
[Y]
]
,

so that C† = C†
1 ◦ C†

2 . As a consequence,

A[k]†
G = A†

G ◦ A[k]†
G =

1
G
B1/G ◦ A[k]

G , (7.51)

where we used Lemma 10, as well as the fact that Theorem 30 is already known to be true for
k = 0 (Gaussian case). Now, B1/G = etL− , with G = et, so that

B1/G ◦ L0 =
∞∑
n=0

1
n!
tnLn

− ◦ L0. (7.52)

Using Lemma 11, we get

B1/G ◦ L0 =
∞∑
n=0

1
n!
tnL0

n∑
k=0

(−1)n−k
(
n
k

)
Lk

− = L0

∞∑
k=0

(−1)k
(

∞∑
n=k

1
n!
tn(−1)n

(
n
k

))
Lk

−.

(7.53)
Since

∞∑
n=k

(−1)n
(
n
k

)
tn

n!
= (−1)ke−t tk

k!
, (7.54)

132



7.3. DUAL MAP OF PASSIVE-ENVIRONMENT BOSONIC CHANNELS

we end up with

B1/G ◦ L0 = e−tL0

∞∑
k=0

tk

k!
Lk

− =
1
G
L0etL− =

1
G
L0B1/G, (7.55)

and, more generally,
B1/G ◦ Ln

0 =
1
GnL

n
0B1/G. (7.56)

As a consequence,

1
G
B1/G ◦ A[k]

G =
1
G

k∑
n=0

(
1− 1

G

)n
c(k)n Ln

0 ◦ B1/G =
1
G
B

[k]
1/G ◦ B1/G, (7.57)

so that
A[k]†

G =
1
G
B[k]
1/G. (7.58)

This concludes the proof.

This result generalises the fact that the adjoint of a pure-loss channel is proportional to a
quantum-limited amplifier. This property happens to be very useful in the case of Gaussian
channels, as it allows one to focus on either of the two quantum-limited Gaussian channels
when proving specific properties, before extending the latter using the duality. As we will show
later, it will also prove useful in the context of this work, in the study of majorization relations
in non-Gaussian passive-environment channels.
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8
Fock-majorization relations

The algebraic theory of majorization has long been known to play a prominent role in quantum
information theory. Its relationship with the von Neumann entropy, i.e.,

ρ ≻ σ ⇒ S(ρ) ≤ S(σ), (8.1)

makes it a powerful tool for the study of quantum systems. Indeed, there are situations in which
the derivation of properties of von Neumann’s functional becomes quite involved, specifically
as a result of the logarithm appearing in its expression. The proof of the entropy photon-number
inequality for a fixed Gaussian environment, i.e. Equation (4.40), gives rise to such a situation
in which one has to compute the entropy at the output of a Gaussian channel conditional on
the input. Majorization theory enters the picture whenever one can prove the existence of a
majorization relation, implying the von Neumann inequality in question. In the case of the
EPnI with a fixed Gaussian environment, one can precisely find such a majorization relation (see
Section 9.1 for the details). Obviously, this kind of method cannot always be exploited, since the
existence of an entropic inequality does not necessarily guaranty the existence of an underlying
majorization criterion. Nevertheless, majorization theory proves to be quite effective in the
remaining (various) cases.

The role of majorization in quantum mechanics goes beyond the establishment of proofs of
entropic inequalities, specifically in the framework of entanglement theory. This can be wit-
nessed through the interconversion of two pure entangled states using local operations and
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classical communication, which is only possible whenever the subsystems of the pure states
in question satisfy some majorization relation (see Theorem 16), i.e.,

|φ⟩AB
LOCC−−−→ |ψ⟩AB ⇔ ρψ ≻ ρφ, ρψ = TrB

[
|ψ⟩AB ⟨ψ|

]
. (8.2)

The results provides us with a paradigm in which the investigation of majorization criteria turns
out to be crucial for the study of a purely quantum resource such as entanglement.

In this chapter, we introduce the notion of Fock-majorization, denoted as≻F , which induces a
novel (pre)order relation between quantum states and is closely connected to the theory of ma-
jorization, as one may have anticipated. As a result of its particular relation with the eigenstates
of the Hamiltonian of the quantum harmonic oscillator, Fock-majorization plays an important
role in the framework of bosonic systems. We begin by defining the notion of Fock-majorization
in Section 8.1, explaining along the way that it holds an interesting connection with the concept
of energy. In Section 8.2, we prove several properties of Fock-majorization. By doing so, we
first show that the latter can be interpreted as a relation indicating the existence of an amplify-
ing map between two quantum states. We then analyse the behaviour of a Fock-majorization
relation between two quantum states when they evolve through a general quantum channel,
providing a criterion which assert the preservation of the relation after the effect of the channel.

8.1 Definition of the Fock-majorization relation

In analogy with the definition of majorization given in Lemma 3, we introduce the concept of
Fock-majorization, which compares two states in terms of their diagonal elements in the eigen-
basis of the Hamiltonian of the harmonic oscillator.

Definition 31 (Fock-majorization). Let ρ and σ be two density matrices. We say that ρ Fock-
majorizes σ, denoted as ρ ≻F σ, whenever

Tr
[
Q↓

n ρ
]
≥ Tr

[
Q↓

n σ
]
, ∀ n ≥ 0, (8.3)

where Q↓
n =

∑n
i=0 |i⟩ ⟨i|.

This yields a distinct (pre)order relation in state space, which only depends on the diagonal
elements of ρ and σ (or their eigenvalues if the states are Fock-diagonal). In contrast with reg-
ular majorization, the diagonal elements are not ordered by decreasing values, but instead by
increasing photon number. Such a relaxed definition of majorization without prior sorting is
sometimes called “unordered majorization” [5]; it is useful only when there exists a natural way
of ordering the elements (in the present case, it is the energy). To our knowledge, such a notion
of Fock-majorization has never been defined nor exploited in the context of Gaussian bosonic
channels or more generally continuous-variable quantum information.
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An interesting feature of Fock-majorization is that if ρ ≻F σ and σ ≻F ρ both hold, then
diag(ρ) = diag(σ). By comparison, for regular majorization, if ρ ≻ σ and σ ≻ ρ both
hold, then the states are equivalent (isospectral). The first clear connection between Fock-
majorization and energy can be witnessed in the fact that any two Fock states |n⟩ and |m⟩ satisfy
the Fock-majorization relation |n⟩ ⟨n| ≻F |m⟩ ⟨m| only if n ≤ m, whereas they are always equiv-
alent (isospectral) in terms of usual majorization. Interestingly, Fock-majorization implies a
more general energy order relation between comparable states, namely

ρ ≻F σ ⇒ Tr(ρ n̂) ≤ Tr(σ n̂), (8.4)

where n̂ = â†â is the number operator. Although Equation (8.4) holds in general, only diag-
onal elements of states in the Fock basis are essential for the calculation, meaning that we can
consider Fock-diagonal states. Take two such states

ρ =
N∑
i=0

ri |i⟩ ⟨i| and σ =
N∑
i=0

si |i⟩ ⟨i| , (8.5)

whose support is the space spanned by {|0⟩ , . . . |N⟩} (if their support have unequal sizes, we
take the largest size for N.) We assume that ρ ≻F σ, that is

n∑
i=0

ri ≥
n∑

i=0

si ⇒
N∑
i=n

ri ≤
N∑
i=n

si, ∀n s.t. 0 ≤ n ≤ N. (8.6)

Summing this expression over n and interchanging the two summations gives

N∑
i=1

i∑
n=1

ri ≤
N∑
i=1

i∑
n=1

si, (8.7)

N∑
i=1

i ri ≤
N∑
i=1

i si. (8.8)

By taking the limit N → ∞, we conclude that the mean energy of ρ is lower than that of σ,
which proves Equation (8.4). Note that the converse of Equation (8.4) is not true.

Finally, it is straightforward to see that Fock-majorization ρ ≻F σ coincides with regular ma-
jorization ρ ≻ σ over the set of passive states. Otherwise, ρ ≻F σ and ρ ≻ σ are distinct order
relations.

8.2 Properties of the Fock-majorization relation

Now that we introduced the notion of Fock-majorization, our goal is to prove properties that
will be useful in the study of such a notion. In particular, we explain how the latter can be un-
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derstood as a witness of an amplifying map connecting two quantum states.

8.2.1 Fock-majorization as an amplifying map

The connection between the two concepts of Fock-majorization and regular majorization can
be further strengthened through the following properties, which can easily be shown to hold.

Property 26.
ρ ≻ σ ⇔ ρ↓ ≻F σ↓, (8.9)

where ρ↓ (σ↓) is the passive state with the same spectrum as ρ (σ).

Furthermore, we obviously have ρ↓ ≡ ρ in terms of regular majorization, while ρ↓ ≻F ρ in
terms of Fock-majorization. Using ρ↓ ≡ ρ and σ↓ ≻F σ, this yields the following implication
from regular to Fock-majorization.

Property 27.
ρ↓ ≻ σ ⇒ ρ↓ ≻F σ. (8.10)

Conversely, using ρ↓ ≻F ρ and σ↓ ≡ σ, we have the following implication.

Property 28.
ρ ≻F σ↓ ⇒ ρ ≻ σ↓. (8.11)

In the context of quantum thermodynamics, Fock-majorization bears some similarity to the
relation called upper-triangular majorization introduced in [110]. There, the authors show that
two states obeying such a relation can be related by a so-called coolingmap, which happens to be
a special case of the thermal operations (7.6) when the environment is set at zero temperature (it
is in the vacuum state). Instead, we show that Fock-majorization can be interpreted as a relation
indicating the existence of a heating or amplifying map between the two states, corresponding
to a lower-triangular majorization, as exhibited by the following theorem.

Theorem31. Two states ρ and σ whose diagonal elements in the Fock basis are given by the respective
vectors r and s obey ρ ≻F σ if and only if there exists a stochastic lower-triangular matrix L such that
s = Lr, with Lij ≥ 0,∀ i ≥ j ≥ 1, and

∑d
i=j Lij = 1,∀ j ≥ 1.

Note that the indices range from 1 tod, corresponding to Fock states ranging from |0⟩ to |d− 1⟩.
At the end of the proof, we must take the limit d → ∞ resulting in the full Fock space. Interest-
ingly, Theorem 31 is reminiscent of the property that two probability distributions related by a
majorization relation can be connected through a bistochastic matrix (it is replaced here by a
stochastic lower-triangular matrix).

Proof. The proof we give here is slightly simpler than the corresponding one given in [110] for
the cooling maps. First, suppose there exists a matrix L satisfying the conditions of Theorem 31.
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In this case, we have

m∑
i=1

si =
m∑
i=1

i∑
j=1

Lijrj =
m∑
j=1

rj
m∑
i=j

Lij, ∀m ≥ 1. (8.12)

Since
d∑
i=1

Lij = 1, ∀ j ≥ 1, (8.13)

we have that
m∑
i=1

Lij ≤ 1, ∀ j ≥ 1 and ∀m ≥ 1, (8.14)

(with the condition that Lij ≥ 0,∀ i ≥ j ≥ 1). This yields the relation

m∑
i=1

si ≤
m∑
j=1

rj,∀m ≥ 1, (8.15)

which concludes the first part of the proof.
Now, suppose that ρ ≻F σ. We are going to construct s step by step starting from r, using a

succession of lower-triangular matrices. Starting with the vector r = (r1, r2, . . . rd)
T, we first

define
w(1) = (s1, (r2 + r1 − s1), r3, . . . rd)

T . (8.16)

Since r ≻F s, we have that r2 + r1 − s1 ≥ s2 ≥ 0, which means that w(1) is a well-defined vector
of probability distribution, its elements being non-negative and summing to one. Similarly, we
construct

w(2) = (s1, s2, (r3 + r2 + r1 − s1 − s2), r4, . . . rd)
T , (8.17)

which also represents a well-defined probability distribution for the same reasons. More gen-
erally, we define

w(k) =

s1, s2, . . . sk,

 k+1∑
j=1

rj −
k∑
j=1

sj

 , rk+2, . . . rd

T

, (8.18)

each of the w(k) representing a well-defined probability distribution, for k ≤ d. Furthermore,
we end up with w(d) = s, which we wanted to reach starting from r. Now, we show that each
w(k) is related to the corresponding w(k−1) through a lower-triangular matrix, which has all its
diagonal elements equal to one, apart from the one on column k. In order to do this, write{

w(k)
k = μ1w

(k−1)
k ,

w(k)
k+1 = μ2w

(k−1)
k + μ3w

(k−1)
k+1 .
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which correspond to sk = μ1
(∑k

j=1 rj −
∑k−1

j=1 sj
)
,∑k+1

j=1 rj −
∑k

j=1 sj = μ2
(∑k

j=1 rj −
∑k−1

j=1 sj
)
+ μ3rk+1.

If we want the matrix which relates w(k−1) to w(k) to be column stochastic (as well as lower-
triangular), we need μ3 = 1. This is also consistent with the fact that the diagonal element of
column k + 1 should be equal to one, as we chose earlier. We still need to check if both our
equations are compatible with the fact that μ1 ≥ 0, μ2 ≥ 0, and μ1 + μ2 = 1. According to our
first equation,

μ1 =
sk∑k

j=1 rj −
∑k−1

j=1 sj
. (8.19)

Since
∑k

j=1 rj−
∑k−1

j=1 sj ≥ sk, we indeed have that μ1 is non-negative and smaller than one. The
second equation tells us that

μ2 =

∑k+1
j=1 rj −

∑k
j=1 sj − rk+1∑k

j=1 rj −
∑k−1

j=1 sj
=

∑k
j=1 rj −

∑k
j=1 sj∑k

j=1 rj −
∑k−1

j=1 sj
, (8.20)

which is non-negative and smaller than one for the same reasons. Now, it is also trivial to see
that μ1 + μ2 = 1, which means that the matrix relating w(k−1) and w(k) has indeed non-negative
elements, is column stochastic, and is lower-triangular. This also means that r can be related
to s using a product of lower-triangular matrices, which is also lower-triangular (and which is
column-stochastic and has non-negative elements in this case, as needed). Taking the limit d →
∞ ends the proof.

Equation (8.4) exhibits a connection between Fock-majorization and energy. We can actu-
ally go a step further by generalising this property to functions of H and making it an equiva-
lence.

Theorem 32. Two states ρ and σ obey ρ ≻F σ if and only if Tr [ f(H)ρ] ≤ Tr [ f(H)σ] for any
function f : R → R which is continuous and increasing.

Again, this property of Fock-majorization should be compared with the one relating regular
majorization and sums of convex functions of the state.

Proof. First, suppose ρ ≻F σ. Again, denote by r and s the vectors of diagonal elements of ρ
and σ in the Fock-basis, and fix their dimension to be d (at the end of the proof, we take the
limit d → ∞.) We need to show that, for any function f : R → R which is continuous and
increasing,

d∑
i=1

f(i)ri −
d∑
i=1

f(i)si ≤ 0. (8.21)
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According to Theorem 31, there exists a lower-triangular matrix L with non-negative elements,
which is column-stochastic, and such that s = Lr. Thus,

d∑
j=1

f(j)sj =
d∑
j=1

f(j)
j∑

i=1

Ljiri =
d∑
i=1

ri
d∑
j=i

f(j)Lji, (8.22)

meaning that
d∑
i=1

f(i)ri −
d∑
i=1

f(i)si =
d∑
i=1

ri

f(i)− d∑
j=i

f(j)Lji

 . (8.23)

Now,

f(i)−
d∑
j=i

f(j)Lji =
d∑
j=i

Ljif(i)−
d∑
j=i

f(j)Lji =
d∑
j=i

Lji [f(i)− f(j)] . (8.24)

Since f is increasing, we have that f(i)− f(j) ≤ 0 when j ≥ i. Furthermore, all the elements of
L are non-negative, meaning that the left-hand side of Equation (8.24) is negative or equal to
zero. Consequently, the left-hand side of Equation (8.23) is also negative or equal to zero. This
concludes the first part of the proof.

Now, suppose that
d∑
i=1

f(i)ri ≤
d∑
i=1

f(i)si, (8.25)

for any function f : R → Rwhich is continuous and increasing. Choose the series of functions
fk : R → R which verify

fk(x) =

{
−1 if x ≤ k,
0 else.

We can always find continuous and increasing functions which verify these properties. This
means that

d∑
i=1

fk(i)ri ≤
d∑
i=1

fk(i)si, ∀ k, (8.26)

so that
k∑
i=1

ri ≥
k∑
i=1

si, ∀ k, (8.27)

which essentially means that ρ ≻F σ. This concludes the second part of the proof.

As already hinted at, the fact that a Fock-majorization relation between two quantum states
ρ and σ guaranties the existence of a lower-triangular matrix connecting their diagonal values in
the Fock basis can be interpreted as the fact that it guaranties the existence of a heating map con-
necting the two states. This is strengthened by the idea that the expectation values ⟨ f(H)⟩ρ =
Tr [ f(H)ρ] and ⟨ f(H)⟩σ = Tr [ f(H)σ] we verify the same inequality ⟨ f(H)⟩ρ ≤ ⟨ f(H)⟩σ for
all increasing functions f. This hints to the fact that Fock-majorization may be seen as a concept
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that generalises energy.

8.2.2 Behaviour of Fock-majorization in quantum channels

We know investigate the behaviour of a Fock-majorization relation in general CPTP maps. As
a result of the role played by the energy basis in the context of our new relation, we begin by
proving a criterion which dictates the way a passive state evolves in a quantum channel. We will
call a channel C Fock preserving when it is such that if ρ is a Fock-diagonal state, then C[ρ] is
also a Fock-diagonal state, i.e.,

⟨n| (C [|i⟩ ⟨i|]) |m⟩ = 0, ∀n ̸= m. (8.28)

Phase-insensitive Gaussian bosonic channels are well known to be Fock-preserving channels
since they map Fock states onto mixtures of Fock states [111]. A stronger condition is that a
Fock-preserving channel C is passive-preserving, i.e., it maps passive states onto passive states.
The following theorem provides a key to determine whether any channelC is passive-preserving.

Theorem 33. A bosonic quantum channel C satisfying

⟨n| (C [|i⟩ ⟨i|]) |m⟩ = 0, ∀n ̸= m, (8.29)

is passive-preserving if and only if its adjoint C† obeys the ladder of Fock-majorization relations

C†[ |k⟩ ⟨k| ] ≻F C†[ |k+ 1⟩ ⟨k+ 1|
]
, ∀k ≥ 0. (8.30)

Proof. Form Equation (8.29), we already know that the channel is Fock preserving. Equation
(8.30) is equivalent to

Tr
[
Q↓

nC†[ |k⟩ ⟨k| ]] ≥ Tr
[
Q↓

nC†[ |k+ 1⟩ ⟨k+ 1|
]]

, ∀n ≥ 0, (8.31)

where Q↓
n =

∑n
i=0 |i⟩ ⟨i|. Using the definition of the adjoint of a channel, we get

Tr
[
|k⟩ ⟨k| C[Q↓

n]
]
≥ Tr

[
|k+ 1⟩ ⟨k+ 1| C[Q↓

n]
]
, ∀n ≥ 0. (8.32)

Now, assume that the input of channel C is a Fock-passive state

ρ =
∞∑
n=0

rn |n⟩ ⟨n| , with rn ≥ rn+1, ∀n ≥ 0. (8.33)
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It can also be rewritten as

ρ =
∞∑
n=0

enQ↓
n, with en = rn − rn+1. (8.34)

where en ≥ 0, ∀n ≥ 0, since ρ is passive. Then, we may take the convex combination of
inequalities (8.32) with weights en and n going from 0 to ∞, resulting in

Tr [|k⟩ ⟨k| C[ρ]] ≥ Tr [|k+ 1⟩ ⟨k+ 1| C[ρ]] . (8.35)

Hence, the output state C[ρ] is passive, so that channel C is indeed passive-preserving. Con-
versely, it is trivial to see that C being passive-preserving implies Equation (8.32) since Q↓

n is
(proportional to) a passive state, hence it implies Equation (8.30).

We now turn to the notion of Fock-majorization, in the context of CPTP maps. We will call
a channel C Fock-majorization preserving provided it is such that if ρ ≻F σ, then C[ρ] ≻F C[σ].
Fock-majorization preserving channels can be characterised through the following theorem.

Theorem 34. A bosonic quantum channel C satisfying

⟨n| (C [|i⟩ ⟨j|]) |n⟩ = 0, ∀i ̸= j, (8.36)

is Fock-majorization preserving if and only if it obeys the ladder of Fock-majorization relations

C
[
|k⟩ ⟨k|

]
≻F C

[
|k+ 1⟩ ⟨k+ 1|

]
, ∀k ≥ 0. (8.37)

The condition stated in Equation (8.36) is specific to passive-environment channels, as we will
show later.

Proof. From Equation (8.36), one understands that the non-diagonal elements of any input
state do not affect the diagonal elements of the state at the output of the channels C. Conse-
quently, it is sufficient to prove Theorem 34 for Fock-diagonal states. With this in mind, we
start with two Fock-diagonal states

ρ =
N∑
i=0

ri |i⟩ ⟨i| , σ =
N∑
i=0

si |i⟩ ⟨i| , (8.38)

whose supports is the space spanned by {|0⟩ , . . . |N⟩} (if their supports have unequal sizes, we
take the largest size for N.) We assume that we have a Fock-majorization relation between two
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states at the input of the channel, that is

ρ ≻F σ ⇔ Rn ≥ Sn, ∀n ≥ 0, (8.39)

where

Rn = Tr
[
Q↓

nρ
]
=

n∑
i=0

ri, Sn = Tr
[
Q↓

nσ
]
=

n∑
i=0

si. (8.40)

We want to prove that the same Fock-majorization relation holds at the output,

C[ρ] ≻F C[σ] ⇔ R′
n ≥ S′n,∀n ≥ 0 (8.41)

where

R′
n = Tr

[
Q↓

nC[ρ]
]
=

N∑
i=0

riΘ(i)
n , (8.42)

and

S′n = Tr
[
Q↓

nC[σ]
]
=

N∑
i=0

siΘ(i)
n , (8.43)

with
Θ(i)

n = Tr
[
Q↓

nC
[
|i⟩ ⟨i|

]]
. (8.44)

Now, we define the quantities

α(k)n = RkΘ(k)
n +

N∑
i=k+1

riΘ(i)
n , k = 0, . . .N, (8.45)

where the second term in the right-hand side is taken equal to zero when k = N, so that α(N)n =

RNΘ(N)
n . Similarly, we define

β(k)n = SkΘ(k)
n +

N∑
i=k+1

siΘ(i)
n , k = 0, . . .N, (8.46)

with the convention β(N)n = SNΘ(N)
n . The Fock-majorization relation we need to prove, Equa-

tion (8.41), is equivalent to
α(0)n ≥ β(0)n , ∀n ≥ 0 (8.47)

corresponding to k = 0. We will now prove

α(k)n ≥ β(k)n , ∀n ≥ 0 (8.48)

by recurrence in k, starting from k = N and ending at k = 0. We have trivially α(N)n ≥ β(N)n ,
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∀n ≥ 0, since RN = SN = 1. Now, we assume that

α(k+1)
n ≥ β(k+1)

n , ∀n ≥ 0 (8.49)

which can be rewritten as

Rk+1Θ(k+1)
n +

N∑
i=k+2

riΘ(i)
n ≥ Sk+1Θ(k+1)

n +
N∑

i=k+2

siΘ(i)
n .

Using Rk+1 = Rk + rk+1 and Sk+1 = Sk + sk+1, we reexpress it as

RkΘ(k+1)
n +

N∑
i=k+1

riΘ(i)
n ≥ SkΘ(k+1)

n +
N∑

i=k+1

siΘ(i)
n , (8.50)

which is equivalent to

Rk
(
Θ(k+1)

n −Θ(k)
n

)
+ α(k)n ≥ Sk

(
Θ(k+1)

n −Θ(k)
n

)
+ β(k)n , (8.51)

or simply
α(k)n − β(k)n ≥ (Rk − Sk)

(
Θ(k)

n −Θ(k+1)
n

)
. (8.52)

Since ρ Fock-majorizes σ by hypothesis (Equation (8.39)), we have Rk − Sk ≥ 0, ∀k ≥ 0. If
C
[
|k⟩ ⟨k|

]
Fock-majorizes C

[
|k+ 1⟩ ⟨k+ 1|

]
, which means that Θ(k)

n −Θ(k+1)
n ≥ 0, ∀n ≥ 0,

then the right-hand side of Equation (8.52) is greater than zero. Thus, Equation (8.49) im-
plies Equation (8.48), which concludes the recurrence in k and proves Equation (8.47), hence
Equation (8.41). Conversely, it is trivial to see that Fock-majorization preservation for chan-
nel C implies the ladder of Fock-majorization relations since individual Fock states satisfy the
Fock-majorization relation |n⟩ ⟨n| ≻F |n+ 1⟩ ⟨n+ 1|, ∀n ≥ 0.

Finally, one notices that there is a duality between the concepts of passive preservation and
Fock-majorization preservation. This can be seen from the fact that the statements of Theorems
33 and 34 are very similar. In order to be able to express this, we generalise the notion of passive-
preserving channel to passive-preserving mapM, which is such that if a state ρ↓ is passive, then
M[ρ]↓ is such that

⟨n|
(
M
[
ρ↓
])

|n⟩ ≥ ⟨n+ 1|
(
M
[
ρ↓
])

|n+ 1⟩ , ∀n ≥ 0. (8.53)

The reason we do this is because the adjoint map of a channel is not necessarily a channel as well,
since it does not have to be trace preserving. This is for instance the case for extremal-passive
channels, as implied by Theorem 30. We are now in position to state the following Theorem.

145



8. FOCK-MAJORIZATION RELATIONS

Theorem 35. A bosonic quantum channel C satisfying

⟨n| (C [|i⟩ ⟨j|]) |n⟩ = 0, ∀i ̸= j, (8.54)

is Fock-majorization preserving if and only if its adjoint C† is passive-preserving.

Proof. This is simply a result from the fact that Equation (8.54) is equivalent to

⟨j|
(
C† [|n⟩ ⟨n|]

)
|i⟩ = 0, ∀i ̸= j, (8.55)

and from Theorems 33 and 34.

As already mentioned, Fock-majorization bears some analogy with the “upper-triangular ma-
jorization” of Reference [110]. It may thus be quite fruitful to investigate the thermodynamical
consequences of the existence of Fock-majorization, just as it was done for upper-triangular
majorization in the context of cooling maps. The latter maps happen to be a special case of the
so-called “thermal maps”, which result from the coupling with a finite-temperature heat bath
and are linked to another type of majorization relation, called “thermo-majorization” [112].
Since these various thermal operations provide a suitable model in the study of thermodynam-
ical processes for microscopic systems, we anticipate that our results on Fock-majorization will
find interesting applications in the field of quantum thermodynamics. In order to conclude, let
us mention that since the results we proved in the context of our new order relation do not de-
pend on the bosonic nature of the system, the definition of the relation can be generalised to
non-bosonic systems. One may then denote it as energy-majorization, since it would maintain
its connection with the eigenstates of the Hamiltonian of the system.
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9
Fock-majorization inGaussian-dilatable channels

The importance of majorization theory in continuous-variable quantum information theory
was first suggested by Guha in [7], specifically in the context of Gaussian bosonic channels.
Guha was concerned with the classical capacity of these channels (see [113]), which was known
to require proving a Gaussian minimum entropy conjecture [114]. Denoting an arbitrary phase-
insensitive Gaussian bosonic channel by G[•], the conjecture was that

S (G[|ψ⟩ ⟨ψ|]) ≥ S (G[|0⟩ ⟨0|]) , (9.1)

for any input pure state |ψ⟩, where |0⟩ is the vacuum state. The intuition was that a majorization
relation

G [|0⟩ ⟨0|] ≻ G [|ψ⟩ ⟨ψ|] (9.2)

might be responsible for the conjectured entropic inequality. Equation (9.1) was later gener-
alised as stated in Equation (4.40) of Chapter 4.

The existence of majorization relations in Gaussian bosonic channels was first proven in [81],
where the quantum-limited amplifier AG[•] was proven to obey an infinite ladder of majoriza-
tion relations when the input state is an individual Fock state, namely

AG [|k⟩ ⟨k|] ≻ AG [|k+ 1⟩ ⟨k+ 1|] , ∀k ≥ 0. (9.3)
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A parametric majorization relation was also proven for varying gain G, namely

AG [|k⟩ ⟨k|] ≻ AG+δG [|k⟩ ⟨k|] if δG ≥ 0. (9.4)

Then, in Reference [103], a similar ladder of majorization relations was proven for a pure-loss
channel (see Equation (9.17)). Finally, the interconversion between pure Gaussian states was
also investigated based on majorization theory [75, 115], which revealed the existence of sur-
prising situations where a non-Gaussian LOCC is required although the states considered are
Gaussian.

In this chapter, drawing inspiration from the many applications of majorization in Gaussian
bosonic channels, we study the concept of Fock-majorization in the more general framework of
Gaussian-dilatable channels with a passive environment, which were introduced in Chapter 7.
Specifically, we begin by conjecturing a generalisation of the entropy photon-number inequality
in terms of majorization in Section 9.1; we call it the precursor of the EPnI. We also conjecture
an extension of the ladder of majorization relations of Equation (9.3) to passive-environment
channels. Motivated by the precursor of the EPnI, we show how the Fock-majorization rela-
tion happens to be the fundamental relation that is conserved in a passive-environment chan-
nel, unlike regular majorization. We begin by showing this in the context of Gaussian bosonic
channels in Section 9.2, discussing the implications in terms of the recently solved minimum
output entropy conjecture [92, 116] in the process. In Section 9.3, we turn to general passive-
environment channels, for which this kind of entropic inequalities (related to the EPnI) re-
main to be proven. Still, we show that Fock-majorization relations are preserved in any passive-
environment channel, before discussing open problems regarding regular majorization.

9.1 Motivation: the precursor of the EPnI

In Chapter 4, we introduced the entropy photon-number inequality proposed by Guha in the
form of Equation 4.36. To state the inequality, one defines the mapΦη [•, •] acting on two states
ρa and ρb as

Φη
[
ρa, ρb

]
= Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
, (9.5)

where UBS
η is a beam splitter, as depicted in Figure 9.1.1 and Tr2 [•] represents the partial trace

on the second mode of the system. The entropy photon-number inequality then asserts that

[ , ]

Figure 9.1.1: Set-up considered for the EPnI. The states ρa and ρb evolve in a beam splitter
of transmittance η. The second mode is then discarded.
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S
(
Φη
[
ρa, ρb

])
≥ S

(
Φη
[
ζ n̄a , ζ n̄b

])
, (9.6)

where ζ n̄a and ζ n̄b are two thermal Gaussian states having the same entropies as ρa and ρb, re-
spectively, i.e., {

S
(
ζ n̄a
)
= S

(
ρa
)
,

S
(
ζ n̄b
)
= S

(
ρb
)
.

(9.7)

As we explained in Chapter 4, the entropy photon-number inequality is inspired from the en-
tropy power inequality introduced by Shannon. We also showed how the latter can be gener-
alised through the concept of majorization for continuous probability densities, in which case
the rearrangements defined in Equation (2.47) happen to be optimal in the sense that they ma-
jorize all equivalent distributions after being transformed by a convolution (see Section 4.1.4,
Theorem 25). We conjecture that the entropy photon-number inequality can be generalised
following the same intuition. The conjecture is encompassed in the following statement.

Conjecture 2 (Precursor of the entropy photon-number inequality). Consider two quantum
states ρa and ρb, and the two corresponding Fock-passive states ρ

↓
a ≡ ρa and ρ

↓
b ≡ ρb. In this case,

Φη

[
ρ↓a , ρ

↓
b

]
≻ Φη

[
ρa, ρb

]
, (9.8)

where
Φη
[
ρa, ρb

]
= Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
, (9.9)

UBS
η being a beam splitter of transmittance η.

For completeness, let us mention that Equation (9.8) can be generalised as follows.

Lemma12. Theprecursor of the entropy photon-number inequality as stated inConjecture 2 is equiv-
alent to the relation

Φη

[
UGρ↓aU

†
G,UGρ↓bU

†
G

]
≻ Φη

[
ρa, ρb

]
, (9.10)

for any one-mode Gaussian unitary UG.

Proof. Any one-mode Gaussian unitary UG can be expressed as

UG = DαUR
θU

S
rU

R
φ , (9.11)

whereDα is a displacement,US
r is a squeezer unitary andUR

θ andUR
φ are phase rotation unitaries.

Now, Equation (5.22) implies that

UBS
η (Dα ⊗ Dα) =

(
D(√η+

√
1−η)α ⊗ D(√η−√

1−η)α

)
UBS

η . (9.12)
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Using the same kind of arguments, it can be shown that

UBS
η (UG ⊗ UG) =

(
U(1)

G ⊗ U(2)
G

)
UBS

η , (9.13)

for some one-mode unitaries U(1)
G and U(2)

G . Since one traces over the second mode in order to
obtain the effect of Φη, and since any two states which can be connected through a unitary are
equivalent in terms of majorization, we have that

Φη

[
UGρaU

†
G,UGρbU

†
G

]
≡ Φη

[
ρa, ρb

]
. (9.14)

This ends the proof.

Conjecture 2 was shown to be true in the specific case in which ρb is fixed to be in a thermal
Gaussian state τεb , which is passive in the Fock basis. In this case, one actually deals with a lossy
Gaussian channel acting on ρa,

Φ[ρa, τb] = Bεb
η [ρa], (9.15)

and Equation (9.8) becomes
Bεb
η [ρ

↓
a ] ≻ Bεb

η [ρa]. (9.16)

Equation (9.16) was first proven for all pure input state ρa [117], before being extended to all in-
put mixed states [116]. Furthermore, in the same context, the pure-loss channel Bη was shown
to obey some ladder majorization relations for Fock input states [103], in the form of

Bη [|i⟩ ⟨i|] ≻ Bη [|i+ 1⟩ ⟨i+ 1|] , ∀ i ∈ N0. (9.17)

This implied in particular that among all Fock states, the vacuum majorizes all other Fock states
having evolved through the pure-loss channel. In order to prove Equation (9.17), the authors
considered the recurrence relation of Equation (6.1), for k = 0 and j = 1, i.e.,

B(i+1,0)
n+1 = η B(i,0)

n + (1− η)B(i,0)
n+1 , (9.18)

which is connected to the present problem through the relation ⟨n| Bη [|i⟩ ⟨i|] |n⟩ = B(i,0)
n .

Equation (9.18) can actually be translated into a bistochastic transformation connecting the
two sides of Equation (9.17), so that a majorization relation can be obtained. Again, we con-
jecture the same ladder of majorization relations for extremal-passive channels.

Conjecture 3. The extremal passive-channelsB[k]
η obey the infinite ladder of majorization relations

B[k]
η [|i⟩ ⟨i|] ≻ B[k]

η [|i+ 1⟩ ⟨i+ 1|] , ∀ k ∈ N0, ∀ i ∈ N0. (9.19)
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In order to prove Conjecture 3, a natural idea would be to use the recurrence relation of Equa-
tion (6.1) for j = 1, but this time for an arbitrary value of k, i.e.,

B(i+1,k+1)
n+1 = η B(i,k+1)

n + (1− η)B(i,k+1)
n+1 + η B(i+1,k)

n+1 + (1− η)B(i+1,k)
n − B(i,k)

n , (9.20)

by applying the right summation on k. As already explained in details in Chapter 6, the last
equation involves an interference term multiplied by a negative factor, which does not appear
if k = −1 (Gaussian case). Unfortunately, this makes it difficult to develop a method which
would provide us with a bistochastic matrix implying Equation (9.19) for any value of k in B[k]

η ,
as a bistochastic matrix should only have non-negative entries.

The precursor of the entropy photon-number inequality encompassed in Conjecture 2 ba-
sically states that if one fixes a spectrum on each of the two input ports of a beam splitter, the
optimal states will be given by two passive states. Here, they will be optimal in the sense that
they will generate a state which will majorize all others at each output port of the beam splitter.
One may wonder whether this can be generalised further by imposing majorization relations at
the two input port of the beam splitter. In other words, we ask the question whether majoriza-
tion relation are preserved through a beam splitter. This can mathematically be stated as{

ρ(1)a ≻ ρ(2)a

ρ(1)b ≻ ρ(2)b

?⇒ Φη

[
ρ(1)a , ρ(1)b

]
≻ Φη

[
ρ(2)a , ρ(2)b

]
. (9.21)

One can actually already see that Equation (9.21) is not consistent with Equation (9.8). Indeed,
since ρa ≡ ρ↓a and ρb ≡ ρ↓b , we also have that ρa ≻ ρ↓a and ρb ≻ ρ↓b . In this case, Equation (9.21)
implies thatΦη

[
ρa, ρb

]
≻ Φη

[
ρ↓a , ρ

↓
b

]
, while Equation (9.8) statesΦη

[
ρ↓a , ρ

↓
b

]
≻ Φη

[
ρa, ρb

]
.

This is possible if and only if

Φη

[
ρ↓a , ρ

↓
b

]
≡ Φη

[
ρa, ρb

]
, (9.22)

which is obviously not the case in general. Furthermore, one can easily find counter-examples
for the statement of Equation (9.21). With this in mind, we are now motivated to look for
the fundamental relation which is preserved through a beam splitter. In order to do this, we
turn to passive-environment channels, which are of primary importance in this thesis. If one
particularises the precursor of the entropy photon-number inequality by fixing one of the input
states to already be optimal, one ends up with the following less general conjecture.

Conjecture 4. Consider a quantum state ρ, and the corresponding Fock-passive state ρ↓ ≡ ρ. In
this case,

B↓
η

[
ρ↓
]
≻ B↓

η [ρ] , (9.23)
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where
B↓
η [ρ] = Tr2

[
UBS

η

(
ρ⊗ σ↓

)
UBS†

η

]
, (9.24)

UBS
η being a beam splitter of transmittance η and σ↓ being any Fock-passive state.

As one may have anticipated, inspired by Conjecture 4, we find that the fundamental relation
which is conserved through any passive-environment channel is exactly the Fock-majorization
relation introduced in Chapter 8. This fact is investigated in details in the next sections of this
chapter. Let us mention that Conjectures 2, 3 and 4 can all be restated with the beam splitter
UBS

η being replaced by a two-mode squeezer UTMS
λ in each of them.

9.2 Preservation of a majorization relation inGaussian channels

In this section, we prove a new type of intrinsic majorization property in Gaussian bosonic chan-
nels, namely the conservation across any channel G of a Fock-majorization relation between
any two comparable states. This implies in turn that Gaussian bosonic channels preserve reg-
ular majorization over the set of passive states of the harmonic oscillator. We then discuss the
connection of this result with the entropy photon-number inequality particularised to Gaussian
channels.

We begin by showing that the most basic Fock-majorization relation is preserved in Gaussian
channels. We state and prove the relation for the quantum-limited Gaussian channels, since they
constitute the building blocks which allow one to decompose any Gaussian channel. The results
are contained in the following lemmas. We begin with the pure-loss channel.

Lemma 13. The pure-loss channelBη exhibits a ladder of Fock-majorization relations

Bη
[
|i⟩ ⟨i|

]
≻F Bη

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0. (9.25)

It is known that a similar relation holds when replacing Fock-majorization with majorization
[103]. Here, we will adapt this proof in order to derive a Fock-majorization relation.

Proof. We have

ρ(i) := Bη
[
|i⟩ ⟨i|

]
=

i∑
n=0

B(i,0)
n |n⟩ ⟨n| , (9.26)

where
B(i,0)
n =

(
i
n

)
ηn(1− η)i−n, (9.27)

and η is the transmittance of channel Bη. Majorization was proven in [103] based on the recur-
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rence relation of Equation (6.1), for k = 0 and j = 1, i.e.,

B(i+1,0)
n = η B(i,0)

n−1 + (1− η)B(i,0)
n , ∀i ≥ 0,∀n ≥ 0, (9.28)

where the first term in the right-hand side is taken equal to zero for n = 0. We can rewrite it as

B(i,0)
n − B(i+1,0)

n = η
(
B(i,0)
n − B(i,0)

n−1

)
, (9.29)

Hence,
j∑

n=0

B(i,0)
n −

j∑
n=0

B(i+1,0)
n = η B(i,0)

j ≥ 0, ∀j ≥ 0, (9.30)

which gives the Fock-majorization relation ρ(i) ≻F ρ(i+1) in addition to the majorization relation
ρ(i) ≻ ρ(i+1) of Reference [103].

We now turn to the quantum-limited amplifier.

Lemma 14. The quantum-limited amplifierAG exhibits a ladder of Fock-majorization relations

AG
[
|i⟩ ⟨i|

]
≻F AG

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0. (9.31)

We also use the related majorization property for an amplifier as proven in Reference [81].

Proof. We have

σ(i) := AG
[
|i⟩ ⟨i|

]
=

∞∑
n=0

A(i,0)
i+n |n+ i⟩ ⟨n+ i| =

∞∑
n=i

A(i,0)
n |n⟩ ⟨n| , (9.32)

where
A(i,0)
i+n =

(
n+ i
n

)
λn(1− λ)i+1, (9.33)

and λ = tanh2(r) is related to the gainG = 1/(1−t)of the amplifierAG, with rbeing the squeez-
ing parameter. Majorization was proven in [81] by using the recurrence relation of Equation
(6.39), for k = 0 and j = 1, i.e.,

A(i+1,0)
i+1+n = λ A(i+1,0)

i+n + (1− λ)A(i,0)
i+n , ∀i ≥ 0,∀n ≥ 0, (9.34)

where the first term in the right-hand side is taken equal to zero for n = 0. We can rewrite it as

A(i,0)
i+n − A(i+1,0)

i+1+n = (G− 1)
(
A(i+1,0)
i+1+n − A(i+1,0)

i+n

)
. (9.35)
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The differences between the cumulated sums of eigenvalues are given by

j∑
n=i

A(i,0)
n −

j∑
n=i+1

A(i+1,0)
n ≥

j∑
n=i

(A(i,0)
n − A(i+1,0)

n+1 ). (9.36)

Using Equation (9.35), we have

j∑
n=i

A(i,0)
n −

j∑
n=i+1

A(i+1,0)
n ≥ (G− 1)A(i+1,0)

j+1 ≥ 0, ∀j ≥ 0, (9.37)

giving the Fock-majorization relation σ(i) ≻F σ(i+1) in addition to the majorization relation
σ(i) ≻ σ(i+1) [81].

We are now in position to prove the Fock-majorization preservation of Gaussian channels.
Since we plan to use the fact that majorization and Fock-majorization are completely equivalent
for passive states, we begin by showing the preservation of passivity, which is the result of the
following theorem.

Theorem 36. Phase-insensitive Gaussian bosonic channels are passive preserving.

Proof. Using Lemma 13 and 14 together with Theorem 33, we obtain that the pure-loss chan-
nel Bη, whose adjoint is 1/η times the quantum-limited amplifier A1/η, as well as the quantum-
limited amplifier AG, whose adjoint is 1/G times the pure-loss channel B1/G, are both passive
preserving. Then, the corollary follows from the fact that any phase-insensitive Gaussian bosonic
channel G can be expressed as the concatenation of a pure-loss channel B and a quantum-
limited amplifier A, i.e., G = A ◦ B (see Equations (3.106) and (3.108)), and that passive-
preservation is transitive over channel composition.

Theorem 37. Phase-insensitive Gaussian bosonic channels are Fock-majorization-preserving.

Proof. We use again the fact that any phase-insensitive Gaussian bosonic channel G can be ex-
pressed as the concatenation G = A ◦ B and that Fock-majorization preservation is transitive
over channel composition. Since any phase-insensitive Gaussian channel G satisfies

⟨n| (G [|i⟩ ⟨j|]) |n⟩ = 0, ∀i ̸= j, (9.38)

we can make use of Theorem 34 to end the proof.

Corollary 6. Phase-insensitive Gaussian bosonic channels are majorization-preserving over the set
of passive states.

Proof. As a consequence of the equivalence between Fock-majorization and regular majoriza-
tion over the set of passive states, a Fock-majorization preserving channel is necessarily also
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majorization preserving over the set of passive states provided it is passive preserving. Since
phase-insensitive Gaussian bosonic channels are passive preserving (Theorem 36) and Fock-
majorization preserving (Theorem 37), we conclude that they preserve regular majorization
over the set of passive states.

For completeness, let us mention that our results can also be extended to the set of phase-
conjugate Gaussian bosonic channels, which can be expressed as a concatenation of a pure-loss
channel Bη and a quantum-limited phase-conjugate channel ÃG. The interested reader is re-
ferred to Appendix F.1.

Corollary 6 nicely complements the property found in [116]. There, it was shown that among
all isospectral states ρ at the input of a phase-insensitive Gaussian bosonic channel G, the pas-
sive state, denoted as ρ↓, produces an output state that majorizes all other output states, namely
G[ρ↓] ≻ G[ρ]. Here, we consider instead two input states that have different spectra but are both
passive, ρ↓ and σ↓, and have demonstrated that ρ↓ ≻ σ↓ implies G[ρ↓] ≻ G[σ↓]. This reflects
the fact that Gaussian bosonic channels exhibit quite a wide variety of majorization properties,
going well beyond what was originally expected in Reference [7]. As a matter of fact, Corollary
6 may be combined together with the result of [116], giving what can be viewed as the funda-
mental majorization-preservation property

ρ↓ ≻ σ ⇒ G[ρ↓] ≻ G[σ], (9.39)

valid for any phase-insensitive Gaussian bosonic channel G. Interestingly, this property (unlike
the one of [116]) is transitive if we concatenate several passive-preserving channels. In partic-
ular, it means that proving it for an infinitesimal channel (e.g., using the Lindbladian) suffices to
prove it for any concatenated channel.

9.3 Preservation of Fock-majorization in passive-environment

channels

We now focus on general passive-environment channels. One may wonder why we began by in-
vestigating Fock-majorization in Gaussian bosonic channels in the previous section, as they can
be seen as a particular case of passive-environment channels. As it happens, we will make use of
the results obtained in the Gaussian case in order to prove the results for more general passive-
environment channels. We begin by focusing on beam-splitter passive-environment channels
B↓
η . In order to prove the preservation of Fock-majorization, we again recourse to Theorem 34.

In order to do so, we prove in Appendix F.2 that any channel B↓
η satisfies

⟨n|
(
B↓
η [|i⟩ ⟨j|]

)
|n⟩ = 0, ∀i ̸= j. (9.40)

155



9. FOCK-MAJORIZATION IN GAUSSIAN-DILATABLE CHANNELS

Thus, we are left with having to prove the following lemma.

Lemma 15. The passive-environment bosonic channel B↓
η exhibits a ladder of Fock-majorization

relations
B↓
η

[
|i⟩ ⟨i|

]
≻F B↓

η

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0. (9.41)

Proof. We begin by proving the ladder of Fock-majorization relations for an extremal-passive
channel B[K]

η characterised by an environment which is a projector onto the space spanned by
the K+ 1 first Fock states |k⟩, i.e,

B[K]
η (ρ) = Tr2

[
UBS

η

(
ρ⊗ P↓K

)
UBS†

η

]
, (9.42)

where P↓K = 1
K+1

∑K
k=0 |k⟩ ⟨k|. We need to show that

B[K]
η

[
|i⟩ ⟨i|

]
≻F B[K]

η

[
|i+ 1⟩ ⟨i+ 1|

]
,∀i ≥ 0, (9.43)

or,

Tr
[
Q↓

n

(
B[K]

η

[
|i⟩ ⟨i|

]
− B[K]

η

[
|i+ 1⟩ ⟨i+ 1|

])]
≥ 0, ∀i ≥ 0,∀n ≥ 0. (9.44)

where Q↓
n =

∑n
m=0 |m⟩ ⟨m|. Using the definition of the transition probabilities in Equation

(5.67), what we need to prove here is that

Δ(i,K)
n =

K∑
k=0

n∑
m=0

[
B(i,k)
m − B(i+1,k)

m

]
≥ 0, ∀i ≥ 0,∀n ≥ 0, n ≤ i+ k. (9.45)

Using the recurrence relation of Equation (6.1) for j = 1, we have that

Δ(i,K)
n =

K∑
k=0

n∑
m=0

[
B(i,k)
m − (1− η)B(i,k)

m

]
−

K∑
k=0

n∑
m=0

[
ηB(i,k)

m−1 + (1− η)B(i+1,k−1)
m−1 + ηB(i+1,k−1)

m − B(i,k−1)
m−1

]
,

Δ(i,K)
n = η

K∑
k=0

n∑
m=0

(
B(i,k)
m − B(i,k)

m−1

)
+ η

K∑
k=0

n∑
m=0

(
B(i+1,k−1)
m−1 − B(i+1,k−1)

m

)
+

K∑
k=0

n∑
m=0

(
B(i,k−1)
m−1 − B(i+1,k−1)

m−1

)
,
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Δ(i,K)
n = η

K∑
k=0

B(i,k)
n − η

K∑
k=0

B(i+1,k−1)
n +

K−1∑
k=0

n−1∑
m=0

(
B(i,k)
m − B(i+1,k)

m

)

Δ(i,K)
n = η

K−1∑
k=0

B(i,k)
n + ηB(i,k)

n − η
K−1∑
k=0

B(i+1,k)
n

+ η
K−1∑
k=0

n−1∑
m=0

(
B(i,k)
m − B(i+1,k)

m

)
+ (1− η)Δ(i,K−1)

n−1 ,

so that
Δ(i,K)
n = ηB(i,k)

n + ηΔ(i,K−1)
n + (1− η)Δ(i,K−1)

n−1 . (9.46)

We know thatΔ(i,0)
n ≥ 0,∀i ≥ 0,∀n ≥ 0, since it corresponds to a Gaussian pure-loss channel,

and was proven in the previous section. We are then able to prove Equation (9.45) by using a
recursive argument on K, since B(i,k)

n ≥ 0, ∀i ≥ 0,∀n ≥ 0,∀K ≥ 0. This shows that

B[K]
η

[
|i⟩ ⟨i|

]
≻F B[K]

η

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0. (9.47)

Now, since any passive state can be written as a convex sum of projectors P↓K, it also means that

B↓
η

[
|i⟩ ⟨i|

]
≻F B↓

η

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0, (9.48)

which concludes the proof of Lemma 15.

Using Theorem 34 and Lemma 15, we are able to conclude with the following Theorem.

Theorem 38. Passive-environment bosonic channels B↓
η are Fock-majorization preserving; that is,

for all states ρ and σ,
ρ ≻F σ ⇒ B↓

η [ρ] ≻F B↓
η [σ]. (9.49)

In Section 9.1, we explained that passive-environment channels do not preserve regular ma-
jorization, namely that if ρ ≻ σ, one cannot conclude that B↓

η [ρ] ≻ B↓
η [σ]. Nevertheless, sim-

ilarly to the Gaussian case, one can prove that passive-environment channels are majorization
preserving when restricting to the set of passive states. As a result of the equivalence between
majorization and Fock-majorization for this set, we simply need to verify that passive states re-
main passive after evolving through a passive-environment bosonic channel. This is the content
of the following Theorem.

Theorem39. Passive-environment bosonic channelB↓
η are passive preserving; that is, if ρ↓ is passive

thenB↓
η [ρ↓] is passive as well.
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Proof. We begin by showing that this Theorem is true for any passive channel B[K]
η , but when

the input is a projector Q↓
I. We need to prove that

Tr
[
(|n⟩ ⟨n| − |n+ 1⟩ ⟨n+ 1|)B[K]

η

[
Q↓

I
]]

≥ 0, ∀I ≥ 0, ∀n ≥ 0, (9.50)

or,

Γ(I,K)n =
I∑

i=0

K∑
k=0

(
B(i,k)
n − B(i,k)

n+1

)
≥ 0, ∀I ≥ 0,∀n ≥ 0. (9.51)

Using the recurrence relation of Equation (6.1) for j = 1, we have that

Γ(I,K)n =
I∑

i=0

K∑
k=0

(
B(i,k)
n − ηB(i−1,k)

n

)
−

I∑
i=0

K∑
k=0

(
(1− η)B(i−1,k)

n+1 + ηB(i,k−1)
n+1 + (1− η)B(i,k−1)

n − B(i−1,k−1)
n

)
,

Γ(I,K)n = η
I∑

i=0

K∑
k=0

(
B(i,k)
n − B(i−1,k)

n

)
+ (1− η)

I∑
i=0

K∑
k=0

(
B(i,k)
n − B(i,k−1)

n

)
− (1− η)

I∑
i=0

K∑
k=0

B(i−1,k)
n+1 − η

I∑
i=0

K∑
k=0

B(i,k−1)
n+1 +

I∑
i=0

K∑
k=0

B(i−1,k−1)
n ,

Γ(I,K)n = η
K∑

k=0

B(i,k)
n + (1− η)

I∑
i=0

B(i,k)
n

− (1− η)
I−1∑
i=0

K∑
k=0

B(i,k)
n+1 − η

I∑
i=0

K−1∑
k=0

B(i,k)
n+1 +

I−1∑
i=0

K−1∑
k=0

B(i,k)
n ,

Γ(I,K)n = B(i,k)
n − (1− η)

I−1∑
i=0

K∑
k=0

B(i,k)
n+1

− η
I∑

i=0

K−1∑
k=0

B(i,k)
n+1 + η

I∑
i=0

K−1∑
k=0

B(i,k)
n + (1− η)

I−1∑
i=0

K∑
k=0

B(i,k)
n ,

Γ(I,K)n = B(i,k)
n + η

I∑
i=0

K−1∑
k=0

(
B(i,k)
n − B(i,k)

n+1

)
+ (1− η)

I−1∑
i=0

K∑
k=0

(
B(i,k)
n − B(i,k)

n+1

)
,

so that
Γ(I,K)n = B(i,k)

n + ηΓ(I,K−1)
n + (1− η)Γ(I−1,K)

n . (9.52)

We know that Γ(I,0)n ≥ 0,∀I ≥ 0,∀n ≥ 0, since it corresponds to a Gaussian pure-loss channel,
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and was proven in the previous section. We also know, because of the symmetry of the beam
splitter, that Γ(0,K)n ≥ 0,∀K ≥ 0,∀n ≥ 0. We are then able to prove Equation (9.51) by using
a recursive argument on both I and K, since B(i,k)

n ≥ 0,∀I ≥ 0, ∀K ≥ 0,∀n ≥ 0. This shows
that B[K]

η [P↓I ] is passive. Again, we conclude the proof of Theorem 39 by using the fact that any
passive state can be written as a convex sum of extremal-passive states P↓l .

Before discussing the implications of Theorems 38 and 39 in the context of regular majoriza-
tion, we take advantage of the property of duality of extremal-passive channels in order to ex-
press the same results for passive-environment channels A↓

G defined as

A↓
G [ρ] = Tr2

[
UTMS

λ

(
ρ⊗ σ↓

)
UTMS†

λ

]
, (9.53)

for any passive environment σ↓. This is encompassed in the two following theorems, which we
prove together.

Theorem 40. Passive-environment bosonic channelsA↓
G are Fock-majorization preserving; that is,

for all states ρ and σ,
ρ ≻F σ ⇒ A↓

G[ρ] ≻F A↓
G[σ]. (9.54)

Theorem41. Passive-environment bosonic channelA↓
G are passive preserving; that is, if ρ↓ is passive

thenA↓
η [ρ↓] is passive as well.

Proof. According to Theorems 38 and 39, extremal-passive channelsB(k)
η are passive preserving

and Fock-majorization preserving. If we combine the remarks of Appendix F.2 with the dual-
ity properties of Theorems 30 and 35, we have that extremal-passive channels A(k)

G are passive
preserving and Fock-majorization preserving as well. Using the fact that any passive state can
be written as a convex sum of extremal-passive states, we end up with the two theorems.

Using Theorems 38, 39, 40 and 41 we are now able to state the following for any passive-
environment Gaussian-dilatable channel C↓ defined in Equation (7.8).

Corollary 7. Passive-environment bosonic channels C↓ are majorization preserving over the set of
passive states; that is, for any passive states ρ↓ and σ↓,

ρ↓ ≻ σ↓ ⇒ C↓[ρ↓] ≻ C↓[σ↓]. (9.55)

Since phase-insensitive Gaussian channels are part of the set of passive-environment chan-
nels, Corollary 7 generalises Corollary 6. Our main motivation in proving Corollary 7 was pro-
vided by Conjecture 4, which is itself a consequence of the precursor of the entropy photon-
number inequality stated by means of the theory of majorization. Similarly to the Gaussian
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case, Conjecture 4 (generalised to all passive-environment channels) and Corollary 7 may be
combined in order to state a generalised conjecture of the following form.

Conjecture 5. Consider a passive state ρ↓, and a state σ. In this case,

if ρ↓ ≻ σ, then C↓[ρ↓] ≻ C↓[σ]. (9.56)

One readily sees that the last property is transitive by concatenation of passive-environment
channels. Indeed, we expect a concatenation of two of the latter to be such that it can be writ-
ten in the form of Equation (7.8) as well. Nevertheless, unlike Gaussian channels, passive-
environment channels do not possess a semi-group structure of the form of Equation (3.112),
as shown for instance by the decomposition in Equation (7.39). As a result, one can unfortu-
nately not use an infinitesimal argument in order to prove Conjecture 5.

Finally, we would like to stress that all proofs in this chapter are independent of the specific
nature of the system (i.e., the harmonic oscillator Hamiltonian for a bosonic mode). Therefore,
we believe that the application of Fock-majorization could be extended to other quantum sys-
tems and arbitrary Hamiltonians, yielding a general tool that could prove very useful in quantum
information theory, more specifically in quantum thermodynamics.
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10
A resource theory of local activity for bosonic

systems

Passive states are the least energetic states for a fixed spectrum. As such, they can be understood
as those states from which no work can be extracted under unitary operations. If a general quan-
tum state is constituted of several systems, one needs to apply global unitaries to extract work in
general, as local unitaries might not be sufficient in order to do so. A paradigm of such a situa-
tion is found in a state

(
ρ↓
)⊗n, whose subsystems are described by states ρ↓, which happen to be

such that they are not completely passive. Since ρ↓ is passive, no work can be extracted locally
using unitary transformations, while this can be circumvented by exploiting global unitaries.

It seems natural to try and quantify the amount of work which can be extracted under local
unitaries only. In order to avoid a trivial situation, one may ask whether the work extraction
can be enhanced by allowing energy-preserving global unitaries. In the framework of bosonic
quantum systems, a reasonable choice of energy preserving unitaries is readily found in passive
Gaussian transformations, or passive interferometers.

In this chapter, building on the knowledge of Gaussian unitary transformations gathered
in Part II, and inspired by the study of passive states of the harmonic oscillator and passive-
environment channels introduced in Part III, we lay out the basis for a resource theory centred
on the notion of passivity of a quantum state. We introduce a concept of local-activity distance,
which we compare with the notion of work that can be extracted using only local unitary trans-
formations, but also assisted by passive global Gaussian unitaries. We begin by introducing the
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concept of a general resource theory in Section 10.1, before presenting the basic framework of
our resource theory in Section 10.2. We also attempt to compare it with other resource the-
ories involving passives states. In Section 10.3, we provide our definition of the local-activity
distance, and compute if for a state of one mode. Finally, we hint at future directions of research
in Section 10.4.

10.1 Introduction to resource theories

We begin by giving a short introduction on resource theories. For a more detailed one, the
interested reader is for instance referred to [118]. As suggested by its name, the goal of a re-
source theory is to build a framework in which a specific resource can be characterised com-
pletely. Classical and quantum information theories can be understood as examples of such
resource theories allowing one to describe the interconversions among specific resources. The
best-known paradigm of a resource theory studied in quantum information concerns the in-
terconversion of entangled states [53]. Indeed, since entanglement can be exploited in order
to perform several tasks which cannot be achieved with classical resources, such as quantum
teleportation [60], it qualifies as resource.

In order to build a resource theory, one may begin by choosing a set of free states, in the sense
that they do not contain any resource. In the context of a resource theory of entanglement, the
free states are chosen to be all separable states as defined by Equation (2.79). The next step
is to choose the set of allowed operations, which may not create any resource. If they did, the
theory would not be consistent as the resource would no longer be considered as such. If we
go back to the example of entanglement theory, there actually happens to be several ways to
choose the allowed operations. For instance, local operations with classical communications
(LOCCs) introduced in Section 2.3.3 will never increase entanglement. Similarly, separable
operations, which are characterised by product Kraus operators, do not increase entanglement
either. LOCCs operations are actually a subclass of separable operations. Here, a choice has to
be performed. However, the choice should not be independent of the set of free states. Indeed,
since the allowed operations should not create any resource, free states must remain free when
transformed by such operations. This is the case for separable states, which remain so after begin
transformed by LOCCs, and more generally separable operations.

Since the allowed operations are characterised by the fact that they cannot increase the re-
source, one should be able to quantify the latter. In order to do so, one defines a measure, or
quantifier of the resource, which must be monotonically non-increasing under the action of
allowed operations. In the context of entanglement theory, several quantifiers have been intro-
duced in the past decade [53]. In the case of pure quantum states, such a quantifier can be found
in the entropy of entanglement defined through Equation (2.80).

Finally, let us mention that there are other aspects of resource theories which can be con-
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sidered, such as the study of the interconversion between different quantum states containing
different amounts of resource. However, since the goal of the present Chapter is to lay out the
basis for a resource theory for bosonic systems, we do not focus on such aspects for the moment.

10.2 Basic framework

10.2.1 Free states and operations

In the most common resource theory of quantum thermodynamics, thermal states are consid-
ered to be free, in the sense that they do not contain any resource. This seems like a natural
choice, as thermal states characterise systems in thermal equilibrium. In this case, the resource
can simply be viewed as athermality. One then describes the allowed operations, which do not
create any resource, as follows: adding ancillae in free states (which are then treated as an envi-
ronment), applying energy conserving unitaries, and tracing out the environment. In this case,
the thermal operations, defined as

CTO(ρS) = TrE
[
USE

(
ρS ⊗ τE

)
U†

SE

]
, (10.1)

where τE is a thermal state of the environment and USE is an energy conserving unitary acting
on both the system and the environment, are the most general free operations.

In the present work, we relax this resource theory of thermal operations by allowing passive
states as free states. This choice is not arbitrary, as passive states have the least possible energy
for a fixed spectrum. In that case, a tensor product of passives states is considered free as well.
However, if one applies an energy conserving unitary to such a product state, the resulting state
might be correlated, or even entangled in general. Since this state should nevertheless still be
free, one then needs to extend the set of free states, in order for energy conserving unitaries to
still be considered as free. In the context of bosonic quantum systems, an interesting choice of
energy conserving unitaries can be found in passive Gaussian untiaries, knowing the huge role
they play in continuous-variables quantum information. By doing so, we generalise passive-
environment channels involving a beam splitter in their dilation, which can always be written
as

B↓
η (•) = Tr2

[
UBS

η

(
• ⊗ σ↓

)
UBS†

η

]
, (10.2)

where σ↓ is a passive state andUBS
η is a beam-splitter unitary. Since passive interferometers con-

stitute free operations, our set of free states, which we denote as If, is now composed of all pos-
sible products of Fock-passive states, transformed by any energy conserving Gaussian unitary
UPG (any passive interferometer), i.e.,

If =
∪
N∈N0

{UPG(σ↓1 ⊗ . . .⊗ σ↓N)U
PG†}, (10.3)
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where N0 is the set of all natural number not including 0. Furthermore, we also allow post-
selection on free states. In that case, we need to show that a state that belongs in If should
remain so after a post selection on any other state belonging in If. We can actually prove this
for a state of two modes, i.e., we show the following.

Lemma 16. Let σ↓1 and σ↓2 be any two one-mode passive states, then the one-mode state

ρ =
ρ̃

Tr [ρ̃]
, where ρ̃ = Tr2

[(
I⊗ σ↓3

)
UBS

η

(
σ↓1 ⊗ σ↓2

)
UBS†

η

]
, (10.4)

is passive as well, for any transmittance η ∈ [0, 1] and any one-mode passive state σ↓3 , I being the
identity operator.

For a proof of Lemma 16, we refer the interested reader to Appendix G. Under the hypothesis
that it can be extended to an arbitrary number of modes, our free operations are then constituted
of the following operations:

(a) Applying any energy preserving Gaussian unitary,

(b) Allowing ancillae in free states,

(c) Partial tracing,

(d) Post-selecting on free states.

We denote the set of free operations as Λf.

10.2.2 Properties of the set of free states

In the case of one-mode bosonic systems, the only possible free unitaries allowed in the con-
text of this resource theory are in fact phase rotations UR

θ = exp[−iθâ†â], which do not affect
passive states σ↓. As a consequence, a mixture of one-mode free states is still a free state. This is
however no longer the case when one considers systems involving more than one mode. Take
for instance a general two-mode free state σ fη, which can always be written as

σ fη = UBS
η

(
σ↓1 ⊗ σ↓2

)
UBS†

η , (10.5)

where UBS
η is a beam splitter, and σ↓1 and σ↓2 are two one-mode passive states, and consider the

mixture

γ =
1
2

[
σ fη + σ fν

]
=

1
2

[
UBS

η

(
σ↓1 ⊗ σ↓2

)
UBS†

η + UBS
ν

(
σ↓1 ⊗ σ↓2

)
UBS†

ν

]
. (10.6)
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The covariance matrix Vη of σ fη can be computed to be

Vη =


v(η)11 0 v(η)13 0
0 v(η)11 0 v(η)13

v(η)13 0 v(η)33 0
0 v(η)13 0 v(η)33

 , (10.7)

where v(η)11 = η(2n1 + 1) + (1 − η)(2n2 + 1), v(η)33 = η(2n2 + 1) + (1 − η)(2n1 + 1), and
v(η)13 = 2

√
η(1− η)(n2 − n1), n1 and n2 being the respecting mean numbers of photons of σ↓1

and σ↓2 . As a result, the covariance matrixVof the mixture γ is such that its first diagonal element
v11 verifies

v11 =
η + ν
2

(2n1 + 1) +
(
1− η + ν

2

)
(2n2 + 1), (10.8)

while

v13 = 2
√

η(1− η) +
√

ν(1− ν)
2

(n2 − n1). (10.9)

One understands that it will never be possible to write γ as a free state, at the level of covariance
matrices. This is sufficient to state that our set of free states is not convex in general, unfortu-
nately.

10.2.3 Comparison with resource theories of passivity

It seems interesting to compare the set of free statesIf with other types of passive states, involved
in other resource theories. Lenard’s definition of passive states relates them with the concept of
extractable work (or ergotropy) Wmax [107], which is defined as

Wmax(ρ) = max
U

Tr
[
Ĥ
(
ρ− UρU†)] , (10.10)

where the maximisation is taken over all possible unitaries U. Lenard showed that a state σ will
be passive if and only if Wmax(σ) = 0. Since the definition can involve a state of any number
of modes in the framework of bosonic systems, we will call such a state σ globally passive. As a
consequence, we define the set of globally passive states as

Igp = {σ|Wmax(σ) = 0} . (10.11)

In the same line of thought, one can define the work which is extractable locally, as

Wl
max(ρ) = max

Ul
Tr
[
Ĥ
(
ρ− UlρUl

†)] , (10.12)

where the maximisation is taken this time over all possible local unitariesUl. We will call a state
σ ofNmodes locally passive if each of its modes is in a one-mode passive state, which will be true
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if and only if Wl
max(σ) = 0. We then define the set of locally passive states as

Ilp =
{
σ|Wl

max(σ) = 0
}
. (10.13)

Since the set of all unitaries U obviously includes the set of all local unitaries Ul, we have that

Igp ⊂ Ilp. (10.14)

Furthermore, a state which is locally passive does not have to be globally passive, so that the
two sets Igp and Ilp are distinct. Now we showed that in the case of two modes, a state which is
free according to our resource theory is always locally passive. If we suppose this result can be
extended to N-modes (which we do), then a free state will always be locally passive, so that

If ⊂ Ilp. (10.15)

However, the two sets are again distinct, since one can always find a state which is locally passive,
but not free. An example of such a state is given by γ = UTMS

λ

(
σ↓1 ⊗ σ↓2

)
UTMS†

λ , where σ↓1 and
σ↓2 are two one-mode passive states, and UTMS

λ is a two-mode squeezer unitary. Indeed, γ can
be shown to be locally passive, even though it is not free. Finally, the two sets If and Igp are
distinct, and neither of them is included in the other. One can always find a state which is in
If while not being in Igp, and vice-versa. Note that a product of one-mode thermal Gaussian
states is comprised in both If and Igp.

In the hope of introducing a definition of work which is consistent with the resource theory
of free states contained inIf, one may consider what could be understood as a halfway situation.
Define the locally extractable work under passive Gaussian unitaries of a state ρ as

Wl,PG
max (ρ) = max

Ul
max
UPG

Tr
[
Ĥ
(
ρ− UlUPGρUPG†Ul

†)] , (10.16)

where the maximisation is taken this time over all possible passive Gaussian unitaries UPG, as
well as all local unitaries Ul. This can be viewed as the work that is extractable locally, assisted
by passive Gaussian global unitaries. In other words, one may apply global Gaussien unitaries
without modifying the energy, before actually extracting work locally. Now, define the set

IGP
lp =

{
σ|Wl,PG

max (σ) = 0
}
. (10.17)

One readily understands that
Igp ⊂ IGP

lp ⊂ Ilp. (10.18)

Furthermore, the three sets Igp, IGP
lp and Ilp are clearly distinct. Note that another way to write
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IGP
lp would be

IGP
lp =

{
σ|Wl

max

(
UPGσUPG†) = 0, ∀UPG} . (10.19)

Proof. Trivially,

Wl
max

(
UPGσUPG†) = 0, ∀UPG

⇔ max
Ul

Tr
[
Ĥ
(
UPGσUPG† − UlUPGσUPG†Ul

†)] = 0, ∀UPG

⇔ max
Ul

Tr
[
Ĥ
(
σ − UlUPGσUPG†Ul

†)] = 0, ∀UPG

⇔ max
UPG

max
Ul

Tr
[
Ĥ
(
σ − UlUPGσUPG†Ul

†)] = 0

⇔ Wl,PG
max (σ) = 0,

where we used the fact that UPG commutes with the Hamiltonian. The third line is equivalent
to the second because of the fact that

max
Ul

Tr
[
Ĥ
(
σ − UlUPGσUPG†Ul

†)] = max
Ul

Tr
[
Ĥ
(
UPGσUPG† − UlUPGσUPG†Ul

†)]
(10.20)

is always non-negative.

One could ask the question whether our set of free states If is the same as IGP
lp . A direct

answer is found in the fact that, as already explained, If is not convex, while IGP
lp can easily be

proved to be convex, as a simple consequence of the fact the quantity Wl,PG
max is itself convex.

Unfortunately, it means that If ̸= IGP
lp . Furthermore, Igp ⊂ IGP

lp , while Igp ̸⊂ If, so that
IGP
lp ̸⊂ If. Now, since the concatenation of two passive Gaussian unitaries gives another passive

Gaussian unitary, and using Equation (10.15) (which is supposed to be true for N modes), we
have that If ⊂ IGP

lp . In order to circumvent the fact that If is not convex, one can take is convex
hull conv(If). Using similar arguments as before, conv(If) ⊂ IGP

lp . What remains to be proven

is whether conv(If)
?
= IGP

lp . All of this is summarised on Figure 10.2.1.

II I

I

( ↓ ⊗ ↓) †

( ↓ ⊗ ↓) †

( ↓ ⊗ ↓) † +
( ↓ ⊗ ↓) †

I
(

?
= (I )

)

Figure 10.2.1: Relation between the different theories of ”activity”.
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10.3 Local-activity distance

In this section, we introduce a definition of local-activity distance, which we will compare with
the locally extractable work assisted by passive Gaussian unitaries in Section 10.4.

10.3.1 Definition of the local-activity distance

We call local-activity distance any “smallest distance” to a free state which never increases under
free operations. In other words, the local-activity distance is a monotone of the free operations
of our resource theory. It can be quantified using any contractive distance D as

Al (ρ) = min
σ∈If

D(ρ, σ). (10.21)

By contractive distance, we mean that

D(Al[ρ],Al[σ]) ≤ D(ρ, σ), (10.22)

for any free operation Al.

Proof. Suppose the minimum of the distance is achieved at some free state σ∗. Then,

Al (ρ) = S(ρ ∥ σ∗)

≥ S(Λf[ρ] ∥ Λf[σ∗])

= S(Λf[ρ] ∥ σ̃])

≥ min
σ∈If

S(Λf[ρ] ∥ σ])

= Al (Λf[ρ]) ,

where σ̃ = Λf[σ∗] is a free state.

A natural choice of distance is the quantum relative entropy S(• ∥ •), as it is contractive.
From now on, we define the local-activity distance of any state ρ to be

Al (ρ) = min
σ∈If

S(ρ ∥ σ). (10.23)

10.3.2 Properties of the local-activity distance

We prove the following properties of the local-activity distance.

Property 29 (Convexity of the local-activity distance for one mode). Consider a one-mode state
ρ =

∑d
i=1 piρi. We have

Al

(
d∑
i=1

piρi

)
≤

d∑
i=1

piAl
(
ρi
)
. (10.24)
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Proof. Let us consider that

Al
(
ρi
)
= min

σ∈If
S
(
ρi
∥∥ σ
)
= S
(
ρi
∥∥ σ∗i

)
, ∀i. (10.25)

Then,
d∑
i=1

piAl
(
ρi
)
=

d∑
i=1

piS
(
ρi
∥∥ σ∗i

)
≥ S

(
d∑
i=1

piρi

∥∥∥∥∥
d∑
i=1

piσ∗i

)

= S

(
d∑
i=1

piρi

∥∥∥∥∥ σ∗
)

≥ min
σ∈If

S

(
d∑
i=1

piρi

∥∥∥∥∥ σ

)

= Al

(
d∑
i=1

piρi

)
.

We used the fact that a mixture of passive state
∑d

i=1 piσ
∗
i = σ∗ is still passive.

Property 30 (Sub-additivity of the local-activity distance). Let ρ(1) and ρ(2) be two quantum
states, then

Al
(
ρ(1) ⊗ ρ(2)

)
≤ Al

(
ρ(1)
)
+ Al

(
ρ(2)
)
. (10.26)

Proof. Let us first consider that

Al
(
ρ(1)
)
= min

σ∈If
S
(
ρ(1)
∥∥ σ
)
= S
(
ρ(1)
∥∥ σ̃(1)

)
, (10.27)

and
Al
(
ρ(2)
)
= min

σ∈If
S
(
ρ(2)

∥∥ σ
)
= S
(
ρ(2)

∥∥ σ̃(2)
)
. (10.28)

Now,
Al
(
ρ(1)
)
+ Al

(
ρ(2)
)
= S
(
ρ(1)
∥∥ σ̃(1)

)
+ S
(
ρ(2)

∥∥ σ̃(2)
)

= S
(
ρ(1) ⊗ ρ(2)

∥∥ σ̃(1) ⊗ σ̃(2)
)

= S
(
ρ(1) ⊗ ρ(2)

∥∥ σ∗
)

≥ min
σ∈If

S
(
ρ(1) ⊗ ρ(2)

∥∥ σ
)

= Al
(
ρ(1) ⊗ ρ(2)

)
,
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where σ∗ = σ̃(1) ⊗ σ̃(2) is some free state. Thus,

Al
(
ρ(1) ⊗ ρ(2)

)
≤ Al

(
ρ(1)
)
+ Al

(
ρ(2)
)
. (10.29)

10.3.3 Calculation of the local-activity distance for a single mode

We are now going to compute the local-activity distance for a one-mode state, by finding an
expression for its closest free state. As we already mentioned, in the case of one mode, the only
energy preserving Gaussian unitary is the phase rotation, which does not modify a passive state.
Thus, the local-activity distance of a one-mode state ρ is given by

Al (ρ) = min
σ↓

S
(
ρ
∥∥ σ↓

)
, (10.30)

where the minimum is taken over all one-mode passive states. This minimisation problem can
actually be solved analytically. Let σ↓ =

∑M−1
n=0 sn |n⟩ ⟨n|, then

Al (ρ) = min
{sn}

[
−S (ρ)−

M−1∑
n=0

rn ln sn

]
, (10.31)

where rn = ⟨n| ρ |n⟩. Since there are constraints on σ↓, namely, (sn+1 − sn) ≤ 0 (for 0 ≤ n ≤
M− 2) and

∑M−1
n=0 sn = 1, we will minimise the quantity LKKT(s) defined as

LKKT(s) =

[
−S (ρ)−

M−1∑
n=0

rn ln sn

]
+

M−2∑
n=0

μn (sn+1 − sn) + μ̄

(
M−1∑
n=0

sn − 1

)
. (10.32)

If s∗ is a local minimum (and (sn+1 − sn) are continuously differentiable, which is the case here)
then there exist Karush–Kuhn–Tucker (KKT) coefficients such that:

1. Stationarity: ∂
∂sn
LKKT(s) = 0 for n = 0, . . . ,M− 1,

2. Primal feasibility: sn+1 − sn ≤ 0 and
∑M−1

n=0 sn = 1,

3. Dual feasibility: μn ≥ 0 for n = 0, . . . ,M− 1,

4. Complementary slackness: μn (sn+1 − sn) = 0 for n = 0, . . . ,M− 2.

Now, from stationarity, we have

0 = − rn
sn
+ μn−1 − μn + μ̄, for n = 1, 2, . . . ,M− 2, (10.33)

or,
sn =

rn
μn−1 − μn + μ̄

. (10.34)
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For n = 0 and n = M− 1, we have, respectively,

0 = − r0
s0

− μ0 + μ̄ ⇒ s0 =
r0

μ̄ − μ0
, (10.35)

and
0 = − rM−1

sM−1
+ μM−2 + μ̄ ⇒ sM−1 =

rM−1

μ̄ + μM−2
. (10.36)

From complementary slackness, we have

μn (sn+1 − sn) = 0 for n = 0, . . . ,M− 2. (10.37)

The solution of above equations is nontrivial and can be discussed geometrically, more appro-
priately. Before we go into details, let us consider a simple example where M = 3. In this case,
the above conditions look like.

s0 =
r0

μ̄ − μ0
, (10.38)

s1 =
r1

μ0 − μ1 + μ̄
, (10.39)

s2 =
r2

μ1 + μ̄
. (10.40)

From complementary slackness conditions μ0 (σ1 − s0) = 0 and μ1 (σ2 − s1) = 0, we end up
with the following four cases:

Case 1: μ0 = 0 and μ1 = 0. In this case, we assume s1 − s0 ≤ 0 and s2 − s1 ≤ 0. Then,

s0 =
r0
μ̄
, (10.41)

s1 =
r1
μ̄
, (10.42)

s2 =
r2
μ̄
. (10.43)

Therefore, μ̄ = 1, s0 = r0, s1 = r1, s2 = r2 and r1 − r0 ≤ 0 and r2 − r1 ≤ 0.

Case 2: μ0 = 0 and s1 = s2. In this case, s1 − s0 ≤ 0 is assumed. Then, we have

− r0
s0

+ μ̄ = 0, (10.44)

− r1
s1
− μ1 +

r0
s0

= 0, (10.45)

− r2
s2
+ μ1 +

r0
s0

= 0. (10.46)
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This leads to
s1 =

s0(r1 + r2)
2r0

. (10.47)

From normalisation s0 + 2s1 = 1, we have

s0 = r0. (10.48)

This implies, μ̄ = 1. The solutions are given by

s0 = r0, s1 =
r1 + r2

2
= s2, μ̄ = 1, μ0 = 0, μ1 =

r2 − r1
r2 + r1

. (10.49)

Case 3: s0 = s1 and μ1 = 0. In this case, s2 − s1 ≤ 0 is assumed. Then, we have

− r0
s0

− μ0 + μ̄ = 0, (10.50)

− r1
s1
+ μ0 + μ̄ = 0, (10.51)

− r2
s2
+ μ̄ = 0. (10.52)

The solution is given by

s0 =
r0 + r1

2
= s1, s2 = r2, μ̄ = 1, μ0 =

r1 − r0
r1 + r0

, μ1 = 0. (10.53)

Case 4: s0 = s1 and s1 = s2. Then, we have s0 = s1 = s2 = 1/3 and

μ̄ = 2(r1 + r2), μ0 = −3r0 + 2(r1 − r2), μ1 = 2(r2 − r1). (10.54)

In the general case, we can compute the closest passive state starting from ρ, iteratively as fol-
lows. Suppose the diagonal elements of ρ in the Fock basis are given by {r0, . . . , rM−1}. We go
through the diagonal starting from r0. When we reach an element rk which is smaller than the
following one, i.e., rk ≤ rk+1, we compute the average r(1)k = (rk + rk+1)/2 of the two, and set
rk = rk+1 = r(1)k . If we still have rk−1 ≤ rk = r(1)k , we take the average of rk = r(1)k , rk+1 = r(1)k ,
rk−1, i.e., r

(2)
k = (2r(1)k + rk−1)/3, and set rk = rk+1 = rk−1 = r(2)k . We continue until we reach

a situation in which we have rl ≥ rl+1 for l = 0, . . . , k. When this is the case, we keep going
through the new vector starting from l = k+ 1, and do the same until we reach a passive state.
The latter is the closest passive state to the initial state ρ in terms of the local-activity distance
we defined.

Example 2. Consider the state ρ = |M⟩ ⟨M|. The diagonal elements of ρ in the Fock basis
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are given by {
M−times︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0}. The closest passive state is then given by

σ↓ =
1

M+ 1

M∑
i=0

|i⟩ ⟨i| . (10.55)

The local-activity distance is then computed to be Al (|M⟩ ⟨M|) = ln(M+ 1).

Obviously, the local-activity distance is different from the locally extractable work in the case
of one mode. The two notions also behaves differently, as seen from their properties. We discuss
these differences in Section 10.4.

10.4 Future directions of research

As already mentioned, the local-activity distance Al is different from the work Wl,PG
max which can

be extracted from a quantum state under local unitaries, assisted by passive global unitaries
(Equation (10.16)). In the case of product states, we showed that the distanceAl is sub-additive,
while Wl,PG

max is super-additive, since

Wl,PG
max (ρ1 ⊗ ρ2) ≥ max

Ul
max

UPG
1 ,UPG

2

Tr
[
Ĥ
(
ρ1 ⊗ ρ2 − UlUPG

1 ⊗ UPG
2 ρ1 ⊗ ρ2U

PG†
1 ⊗ UPG†

2 Ul
†)]

= Wl,PG
max (ρ1) +Wl,PG

max (ρ2).

This is not a surprise, since the local-activity distance is the relative-entropy distance to the clos-
est free state. In the case of one mode, it is given by the distance with the closest passive state.
The extractable work Wl,PG

max (ρ) of a state ρ, however, can be interpreted as the energy “distance”
with the corresponding passive state ρ↓. It may be interesting to find a connection between
these two resource quantifiers.

Furthermore, as we already explained, the set of free states If we introduced is not convex.
Since our interpretation of the resource is related to the energy of a quantum state, one under-
stands that mixing free states should not create any resource. Furthermore, such a mixture does
not put different subsystems in contact in general, so that the role played by the passive global
unitary is different from the mixing operation in the context of our theory. In other words, mix-
ing free states should not activate the extraction of work. This can be witnessed when consider-
ing globally passive states, as a mixture of passive states stays passive, as exhibited by Property
29 (with our definition of the notion of local-activity distance) for one-mode free states, which
are actually passive. In conclusion, a mixture of two free states should remain free. This can be
achieved here by considering the convex closure of If, as already hinted at earlier. In that case,
one possible direction of research is to prove whether conv(If)

?
= IGP

lp .
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11
Conclusions and future work

In quantum optics, the so-called phase-space representation provides us with a convenient way
to describe states of the electromagnetic field as well as common optical components. In quan-
tum information theory, one often needs to investigate information-theoretic characteristics
of quantum states, especially the way they behave when processed through quantum channels.
This is for instance the case for the von Neumann entropy of states, which is arguably the cen-
tral notion of the field. One then turns to the state-space representation, based on the density
operator of quantum systems, in order to achieve such a task. At the crossroad of quantum op-
tics and quantum information theory lies continuous-variable quantum information theory, in
which one undertakes the study of information-theoretic features of optical systems, and more
generally bosonic systems. As long as Gaussian states and transformations are the sole objects
involved, this analysis does not give rise to any specific difficulty. Indeed, the symplectic for-
malism of phase space allows one to fully characterise Gaussian states by means of their first two
statistical moments only, while Gaussian transformations are described by simple affine map-
pings. The von Neumann entropy of Gaussian states, for instance, has a simple closed expres-
sion. This is however no longer the case whenever either of the state or the transformation in
question is not Gaussian, in which case the symplectic formalism cannot be exploited any more.

The present thesis is dedicated to the development of new tools which allow us to leave the
realm of Gaussian states and transformations. The prime motivation for such a purpose results
from the fact that one often needs access to non-Gaussian resources in order to perform quan-
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tum information processing tasks of importance. Indeed, universal quantum computing, quan-
tum entanglement distillation and quantum error correction have been demonstrated to require
non-Gaussian states or transformations in order to be achieved. As a first step towards our goal,
we focus on objects which still involve Gaussian unitary operations. In doing so, it turns out
we are still able to exploit the symplectic formalism in phase-space, while we end up accessing
intrinsically non-Gaussian features of bosonic systems.

By bringing the generating function of non-Gaussian objects into the picture, we showed in
the first part of this thesis how they could be characterised by means of the symplectic formalism
specific to Gaussian systems. Specifically, we applied our method in order to describe the ma-
trix elements of Gaussian unitaries in the Fock basis. In the case of two-mode bosonic systems,
we were able to derive surprisingly simple recurrence relations for the transition probabilities in
both a beam splitter and a two-mode squeezer, regardless of their complexity. Interestingly, our
equations bring forth the effect of quantum interferences resulting from the indistinguishability
of bosons in the form of suppression terms. In the case of a balanced beam splitter, our equa-
tions recover the so-called Hong-Ou-Mandel effect undergone by two indistinguishable pho-
tons entering the beam splitter. They also generalise the Hong-Ou-Mandel effect by describing
the interference effects taking place in a situation involving multiple photons. Unexpectedly,
our relations exhibit the existence of similar suppression effects in an active transformation in
the form of a two-mode squeezer. The phenomenon can nicely be interpreted as the indistin-
guishability between an incoming photon pair that is absorbed in the two-mode squeezer and
a photon pair which is created in the latter. Finally, we generalised our method to the descrip-
tion of multiple-mode passive Gaussian transformations. We demonstrated the existence of a
relation that turns out to be quite elegant, even though it involves quantities as complex as multi-
mode transition probabilities in Fock space. We anticipate that our multi-mode equation can be
exploited in order to uncover situations in which the parameters of the passive transformation
may give rise to total suppression events, generalising the Hong-Ou-Mandel effect to multiple
modes.

The second part of our thesis was concerned with the description of Gaussian-dilatable chan-
nels involving a passive environment. Building on the generating function of extremal-passive
channels, we derived a decomposition of these maps in terms of quantum-limited Gaussian
channels and studied their duality properties. We then hinted at their importance in the con-
text of the entropy photon-number inequality. This inspired us to investigate majorization rela-
tions in passive-environment channels. In recent years, the algebraic theory of majorization has
been shown to naturally appear in the context of various topics related to quantum mechanics.
The Shannon and von Neumann entropies being the central notions of information theory and
its quantum counterpart, their connection to majorization suggests that the latter is ideal for
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the study of information processing tasks. This is for instance illustrated in continous-variable
quantum information by the proofs of the minimum output entropy conjectures for Gaussian
channels [78, 81, 103, 116, 117].

Our aim was to study whether majorization relations are conserved in passive-environment
channels C↓, which led us to introduce the new pre-order relation of Fock-majorization. Unlike
regular majorization, it turned out to be conserved in passive-environment channels C↓, i.e.,

ρ ≻F σ ⇒ C↓[ρ] ≻F C↓[σ]. (11.1)

As a side product, this also implies

ρ↓ ≻ σ↓ ⇒ C↓[ρ↓] ≻ C↓[σ↓], (11.2)

for passive states. This line of research – and in particular the last equation – was inspired by our
conjectured precursor for the entropy photon-number inequality, which boils down to

Φη

[
ρ↓a , ρ

↓
b

]
≻ Φη

[
ρa, ρb

]
, (11.3)

where Φη
[
ρa, ρb

]
= Tr2

[
UBS

η

(
ρa ⊗ ρb

)
UBS†

η

]
. As a future direction of research, one of our

main goals is to prove Equation (11.3). If shown, the latter would considerably simplify the
proof of the original entropy photon-number inequality. Indeed, the precursor of the EPnI nat-
urally implies that

S
(
Φη

[
ρ↓a , ρ

↓
b

] )
≤ S
(
Φη
[
ρa, ρb

] )
. (11.4)

This basically means that for any couple of states ρa and ρb at the input of the map Φη, the two
corresponding passive states will always do better, in the sense that they will gives a smaller
entropy at the output of the channel. One would then only need to investigate passive states in
order to prove the entropy photon-number inequality. Indeed, if one demonstrates that among
all passive state with fixed entropies at the two inputs of the channel Φη, thermal states give the
minimum entropy at its output, the reasoning would be that

S
(
Φη [τa, τb]

)
≤ S
(
Φη

[
ρ↓a , ρ

↓
b

] )
≤ S
(
Φη
[
ρa, ρb

] )
, (11.5)

where τa and τb are thermal states with the same entropies as ρa and ρb. This last step may be
easier than proving the original EPnI since we deal with Fock-diagonal states only, hence it is an
intrinsically classical problem.

Finally, the last part of our thesis was centred on laying the foundation of a resource theory
related to the work that can be extracted using local unitaries assisted by global passive unitaries.
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We introduced a notion of local-activity distance, and compared it with the latter. We also com-
pared our set of free states with free states in other resource theories involving passive states. The
current status of our work concerns the fact that our set of free states is not convex and should
be extended using its convex closure. With this in mind, one of our future directions of research
consists in further refining this resource theory of passivity.
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A Continuous majorization

A.1 Alternative definition of the rearrangement of function

In Section 2.2.3 of Chapter 2, we introduced the concept of spherically decreasing symmetric
rearrangement of a non-negative function, which we chose to define in terms of the rearrange-
ment of a Borel set. There actually exists a different way to define the rearrangement, which
we present here for completeness. The definition we give in this section can also be used to
compare two non-negative functions in terms of majorization. There are however some slight
differences we discuss hereafter.

Let (A,F , ν) be a measure space. Consider a non-negative ν-integrable function f defined
on A, and write [5]

mf(t) = ν ({x : f(x) > t}) , t ≥ 0. (A.1)

This function generalises Equation (2.41) defined in Chapter 2, as it represents the Lebesgue
measure of the set of elements x such that f(x) > t. Using this, we define the decreasing rear-
rangement as follows.

Definition 32 (Decreasing rearrangement of a non-negative function). For a non-negative inte-
grable function f defined on (A,F , ν), one can define its decreasing rearrangement f↓ by

f↓(u) = sup {t : mt(t) > u} , 0 ≤ u ≤ ν(A). (A.2)

Notice that we chose to denote by f↓ the rearrangement in this section, while it was denoted
as f ↓ in Section 2.2.3. The first difference between the two rearrangements resides in the fact
that f ↓ lives in the same space as f, while f↓ is defined in a new space and is always a function of
an argument u ∈ [0,∞). Furthermore, f ↓ and f↓ are both decreasing, but f ↓ is symmetric and
“spherical” (as its name suggests), while f↓ can never be as such. Even when f is defined on R,
f ↓ will be defined on R while f ↓ will be defined on [0,∞). A consequence of this is that f and
f↓ can never be compared, while this can be done for f and f ↓, like in Theorem 10 for instance.

In this context, majorization can be defined as follows [119].

Definition 33 (Continuous majorization). For two non-negative integrable function f and g de-
fined on (A,F , ν) such that

∫
f dν =

∫
g dν, we say that f majorizes g, i.e. f ≻ g if∫ t

0
f↓(u)dν(u) ≥

∫ t

0
g↓(u)dν(u), ∀ t ∈ [0, ν(A)). (A.3)

This definition is very similar to Definition 15. Interestingly, majorization can also be defined
in this context using function mf(t) of Equation (A.1). This can be done as such [119].

Property 31. For twonon-negative integrable function f and gdefinedon (A,F , ν) such that
∫
fdν =
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∫
g dν, f majorizes g, i.e. f ≻ g if and only if∫ ∞

t
mf(s)ds ≥

∫ ∞

t
mg(s)ds, ∀ t ≥ 0. (A.4)

A.2 Proof of Lemma 2

According to Lemma 2 of Section 2.2.3, If f and g are probability densities, and there exists a
distribution K : R → R≥0 such that ∫ ∞

−∞
dy K(y) = 1, (A.5)

and
g(x) =

∫ ∞

−∞
dy K(y)fy(x), ∀x ∈ R, (A.6)

where fy ≡ f, or f ↓y = f ↓, for all y ∈ R, then f ≻ g.

Proof. Using Jensen’s inequality, we have that for any convex function φ,∫ ∞

−∞
dx φ [g(x)] =

∫ ∞

−∞
dx φ

[∫ ∞

−∞
dy K(y)fy(x)

]
≤
∫ ∞

−∞
dx
∫ ∞

−∞
dy K(y)φ

[
fy(x)

]
=

∫ ∞

−∞
dy K(y)

∫ ∞

−∞
dx φ

[
fy(x)

]
.

Now, according to Theorem 10,∫ ∞

−∞
dx φ

[
fy(x)

]
=

∫ ∞

−∞
dx φ [ f(x)] , ∀y ∈ R, (A.7)

so that ∫ ∞

−∞
dx φ [g(x)] ≤

∫ ∞

−∞
dy K(y)

∫ ∞

−∞
dx φ [ f(x)]

=

∫ ∞

−∞
dx φ [ f(x)] .

Using Theorem 11, we end up with f ≻ g. �
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B TheWigner function of a one-mode quantum state

In Section 3.2 of Chapter 3, we introduced the concept of Wigner function of a quantum state. In
the present appendix, our goal is to go a bit more into details in the case of a one-mode quantum
state. In particular, we introduce the notion of wave function of the state, which contains all the
information encompassed in the Wigner function.

We begin by noting that the quadrature field operators q̂ and p̂ have continuous eigenspectra.
Their respective eigenstates, which actually represent plane waves, are denoted by |q⟩ and |p⟩.
As such, they have continuous eigenvalues, which verify

q̂ |q⟩ = q |q⟩ , p̂ |p⟩ = p |p⟩ , (B.1)

where q ∈ R and p ∈ R. The two eigenbases {|q⟩}q∈R and {|p⟩}p∈R can be related via a
Fourier transform, i.e.,

|q⟩ = 1
2
√
π

∫
dp e−iqp/2 |p⟩ , (B.2)

and
|p⟩ = 1

2
√
π

∫
dq eiqp/2 |q⟩ . (B.3)

For a pure quantum state |ψ⟩, the wave function in the quadrature q is given by

ψ(q) = ⟨q| ψ⟩ , (B.4)

whereas the wave function in the quadrature p is written as

ψ̃(p) = ⟨p| ψ⟩ . (B.5)

They are related through a Fourier transform,

ψ̃(p) =
1√
2

∫
dq e−iqp/2ψ(q). (B.6)

The Wigner function of |ψ⟩ can be related to its wave function ψ̃ through

W(q, p) =
1
2

∫
du eiqu/2ψ̃

(
p+

u
2

)
ψ̃∗
(
p− u

2

)
, (B.7)

and to its wavefunction ψ through

W(q, p) =
1
2

∫
dy eipy/2ψ

(
q+

y
2

)
ψ∗
(
q− y

2

)
. (B.8)

In order to recover either of the wave functions starting from the Wigner function, one can use
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the following relation:∫
dpW(q, p)eipq

′/2 = ψ
(
q+

q′

2

)
ψ∗
(
q− q′

2

)
=

⟨
q+

q′

2

∣∣∣∣ ψ⟩⟨ψ∣∣∣∣ q− q′

2

⟩
,

which leads to
ψ(q) =

1
ψ∗(0)

∫
dpW

(q
2
, p
)
eipq/2, (B.9)

where the constant ψ∗(0) can be obtained through normalisation of ψ(q). In order to reobtain
the pure state |ψ⟩ itself, we do the following:

|ψ⟩ =
∫

dq ⟨q| ψ⟩ |q⟩ = 1
ψ∗(0)

∫
dqdp eipq/2W

(q
2
, p
)
|q⟩ (B.10)

For the density matrix |ψ⟩ ⟨ψ|, it becomes

|ψ⟩ ⟨ψ| =
∫

dqdq′ ⟨q| ψ⟩ ⟨ψ| q′⟩ |q⟩ ⟨q′|

=

∫
dqdq′dpW

(
q+ q′

2
, p
)
eip(q−q′)/2 |q⟩ ⟨q′| .

Since the Wigner function of a mixture of pure states is given by the same mixture of the Wigner
functions of the individual pure states, this relation stays true for any mixed state ρwhose Wigner
function is W, i.e,

ρ =
∫

dqdq′
(∫

dpW
(
q+ q′

2
, p
)
eip(q−q′)/2

)
|q⟩ ⟨q′| . (B.11)

If one needs the representation of ρ in the Fock basis, one has to compute the matrix elements
of ρ in the Fock basis given by

⟨i| ρ |j⟩ =
∫

dqdq′
∫

dpW
(
q+ q′

2
, p
)
eip(q−q′)/2 ⟨i| q⟩ ⟨q′| j⟩ . (B.12)
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C Quantum-limited decomposition of one-modeGaussian channels

In Section 3.4.4, we explained that any channel belonging to one of the canonical classes C(Loss),
C(Amp) and D could be decomposed in terms of quantum-limited channels. In this section,
we give some calculation details in phase space, for completeness.

C.1 Phase-insensitive channels

A phase-insensitive channelG(ε)
κ , which involves either a lossy channelB(ε)

κ or an amplifier chan-
nel A(ε)

κ , can always be decomposed using

G(ε)
κ = AG0 ◦ Bη0 , (C.1)

where ε is related to the thermal number n̄ of G(ε)
κ as

2n̄+ 1 =
1+ ε
1− ε

, (C.2)

with η0 ∈ (0, 1) andG0 > 1. Consider a state with covariance matrixV0. The pure-loss channel
acts on it, outputting a state of covariance matrix V1 given by

V1 = η0V0 + (1− η0)12, (C.3)

and is followed by the quantum-limited amplifier, which outputs

V2 = G0V1 + (G0 − 1)12. (C.4)

This means that we have

V2 = G0η0V0 +
[
G0(1− η0) + (G0 − 1)

]
12. (C.5)

For the channel to be physical, one should have

G0(1− η0) + (G0 − 1)
?

≥ |G0η0 − 1|. (C.6)

Suppose first that G0η0 ≥ 1. In this case, one should check if

G0(1− η0) + (G0 − 1)
?

≥ G0η0 − 1. (C.7)

This is true if η0 ≤ 1, which is satisfied by definition. In this case, the channelG(ε)
κ is an amplifier

channel, i.e.,
G(ε)
κ = A(ε)

κ , (C.8)
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which satisfies 
κ = G0η0 ≥ 1,

n̄ =
G0(1− η0)
η0G0 − 1

≥ 0.
(C.9)

Now, if G0η0 ≤ 1, one should check if

G0(1− η0) + (G0 − 1)
?

≥ 1− G0η0. (C.10)

This is true if G0 ≥ 1, which is also verified by definition. In this case, the channel G(ε)
κ is a lossy

channel, i.e.,
G(ε)
κ = B(ε)

κ , (C.11)

which satisfies 
κ = G0η0 ≤ 1,

n̄ =
G0 − 1
1− η0G0

≥ 0.
(C.12)

C.2 Phase-conjugate channels

A phase-conjugate channel G̃(ε)
κ can always be decomposed as

G̃(ε)
κ = ÃG0 ◦ Bη0 , (C.13)

where ε is related to the thermal number n̄ of G̃(ε)
κ as

2n̄+ 1 =
1+ ε
1− ε

, (C.14)

with η0 ∈ (0, 1) andG0 > 1. Consider a state with covariance matrixV0. The pure-loss channel
acts on it, outputting a state of covariance matrix V1 given by

V1 = η0V0 + (1− η0)12, (C.15)

and is followed by the quantum-limited phase-conjugate channel, which outputs

V2 = (G0 − 1)V1 + G012. (C.16)

This means that we have

V2 = (G0 − 1)η0V0 +
[
(G0 − 1)(1− η0) + G0

]
12. (C.17)
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For the channel to be physical, one should have

(G0 − 1)(1− η0) + G0
?

≥ 1+ (G0 − 1)η0. (C.18)

This is true ifG0 ≥ 1, which is always satisfied. In this case, the channelG(ε)
κ is a phase-conjugate

channel, i.e.,
G̃(ε)
κ = Ã(ε)

G , (C.19)

which satisfies 
G = η0(G0 − 1) + 1 ≥ 1,

n̄ =
(G0 − 1)(1− η0)
1+ (G0 − 1)η0

≥ 0.
(C.20)
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D Description of a beam splitter in Fock space

D.1 Transition amplitudes

In Chapter 5, we computed the transition amplitudes in a beam splitter using the generating
function. The purpose of this section is to calculate them without the help of the generating
function. This will allow us to understand the usefulness of the latter by comparing the two
methods. The action of the beam-splitter unitary on the product of two arbitrary Fock states is

|ψBS
i,k⟩ = UBS

η |i, k⟩ = 1√
k!
UBS

η (b̂†)k |i, 0⟩ = 1√
k!
UBS

η (b̂†)kUBS†
η UBS

η |i, 0⟩ , (D.1)

⇒ |ψBS
i,k⟩ =

1√
k!

(
UBS

η b̂†UBS†
η

)k
|ψBS

i,0⟩ . (D.2)

Exploiting the effect of the beam splitter in the Heisenberg picture, we get

|ψBS
i,k⟩ =

1√
k!

(√
1− ηâ† +√ηb̂†

)k
|ψBS

i,0⟩

=
1√
k!

k∑
m=0

(
k
m

)(√
1− ηâ†

)m (√ηb̂†
)k−m

|ψBS
i,0⟩ .

(D.3)

Now, in the simpler case in which one of the Fock state corresponds to the vacuum state, and
using the same techniques as above, we end up with

|ψBS
i,0⟩ =

1√
i!

(√ηâ† −
√

1− ηb̂†
)i
|0, 0⟩

=
1√
i!

i∑
n=0

(
i
n

)(√ηâ†
)n (−√1− ηb̂†

)i−n
|0, 0⟩

=
1√
i!

i∑
n=0

(
i
n

)√
n!(i− n)!

(√η
)n (−√1− η

)i−n |n, i− n⟩ ,

⇒ |ψBS
i,0⟩ =

i∑
n=0

(−1)i−n

√(
i
n

)
ηn(1− η)i−n |n, i− n⟩ . (D.4)

The effect of creation operators on individual Fock states is such that{
(â†)m |n⟩ =

√
(n+ 1) . . . (n+ m) |n+ m⟩ ,

(b̂†)k−m |i− n⟩ =
√

(i− n+ 1) . . . (i− n+ k− m) |i− n+ k− m⟩ .
(D.5)

189



APPENDIX

Combining this with Equations (D.3) and (D.4), we obtain

|ψBS
i,k⟩ =

i,k∑
n,m=0

(−1)i−n
√

Γ(i,k)n,m ηn+k−m(1− η)i−n+m |n+ m, i− n+ k− m⟩ , (D.6)

where we defined

Γ(i,k)n,m =

(
i
n

)(
k
m

)(
n+ m
n

)(
i− n+ k− m

i− n

)
. (D.7)

If one defines the amplitude b(i,k)n = ⟨n,m|UBS
η |i, k⟩ (noting that the index m = i + k − n is

redundant), Equation (D.6) can be rewritten as

|ψBS
i,k⟩ =

i+k∑
n=0

b(i,k)n |n, i+ k− n⟩ , (D.8)

In this case, the amplitude is found to be equal to

b(i,k)n =

min(i,n)∑
m=max(0,n−k)

(−1)i−m
√

Γ(i,k)m,n−mη2m+k−n(1− η)i−2m+n. (D.9)

The method we used here to obtain an expression for b(i,k)n is to be compared with the approach
developed in Chapter 5 in terms of generating functions.

D.2 Transition probabilities

We now compute the probability

B(i,k)
n = | ⟨n,m|UBS

η |i, k⟩ |2 =
(
b(i,k)n

)2
, (D.10)

since b(i,k)n is real, meaning that

B(i,k)
n =

min(i,n)∑
m,j=max(0,n−k)

(−1)m+j
√

Γ(i,k)m,n−mΓ
(i,k)
j,n−jη

k−n+m+j(1− η)i+n−m−j. (D.11)

Now, notice that

Γ(i,k)m,n−mΓ
(i,k)
j,n−j =

(
i
m

)(
k

n− m

)(
n
m

)(
i+ k− n
i− m

)
×
(
i
j

)(
k

n− j

)(
n
j

)(
i+ k− n
i− j

)
,

190



D. DESCRIPTION OF A BEAM SPLITTER IN FOCK SPACE

Γ(i,k)m,n−mΓ
(i,k)
j,n−j ==

(
i
m

)(
k

n− m

)(
n
j

)(
i+ k− n
i− j

)
︸ ︷︷ ︸

γ(i,k)n,m,j

×
(
i
j

)(
k

n− j

)(
n
m

)(
i+ k− n
i− m

)
︸ ︷︷ ︸

γ(i,k)n,j,m

,

(D.12)
where

γ(i,k)n,m,j =

(
i
m

)(
k

n− m

)(
n
j

)(
i+ k− n
i− j

)
=

i!
m!(i− m)!

k!
(n− m)!(k− n+ m)!

n!
j!(n− j)!

(i+ k− n)!
(i− j)!(k− n+ j)!

=
i!

j!(i− j)!
k!

(n− j)!(k− n+ j)!
n!

m!(n− m)!
(i+ k− n)!

(i− m)!(k− n+ m)!

= γ(i,k)n,j,m.

Using this, we get
Γ(i,k)m,n−mΓ

(i,k)
j,n−j = (γ(i,k)n,m,j)

2, (D.13)

allowing us to simplify Equation (D.11) into

B(i,k)
n =

min(i,n)∑
m,j=max(0,n−k)

(−1)m+jγ(i,k)n,m,jηk−n+m+j(1− η)i+n−m−j, (D.14)

or,

B(i,k)
n =

min(i,n)∑
m,j=max(0,n−k)

(−1)m+j
(
i
m

)(
k

n− m

)(
n
j

)(
i+ k− n
i− j

)
ηk−n+m+j(1− η)i+n−m−j.

(D.15)
This last expression is quite cumbersome. Therefore, we are tempted to find a relation connect-
ing these probabilities that would be easier to handle. The generating functions allow to prove
such a relation.
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E Transition probabilities ofN-mode passive Gaussian unitaries

E.1 Derivation of the generating function of the transition probabilities

In this section, we prove Lemma 7, by computing the 2N-variate generating function of the
transition probabilities B(i)

n defined in Section 5.3. We explained that the generating function
could be written as

f PI(x, z) =

(
N∏
s=1

(1− xs)−1
)(

N∏
r=1

(1− zr)−1
)
Tr
[
UPIΓxUPI†Γz

]
, (E.1)

The overlap between the two Gaussian statesUPIΓxUPI† andΓz of respective covariance matrices
V′
x and Vz is given by

Tr
[
UPIΓxUPI†Γz

]
=

(
det
[
V′
x + Vz

2

])−1/2

= 2N (det [V′
x + Vz])

−1/2
. (E.2)

If we define

X̃ =
N⊕
s=1

(
1+ xs
1− xs

)
, Z̃ =

N⊕
r=1

(
1+ zr
1− zr

)
, (E.3)

det [V′
x + Vz] = det

[(
UX̃UT)⊕ (UX̃UT)+ Z̃⊕ Z̃

]
= det

[(
UX̃UT + Z̃

)
⊕
(
UX̃UT + Z̃

)]
= det

[(
UX̃UT + Z̃

)]
det
[(
UX̃UT + Z̃

)]
=
(
det
[(
UX̃UT + Z̃

)])2
.

Consequently,
Tr
[
UPIΓxUPI†Γz

]
= 2N

(
det
[(
UX̃UT + Z̃

)])−1
. (E.4)

Using this, we end up with

f PI(x, z) = 2N
(
det [1N − X] det [1N − Z] det

[
UX̃UT + Z̃

])−1
, (E.5)

where1N is the identity matrix of dimensionN,X =
⊕N

s=1 xs andZ =
⊕N

r=1 zr. The generating
function can be further simplified as follows,

f PI(x, z) = 2N
(
det [1N − X] det

[
(1N − Z)UX̃UT + (1N − Z) Z̃

])−1

= 2N
(
det [1N − X] det

[
(1N − Z)UX̃UT + (1N + Z)

])−1

= 2N
(
det [1N − X] det

[
UT (1N − Z)UX̃+ UT (1N + Z)U

])−1

= 2N
(
det
[
UT (1N − Z)UX̃ (1N − X) + UT (1N + Z)U (1N − X)

])−1
,

f PI(x, z) = 2N
(
det
[
UT (1N − Z)U (1N + X) + UT (1N + Z)U (1N − X)

])−1
. (E.6)
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The determinant of a matrix M of dimension N can be defined using the Leibniz formula

det[M] =
∑
σ∈SN

(
sgn(σ)

N∏
i=1

Mi,σ i

)
, (E.7)

where the sum is computed over all permutations σ of the set σ(0) = {1, 2, . . . ,N}, SN denoting
the symmetric group on N elements. sgn(σ) denotes the signature of σ, which is equal to 1
whenever the reordering given by σ can be achieved by successively interchanging two entries
an even number of times, and −1 otherwise.

Example 3. For instance, if N = 2, σ(0) = {1, 2}, and

S2 = {{1, 2} , {2, 1}} , (E.8)

with
sgn ({1, 2}) = 1, sgn ({2, 1}) = −1, (E.9)

so that

det[M] =

(
2∏
i=1

Mi,σ i

)
σ={1,2}

−

(
2∏
i=1

Mi,σ i

)
σ={2,1}

= M11M22 −M12M21.

We begin by calculating(
UT (1N − Z)U (1N + X)

)
ij =

∑
k

(
UT (1N − Z)

)
ik (U (1N + X))kj

=
∑
krs

uri (1N − Z)rk uks (1N + X)sj

=
∑
k

uki (1N − Z)kk ukj (1N + X)jj

=
∑
k

ukiukj(1− zk)(1+ xj),

where we chose to define the elements of the matrix U as uij. If

M = UT (1N − Z)U (1N + X) + UT (1N + Z)U (1N − X) , (E.10)

then

Mij =
∑
k

ukiukj
[
(1− zk)(1+ xj) + (1+ zk)(1− xj)

]
= 2

∑
k

ukiukj(1− xjzk). (E.11)
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We now have

f PI(x, z) = 2N
(∑

σ∈SN

(
sgn(σ)

N∏
i=1

2
∑
k

ukiukσ i(1− xσ izk)

))−1

(E.12)

so that, if we define f̄(x, z) = (f PI(x, z))−1,

f̄(x, z) =
∑
σ∈SN

(
sgn(σ)

N∏
i=1

∑
k

ukiukσ i(1− xσ izk)

)
. (E.13)

Since U is orthogonal,

f̄(x, z) =
∑
σ∈SN

(
sgn(σ)

N∏
i=1

[∑
k

ukiukσ i −
∑
k

ukiukσ ixσ izk

])

=
∑
σ∈SN

(
sgn(σ)

N∏
i=1

[
δi,σ i −

∑
k

ukiukσ ixσ izk

])

=
∑
σ∈SN

(
sgn(σ)

N∏
i=1

[δi,σ i − ci,σ i ]

)
,

where we defined

ci,σ i =
N∑
k=1

ukiukσ ixσ izk. (E.14)

Notice that this means

f̄(x, z) = det [1N − C] = det
[
1N − UTZUX

]
. (E.15)

We need to show that

f̄(x, z) =
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 det [X (α)] det [Z (β)] . (E.16)

We begin by expanding

N∏
i=1

[δi,σ i − ci,σ i ] =
∑
ν∈Pn

(∏
i∈ν

δi,σ i

)∏
j∈ν̄

(−cj,σ j)

 , (E.17)

where σ(0) = {1, 2, . . . ,N}was defined earlier,PN is the power set of σ(0) (the set of all subsets
of σ(0), including the empty set and σ(0) itself), and ν̄ is the relative complement of ν in σ(0), i.e,
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ν̄ = σ(0) \ ν =
{
i ∈ σ(0)|i ̸∈ ν

}
. We also choose the convention∏

i∈∅

ti = 1, (E.18)

for any sequence ti. Using the definition of the cardinality |ν| of a set ν, we get

N∏
i=1

[δi,σ i − ci,σ i ] =
∑
ν∈PN

(−1)|̄ν|
(∏

i∈ν

δi,σ i

)∏
j∈ν̄

cj,σ j

 . (E.19)

Example 4. For instance, if N = 2, σ(0) = {1, 2}, and

P2 = {∅, {1} , {2} , {1, 2}} , (E.20)

so that

2∏
i=1

[δi,σ i − ci,σ i ] =

(∏
i∈∅

δi,σ i

) ∏
j∈{1,2}

(−cj,σ j)

+

∏
i∈{1}

δi,σ i

∏
j∈{2}

(−cj,σ j)


+

∏
i∈{2}

δi,σ i

∏
j∈{1}

(−cj,σ j)

+

 ∏
i∈{1,2}

δi,σ i

∏
j∈∅

(−cj,σ j)


= c1,σ1c2,σ2 − δ1,σ1c2,σ2 − δ2,σ2c1,σ1 + δ1,σ1δ2,σ2 ,

and σ ∈ S2 = {{1, 2} , {2, 1}}, meaning that(
2∏
i=1

[δi,σ i − ci,σ i ]

)∣∣∣∣∣
σ={1,2}

= c11c22 − c22 − c11 + 1, (E.21)

and (
2∏
i=1

[δi,σ i − ci,σ i ]

)∣∣∣∣∣
σ={2,1}

= c12c21. (E.22)

In the end, since
cij = xj(u1iu1jz1 + u2iu2jz2), (E.23)
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we end up with

f̄(x, z) = c11c22 − c22 − c11 + 1− c12c21

= x1(u11u11z1 + u21u21z2)x2(u12u12z1 + u22u22z2)− x2(u12u12z1 + u22u22z2)

− x1(u11u11z1 + u21u21z2) + 1− x2(u11u12z1 + u21u22z2)x1(u12u11z1 + u22u21z2),

f̄(x, z) = 1− u211x1z1 − u222x2z2 − u221x1z2 − u212x2z1

+ (u211u
2
22 + u221u

2
12 − 2u11u12u22u21)x1x2z1z2

+ (u211u
2
12 − u211u

2
12)x1x2z

2
1 + (u221u

2
22 − u221u

2
22)x1x2z

2
2

= 1− u211x1z1 − u222x2z2 − u221x1z2 − u212x2z1 + x1x2z1z2.

One can understand that ∏
i∈ν

N∑
k=1

bik =
∑

α∈(σ(0))|ν|

|ν|∏
k=1

bνkαk , (E.24)

where, in the notation we used, the set (σ(0))|ν| represents the |ν|-fold Cartesian product of the
set σ(0) with itself. In this case,

∏
j∈ν̄

cj,σ j =
∏
j∈ν̄

N∑
k=1

ukjukσ jxσ jzk =
∑

α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk . (E.25)

This leads to

N∏
i=1

[δi,σ i − ci,σ i ] =
∑
ν∈PN

(−1)|̄ν|
(∏

i∈ν

δi,σ i

) ∑
α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk

 , (E.26)

and

f̄(x, z) =
∑
σ∈SN

[
sgn(σ)

∑
ν∈PN

(−1)|̄ν|
(∏

i∈ν

δi,σ i

)

×

 ∑
α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk

 .

Since the power setPN does not depend on σ ∈ SN, we can exchange the summations on ν and
σ, so that

f̄(x, z) =
∑
ν∈PN

(−1)|̄ν|
∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

) ∑
α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk . (E.27)

We divide the summation over ν ∈ PN in two summations, one over the cardinality m = |ν|
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going from 0 to N, and one over the sets ν of cardinality m, getting

f̄(x, z) =
N∑

m=0

(−1)N−m
∑
ν∈PN
|ν|=m

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

) ∑
α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk . (E.28)

Define

f̄m(x, z) =
∑
ν∈PN
|ν|=m

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

) ∑
α∈(σ(0))|̄ν|

|̄ν|∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk . (E.29)

Since the set σ(0) is unique, we can exchange the summation on σ with the one on α, so that

f̄m(x, z) =
∑
ν∈PN
|ν|=m

∑
α∈(σ(0))N−m

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)
N−m∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk . (E.30)

The set (σ(0))|ν| represents the |ν|-fold Cartesian product of the set σ(0) with itself. It can be
seen as the set of all possible |ν|-element sets , whose elements are between 1 and N, as well
as all their possible permutations. If we denote by Q(N)

|ν| the set of all possible |ν|-element sets
whose elements are between 1 and N, we have∑

α∈(σ(0))N−m

=
∑

β∈Q(N)
N−m

∑
α∈π(β)

, (E.31)

where π (β) represents the set of all possible permutations of β. With this, we have

f̄m(x, z) =
∑
ν∈PN
|ν|=m

∑
β∈Q(N)

N−m

∑
α∈π(β)

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)
N−m∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk , (E.32)

and define

f̄ (ν̄,β)m (x, z) =
∑
α∈π(β)

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)
N−m∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk , (E.33)

where β is a (N − m)-element set whose elements have values between 1 and N and ν̄ ∈ PN

such that |ν̄| = N− m. Remember that this means

f̄(x, z) =
N∑

m=0

(−1)N−m̄fm(x, z) =
N∑

m=0

(−1)N−m
∑
ν∈PN
|ν|=m

∑
β∈Q(N)

N−m

f̄ (ν̄,β)m (x, z). (E.34)
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Rearranging the summations,

f̄ (ν̄,β)m (x, z) =
∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

) ∑
α∈π(β)

N−m∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk , (E.35)

and, if Ñ = N− m,

∑
α∈π(β)

Ñ∏
k=1

uαk ν̄kuαkσ ν̄kxσ ν̄kzαk =
∑
α∈π(β)

 Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

 Ñ∏
l=1

zαl


=
∑
α∈π(β)

 Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

 Ñ∏
l=1

zβl


=
∑
α∈π(β)

 Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

∏
l∈β

zl


=

∑
α∈π(β)

Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

∏
l∈β

zl

 ,

since β is chosen so that |β| = Ñ = N− m, so that

f̄ (ν̄,β)m (x, z) =

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)∑
α∈π(β)

Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

∏
l∈β

zl

 .

(E.36)
If we define Z (β) as the sub-matrix of Z corresponding to the rows and columns whose indices
belong in β, we can rewrite f (ν̄,β)m as

f̄ (ν̄,β)m (x, z) =

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)∑
α∈π(β)

Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

 Ñ∏
j=1

xσ ν̄j

 det [Z (β)] .

(E.37)

Remark 7. Since β is a (N − m)-element set whose elements have values between 1 and N in
general, β can have elements with the same values (meaning that, if N−m = 2 for instance, we
can have products like z21). According to what we conjectured, these instances of β (β = {1, 1}
in our example) have to simplify and disappear in the end of our calculation.

The product over the xs can be rewritten as

f̄ (ν̄,β)m (x, z) = det [Z (β)]
∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

)∑
α∈π(β)

Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

∏
j∈ν̄

xσ j

 ,

(E.38)
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and, rearranging the summations again,

f̄ (ν̄,β)m (x, z) = det [Z (β)]
∑
α∈π(β)

∑
σ∈SN

sgn(σ)

(∏
i∈ν

δi,σ i

) Ñ∏
k=1

uαk ν̄kuαkσ ν̄k

∏
j∈ν̄

xσ j

 .

(E.39)
The factor

∏
i∈ν δi,σ i eliminates some of the σ in the summation over all the elements of SN,

depending on the ν (or ν̄). The goal here is to clarify the index σ j of ulσ j and xσ j , for j ∈ ν̄. Taking
into account the factor

∏
i∈ν δi,σ i , one can understand that the index will actually span all the

permutations θ of ν̄. It also happens that sgn(σ) which appears in the summation over σ will be
equal to sgn(θ), taking the convention that ν̄ is always ordered. Having this in mind, we get

f̄ (ν̄,β)m (x, z) = det [Z (β)]
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 |̄ν|∏
j=1

xθj

 , (E.40)

where π (ν̄) represents the set of all possible permutations of ν̄.

Remark 8. In Remark (7) we explained that we could have products zizj with i = j, but that
they would eventually disappear. Notice here that the same cannot be said about products of
the form xixj, for which we always have i ̸= j, which is in accordance with what we conjectured.

The product
(∏|̄ν|

j=1 xθj
)

is the same for all permutations θ of the same ν̄, so that

f̄ (ν̄,β)m (x, z) = det [Z (β)]
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 |̄ν|∏
j=1

xν̄j

 , (E.41)

f̄ (ν̄,β)m (x, z) = det [Z (β)]

∏
j∈ν̄

xj

 ∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 , (E.42)

f̄ (ν̄,β)m (x, z) = det [Z (β)] det [X (ν̄)]
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 . (E.43)

This means that

f̄m(x, z) =
∑
ν∈PN
|ν|=m

∑
β∈Q(N)

N−m

det [Z (β)] det [X (ν̄)]
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 , (E.44)

f̄(x, z) =
N∑

m=0

(−1)N−m
∑
ν∈PN
|ν|=m

∑
β∈Q(N)

N−m

det [Z (β)] det [X (ν̄)]
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
k=1

uαk ν̄kuαkθk

 ,

(E.45)
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and, changing the summation over the ν ∈ PN into an equivalent summation over the ν̄ ∈ PN,

f̄(x, z) =
N∑

m=0

(−1)N−m
∑

β∈Q(N)
N−m

∑
ν̄∈PN

|̄ν|=N−m

det [Z (β)] det [X (ν̄)]
∑
θ∈π(ν̄)

sgn(θ)
∑
α∈π(β)

 Ñ∏
k=1

uαk ν̄kuαkθk

 .

(E.46)
The last product in f̄(x, z) can be written as

Ñ∏
k=1

uαk ν̄kuαkθk =
Ñ∏
k=1

U (α, ν̄)kk U (α, θ)kk

=

 Ñ∏
k=1

U (α, ν̄)kk

 Ñ∏
j=1

U (α, θ)jj

 ,

so that

∑
θ∈π(ν̄)

sgn(θ)
Ñ∏
k=1

uαk ν̄kuαkθk =

 Ñ∏
k=1

U (α, ν̄)kk

 ∑
θ∈π(ν̄)

sgn(θ)

 Ñ∏
j=1

U (α, θ)jj


=

 Ñ∏
k=1

U (α, ν̄)kk

 det [U(α, ν̄)] .

Since exchanging two rows of a matrix changes the sign of its determinant, we have

det [U(β, ν̄)] = sgn(α) det [U(α, ν̄)] , α ∈ π (β) , (E.47)

so that

∑
θ∈π(ν̄)

sgn(θ)
Ñ∏
k=1

uαk ν̄kuαkθk =

 Ñ∏
k=1

U (α, ν̄)kk

 sgn(α) det [U(β, ν̄)] , α ∈ π (β) , (E.48)

⇒
∑
α∈π(β)

∑
θ∈π(ν̄)

sgn(θ)
Ñ∏
k=1

uαk ν̄kuαkθk =
∑
α∈π(β)

 Ñ∏
k=1

U (α, ν̄)kk

 sgn(α) det [U(β, ν̄)]

= det [U(β, ν̄)]
∑
α∈π(β)

sgn(α)

 Ñ∏
k=1

U (α, ν̄)kk


= det [U(β, ν̄)] det [U(β, ν̄)]

= (det [U(β, ν̄)])2 .
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Using this, we end up with

f̄(x, z) =
N∑

m=0

(−1)N−m
∑

β∈Q(N)
N−m

∑
ν̄∈PN

|̄ν|=N−m

det [Z (β)] det [X (ν̄)] (det [U(β, ν̄)])2 , (E.49)

⇔ f̄(x, z) =
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 det [Z (β)] det [X (α)] , (E.50)

where R(N)
m is the set of all subsets of {1, 2, . . . ,N} of cardinality m. Finally, the generating

function of the probabilities B(i)
n , i ∈ NN

+, n ∈ NN
+ is of the form

f PI(x, z) =

 N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 det [Z (β)] det [X (α)]

−1

. (E.51)

This concludes the proof.

E.2 Proof of the recurrence relation for the transition probabilities

In this section, we prove Theorem 29, by showing that the probabilitiesB(i)
n verify the recurrence

relation

B(i)
n =

N∑
m=1

(−1)m−1
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

. (E.52)

Equation (E.51) implies that

f PI(x, z)

 N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 det [Z (β)] det [X (α)]

 = 1, (E.53)

we explicitly write the determinants of Z (β) and X (α),

N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2
∏

j∈α

xj

∏
m∈β

zm

 f PI(x, z) = 1, (E.54)

and divide both sides of the equation by
∏N

l=1 xlzl,

⇒
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2
∏

j∈ᾱ

x−1
j

∏
m∈β̄

z−1
m

 f PI(x, z) =
N∏
l=1

x−1
l z−1

l ,

(E.55)
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where ᾱ(β̄) is the relative complement of α(β) in σ(0) = {1, 2, . . . ,N}. Now,

f PI(x, z) = Ti,n
[
B(i)
n

]
(x, z)

= Tīα,nβ̄

[
Tiα,nβ

[
B(i)
n

] (
xα, zβ

)] (
xᾱ, zβ̄

)
=
∑
īα∈N|̄α|

0

∑
nβ̄∈N

|β̄|
0

Tiα,nβ

[
B(i)
n

] (
xα, zβ

)(∏
s∈ᾱ

xiss

)∏
r∈β̄

znrr

 ,

where iα is the subset of i containing the elements whose index is in α. For any sequence
{
cīα,nβ̄

}
,

one can show that,∑
īα∈N|̄α|

0

∑
nβ̄∈N

|β̄|
0

cīα,nβ̄ =
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∑
iγ∈N|γ|

1

∑
nω∈N|ω|

1

cīα,nβ̄
∣∣∣
īα\γ=0,nβ̄\ω=0

, (E.56)

where P(α) denotes the power set of α and N1 is the set of all natural numbers not including
zero, so that

f PI(x, z) =
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∑
iγ∈N|γ|

1

∑
nω∈N|ω|

1

(
Tiα,nβ

[
B(i)
n

] (
xα, zβ

)

×

(∏
s∈ᾱ

xiss

)∏
r∈β̄

znrr

∣∣∣∣∣∣
īα\γ=0,nβ̄\ω=0

,

f PI(x, z) =
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∑
iγ∈N|γ|

1

∑
nω∈N|ω|

1

∏
s∈γ

xiss

(∏
r∈ω

znrr

)

× Tiα,nβ

[
B(

i,īα\γ=0)
n,nβ̄\ω=0

] (
xα, zβ

)
,

f PI(x, z) =
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∑
iγ∈N|γ|

0

∑
nω∈N|ω|

0

∏
s∈γ

xis+1
s

(∏
r∈ω

znr+1
r

)

× Tiα,nβ

[
B
(
i+1(γ)N ,īα\γ=0

)
n+1(ω)N ,nβ̄\ω=0

] (
xα, zβ

)
.

Since∏
j∈ᾱ

x−1
j

∏
m∈β̄

z−1
m

 =

∏
s∈γ

x−1
s

∏
r∈γ

z−1
r

∏
j∈ᾱ\γ

x−1
j

 ∏
m∈β̄\ω

z−1
m

 , (E.57)
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we get∏
j∈ᾱ

x−1
j

∏
m∈β̄

z−1
m

 f PI(x, z) =
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∏
j∈ᾱ\γ

x−1
j

 ∏
m∈β̄\ω

z−1
m


×
∑

iγ∈N|γ|
0

∑
nω∈N|ω|

0

∏
s∈γ

xiss

(∏
r∈ω

znrr

)

× Tiα,nβ

[
B
(
i+1(γ)N ,īα\γ=0

)
n+1(ω)N ,nβ̄\ω=0

] (
xα, zβ

)
.

From Equation (E.55),

N∏
l=1

(xlzl)−1 =
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∏
j∈ᾱ\γ

x−1
j

 ∏
m∈β̄\ω

z−1
m


×
∑

iγ∈N|γ|
0

∑
nω∈N|ω|

0

∏
s∈γ

xiss

(∏
r∈ω

znrr

)

× Tiα,nβ

[
B
(
i+1(γ)N ,īα\γ=0

)
n+1(ω)N ,nβ̄\ω=0

] (
xα, zβ

)
,

with U (β, α) = Uβ,α and |Uβ,α| = det [U (β, α)]. We define γ̃ = ᾱ\γ, and change the summa-
tion over the γ into a summation over the γ̃, and do the same for the ω, before doing the change
of variables γ̃ to γ and ω̃ to ω, getting

N∏
l=1

(xlzl)−1 =
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2
∑

γ∈P(ᾱ)

∑
ω∈P(β̄)

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)

×
∑

īα\γ∈N
|̄α|−|γ|
0

∑
nβ̄\ω∈N

|β̄|−|ω|
0

∏
s∈ᾱ\γ

xiss

∏
r∈β̄\ω

znrr


× Tiα,nβ

[
B
(
i+1(ᾱ\γ)N ,iγ=0

)
n+1(β̄\ω)N ,nω=0

] (
xα, zβ

)
.

203



APPENDIX

We add factors such as Δγ∈P(ᾱ), which is equal to one if γ ∈ P(ᾱ) and zero else, in order to
remove the dependence on ᾱ in the sum over the γ (same for the sum over the ω),

N∏
l=1

(xlzl)−1 =
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2
∑
γ∈PN

∑
ω∈PN

Δγ∈P(ᾱ)Δω∈P(β̄)

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)

×
∑

īα\γ∈N
|̄α|−|γ|
0

∑
nβ̄\ω∈N

|β̄|−|ω|
0

∏
s∈ᾱ\γ

xiss

∏
r∈β̄\ω

znrr


× Tiα,nβ

[
B
(
i+1(ᾱ\γ)N ,iγ=0

)
n+1(β̄\ω)N ,nω=0

] (
xα, zβ

)
.

Rearranging some terms, we get

N∏
l=1

(xlzl)−1 =
∑
γ∈PN

∑
ω∈PN

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2Δγ∈P(ᾱ)Δω∈P(β̄)

×
∑

īα\γ∈N
|̄α|−|γ|
0

∑
nβ̄\ω∈N

|β̄|−|ω|
0

∏
s∈ᾱ\γ

xiss

∏
r∈β̄\ω

znrr


× Tiα,nβ

[
B
(
i+1(ᾱ\γ)N ,iγ=0

)
n+1(β̄\ω)N ,nω=0

] (
xα, zβ

)
.

Since ᾱ ∪ α = β̄ ∪ β = σ(0), we have (ᾱ\γ) ∪ α = σ(0)\γ, and similarly, (β̄\ω) ∪ β = σ(0)\ω,

N∏
l=1

(xlzl)−1 =
∑
γ∈PN

∑
ω∈PN

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)
N∑

m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2Δγ∈P(ᾱ)Δω∈P(β̄)

× Ti
σ(0)\γ ,nσ(0)\ω

[
B
(
i+1(ᾱ\γ)N ,iγ=0

)
n+1(β̄\ω)N ,nω=0

] (
xσ(0)\γ, zσ(0)\ω

)
.

Since in the generating function, only the probability depends on either α, β orm, we can incor-
porate the summations over these three sets into the generating function, getting

N∏
l=1

(xlzl)−1 =
∑
γ∈PN

∑
ω∈PN

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)

× T(
i
σ(0)\γ ,nσ(0)\ω

)
[

N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2Δγ∈P(ᾱ)Δω∈P(β̄)

× B
(
i+1(ᾱ\γ)N ,iγ=0

)
n+1(β̄\ω)N ,nω=0

] (
xσ(0)\γ, zσ(0)\ω

)
.

(E.58)
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If γ = ω = σ(0), the corresponding term in the right-hand side of Equation (E.58) is equal to
the left-hand side of the latter. If γ = ω = ∅, the corresponding term in the right-hand side of
Equation (E.58) is actually the generating function of

N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

(det [U (β, α)])2 B
(
i+1(ᾱ)N

)
n+1(β̄)N

, (E.59)

which, according to what we conjectured, should be equal to zero. We can write Equation (E.58)
as

N∏
l=1

(xlzl)−1 =
∑
γ∈PN

∑
ω∈PN

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)

× T(
i
σ(0)\γ ,nσ(0)\ω

)
[

N∑
m=0

(−1)m
∑

α∈R(N)
m

∑
β∈R(N)

m

|Uβ,α|2Δγ∈P(ᾱ)Δω∈P(β̄)

× B
(
i+1(ᾱ)N −1(γ)N ,iγ=0

)
n+1(β̄)N −1(ω)N ,nω=0

] (
xσ(0)\γ, zσ(0)\ω

)
.

(E.60)
Now, if when iγ = 0 (as it is the case in the probabilities), we only consider the α such that
is ̸= 0,∀s ∈ α, it will mean that γ ⊂ ᾱ, which is true if and only if γ ∈ P(ᾱ) (same reasoning
for the ω). We can therefore remove the Δ factors, and add a condition in the summations over
the α and β, ending up with

N∏
l=1

(xlzl)−1 =
∑
γ∈PN

∑
ω∈PN

∏
j∈γ

x−1
j

(∏
m∈ω

z−1
m

)

× T(
i
σ(0)\γ ,nσ(0)\ω

)
[

N∑
m=0

(−1)m
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

|Uβ,α|2

× B
(
i+1(ᾱ)N −1(γ)N ,iγ=0

)
n+1(β̄)N −1(ω)N ,nω=0

] (
xσ(0)\γ, zσ(0)\ω

)
.

(E.61)

The relation we conjectured is

B(i)
n =

N∑
m=1

(−1)m−1
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

. (E.62)
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It can be rewritten

N∑
m=0

(−1)m
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

= 0. (E.63)

Choose iγ = 0 and nω = 0 in the last relation, i.e.,

N∑
m=0

(−1)m
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i−1(α)N

)
n−1(β)N

∣∣∣∣
nω=0,iγ=0

. (E.64)

We can always choose to add 1 to all the elements of iσ(0)\γ and nσ(0)\ω, without changing the
relation,

N∑
m=0

(−1)m
∑

α∈R(N)
m

is ̸=0,s∈α

∑
β∈R(N)

m
nr ̸=0,r∈β

(det [U (β, α)])2 B
(
i+1(ᾱ)N −1(γ)N

)
n+1(β̄)N −1(ω)N

∣∣∣∣
nω=0,iγ=0

, (E.65)

which is exactly the term appearing in the generating function in Equation (E.61). This actually
means that, if the recurrence relation is true for i and n such that iγ = 0 and nω = 0, for all
(γ + ω) ∈ ((PN + PN) \∅), then it is true for γ = ∅ andω = ∅. Since the relation is obviously
true for γ = σ(0) and ω = σ(0), we can proceed by recurrence to show that it is true for any γ
and ω.
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F. FOCK-MAJORIZATION IN PASSIVE-ENVIRONMENT CHANNELS

F Fock-majorization in passive-environment channels

F.1 Fock-majorization preservation in phase-conjugate channels

Lemma17. Thequantum-limited phase-conjugate channel ÃG of arbitrary gainG exhibits a ladder
of Fock-majorization relations

ÃG
[
|i⟩ ⟨i|

]
≻F ÃG

[
|i+ 1⟩ ⟨i+ 1|

]
, ∀i ≥ 0. (F.1)

Proof. We have

ω(i) := ÃG
[
|i⟩ ⟨i|

]
=

∞∑
n=0

A(i,0)
i+n |n⟩ ⟨n| , (F.2)

where the A(i,0)
i+n are defined in Equation (9.33). Note that the diagonal of AG

[
|i⟩ ⟨i|

]
in fact

corresponds to the diagonal of ÃG
[
|i⟩ ⟨i|

]
, shifted by an index i. The differences between the

cumulated sums of eigenvalues are given by

j∑
n=0

A(i,0)
i+n −

j∑
n=0

A(i+1,0)
i+1+n = (G− 1)A(i+1,0)

i+1+j ≥ 0,∀j ≥ 0, (F.3)

where we used Equation (9.35) again. This gives the Fock-majorization relation ω(i) ≻F ω(i+1).

Corollary 8. Phase-conjugate Gaussian bosonic channels are majorization-preserving over the set
of passive states.

Proof. Using Lemma 17 together with Theorem 33, we obtain that the quantum-limited phase-
conjugate channel ÃG, whose adjoint is 1/(G− 1) times the quantum-limited phase-conjugate
channel ÃG/(G−1), is passive preserving. Since any phase-conjugate Gaussian bosonic channel
G can be expressed as the concatenation of a pure loss channelB and a quantum-limited phase-
conjugate channel Ã, i.e., G = Ã ◦ B, and since passive preservation is transitive over channel
composition, we deduce (following the reasoning of Theorems 36 and 37, and Corollary 6) that
phase-conjugate Gaussian bosonic channels are passive preserving, Fock-majorization preserv-
ing, and majorization- reserving over the set of passive states.

F.2 Theorem 34 for passive-environment channels

Here, we simply explain that any passive-environment channel B↓
η satisfies both

⟨n|
(
B↓
η [|i⟩ ⟨j|]

)
|n⟩ = 0, ∀i ̸= j, (F.4)

207



APPENDIX

and
⟨n|
(
B↓
η [|i⟩ ⟨i|]

)
|m⟩ = 0, ∀n ̸= m. (F.5)

Proof. We need to show that if ρ is diagonal in the Fock basis, B↓
η [ρ] is also diagonal in the Fock

basis, while if ρ is non-diagonal in the Fock basis, its non-diagonal elements do not contribute
to the diagonal elements of B↓

η [ρ]. We have that

UBS
η |i, k⟩ =

i+k∑
n=0

b(i,k)n |n, i+ k− n⟩ , (F.6)

where the b(i,k)n ∈ C are defined in Equation (5.29). If we define our passive channel as in
Equation (7.7), we have

B↓
η [|i⟩ ⟨j|] =

∑
k

λ↓kTrE
[
UBS

η (|i⟩ ⟨j| ⊗ |k⟩ ⟨k|)UBS†
η

]
=
∑
k

λ↓k
∑
l

⟨l|E

(
i+k∑
n=0

b(i,k)n |n, i+ k− n⟩

)

×

( j+k∑
m=0

b(j,k)∗m ⟨m, j+ k− m|

)
|l⟩E

=
∑
k

λ↓k
∑
n

b(i,k)n b(j,k)∗n+j−i |n⟩ ⟨n+ j− i| .

(F.7)

We end up with
B↓
η [|i⟩ ⟨i|] =

∑
k

λ↓k
∑
n

|b(i,k)n |2 |n⟩ ⟨n| , (F.8)

which means that if ρ is diagonal in the Fock basis, B↓
η [ρ] is also diagonal in the Fock basis.

Furthermore, Equation (F.7) tells us that if ρ is non-diagonal in the Fock basis, its non-diagonal
elements do not contribute to the diagonal elements of B↓

η [ρ].

Now, the exact same reasoning can be applied to passive-environment channels A↓
G defined

as
A↓

G [ρ] = Tr2
[
UTMS

λ

(
ρ⊗ σ↓

)
UTMS†

λ

]
, (F.9)

for any passive environment σ↓, by obviously replacing the beam splitter UBS
η by the two-mode

squeezerUTMS
λ , and the amplitudes b(i,k)n by a(i,k)n . This means that the channelsA↓

G verify Equa-
tions (F.4) and (F.5) as well.
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G. CONSERVATION OF PASSIVITY AFTER PASSIVE POST-SELECTION

G Conservation of passivity after passive post-selection

In this section, we prove Lemma 16, which states that for any two passive states σ↓1 and σ↓2 , the
one-mode state

ρ =
ρ̃

Tr [ρ̃]
, where ρ̃ = Tr2

[(
I⊗ σ↓3

)
UBS

η

(
σ↓1 ⊗ σ↓2

)
UBS†

η

]
, (G.1)

is passive as well, for any one-mode passive state σ↓3 . In order to show this, we simply generalise
the proof of Theorem 39, by including a post-selection on a passive state. For the purpose of
symmetry, we define d(i,k)n,m = B(i,k)

n , where m = i + k − n. Since, d(i,k)n,m = | ⟨n,m|UBS
η |i, k⟩ |2,

we need to show that

Γ(I,K)n,M =
I∑

i=0

K∑
k=0

M∑
m=0

(
d(i,k)n,m − d(i,k)n+1,m

)
≥ 0. ∀I,K,M, n ≥ 0. (G.2)

Using the recurrence relation of Equation (6.1) for j = 1 again, we have that

Γ(I,K)n,M =
I∑

i=0

K∑
k=0

M∑
m=0

(
d(i,k)n,m − ηd(i−1,k)

n,m

)
−

I∑
i=0

K∑
k=0

M∑
m=0

(
(1− η)d(i−1,k)

n+1,m−1 + ηd(i,k−1)
n+1,m−1 + (1− η)d(i,k−1)

n,m − d(i−1,k−1)
n,m−1

)
.

After some calculations, we get

Γ(I,K)n,M = η
I∑

i=0

K∑
k=0

M∑
m=0

(
d(i,k)n,m − d(i−1,k)

n,m

)
+ (1− η)

I∑
i=0

K∑
k=0

M∑
m=0

(
d(i,k)n,m − d(i,k−1)

n,m

)
− (1− η)

I∑
i=0

K∑
k=0

M∑
m=0

d(i−1,k)
n+1,m−1 − η

I∑
i=0

K∑
k=0

M∑
m=0

d(i,k−1)
n+1,m−1 +

I∑
i=0

K∑
k=0

M∑
m=0

d(i−1,k−1)
n,m−1 ,

Γ(I,K)n,M = η
K∑

k=0

M∑
m=0

d(I,k)n,m + (1− η)
I∑

i=0

M∑
m=0

d(i,K)n,m

− (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n+1,m − η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n+1,m +
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m ,

Γ(I,K)n,M = η
K∑

k=0

M∑
m=0

d(I,k)n,m + (1− η)
I∑

i=0

M∑
m=0

d(i,K)n,m

− (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n+1,m − η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n+1,m

+ η
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m + (1− η)
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m ,
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Γ(I,K)n,M = η
K−1∑
k=0

M∑
m=0

d(I,k)n,m + η
M∑

m=0

d(I,K)n,m + (1− η)
I−1∑
i=0

M∑
m=0

d(i,K)n,m + (1− η)
M∑

m=0

d(I,K)n,m

− (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n+1,m − η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n+1,m

+ η
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m + (1− η)
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m ,

Γ(I,K)n,M = η
K−1∑
k=0

M−1∑
m=0

d(I,k)n,m + η
K−1∑
k=0

d(I,k)n,M + (1− η)
I−1∑
i=0

M−1∑
m=0

d(i,K)n,m + (1− η)
I−1∑
i=0

d(i,K)n,M +
M∑

m=0

d(I,K)n,m

− (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n+1,m − η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n+1,m

+ η
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m + (1− η)
I−1∑
i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m ,

Γ(I,K)n,M = η
K−1∑
k=0

d(I,k)n,M + (1− η)
I−1∑
i=0

d(i,K)n,M +
M∑

m=0

d(I,K)n,m

− (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n+1,m − η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n+1,m

+ η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

d(i,k)n,m + (1− η)
I−1∑
i=0

K∑
k=0

M−1∑
m=0

d(i,k)n,m ,

Γ(I,K)n,M = η
K−1∑
k=0

d(I,k)n,M + (1− η)
I−1∑
i=0

d(i,K)n,M +
M∑

m=0

d(I,K)n,m

+ η
I∑

i=0

K−1∑
k=0

M−1∑
m=0

(
d(i,k)n,m − d(i,k)n+1,m

)
+ (1− η)

I−1∑
i=0

K∑
k=0

M−1∑
m=0

(
d(i,k)n,m − d(i,k)n+1,m

)
,

so that,

Γ(I,K)n,M = η
K−1∑
k=0

d(I,k)n,M + (1− η)
I−1∑
i=0

d(i,K)n,M +
M∑

m=0

d(I,K)n,m

+ ηΓ(I,K−1)
n,M−1 + (1− η)Γ(I−1,K)

n,M−1 .

(G.3)

From Lemma 16, we know that Γ(I,K)n,I+K−n ≥ 0, for all I,K, n ≥ 0. Now, we know that the
first three terms on the left-hand side of Equation (G.3) are always positive. Using a recursive
argument for increasing values of I, K starting from 0 and decreasing values of M starting from
I + K − n, one can prove that Γ(I,K)n,M ≥ 0 , for all I,K, n,M ≥ 0. This, along with the fact that
any passive state can be written as a convex sum of projectors P↓l , ends the proof.
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