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Abstract
Uncertainty relations are central to quantum physics. While they were 
originally formulated in terms of variances, they have later been successfully 
expressed with entropies following the advent of Shannon information theory. 
Here, we review recent results on entropic uncertainty relations involving 
continuous variables, such as position x and momentum p . This includes the 
generalization to arbitrary (not necessarily canonically-conjugate) variables 
as well as entropic uncertainty relations that take x-p  correlations into 
account and admit all Gaussian pure states as minimum uncertainty states. 
We emphasize that these continuous-variable uncertainty relations can be 
conveniently reformulated in terms of entropy power, a central quantity in the 
information-theoretic description of random signals, which makes a bridge 
with variance-based uncertainty relations. In this review, we take the quantum 
optics viewpoint and consider uncertainties on the amplitude and phase 
quadratures of the electromagnetic field, which are isomorphic to x and p , but 
the formalism applies to all such variables (and linear combinations thereof) 
regardless of their physical meaning. Then, in the second part of this paper, we 
move on to new results and introduce a tighter entropic uncertainty relation 
for two arbitrary vectors of intercommuting continuous variables that takes 
correlations into account. It is proven conditionally on reasonable assumptions. 
Finally, we present some conjectures for new entropic uncertainty relations 
involving more than two continuous variables.
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1.  Introduction

The uncertainty principle lies at the heart of quantum physics. It exhibits one of the key dis-
crepancies between a classical and a quantum system. Classically, it is in principle possible 
to specify the exact value of all measurable quantities in a given state of a system. In contrast, 
in quantum physics, whenever two observables do not commute, it is impossible to define 
a quantum state for which their values are simultaneously specified with infinite precision. 
First expressed by Heisenberg, in 1927, for position and momentum [1] it was formalized by 
Kennard [2] as

σ2
xσ

2
p �

�2

4
� (1)
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where σ2
x  and σ2

p  denote the variance of the position x and momentum p, respectively, and � is 
the reduced Planck constant. Shortly after, it was generalized to any pair of observables that 
do not commute [3, 4]. The uncertainty principle then states that their values cannot both be 
sharply defined beyond some precision depending on their commutator.

Aside from variances, another natural way of measuring the uncertainty of a random vari-
able relies on entropy, the central quantity of Shannon information theory. In 1957, Hirschman 
stated the first entropic uncertainty relation [5] but was only able to prove a weaker form of it. 
His conjecture was proven in 1975 independently by Bialynicki-Birula and Mycielski [6] and 
by Beckner [7], making use of the work of Babenko [8]. It reads

h(x) + h( p) � ln(πe�)� (2)

where h(·) is the Shannon differential entropy (see footnote 6 for a dimensionless version of 
this uncertainty relation). This result is interesting not only because it highlights the fact that 
Shannon information theory can help better understand fundamental concepts of quantum 
mechanics, but also because it opened the way to a new and fruitful formulation of uncertainty 
relations. Why such a success? First because Shannon entropy is arguably the most relevant 
measure of the degree of randomness (or uncertainty) of a random variable: it measures, in 
some asymptotic limit, the number of unbiased random bits needed to generate the variable 
or the number of unbiased random bits that can be extracted from it. In particular, building 
on Shannon’s notion of entropy power, it can easily be seen that the entropic formulation of 
the uncertainty relation implies Heisenberg relation, so it is somehow stronger [9]. In addi-
tion, unlike variance, the entropy is a relevant uncertainty measure even for quantities that 
are not associated with a numerical value or do not have a natural order. Moreover, entropic 
uncertainty relations can be generalized in a such way that (nonclassical) correlations with the 
environment are taken into account: typically, entanglement between a system and its environ
ment can be exploited in order to reduce uncertainty. If an observer has access to a quantum 
memory, the entropic formulation allows one to establish stronger uncertainty relations, which 
is particularly useful in quantum key distribution [10, 11]. Uncertainty relations can then be 
used as a way to verify the security of a cryptographic protocol [12–15]. They also find appli-
cations in the context of separability criteria, that is, criteria that enable one to distinguish 
between entangled and non-entangled states. For example, the positive-partial-transpose sepa-
rability criterion for continuous variables [16–19] is based on uncertainty relations: it builds 
on the fact that a state is necessarily entangled if its partial transpose is not physical, which 
itself is observed by the violation of an uncertainty relation. While [16, 17] use variance-based 
uncertainty relations for this purpose, [18, 19] exploit Shannon differential entropies (sepa-
rability criteria can also be built with Rényi entropies [20]). In general, a tighter uncertainty 
relation enables detecting more entangled states, hence finding better uncertainty relations 
leads to better separability criteria [21].

Somehow surprisingly, although entropic uncertainty relations were first developed with 
continuous variables, a large body of knowledge has accumulated over years on their discrete-
variable counterpart. In a seminal work, Deutsch proved in 1983 that H(A) + H(B) has a 
nontrivial lower bound [22], where H(·) is the Shannon entropy and A and B are two incom-
patible discrete-spectrum observables. The lower bound was later improved by Kraus [23] 
and Maassen and Uffink [24], and much work followed on such uncertainty relations, with or 
without a quantum memory. We refer the reader to the recent review by Coles et al [25], where 
details on entropic uncertainty relations and their various applications can be found.

There is comparatively less available literature today on continuous-variable entropic 
uncertainty relations. Beyond [25], the older survey by Bialynicki-Birula and Rudnicki [26] 

J. Phys. A: Math. Theor. 52 (2019) 173001



Topical Review

4

focuses on continuous variables but is missing the most recent results, while the recent review 
by Toscano et al [27] is mainly concerned with coarse-grain measurements, which is a way 
to bridge the gap between discrete- and continuous-variable systems. With the present paper, 
we provide an up-to-date overview on continuous-variable entropic uncertainty relations that 
apply to any pair of canonically conjugate variables and linear combinations thereof. This 
review is meant to be balanced between the main results on this topic and some of our own 
recent contributions.

In section 2, we first go over variance-based uncertainty relations as they serve as a ref-
erence for the entropic ones. In section 3, we review the properties of Shannon differential 
entropy as well as the notion of entropy power, and then move on to entropy-based uncertainty 
relations. In particular, we define the entropic uncertainty relation due to Bialynicki-Birula 
and Mycielski in section 3.3, and then introduce the entropy-power formulation which we 
deem appropriate to express continuous-variable uncertainty relations. Sections 3.4 and 3.5 
are dedicated to more recent entropic uncertainty relations. In particular, the uncertainty rela-
tion of section 3.4 improves the Bialynicki-Birula and Mycielski relation by taking x-p  corre-
lations into account, and is then saturated by all pure Gaussian states. The entropic uncertainty 
relation of section 3.5 is defined for any two vectors of intercommuting continuous variables, 
which are not necessarily related by a Fourier transform. In section 3.6, we briefly mention 
other possible variants of entropic uncertainty relations. In the second part of this paper, we 
move on to new results and present in section 4 a tight entropic uncertainty relation that holds 
for two vectors of intercommuting continuous variables. This relation is called tight because 
it is saturated by all pure Gaussian states. Finally, we propose in section 5 several conjectures 
in order to define an entropic uncertainty relation for more than two variables, and prove one 
of them. More than two observables have long been considered for variance-based uncertainty 
relations [28–30], but, to our knowledge, no such result exists yet in terms of continuous 
entropies (except for a very recent conjecture by Kechrimparis and Weigert [31]).

In appendix A, we give a brief overview on Gaussian states and symplectic transformations, 
which should help readers who are less familiar with quantum optics to better understand this 
paper. Appendices B and C provide details on some calculations needed in section 4.

2.  Variance-based uncertainty relations

2.1.  Heisenberg–Kennard uncertainty relation

In 1927, Heisenberg first expressed an uncertainty relation between the position and momen-
tum of a particle. In a seminal paper [1], he exhibited a thought experiment—known as the 
Heisenberg’s microscope—for measuring the position of an electron. From this experiment, 
he concluded that there is a trade-off about how precisely the position x and momentum p  can 
be both measured, which he expressed as δx δp ∼ h, where h is the Planck constant. Shortly 
after, Kennard [2] mathematically formalized the uncertainty relation and proved that

σ2
xσ

2
p �

�2

4
� (3)

where σ2
x  and σ2

p  represent the variances of the position and momentum of a quantum particle 
and � = h/2π is the reduced Planck constant.

Note that, as expressed by Kennard, the uncertainty relation is actually a property of Fourier 
transforms. While Heisenberg had made a statement about measurements, Kennard’s form
ulation is really expressing an intrinsic property of the state. Following Heisenberg’s view, 
several papers have focused on finding an appropriate definition for measurement uncertainties 
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(see [32] for a review). In particular, Ozawa [33] derived an inequality about error-disturbance 
and claimed that this is a rigorous version of Heisenberg’s formulation of the uncertainty 
principle. Nevertheless, this claim is still a matter of debate (for more details, see for example 
[34, 35]). Nowadays, most textbooks adopt the view of Kennard, as we do here, even though 
equation (3) is most often called the Heisenberg uncertainty relation.

2.2.  Schrödinger–Robertson uncertainty relation

The uncertainty relation was originally formulated for position and momentum, but it is well 
known that it actually holds for any pair of canonically-conjugate variables, i.e. variables 
related to each other by a Fourier transform. For instance, the (amplitude and phase) quadra-
ture components of a mode of the electromagnetic field are canonically-conjugate variables 
behaving just as position and momentum3. Other canonical pairs can be defined, such as the 
charge and flux variables in a superconducting Josephson junction, verifying again equa-
tion (3). In fact, in 1928, Robertson [36] extended the formulation of the uncertainty principle 
to any two arbitrary observables Â and B̂ as

σ2
Aσ

2
B �

1
4
|〈ψ|[Â, B̂]|ψ〉|2� (4)

where [·, ·] stands for the commutator. Obviously, if Â = x̂ and B̂ = p̂, we recover Heisenberg 
uncertainty relation since [x̂, p̂] = i�. For simplicity, while being aware that uncertainty rela-
tions are expressed in terms of �, we now fix � = 1.

Relation (3) is invariant under (x, p)-displacements in phase space since it only depends on 
central moments (esp. second-order moments of the deviations from the mean). Furthermore, 
it is saturated by all pure Gaussian states provided that they are squeezed in the x or p  direction 
only. More precisely, if we define the covariance matrix

γ =

(
σ2

x σxp

σxp σ2
p

)
� (5)

where γij =
1
2 〈{r̂i, r̂j}〉 − 〈r̂i〉〈r̂j〉 and r = (x̂, p̂), we see that Heisenberg relation is saturated 

by pure Gaussian states provided the principal axes of γ  are aligned with the x- and p -axes, 
namely σxp = 0. The principal axes are defined as the xθ- and pθ-axes for which σxθ pθ = 0, 
where

x̂θ = cos θ x̂ + sin θ p̂, p̂θ = − sin θ x̂ + cos θ p̂� (6)

are obtained by rotating x̂ and p̂ by an angle θ as shown in figure 1.
The fact that equation (3) is saturated only by certain pure Gaussian states is linked to the fact 

that this uncertainty relation is not invariant under rotations in phase space. The problem of invari-
ance was solved in 1930 by Schrödinger [3] and Robertson [4], who added an anticommutator in 
relation (4). The improved uncertainty relation for any two arbitrary observables then reads

σ2
Aσ

2
B �

1
4

∣∣∣〈{A, B}〉 − 2〈A〉〈B〉
∣∣∣
2
+

1
4

∣∣∣〈[A, B]〉
∣∣∣
2

� (7)

3 From now on, we consider these quadrature variables, also noted as x and p , and do not make a distinction with 
their spatial counterparts. Thus, we take the quantum optics viewpoint on uncertainty relations and use the sym-
plectic formalism in phase space, see appendix A. We define, for example, uncertainty relations for n modes, while 
they could address n spatial degrees of freedom as well. Actually, the used formalism throughout the paper is quite 
general and applies to any canonically-conjugate variables (and linear combination thereof) regardless on their 
physical meaning.
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where 〈·〉 is the shorthand notation for 〈ψ| · |ψ〉. In the special case of position and momen-
tum, Â = x̂ and B̂ = p̂, the Robertson–Schrödinger uncertainty relation reads

det γ �
1
4

.� (8)

This uncertainty relation is obviously invariant under symplectic transformations, i.e. squeez-
ing and rotations (see [37] or appendix A for more details on the symplectic formalism and 
phase-space representation), so it is saturated by all pure Gaussian states, regardless of the 
orientation of the principal axes of γ . Indeed, under a symplectic transformation S , the new 
covariance matrix is given by γ′ = SγST . Since the determinant of a symplectic matrix is 
equal to 1,

det γ′ = detS det γ detS = det γ� (9)

which implies that equation (8) is invariant under symplectic transformations, hence under all 
Gaussian unitary transformations (since it is also invariant under displacements).

The generalization of the Robertson–Schrödinger uncertainty relation for the position and 
momentum variables of n modes (or n spatial degrees of freedom) is due to Simon et al [38]. 
It is formulated as an inequality on the covariance matrix γ

γ +
i
2
Ω � 0� (10)

where

Ω =
n
⊕

k=1
ω, ω =

(
0 1
−1 0

)
.� (11)

For one mode, equation (10) reduces to the Robertson–Schrödinger uncertainty relation, but, 
in general, we can understand equation (10) as n inequalities that must be satisfied in order 
for the covariance matrix to represent a physical state. According to Williamson’s theorem 
(see appendix A), we can always diagonalize γ  in its symplectic form γ⊕ with the symplectic 
values νi on the diagonal (each νi appearing twice). Therefore, if γ  is the covariance matrix of 
a physical state, it satisfies equation (10) and so must γ⊕. From this, we can show that equa-
tion (10) is equivalent to (see [39] for more details)

νi �
1
2

for i = 1, · · · , n.� (12)

Among others, an inequality that is easy to derive from equation (12) is

det γ = det γ⊕ =

n∏
i=1

ν2
i �

(
1
4

)n

� (13)

x

p

xθ

pθ

θ

Figure 1.  Principal axes (xθ, pθ) of the covariance matrix γ , defined in such a way that 
σxθ pθ = 0.
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which is a straightforward n-mode generalization of the Robertson–Schrödinger uncertainty 
relation.

2.3.  Uncertainty relation for more than two observables

Before concluding this section, let us mention that, in 1934, Robertson [28] introduced a 
covariance-based uncertainty relation for m observables which generalizes equation  (7). If 
we define the vector R = (R̂1, · · · , R̂m) of m observables, then the uncertainty relation is 
expressed as

detΓ � detC� (14)

where Γ is the covariance matrix of the measured observables and C the commutator matrix. 
Their elements are defined as

Γij =
1
2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉, Cij = − i

2
〈[R̂i, R̂j]〉,� (15)

respectively. For m  =  2, equation (14) reduces to equation (7). Surprisingly, when m is odd, 
detC = 0. Indeed, C is an antisymmetric matrix (Cij = −Cji), so

C = −CT ⇔ detC = (−1)m detCT ⇔ detC = (−1)m detC,
� (16)

which implies that this uncertainty relation is uninteresting for an odd number of observables. 
For an even number of observables, detC is always non-negative [40], so equation (14) is 
interesting. Note that unlike the situation with the Robertson–Schrödinger uncertainty rela-
tion, pure Gaussian states do not, in general, saturate equation (14). For more details on the 
minimum uncertainty states of this uncertainty relation, see [41].

To circumvent the problem of this irrelevant bound for odd m, Kechrimparis and Weigert 
[29] proved in 2014 that for three pairwise canonical observables defined as p̂, x̂ and 
r̂ = −x̂ − p̂ (which satisfy the commutation relations [p̂, x̂] = [x̂, r̂] = [̂r, p̂] = −i), the product 
of variances must satisfy the inequality

σ2
xσ

2
pσ

2
r �

(
1√
3

)3

.� (17)

They later generalized this result to any vector R = (R̂1, · · · , R̂m) of m observables acting on 
one single mode as [31]

σ2
1σ

2
2 · · ·σ2

m �

(
|a ∧ b|

m

)m

� (18)

where σ2
i = Γii  are the variances of the m observables, a and b are defined through

R = ax̂ + bp̂� (19)

with x̂ and p̂ being the canonically conjugate quadratures of the mode, and the square norm 
of the wedge product a ∧ b is computed as

|a ∧ b|2 =

m∑
i>j=1

(aibj − ajbi)
2 = |a|2|b|2 − (a · b)2.� (20)

Shortly after, Dodonov also derived a general uncertainty relation involving any triple or qua-
druple of observables [30].
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Note that equation (18) takes a simple form in the special case where the m one-modal 
observables are equidistributed quadratures over the unit circle, that is

R̂i = cosφi x̂ + sinφi p̂ with φi =
2π(i − 1)

m
, i = 1, . . . , m.� (21)

Indeed, the square norm of the wedge product a ∧ b may be related to the matrix of commuta-
tors C as

|a ∧ b|2 = 4
m∑

i>j=1

|Cij|2� (22)

where the Cij are defined in equation (15). Then, for the observables R̂i of equation (21), it can 
be shown that

Cij =
1
2
sin

(
2π
m

( j − i)
)

� (23)

so that

|a ∧ b|2 =

m∑
i>j=1

sin2
(

2π
m

( j − i)
)

=
m2

4
.� (24)

Plugging this into equation (18) leads to the uncertainty relation [31]

σ2
1σ

2
2 · · ·σ2

m �

(
1
2

)m

.� (25)

3.  Entropy-based uncertainty relations

3.1.  Shannon differential entropy

We start by reviewing the main properties of Shannon differential (continuous-variable) 
entropy. The differential entropy of a continuous (i.e. real-valued) variable X with probability 
distribution p(x) measures its uncertainty and is defined as

h(X) ≡ h[ p] = −
∫ ∞

−∞
dx p(x) ln p(x).� (26)

Here, the notation h[p ] implies that the entropy is a functional of the probability distribution 
p(x), but it is often written h(X) to stress that it refers to the random variable X. The defini-
tion (26) of the differential entropy is the natural continuous extension of the discrete entropy. 
More precisely, h(X) is the limit of H(X∆) + log∆ when ∆ → 0, where H(X∆) is the dis-
crete entropy of X∆ defined as the discretized version of variable X with discretization step ∆. 
More details can be found in [26, 42].

For the probability distribution p(x1, · · · , xm) of m continuous variables, we define the joint 
differential entropy of the vector X = (X1, · · · , Xm) as

h(X) = −
∫

dx1 · · · dxm p(x1, · · · , xm) ln p(x1, · · · , xm).� (27)

In addition, just like for discrete entropies, we may define the mutual information between two 
continuous variables X1 and X2 as

J. Phys. A: Math. Theor. 52 (2019) 173001
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I(X1:X2) = h(X1) + h(X2)− h(X1, X2)� (28)

where h(X1, X2) is the joint differential entropy and h(X1) and h(X2) are the differential entro-
pies of the two marginals. The mutual information measures the shared entropy between X1 
and X2 and is always non-negative.

Let us mention some useful properties of the differential entropy [42]:

	 •	�The differential entropy can be negative (unlike the discrete-variable entropy).
	 •	�The differential entropy is concave in p(x).
	 •	�The differential entropy is subadditive

h(X) �
∑

i

h(Xi).� (29)

	 •	�Under a translation, the value of the differential entropy does not change

h(X + c) = h(X),� (30)

		 where c is an arbitrary real vector.
	 •	�Under a linear transformation, the differential entropy changes as

h(AX) = h(X) + ln | detA|,� (31)

		 where A is an invertible matrix that transforms the vector X.

Note that the Shannon differential entropy actually belongs to the larger family of Rényi 
entropies. The Rényi entropy hα(X) of parameter α is defined as

hα(X) =
1

1 − α
log

[∫ ∞

−∞
dx pα(x)

]
� (32)

and the limit of this expression when α → 1 converges to Shannon entropy, namely 
limα→1 hα(X) = h(X). Properties (30) and (31) still hold for Rényi entropies, while it is not 
the case for concavity and subadditivity.

3.2.  Entropy power

Of particular interest is the entropy of a Gaussian distribution. Let X = (X1, · · · , Xm) be a vec-
tor of m Gaussian-distributed (possibly correlated) variables,

pG(x) =
1√

(2π)m det γ
e−

1
2 (x−〈x〉)Tγ−1(x−〈x〉)

� (33)

where x = (x1 · · · , xm)
T  and γ  is the covariance matrix. Its entropy is given by

h(X) =
1
2
ln((2πe)m det γ).� (34)

For two Gaussian variables X1 and X2, the mutual information is given by

IG(X1:X2) =
1
2
ln

(
σ2

1σ
2
2

det γ

)
� (35)

where σ2
i  is the variance of Xi (i = 1, 2) and γ  is the covariance matrix of variables X1 and X2.

A key property of Gaussian distributions is that among all distributions p(x) with a same 
covariance matrix γ , the one having the maximum entropy is the Gaussian distribution pG(x), 
that is

J. Phys. A: Math. Theor. 52 (2019) 173001
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h[ p] � h[ pG] =
1
2
ln((2πe)m det γ).� (36)

Note that the equality is reached if and only if p(x) is Gaussian.
From the subadditivity of the entropy applied to a multivariate Gaussian distribution, we 

get the Hadamard inequality

det γ �
m∏
i

σ2
i ,� (37)

from which we can derive

σ2
1σ

2
2 · · ·σ2

m � detC,� (38)

which is a weaker form of Robertson uncertainty relation (14) for m observables that ignores 
the correlations between them.

Now, exploiting (34), we define the entropy power of a set of m continuous random vari-
ables X = (X1, · · · , Xm) as

Nx =
1

2πe
e

2
m h(X).� (39)

It is the variance4 of a set of m independent Gaussian variables that produce the same entropy 
as the set X. The fact that the maximum entropy is given by a Gaussian distribution for a fixed 
covariance matrix γ  translates, in terms of entropy powers, to

Nx � (det γ)1/m.� (40)

For one variable, the entropy power is upper bounded simply by the variance, that is, Nx � σ2
x. 

In the next section, we will show that the entropy power is a relevant quantity in order to 
express entropic uncertainty relations [9].

3.3.  Entropic uncertainty relation for canonically conjugate variables

The first formulation of an uncertainty relation in terms of entropies is due to Hirschman [5] in 
1957. He conjectured an entropic uncertainty relation (EUR) for the position and momentum 
observables, which reads as follows:

EUR for canonically-conjugate variables [6, 7]:
Any n-modal state ρ  satisfies the entropic uncertainty relation

h(x) + h(p) � n ln(πe�)� (41)

where x = (x̂1, · · · , x̂n) and p = (p̂1, · · · , p̂n) are two vectors of pairwise canonically-conju-
gate quadratures5 and h(·) is the differential entropy defined in equation (27).

Hirschman was only able to prove a weaker form of this conjecture (where e is replaced 
by 2 in the lower bound) because of the known bound in the Hausdorff–Young inequality at 
the time. The Hausdorff–Young inequality, which applies to Fourier transforms, is indeed at 
the heart of the proof of entropic uncertainty relations for canonically conjugate variables. A 

4 Although it is a variance, it is called ‘power’ as it was introduced by Shannon in the context of the information-
theoretic description of time-dependent signals.
5 From now on, we make no precise distinction between the quadrature x̂ ( p̂) and the random variable X (P) that 
results from its measurement. The entropies of the random variables X and P will thus be noted h(x̂) and h(p̂), or 
simply h(x) and h( p).
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better bound was later found by Babenko [8] in 1961 and then by Beckner [43] in 1975 (see 
also the work of Brascamp and Lieb [44]). This led to what is called the Babenko–Beckner 
inequality for Fourier transforms,

(∫
dx |F f (x)| p

)1/p

� k( p, q)
(∫

dx |f (x)|q
)1/q

� (42)

where 1
p + 1

q = 1, k( p, q) =
(

2π
p

)
n/2p

(
2π
q

)
−n/2q and F f  is the Fourier transform of function 

f . Using this last inequality, Bialynicki-Birula and Mycielski [6] and independently Beckner 
[7] finally proved equation (41) in 1975.

Let us point out that equation (41) may look weird at first sight as we take the logarithm of 
a quantity with dimension �. This is a feature of the differential entropy itself since we have 
a similar issue in its definition, equation (26), but the problem actually cancels out in equa-
tion (41) since we have dimension � on both sides of the inequality6. More rigorously, equa-
tion (41) may be understood as the limit of a discretized version of the entropic uncertainty 
relation, with a discretization step tending to zero [26]. Being aware of this slight abuse of 
notation, we now prefer to keep � = 1 for simplicity.

As mentioned in [6], an interesting feature of inequality (41) is that it is stronger than—
hence it implies—Heisenberg uncertainty relation, equation (3). This is easy to see if we form
ulate equation (41) in terms of entropy powers for one mode. Indeed, using equation (39), the 
entropy powers of x and p  are defined as

Nx =
1

2πe
e2 h(x), Np =

1
2πe

e2 h( p),� (43)

so that the entropic uncertainty relation for one mode can be rewritten in the form of an 
entropy-power uncertainty relation [9]

Nx Np �
1
4

,� (44)

which closely resembles the Heisenberg relation (3) with � = 1. Since Nx � σ2
x and Np � σ2

p , 
which reflects the fact that the Gaussian distribution maximizes the entropy for a fixed vari-
ance, we get the chain of inequalities

σ2
x σ

2
p � Nx Np �

1
4

� (45)

so that equation (44) implies the Heisenberg relation σ2
xσ

2
p � 1/4. Note that since Nx = σ2

x 
(Np = σ2

p) if and only if x (p ) has a Gaussian distribution, the entropic uncertainty relation is 
strictly stronger than the Heisenberg relation for non-Gaussian states. As emphasized by Son 
[45], the entropic uncertainty relation may indeed be viewed as an improved version of the 
Heisenberg relation where the lower bound is lifted up by exploiting an entropic measure of 
the non-Gaussianity of the state [46], namely

σ2
xσ

2
p �

1
4

e2 D(x||xG)+2 D( p||pG)� (46)

where D(x||xG) = h(xG)− h(x) � 0 (and similarly for p ) is the relative entropy between x 
and xG, namely the Gaussian-distributed variable with the same variance as x.

6 This problem was absent in the original expression of this uncertainty relation [6] because the variable k = p/� 
was considered instead of p , giving h(x) + h(k) � ln(πe) for n  =  1.
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Just as the Heisenberg uncertainty relation, the entropy-power uncertainty relation (44) 
is only saturated for pure Gaussian states whose γ  has principal axes aligned with the x- and 
p -axes (i.e. σxp = 0). It suggests that there is room for a tighter entropic uncertainty rela-
tion that is saturated for all pure Gaussian states, in analogy with the Robertson–Schrödinger 
uncertainty relation (8). This is the topic of section 3.4.

As a final note, let us mention that one can also write an uncertainty relation for Rényi 
entropies as defined in equation (32). It reads as follows:

Rényi EUR for canonically-conjugate variables [47]:
Any n-modal state ρ  satisfies the entropic uncertainty relation

hα(x) + hβ(p) � n ln(π) +
n ln(α)

2 (α− 1)
+

n ln(β)
2 (β − 1)� (47)

where x = (x̂1, · · · , x̂n) and p = (p̂1, · · · , p̂n) are two vectors of pairwise canonically-conju-
gate quadratures and hα(·) is the Rényi entropy defined in equation (32), with parameters α 
and β satisfying

1
α
+

1
β

= 2.� (48)

In [48], the entropy-power formulation associated with Rényi entropies was used to show 
that some Gaussian states saturate these entropic uncertainty relations for all parameter α and 
β such that 1

α + 1
β = 2 . However, for some parameters, it is possible to find non-Gaussian 

states that saturate them too. For more information about entropic uncertainty relations with 
Rényi entropies, see also [49–51].

3.4. Tight entropic uncertainty relation for canonically conjugate variables

The entropic uncertainty relation, equation (41), is not invariant under all symplectic trans-
formations and is not saturated by all pure Gaussian states. However, a tighter entropic uncer-
tainty relation can be written, which, by taking correlations into account, becomes saturated 
for all Gaussian pure states. It is expressed as follows.

Tight EUR for canonically-conjugate variables [9]:
Any n-modal state ρ  satisfies the entropic uncertainty relation7

h(x) + h(p)− 1
2
ln

(
det γx det γp

det γ

)
� n ln(πe)� (49)

where x = (x̂1, · · · , x̂n) and p = (p̂1, · · · , p̂n) are two vectors of pairwise canonically-conju-
gate quadratures and h(·) is the differential entropy defined in equation (27). The covariance 
matrix γ  is defined as γij = Tr[ρ̂ {ri, rj}]/2 − Tr[ρ̂ ri]Tr[ρ̂ rj], with r = (x̂1, . . . , x̂n, p̂1, . . . p̂n), 
and γx(γp) denotes the reduced covariance matrix of the x (p) quadratures. Equation (49) is 
saturated if and only if ρ  is Gaussian and pure.

In the context of entropic uncertainty relations, it would be natural to take correlations 
into account via the joint entropy h(x, p) of the two canonically-conjugate quadratures x̂ and 
p̂ (considering the case of a single mode, n = 1). The problem, however, is that h(x, p) is 
not defined for states with a negative Wigner function (more details can be found in [9, 39]). 
To overcome this problem, correlations can be accounted for by exploiting the covariance 

7 The proof is conditional on two reasonable assumptions, see below and [9].
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matrix γ . Indeed, the mutual information I(x :p) between two Gaussian variables (x and p  
for a one-modal state) can be expressed in terms of the covariance matrix, see equation (35). 
Then, starting from the joint entropy h(x, p) = h(x) + h( p)− I(x :p) and substituting I(x :p) 
by its Gaussian form, equation (35), we get a quantity that is defined for all states regardless 
of whether the Wigner function is positive or not. This yields a tight entropic uncertainty rela-
tion [9]

h(x) + h( p)− 1
2
ln

(
σ2

xσ
2
p

det γ

)
� ln(πe)� (50)

whose generalization to n modes corresponds to equation (49). Thus, the lower bound of the 
entropic uncertainty relation (41) can be lifted up by a non-negative term that exploits the 
covariance matrix γ .

The entropic uncertainty relation (49) applies to any state, Gaussian or not. For Gaussian 
states, it is easy to prove. Indeed, using equation (34) and det γ � 1/4n (which is simply the 
n-modal version of Robertson–Schrödinger uncertainty relation, equation (13)), we have

h(x) + h(p)− 1
2
ln

(
det γx det γp

det γ

)
= n ln(πe) +

1
2
ln(4n det γ)

� n ln(πe).
�

(51)

This inequality is saturated if and only if the state is pure since det γ = 1/4n for pure Gaussian 
states only. Thus, equation (49) is a tight uncertainty relation in the sense that it is saturated 
for all pure Gaussian states, regardless of the orientation of the principal axes. Nevertheless, 
equation (49) is not invariant under rotations.

For non-Gaussian states, the proof of equation (49) is more involved and only partial. We 
do not give the full details here as they can be found in [9] (or in section 4, where we use the 
same technique of proof). In a nutshell, the proof relies on a variational method similar to the 
procedure used in [52, 53]. One defines the uncertainty functional

F(ρ̂) = h(x) + h(p)− 1
2
ln

(
det γx det γp

det γ

)
� (52)

and shows that any n-modal squeezed vacuum state is a local extremum of F(ρ̂). Since F(ρ̂) 
is invariant under (x, p)-displacements, it follows that all Gaussian pure states are extrema 
too. To complete the proof of equation (49), one must take the two following statements for 
granted:

	 (i)	�Pure Gaussian states are global minimizers of the uncertainty functional F(ρ̂).
	(ii)	�The uncertainty functional F(ρ̂) is concave, so relation (49) is valid for mixed states.

Remark that (i) and (ii) both prevail for the uncertainty functional h(x) + h(p) appearing in 
the entropic uncertainty relation (41).

For one mode, the entropy-power formulation of equation (50) reads

Nx Np

σ2
x σ

2
p

det γ �
1
4

,� (53)

where Nx and Np  are the entropy powers defined in equation (43). This highlights the fact that 
the Robertson–Schrödinger relation (8) can be deduced from the tight entropy-power uncer-
tainty relation (53). Indeed, since Nx � σ2

x and Np � σ2
p , we have the chain of inequalities
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det γ �
Nx Np

σ2
x σ

2
p

det γ �
1
4� (54)

and, once again, both inequalities coincide only for Gaussian x- and p -distributions.
For n modes, the entropy-power formulation of equation (49) becomes

(NxNp)
n

det γx det γp
det γ �

(
1
4

)n

� (55)

where

Nx =
1

2πe
e

2
n h(x) Np =

1
2πe

e
2
n h(p).� (56)

Here too, we can use the fact that the maximum entropy for a fixed covariance matrix is given 
by the Gaussian distribution, which implies that

det γ �
(NxNp)

n

det γx det γp
det γ �

(
1
4

)n

� (57)

that is, the n-mode tight entropy-power uncertainty relation (55) implies the n-mode variance-
based Robertson–Schrödinger uncertainty relation, equation (13).

3.5.  Entropic uncertainty relation for arbitrary quadratures

Traditionally, continuous-variable entropic uncertainty relations have been formulated for 
the position and momentum quadratures or, more precisely, for continuous variables that are 
related by a Fourier transform. However, as for variance-based ones, entropic uncertainty rela-
tions can be extended to any pair of variables. In 2009, Guanlei et al [54] first formulated an 
entropic uncertainty relation for two rotated quadratures:

EUR for two rotated quadratures [54]:
Any one-mode state ρ  satisfies the entropic uncertainty relation

h(xθ) + h(xφ) � ln(πe| sin(θ − φ)|)� (58)

where x̂θ = x̂ cos θ + p̂ sin θ and x̂φ = x̂ cosφ+ p̂ sinφ are two rotated quadratures, and h(·) 
is the Shannon differential entropy.

In 2011, Huang [55] obtained a more general entropic uncertainty relation that holds for 
any pair of observables, that is, two variables that are not necessarily canonically conjugate 
(or that are not related by a Fourier transform):

EUR for two arbitrary quadratures [55]:
Any n-modal state ρ  satisfies the entropic uncertainty relation

h(Â) + h(B̂) � ln(πe|[Â, B̂]|)� (59)

where h(·) is the Shannon differential entropy, Â and B̂ are two observables defined as

Â =

n∑
i=1

(ai x̂i + a′
i p̂i), B̂ =

n∑
i=1

(bi x̂i + b′
i p̂i),� (60)

and [Â, B̂] (which is a scalar) is the commutator between them.
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Obviously, if Â = x̂ and B̂ = p̂, this inequality reduces to the entropic uncertainty relation 
of Bialynicki-Birula and Mycielski, equation (2), while it reduces to equation (58) if n  =  1.

More recently, an entropic uncertainty relation that holds for any two vectors of not-nec-
essarily canonically conjugated variables was derived in [56]. The bound on entropies is then 
expressed in terms of the determinant of a n × n matrix formed with the commutators between 
the n measured variables:

EUR for two arbitrary vectors of intercommuting quadratures [56]:
Let y = (ŷ1, · · · ŷn)

T  be a vector of commuting quadratures and z = (ẑ1, · · · ẑn)
T  be another 

vector of commuting quadratures. Let each of the components of y and z be written as a linear 
combination of the (x̂, p̂) quadratures of an n-modal system, namely

ŷi =

n∑
k=1

ai,k x̂k +

n∑
k=1

a′i,k p̂k (i = 1, · · · n)

ẑj =

n∑
k=1

bj,k x̂k +

n∑
k=1

b′j,k p̂k ( j = 1, · · · n).

�

(61)

Then, any n-modal state ρ  satisfies the entropic uncertainty relation

h(y) + h(z) � ln ((πe)n| detK|)� (62)

where h(·) stands for the Shannon differential entropy of the probability distribution of the 
vectors of jointly measured quadratures ŷi’s or ẑj’s, and Kij = [ŷi, ẑj] denotes the n × n matrix 
of commutators (which are scalars).

The proof of equation (62) exploits the fact that the probability distributions of vectors y 
and z are related by a fractional Fourier transform (instead of a simple Fourier transform). 
Then, the entropic uncertainty relation of Bialynicki-Birula and Mycielski, equation  (41), 
simply corresponds to the special case of equation (62) for a Fourier transform, that is, when 
measuring either all x quadratures or all p  quadratures on n modes. Also, equations (58) and 
(59) are special cases of equation (62) for a one-by-one matrix K. Finally, let us also mention 
that equation (62) still holds if we jointly measure n quadratures on a larger N-dimensional 
system, i.e. when the sum over k in equation (61) goes to N (with N  >  n) [56].

By exploiting the entropy-power formulation of equation (62), it is possible to derive an 
n-dimensional extension of the usual Robertson uncertainty relation in position and momen-
tum spaces where, instead of expressing the complementarity between observables Â and 
B̂ (which are linear combinations of quadratures, so the commutator [Â, B̂] is a scalar), one 
expresses the complementarity between two vectors of intercommuting observables. Defining 
the entropy powers of y and z as

Ny =
1

2πe
e

2
n h(y), Nz =

1
2πe

e
2
n h(z),� (63)

we can rewrite equation (62) as an entropy-power uncertainty relation for two arbitrary vec-
tors of intercommuting quadratures y and z, namely

NyNz �
| detK|2/n

4
.� (64)

Again, we may use the fact that the maximum entropy for a fixed covariance matrix is reached 
by the Gaussian distribution and write Ny � (detΓy)

1/n and Nz � (detΓz)
1/n, where 
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(Γy)ij = 〈{ŷi, ŷj}〉/2 − 〈ŷi〉〈ŷj〉 and (Γz)ij = 〈{ẑi, ẑj}〉/2 − 〈ẑi〉〈ẑj〉 are the (reduced) covari-
ance matrices of the ŷi and ẑi quadratures. Combining these inequalities with equation (64), 
we obtain the n-modal variance-based uncertainty relation (VUR):

VUR for two arbitrary vectors of intercommuting quadratures [56]:
Let y = (ŷ1, · · · ŷn)

T  be a vector of commuting quadratures, z = (ẑ1, · · · ẑn)
T  be another vec-

tor of commuting quadratures, and let each of the components of these vectors be written 
as a linear combination of the (x̂, p̂) quadratures of an N-modal system (N � n). Then, any 
N-modal state ρ  verifies the variance-based uncertainty relation

detΓy detΓz �
| detK|2

4n
� (65)

where Γy (Γz) is the covariance matrix of the jointly measured quadratures ŷi’s ( ẑj’s), and 
Kij = [ŷi, ẑj] denotes the n × n matrix of commutators (which are scalars).

Just like equation (41) can be extended to equation (47), the entropic uncertainty relation 
(62) can also be extended to Rényi entropies:

Rényi EUR for two arbitrary vectors of intercommuting quadratures [56]:
Let y = (ŷ1, · · · ŷn)

T  be a vector of commuting quadratures, z = (ẑ1, · · · ẑn)
T  be another vector 

of commuting quadratures, and let each of the components of these vectors be written as a lin-
ear combination of the (x̂, p̂) quadratures of an N-modal system (N � n). Then, any N-modal 
state ρ  verifies the Rényi entropic uncertainty relation

hα(y) + hβ(z) � n ln(π) +
n ln(α)

2 (α− 1)
+

n ln(β)
2 (β − 1)

+ ln |detK|� (66)

with

1
α
+

1
β

= 2, α > 0, β > 0,� (67)

where hα(·) stands for the Rényi entropy of the probability distributions of the vectors of 
jointly measured quadratures ŷi’s or ẑj’s, and Kij = [ŷi, ẑj] is the n × n matrix of commutators 
(which are scalars).

As expected, in the limit where α → 1 and β → 1, we recover the uncertainty relations 
for Shannon differential entropies, equation  (62). Moreover, in the one-dimensional case 
(N = n = 1), equation (66) coincides with the result found in [57].

3.6.  Other entropic uncertainty relations

Let us conclude this section by mentioning a few related entropic uncertainty relations. First, 
it is also possible to express with entropies the complementary between the pair of variables 
(φ, Lz), that is, a (continuous) angle and associated (discrete) angular momentum [58], or 
(φ, N̂), that is, a (continuous) phase and associated (discrete) number operator [53, 59]. Unlike 
those considered in the present paper, such entropic uncertainty relations for (φ, Lz) or (φ, N̂) 
may be viewed as hybrid as they mix discrete and continuous entropies. Similarly, Hall con-
sidered an entropic time-energy uncertainty relation for bound quantum systems (thus having 
discrete energy eigenvalues), which expresses the balance between a discrete entropy for the 
energy distribution and a continuous entropy for the time shift applied to the system [60]. 
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Recently, an entropic time-energy uncertainty relation has also been formulated for general 
time-independent Hamiltonians, where the time uncertainty is associated with measuring the 
(continuous) time state of a quantum clock [61].

As already mentioned, another variant of entropic uncertainty relations can be defined in the 
presence of quantum memory. This situation, where the observer may exploit some side infor-
mation, has been analyzed in the case of position and momentum variables by Furrer et al [62]. 
Still another interesting scenario concerns uncertainties occurring in successive measurements. 
While the most common uncertainty relations assume that one repeats measurements on the 
same state (as we do throughout this paper), one may consider successive measurements on a 
system whose state evolves as a result of the measurements. The entropic uncertainty relations 
for canonically conjugate variables in this scenario have been derived by Rastegin [63].

This closes our review on continuous-variable entropic uncertainty relations. In the rest of 
this paper, we present some new results, namely a tight entropic uncertainty relation for two 
vectors of quadratures (section 4) and several conjectures for new entropic uncertainty rela-
tions involving more than two variables (section 5).

4. Tight entropic uncertainty relation for arbitrary quadratures

4.1.  Minimum uncertainty states

We now build an entropic uncertainty relation which holds for any two vectors of intercom-
muting quadratures and is saturated by all pure Gaussian states (hence, we call it tight). It 
combines the two previous results, namely equations (49) and (62).

Let us stress that equation (62) is not saturated by pure Gaussian states, in general, so the 
idea here is to take correlations into account following a similar procedure as the one leading 
to equation (49). One can easily understand the problem by considering the one mode case, 
equation (58), which can also be written as

h(x) + h(xθ) � ln(πe| sin θ|).� (68)
We compute h(x) + h(xθ) for a general pure Gaussian state (i.e. a squeezed state with param
eter r and angle φ) with covariance matrix

γ =
1
2

(
e−2r cos2 φ+ e2r sin2 φ (e2r − e−2r) cosφ sinφ

(e2r − e−2r) cosφ sinφ e2r cos2 φ+ e−2r sin2 φ

)
� (69)

and plot it as a function of φ (we fix r  =  0.2 and consider several values of θ). As we can see 
on figure 2, where the solid lines represent the sum of entropies (for θ = π/4,π/2 and 5π/3) 
and the dashed lines stand for the corresponding lower bounds ln(πe| sin θ|), the uncertainty 
relation (68) is in general not saturated by any pure Gaussian state. The only exception is 
θ = π/2, namely the Bialynicki-Birula and Mycielski uncertainty relation (2), which is only 
saturated when the state is aligned with the principal axes, i.e. if φ = 0,π/2,π or 3π/2.

This suggests that a modification of equation (62) is needed in order to impose that the 
Gaussian pure states become minimum-uncertainty states, as they are in equation (49).

4.2.  Entropic uncertainty relation saturated by all pure Gaussian states

Let y = (ŷ1, · · · ŷn)
T  be a vector of commuting quadratures and z = (ẑ1, · · · ẑn)

T  be another 
vector of commuting quadratures. Let us suppose that they correspond to the output x-quad-
ratures obtained after applying two possible symplectic transformations onto some n-modal 
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system. In other words, the 2n-dimensional vector of input quadratures (x̂1, · · · , x̂n, p̂1, · · · , p̂n)
T  

is transformed into the 2n-dimensional vector of output quadratures (ŷ1, · · · , ŷn, q̂1, · · · , q̂n)
T  

or (ẑ1, · · · , ẑn, ô1, · · · , ôn)
T , where (q̂1, · · · , q̂n)

T  (resp. (ô1, · · · , ôn)
T ) is a vector of quadra-

tures that are pairwise canonically conjugate with (ŷ1, · · · , ŷn)
T  (resp. (ẑ1, · · · , ẑn)

T ). As for 
the x, p quadratures, it is possible to define a covariance matrix Γ for the y, z quadratures. Its 
elements are expressed as

Γij =
1
2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉� (70)

with R = (ŷ1, ..., ŷn, ẑ1, ..., ẑn)
T. The knowledge of Γ allows us to take correlations into account 

and write a general form of the entropic uncertainty relation for any two vectors of intercom-
muting quadratures:

Tight EUR for two arbitrary vectors of intercommuting quadrature:
Let y = (ŷ1, · · · ŷn)

T  be a vector of commuting quadratures, z = (ẑ1, · · · ẑn)
T  be another vec-

tor of commuting quadratures, and let each of the components of y and z be written as a linear 
combination of the (x̂, p̂) quadratures of an n-modal system. Then, any n-modal state ρ  satis-
fies the entropic uncertainty relation8

h(y) + h(z)− 1
2
ln

(
detΓy detΓz

detΓ

)
� ln ((πe)n| detK|)� (71)

where h(·) stands for the Shannon differential entropy of the probability distribution of the 
vector of jointly measured quadratures ŷi’s or ẑj’s, Γ is the covariance matrix defined in 
equation (70), Γy and Γz are the reduced covariance matrices of the ŷi and ẑi quadratures, 
respectively, and Kij = [ŷi, ẑj] is the n × n matrix of commutators (which are scalars). The 
saturation is obtained when ρ  is Gaussian and pure.

Figure 2.  Plot of equation (68) for pure Gaussian states, illustrating that this entropic 
uncertainty relation is, in general, not saturated. Solid lines represent the sum of 
entropies for θ = π/4,π/2 and 5π/3, while dashed lines show the corresponding lower 
bounds ln(πe| sin θ|).

8 The proof is conditional on two reasonable assumptions, see below.
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Let us first remark that equation (71) is invariant under displacements. Indeed, the differ
ential entropy is invariant under displacements (see equation (30)), and so are Γ, Γy and Γz as 
is obvious from their definitions. Thus, in the proof of equation (71), we can restrict to states 
centered at the origin. As we will see in section 4.4, our proof is based on a variational method 
used to show that pure Gaussian states extremize the uncertainty functional

F(ρ̂) = h(y) + h(z)− 1
2
ln

(
detΓy detΓz

detΓ

)
.� (72)

The proof, however, is partial as it relies on two assumptions:

	 (i)	�Pure Gaussian states are global minimizers of the uncertainty functional F(ρ̂).
	(ii)	�The uncertainty functional F(ρ̂) is concave, so relation (71) is valid for mixed states.

4.3.  Special case of Gaussian states

Before addressing the proof of equation (71) with a variational method, let us see how this 
entropic uncertainty relation applies to Gaussian states. In particular, let us prove first that 
equation (71) is saturated by all pure Gaussian states. Then, we will show that for all Gaussian 
states, it can be proven using the n-modal version of the Robertson–Schrödinger uncertainty 
relation, equation (13).

Consider a pure n-modal Gaussian state. Its Wigner function is given by

WG(x, p) =
1
πn e−

1
2 rTγ−1r� (73)

and its covariance matrix is expressed as

γ =

(
γx γxp

γxp γp

)

2n×2n
� (74)

where γx and γp are the reduced covariance matrices of the position and momentum quadra-
tures. Since the state is pure and Gaussian, det γ = (1/4)n.

To evaluate equation (71) we need to find the determinant of the covariance matrix Γ for 
the y, z-quadratures. The calculation is reported in appendix B and leads to

detΓ = det γ |detK|2.� (75)

Note that equation (75) is true for any state, Gaussian or not, but since we are dealing with a 
pure Gaussian state, det γ = 1/4n, it simplifies to

detΓ =
1
4n |detK|2.� (76)

The last step needed to evaluate equation (71) is to compute the differential entropies of the y  
and z quadratures. Since these quadratures are obtained after applying some symplectic trans-
formations, the Wigner function, which is Gaussian for the input state, remains Gaussian for 
the output state. The probability distributions of the jointly measured quadratures ŷi or ẑj are 
thus given by the following Gaussian distributions

P(y) =
1√

(2π)n detΓy
e−

1
2 yTΓ−1

y y, P(z) =
1√

(2π)n detΓz
e−

1
2 zTΓ−1

z z

� (77)
and we easily evaluate the corresponding differential entropies
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h(y) =
1
2
ln
(
(2πe)n detΓy

)
, h(z) =

1
2
ln
(
(2πe)n detΓz

)
.� (78)

Inserting these quantities together with equation (76) into the left-hand side of equation (71) 
yields the lower bound ln((πe)n|detK|), so we have proved that Gaussian pure states are 
minimum uncertainty states of equation (71), as desired.

Let us emphasize that the entropic uncertainty relation that does not take correlations into 
account, equation (62), is only saturated by pure Gaussian states with vanishing correlations. 
Indeed, for pure Gaussian states, we find that

h(y) + h(z) = ln
(
(2πe)n

√
detΓy detΓz

)
� (79)

reaches the lower bound of equation (62) only if

2n
√
detΓy detΓz = |detK|

⇔ 2n
√
detΓy detΓz = 2n

√
detΓ

⇔ detΓy detΓz = detΓ

�

(80)

where we have used equation (76). Obviously, this is only true when Γyz = 0, i.e. when there 
is no correlation between the y i and zi quadratures. This confirms that the entropic uncertainty 
relation (62) is not saturated by all pure Gaussian states, as we had explicitly checked for one 
mode in figure 2.

Second, let us now prove that equation (71) holds for a general mixed Gaussian state. For 
any Gaussian state, pure or not, the differential entropies are still given by equation (78), so that

h(y) + h(z)− 1
2

(
detΓy detΓz

detΓ

)
= ln

(
(2πe)n

√
detΓ

)
.� (81)

Using equation (75) together with the n-modal version of the Robertson–Schrödinger uncer-
tainty relation, det γ � 1/4n, we get

√
detΓ �

|detK|
2n .� (82)

Injecting this inequality into equation (81) complete the proof of equation (71) for all Gaussian 
states.

4.4.  Partial proof for all states

The difficult part is to verify the entropic uncertainty relation for a general—not necessarily 
Gaussian—state. Inspired from [9], we give here a partial proof of equation (71) based on a 
variational method (see [52, 53]), which is conditional on two assumptions (see assumptions 
(i) and (ii) in section 4.2). More precisely, we seek a pure state ρ̂ = |ψ〉〈ψ| that extremizes our 
uncertainty functional (72) and show that any pure Gaussian state is such an extremum. The 
steps of the proof are similar to those developed in [9], except that we consider the y, z-quad-
ratures instead of the x, p-quadratures. The assumptions are also the same.

As already mentioned, F(|ψ〉) is invariant under displacements so that we can restrict our 
search to extremal states centered on 0. We also require extremal state to be normalized. 
Accounting for these constraints by using the Lagrange multipliers method, we have to solve 
∂J

∂〈ψ| = 0 with
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J = h(y) + h(z)− 1
2
ln

(
detΓy detΓz

detΓ

)
+ λ(〈ψ|ψ〉 − 1) +

2n∑
i=1

µi〈ψ|R̂i|ψ〉,

�

(83)

where λ and µi are Lagrange multipliers. Note that, as explained in [9], it is not necessary to 

consider ∂J
∂|ψ〉 = 0 since no additional information would be obtained.

Let us evaluate the derivative of each term of equation (83) separately. First, the derivative 
of h(y) gives

∂h(y)
∂〈ψ|

=
∂

∂〈ψ|

(∫
P(y) lnP(y)dy

)

=
∂

∂〈ψ|

(∫
〈ψ|y〉〈y|ψ〉 ln(〈ψ|y〉〈y|ψ〉)dy

)

= − (lnP(y) + 1) |ψ〉

�

(84)

and similarly for h(z). Note that y in the last line of equation (84) denotes a vector of quadra-
ture operators, so that lnP(y) is an operator too. With the help of Jacobi’s formula [64], the 
derivatives of the determinant of the three covariance matrices give

∂

∂〈ψ|
ln detΓy =

1
detΓy

∂

∂〈ψ|
detΓy

=
1

detΓy
Tr

[
(detΓy)Γ

−1
y

∂Γy

∂〈ψ|

]

=
n∑

i=1

n∑
k=1

(Γy)
−1
ik

∂(Γy)ki

∂〈ψ|

=
n∑

i=1

n∑
k=1

(Γy)
−1
ik

(ŷkŷi + ŷiŷk)

2
|ψ〉

=

[
n∑

i=1

n∑
k=1

ŷk(Γy)
−1
ik ŷi

2
+

n∑
i=1

n∑
k=1

ŷi(Γy)
−1
ik ŷk

2

]
|ψ〉

= yTΓ−1
y y |ψ〉

�

(85)

and similarly

∂

∂〈ψ|
ln detΓz = zTΓ−1

z z |ψ〉

∂

∂〈ψ|
ln detΓ = RTΓ−1R |ψ〉.

�

(86)

Finally, the derivatives of the last two terms of equation (83) give

∂

∂〈ψ|

(
λ(〈ψ|ψ〉 − 1) +

2n∑
i=1

µi〈ψ|R̂i|ψ〉
)

=

(
λ+

2n∑
i=1

µiR̂i

)
|ψ〉� (87)

so that the variational equation can be rewritten as an eigenvalue equation for |ψ〉,
[
− lnP(y)− lnP(z)− 2 + λ+

2n∑
i=1

µiR̂i −
1
2

yTΓ−1
y y

− 1
2

zTΓ−1
z y +

1
2

RTΓ−1R
]
|ψ〉 = 0.

�

(88)

J. Phys. A: Math. Theor. 52 (2019) 173001



Topical Review

22

Thus, the states |ψ〉 extremizing F(|ψ〉) are the eigenstates of equation (88).
Now, instead of looking for all eigenstates, we show that all pure Gaussian states are solu-

tion of equation (88). We have already written the probability distributions P(y) and P(z) for 
a n-modal pure Gaussian state (see equation (77)), so we have

lnP(y) + lnP(z) = − ln
(
(2π)n

√
detΓy detΓz

)
− 1

2
yTΓ−1

y y − 1
2

zTΓ−1
z z

� (89)
and the eigenvalue equation (88) reduces to

[
ln
(
(2π)n

√
detΓy detΓz

)
− 2 + λ+

2n∑
i=1

µiR̂i +
1
2

RTΓ−1R
]
|ψ〉 = 0.

� (90)
As shown in appendix C, pure n-modal Gaussian states (centered on the origin) are eigenvec-

tors of 12 RTΓ−1R with eigenvalue n, that is

1
2

RTΓ−1R|ψ〉 = n |ψ〉,� (91)

so that equation (90) can be further simplified to
[
ln
(
(2π)n

√
detΓy detΓz

)
+ n − 2 + λ+

2n∑
i=1

µiR̂i

]
|ψ〉 = 0.� (92)

The value of λ is found by multiplying this equation on the left by 〈ψ| and using the normal-
ization constraint 〈ψ|ψ〉 = 1, as well as the fact that the mean values vanish, 〈ψ|R̂i|ψ〉 = 0 for 
all i, so that we are left with

[
2n∑

i=1

µiR̂i

]
|ψ〉 = 0� (93)

which is satisfied if we set all the µi = 0.
In summary, we have proved that there exists an appropriate choice for λ and µi such that 

any pure Gaussian state centered on the origin is an extremum of the uncertainty functional 
F(|ψ〉), that is, any n-modal squeezed vacuum state (with arbitrary squeezing and orienta-
tion) extremizes F(|ψ〉). Since this functional is invariant under displacement, this feature 
extends to all pure Gaussian states. According to Assumption (i), we take for granted that pure 
Gaussian states are not just local extrema, but global minima of the uncertainty functional. 
The last step is simply to evaluate the functional for Gaussian pure states and see that it yields 
ln((πe)n| detK|), as shown in section 4.3. This completes the proof of equation (71) for pure 
states. To complete the proof for mixed states, we resort to Assumption (ii): if the functional 
F(ρ̂) is concave and equation (71) holds for pure state, then it is necessarily true for mixed 
states too.

4.5.  Alternative formulation

Interestingly, using the relation between detΓ and detK exhibited by equation (75), we can 
rewrite our tight entropic uncertainty relation (71) without the explicit dependence on the 
commutator matrix K, that is
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h(y) + h(z)− 1
2
ln

(
detΓy detΓz

det γ

)
� ln ((πe)n) .� (94)

Here γ  is the covariance matrix for the x, p-quadratures, while Γy and Γz are the reduced 
covariance matrices of the y, z quadratures. If we know γ  and the symplectic transformations 
leading to y and z, it is straightforward to access Γy and Γz through equation (B.8), which 
makes the computation of equation  (94) easier. Note also that this alternative formulation 
becomes very similar to the tight entropic uncertainty relation for canonically-conjugate vari-
ables x and p, equation (49), where we simply substitute Γy for γx and Γz for γp.

4.6.  Entropy-power formulation and covariance-based uncertainty relation

Following the same procedure as before, we may exploit the entropy-power formulation in 
order to rewrite equation (71) as

Ny Nz

(
detΓ

detΓy detΓz

)1/n

�
| detK|2/n

4
� (95)

which is a tight entropy-power uncertainty relation for two arbitrary vectors of intercommuting 
quadratures y and z. This entropy-power formulation helps us better see that the tight entropic 
uncertainty relation equation (71) implies equation (62). Indeed, since detΓy detΓz � detΓ,9  
we see that equation (95) corresponds to lifting up the lower bound on Ny Nz in equation (64) 
by a term that accounts for the y, z correlations. Thus equation (95) implies equation (64), 
which is the entropy-power version of equation (62).

Now, we again use the fact that the maximum entropy for a fixed covariance matrix is 
reached by the Gaussian distribution, so that we can upper bound NyNz by (detΓy detΓz)

1/n. 
Combining this with equation (95), we obtain the variance-based uncertainty relation for two 
arbitrary vectors of quadratures y and z,

detΓ �
| detK|2

4n
� (96)

which generalizes equation (65) as it takes the y, z correlations into account.
Interestingly, equation (96) is nothing else but a special case of the Robertson uncertainty 

relation (14). Indeed, we see that the definition of Γ in equation (70) coincides with that of 
equation (15), with m  =  2n. Here, we have Ri = yi  and Rn+i = zi for i = 1, · · · , n, so that the 
matrix C defined in equation (15) can be written in terms of Kij = [ŷi, ẑj] as

C = − i
2

(
0n×n K
−K 0n×n

)
.� (97)

Therefore,

detC =

(
− i

2

)2n

(detK)2 =
| detK|2

4n
� (98)

where we used the fact that the Kij’s are all pure imaginary numbers, implying that equa-
tion (14) reduces to equation (96) in this case.

9 This is a generalization of Hadamard’s inequality, equation (37).
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5.  Entropic uncertainty relations for more than two observables

All entropic uncertainty relations considered in sections 3 and 4 address the case of two vari-
ables (or two vectors consisting each of n commuting variables). Here, we turn to entropic 
uncertainty relations for more than two variables. As already mentioned, the entropy-power 
formulation is convenient to show that, in general, an entropic uncertainty relation implies 
a variance-based one. In particular, we showed in section 4.6 that equation (71) implies the 
Robertson uncertainty relation, equation  (14). More precisely, we have shown that it only 
implies a special case of it, namely equation (96). Therefore, it is natural to conjecture that 
there exists a more general entropic uncertainty relation which implies the Robertson uncer-
tainty relation (14) for any matrix C, more general than in equation (97). Our first conjecture 
is an extension of equation (71) for m variables:

Conjecture 1.  Any n-modal state ρ  satisfies the entropic uncertainty relation

h(R1) + h(R2) + · · ·+ h(Rm)−
1
2
ln

(
σ2

1σ
2
2 · · ·σ2

m

det Γ

)
�

1
2
ln((2πe)m detC)

�

(99)

where R̂i’s are m arbitrary continuous observables, σ2
i  is the variance of each R̂i while Γ is the 

covariance matrix of the R̂i’s, and C is the matrix of commutators. The elements of Γ and C 
are defined as in equation (15).

This entropic uncertainty relation is valid regardless of whether the R̂i’s commute or not, 
but is interesting for an even number of them only. Indeed, as mentioned for the Robertson 
uncertainty relation, equation (14), when m is odd, detC = 0 and the lower bound in conjec-
ture 1 equals −∞. Note also that equation (99) is defined only when m � 2n, where n is the 
number of modes of the state ρ . Indeed, if m  >  2n, the determinant of the covariance matrix 
Γ vanishes (we can always write one column as a linear combination of two other columns). 
This is consistent with the fact that detC vanishes in this case too. Indeed, detC � 0 since C 
is an anti-symmetric matrix [40], so that equation (14) implies that if detΓ is null, so is detC.

Finally, let us mention that equation  (99) is invariant under the scaling of one variable. 
Assume, with no loss of generality, that R1 → R′

1 = aR1, where a is some scaling constant. Then, 
the entropy is transformed into h(R′

1) = h(R1) + ln |a|, the variance becomes σ2
1′ = a2σ2

1 , the 
covariances Γ1′j = aΓ1j, and the commutators [R′

1, Rj] = a [R1, Rj]. This implies that both Γ and 
C have one column and one row multiplied by a, so that det Γ and detC are both multiplied by 
a2. Inserting these new values in equation (99), we see that the constant term ln |a| appears on 
both sides of the inequality, confirming the invariance of this entropic uncertainty relation.

It is straightforward to prove the validity of equation (99) for Gaussian states. Inserting the 
entropy of Gaussian-distributed variable h(Ri) = ln(2πeσ2

i )/2 into equation (99), we obtain

1
2
ln ((2πe)m det Γ) �

1
2
ln((2πe)m detC) ⇔ det Γ � detC� (100)

which is nothing else but the Robertson uncertainty relation, equation (14).
The difficult (unresolved) problem is to prove this conjecture for any state, not necessarily 

Gaussian. Here, we restrict ourselves to show that, for any state, equation (99) implies the 
Robertson uncertainty relation (14) in its general form. The method works as usual. First, we 
use the entropy power of each variable Ri
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Ni =
1

2πe
e2h(Ri)� (101)

to rewrite equation (99) into its entropy-power form

N1N2 · · ·Nm
det Γ

σ2
1σ

2
2 · · ·σ2

m
� detC.� (102)

Then, we use the fact that, for a fixed variance, the maximum entropy is given by a Gaussian 
distribution, that is, Ni � σ2

i . We thus obtain the chain of inequalities

det Γ � N1N2 · · ·Nm
det Γ

σ2
1σ

2
2 · · ·σ2

m
� detC� (103)

from which we deduce equation (14).
Now, in order to avoid the problem that the entropic uncertainty relation (99) is only 

defined for m � 2n, we may relax the bound by ignoring the correlations between the Ri’s as 
characterized by Γ. This leads to the following (weaker) relation:

Conjecture 2.  Any n-modal state ρ  satisfies the entropic uncertainty relation

h(R1) + h(R2) + · · ·+ h(Rm) �
1
2
ln((2πe)m detC)� (104)

where the Ri’s are m arbitrary continuous observables and C is the matrix of commutators as 
defined in equation (15).

This entropic uncertainty relation may probably be easier to prove than equation  (99). 
From its entropy-power formulation, we see that it implies the weaker form of the Robertson 
uncertainty relation, equation (38), that is, we have the chain of inequalities

σ2
1σ

2
2 · · ·σ2

m � N1N2 · · ·Nm � detC.� (105)

It is also immediate to see that equation (99) implies equation (104) as a result of Hadamard 
inequality, equation (37), so that conjecture 2 is indeed weaker than conjecture 1.

A problem with these two conjectures remains that they are irrelevant for an odd number 
m of observables. We then conjecture a third version of an entropic uncertainty relation which 
holds for any m, but only for one-mode states (n  =  1):

Conjecture 3.  Let R = (R̂1, · · · , R̂m) be a vector of m continuous observables acting on 
one mode as R = ax̂ + bp̂, with x̂ and p̂ being the canonically conjugate quadratures of the 
mode as in equation (19). Then, any one-mode state ρ  satisfies the entropic uncertainty rela-
tion

h(R1) + h(R2) + · · ·+ h(Rm) �
m
2
ln

(
2πe
m

|a ∧ b|
)

� (106)

where the norm of the wedge product between vectors a and b is computed with equation (20).

Its entropy-power form is

N1N2 · · ·Nm �

(
|a ∧ b|

m

)m

� (107)
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where the Ni are defined as in equation (101). From equation (107), we can deduce the vari-
ance-based uncertainty relation equation (18), which was derived in [31].

Let us mention that, for m  =  2, conjecture 3 reduces to the entropic uncertainty relation 
(59) for two arbitrary quadratures in the special case of one mode (n  =  1), so it is proven [55]. 
Indeed, if R̂1 = a1x̂ + b1p̂ and R̂2 = a2x̂ + b2p̂, we have

|a ∧ b| = |a1b2 − a2b1| = |[R̂1, R̂2]| ,� (108)

so that equation (106) becomes identical to equation (59). Furthermore, conjecture 3 reduces 
to the entropic uncertainty relation (58) for two rotated quadratures, that is, when we choose 
a = (cos θ, sin θ) and b = (cosφ, sinφ), so that |a ∧ b| = | sin(θ − φ)|.

Finally, let us consider the special case of equation (21), where we have m quadratures that 
are equidistributed around the unit circle, that is

R̂i = cosφi x̂ + sinφi p̂ with φi =
2π(i − 1)

m
, i = 1, . . . , m.� (109)

In this case, conjecture 3 reduces to the following entropic uncertainty relation, which was 
already conjectured in [31], and which we prove here10, namely

Conjecture 4.  Let R = (R1, · · · , Rm) be a vector of m continuous observables acting on 
one mode and equidistributed as defined in equation (109). Then, any one-modal state ρ  satis-
fies the entropic uncertainty relation [31]

h(R1) + h(R2) + · · ·+ h(Rm) �
m
2
ln (πe) .� (110)

Indeed, for equidistributed Ri’s, we have |a ∧ b| = m/2 as shown in equation (24), so that 
equation (106) reduces to equation (110). Similarly as before, its entropy-power form is

N1N2 · · ·Nm �

(
1
2

)m

,� (111)

where the Ni are defined as in equation (101) and, from it, we can deduce the variance-based 
uncertainty relation (25) as derived in [31].

We present here a partial proof of conjecture 4 using a variational method, following the 
same lines as in section 4.4, which is based on the extremization of our functional

F(ρ) = h(R1) + · · ·+ h(Rm).� (112)

After proving that the vacuum state is a local extremum of F(ρ), we will again assume that 
it is its global minimum. This assumption seems reasonable since the vacuum minimizes the 
corresponding variance-based uncertainty relation (25) as shown in [31]. Let us consider pure 
states ρ = |ψ〉〈ψ| first. Here too, our functional F(ρ) is invariant under displacements, so we 
can restrict to states centered on the origin. Inserting the constraints of normalization and zero 

mean values, we want to solve ∂J
∂〈ψ| = 0, where

J = h(R1) + · · ·+ h(Rm) + λ(〈ψ|ψ〉 − 1) +
m∑

i=1

µi〈ψ|R̂i|ψi〉� (113)

and λ and µi are Lagrange multipliers. As shown in section 4.4,

10 The proof is conditional on one reasonable assumption, see below.
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∂h(Ri)

∂〈ψ|
= −

(
lnP(Ri) + 1

)
|ψ〉

∂

∂〈ψ|

(
λ(〈ψ|ψ〉 − 1) +

m∑
i=1

µi〈ψ|R̂i|ψ〉

)
=

(
λ+

m∑
i=1

µiR̂i

)
|ψ〉

�
(114)

so that the variational equation becomes

[
− ln

(
P(R1)P(R2) · · ·P(Rm)

)
− m + λ+

m∑
i=1

µiR̂i

]
|ψ〉 = 0.� (115)

Thus, the eigenstates of equation (115) are the states extremizing the uncertainty functional. 
As before, instead of looking for eigenstates, we check that the vacuum state |0〉 is a solution 
of equation (115). It means that P(Ri) is a Gaussian distribution

P(R̂i) =
1√
π

e−R2
i� (116)

where we used equation (33) and the fact that the variance of R̂i in the vacuum state is 1/2 for 
all R̂i’s of equation (109). The variational equation can now be written as

[
m
2
ln(π) +

m∑
i=1

R̂2
i − m + λ+

m∑
i=1

µiR̂i

]
|0〉 = 0� (117)

which can be further simplified as

[
m
2
ln(π)− m

2
+ λ+

m∑
i=1

µiR̂i

]
|0〉 = 0� (118)

by using the fact that

m∑
i=1

R̂2
i |ψ〉 =

m∑
i=1

[
cos

(
2π(i − 1)

m

)
x̂ + sin

(
2π(i − 1)

m

)
p̂
]2

|0〉

=
m
2
(x̂2 + p̂2)|0〉

=
m
2
|0〉.

�

(119)

The value of λ = m
2 ln(e/π) is found by multiplying equation (118) on the left by 〈0| and using 

the normalization condition as well as the fact that all mean values 〈0|R̂i|0〉 must vanish. We 
are then left with 

∑m
i=1 µiR̂i|0〉 = 0, which is satisfied if µi = 0 for all i. Thus, we have shown 

that there exists an appropriate choice of λ and µi so that the vacuum extremizes the uncer-
tainty functional. Assuming that it is the global minimizer, we have proved equation (110) 
for pure states since F(|0〉) = m

2 ln(πe). Due to the concavity of the differential entropy, the 
entropic uncertainty relation (110) then holds for mixed states too.
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Table 1.  Summary of the entropic uncertainty relations (UR) expressed in terms of differential entropies (first column), 
their corresponding entropy-power formulations (second column), as well as their implied variance-based uncertainty rela-
tions (third column). The symbol � means that the entropic uncertainty relation is proven, † that it is proven conditionally 
on reasonable assumptions and * that it is a conjecture. We set � = 1 in all equations.

Entropic UR Entropy-power UR Variance-based UR

h(x) + h( p) � ln(πe)
Bialynicki-Birula and Mycielski for n  =  1, equation (2) �

Nx Np � 1
4 

equation (44)
σ2

xσ
2
p � 1

4
Heisenberg, equation (3)

h(x) + h(p)− 1
2

(
det γx det γp

det γ

)
� n ln(πe)

equation (49) †
NxNp

(
det γ

det γx det γp

)
1/n � 1

4 

equation (55)

det γ � 1
4n

equation (13)

h(y) + h(z) � ln ((πe)n| detK|)
equation (62) �

NyNz �
| det K|2/n

4
equation (64)

detΓy detΓz �
| det K|2

4n

equation (65)

h(y) + h(z)− 1
2 ln

(
detΓy detΓz

detΓ

)
� ln ((πe)n| detK|)

equation (71) †
NyNz

(
detΓ

detΓy detΓz

)
1/n � | det K|2/n

4

equation (95)

detΓ � | det K|2
4n

equation (96)

h(R1) + · · ·+ h(Rm)− 1
2 ln

(
σ2

1σ
2
2 ···σ

2
m

detΓ

)
� 1

2 ln((2πe)m detC) 

equation (99) *

N1 · · ·Nm
detΓ

σ2
1σ

2
2 ···σ2

m
� detC

equation (102)

detΓ � detC

Robertson, equation (14)

h(R1) + · · ·+ h(Rm) � 1
2 ln((2πe)m detC)

equation (104) *
N1 · · ·Nm � detC
equation (105)

σ2
1 · · ·σ2

m � detC
Robertson, equation (38)

h(R1) + · · ·+ h(Rm) � m
2 ln

( 2πe
m |a ∧ b|

)

equation (106) *

N1 · · ·Nm �
(

|a∧b|
m

)
m

equation (107)

σ2
1 · · ·σ2

m �
(

|a∧b|
m

)
m

equation (18)

h(R1) + · · ·+ h(Rm) � m
2 ln (πe)

equation (110) †
N1 · · ·Nm � 1

2m

equation (111)

σ2
1 · · ·σ2

m � 1
2m

equation (25)
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6.  Conclusion

We have reviewed continuous-variable entropic uncertainty relations starting from the very 
first formulation by Hirschman and the proof by Bialynicki-Birula and Mycielski to the recent 
entropic uncertainty relation between non-canonically conjugate variables, whose lower 
bound depends on the determinant of a matrix of commutators. We then showed that, by tak-
ing correlations into account, it is possible to define an entropic uncertainty relation for any 
two vectors of intercommuting quadratures whose minimum-uncertainty states are all pure 
Gaussian states. Finally, we derived several conjectures for an entropic uncertainty relation 
addressing more than 2 continuous observables and gave a partial proof of one of them.

In table 1, we provide a summary of all entropic uncertainty relations (for Shannon differ
ential entropies) encountered in this paper. These entropic uncertainty relations appear in the 
first column of table 1. The symbol � means that the relation is proven, † that it is proven 
conditionally on reasonable assumptions, and * that it is still a conjecture. As emphasized 
throughout this paper, entropic uncertainty relations are conveniently formulated in terms of 
entropy powers. The corresponding entropy-power uncertainty relations are then shown in the 
second column of table 1. Further, using the fact that the maximum entropy for a fixed vari-
ance is reached by a Gaussian distribution, a variance-based uncertainty relation can easily 
be deduced from each entropy-power uncertainty relation. This is what is done in the third 
column of table 1, where we show the variance-based uncertainty relations that are implied by 
all entropy-power uncertainty relations.

We conclude this paper by noting that, although significant progress on entropic uncertainty 
relations has been achieved lately, we still lack a symplectic-invariant entropic uncertainty 
relation. All relations we have discussed are invariant under displacements (corresponding 
to a translation of the variables in phase space), and most of them are also invariant under 
squeezing transformations (corresponding to a scaling of the variables). However, no entropic 
uncertainty relation is invariant under rotations, which would make it invariant under the com-
plete set of symplectic transformations. This is, however, a natural property of many variance-
based uncertainty relations, such as the Robertson–Schrödinger relation (8). The invariance of 
the determinant of γ  makes the latter relation invariant under all symplectic transformations, 
hence under all Gaussian unitaries (since it is invariant under displacements too). A mentioned 
in section 3.4, the joint entropy h(x, p) would have the desired property to build a symplectic-
invariant entropic uncertainty relation, but it is not defined for states with a negative Wigner 
function (see also [9, 39]). The tight entropic uncertainty relations of equations (49) and (71) 
admit all pure Gaussian states as minimum-uncertainty state, but are nevertheless not invariant 
under rotations. A recent attempt at defining a symplectic-invariant entropic uncertainty rela-
tion is made in [65], which builds on a multi-copy uncertainty observable that is related to the 
Schwinger representation of a spin state via harmonic oscillators.
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Appendix A.  Symplectic formalism

Here, we briefly review the representation of Gaussian states and unitaries in phase space 
based on the symplectic formalism (see also [37]). A n-mode Gaussian state ρ has a Gaussian 
Wigner function of the form

WG(x, p) =
1

(2π)n
√
det γ

e−
1
2 (r−〈r〉)Tγ−1(r−〈r〉)

�

(A.1)

and is completely characterized by its vector of mean values 〈r〉 = tr(rρ) and its covariance 
matrix γ , whose elements are given by

γij =
1
2
〈{r̂i, r̂j}〉 − 〈r̂i〉〈r̂j〉.� (A.2)

Here, r = (x̂1, p̂1, x̂2, p̂2, · · · , x̂n, p̂n) is the quadrature vector, 〈·〉 stands for the expectation 
value tr(·ρ), and {·, ·} stands for the anti-commutator. Remark that the covariance matrix γ  is 
a real, symmetric, and positive semi-definite matrix. It must also comply with the uncertainty 
relation

γ + i
Ω

2
� 0� (A.3)

where Ω is the so-called symplectic form, defined as

Ω =

n⊕
k=1

ω, ω =

(
0 1
−1 0

)
.� (A.4)

Equation (A.3) is a necessary and sufficient condition that γ  has to fulfill in order to be the 
covariance matrix of a physical state [66].

The purity µ of a Gaussian state is given by

µG =
1

2n
√
det γ

� (A.5)

and it can be shown that pure states having det γ = 1/4n are necessarily Gaussian.
The simplest example of a one-modal Gaussian state is the vacuum state |0〉. It has a vector 

of mean values equal to (0, 0)T  and its covariance matrix is given by γvac = 1/2. We can dis-
place the vacuum in phase state by applying a Gaussian unitary resulting in another Gaussian 

state called a coherent state |α〉 = D(α)|0〉, where D(α) = eαâ†−α∗â and â is the annihilation 

operator. The covariance matrix of a coherent state is the same as for the vacuum, but its vector 

of mean values changes as 〈r〉α =
√

2
(
�(α)
�(α)

)
. As another Gaussian unitary, we can squeeze 

the variance of a quadrature and obtain another Gaussian state known as a squeezed state 

|z〉 = S(z)|0〉 with S(z) = e
1
2 (z∗â2−zâ†2), where z = reiφ is a complex number (r is the squeez-

ing parameter and φ the squeezing angle). The symplectic matrix associated to this Gaussian 
unitary is given by

Sz =

(
cosh r − cos 2φ sinh r − sin 2φ sinh r

− sin 2φ sinh r cosh r + cos 2φ sinh r

)
� (A.6)

so that the covariance matrix of a squeezed state is given by

γz = Szγvac ST
z =

1
2

(
cosh 2r − cos 2φ sinh 2r − sin 2φ sinh 2r

− sin 2φ sinh 2r cosh 2r + cos 2φ sinh 2r

)
.

�

(A.7)
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A squeezing in the x (p ) direction corresponds to the choice φ = 0 (φ = π/2). Yet another 

(one-mode) Gaussian operation is the phase-shift R(θ) = e−iθâ†â. Its associated symplectic 
matrix is simply given by the rotation matrix

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
.� (A.8)

The above operations are all the possible one-modal Gaussian unitaries. For n modes, there 
is a larger set of Gaussian unitary operations, which we do not need to discuss here. The key 
point is that, in state space, a Gaussian unitary always transforms a Gaussian state onto a 
Gaussian state. Its corresponding action in phase space is expressed via a symplectic transfor-
mation. That is, if a Gaussian unitary U transforms ρ  according to

ρ̂ → Uρ̂U†� (A.9)

its quadratures in phase space are transformed as

r̂ → S r̂ + d� (A.10)

where d is a real vector of dimension 2n and S  is a real 2n × 2n matrix. Regarding the mean 
values and covariance matrix of ρ, the transformation rules are

〈r〉 → S〈r〉+ d and γ → SγST .� (A.11)

The commutation relations between the quadratures have to be preserved along this transfor-
mation, which is the case if the matrix S  is symplectic, that is, if

SΩST = Ω� (A.12)

where Ω is defined in equation (A.4). Note that ΩT = Ω−1 = −Ω and Ω2 = −1. Be aware 
that this definition of symplectic matrices is linked to the definition of r (i.e. the ordering of 
the entries in r). If one chooses instead to define r = (x̂1, · · · , x̂n, p̂1, · · · , p̂n), then the matrix 

S  is symplectic if SJST = J  with J =
(

0 1

−1 0

)
. Here too, JT = J−1 = −J  and J2 = −1.

In addition, any symplectic matrix S  has the following properties:

	 •	�The matrices ST , S−1 and −S  are also symplectic.
	 •	�The inverse of S  is given by S−1 = −ΩSTΩ (or S−1 = −JSTJ , depending on the defini-

tion of r).
	 •	�detS = 1, which implies that det γ is conserved by any symplectic transformation.

	 •	�If r = (x̂1, · · · , x̂n, p̂1, · · · , p̂n) and S =
(

a b
c d

)
, then SJST = J  implies that abT and cdT 

are symmetric matrices and adT − bcT = 1.
	 •	�In terms of the associated symplectic transformation, a Gaussian unitary will be passive 

(it conserves the mean photon number) if and only if

d = 0 and STS = 1,� (A.13)

		 which means that the symplectic matrix S  must be orthogonal.

The Williamson’s theorem [67] states that, after the appropriate symplectic transformation, 
every real, positive semidefinite matrix of even dimension can be brought to a diagonal form 
γ⊕, with its symplectic values νk  on the diagonal (each νk  is doubly degenerate). In other 
words, there exists a symplectic matrix S  such that11

11 We use here the definition r = (x̂1, p̂1, · · · , x̂n, p̂n).
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γ = Sγ⊕ST , where γ⊕ =

n⊕
k=1

νk 12×2.� (A.14)

Obviously, since the determinant of a symplectic matrix is equal to 1, γ  and γ⊕ have the 
same determinant. Therefore, for a one-mode state, its symplectic value is simply equal to √
det γ . For a two-mode state, the two symplectic values ν± can be found using the follow-

ing formula [68]

ν± =

√
∆±

√
∆2 − 4 det γ

2
� (A.15)

where the covariance can be written in the block form

γ =

(
A C

CT B

)
� (A.16)

and ∆ = |A|+ |B|+ 2|C|. In general, one can find the symplectic values by diagonalizing the 
matrix iΩγ  and taking the absolute value of its eigenvalues (see e.g. [37, 39]).

Appendix B.  Calculation of detΓ

Here, we compute the determinant of the covariance matrix Γ of the y, z-quadratures (see 
equation (70)) as needed in the evaluation of the tight entropic uncertainty relation for two 
arbitrary vectors of quadratures, equation (71). As before, let y = (ŷ1, · · · ŷn)

T  be a vector of 
commuting quadratures and z = (ẑ1, · · · ẑn)

T  be another vector of commuting quadratures. 
We now suppose that they correspond to the output x-quadratures after applying two symplec-
tic transformations denoted as A and B onto the 2n-dimensional vector of input quadratures 
r = (x̂1, · · · , x̂n, p̂1, · · · , p̂n)

T . The corresponding 2n-dimensional vectors of output quadra-
tures are written as

rA = A r ≡
(

y
q

)
, rB = B r ≡

(
z
o

)
� (B.1)

where q (resp. o) is the vector of quadratures that are canonically conjugate with y (resp. 
z). Since equation (B.1) tells us how to obtain y  and z from x and p  through the symplectic 
transformations A and B , we can compute the elements of the covariance matrix Γ for the 
y, z quadratures, namely

Γij =
1
2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉� (B.2)

with R = (ŷ1, ..., ŷn, ẑ1, ..., ẑn)
T. For example, we may evaluate Γij for 1 � i, j � n, namely

Γij =
1
2
〈

2n∑
k=1

Aikr̂k

2n∑
l=1

Ajlr̂l +

2n∑
l=1

Ajlr̂l

2n∑
k=1

Aikr̂k〉 − 〈
2n∑

k=1

Aikr̂k〉〈
2n∑

l=1

Ajlr̂l〉

=

2n∑
k=1

2n∑
l=1

AikAjlγkl

=

2n∑
k=1

2n∑
l=1

AikγklAT
lj

= (AγAT)ij.
�

(B.3)
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Similarly, we can show that Γi+n,j+n = (BγBT)ij and Γi,j+n = (AγBT)ij for 1 � i, j � n. Since 
the covariance matrix is symmetric, we obtain

Γ =

(
Γy Γyz

Γyz Γz

)
=

(
(AγAT)i,j=1,...,n (AγBT)i,j=1,...,n

(BγAT)i,j=1,...,n (BγBT)i,j=1,...,n

)
.� (B.4)

Notice that matrices AγAT , AγBT, BγAT and BγBT all have dimensions 2n × 2n but we 
truncate them to keep only the reduced matrices with indices running from 1 to n. Therefore, 
Γy, Γz and Γyz have dimension n × n, while Γ is a 2n × 2n matrix.

To simplify the expression of Γ, we use a block matrix representation of the symplectic 
transformations,

A =

(
Aa Ab

Ac Ad

)
and B =

(
Ba Bb

Bc Bd

)
� (B.5)

so that, for example,

AγAT =

(
Aa Ab

Ac Ad

)(
γx γxp

γxp γp

)(
AT

a AT
c

AT
b AT

d

)

=

(
AaγxAT

a +AaγxpAT
b +AbγxpAT

a +AbγpAT
b · · ·

· · · · · ·

)�

(B.6)

where we do not need to express the matrix elements denoted with dots since all we need to 
compute is

(AγAT)i,j=1,...,n = AaγxAT
a +AaγxpAT

b +AbγxpAT
a +AbγpAT

b .� (B.7)

By doing the same calculation for the other blocs of matrix Γ, we obtain that it can be written 
as the product of three matrices,

Γ =

(
Aa Ab

Ba Bb

)(
γx γxp

γxp γp

)(
Aa Ab

Ba Bb

)T

.� (B.8)

In particular, the determinant of Γ is given by

detΓ = det γ

[
det

(
Aa Ab

Ba Bb

)]2

.� (B.9)

Note that for a block matrix M of size (n + m)× (n + m) written as

M =

(
An×n Bn×m

Cm×n Dm×m

)
,� (B.10)

it is easy to see that the following equality holds (assuming that D is invertible12)
(

A B
C D

)(
1 0

−D−1C 1

)
=

(
A − BD−1C B

0 D

)
.� (B.11)

Thus, the determinant of this equation is

det(M) = det(A − BD−1C) det(D)� (B.12)

where we have exploited the fact that the determinant of a block triangular matrix is given by 
the product of the determinants of its diagonal blocks [69].

12 If D is not invertible, equation (B.11) can be written in a similar way in terms of A−1.
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Moreover, since B represents a symplectic transformation, it hence satisfies 

B
(

0 1

−1 0

)
BT =

(
0 1

−1 0

)
. In particular, this means that13 BaBT

b = BbBT
a  or Ba = BbBT

a B−T
b . 

Thus, using equation (B.12) together with the symmetry of the matrix BaBT
b , we can compute 

the determinant of the bloc matrix M in our case

det

[(
Aa Ab

Ba Bb

)]
= det(Aa −AbB−1

b Ba) detBb

= det(Aa −AbB−1
b BbBT

a B−T
b ) detBT

b

= det(AaBT
b −AbBT

a )

= det(BbAT
a − BaAT

b ).
�

(B.13)

Thus, the determinant of Γ can be written in terms of the blocks composing the two symplec-
tic transformations A and B

detΓ = det γ
(
det(BbAT

a − BaAT
b )
)2

.� (B.14)

Now, this expression can be rewritten in a form that does not explicitly include the blocks com-
posing A and B but uses the commutator matrix K instead. The elements of K are expressed as

Kji = [ŷj, ẑi]

=
2n∑

k=1

2n∑
m=1

AjkBim [̂rk, r̂m]

= i
2n∑

m=1

(
n∑

k=1

AjkBimδm,k+n −
2n∑

k=n+1

AjkBimδm,k−n

)

= i

(
n∑

k=1

AjkBi,k+n −
2n∑

k=n+1

AjkBi,k−n

)

= i

(
n∑

k=1

AjkBi,k+n −Aj,k+nBik

)

= i

(
n∑

k=1

(Aa)jk(Bb)ik − (Ab)jk(Ba)ik

)

= i
(
BbAT

a − BaAT
b

)
ij ,

�

(B.15)

which implies that

|detK| = |det(BbAT
a − BaAT

b )|� (B.16)

as proven in [56]. Hence, equation (B.14) can finally be expressed as

detΓ = det γ |detK|2� (B.17)

that is, equation (75).

13 (·)−T  denotes the transpose of the inverse.

J. Phys. A: Math. Theor. 52 (2019) 173001



Topical Review

35

Appendix C.  Pure Gaussian states as eigenvectors of 12 RTΓ−1R

Here, we show that n-modal pure Gaussian states are eigenvectors of the operator 12 RTΓ−1R 
with eigenvalue n, see equation (91). In state space, a pure Gaussian state can be written as 
|ψG〉 = Ŝ|0〉, where Ŝ  is a Gaussian unitary and |0〉 is the n-modal vacuum state. Since the 
states considered in the proof of equation (71) are centered at the origin, we do not need 
to apply a displacement operator and Ŝ  is a n-modal squeezing operator (with arbitrary 

squeezing and rotation). In order to apply 12 RTΓ−1R onto state |ψG〉, we write the canonical 

transformation of r in phase space that corresponds to Ŝ  in state space (in the Heisenberg 
picture), namely Ŝ†r Ŝ = Mr, where M is a symplectic matrix so that γG = MγvacMT . 
Remember that γG is the covariance matrix for the x, p-quadratures, but we are interested 
in the covariance matrix Γ for the y, z quadratures. We thus use the following change of 
variables

Ŝ†
(

y
z

)
Ŝ = Ŝ†

(
Aa Ab

Ba Bb

)(
x
p

)
Ŝ =

(
Aa Ab

Ba Bb

)
Ŝ†

(
x
p

)
Ŝ =

(
Aa Ab

Ba Bb

)
M

(
x
p

)
� (C.1)

where we have use the fact that Ŝ  and 
(
Aa Ab

Ba Bb

)
 commute since they act on two different 

spaces. Then, we have

1
2

RTΓ−1 R |ψG〉 = 1
2

RT Γ−1 R Ŝ|0〉

=
1
2

ŜŜ† RT ŜΓ−1Ŝ† RŜ |0〉

=
1
2

Ŝ
(
Ŝ†yŜ Ŝ†zŜ

)
Γ−1

(
Ŝ†yŜ
Ŝ†zŜ

)
|0〉

=
1
2

Ŝ
(
x p

)
MT

(
Aa Ab

Ba Bb

)T

Γ−1
(
Aa Ab

Ba Bb

)
M

(
x
p

)
|0〉

=
1
2

Ŝ rT γ−1
vac r |0〉

= Ŝ (|x|2 + |p|2) |0〉
= n Ŝ|0〉 = n |ψG〉.

�

(C.2)

To find the fifth line, we have used equation (B.8) in order to compute the inverse of Γ, namely

Γ−1 =

[(
Aa Ab

Ba Bb

)
γG

(
Aa Ab

Ba Bb

)T
]−1

=

[(
Aa Ab

Ba Bb

)
MγvacMT

(
Aa Ab

Ba Bb

)T
]−1

.� (C.3)

Thus, equation (C.2) expresses that |ψG〉 is an eigenvector of 12 RTΓ−1R with eigenvalue n, as 
advertized.
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