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Abstract
We introduce a class of quantum channels called passive-environment bosonic 
channels. These channels are relevant from a quantum thermodynamical 
viewpoint because they correspond to the energy-preserving linear coupling 
of a bosonic system with a bosonic environment that is in a passive state 
(no energy can be extracted from it with a unitary transformation) followed 
by discarding the environment. The Fock-majorization relation defined in 
Jabbour et al (2016 New J. Phys. 18 073047) happens to be particularly useful 
in this context as, unlike regular majorization, it connects the disorder of a 
state together with its energy. Our main result here is the preservation of Fock-
majorization across all passive-environment bosonic channels. This implies a 
similar preservation for regular majorization over the set of passive states, and 
also extends to the passive-environment bosonic channels whose Stinespring 
dilation involves an active Gaussian unitary. Beyond bosonic systems, the 
class of passive-environment operations as defined here naturally generalizes 
the set of thermal operations and is expected to provide new insights into the 
thermodynamics of quantum systems.

Keywords: passive-environment bosonic channels, Fock-majorization, 
passive states, majorization
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1. Introduction

Quantum thermodynamics has become a very active research area in recent years, aiming at a 
better understanding of thermal operations on individual quantum systems at the microscopic 
scale, see e.g. [1–4]. Among the objectives that are pursued, finding conditions to discriminate 
the permitted operations from the forbidden ones is of key importance, with a milestone in this 
direction being the recently uncovered existence of several second laws of thermodynamics 
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[5]. In this context, majorization theory [6] has proven to be a powerful tool as it allows one 
to compare states in terms of disorder, which is a primordial concept when studying thermal 
operations on quantum systems (see, e.g. the notion of thermo-majorization [2]). Although 
most works in quantum thermodynamics have considered discrete (often finite-dimensional) 
quantum systems, we turn here to continuous-variable bosonic (infinite-dimensional) quant um 
systems.

The application of majorization relations to express conditions on the interconvertibility 
between quantum entangled states [7] has been successfully extended to probe the intercon-
vertibility between Gaussian bosonic entangled states [8]. More fundamentally, Gaussian bos-
onic channels have been shown to respect several majorization relations. For example, the 
output state of a quantum-limited phase-insensitive (amplifier or loss) channel was proven to 
obey an infinite ladder of majorization relations when the input state is a Fock state [9, 10]. 
Beyond that, it was proven that the output state corresponding to the vacuum at the input of a 
phase-insensitive Gaussian bosonic channel majorizes every other output state [11], while the 
multimode extension of this relation was shown to hold too [12]. The key role of majorization 
in Gaussian bosonic channels is even more apparent from the property that, within the set of 
input states with a same spectrum, the passive state produces an output state that majorizes 
every other output state [13].

Here, we go a step further and exploit the tools based on majorization theory for bos-
onic channels in a thermodynamical context. The evolution of a quantum thermodynamical 
system can indeed be viewed as a completely-positive trace-preserving map applied to the 
system, that is, a quantum channel. We focus in this paper on bosonic quantum channels that 
are Gaussian-dilatable [14] (i.e. a Gaussian unitary can be used in the Stinespring dilation of 
the channel) and involve a passive environment (i.e. no energy can be extracted by applying 
a unitary operation on the environment). Interestingly, these so-called passive-environ ment  
bosonic channels encompass Gaussian channels but also a large class of non-Gaussian 
channels.

We address the question of whether a majorization relation is transferred across these 
channels viewed as a thermodynamical operation. Our results build on the notion of Fock-
majorization (or energy-majorization) [15], and imply that any two input states that obey 
a Fock-majorization relation are transformed into output states obeying a similar relation. 
This majorization preservation property thus holds for a large class of thermodynamically 
relevant channels, going beyond the special case of Gaussian bosonic channels as consid-
ered in [15].

In section 2, we summarize the notion of passive states and their role in quantum thermo-
dynamics. We then define the class of bosonic quantum channels with a passive environment, 
which is a natural generalization of the noisy operations and thermal operations used for 
modeling the dynamics of quantum thermodynamical systems. In section 3, we briefly review 
the Fock-majorization relation as defined in [15] and compare it with regular majorization and 
thermo-majorization. In section 4, we prove the preservation of Fock-majorization relations 
across bosonic channels characterized by a passive Gaussian unitary and a passive environ-
ment, and then discuss the implication for regular majorization preservation over the set of 
passive states. A main ingredient of our proofs derives from the analysis of the generating 
function of the matrix elements of Gaussian unitaries in the Fock basis, which yields useful 
recurrence equations on these non-Gaussian objects [16]. In section 5, we extend these results 
to passive-environment channels in which the Gaussian unitary is active. Finally, in section 6, 
we give our conclusions.
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2. Passive states and passive-environment bosonic channels

Passive states are interesting when studying quantum systems from a thermodynamical point 
of view. They are defined as those quantum states from which no work can be extracted under 
Hamiltonian processes, making them the most stable states among all states that are reachable 
through a unitary transformation [17]. As a result, a passive state, denoted as ρ↓, is diagonal 
in the eigenbasis of the Hamiltonian of the system and is characterized by non-increasing 
eigenvalues when the energy of the corresponding eigenvectors increases. Mathematically 
speaking, it can be written as

ρ↓ =
∑

i

λ↓
i |ei〉〈ei| with λ↓

i+1 � λ↓
i if ei+1 > ei, (1)

where |ei〉 are the eigenvectors and ei the corresponding eigenvalues of the Hamiltonian of 
the system. Interestingly, one can often ‘activate’ the work extraction from a passive state by 
jointly acting on it and an ancilla [17, 18]. Suppose one has access to n replicas of the passive 
state (in this example, the ancilla consists of n  −  1 replicas), then the joint system may not 
be passive anymore, allowing one to extract work by applying a unitary operation on the n 
replicas. For a sufficiently large n, this is actually the case for almost all passive states except 
for thermal states. The latter are a special case of passive states whose eigenspectrum is given 
by a geometric distribution, which is characterized by a single parameter (e.g. the temper-
ature). Remarkably, the tensor product of n replicas of a thermal state remains passive and no 
work can be extracted from it (thermal states can be shown to be the only ‘completely’ passive 
states [17]). Furthermore, if one fixes the von Neumann entropy of a state, the thermal state is 
well-known to admit the lowest energy among all states (including the passive states) having 
this entropy [19]. Hence, we may categorize thermal states as the most stable states among all 
passive states having the same von Neumann entropy.

Passive states also arise in the context of modeling the dynamics of quantum thermody-
namical systems, where some specific passive states are usually chosen as free ‘resources’. 
When constructing a resource theory, one needs to define the set of permitted (free) state trans-
formations [20]. This can be done by combining the following operations: composing the state 
with a fixed environment (viewed as a bath), acting on the resulting joint state with a unitary 
(usually chosen to conserve the energy), and finally discarding the environment. The environ-
ment is usually chosen to be thermal, which is a reasonable physical assumption. Still, one can 
also construct a simpler, less realistic model by choosing the maximally mixed state for the 
environment. By doing so, one obtains so-called noisy operations (NO), which have the form

CNO(ρS) = TrE

[
USE

(
ρS ⊗

IE

nE

)
U†

SE

]
, (2)

where ρS is the state of the system, IE  is the identity defined on the environment of dimension 
nE, and USE is an energy-conserving unitary acting on the system and the environment. When 
a state is transformed according to CNO, the input can be shown to majorize the output for large 
enough nE [21]. This can be intuitively understood by noticing that a state undergoing such 
a transformation gets more mixed (the maximally mixed state is indeed majorized by every 
other state). A more realistic model is obtained by choosing a thermal state τE for the environ-
ment, resulting into the so-called thermal operations (TO),

CTO(ρS) = TrE

[
USE (ρS ⊗ τE)U†

SE

]
. (3)
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A similar input–output relation can be proven in the case of thermal operations CTO, with 
majorization being replaced by thermo-majorization [2]. Roughly speaking, this corresponds 
to a modified majorization after rescaling the eigenvalues of the state with those of the thermal 
state. It means that the state of the system gets ‘closer’ to the thermal state of the environment 
(here, it is the thermal state that is is thermo-majorized by every other state).

In this paper, we introduce a class of quantum channels that generalizes equations (2) and 
(3), where the environment is chosen to be in any passive state (note that in CNO and CTO, the 
environment is in a special case of a passive state). Since we focus on bosonic systems, we 
choose the environment to be passive in the eigenbasis of the Hamiltonian of the harmonic 
oscillator (i.e. the Fock basis), and fix the unitary USE to be a beam splitter (i.e. the realization 
of an energy-conserving linear coupling between bosonic systems). The result is a thermo-
dynamical operation that we call a passive-environment bosonic channel (or simply passive 
channel), which is of the form

B↓
η(ρS) = TrE

[
UBS

η

(
ρS ⊗ σ↓

E

)
UBS†

η

]
, (4)

where σ↓
E =

∑∞
i=0 λ

↓
i |i〉〈i| is the passive state of the environment, with λ↓

i+1 � λ↓
i  and |i〉 denot-

ing Fock states. The unitary UBS
η  corresponds to a beam splitter (BS) of transmittance η (hence 

the symbol B for the channel). It couples the system mode S with the passive environment 
mode E (hence the arrow in the notation B↓) through the relation âS → √

η âS +
√

1 − η âE, 
where âS are âE are the bosonic mode operators for the system and environment, respectively 
[22].

Note that in contrast with CTO, which corresponds to a Gaussian channel in the case of 
bosonic systems, the map B↓

η effects a non-Gaussian channel since the system is coupled (via 
a Gaussian unitary) to an environment state that is generally non-Gaussian (this is called a 
Gaussian-dilatable channel [14] since there exists a Stinespring dilation of the channel admit-
ting a Gaussian unitary). In this sense, our study of majorization preservation for the map B↓

η in 
section 4 generalizes an earlier study of majorization preservation in Gaussian channels [15]. 
To be more general, we also consider in section 5 the class of Gaussian-dilatable channels with 
an active Gaussian unitary, namely a two-mode squeezer (TMS), the environment being again 
passive. These maps are noted A↓

G, where G is the amplification gain, and the corresponding 
two-mode squeezer unitary UTMS

λ  with parameter λ = (G − 1)/G couples the system mode 
S with the passive environment mode E through the relation âS →

√
G âS +

√
G − 1 â†E  [22]. 

It turns out that A↓
G exhibits similar properties as those of B↓

η in terms of Fock-majorization.

3. Fock-majorization relation

Before turning to the Fock-majorization relation, let us summarize the basics of the theory 
of majorization applied to quantum systems. Majorization provides a pre-order relation on 
quant um states, allowing us to compare them in terms of disorder. We say that a state ρ  
majorizes another state σ, denoted as ρ � σ , when

n∑
i=1

r↓i �
n∑

i=1

s↓i , ∀ n � 1, (5)

where r↓ (s↓) is the vector of eigenvalues of ρ  (σ) arranged in non-increasing order. Whenever 
equation (5) is verified, it means that s = D r, where r (s) is the vector of eigenvalues of ρ  (σ) 
and D is a bistochastic matrix [6], so that state σ can be obtained from state ρ  by applying a 
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random mixture of unitaries (hence, σ is more disordered than ρ). In addition, ρ � σ  is equiv-
alent to condition Tr f (ρ) � Tr f (σ) for any convex function f : R → R, which introduces a 
structure in terms of convex functions [6].

The concept of Fock-majorization was introduced in [15] and can more generally be viewed 
as energy-majorization when the Hamiltonian is not the one of the harmonic oscillator. For a 
harmonic oscillator (or a bosonic mode), we say that a state ρ  Fock-majorizes another state σ, 
denoted as ρ �F σ, when

Tr(Pn ρ) � Tr(Pn σ), ∀ n � 0, (6)

where Pn =
∑n

i=0 |i〉〈i| is a projector onto the space spanned by the n  +  1 first Fock states 
|i〉 (which are the eigenstates of the Hamiltonian of the harmonic oscillator). This (pre)order 
relation only depends on the vectors of diagonal elements of ρ  and σ in the eigenbasis of the 
Hamiltonian, i.e. the Fock basis. In contrast with regular majorization, these vectors are not 
ordered by decreasing values, but by increasing photon number1.

Fock-majorization bears some similarity with the relation called ‘upper-triangular majori-
zation’ introduced in [23]. There, it was shown that two states obeying such a relation can be 
related by a so-called ‘cooling’ map, which happens to be a special case of the thermal opera-
tions (3) when the environment is set to zero temperature (it is in the vacuum state). Instead, 
Fock-majorization corresponds to a ‘lower-triangular majorization’ and can therefore be inter-
preted as a relation indicating the existence of a ‘heating’ (or ‘amplifying’) map between the 
two states [24]. Fock-majorization and upper-triangular majorization are both linked with 
thermo-majorization [2] as all these relations rely on the diagonal elements of the states in the 
energy eigenbasis (here, the Fock basis). Thermo-majorization can be viewed as a majoriza-
tion relative to the thermal distribution2. In the case of bosonic systems, it amounts to arrange 
the scaled probabilities pi/τi (instead of the probabilities p i) by non-increasing order, where p i 
(τi) are the diagonal elements of state ρ  (of the thermal state). Doing the same reordering for 
the diagonal elements qi of state σ, thermo-majorization then requires verifying the standard 
condition on the cumulative probabilities 

∑n
i=1 pi �

∑n
i=1 qi, ∀n � 1.

Finally, coming back to Fock-majorization, let us stress an interesting connection with 
energy. Relation (6) is equivalent to check that, for any E, the probability that the outcome of 
an energy measurement on ρ  is at most E is greater than the probability that the outcome of 
an energy measurement on σ is at most E. As shown in [15], this has a simple consequence 
in terms of mean energy. If ρ  Fock-majorizes σ, then the mean energy of σ is greater than or 
equal to the one of ρ , that is, ρ �F σ ⇒ Tr(Hρ) � Tr(Hσ), where H is the Hamiltonian of the 
harmonic oscillator. This property can actually be generalized to any increasing function of H, 
which turns the condition into an equivalence [24].

4. Fock-majorization preservation in passive-environment channels

The notion of a majorization-preserving quantum channel was defined in [15]. A channel Φ 
is called majorization-preserving whenever it is such that if ρ � σ , then Φ[ρ] � Φ[σ]. The 
central result of [15] was that all (phase-insensitive and phase-conjugate) Gaussian bosonic 
channels ΦG are majorization-preserving over the set of passive states. That is, given two 
passive states ρ↓ and σ↓, if ρ↓ � σ↓, then ΦG[ρ

↓] � ΦG[σ
↓] for all ΦG. The proof relied on 

1 Such a definition of energy-majorization without prior sorting makes sense because there exists a natural way of 
ordering the elements, here the energy. This type of majorization relation is named ‘unordered’ majorization in [6].
2 The majorization relation relative to d (denoted as �d) is defined in [6], where d is some probability vector. The 
relation p �d q means that q is ‘closer’ than p  to the vector d. In regular majorization, d is simply the uniform 
distribution, while in thermo-majorization it is the thermal distribution.
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the Fock-majorization relation and the fact that it coincides with regular majorization for pas-
sive states (i.e. ρ↓ � σ↓ ⇔ ρ↓ �F σ↓). As a matter of fact, Gaussian channels ΦG were first 
proven to be Fock-majorization preserving, where a Fock-majorization preserving channel Φ 
is of course defined as a channel such that if ρ �F σ, then Φ[ρ] �F Φ[σ]. The preservation of 
Fock-majorization across channels ΦG was actually the key result of [15], from which the rest 
follows. It was proven based on the following theorem.

Theorem 1 ([15]). A channel Φ satisfying the condition 〈n|Φ[|i〉〈j|] |n〉 = 0, ∀i �= j, ∀n is 
Fock-majorization preserving if and only if it obeys the ladder of Fock-majorization relations

Φ
[
|i〉〈i|

]
�F Φ

[
|i + 1〉〈i + 1|

]
, ∀i � 0. (7)

In [15], all Gaussian channels ΦG were indeed shown to verify equation (7). Since they 
form a special case of passive-environment bosonic channels3, it is natural to investigate 
whether the Fock-majorization preservation property extends to all passive-environment bos-
onic channels B↓

η (and similarly A↓
G).

In order to prove this, we again recourse to theorem 1, with a minor caveat. Indeed, the 
proof of theorem 1 in [15] did not mention the condition 〈n|Φ[|i〉〈j|] |n〉 = 0, ∀i �= j, ∀n since 
only Fock-diagonal states were considered at the input of channel ΦG. However, theorem 1 
also applies to input states that are non-diagonal in the Fock basis as long as the above condi-
tion is fulfilled (i.e. provided the non-diagonal elements of the input state do not contribute 
to the diagonal elements of the output state, which are the only ones that matter in the Fock-
majorization relation) [24]. As shown in appendix A, this condition is verified for Gaussian-
dilatable channels with a passive environment, so theorem 1 can be applied to these channels. 
Before doing so, we are left with proving the following theorem.

Theorem 2. Passive-environment bosonic channels B↓
η exhibit the ladder of Fock- 

majorization relations

B↓
η

[
|i〉〈i|

]
�F B↓

η

[
|i + 1〉〈i + 1|

]
, ∀i � 0. (8)

Proof. We begin by proving the ladder of Fock-majorization relations for a passive channel 
B[K]
η  characterized by an environment that is a projector onto the space spanned by the K  +  1 

first Fock states |k〉, i.e.

B[K]
η (ρ) = TrE

[
UBS

η

(
ρ⊗ P↓

K

)
UBS†

η

]
, (9)

where P↓
K =

∑K
k=0 |k〉〈k|. Note that B[K]

η  is not trace-preserving here since P↓
K  is not nor-

malized. We need to show that B[K]
η

[
|i〉〈i|

]
�F B[K]

η

[
|i + 1〉〈i + 1|

]
, ∀i � 0, or

Tr
[
Pn

(
B[K]
η

[
|i〉〈i|

]
− B[K]

η

[
|i + 1〉〈i + 1|

])]
� 0, ∀i � 0,∀n � 0. (10)

In [16], it was shown that if the environment is in a single Fock state |k〉, the action of the 
corre sponding channel on a Fock state |i〉 can be written as

3 In particular, the lossy Gaussian channels (i.e. channels whose Stinespring dilation gives a beam splitter) are 
passive-environment bosonic channels of the form (4), where the environment is chosen to be in a thermal (hence, 
passive) Gaussian state.
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TrE
[
UBS

η (|i〉〈i| ⊗ |k〉〈k|)UBS†
η

]
=

i+k∑
m=0

B(i,k)
m |m〉〈m| (11)

where the coefficients B(i,k)
m  obey the recurrence relation

B(i,k)
m = ηB(i−1,k)

m−1 + (1 − η)B(i−1,k)
m + ηB(i,k−1)

m + (1 − η)B(i,k−1)
m−1 − B(i−1,k−1)

m−1 ,
 (12)

when i � 0, k � 0 and 0 � m � i + k . Whenever one of the indices i, k, m is equal to zero in 
the left-hand side of equation (12), the coefficients with negative indices have to be removed 
on its right-hand side except if all indices are equal to zero, in which case the ‘initial condi-

tion’ is B(0,0)
0 = 1. Using these notations, we need to prove that

∆(i,K)
n =

K∑
k=0

n∑
m=0

[
B(i,k)

m − B(i+1,k)
m

]
� 0, ∀i � 0, ∀n � 0, n � i + k. (13)

Using the recurrence relation (12), we have that

∆(i,K)
n =

K∑
k=0

n∑
m=0

[
B(i,k)

m − (1 − η)B(i,k)
m

]

−
K∑

k=0

n∑
m=0

[
ηB(i,k)

m−1 + (1 − η)B(i+1,k−1)
m−1 + ηB(i+1,k−1)

m − B(i,k−1)
m−1

]

= η

K∑
k=0

n∑
m=0

(
B(i,k)

m − B(i,k)
m−1

)
− η

K∑
k=0

n∑
m=0

(
B(i+1,k−1)

m − B(i+1,k−1)
m−1

)

+
K∑

k=0

n∑
m=0

(
B(i,k−1)

m−1 − B(i+1,k−1)
m−1

)

= η

K∑
k=0

B(i,k)
n − η

K∑
k=0

B(i+1,k−1)
n +

K−1∑
k=0

n−1∑
m=0

(
B(i,k)

m − B(i+1,k)
m

)

= η

K−1∑
k=0

B(i,k)
n + ηB(i,K)

n − η

K−1∑
k=0

B(i+1,k)
n

+ η

K−1∑
k=0

n−1∑
m=0

(
B(i,k)

m − B(i+1,k)
m

)
+ (1 − η)∆

(i,K−1)
n−1

= ηB(i,K)
n + η∆(i,K−1)

n + (1 − η)∆
(i,K−1)
n−1 .

 

(14)

For K  =  0, we know that ∆(i,0)
n � 0, ∀i � 0, ∀n � 0 since B[0]

η  corresponds to a Gaussian 
 pure-loss channel [15]. We are then able to prove equation (13) by using a recursion on K, 
since B(i,k)

n � 0, ∀i � 0, ∀n � 0, ∀k � 0. This implies that

M G Jabbour and N J Cerf J. Phys. A: Math. Theor. 52 (2019) 105302
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B[K]
η

[
|i〉〈i|

]
�F B[K]

η

[
|i + 1〉〈i + 1|

]
, ∀i � 0 (15)

Now, since any passive state can be written as a convex sum over K of (normalised) projec-
tors P↓

K , the channels B↓
η can also be written as a convex combination of channels B[K]

η , hence 
we get the same Fock-majorization relation for channels B↓

η, which concludes the proof of 
theorem 2. □ 

Using theorems 1 and 2, we obtain the following corollary.

Corollary 1. Passive-environment bosonic channels B↓
η are Fock-majorization preserving, 

that is, for all states ρ  and σ,

if ρ �F σ, then B↓
η[ρ] �F B↓

η[σ]. (16)

Just like Gaussian channels, passive-environment bosonic channels do not preserve reg-
ular majorization, that is, if ρ � σ , then we cannot conclude that B↓

η[ρ] � B↓
η[σ]. Counter-

examples can be easily found. However, one can prove that passive-environment bosonic 
channels become majorization preserving when restricting to the set of passive states. Because 
of the equivalence between majorization and Fock-majorization for this set, we simply need to 
verify that passive states remain passive after evolving through the channel. This is the content 
of the following theorem.

Theorem 3. Passive-environment bosonic channels B↓
η are passive preserving, that is

if ρ↓ is passive, then B↓
η[ρ

↓] is also passive. (17)

Proof. We begin by showing that this theorem is true for any passive channel B[K]
η , but when 

the input is the (unnormalized) projector P↓
I . We need to prove that

Tr
[
(|n〉〈n| − |n + 1〉〈n + 1|)B[K]

η

[
P↓

I

]]
� 0, ∀I � 0,∀n � 0, (18)

or,

Γ(I,K)
n =

I∑
i=0

K∑
k=0

(
B(i,k)

n − B(i,k)
n+1

)
� 0, ∀I � 0, ∀n � 0. (19)

Using the recurrence relation (12), we have that
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Γ(I,K)
n =

I∑
i=0

K∑
k=0

(
B(i,k)

n − ηB(i−1,k)
n − (1 − η)B(i−1,k)

n+1 − ηB(i,k−1)
n+1

−(1 − η)B(i,k−1)
n + B(i−1,k−1)

n

)

= η

I∑
i=0

K∑
k=0

(
B(i,k)

n − B(i−1,k)
n

)
+ (1 − η)

I∑
i=0

K∑
k=0

(
B(i,k)

n − B(i,k−1)
n

)

− (1 − η)
I∑

i=0

K∑
k=0

B(i−1,k)
n+1 − η

I∑
i=0

K∑
k=0

B(i,k−1)
n+1 +

I∑
i=0

K∑
k=0

B(i−1,k−1)
n

= η

K∑
k=0

B(i,k)
n + (1 − η)

I∑
i=0

B(i,k)
n − (1 − η)

I−1∑
i=0

K∑
k=0

B(i,k)
n+1

− η

I∑
i=0

K−1∑
k=0

B(i,k)
n+1 +

I−1∑
i=0

K−1∑
k=0

B(i,k)
n

= B(i,k)
n − (1 − η)

I−1∑
i=0

K∑
k=0

B(i,k)
n+1 − η

I∑
i=0

K−1∑
k=0

B(i,k)
n+1 + η

I∑
i=0

K−1∑
k=0

B(i,k)
n

+ (1 − η)

I−1∑
i=0

K∑
k=0

B(i,k)
n

= B(i,k)
n + η

I∑
i=0

K−1∑
k=0

(
B(i,k)

n − B(i,k)
n+1

)
+ (1 − η)

I−1∑
i=0

K∑
k=0

(
B(i,k)

n − B(i,k)
n+1

)

= B(i,k)
n + ηΓ(I,K−1)

n + (1 − η)Γ(I−1,K)
n .

 (20)

We know that Γ(I,0)
n � 0, ∀I � 0, ∀n � 0, since it corresponds to a Gaussian pure-loss chan-

nel, and was proven in [15]. We also know, because of the symmetry of the beam splitter, that 
Γ
(0,K)
n � 0, ∀K � 0, ∀n � 0. We are then able to prove (19) by using a recursive argument on 

both I and K, since B(i,k)
n � 0, ∀I � 0, ∀K � 0, ∀n � 0. This shows that B[K]

η [P↓
I ] is passive. 

As before, we conclude the proof by using the fact that any passive state can be written as a 
convex sum of (normalised) projectors P↓

l . □ 

Using corollary 1 and theorem 3, we are now able to state the following.

Corollary 2. Passive-environment bosonic channels B↓
η are majorization-preserving over 

the set of passive states, that is, for any two passive states ρ↓ and σ↓,

if ρ↓ � σ↓, then B↓
η[ρ

↓] � B↓
η[σ

↓]. (21)

5. Passive-environment channels with an active Gaussian unitary

For completeness, we now show that all the results of section 4 extend to the passive-environ-
ment channels obtained with an active Gaussian unitary, namely A↓

G. We will recourse to the 
following theorem.
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Theorem 4 ([15]). A channel Φ satisfying the condition 〈n|Φ[|i〉〈i|] |m〉 = 0, ∀n �= m, ∀i 
is passive preserving if and only if its adjoint channel φ† obeys the ladder of Fock-majoriza-
tion relations

Φ†[|i〉〈i|] �F Φ†[|i + 1〉〈i + 1|
]
, ∀i � 0. (22)

Again, compared to the statement of theorem 4 in [15], we have added the condition that 
the diagonal elements at the input of the channel do not yield non-diagonal elements at the 
output of the channel [24]. This condition is fulfilled for Gaussian-dilatable channels with a 
passive environment, see appendix A.

In order to exploit theorem 4, the last thing that remains to be done is to prove the duality 
between channels B↓

η and A↓
G. For completeness, we will investigate the duality relation for 

Gaussian-dilatable channels involving arbitrary states of the environment in the next theorem. 
Then, we will focus on the special case of channels with Fock-diagonal environments, more 
precisely channels B↓

η built on a beam splitter of transmittance η and channels A↓
G based on a 

two-mode squeezer with a gain G. The corresponding unitaries can be expressed as

UBS
η = exp

[
θ
(

â†SâE − âSâ†
E

)]
, η = cos2 θ ∈ [0, 1], (23)

UTMS
λ = exp

[ r
2

(
âSâE − â†Sâ†E

)]
, λ = tanh2 r ∈ [0, 1]. (24)

As it so happens, when the environment is not diagonal in the Fock basis, one needs to char-
acterize the channel using parameters θ and r of equations (23) and (24), as a phase may be 
introduced depending on their signs. In order to do so, we relabel the above two unitaries as

ŨBS
θ = exp

[
θ
(

â†
SâE − âSâ†E

)]
, ŨTMS

r = exp
[ r

2

(
âSâE − â†Sâ†E

)]
. (25)

We prove the following duality theorem for Gausian-dilatable channels involving arbitrary 
environments.

Theorem 5. Consider a channel C̃BS
θ  whose Stinespring dilation is based on a beam splitter 

of parameter θ, i.e.

C̃BS
θ [•] = TrE

[
ŨBS

θ

(
• ⊗ σ

(1)
E

)
ŨBS†

θ

]
, (26)

and a channel C̃TMS
r  having a two-mode squeezer of parameter r in its Stinespring dilation, i.e.

C̃TMS
r [•] = TrE

[
ŨTMS

r

(
• ⊗ σ

(2)
E

)
ŨTMS†

r

]
. (27)

The adjoint map of C̃BS
θ  is given by

(
C̃BS
θ

)†
=

1
cos2 θ

C̃TMS
−r , (28)

where θ and r are related by cos θ = 1/ cosh r, and σ(2)
E =

(
σ
(1)
E

)
T with T denoting matrix 

transposition in the Fock basis.
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Proof. We start with two states expressed in the Fock basis as

ρ =
∑

i,j

ρi,j |i〉 〈j| , and γ =
∑
n,m

γn,m |n〉 〈m| , (29)

and compute the object

Tr
[
γ C̃BS

θ [ρ]
]
=

∑
n,m

γn,m

∑
i,j

ρi,j〈m|C̃BS
θ [|i〉 〈j|] |n〉. (30)

If we consider a general environment σ(1)
E =

∑
k,l σ

(1)
k,l |k〉 〈l|, we get

Tr
[
γ C̃BS

θ [ρ]
]
=

∑
n,m

γn,m

∑
i,j

ρi,j

∑
k,l

σ
(1)
k,l

∑
e

〈m, e|ŨBS
θ |i, k〉 〈j, l| ŨBS†

θ |n, e〉.

 (31)

It was shown in [16] that, under partial time reversal, a beam splitter is turned into a two-mode 
squeezer, or, more precisely, their respective transition amplitudes in the Fock basis are related 
through

〈m, e|ŨBS
θ |i, k〉 = 1

cos θ
〈m, k|ŨTMS

r |i, e〉, (32)

where θ and r verify cos θ = 1/ cosh r. Notice that the ket and bra of the second mode have 
been swapped in equation (32). This property leads to

Tr
[
γ C̃BS

θ [ρ]
]
=

1
cos2 θ

∑
n,m

γn,m

∑
i,j

ρi,j

∑
k,l

σ
(1)
k,l

∑
e

〈m, k|ŨTMS
r |i, e〉 〈j, e| ŨTMS†

r |n, l〉

=
1

cos2 θ

∑
n,m

γn,m

∑
i,j

ρi,j

∑
k,l

σ
(1)
k,l

∑
e

〈j, e|ŨTMS†
r |n, l〉 〈m, k| ŨTMS

r |i, e〉.

In view of equation (25), we have ŨTMS†
r = ŨTMS

−r , so that

Tr
[
γ C̃BS

θ [ρ]
]
=

1
cos2 θ

∑
n,m

γn,m

∑
i,j

ρi,j

∑
k,l

σ
(1)
k,l

∑
e

〈j, e|ŨTMS
−r |n, l〉 〈m, k| ŨTMS†

−r |i, e〉. (33)

As a consequence,

Tr
[
γ C̃BS

θ [ρ]
]
=

1
cos2 θ

∑
n,m

γn,m

∑
i,j

ρi,j〈m|C̃TMS
−r [|i〉 〈j|] |n〉 = 1

cos2 θ
Tr

[
ρ C̃TMS

−r [γ]
]

, (34)

where the environment σ(2)
E  characterizing the channel C̃TMS

−r  is related to the environment σ(1)
E  

of C̃BS
θ  through σ(2)

E =
(
σ
(1)
E

)
T. Thus, the adjoint of channel C̃BS

θ  verifies equation (28) where 

one should transpose the environment in the Fock basis. □ 

When the environment which characterizes the channel is diagonal in the Fock basis, equa-
tion (28) can be simplified. Indeed, we show in appendix B that in this case, C̃BS

−θ = C̃BS
θ

 and 
C̃TMS
−r = C̃TMS

r . This leads to the following corollary of theorem 5.
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Corollary 3. Consider a channel

CBS
η [•] = TrE

[
UBS

η (• ⊗ σE)UBS†
η

]
, (35)

where the state of the environment σE is diagonal in the Fock basis. Its adjoint map 
(
CBS
η

) † is 
such that

(
CBS
η

)†
=

1
η
CTMS

1−η , (36)

with

CTMS
λ [•] = TrE

[
UTMS

λ (• ⊗ σE)UTMS†
λ

]
. (37)

In a two-mode squeezer, the parameter λ is related to the parametric gain G via 
λ = (G − 1)/G, so that the relation λ = 1 − η  translates into G = 1/η. Thus, in the spe-
cial case of passive-environment channels (for which the transpose of the environment state 
remains unchanged) the adjoint map of B↓

η is 1
ηA

↓
1/η, in full analogy with the situation for 

Gaussian channels. This is exploited in the next two corollaries.

Corollary 4. Passive-environment bosonic channels A↓
G are Fock-majorization preserving, 

that is, for all states ρ  and σ,

if ρ �F σ, then A↓
G[ρ] �F A↓

G[σ]. (38)

Indeed, since B↓
η is passive-preserving (theorem 3), the duality property of passive-environ-

ment channels (corollary 3) combined with theorem 4 implies that A↓
G satisfies the ladder 

of Fock-majorization relations A↓
G

[
|i〉〈i|

]
�F A↓

G

[
|i + 1〉〈i + 1|

]
, ∀i � 0, hence it is Fock-

majorization preserving as a consequence of theorem 1.

Corollary 5. Passive-environment bosonic channels A↓
G are passive preserving, that is

if ρ↓ is passive, then A↓
G[ρ

↓] is also passive. (39)

Indeed, since B↓
η satisfies the ladder of Fock-majorization relations (8) (theorem 2), the 

duality property of passive-environment channels (corollary 3) combined with theorem 4 
implies that A↓

G is passive-preserving.
Finally, using these two corollaries and the equivalence between majorization and Fock-

majorization for the set of passive states, we obtain the following.

Corollary 6. Passive-environment channels A↓
G are majorization-preserving over the set of 

passive states, that is, for any two passive states ρ↓ and σ↓,

if ρ↓ � σ↓, then A↓
G[ρ

↓] � A↓
G[σ

↓]. (40)

6. Conclusion

In summary, we have shown that all bosonic quantum channels whose Stinespring dilation 
involves a Gaussian unitary (either a beam splitter or a two-mode squeezer) and a passive 
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environment (from which no energy can be extracted by acting with a unitary) exhibit a series 
of properties regarding how the order or disorder (measured via majorization) is transfered 
across the channel. Our central result is that any such channel preserves the Fock-majorization 
relation (see corollary 1 for channel B↓

η and corollary 4 for A↓
G). Moreover, as a consequence 

of being passive-preserving, all these passive-environment channels equally preserve the reg-
ular majorization relation over the set of passive states (see corollary 2 for B↓

η and corollary 
6 for A↓

G).
These results heavily rely on the Fock-majorization relation for bosonic systems. Because 

of its connection with energy, Fock-majorization can be viewed as the fundamental math-
ematical relation that is conserved when quantum states evolve through passive-environment 
channels, which allows one to relate the concepts of disorder and energy (when dealing with 
passive states, the concepts of majorization and Fock-majorization become equivalent). Our 
paper can thus be read in the context of quantum thermodynamics, where we define the class 
of passive-environment operations that encompass—but go beyond—thermal operations and 
characterize the properties of such operations in terms of majorization theory. These results 
will hopefully contribute to connect the area of continuous-variable bosonic channels together 
with quantum thermodynamics.

More generally, the notions of passive-environment channel and Fock-majorization rela-
tion are independent of the specific nature of the considered system, so we anticipate that 
our results can be extended to other quantum systems (beyond a bosonic mode) and arbitrary 
Hamiltonians (beyond the Harmonic oscillator). The energy-majorization relation between 
two states (based on comparing the diagonal elements in the energy eigenbasis) should then 
be conserved along the thermodynamical operation resulting from the energy-conserving cou-
pling of the system with a passive environment (i.e. an environment state having the minimum 
energy compatible with its eigenspectrum).
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Appendix A. Extension of Fock-majorization preservation to non-diagonal 
states in the case of passive channels

Here, we prove that theorem 1 can be applied to channels Φ ≡ B↓
η . We do this by showing 

that if ρ  is diagonal in the Fock basis, B↓
η[ρ] is also diagonal in the Fock basis, while if ρ  is 

non-diagonal in the Fock basis, its non-diagonal elements do not contribute to the diagonal 
elements of B↓

η[ρ]. It can be shown that [16]

ŨBS
θ |i, k〉 =

i+k∑
n=0

b(i,k)
n (θ)|n, i + k − n〉, (A.1)

where

b(i,k)
n (θ) =

min(i,n)∑
m=max(0,n−k)

(−1)i−m
√

Γ
(i,k)
m,n−m(cos θ)

2m+k−n(sin θ)i−2m+n, (A.2)

and
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Γ(i,k)
n,m =

(
i
n

)(
k
m

)(
n + m

n

)(
i − n + k − m

i − n

)
. (A.3)

If we define our passive channel as in equation (4) and set η = cos2 θ, we have

B↓
η[|i〉 〈j|] =

∑
k

λ↓
k TrE

[
ŨBS

θ (|i〉 〈j| ⊗ |k〉〈k|) ŨBS†
θ

]

=
∑

k

λ↓
k

∑
l

〈l|E

(
i+k∑
n=0

b(i,k)
n (θ)|n, i + k − n〉

)

×

( j+k∑
m=0

(
b( j,k)

m (θ)
)∗

〈m, j + k − m|

)
|l〉E

so that

B↓
η[|i〉 〈j|] =

∑
k

λ↓
k

∑
n

b(i,k)
n (θ)

(
b( j,k)

n+j−i(θ)
)∗

|n〉 〈n + j − i| . (A.4)

When the input state is diagonal, we end up with

B↓
η[|i〉 〈i|] =

∑
k

λ↓
k

∑
n

|b(i,k)
n (θ)|2 |n〉 〈n| , η = cos2 θ, (A.5)

which means that if ρ  is diagonal in the Fock basis, B↓
η[ρ] is also diagonal in the Fock basis. 

Furthermore, equation (A.4) tells us that if ρ  is non-diagonal in the Fock basis, its non-diago-
nal elements do not contribute to the diagonal elements of B↓

η[ρ]. This analysis can be trivially 
extended to channels Φ ≡ A↓

G.

Appendix B. Unitary reversal in channels with a Fock-diagonal state of the 
environment

Consider a channel

C̃BS
θ [•] = TrE

[
ŨBS

θ (• ⊗ σE) ŨBS†
θ

]
, (B.1)

where the state of the environment σE =
∑

k σk |k〉〈k| is diagonal in the Fock basis. We show 
here that in this case, C̃BS

θ = C̃BS
−θ

. From equation (A.4), we have

C̃BS
θ [|i〉 〈j|] =

∑
k

σk

∑
n

c(i,k)
n,j (θ) |n〉 〈n + j − i| , (B.2)

with

b̃(i,k)
n,j (θ) = b(i,k)

n (θ)
(

b( j,k)
n+j−i(θ)

)∗
, (B.3)

so that

b̃(i,k)
n,j (θ) =

min(i,n)∑
m1=max(0,n−k)

j+min(0,n−i)∑
m2=max(0,n+j−i−k)

(−1)i+j−m1−m2

√
Γ
(i,k)
m1,n−m1

Γ
( j,k)
m2,n+j−i−m2

×(cos θ)2(m1+m2+k−n)−j+i(sin θ)2(n+j−m1−m2),
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which trivially implies that

b̃(i,k)
n,j (−θ) = b̃(i,k)

n,j (θ), (B.4)

and

C̃BS
−θ[•] = C̃BS

θ [•], (B.5)
for any input state. Consider now a channel

C̃TMS
r [•] = TrE

[
ŨTMS

r (• ⊗ σE) ŨTMS†
r

]
 (B.6)

where, again, the state of the environment σE =
∑

k σk |k〉〈k| is diagonal in the Fock basis. If 
we define

a(i,k)
n (r) = 〈n, m|ŨTMS

r |i, k〉, m = n − i + k, (B.7)

we have

C̃TMS
r [|i〉 〈j|] =

∑
k

σk

∑
m

ã(i,k)
m+i−k(r) |m + i − k〉 〈m + j − k| (B.8)

where

ã(i,k)
m+i−k,j(r) = a(i,k)

m+i−k(r)
(

a( j,k)
m+j−k(r)

)∗
. (B.9)

The partial time reversal property of equation (32) implies that

a(i,k)
m (r) = (cos θ) b(i,m+k−i)

m (θ), (B.10)

where θ and r verify cos θ = sech r, so that

ã(i,k)
m+i−k,j(r) = (cos θ)

2 b(i,m)
m+i−k(θ)

(
b( j,m)

m+j−k(θ)
)∗

= (cos θ)
2 b̃(i,m)

m+i−k,j(θ),

which leads to

ã(i,k)
m+i−k,j(−r) = ã(i,k)

m+i−k,j(r),

and

C̃TMS
−r [•] = C̃TMS

r [•], (B.11)

for any input state.
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