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Abstract

"From discrete- to continuous-variable protocols for quantum key distribu-
tion" by Célia Griffet, Université Libre de Bruxelles, 2018-2019.

Quantum cryptography goes back to the mid 80s, when the first protocol for quantum
key distribution was invented by Bennett and Brassard: the seminal BB84 protocol. This
protocol is based on discrete-information carriers (a dichotomic state of a single photon
encodes each secret key bit) and it requires single-photon detectors. Since its inception,
it has been demonstrated within several experimental platforms and has been improved
in various ways. For example, cryptographic keys have been distributed through opti-
cal fibers over hundreds of kilometres using a time-bin discrete encoding and alternative
protocols have been devised that are more robust to line losses than BB84. Of par-
ticular relevance to this Ms thesis, alternative protocols have been developed based on
continuous-information carriers (i.e., the quadrature components of the light field) and
coherent measurements (i.e., homodyne or heterodyne detection) instead of photodetec-
tors, thereby significantly enhancing the achievable bandwidth. The first such protocol
was invented at QuIC in 2001 and can be viewed as the continuous analogue of BB84.
The objective of this Ms thesis was to explore whether the specific techniques that had
been developed in the context of continuous-variable protocols may be valuable when
translated back to discrete-variable protocols. In particular, it is recognized that a “re-
verse” reconciliation procedure often yields higher secret key rates in continuous-variable
protocols than the usual “direct” reconciliation procedure that is common to all discrete-
variable protocols. The approach pursued in this Ms thesis was to map a class of known
continuous-variable protocols into discrete-variable protocols going beyond BB84, and
check especially whether reverse reconciliation provides an advantage here too. The se-
curity of these protocols against individual attacks could be studied by exploiting the
Csiszár-Körner theorem, giving a bound on the secret key rate. Dealing with reverse
reconciliation for discrete-variable protocols required developing a time-reversed version
of the optimal phase-covariant quantum cloning transformation, which had not been pre-
viously described in the literature. This made it possible to characterize eavesdropping
in case the secret key is built from the bits measured by the receiver instead of those
generated by the sender. Numerical simulations were carried out in order to compare
the achievable key rates of the new discrete-variable protocols and revealed that, against
expectation, direct reconciliation-based BB84 cannot be outperformed. Finally, possible
explanations of this discrepancy between discrete- to continuous-variable protocols were
provided.

Key words: Quantum key distribution, BB84 protocol, Shannon information theory,
Csiszár-Körner theorem, quantum cloning transformation, direct and reverse reconcilia-
tion.



Résumé

"From discrete- to continuous-variable protocols for quantum key distribu-
tion" by Célia Griffet, Université Libre de Bruxelles, 2018-2019.

La cryptographie quantique remonte au milieu des années 80, lorsque le premier pro-
tocole de distribution de clé quantique a été inventé par Bennett et Brassard : le protocole
BB84. Ce protocole est basé sur des supports d’information discrets (chaque bit de la clé
secrète est encodé dans l’état binaire d’un photon) et nécessite des détecteurs de photons
uniques. Depuis sa création, ce protocole a été démontré sur plusieurs dispositifs expé-
rimentaux et a été amélioré de diverses façons. Par exemple, des clés de codage ont été
distribuées à travers des fibres optiques sur des centaines de kilomètres à l’aide de photons
encodés discrètement et d’autres protocoles ont été mis au point qui sont plus robustes
aux pertes dans les lignes que BB84. D’autres protocoles alternatifs ayant une grande
importance pour ce mémoire ont par la suite été développés à base de supports d’informa-
tion continus (c’est-à-dire des quadratures du champ lumineux) et de mesures cohérentes
(c’est-à-dire la détection homodyne ou hétérodyne) au lieu des photodétecteurs. Cela a
permis d’améliorer considérablement la bande passante atteignable. Le premier protocole
de ce type a été inventé au QuIC en 2001 et peut être considéré comme l’analogue continu
du protocole BB84. L’objectif de cette thèse était d’étudier si les techniques spécifiques
qui avaient été développées dans le contexte des protocoles à variables continues peuvent
être utiles lorsqu’elles sont traduites en protocoles à variables discrètes. En particulier, il
est connu qu’une procédure de réconciliation " inverse " donne souvent lieu à des taux
de clés secrètes plus élevés dans les protocoles à variables continues que la procédure de
réconciliation " directe " habituelle qui est commune à tous les protocoles à variables
discrètes. L’approche suivie dans cette thèse a été de faire correspondre à chaque type de
protocoles à variables continues connus un protocole à variables discrètes allant au-delà
de BB84, et en particulier, de vérifier si la réconciliation inverse offre un avantage ici
aussi. La sécurité de ces protocoles contre les attaques individuelles peut être étudiée en
exploitant le théorème de Csiszár-Körner qui donne une limite au taux de clé secrète. Le
traitement de la réconciliation inverse pour les protocoles à variables discrètes a néces-
sité la mise au point d’une version alternative de la transformation optimale de clonage
quantique à covariance de phase où le temps est inversé ; ce qui n’avait jamais été décrit
auparavant dans la littérature. Cela a permis de caractériser l’espionnage dans le cas où
la clé secrète serait construite à partir des bits mesurés par le récepteur au lieu de ceux
générés par l’émetteur. Des simulations numériques ont été effectuées afin de comparer
les taux de clés réalisables avec les nouveaux protocoles à variables discrètes et ont révélé
que, contrairement à ce qui était attendu, il n’est pas possible d’avoir des performances
meilleures que celles du protocole BB84 basé sur la réconciliation directe. Enfin, des ex-
plications possibles de cet écart entre les protocoles à variables discrètes et les protocoles
à variables continues ont été fournies.

Mots clés : Distribution de clé quantique, protocole BB84, théorie de l’information de
Shannon, théorème de Csiszár-Körner, clonage quantique, reconciliation directe et inverse.
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Introduction

Since the antiquity, the need of privacy and confidentiality for communications has been
constantly increasing and nowadays, cryptography is part of everyone’s life. Such an im-
portant topic motivated all the researches that were done on the subject. Many methods
were invented in order to be able to share secret messages between two people. How-
ever, most methods have led to failures: a code that was secure at a certain time was
often decrypted years after when the technologies had evolved. This implied an increas-
ing complexity for the algorithms used. The first algorithms have been found in classical
mechanics. However, the increasing complexity of the technology at the disposal of the
eavesdropper may lead to failures of such protocols. In particular, when the quantum com-
puters will be available for the eavesdropper, a big part of the current cryptography ciphers
will collapse and not be secure anymore. This implies the need to find another source
of security by using quantum key distribution protocols to share a secret key between
two parties so that they can encode a confidential message. Quantum key distribution
protocols involve quantum mechanics as well as information theory.

The difficulty is to obtain this secret key without seeing each other. Quantum mechan-
ics offers the possibility to create such a key between two parties (Alice and Bob) without
giving information to the eavesdropper (Eve) due to fundamental principles in quantum
cryptography: the no-cloning theorem, the fact that any measurement will perturb the
state... The first protocol that was invented was a protocol with discrete variables named
BB84 due to the names of its inventors Bennett and Brassard and the year of its creation
1984. However, what was more developed during the next years is the use of continuous
variables. The first protocol using continuous variables that was invented is the perfect
analogue of BB84. It was developed at QuIC in 2000. Thereafter, others were developed
but the work was never done to go back from these continuous variables protocols to
their discrete analogues. This is precisely the objective of this thesis: come back to the
discrete protocols and analyse them in order to determine if they could do better than
BB84. Another objective is to study the reverse reconciliation. Indeed, for now only
direct reconciliation was considered for discrete protocols.

The thesis is divided in two parts: in the first part we present the notions that will
be used in this work as well as the state of the art in quantum key distribution while the
second part is made of original contributions and the results found during this year. In
the first part, the two first chapters will focus on an overview of all the basic concepts
of quantum mechanics and of the theory of information which will be used: the first
chapter presents the basics of quantum mechanics such as what is a qubit, what kind
of measurements can be done,... The second one is about the theory of information of
Shannon. In chapter 3, we make a review of quantum key distribution. We start by
presenting in more details its objective. Then, we present BB84 and the protocols with
continuous variables that were invented. Finally, in the last chapter of the first part,
we speak about quantum cloning, as the action of the eavesdropper will be represented
by a quantum cloning machine. The second part contains two important chapters as
well as a discussion and a conclusion. In the first chapter, we search for the analogue
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of the protocols for continuous variables. This allows us to define the protocols that
will be studied in this thesis. Thereafter, the security is studied in the case of direct
reconciliation. The second chapter is entirely dedicated to the reverse reconciliation.
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Background and state of the art for
quantum key distribution

6



Chapter 1

Basics of quantum mechanics

In this chapter, we present all the key notions in quantum mechanics that will be used in
the next part of the thesis while presenting the various quantum cryptography protocols.
The concepts used in this work are presented from the simplest one (the definition of a
qubit) to the more complex properties of quantum mechanics such as the different methods
of measurement that exist.

1.1 Definition of a qubit
In classical computation, the information is coded in terms of bits which are binary
numbers: they can be equal to 0 or to 1. In quantum mechanics, we can find the equivalent
of the bit: the quantum bit (more often written qubit). Here, we will do a mathematical
description of the qubit. However, a qubit does correspond to a physical system as for
example the spin of an electron. Like the classical bit which is in a "state" (0 or 1), the
physical system will be in a state as well. The two basic states of a qubit are |0〉 and |1〉
which are written in the Dirac formalism. The qubit is then a two-level quantum system
associated with a two-dimensional Hilbert space. However, unlike in classical mechanics,
the qubit can be in any superposition of these two states:

|ψ〉 = α |0〉+ β |1〉 where α, β ∈ C (1.1)

The states |0〉 and |1〉 thus form a basis which is called the computational basis.
When measuring the qubit, the result will be the state |0〉 with a probability |α|2 and

the state |1〉 with a probability |β|2. As the sum of the probabilities must be equal to
one, there is a condition on the values of α and β:

|α|2 + |β|2 = 1 (1.2)

An important representation of the qubit state is the Bloch sphere which is a geo-
metrical approach. Indeed, as we have the condition 1.2, it is possible to rewrite the
superposition state of the qubit as:

|ψ〉 = eiφ.(cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiγ |1〉) (1.3)

In quantum mechanics, it is well known that the global phase is irrelevant as the state
|φ〉 is totally indistinguishable from the state eiθ |φ〉 by any physical procedure. This
means that the global phase will not change anything and that our state is equal to:

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiγ |1〉 (1.4)
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1.2. DENSITY MATRIX Chapter 1

This equation corresponds to the equation of a point on a sphere: the Bloch sphere
which is represented on figure 1.1.

Figure 1.1 – Representation of all the possible states for a qubit on the Bloch sphere.

In quantum cryptography, qubits are at the heart of the protocols with discrete vari-
ables as they are the physical systems which are sent by Alice to Bob where Alice and
Bob are our two correspondents. In the first protocol described in chapter 3, the compu-
tational basis is used as well as the dual basis which is composed of the states |+〉 and
|−〉 which are: {

|+〉 = |0〉+|1〉√
2

|−〉 = |0〉−|1〉√
2

(1.5)

In this thesis, another notation will also be used to define the state of a qubit: the
vectorial form. Indeed, each ket can be expressed in the form of a vector. If:

|0〉 =

(
1

0

)

|1〉 =

(
0

1

) (1.6)

then the state |ψ〉 = α |0〉+ β |1〉 is equal to:

|ψ〉 =

(
α
β

)
(1.7)

1.2 Density matrix
Until now, we have represented the states of a system by a state vector |ψ〉 but there
exists another way of presenting a state: the density matrix. This representation is more
general than the vector state. Indeed, if the system is represented by the vector |ψ〉; the
system is in a pure state as one vector is sufficient to describe it. However, in more general
cases, the system is in a statistical mixture of several quantum states: |ψ1〉 , |ψ2〉 , ... and
the probability to be in one of these quantum states is given by pi where i=1,2,....

8



1.3. COMPOSITE SYSTEMS AND QUANTUM ENTANGLEMENT Chapter 1

The representation of the system with a density matrix is valid even if it is in a
statistical mixture: the density matrix is an operator which can characterize any quantum
state. It is defined as:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

piP̂i (1.8)

where P̂i is the projector on the state |ψi〉. For pure states, the density operator is just
equal to the projector on the state and there is only one probability p1 which is equal to
one.
The density operator has three important properties that are well known:

1. ρ̂ is an hermitian operator: ρ̂ = ρ̂†. This implies that the eigenvalues of the operator
are real.

2. Tr(ρ̂) = 1 due to the normalization of the operator. The sum of the eigenvalues is
then equal to 1. ’Tr’ is the trace of the operator and it will be defined in another
section.

3. The last property is that the operator is positive: ρ̂ ≥ 0. It is also valid for the
eigenvalues: λi ≥ 0.

The density operator formalism is useful in this thesis for the calculation of the proofs of
security of different protocols.

1.3 Composite systems and quantum entanglement
Often in this thesis, quantum states composed of more than one system will appear as
each person involved in the protocol will have his own qubit. This explains the importance
of seeing how such systems are described. Moreover, when dealing with more than one
qubit, the entanglement appears. This is a kind of correlation between the two states:
the measurements on the two states are correlated even if the two qubits are separated
by a very long distance. Entanglement is a phenomenon that cannot be found in classical
mechanics. Therefore, it is used to obtain results that do not exist in classical physics.
The first part of this section is dedicated to the presentation of some basics of a two
qubits system as well as a few words about the entanglement. In the last part, we define
the tensor product as it is used to obtain the vector or the density matrix of a system
containing more than one qubit.

1.3.1 Bases for two qubits and entanglement

The traditional basis that we can define is the computational basis for a system of two
qubits: {|00〉 , |01〉 , |10〉 , |11〉} but this is only one of the many bases which exist.

Another important basis is the one composed by the Bell states:
|Φ+〉 = |00〉+|11〉√

2

|Φ−〉 = |00〉−|11〉√
2

|Ψ+〉 = |01〉+|10〉√
2

|Ψ−〉 = |01〉−|10〉√
2

(1.9)

These states are very important in quantum mechanics as they are a perfect example
of "maximally entangled" states.

9



1.3. COMPOSITE SYSTEMS AND QUANTUM ENTANGLEMENT Chapter 1

This can be seen with the first state of the Bell basis: |Φ+〉: we imagine that one
of the qubit is given to Alice and the second to Bob. Then, they go to two different
places which are far from each other. If Alice does a measurement of her qubit in the
computational basis, she has two possible outcomes: |0〉 or |1〉 each with a probability
of one half. Immediately after the measurement of Alice, Bob can perform the same
measurement on his own qubit. Then, he will always obtain the same result as Alice.
Here, we took the example of a measurement in the computational basis but the result
will be the same for any measurement: Alice can always know the state that Bob has
from the result of her own measurement. This phenomenon is impossible to reproduce in
a classical framework.

In a more general way, an entangled system is a system that is not separable and a
system is separable if it can be put as a tensor product of two states: |φ〉 = |φ1〉 ⊗ |φ2〉.
One important application of the entanglement which is worth mentioning here is the
quantum teleportation. Quantum teleportation is a mean of transferring an unknown
quantum state from Alice to Bob without modifying it. In order to do that, Alice and
Bob just need to share an entangled state and to send each other classical bits. Quantum
teleportation has already been successfully demonstrated experimentally.

1.3.2 Tensor product

If two states are under the form of a vector state:

|Ψ1〉 =

(
a1
a2

)
; |Ψ2〉 =

(
b1
b2

)
, (1.10)

it is possible to find the vector for the whole system by applying a tensor product:

|Ψtot〉 = |Ψ1〉 ⊗ |Ψ2〉 =


a1b1
a1b2
a2b1
a2b2

 . (1.11)

This definition of a tensor product can be generalized to any size of the vectors:

~a⊗~b =

a1...
an

⊗
 b1

...
bm

 =



a1b1
...

a1bm
a2b1
...

anbm


. (1.12)

An important property of the tensor product is that it is non-commutative. It is therefore
necessary to be cautious when applying it to be sure to do it in the right way.

If the two systems are described by a density matrix, the density matrix of the whole
environment can also be found with the use of a tensor product if there is no correlation

10



1.4. TRACE AND PARTIAL TRACE Chapter 1

between the two systems:

ˆρAB = ρ̂A ⊗ ρ̂B ⇔


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

⊗

b11 b12 · · · b1p
b21 b22 · · · b2p
...

... . . . ...
bs1 as2 · · · asp

 =


a11b11 a11b12 · · · a11b1p a12b11 · · · a1nb1p
a11b21 a11b22 · · · a11b2p a12b21 · · · a1nb2p

...
... . . . ...

... . . . ...
am1bs1 am1bs2 · · · am1bsp am2bs1 · · · amnbqp


(1.13)

This is really useful when treating problems with more than one qubit as it allows us
to calculate the state of the total system.

1.4 Trace and partial trace
Another important tool that will be used in this thesis to demonstrate the limits of the
security of a protocol of communication is the partial trace. Before defining this concept,
it is important to remind the definition of a simple trace:

The trace of an operator corresponds to the trace of the matrix of this operator. If Â
is an operator and |n〉 is any orthonormal basis, the trace of the operator is simply:

Tr(Â) =
∑
n

〈n| Â |n〉 (1.14)

This definition holds for any basis as it can be demonstrated by using the closing
relationship.

Starting from this, it is now possible to define the partial trace of a system. This
mathematical concept is very strong as it makes it possible to describe any subsystems
of a big system if we have the description of the big one. It means that if we have the
density matrix for the total system, it is possible to calculate the one of any subsystem.

For example, if A and B are two subsystems of a bigger quantum system AB. We
obtain the density operator of A by tracing out B with a partial trace. This means:

ρ̂A = TrB( ˆρAB) =
∑
iB

〈
iB
∣∣ ρ̂AB ∣∣iB〉 (1.15)

where
∣∣iB〉 is an orthonormal basis of the Hilbert space of B.

The partial trace exhibits some important properties:

• It is independent of the order of the applications of the different partial traces:
ρ̂C = TrB(TrA(ρ̂ABC)) = TrA(TrB(ρ̂ABC))

• If we make the partial trace on all the subsystems, we obtain the total trace:
Tr( ˆρAB) = TrB(TrA(ρ̂AB))

1.5 Measurements
In many protocols in quantum communication as well as in all the algorithms in quantum
computation, the last step is the same: a measurement. This is very important as it
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is the step that will give us information under the classical form: bits. It makes the
link between quantum states and the classical world. For example, in quantum key-
distribution protocols, the result of the measurement is a bit string that will then be used
to encode messages as explained in section 3. This justifies the need to detail what is a
measurement in quantum cryptography.

In quantum mechanics, one of the fundamental postulates involves the measurement.
This postulate is formulated in [27] as:

"Quantum measurements are described by a collectionMm of measurement operators.
These are operators acting on the state space of the system being measured. The index
m refers to the measurement outcomes that may occur in the experiment. If the state
of the quantum system is |Ψ〉 immediately before the measurement then the probability
that result m occurs is given by

p(m) = 〈Ψ|M †
mMm |Ψ〉 (1.16)

and the state of the system after the measurement is

Mm |Ψ〉√
〈Ψ|M †

mMm |Ψ〉
.” (1.17)

The measurement operators must fulfil the completeness relation:∑
m

M †
mMm = 1 (1.18)

Here, everything has been expressed for a state vector but the postulate can be for-
mulated in terms of the density operator of the state. Indeed, if the state is described by
ρ just before the measurement, the probability of measuring m is given by:

p(m) = Tr(ρM †
mMm) (1.19)

and the state after the measurement is:

ρm =
MmρM

†
m

Tr(M †
mMmρ)

(1.20)

In this thesis, this formulation in terms of density matrix will be used.
Depending on the operators Mm, two main types of measurements can be distin-

guished: the projective measurement and the positive-operator valued measurement.
They will be detailed in the two next subsections.

1.5.1 Projective measurement

Projective measurements are a special case of the postulate presented here above. How-
ever, most people think about these projective measurements when speaking of measure
as it is the best known measurement method. These methods are also called "Von Neu-
mann measurement" or "positive-valued measurement". In this kind of measurement, the
observable that is used is:

O =
∑
m

mPm (1.21)

where Pm is a projector on an eigenstate of O with eigenvalue m. Pm has two important
properties: it is hermitian (P †m = Pm) and idempotent (P 2

m = Pm) which is due to the
fact that this is a projector.

12
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The result of the measurement is m with a certain probability:

p(m) = 〈Ψ|P †mPm |Ψ〉 = 〈Ψ|Pm |Ψ〉 . (1.22)

The state after such a measurement that gave m as a result is:

|Ψm〉 =
Pm |Ψ〉
p(m)

=
Pm |Ψ〉
〈Ψ|Pm |Ψ〉

(1.23)

A thing that can be mentioned is that such a measurement is reproducible. Indeed, if
we do the same measurement again just after the first one, the result will be exactly the
same.

We can see an advantage of such measurements: Von Neumann measurements allow
us to distinguish perfectly orthogonal states such as for example |0〉 and |1〉. However,
this leads to the main defect of these measurements: they cannot be used to distinguish
states that are not orthogonal.

This can be understood by observing a simple example which is taken from the book
[27]. Alice can prepare two states: {

|Ψ1〉 = |0〉+|1〉√
2

|Ψ2〉 = |0〉
(1.24)

Then, she sends her qubit to Bob who wants to know what qubit he received. In order
to achieve that objective, he will make a measurement with the projectors P0 = |0〉 〈0|
and P1 = |1〉 〈1|. The result will depend on the state that he received.

• He received |Ψ1〉: He then has a probability of 1
2
to obtain a 0 as the result and the

same probability to obtain 1.

• He received |Ψ2〉: There is only one possible result: 0.

We see that if Bob obtains a 0 by doing his measurement, it is impossible for him to
know which state he received. Von Neumann measurement cannot be used to discriminate
states that are not orthogonal. This flaw can be avoided by using a POVM instead of a
Von Neumann measurement.

1.5.2 POVM (positive-operator valued measure) measurement

This kind of measurement is more general than the Von Neumann one. Unlike it, the
POVM is not reproducible. We define the POVM elements

Em = M †
mMm (1.25)

which form a set of POVM elements: {Em}. They satisfy some properties:

• They are positive.

• Their sum gives the identity:
∑

mEm = 1

The important property of these measurements is that it can be used to distinguish
states that are non-orthogonal which was impossible for the projective measurement. We
can show it using the same little example as before.

13
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Alice sends one of these states to Bob:{
|Ψ1〉 = |0〉+|1〉√

2

|Ψ2〉 = |0〉
(1.26)

Bob will not use projective elements this time but the elements of a POVM:
E1 =

√
2

1+
√
2
|1〉 〈1|

E2 =
√
2

1+
√
2

(|0〉−|1〉)(〈0|−〈1|)
2

E3 = I − E1 − E2

(1.27)

It is easy to show that
∑

iEi = 1 and that these elements are positive as their
eigenvalues are positive. Again, the result of the measurement will depend on the state
that Bob received:

• He received |Ψ1〉: Bob has no chance to measure E2 as this element has been chosen
such that: 〈Ψ1|E2 |Ψ1〉 = 0.

• He receives |Ψ2〉: Following the same idea, Bob has no chance to measure E1.

If Bob obtains E1, he is sure that he received |Ψ2〉 and inversely, if he measures E2,
he must have received |Ψ1〉. However, if the outcome is E3, he cannot interpret the result
and find the state that he received.

Nevertheless, Bob will never make mistakes while trying to find what Alice sent him;
there will just be some cases where he will not receive any information and this absence
of errors will be very important.

1.6 Conclusion
In this chapter, we have presented all the fundamental notions of quantum mechanics
that will be used in this thesis in order to study the protocols of quantum key-distribution
protocols with discrete variables. We started with the notion of a qubit which is at the
heart of all the protocols of quantum cryptography with discrete variables. Moreover, such
protocols involve more than one qubit (each person involved has one qubit: Alice, Bob
but also Eve; the eavesdropper). This justifies the fact that we have defined the systems
with more than one variable. Finally, the concepts of density matrix, partial trace and
measurements have been explained as they will be useful for the security proofs.
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Chapter 2

Basics of information theory

We owe the theory of information to Shannon, who has published in 1948 an article called
"The Mathematical Theory of Communication" [30]. This article is the origin of an
entire mathematical theory around the concept of information. This theory is used here
in order to interpret probability distributions by assigning them a physical value with an
interpretation: the entropy of Shannon. This quantity is the main element of the whole
theory and is useful when studying the security of protocols in quantum cryptography.
The theory of information of Shannon is very wide but only a little part (the interesting one
for this thesis) will be presented in this chapter. For example, the theory of information is
valuable for discrete and continuous variables; however, only the case of discrete variables
will be presented here.

2.1 Shannon entropy
Shannon entropy is the central quantity of this theory. It is used to measure the uncer-
tainty on a variable. Let’s imagine we have a discrete random variable X which can take
the values x with a probability p(x). Then, the entropy of this variable will be:

H(X) = −
∑
x

p(x)log2(p(x)) (2.1)

As we used a logarithm in base 2, this means that the entropy is expressed in term of
bits. The entropy H(X) is thus the number of bits needed to describe the variable.

A simple example often used is the coin tossing. If we toss a coin, there are two
possible outputs, each with a probability of 1

2
. The entropy of the distribution is simply

equal to:

H(Coin tossing) = −
∑
x

p(x)log2(p(x)) = −1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1 (2.2)

To describe this variable, we just need one bit. We can for example associate a ’0’
with a head and a ’1’ to a tail.

For the definition of entropy to be complete, there is a convention that must be added.
Indeed, when adding a term with a zero probability, the entropy must not change. This
leads to the convention:

0log2(0) = 0

This convention can also be explained by looking at the limit when x tends to 0 of xlog2(x):

lim
x→0

xlog2(x) = 0 (2.3)
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The most important property of the entropy is that it is always positive: H(X) ≥ 0.
Indeed, as 0 ≤ p(x) ≤ 1, − log p(x) ≥ 0. This can be seen on the graph 2.1.

Figure 2.1 – Values of −log2(p) as a function of the value of p.

2.2 Joint and conditional entropy
The definition given in the previous section can be extended to the case of more than
one variable. This leads to the definition of joint entropy. If X and Y are two discrete
variables, the joint entropy is defined as:

H(X, Y ) = −
∑
x

∑
y

p(x,y)log2(p(x,y)) (2.4)

where p(x,y) is the joint probability distribution. As for the entropy of a single variable,
H(X,Y) represents the uncertainty on the pair of variables (X,Y).

The definition of joint entropy has been introduced here in the case of two variables,
as it will be used later in this work, but it can be rewritten for an arbitrary number of
random variables:

H(X1, X2, ..., Xn) = −
∑
x1

∑
x2

...
∑
xn

p(x1,x2,...,xn)log2(p(x1,x2,...,xn)) (2.5)

Another important quantity is the conditional entropy of a discrete random variable
Y with respect to another discrete random variable X. Its definition is:

H(Y |X) =
∑
x

p(x)H(Y |X = x) (2.6)

This expression can be rewritten if we take into account the well-known property of a
conditional probability distribution:

p(x,y) = p(x).p(y|x) (2.7)
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Thanks to that, we rewrite:

H(Y |X) =
∑
x

p(x)H(Y |X = x)

=
∑
x

p(x)(−
∑
y

p(y|x)log2(p(y|x))

= −
∑
x

∑
y

p(x,y)log2(p(y|x))

(2.8)

This conditional entropy indicates the uncertainty on Y if we know X. This entropy
is not equal to H(Y) because some information on Y can be contained in X.

There exists a link between the conditional and the joint entropies:

H(X, Y ) = H(X) +H(Y |X) (2.9)

This results from the relation 2.7 and the relation
∑

y p(x,y) = p(x). Consequently, the
relation 2.9 can be demonstrated by starting with the definition of the joint entropy:

H(X, Y ) = −
∑
x

∑
y

p(x,y)log2(p(x,y))

= −
∑
x

∑
y

p(x,y)log2(p(x).p(y|x))

= −
∑
x

∑
y

p(x,y)log2(p(x))−
∑
x

∑
y

p(x,y)log2(p(y|x))

= −
∑
x

p(x)log2(p(x)) +H(Y |X)

= H(X) +H(Y |X)

(2.10)

This proves the relation 2.9 that will be used in the next section.

2.3 Mutual information and its interpretation
One last quantity of the Shannon information theory that will be used is the mutual
information between two discrete variables. This is defined as:

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.11)

Using the relation 2.9, it is possible to rewrite the mutual information as:

I(X : Y ) = H(X) +H(Y )−H(X, Y ) (2.12)

The mutual information represents the information shared between the two variables X
and Y. Making the link between this and the definition 2.12 is quite easy. Indeed, when
adding up H(X) and H(Y), we obtain the total uncertainty on X and on Y. The part of
the information common to X and Y is thus added twice. By removing the joint entropy,
we remove the own uncertainty of X and Y and once their shared information. As a result,
the common information between X and Y is kept only once. This is called the mutual
information.

All the quantities that where defined before can be represented on a Venn diagram,
as represented on figure 2.2.
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Figure 2.2 – Venn diagram of the different entropies.

On this diagram, the different relations that were shown before appear clearly. Indeed,
the relation 2.9 is then equivalent to the sum of the two circles; the common part of them
is summed two times. When we remove the joint entropy which is the union of the two
circles, the surface which is common will be removed only once. The remaining surface is
then equal to the mutual information.

2.4 Csiszar-Körner theorem for the distillation of a se-
cret key

The Csiszar-Körner theorem has been proposed by Csiszar and Körner in an article in 1978
[11]. It gives a sufficient condition for a protocol of cryptography to work. The theorem
is explained in this chapter because it is entirely based on the mutual information.

To understand it fully, identifying which parties are involved in the protocol is required.
First of all, there are two authorized correspondents: Alice and Bob. Their objective is
to send a secret key from Alice to Bob as will be explained more in details in chapter 3.
The last party is Eve; she is an eavesdropper who wants to intercept the message.

According to the protocol used and the method used by Eve to spy the communication,
Alice will share some amount of information with Bob and some with Eve. These amounts
are described by mutual information: IAB between Alice and Bob and IAE between Alice
and Eve.

The Csiszar-Körner theorem says that a secret communication is possible only if:

IAB − IAE > 0 (2.13)

If this condition is fulfilled, it is always possible to send a message from Alice to Bob by
doing a post-treatment on the bits they have. Such a condition seems to be logical as it
simply means that Alice must share more information with Bob than with Eve. However,
if this condition is not fulfilled, this does not mean that it is impossible to send a secret
key between Alice and Bob. Indeed, in some particular cases, it is still possible to send
a secret key but at a much lower bit rate. In this work, the protocols will be studied in
order to see if the condition is fulfilled and thus to see if it is possible to extract a secret
key for sure.
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Chapter 3

Quantum cryptography protocols

3.1 Introduction to quantum cryptography: origins and
objective

In today’s world, cryptography takes a significant place. Everyday, everyone is confronted
to cryptography even without knowing it. For example, each time someone does a payment
with his card or on-line, he uses cryptography,... This reveals the importance of cryp-
tography in our society nowadays. The objective of cryptography is to provide privacy,
confidentiality and authentication by coding messages. This need exists since thousands
of years as it is proved by the first example known of cryptography: the Caesar code that
comes from the antiquity.

Today, there exist two kinds of protocols in classical cryptography: the symmetric
ones and the antisymmetric ones.

• Symmetric protocol: In this class, the message that is sent is coded by Alice using
a secret key and is decoded by using the same key. The difficulty of such protocols
is to obtain the secret key. It cannot be known by an eavesdropper otherwise he
could intercept the message. An important example of this kind of protocols is the
Vernam cipher [32]: Alice and Bob must possess a key composed of random bits
that must be as long as the message that they want to encode. This key can only
be used once to encode a message. For the next message, they must then have
another key. Alice adds this key to the message and Bob must extract the same
key from the encoded message. The flaw of this method is the need to share the
key between Alice and Bob by a secure method. However, it has been proved to be
unconditionally secure if the conditions on the keys are respected (it is as long as
the message, totally random and used only once). "Unconditionally secure" means
that it is secure whatever power the eavesdropper has.

• Asymmetric protocols: Such protocols involve two keys: a secret key to decode
the message and a public one to encode it. The person that must receive the message
will generate the two keys. She will keep the secret key and transmit the public
one to the person that must encode the message. Once the message is encoded,
it is very hard to decode it unless we have the secret key. Unlike in symmetric
cryptography, there is no difficulty to share the key. One of the most famous ways
to do asymmetric cryptography is the RSA algorithm named after its inventors:
Rivest, Shamir and Adleman [28]. The security of this protocol is entirely based
on the fact that factorizing a huge number is extremely complicated for a modern
computer. By the time a computer could have factorized this number, the message
would be useless for the spy.
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As all these classical protocols exist, one may ask: "Why do we need quantum cryp-
tography?". This need is justified by the fact that the asymmetric protocols are not
unconditionally secure. Indeed, if someday someone finds an algorithm allowing people to
factorize any huge number on an efficient way, the security of the RSA algorithm will col-
lapse. This is the same for all the asymmetric protocols. The problem is that an efficient
algorithm has already been found for factorising numbers. This algorithm is the quantum
Shor algorithm [31]. This means that when quantum computers will become available,
all the cipherings used nowadays will collapse and they will become useless. There are
two alternatives to this absence of security: either the researchers find classical protocols
of communication that are unconditionally secure; either we use quantum cryptography
protocols. This second option has been in development since the 80s and the researches
have led to some impressive results and even practical applications as for example in [13]
or in [25]. This thesis will be focused on quantum cryptography. A good review of the
basics of quantum cryptography can be found in [34].

3.2 Basic principle
"Quantum cryptography" is not the most accurate word to describe the protocols about
which we talk. Indeed, it is more general than the subject of this work where only the
quantum key-distribution protocols will be studied. These protocols do not allow Alice
and Bob to share a message between them but only a secret key.

This means that using such protocol Alice an Bob will share a secret key (and not a
message) that they will then use to apply the Vernam method (which is unconditionally
secure). Two categories of protocols can be distinguished: the protocols using discrete
variables and the ones using continuous variables. For discrete protocols, qubits are used.
Physically, this discrete variable can correspond to the spin of an electron or more often
to the polarization of a single photon. For continuous protocols, the information can be
for example stored in the quadratures of light. The first methods that were invented are
the discrete ones. However, the ones with continuous variables are easier to use as it is
easier to produce a coherent light with a laser than a single photon.

Whatever the kind of method used, the general method is always the same: Alice
and Bob have to share two channels, a classical one and a quantum one as represented
on the figure 3.1. The classical line must be secure: Eve (the spy) can listen to what
is sent on this line but cannot interact with what is on it. This is why Alice and Bob
must authenticate themselves by sending a message on the line. On the other hand, Eve
can interact with the quantum line and she is only limited by the laws of physics. An
advantage in quantum mechanics is that any interaction of Eve will affect the state so that
Alice and Bob will be able to discover her presence. Indeed, if Eve extracts information
about the state this can be seen as a general measurement and we clearly saw in chapter
1 that a measure modifies the state. As a result, Bob won’t receive the same state as the
one sent by Alice, and they will be able to detect it, as the results of the measurements of
Bob won’t always fit with what was expected by Alice, due to the action of Eve. Someone
could then say that instead of extracting information from the state, Eve could just copy
the state and make her measurement on her own. This is impossible due to a fundamental
theorem in quantum mechanics: the no-cloning theorem. This theorem will be explained
in chapter 4.
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Figure 3.1 – Representation of a classical configuration.

Usually, a protocol is done in 6 steps:

• Preparation of the state by Alice: Alice prepares the state that she will send
to Bob. This often involves the use of random numbers to choose the basis and
the states that she sends. This stage can be seen in a totally different way, that
is exactly equivalent, which involves that Alice has a generator of entangled states
and that she measures one of the states generated and sends the other to Bob.

• Transmission of the state on the quantum channel: Alice sends the state on
the line and Eve can interact with the state.

• Measure of Bob: Bob measures the state. This can imply a random number if
Bob must choose the basis in which he will make the measurement. At this stage,
Alice and Bob both have a bit string which are more or less correlated in function
of the parameters of the line and of what Eve did.

• Exchange of information to remove some bits: Alice and Bob share some
information about their measurement. For example, in the first scheme that we will
see (BB84), they share the basis that they used and they keep the corresponding
bit only if they used the same basis. At this stage, Bob obtains a key called "sifted
key".

• Disclosure of certain bits on both sides: Alice and Bob will reveal some bits
of their key (the same ones). This will allow them to characterize the line and
estimate the bit error rate (QBER). The QBER is the probability to have an error
(thus different bits between Alice and Bob). They will also be able to discover the
presence of Eve. An hypothesis that is always done is that the situation is the worst
possible: all the errors are due to Eve and not to the line. They can then use the
theorem of Csiszar-Körner (equation 2.13) to determine if they will be able to create
a secret key or not.

• Classical post processing: Thereafter, Alice and Bob use the classical channel
to obtain a common key. To do that, they use algorithms for error correction and
privacy amplification. There are two kinds of reconciliation which are possible even
if only one has been studied before for discrete variables: the direct reconciliation
and the reverse reconciliation. In the direct reconciliation method, the final key is
built from the one possessed by Alice and in the reverse reconciliation it is built
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from the bits possessed by Bob. After this classical step, Alice and Bob obtain the
final key.

One of the objective of this thesis is to study the reverse reconciliation in the case of
the discrete variables, in order to observe if it allows us to obtain a better communication;
a better bit rate. The bit rate between Alice and Bob is defined in the case of the direct
reconciliation case by:

Bit rate = max(IAB − IAE, 0) (3.1)

Analogously, for the reverse reconciliation, the bit rate is:

Bit rate = max(IBA − IBE, 0) (3.2)

If the bit rate is equal to 0, this means that they cannot extract a secret key according
to the Csiszar-Körner theorem and that they need to stop the communication. This bit
rate equal to zero is due to the fact that Eve has gained too much information.

In the next sections, we will briefly express the different actions that Eve can do to
obtain information. When analysing a protocol, these possible attacks must be taken
into account and we must demonstrate that the protocol is secure against all of them.
Thereafter, we will briefly explain the most important protocols that have been invented
with discrete and continuous variables.

3.3 Classification of possible attacks
There exist three kinds of attacks that Eve can perform:

• Individual attack: Eve interacts independently with each state sent by Alice, makes a
measurement on her probe, and then sends the system to Bob. The main restriction
is that Eve’s measurement is done before Alice and Bob communicate on the classical
channel.

• Collective attack: Again, she interacts independently with each state but now she
has a quantum memory. She can store the state that she obtained after an interac-
tion and she can make the measurement on all the states collectively. This means
that she can wait that Alice and Bob reveal some information on the classical chan-
nel before making the best measurement possible.

• Coherent attack: this is a more complex attack. Eve’s probe system interacts on
all the states sent by Alice and is then stored in a quantum memory. Eve later
measures her probe only after the communication between Alice and Bob on the
classical channel.

Studying the two last kinds of attack is more difficult. In this work, for the protocols
that will be proposed, only the individual attacks will be analysed.

3.4 Discrete variables protocols
The first protocol proposed to do quantum cryptography involves discrete variables. It
was proposed in 1984 by Bennett and Brassard [2] what has led to its name: BB84. This
was the starting point of a lot of researches to establish protocols but also the fact that
they are secure against any attack of Eve.
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After BB84, other protocols with discrete variables were proposed but it still remains
a reference in terms of protocols with discrete variables. This is why it will be presented
in detail in the next subsection.

3.4.1 BB84

This protocol uses the computational basis {|0〉 , |1〉} and the dual basis {|−〉 , |+〉}. In
each of these bases, the bit ’0’ is assigned to a state and the bit ’1’ to the other. For
example, |0〉 and |−〉 code a ’0’ and |1〉 and |+〉 code a ’1’. The two bases are not
orthogonal: {

〈0|+ or −〉 = 〈0| |0〉±|1〉√
2

= 1√
2

〈1|+ or −〉 = 〈1| |0〉±|1〉√
2

= ± 1√
2

(3.3)

As these are non-orthogonal, it is impossible to distinguish them with a projective mea-
surement.

We will first study the basic protocol in the absence of Eve by showing step by step
what is done by Alice and Bob:

• Preparation of the state: Alice sends a qubit to Bob from one of the two bases.
Alice chooses the state that she sends randomly.

• Measure of Bob: When Bob receives the state, he performs a projective measure-
ment in one of the two bases. If Bob measures in the same basis as the one used by
Alice, he is sure to obtain the same bit as her. If he chooses the bad basis, he has
one chance out of two to obtain a bad result. This can be seen by calculating the
probabilities with the equation 1.22 for an example. If Alice sends the state |+〉;
she has a bit 1. Bob then measures in the bad basis (the computational one). He
has a probability of 1

2
to obtain the state |0〉 (he has then a bit 0) and the same

probability to obtain the state 1 (he obtains a bit 1). Half of the time, the bit that
he obtained is not the same as the one of Alice. The value 1

2
was found with the

formula 1.22:{
p(Result = |0〉 | Alice’s state = |+〉) = 〈+| (|0〉 〈0|) |+〉 = | 〈0|+〉 |2 = 1

2

p(Result = |1〉 | Alice’s state = |+〉) = 〈+| (|1〉 〈1|) |+〉 = | 〈1|+〉 |2 = 1
2

(3.4)

This value of 1
2
is a known probability for mutually unbiased bases. Two bases are

mutually unbiased if when we measure in one basis a state that was encoded in the
other basis, we have the same probability to obtain each output.

• Bases reconciliation: The two first steps are repeated n times so that Alice and
Bob have each a bit string with n bits. Alice and Bob then communicate via the
classical channel. They compare the basis that they used for each state. If they
used the same basis, they keep their bit. Else, they discard it. In average, they both
end with a bit string of size n

2
.

The other steps are not needed if there is no eavesdropper (but Alice and Bob could
not know it for sure). This is why there is always another step: Alice will reveal some
of her bits on an arbitrary way. Bob compares them to his bits. They can estimate the
bit error rate (QBER) which will show them if they will be able to obtain a secret key.
Indeed, the QBER is linked to the mutual information IAB and IAE which leads to the
limit of security with the Csiszar-Körner theorem presented before. In the case without
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eavesdropper, all the errors will be due to the defects of the line and will normally be very
low.

After all these steps, there is also the classical post-processing with the error correction
and the privacy amplification. Only the direct reconciliation has been studied with BB84:
the key is produced from the bits owned by Alice.

Such a protocol is represented on the figure 3.3. To represent the different bases and
the states, a convention is used that is presented on figure 3.2.

Figure 3.2 – Representation of the two bases used for the protocol. For each state, a bit
’0’ or ’1’ is associated .

Figure 3.3 – Execution of BB84 protocol without Eve. In red, bits removed due to the
bases reconciliation step.

In this example, it appears indeed that the bits obtained by Bob are exactly the same
as the ones of Alice if they use the same basis.

We will now see an example where Eve is present and make an attack called "intercept
and resend". It is an individual attack where Eve chooses randomly a basis. She measures
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in this basis and then sends the state that she obtained to Bob. If she measures in the
good basis; there is no difference with respect to what was obtained before: she sends to
Bob exactly the same state that Alice has also sent. However if she measures in the wrong
basis and Bob in the good one this can create errors because she sends to Bob a state in
the wrong basis. He has one chance over two to obtain the wrong bit. By disclosing some
of their bits Alice and Bob will thus be able to detect the presence of Eve. Such situation
is represented on figure 3.4.

Figure 3.4 – Execution of BB84 protocol with Eve. In red, bits removed due to the bases
reconciliation step. It appears that some bits obtained by Bob are different from the ones
of Alice even if they used the same basis (in blue).

The bit in blue on the previous figure is different for Alice and Bob. They will detect
it by disclosing some bits and this gives the QBER; the bit error rate.

However, in order to claim that the protocol is indeed secure, we need to connect that
to the mutual information so that we can use the Csiszar-Körner theorem. This can be
done due to the definition of a channel capacity. The channel capacity is defined as [10]:

C = max
p(input)

I(A : B) (3.5)
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where p(input) is any input probability distribution which is possible. So the capacity is
the maximal mutual information between the two correspondents that can be obtained by
choosing the right input distribution of states. Here, the input probability distribution is
fixed: Alice has one chance over four to send each state. The maximum disappears in the
expression of the capacity and it is thus equal to the mutual information between Alice
and Bob : C = I(A : B).

If we know the capacity, we then have the mutual information. A well-known expres-
sion for the capacity exists when there is a probability p that the input is the same as the
output. In this case, the capacity is given by:

C = 1− h(p) where h(p) = −plog2(p)− (1− p)log2(1− p). (3.6)

This result is valuable for a binary symmetric channel. By injecting the definition of h(p),
this gives:

C = 1 + plog2(p) + (1− p)log2(1− p) (3.7)

Here, p is equal to 1 − QBER. Indeed, without eavesdropper, Bob obtains the same bit
as Alice. However, when Eve is present, he obtains the same bit with a probability which
is equal to one minus the QBER as the QBER gives the probability of errors. On figure
3.5, in blue, we have plotted the capacity of the line as a function of the QBER. We can
also mention that the fidelity which is defined in chapter 4 is equal to "1-QBER" which
will be useful in the numerical simulations of the second part of this thesis.

This proves that from an estimated QBER, Alice and Bob can know the mutual
information between them by taking the ordinates of the curve for the estimated QBER.

To find the limiting QBER for the security of the protocol, IAE is needed in order
to apply the theorem of Csiszar-Körner. In many articles as in [18], the best individual
attack that Eve can perform has been searched. In this same article, the method is to
start from the fact that Eve applies any unitary operation on the state sent by Alice.
The authors use then the symmetry of this unitary operation (as Eve wants to have the
same effect on the two bases) to obtain the probability that Eve obtains the same result
as Alice. This probability is equal to 1+sin(x)

2
; where x is a real parameter describing the

unitary operation done by Eve. Indeed, cos(x) is equal to the overlapping between the
two states that Eve can obtain after the unitary operation for the two different input
states received from Alice. By trying to maximise the mutual information between Alice
and Eve, it is possible to find the expression of the QBER as a function of the same
parameter.

QBER =
1− cos(x)

2
. (3.8)

This method to find the values for the mutual information is quite difficult as at this time,
all the unitary operations that could be done by Eve are considered and the objective is
to optimize the result. A simpler way to model the action of Eve is now used in many
articles: Eve just applies an optimal imperfect cloning to the state sent by Alice.

However, using again the formula 3.7, the complex method has led to an expression
for IAE which is equal to:

IAE = 1− h(
1 + sin(x)

2
) (3.9)

where x is found from the expression of the QBER. This mutual information has also
been plotted on the figure 3.5.
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Figure 3.5 – Mutual information between Alice and Bob or Eve as a function of the QBER.

The intersection between the two curves gives the limit of security wanted as it corre-
sponds to IAB = IAE which leads to a bit rate equal to zero following the Csiszar-Körner
theorem. The intersection is located at:

QBER =
1− 1√

2

2
≈ 15% (3.10)

As one of the goals of this thesis is to describe several discrete protocols with the
same formalism and to obtain the mutual information as a function of the QBER, this
graph and this limiting value are important as they will allow us to verify our results by
comparing them to it. It is worth mentioning that this limit is only valid when considering
individual attacks and not the other attacks. If the other attacks are considered, this value
goes down to 12 %.

3.4.2 Other protocols

There exist other protocols with discrete variables that have a relatively high importance
such has SARG04 [29], the protocol E91 [15], the protocol B92 [1] involving only two
states... However, they are all derived from BB84.

In this work, they are less important than BB84 but E91 and SARG04 are briefly
introduced:

• E91: It was invented by Ekert in 1991. This protocol is very similar to BB84. The
main difference is the stage of the preparation by Alice. In E91, Alice does not
prepare a state but has a generator of entangled states. This generator gives two
quantum bits that are entangled. One of these bits is sent to Bob while Alice keeps
the other. She then performs a measurement like Bob. The rest of the protocol is
the same as in BB84. However, to calculate the security bounds, it might be better
to use this formalism of entangled states.

• SARG04: This protocol was invented to overcome one of the flaws of BB84: the
photon number splitting attack. Due to the fact that a source can never be perfect,
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sometimes two photons in the same state can be emitted instead of one. Eve has just
to keep one of the two photons. She stores it and waits for the bases reconciliation.
She can then do the good measurement and obtain the totality of the information.
To avoid this, SARG04 does not store data into the states but into the bases: the
computational basis corresponds to 0 while the dual one corresponds to 1. A sign
is assigned to each state: |0〉 and |−〉 are negative while the two others are positive.
The preparation by Alice and the measure by Bob are the same. The first stage that
differs is the bases reconciliation: instead of revealing the basis used, Alice reveals
the sign that she obtained. If Bob has the same sign, he could have used the same
basis or the wrong one but if he has another sign he is sure that he used a different
basis than Alice. Only this case will be kept and Bob will take the bit that does
not correspond to the basis he used. If he has the same sign, all the information are
removed: they are useless.

This method prevents Eve from obtaining all the information that she had for BB84
when two bits were emitted.

3.5 Continuous variables protocols
Two difficulties of the discrete protocols are the single-photon source and the detectors
that must allow to detect single photons. In protocols with continuous variables, these
difficulties are avoided by using simple photodiodes as detectors. Their advantage is
that they are faster and more efficient. The method used to measure will then be an
homodyne detection scheme (for the most basic protocols) and the data will be supported
by a continuous carrier such as the quadratures of light: x and p. x and p appear when
the light is described as an oscillatory function: x cos(ωt) + p sin(ωt). The quadratures
x and p then totally characterize a single mode optical field. There is no more need for a
single photon source. As the commutator of x and p is known:

[x; p] = 2i if ~ = 2, (3.11)

it appears that the two variables do not commute. As a consequence of this fact and
of the Heisenberg inequality for two conjugated variables; it is impossible to know the
values of x and p simultaneously:

∆x∆p ≥ 1 (3.12)

Moreover, it is impossible to clone the states |x〉 and |p〉 perfectly. Indeed, the no-
cloning theorem presented in chapter 4 implies that there is no procedure which allows
the spy to clone the states |x〉 and |p〉 exactly. Like for qubit, if a cloner is used to clone
in the basis |x〉; it will not be possible to clone in the other basis |p〉. We are then in the
same conditions as for discrete variables: Eve cannot measure the two quadratures and
she cannot clone the state. This means that she will never be able to obtain information
without disturbing the system which can be detected by Alice and Bob.

3.5.1 Four canonical protocols

Such protocols with continuous variables have appeared after the discrete ones with a
first protocol which is the equivalent of BB84. It was developed independently by two
groups of researchers during the same period ([6] and [19]). After this first step in the
world of continuous variables, many other protocols with continuous variables have been
developed. However, there are mainly four protocols that are very important and that
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will be presented here in the order of their discovery. A good review of all these protocols
is presented in [8].

Another important thing that was done for continuous cryptography is the study of
direct end reverse reconciliation. This allows Alice and Bob to obtain better results when
the key is based on the bits of Bob.

Cerf-Lévy-VanAssche protocol

In this protocol presented in [6] that is the continuous analogue of BB84, squeezed states
are used. The objective of Alice and Bob is to share a continuous secret key composed of
Gaussian-distributed variables. A squeezed state is a state that has a very low variance
on one quadrature while the other variance is very high. One of the values (x or p) is
thus well-defined while the second one contains no information.

Two representations of a squeezed state are presented on figure 3.6. On this repre-
sentation, the state is squeezed in x which means that ∆x << ∆p such that ∆x∆p = 1.
The element of key that Alice will transmit to Bob is the mean value of the squeezed
quadrature; in this case: < x >.

Figure 3.6 – Representation of a squeezed state. On the left: probability density distri-
bution as a function of x and p. On the right: simple representation of a squeezed state
in x.

Alice thus sends a squeezed state in x or in p. Everything is done in such a way that
Eve cannot see the difference between two such states. She then does not know whether
the information is stored in x or p and she cannot perform the good measurement for
sure (exactly like in BB84). When Bob receives the state, he performs an homodyne
measurement. This kind of measurement allows him to measure x or p and he chooses
which one randomly.

When all these operations are repeated n times, Bob announces which quadratures
he measured; like in BB84, if he measured the quadrature in which Alice has coded a
continuous variable, they keep the information. Else, they dismiss the data to obtain a
sifted key. Thereafter, the steps are the same as before: they evaluate the QBER and
then they do a classical post-treatment if it is possible to obtain a secret key.

The security of this protocol has been proved for individual Gaussian attack [6] and
it has also been demonstrated that protocols with continuous variables are secure against
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non-Gaussian attacks [20]. However, while avoiding the use of a single photon source, this
method is still not very practical due to the difficulty to generate squeezed states.

Grosshans-Grangier protocol

This was the second protocol proposed in 2002 by Grosshans-Grangier in [21]. Everything
which involves Bob stays the same: he performs an homodyne measurement. The differ-
ence comes from the state sent by Alice: she sends a coherent state instead of a squeezed
one. In a coherent state there is no quadrature which has a very low variance. Alice
will encode both quadratures: she sends |x+ ip〉. A representation of a coherent state is
shown on figure 3.7.

Figure 3.7 – Simple representation of a coherent state.

Due to this, there is noise on both quadratures. However, when Bob measures one
quadrature, he obtains a Gaussian variable which is correlated with one of the variables
of Alice. When Bob informs her of his measurement, she just throws away the variable
associated with the wrong quadrature. They obtain variables which are correlated and
they can detect if Eve has done anything. Indeed, if she makes a measurement and sends
a new state to Bob, if she measured the wrong quadrature, Bob can see her intervention
when comparing some data with Alice. Again, the security of this protocol has been
demonstrated against individual Gaussian attack [22].

No basis-switching protocol

It was developed by Australian researchers in 2004 [33]. Again, Alice sends coherent
states but Bob realizes heterodyne detection. This corresponds to the measure of both
quadratures. He then does not have to choose randomly between two measurements
which leads to the name of the protocol. This is also easier on an experimental point
of view. Indeed, Bob has a single measurement device and he does not have to touch it
to change the quadrature which is measured each time Alice sends him a state. To do
this simultaneous measure, he uses a beam splitter and measures one quadrature at each
output arm. He obtains two variables but they are noisy. Indeed, if Bob could obtain
exactly the two values, the spy could do the same and obtain all the information. It has
been demonstrated that an heterodyne measurement is equivalent to realizing the best
cloning which is possible [9] and to measure on each clone one of the quadratures. Bob
and Alice thus have continuous variables which are correlated. With the help of classical
algorithms for error correction and privacy amplification, they can obtain a secret key.
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Noise-tolerant protocol

The last protocol [17] was invented in 2009. This protocol is still based on squeezed states
but with an heterodyne detection for Bob. Such a method may seem useless: Alice encodes
a value in only one of the quadratures and Bob measures the two quadratures with more
noise than if he had measured only one. When they will do bases reconciliation, Bob will
eliminate the value corresponding to the wrong basis which will have as a consequence
that he will have a value which is linked to the one of Alice but with more noise. When
doing reverse reconciliation, this will be an advantage for Alice and Bob. Indeed, this
extra noise cannot be controlled by Eve and will then be detrimental for her.

Overview of the four methods

These four methods are thus characterized by the kind of state sent by Alice and the kind
of measurement made by Bob. A synthesis of these methods is presented on the table of
the figure 3.8.

Figure 3.8 – Overview of the four main protocols of quantum key distribution with con-
tinuous variables.

The objective of this thesis is to obtain the same table for discrete variables and to
see if better results can be obtained by using reverse reconciliation which has never been
studied for discrete variables.

3.5.2 Equivalent entanglement-based protocols

A complete review of the different protocols and a proof of security in the case of reverse
reconciliation is presented in [23]. To analyse the security, it is considered that Alice
does not prepare a state to send it to Bob but an analogue vision is used like in discrete
protocols. Instead of preparing a state, she prepares a pair of quantum states which
are entangled (named EPR state following the article written by Einstein, Podolsky and
Rosen [14]). On one of the states, she makes an homodyne or heterodyne measure and
she sends the other one to Bob. This is totally equivalent to the case where she prepares
a state due to the entanglement. Such preparation is represented on figure 3.9.
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Figure 3.9 – Preparation of the state by Alice using entangled states. Above: Alice
measures only the quadrature x at the output of the black box creating an EPR state.
Bob then has a squeezed state with a value of the encoded quadrature centered on the
value measured by Alice. Below: same representation in the case where Alice performs
an heterodyne measurement. Bob obtains a coherent state.

With these preparations, it is easier to calculate if a protocol is secure. The analysis is
based on the conditional variance on the value of the quadrature obtained by Bob if the
measurement of Alice is known. It is then supposed that Eve uses the best possible cloning
machine which is the cloner that minimises the conditional variance on the quadratures
of Bob knowing the values measured by Eve. All these variances are then transformed
in Shannon’s entropies which are used into the Csziszar-Körner theorem to see in which
limits it is possible to obtain a key and which protocol is the best.

3.6 Conclusion
In this chapter, we saw first the foundations of quantum cryptography before explaining
more in detail some protocols. The more important one in the scope of this thesis is
BB84 and the limit of security which is obtained by equalizing mutual information. This
value will be found again in the formalism used to analyse other protocols. The idea to
developed such protocols came from the various continuous protocols which explains why
they were also studied in this chapter.
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Chapter 4

Cloning of a quantum state

The history of quantum cloning goes back to 1982 with the article of Herbert [24]. In this
article, he claims that it is possible to make communication faster than light by using an
idealized laser gain tube presented in his article. This tube would produce distinguishable
states of light from an incoming single photon in any polarization state due to stimulated
emission. The noise should not prevent from distinguishing the polarisation state and
super-fast communication would be possible. Everyone in the scientific community was
perplex about this idea because it would violate the principle of causality. The reviewers
decided to publish it even if they thought that it was wrong so that the scientific com-
munity could search the weakness. This is what happened: lots of people have begun to
search for the weakness of Herbert’s article.

At the end of the same year, it was demonstrated that it is impossible to make a perfect
copy of any quantum state which was supposed possible in the paper of Herbert. This
demonstration was done almost simultaneously by Wootters and Zurek [35] and by Dieks
[12]. Some years after this discovery, some articles introduced the concept of imperfect
cloning machine: the clones are not exactly the same as the input state. These imperfect
quantum cloning machines are very important in the framework of quantum cryptography
as they allow the scientists to model the attack that Eve performs. The spies can use
these machines in order to obtain as much information on the input state as they can.
This is thus important to present the subject in this thesis as it will be used in the proofs
of security that will be established.

In the first section of this chapter, the fact that it is impossible to clone any quantum
state is enunciated and demonstrated. Then, some imperfect quantum cloning machine
are presented as they are used to represent the best possible methods for a spy to intercept
a message. A review about quantum cloning can be found in [7].

4.1 No-cloning theorem
Cloning a quantum state (realizing one of more copies of the quantum state) is impossible
due to the linearity of quantum mechanics. We will demonstrate it by using the same
reasoning presented by Wootters and Zurek in their article.

If it was possible to clone a quantum state, starting from a state |n〉, the cloning
procedure should correspond to:

|n〉 |0〉 |Ain〉 → |n〉 |n〉 |Aout〉 (4.1)

where |Ain〉 and |Aout〉 are the initial and final states of the cloning machine while |0〉 is
a free ancilla that will contain the output. The ancilla is there because there must the
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same number of inputs and outputs as in quantum mechanics everything is described by
unitary transformations. Such procedure is represented on figure 4.1.

Figure 4.1 – Perfect cloning machine.

We will demonstrate that this is impossible if the state |n〉 does not belong to a well-
defined basis. First, we start by considering that it is possible to clone a state which is
in the computational basis {|0〉 , |1〉}. This means that the action of the unitary operator
corresponding to the cloning machine on these states is:{

Ucl |0〉 |0〉 |Ain〉 = |0〉 |0〉 |Aout〉
Ucl |1〉 |0〉 |Ain〉 = |1〉 |1〉 |Aout〉

(4.2)

This transformation corresponds to a perfect cloning if we always start from a bit in the
computational basis. Now, using the same operator, we want to make a clone of the state
|+〉. To calculate the effect of the unitary operator, we need to use the linearity of the
operator. This leads to:

Ucl |+〉 |0〉 |Ain〉 = Ucl

( |0〉+ |1〉√
2

)
|0〉 |Ain〉 =

1√
2
Ucl |0〉 |0〉 |Ain〉+

1√
2
Ucl |1〉 |0〉 |Ain〉

(4.3)
By using what we know about the cloning machine (equation 4.2), we can rewrite the

output for the state |+〉:

1√
2
|0〉 |0〉 |Aout〉+

1√
2
|1〉 |1〉 |Aout〉 (4.4)

The fact is that this is not equal to the state that we want:

|+〉 |+〉 |Aout〉 =
( |0〉+ |1〉√

2

)( |0〉+ |1〉√
2

)
|Aout〉

=
( |0〉 |0〉+ |1〉 |0〉+ |0〉 |1〉+ |1〉 |1〉

2

)
|Aout〉

(4.5)

It is thus impossible to perfectly clone every basis. If we want to clone the states
in a known basis perfectly, it is thus possible but with this cloning machine it will be
impossible to clone the states of another basis. This is known as the no-cloning theorem.
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4.2 Imperfect cloning
Even if a perfect cloning is impossible, an imperfect cloning is possible. This was men-
tioned for the first time in an article by Mandel in 1983 [26]. He demonstrates that it is
possible to obtain a copy of a quantum state which approaches the original one whatever
the input polarization. However, this paper did not attract the attention of the scientists
community and its interest was only discovered ten years later. In 1996, Hillery and Bužek
published another paper [4] which introduced the concept of a quantum cloning machine
(which was implicitly contained into the paper of Mandel).

The fact that the obtained states are not totally the same as the initial one will be
characterized by a fidelity. It corresponds to the probability that the cloned state will be
identified as the real state. The mathematical definition of fidelity is given by equation
4.6 for two density matrices ρ and σ. The value obtained then describes how close these
two matrices are; it belongs to the interval from 0 to 1. The fidelity is equal to 0 if the
two density matrices are totally different while it is equal to 1 if they are the same.

F (ρ, σ) = Tr
(√√

ρσ
√
ρ
)2

(4.6)

The square root appearing in this expression is the unique positive square root of the
matrix if this matrix is positive semi-definite. This corresponds to the square root given
by the spectral theorem. Even if it does not seem obvious from this definition, it is possible
to demonstrate that the fidelity is symmetric:

F (ρ, σ) = F (σ, ρ) (4.7)

This expression can be rewritten if one or the two density matrices correspond to a
pure state. Indeed, if:

ρ = |Ψρ〉 〈Ψρ| = (|Ψρ〉 〈Ψρ|)2, (4.8)

the fidelity is equal to:

F (ρ, σ) = Tr
(√
|Ψρ〉 〈Ψρ|σ |Ψρ〉 〈Ψρ|

)2
= 〈Ψρ|σ |Ψρ〉Tr(|Ψρ〉 〈Ψρ|)2

= 〈Ψρ|σ |Ψρ〉
(4.9)

where the last equality is due to the property of the trace of a projector (Tr(|Ψ〉 〈Ψ|) = 1).
If σ is also a pure state: σ = |Ψσ〉 〈Ψσ|, the fidelity can finally be rewritten as:

F (ρ, σ) = 〈Ψρ|Ψσ〉 〈Ψσ|Ψρ〉 = | 〈Ψσ|Ψρ〉 |2 (4.10)

Now that we saw how to characterize the quality of the clone, we will see two cloning
machines which are very important. The first one is the universal cloning machine which
was presented by Hillery and Bužek in their article of 1996 while the second one is a special
case of the Pauli cloning machine invented by Cerf in [5], that was presented in an article
of Bruss et al in 2004 [3] and is named phase covariant quantum cloning. The universal
cloning machine is very important as it is one of the first imperfect cloning machines that
was invented; this is why it is briefly presented. In this work, the second cloning machine
is of greater interest as it is the one that will be used to study the attack of Eve.

4.2.1 Universal cloning machine

The universal cloning machine is a machine that clones each quantum state with the same
fidelity: whatever the initial state on the Bloch sphere, the output will always have the
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same fidelity. This means that the two clones that come out of the cloning machine must
have the same fidelity and this fidelity cannot depend on the input state: if A and B are
the clones:

FA(ψin) = FB(ψin) ∀ψin (4.11)

It was demonstrated in 1998 that indeed, the cloning machine proposed by Hillery and
Bužek is the optimal universal cloning machine that can be obtained. It allows the two
clones to have a fidelity of 5

6
.

The action of the cloning machine can be expressed under the form:|0〉 |C〉 →
√

2
3
|00〉AB |0〉C +

√
1
3
|Ψ+〉AB |1〉C

|1〉 |C〉 →
√

2
3
|11〉AB |1〉C +

√
1
3
|Ψ+〉AB |0〉C

(4.12)

where |C〉 is an ancilla useful for the calculations as well as an ancilla that will contain the
second output; |Ψ+〉 is one of the Bell states presented in the equation 1.9. The output
states A and B are the two clones while the output C is an ancilla which is useless.

Since early 2000, several experimental setups have been tested to implement this
cloning machine. The more basic ones use stimulated parametric down-conversion. This
is a way to obtain two entangled photons from one pump photon. This is possible due to
the use of nonlinear optics. In this case the pump photon is the photon that we want to
copy and the two entangled photons are the two copies. During the following years, the
setup has been developed and complicated in order to obtain better results. However, the
main principle is still the stimulated parametric down-conversion. On average, all these
experiments did allow the scientists to measure a mean fidelity of 0,81 which is close to
the theoretical value:

F =
5

6
≈ 0, 833 (4.13)

This means that the error is approximately equal to 2,8 % of the theoretical value
which means that this experimental setup is quite good to implement a universal cloning
machine. Another experimental setup is presented in [16] where only passive linear optics
is used.

4.2.2 Phase-covariant cloning

This second imperfect cloning machine was proposed in 2004 by Bruss et al. In this
imperfect cloning machine, all the states will not be cloned with the same fidelity: a part
of the states will be cloned with an higher fidelity than the one obtained from a universal
cloning machine but this is done at the cost of a lower fidelity for the states which are
not in this part of the Bloch sphere.

The states that will be cloned with a higher fidelity are the ones situated on the
equator of the Bloch sphere as represented on the figure 4.2.

36



4.2. IMPERFECT CLONING Chapter 4

Figure 4.2 – Representation of the Bloch sphere. In blue: states that will be cloned with
a higher fidelity by using a phase covariant cloning.

These qubits on the equator can be expressed by a general expression:

|Ψ〉 =
|0〉+ eiφ |1〉√

2
(4.14)

where φ represents an arbitrary angle.
By using the cloning machine defined in their article, Bruss et al. demonstrated that

the fidelity for any input state on the equator is equal to 0.854 which is higher than the
fidelity found with a universal machine. However, it indeed appears that the possibility
to obtain such higher fidelity goes with a lower fidelity for the other states of the Bloch
sphere as the fidelity of the pole is only equal to 3

4
.

Unlike with the universal cloning machine, when defining the action of the cloning
on an input state, the third input bit (an ancilla that we throw away after the cloning
process) is useless. There are then just two qubits involved: the state that we want to
copy and a blank ancilla to contain the second clone. This operation can be written:{

|0〉 |0〉 → |0〉A |0〉B
|1〉 |0〉 → 1√

2
(|0〉A |1〉B + |1〉A |0〉B)

(4.15)

When the operation is expressed under this form, this means that it is symmetric:
the two clones will have the same symmetry. An important remark can be made: the
phase-covariant cloning machine for states on the equator is defined with the basis of
states which are orthogonal with respect to the equator.

However in quantum cryptography, the more important cloner is an asymmetric one
where one of the copies can be better than the other. The spy can then have more or
less information about the state sent by Alice than Bob. To define an asymmetric phase-
covariant cloning machine, it is enough to break the symmetry between the superposition
of |01〉 and |10〉 at the output of the machine:{

|0〉 |0〉 → |0〉A |0〉B
|1〉 |0〉 → cos(θ) |0〉A |1〉B + sin(θ) |1〉A |0〉B

(4.16)

θ is the angle of the cloning machine which varies between 0 and π
2
. If we use this machine,

we obtain two copies of the input state with different fidelity but the fidelities will stay
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the same for all the states on the equator. The fidelity of the two copies can be calculated
with the equation 4.10: {

FA = 1
2
(1 + sin(θ))

FB = 1
2
(1 + cos(θ))

(4.17)

This asymmetric way of cloning the state is the one that will be used later in this
work.

4.3 Conclusion
In this chapter, we saw the proof that it is impossible to clone any quantum state. There-
after, we presented a new kind of cloning, the imperfect one which was invented to "re-
place" a perfect cloning machine. To characterize such operations, there is a well-known
variable which is the fidelity. Finally, we saw two important examples of such machines
that will be useful for this work.
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Chapter 5

Objective of the research

As said before, the first protocol proposed to do quantum cryptography involves discrete
variables: BB84. After that, a huge step has been done with the discovery of continuous
variables protocols. Indeed, these last ones are more easy to apply experimentally than
those using single photons. The first protocol with continuous variables that was defined
is the analogue of BB84, the Cerf-Lévy-VanAssche protocol, but many others were found
after that. However, nobody has never done the reverse thinking: starting from these
protocols with continuous variables and searching for their discrete analogues. This is the
objective here: finding the total analogue of the table 3.8.

Moreover, protocols with discrete variables have only been studied for direct reconcil-
iation, but in the continuous variables case, it has been demonstrated that using reverse
reconciliation could allow Alice and Bob to have a protocol which is more robust. It can
raise a question: in discrete variables, could reverse reconciliation allow for better results
than the ones obtained with BB84?

This leads to the two main points that will be presented in this part:

• Research of the analogous version of the four main protocols with con-
tinuous variables: To find these new protocols and to study them we first need
to define each step that is involved in the procedure. Thereafter, the security will
be studied to see if it is possible to obtain better results than those of BB84.

• Study of the reverse reconciliation in the case of discrete variables: All
the protocols defined before must be modified. The objective of Eve will change,
she does not want to obtain information on Alice’s bits anymore but she wants to
find the ones of Bob.

These two points will be explored in the two next chapters: the first one is about
the definition of the protocols and their study in the case of direct reconciliation. In the
second one, reverse reconciliation will be studied. Thereafter, a conclusion is done in the
last chapter.
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Chapter 6

Security of the four canonical protocols
supplemented with direct reconciliation

6.1 Introduction
In this chapter, we will study the four discrete protocols corresponding to the ones pre-
sented on figure 3.8. Only the direct reconciliation will be considered as the reverse one
is the subject of the following chapter.

This chapter is divided in three parts. In the first one, we begin by defining the four
protocols that will be studied. These four protocols will be named in this work according
to the names of the analogous protocols with continuous variables. The names used
are therefore: BB84, discrete Grosshans-Grangier protocol, discrete no basis-switching
protocol and discrete noise-tolerant protocol.

In the second section, the different stages such as the preparation of the states, the
action of Eve,... will be described in terms of density matrix, POVM,... The objective
with this formalism will be to find the expression of the joint probability of a certain
output of the measurement for Bob and Eve conditionally on the input of Alice.

This result will be used in the last section to determine the security of the protocol
and to compare the three new protocols to BB84.

6.2 Description of the protocols
As we saw in chapter 3, the four protocols differentiate themselves in two ways: the
measurement done by Bob and the kind of states sent by Alice. This is the reason why
we will start by defining precisely the states that Alice can send and the measurement
that Bob can do. The last point of this section will be dedicated to the action of Eve and
how it can be represented with a cloning machine.

6.2.1 States sent by Alice

For continuous variables, there were two kinds of states that Alice could send: squeezed
or coherent states. We need to find the analogous version of these two states to be able
to define correctly the discrete protocols.

We already know what is the equivalent of the squeezed states sent by Alice. Indeed,
we said that the first protocol with continuous variables that was invented uses squeezed
states and is the continuous analogue of BB84. We then know that the equivalent of
the squeezed states for Alice are the states in BB84. For reminder, the states involved
in BB84 are the ones of the computational basis and of the dual one: |0〉, |1〉, |+〉 and
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|−〉. With a probability equal to one half, she encodes a random bit in the computational
basis and with the same probability, she encodes it in the dual basis. To represent these
four states, we will use a part of the Bloch sphere: the vertical plane that contains these
four states. They are represented on figure 6.1. The fact that Alice encodes with an
equal probability in one or the other basis in discrete protocols is exactly the analogue to
the fact that in squeezed states, she encodes only one of the quadratures (with the same
probability for each quadrature).

Figure 6.1 – Representation of the analogue of the squeezed states that Alice can send.

These states are thus the ones that will be sent for BB84 and for the discrete noise-
tolerant protocol.

For the two other protocols, we need to find the equivalent of coherent states. In such
states, Alice has encoded the two quadratures. In discrete, it would correspond to the fact
that she sends a state encoded in the computational and the dual bases simultaneously.
On the considered circle of the Bloch sphere, this corresponds to the "diagonal" states.
Alice can then send one state among the four possible. To each of them, two bits can be
associated. The figure 6.2 presents such states and the associated bits. In this protocol,
there is no question about which basis to use. Indeed, Alice has just to send one of the
four states with an equal probability (1

4
for each state).

Figure 6.2 – Representation of the analogue of the coherent states that Alice can send.

An important remark for the calculation that will be made in the following section
is that all these states lie on the same plane of the Bloch sphere: the vertical one that
contains the states of the computational basis and of the dual basis.

42



6.2. DESCRIPTION OF THE PROTOCOLS Chapter 6

6.2.2 Measurement done by Bob

Again, in the continuous protocols, two kinds of measurements were done: the homodyne
detection and the heterodyne one.

The homodyne detection is just the measurement of one of the two quadratures of
the light. In our discrete framework, it is thus equivalent to the measurement in one
of the two bases. This is exactly what was already used by Bob in BB84: he measures
randomly in one of the two bases and then he compares this basis to the one of Alice.
Such a measurement is a projective measurement as presented in chapter 1 on one of the
two bases represented on the figure 6.1.

To obtain all the different elements that will allow us to study the four protocols, we
need to define a second kind of measurement which is analogous to heterodyne detection.
In these measurements performed by Bob, the two quadratures are measured with more
noise than in an homodyne one. In our case, this means that we need to measure in
the two bases simultaneously. To do this a POVM will be used. This POVM will be
constituted of four projectors on the four states which are presented on the figure 6.2.

When we put together the kind of states sent by Alice and the measurements done by
Bob, we obtain a full view of the four protocols. This is presented on the figure 6.3. This
table is equivalent to the one seen in the continuous case.

Figure 6.3 – Overview of the four discrete protocols that are studied.

6.2.3 Action of Eve

At this stage, we know for each protocol what Alice and Bob will do. We still need
to know what Eve will do. Like in all the protocols, she will interact with the quantum
channel. Her objective is to obtain as much information on Alice’s state as she can without
modifying the state too much. Otherwise, she would immediately be detected by Bob.
To do so, she will use a quantum cloning machine. As explained in the chapter 4, it is
impossible for her to make a perfect copy of the state. However, she can make imperfect
copies. As mentioned above, in all the protocols that are considered here, only states of
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one plane of the Bloch sphere are involved. To do the best cloning possible on a plane of
the Bloch sphere, Eve can use the phase covariant cloner described in the chapter about
cloning. As a reminder, we can rewrite the effect of this cloner:{

|0〉A |0〉 → |0〉B |0〉E
|1〉A |0〉 → cos(α) |0〉B |1〉E + sin(α) |1〉B |0〉E

(6.1)

where α is the angle of the cloning machine. B and E represent Bob and Eve that will
each receive one of the clones while A is the bit of Alice. The angle of the cloning machine
varies between 0◦ where the state of Alice is sent to Eve and 90◦ where the state of Alice
is sent to Bob. However, if we keep this definition of the cloner, it represents a cloning
machine that clones with a higher fidelity all the states that are in the equatorial plane of
the Bloch sphere than the ones out of it, but this is not what we want. We want to clone
the states on the vertical plane. These two different planes are presented on figure 6.4.

Figure 6.4 – Representation of the Bloch sphere. In blue: states that will be cloned with
a higher fidelity by using the phase covariant cloning just enunciated. In red: states that
we want to clone with the highest fidelity.

It is necessary to change the definition of the cloning machine to clone the right plane.
It is clear that to pass from the blue situation on the scheme to the red one, we need
to do a rotation. To clone the blue circle, the cloner was defined as a function of the
computational basis which is composed of the states that are orthogonal to the plane on
the sphere. It is thus obvious that if we want to optimally clone the red circle, we need to
use the same machine by replacing the computational basis by the basis {|i〉 , |−i〉}. This
leads to the expression of the cloning machine used by Eve:{

|i〉A |i〉 → |i〉B |i〉E
|−i〉A |i〉 → cos(α) |i〉B |−i〉E + sin(α) |−i〉B |i〉E

(6.2)

Eve can use this cloner to obtain a copy while she sends the other to Bob. On her copy
she can then make the same measurement as Bob to obtain information on the states of
Alice.
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6.3 Mathematical description of the different stages
In this section, we will develop mathematically the different protocols presented above.
This will be done by using the different elements of quantum mechanics that were pre-
sented in chapter 1. The objective is here to do a general calculation containing parameters
so that the final results can be used to describe any of the protocols by simply replacing
the parameters by the appropriate values. The calculations presented in this section were
partly done with Mathematica. The code can be found in annex A.

To do so, we need to remind that any state on that plane of the Bloch sphere can be
rewritten as:

|Ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 (6.3)

This equation is immediately derived from the expression 1.4. Indeed, they are identical
except for the factor of the phase. This factor can be removed here as we limit ourselves
to the plane: all the imaginary combinations lead to points that are out of it.

As θ is the angle on the Bloch sphere, we can easily find what angle will correspond
to the four states used in BB84:

• |0〉: θ = 0◦

• |1〉: θ = 180◦

• |+〉: θ = 90◦

• |−〉: θ = 270◦

This can be proved by injecting the various angles in the expression. For example, for
the state |+〉, it gives:

|Ψ〉 = cos

(
90◦

2

)
|0〉+ sin

(
90◦

2

)
|1〉 =

1√
2

(|0〉+ |1〉) ≡ |+〉 (6.4)

For the four other states used in the other protocols, the corresponding angles will
then be 45◦, 135◦, 225◦ and 315◦.

Alice will send a state of this form and when we will analyse the different protocols,
we will replace the angle θ by different values according to the considered protocol.

The next stage in this scheme is the cloning by Eve. It is necessary to apply the
equation presented before (6.2). However, before doing that, we have to change the basis
as the state of Alice is in the computational basis and the cloning machine is presented
for another basis.

In order to change the basis, let us first remind the definition of the states |i〉 and |−i〉
as a function of the computational basis. These equations can then be inverted to find
the inverse relation: the expression of the states of the computational basis as a function
of the basis {|i〉 , |−i〉}. Such inversion is done in the equation 6.5.{

|i〉 = 1√
2
(|0〉+ i |1〉)

|−i〉 = 1√
2
(|0〉 − i |1〉)

↔

{
|0〉 = 1√

2
(|i〉+ |−i〉)

|1〉 = 1√
2i

(|i〉 − |−i〉)
(6.5)
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With these expressions, it is possible to express the state in the right basis:

|Ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉

= cos

(
θ

2

)
1√
2

(|i〉+ |−i〉) + sin

(
θ

2

)
1√
2i

(|i〉 − |−i〉)

=
1√
2
{(cos

(
θ

2

)
− i sin

(
θ

2

)
) |i〉+ (cos

(
θ

2

)
+ i sin

(
θ

2

)
) |−i〉}

=
1√
2
{e−i

θ
2 |i〉+ ei

θ
2 |−i〉}

(6.6)

With the state expressed under this form and an added ancilla, it is possible to apply
the cloning machine:

|Ψ〉 |i〉 cloning−−−−→ |Ψclone〉 =
1√
2
{e−i

θ
2 |i〉 |i〉+ ei

θ
2 (cos(α) |i〉 |−i〉+ sin(α) |−i〉 |i〉)} (6.7)

In this new state, there is one bit that will go to Bob (the first one) and the other
one will go to Eve. If we reformulate the state in the formalism of density matrix, by
doing the partial trace, we will be able to obtain the density matrix of Bob and the one
of Eve. Moreover, this is easier to manipulate as the state is now linked to a matrix and
the application of an operator on it will lead to matrix multiplication.

To find the matrix density, we will apply the formula 1.8. Here, there is only one term
in the sum which gives:

ρBE = |Ψclone〉 〈Ψclone| =


1
2

1
2
e−iθ cos(α) 1

2
e−iθ sin(α) 0

1
2
eiθ cos(α) cos2(α)

2
1
2

cos(α) sin(α) 0
1
2
eiθ sin(α) 1

2
cos(α) sin(α) sin2(α)

2
0

0 0 0 0

 (6.8)

〈Ψclone| is obtained by taking the complex conjugate of the |Ψclone〉 if they are formu-
lated under a vectorial form.

At this stage, we have the expression of the density matrix for Bob and Eve. In
the protocol, there is only one remaining step: the measurement. We want to find the
probability that Bob and Eve will have some output knowing the state sent by Alice.
Such probability is given by the equation 1.19 where ρ is the density matrix that we have
just found. We just need to express the operators Mm. In this case, we can express it
more in details as Bob and Eve both perform a measurement on their own qubit. This
means that the measurement operator can be expressed as a tensor product between the
measurement operators of Bob and Eve:

pθb,θe = Tr(ρBEMθb ⊗Mθe) (6.9)

We put the angle θb and θe in anticipation. Indeed, we will see that the different
elements of a POVM will differentiate themselves by an angle.

Again, the idea is to formulate it the same way if Bob and Eve both perform a
projective measurement (analogue to homodyne detection) or a POVM (analogue to the
heterodyne detection). These two kinds of measurement were presented in section 1.5.
The projective measurements can be interpreted in terms of POVM. Indeed, Bob will
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measure either in the computational basis or in the dual basis with a probability of
1
2
. The projective measurement in one of the two bases can be expressed as a POVM

containing two elements which are the projectors on the two states forming the basis. For
example, for the computational basis:

POVM = {|0〉 〈0| , |1〉 〈1|} (6.10)
Such a POVM fulfils the conditions: each element is positive and their sum is equal

to the identity according to the closure relationship. The projective measurements done
in BB84 can then be seen as two POVMs each applied with a probability of one half.

The only need to describe the measurements is then to describe the elements of a
POVM. In our protocol, the elements of a POVM are always projectors on different
states of the vertical plane of the Bloch sphere. In order to keep the generality for the
four protocols, we will describe them using a parametric angle like we did for Alice. Again,
we express the state using the expression in the right basis (6.6):

|Ψ〉 =
1√
2
{e−i

θ
2 |i〉+ ei

θ
2 |−i〉} (6.11)

The projector on this state expressed under the form of a matrix is:

|Ψ〉 〈Ψ| = 1

2

(
1 e−iθ

eiθ 1

)
(6.12)

With this projector, we can express the POVM of Bob like an ensemble of such ele-
ments with a coefficient in front of them:

POVMBob = {cb
2

(
1 e−iθb

eiθb 1

)
} (6.13)

where θb is the angle corresponding to the states on which we want to project. The
constant cb is there to unsure the condition

∑
mEm = 1 on the POVM. According to the

kind of measurement done by Bob, there are two cases:

• Measure with a POVM : Bob’s POVM contains four projectors corresponding
to the elements with θb = 45, 135, 225 and 315◦. Moreover, as these four states can
be seen as the states of two bases and the fact that we know that if we sum the
projectors of two states of a same basis, this gives the identity (closure relationship);
it is clear that cb must be equal to 1

2
.

• Projective measurement: Bob can apply two POVMs and he uses each with a
probability of one half. The first POVM corresponds to θb = 0 and 180◦ while the
second corresponds to θb = 90 and 270◦. Each time, the POVM contains only the
two projectors on the states of the same basis. The sum of the elements is then
equal to the identity and the coefficient cb is equal to 1.

The POVM of Eve is exactly the same. We now have all the elements to express
the probability that we search. We begin by calculating the tensor product by using the
formula 1.13:

Mθb ⊗Mθe =
cb
2

(
1 e−iθb

eiθb 1

)
⊗ ce

2

(
1 e−iθe

eiθe 1

)

=
cbce
4


1 e−iθe e−iθb e−i(θb+θe)

eiθe 1 ei(θe−θb) e−iθb

eiθb ei(θb−θe) 1 e−iθe

ei(θb+θe) eiθb eiθe 1

 (6.14)
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If we inject this into the equation 6.9, it will lead us to the probability we were
searching for. This calculation implies the use of a trace which was defined in chapter 1.

pθb,θe = Tr(ρBE.Mθb ⊗Mθe)

=
1

4
cbce(sin(α) cos(θ − θb) + cos(α) cos(θ − θe) + sin(α) cos(α) cos(θb − θe) + 1)

(6.15)

This probability is what we want: the probability that Bob and Eve will measure θb
and θe if Alice did sent the state with an angle θ.

By using this distribution of probability and Shannon’s information theory presented
in chapter 2, we will search the security of these protocols and the achievable bit rate.

6.4 Results and security of the different protocols

6.4.1 Calculation of the mutual information

To study the security of the protocol, we want to verify for which values of the cloning
angle the Csiszar-Körner theorem (equation 2.13) is satisfied. We thus need to calculate
the mutual information between Alice and Bob but also between Alice and Eve. To do
that, the calculation were made by using Matlab. The code can be found in annex A.

We will use the equations that were presented in chapter 2. First, we need to have the
joint probability distribution between Alice, Bob and Eve. To obtain it, we can follow
the equation 2.7 that links a conditional probability to a joint probability.

Here, we have the probability of Bob and Eve conditional to the state of Alice. To
obtain the joint probability between the three, we need to multiply it by the probability
that Alice sends this state. Again, this can have two values as a function of the state sent
by Alice:

• Analogue of a coherent state: Alice will send one of the four state that we
presented before (each with a probability of 1

4
).

• Analogue of a squeezed state: Alice chooses randomly one of the two bases. In
this basis there are two states. As the problem is completely symmetric between
the two bases, we will limit ourselves to the study of one of the two bases. The
probability for Alice to send one of the states is then equal to 1

2
.

Once we have the joint probability, p(θa, θb, θe), we can calculate all the probabilities
that will be used to calculate the entropies which will be involved in the calculation of
the mutual information: 

p(θa, θb) =
∑
θe

p(θa, θb, θe)

p(θa, θe) =
∑
θb

p(θa, θb, θe)

p(θa) =
∑
θb

p(θa, θb)

p(θb) =
∑
θa

p(θa, θb)

p(θe) =
∑
θa

p(θa, θe)

(6.16)
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The sum on the angles always involves the angles that correspond to the protocol that
is studied.

The next stage in order to calculate the mutual information is the calculation of the
entropies: 

H(Alice, Bob) = −
∑
θa,θb

p(θa, θb)log2(p(θa, θb))

H(Alice, Eve) = −
∑
θa,θe

p(θa, θe)log2(p(θa, θe))

H(Alice) = −
∑
θa

p(θa)log2(p(θa))

H(Bob) = −
∑
θb

p(θb)log2(p(θb))

H(Eve) = −
∑
θe

p(θe)log2(p(θe))

(6.17)

With all this information, it is easy to obtain the mutual information with the formula
2.12: {

IAB = H(Alice) +H(Bob)−H(Alice, Bob)

IAE = H(Alice) +H(Eve)−H(Alice, Eve)
(6.18)

The mutual information is usually represented as a function of the QBER which is
itself linked to the fidelity between Alice and Bob (QBER = 1-fidelity). This fidelity was
given in equation 4.17:

FAB =
1 + sin(α)

2
(6.19)

We can demonstrate this expression in the used formalism. We will use the formula 4.9
to calculate the fidelity. In this equation, Ψρ is the pure state owned by Alice while σ is
the density matrix of the mixed state obtained by Bob after the cloning done by Eve.

We already have the state owned by Alice which is presented in equation 6.6. We also
have the density matrix of Bob and Eve in the equation 6.8. From this density matrix,
it is possible to find the density matrix of Bob by doing a partial trace as expressed in
chapter 1:

ρB = TrE(ρBE) =
1

2

(
1 + cos2(α) sin(α)e−iθ

sin(α)eiθ sin2(α)

)
(6.20)

To make the calculation, we will write the state of Alice under a vectorial form:

|ΨA〉 =
1√
2

(
e−i

θ
2

ei
θ
2

)
(6.21)

To calculate the fidelity, we will also need the transpose-conjugate of this state:

〈ΨA| =
1√
2

(
ei
θ
2 e−i

θ
2

)
(6.22)
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The fidelity is then given by:

FAB = 〈ΨA| ρB |ΨA〉

=
1√
2

(
ei
θ
2 e−i

θ
2

)
.
1

2

(
1 + cos2(α) sin(α)e−iθ

sin(α)eiθ sin2(α)

)
.

1√
2

(
e−i

θ
2

ei
θ
2

)

=
1 + sin(α)

2

(6.23)

We retrieved the theoretical fidelity that was expected.
Now, we have everything to trace the same graph as the one presented on the figure

3.5 for BB84. Moreover, here, by simply changing the parameters, we can study the four
protocols.

6.4.2 Graphs and analysis

Analysis of BB84 and comparison with the theory Before studying the new pro-
tocols, a verification can be done by comparing the theoretical graph for BB84 (presented
in figure 3.5) with the one obtained by using the equation developed in the previous
section. The graph obtained is presented in figure 6.5.
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Figure 6.5 – Mutual information between Alice and Bob or Eve as a function of the QBER.

This graph shows a limit of security which is around 15 % like it was expected with
the theoretical curve. This graph can be compared with the theoretical one of the figure
3.5. By doing this comparison, it appears that the two curves are exactly the same which
proves that the formalism used to describe the protocol is coherent with the previous
results.

Analysis of the joint probability An analysis that can be done to observe what
really happens when the angle of the cloning machine is changed is the analysis of the
joint probability. We have the probability in the equation 6.15. As explained before, the
joint probability between Alice, Bob and Eve is obtained by multiplying the probability
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of Alice to send one state with the conditional probability that was obtained before. For
BB84, this probability is equal to 1

2
:

pθa,θb,θe =
1

2
pθb,θe (6.24)

From this, the joint probability between Alice and Bob is found by summing on the
angle of Eve and the one between Alice and Eve by summing on the angle of Bob.

If we fix the angle of the state sent by Alice, we can then represent the probability
for Bob or Eve to measure a certain angle. By doing this, we can see the change between
the probability when we pass from an extreme angle (0◦) of the cloning machine to the
other extreme (90◦). We already know that the fidelity between Alice and Bob is equal
to 1+sin(α)

2
. When the angle of the cloning machine is equal to 90◦, the fidelity of Bob is

thus maximum while it is minimal when the angle is 0◦. For Eve, it is the reverse. Here,
we trace the probability for Bob and Eve to measure a certain angle. We trace it if Alice
sends a state |0〉 for the two extreme angles of the cloning machine. It is presented on the
figure 6.6.
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Figure 6.6 – Probability for Bob an Eve to obtain a certain angle if Alice sent the state
|0〉 corresponding to an angle 0◦. On the left: angle of the cloning machine equal to 0◦.
On the right: angle of the cloning machine equal to 90◦.

On these two graphs, the result that appears is exactly what was expected: for one
extreme angle of the cloning machine (on the left), Eve obtains a good clone. Indeed,
she has a biggest probability to find the good angle (the one sent by Alice) than any
other angle while Bob can find any angle with the same probability. Bob has then no
information on the state of Alice. For the other extreme angle, it is the reverse. It also
appears that the two graphs are exactly the same with the role of Bob and Eve reversed.

One can wonder how does the probability evolve between the two extreme angles of
the cloning machine. This evolution is presented on the scheme 6.7. This figure represents
the probability of Bob to measure the different angles in the case where Alice sent the
state |0〉. The different lines correspond to different angles of the cloning machine.
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Figure 6.7 – Probability for Bob to measure the angles as a function of the angle of the
cloning machine if Alice sent the state |0〉.

The two extreme lines were already visible on the graphs presented before. Between
them, we can see the evolution of the probability.

Comparison of the four protocols The objective is to compare the four protocols
proposed in order to see if one of them could be better than BB84. Two features are
particularly observed. The first one is the QBER at which the two mutual information
are the same. This is the limit of the security of the protocol. If the QBER is bigger
than this one, no private communication can be established between Alice and Bob. The
expectation would be to find a protocol that has a limit which is bigger than the one of
BB84.

The second element that must be observed is the bit rate which is the difference
between the two mutual information. The objective is once again to obtain a rate which
is bigger than the one of BB84.

In order to be in the good conditions to compare the different graphs, we need to
divide the mutual information by two in the case of BB84. Indeed, we only studied one
basis over the two as it is symmetric. However, when taking into account the two bases,
we must not forget that there is the stage of bases reconciliation where Alice and Bob
throw their data away if they did not use the same basis.

We will then divide the mutual information by two for BB84. The four graphs obtained
for the four protocols are presented on figure 6.8.

At first sight, these graphs may seem identical. However, we can see that the ordinates
at the origin are different. For BB84 and the analogue of the no basis-switching protocol,
its value is equal to 0,5 while for the two others it is 0,4. Moreover, if we superimpose the
curves, we can see that the ones for BB84 and the discrete no basis-switching protocol
are exactly the same and the two others are also equal. This has a consequence on the bit
rate; they will be smaller for the analogue of Grosshans-Grangier and the noise-tolerant
protocol than for BB84 and the discrete no basis-switching. It also appears that the
QBER for which the two mutual information are equal is the same for all the protocols.
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Figure 6.8 – Representation of the mutual information and the bit rate for the four
protocols in direct reconciliation.

6.5 Conclusion
In this chapter, we developed three new protocols and BB84. First, we have described all
the stages of the protocol. Then these stages were formulated in term of states, POVM,
cloning machine... in order to calculate the joint probability of the measurement for
Bob and Eve conditional to the input of Alice. With this probability, it was possible to
calculate the mutual information in order to determine if the new protocols can reach a
higher security bound or a higher bit rate than in BB84. By doing the calculations, we
can see that none of the new protocols presents any advantage with respect to BB84 in
the case of direct reconciliation. However, the discrete no basis-switching protocol did
show exactly the same curves and thus characteristics as BB84.
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Security of the four canonical protocols
supplemented with reverse
reconciliation

In the previous chapter, we studied four protocols for which we defined the states sent by
Alice, the measurements done by Bob and Eve but also the action of Eve on the quantum
channel. However, everything was studied in the case of direct reconciliation; the case
where the final key is built from the bits possessed by Alice.

Now, we will analyse the other case: the reverse reconciliation. This means that the
key will be built from the bits obtained by Bob. This will mainly change the attack of
Eve. Indeed, before, she was trying to obtain data about the state of Alice. Now, she
would like to possess data about the state of Bob. To do that, she will use another cloning
machine that must be defined. The measurements done in the different protocols will not
change (they will still be described by POVMs whose elements will depend on angles).

In order to study the protocols with reverse reconciliation, this chapter will be divided
in two main parts: in the first one, we present the cloning machine that will be used by
Eve while in the second, we trace the same kind of graphs as for direct reconciliation in
order to compare the efficiency.

7.1 Cloning machine and protocol

7.1.1 Study of the cloning machine used by Eve

Eve wants to have a state which is correlated to the one of Bob. Her objective is then
to get entangled with Bob. To obtain this, an idea is to use the reverse of the cloning
machine used in the case of direct reconciliation. Indeed, we remember the two extreme
cases of it: if the cloning angle was 0◦, Bob did not receive any information and Eve did
receive good information about the state of Alice. In the other extreme case (90◦), it
was the reverse. Such situations are presented in the figure 7.1 with the equation of the
cloning machine corresponding to the two cases.

In the case of reverse reconciliation, these two extreme cases musts change as Eve wants
to be linked to Bob and not to Alice. These new desired extreme cases are presented in
figure 7.2.

It appears that the two cases look similar but in the reverse way. One can then imagine
a protocol in which Alice and Eve send an EPR state to the cloning machine. The cloning
machine will then send one of the two states to Bob or a mix of them as a function of
the cloning angle. This is the same idea as the one presented in the continuous case for
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Figure 7.1 – Extreme situations of the cloning machine like it was used for direct recon-
ciliation.

Figure 7.2 – Extreme situations of the cloning machine wanted for the reverse reconcilia-
tion.

the analysis of security. Indeed, as mentioned in chapter 3, with continuous variables,
lots of analysis are done by imagining that Alice sends an EPR state and then makes
a measurement on it. This is strictly equivalent to the case where she prepares a state
that she will then send to Bob. These two visions are totally equivalent due to the
entanglement. The scheme of this idea to make a protocol is presented in the figure 7.3.
In this figure, we can see the action of the three actors:

• Alice measures one of the states of an EPR pair. This is exactly equivalent to
what was done in direct reconciliation where she prepared a state and sent it to
Bob. Indeed, if the EPR pair is the Bell’s state |Φ+〉, when Alice will perform her
measurement on the first qubit of this state, she will then know in which state the
second qubit (the one sent to Bob) is. This is the same as if she prepares a state
that she sends to Bob.

• Bob performs a measurement.

• Eve measures one of the qubit of an EPR pair and she applies the cloning machine.
The second qubit that comes out of the cloning machine is thrown away in this idea
of a protocol. However, we will see that throwing away this qubit is not a good idea.
If the fourth qubit is thrown away the cloning machine will not do exactly what we
want. The scheme of the protocol will be a little bit modified for that.

We see that the actions of Alice and Bob did not change with respect to direct recon-
ciliation. There is just the action of Eve that changes as she wants information on Bob’s
state and no more on Alice’s state.
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Figure 7.3 – Idea of a protocol for reverse reconciliation. The elements named EPR
generates a pair of entangled states. Each time one state goes to the left while the second
goes to the right. It will be seen in the following that this scheme does not exactly
corresponds to what we want and that it must be modified.

In order to describe mathematically the different protocols, we need to know the action
of the cloning machine which corresponds to a unitary operator. As mentioned before,
the cloning machine must do the reverse operation compared to the previous one. If we
have the representation of the operator under a matrix form, we can take the inverse of it
and it will give us the unitary matrix that we need to describe the reverse reconciliation
protocol. As the operator is unitary, its adjoint is equal to its inverse.

In order to find the matrix corresponding to the cloning machine, we will use the
information that we had about the phase-covariant cloning machine. However, in the
definition of the cloning machine that is usually given, there is only the transformation
for two different input states. Indeed, we can recall this definition:{

|i〉 |i〉 → |i〉 |i〉
|−i〉 |i〉 → cos(α) |i〉 |−i〉+ sin(α) |−i〉 |i〉

(7.1)

The second input qubit is always |i〉 as it is an ancilla that is injected in the cloning
machine because two qubits are needed at the output. However, if the second bit which
is injected is different than |i〉, it is necessary to define the output states.

This can be done by trying to have a symmetric effect on the qubits. In equation 7.1,
if the first bit is equal to |−i〉 while the second one is equal to |i〉, we obtain a combination
of |i〉 |−i〉 and |−i〉 |i〉 at the output where the coefficients are given by the cosine and the
sine of the angle of the cloning machine.

If we reverse the two input bits, we want something which is similar. This leads to:

|i〉 |−i〉 → − cos(α) |−i〉 |i〉+ sin(α) |i〉 |−i〉 (7.2)

The "-" is there because then, we find something which has the form of a rotation
and it will be useful to obtain a unitary matrix. However, the sign "-" will disturb
the calculation as the sign before the cosine should have been different in order to have

56



7.1. CLONING MACHINE AND PROTOCOL Chapter 7

something which is totally symmetric. Finally, for the two input qubits equal to |−i〉, we
must complete the matrix so that it is unitary:

U.U † = 1 (7.3)

The matrix of the cloning operation used in the direct reconciliation scheme is then:

U =


1 0 0 0
0 sin(α) cos(α) 0
0 − cos(α) sin(α) 0
0 0 0 1

 (7.4)

To find the cloning machine for the reverse reconciliation, we take the adjoint:

Ucloning = U † =


1 0 0 0
0 sin(α) − cos(α) 0
0 cos(α) sin(α) 0
0 0 0 1

 (7.5)

This matrix correspond to the transformations:
|i〉 |i〉 → |i〉 |i〉
|i〉 |−i〉 → cos(α) |−i〉 |i〉+ sin(α) |i〉 |−i〉
|−i〉 |i〉 → − cos(α) |i〉 |−i〉+ sin(α) |−i〉 |i〉
|−i〉 |−i〉 → |−i〉 |−i〉

(7.6)

7.1.2 Calculation of the joint probability of measurements

We can study the protocol. The various calculations were also done with Mathematica.
The code can be found in annex A. Before studying the measurements, we must find the
density matrix for the four qubits after the application of the cloning machine: the one
kept by Alice from the first EPR pair, the one kept by Eve from the second EPR pair,
the one sent to Bob after the cloning machine and finally the one that will be thrown
away. To do so, the EPR states must be reformulated in the correct basis by using the
equations found in the previous chapter (6.5).

The input state before the cloning machine is thus:

( |0〉 |0〉+ |1〉 |1〉√
2

)
AA′

( |0〉 |0〉+ |1〉 |1〉√
2

)
EE′

=
( |i〉 |−i〉+ |−i〉 |i〉√

2

)
AA′

( |i〉 |−i〉+ |−i〉 |i〉√
2

)
EE′

(7.7)
In this equation, A and A’ correspond to the two qubits of the first EPR pair. The qubit
A is the one kept by Alice while the A’ is one of the two inputs of the cloner. For EE’, it
is exactly the same. By applying the unitary transformation corresponding to the cloning
on the qubits A’ and E’, we obtain finally the density matrix describing the state of the
four qubits:

ρAEBW (7.8)

where W designates the qubit that we neglect. Before using it for the measurements, the
spy must do something in order to take the minus sign into account.
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The problem caused by this sign can be better understood when looking at the extreme
case where the cloning angle is equal to 0◦. We then rewrite the action of the cloning
machine: 

|i〉 |i〉 → |i〉 |i〉
|i〉 |−i〉 → |−i〉 |i〉
|−i〉 |i〉 → − |i〉 |−i〉
|−i〉 |−i〉 → |−i〉 |−i〉

(7.9)

The state coming from the EPR pair of Eve (the second input) is indeed transferred
to Bob but there is this minus sign. This is due to the fact that the state which is thrown
away is not always in the state |i〉 like it should be. Indeed, we took the inverse of the
cloning machine considered before. In its definition, there was only the effect on two states
that was enunciated and for each of these states, the ancilla qubit was in the state |i〉.
We have added to that the effect of the cloning machine on the two other possible inputs
for which the ancilla qubit is in the state |−i〉. This causes the sign minus to appear. In
order to modify the state to get rid of this minus sign, Eve has then to do a controlled
sign flip as a function of the fourth state (the one that we neglected before and that was
thrown away). If this state is in the state |−i〉, we have to do a sign flip on Eve’s bit.
This conditional sign flip will be done by calculating the operator and then applying it
on our state:

ρmodifiedAEBW = σzcondρAEBWσzcond (7.10)

We know that a sign flip corresponds to the third Pauli’s matrix:

σz =

(
1 0
0 −1

)
(7.11)

This leads to the definition of the operator that we must apply:

σzcond = 1A ⊗ σzE ⊗ 1B ⊗ |−i〉 〈−i|W + 1A ⊗ 1E ⊗ 1B ⊗ |−i〉 〈−i|W (7.12)

To do this transformation, the value of the fourth qubit that was neglected is impor-
tant, the scheme of the protocol is thus different. The new one is presented in figure 7.4.
After using the fourth qubit to make the sign flip, it becomes again useless and is traced
out.

From the new density matrix obtained after the sign flip, we can find the one specific
to Alice, Eve and Bob by doing a partial trace on the fourth qubit.

ρAEB = TrW (ρmodifiedAEBW ) (7.13)

With that, we can find the joint probability for Alice, Bob and Eve to measure certain
angles exactly like we did for direct reconciliation:

p(θa, θe, θb) = Tr(ρAEB.Mθa ⊗Mθe ⊗Mθb) (7.14)

The operators Mθi are the elements of POVM used by Alice, Bob and Eve to perform
their measurements. The index "i" stands for the different players: "a" for Alice, "b"
for Bob and "e" for Eve. They are exactly identical to the ones that were used in the
previous chapter:

ci
2

(
1 e−iθi

eiθi 1

)
(7.15)
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Figure 7.4 – Idea of a protocol for reverse reconciliation including the sign flip to correct
the state of Eve.

The output of this calculation is:

p(θa, θe, θb) =
1

8
cθacθbcθe(cos(α)(sin(α) cos(θa − θe)+cos(θb − θe))+sin(α) cos(θa − θb)+1)

(7.16)
With this joint probability, we can calculate all the probabilities and the entropies

needed to compute the mutual information that will be used for the proof of security. One
can already notice that this expression is quite similar to the expression found for the direct
reconciliation scheme: the only differences are the coefficient before the expression and
the fact that the angles of Alice and Bob are exchanged. The difference in the coefficient is
due to the fact that here we have a joint probability while we had a conditional probability
in the direct case. However, when replacing the values of the different constants ci and
multiplying by the probability for the state sent by Alice in the first case to obtain the
joint probability, it appears that the two expressions become exactly identical except for
the exchange of the angle of Alice and Bob.

7.1.3 Fidelity between Alice and Bob

Before being able to analyse properly the protocols in the reverse reconciliation scheme,
we need to calculate the fidelity between Alice and Bob that will be used to calculate the
QBER. The code to calculate the fidelity can be found in annex A.

To do that, we start by calculating the density matrix for Alice and Bob: ρAB =
TrE(ρAEB). From this, we will obtain the fidelity using the equation 4.9 that gives the
fidelity between a pure state and a density matrix. To calculate this fidelity, we will
imagine that Bob has measured a certain pure state on the vertical plane considered until
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now. This state can be formulated in the basis {|i〉 ; |−i〉}:

|ΨB〉 =
1√
2

(
e−i

β
2

ei
β
2

)
(7.17)

We can find the projector on this state: ΠB = |ΨB〉 〈ΨB|
It allows us to calculate the density matrix of Alice and Bob knowing that he has

measured this state:

ρAB|B = ρAB.(1A ⊗ ΠB) (7.18)

From this, the density matrix of A knowing the state of B can be found by making a
partial trace and a normalization:

ρA|B =
TrB(ρAB|B)

Tr(ρAB|B)
(7.19)

By writing the equation of the fidelity under another form, we will then be able to
calculate it:

F (A,B) = 〈ΨB| ρA|B |ΨB〉 (7.20)

=
∑
n

〈ΨB|n〉 〈n| ρA|B |ΨB〉 (7.21)

=
∑
n

〈n| ρA|B |ΨB〉 〈ΨB|n〉 (7.22)

= Tr(ρA|B |ΨB〉 〈ΨB|) = Tr(ρA|B.ΠB) (7.23)
(7.24)

By making this calculation, we obtain the fidelity 1+sin(α)
2

.
The fidelity is independent of the state measured by Bob which is coherent with the

fact that we used an inverted phase covariant cloner. Once again, the result is the same
as the one with direct reconciliation. With the fidelity and the joint probability, we have
all the elements needed to trace the mutual information and to study the four protocols
in order to compare them with the direct reconciliation protocols.

7.2 Analysis
Like for direct reconciliation, the mutual information was obtained with Matlab by cal-
culating the different probabilities and entropies by taking into account different values
for the different protocols. The code can be found in annex A. The values varying from
one protocol to the other are the constant before the elements of the POVM cθi and also
the angles of the elements. For these angles, the same values as for direct reconciliation
were taken. The results are presented in the figure 7.5.

These graphs are exactly the same as the ones obtained for direct reconciliation. This
can be explained because as it was mentioned before, the expression of the probabilities
for direct reconciliation 6.15 and for reverse reconciliation 7.16 are identical if we exchange
the angles of Alice and Bob which is logical when we observe the protocol: the roles of
Alice and Bob are exchanged. This explains why the curves are exactly the same.

However, this result is quite unexpected. Indeed, the idea to analyse the different
protocols with direct and reverse reconciliation came from the continuous variables. In
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Figure 7.5 – Representation of the mutual information and the bit rate for the four
protocols in reverse reconciliation.

these protocols, there was an improvement in reverse reconciliation. The intuition was
that such improvements would also be found for discrete variables. Indeed, the work done
in the two last chapters was to look for the analogue version of the continuous protocol.
We thus expected that the results would follow the same improvements as in continuous
variables protocols. In the next chapter, we will try to find some tracks that could explain
the difference between discrete and continuous quantum key distribution.

7.3 Conclusion
In this chapter, we searched for the analogue of the protocols with continuous variables
that used reverse reconciliation. In order to define the protocols, we had to study the
cloning machine that Eve would use to obtain information on Bob’s state rather than on
Alice’s state. Defining this machine required the application of a controlled sign-flip in
order to have the expected result for the cloning machine. Thereafter, the probability of
measuring different angles could be found easily from a calculation similar to the one of
last chapter. After calculating this probability, we determined the fidelity between Alice
and Bob. With all these elements, we could analyse the different protocols, that turned
out not to give improvements with respect to the direct reconciliation.
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Discussion and conclusion

The objective of this research was to try to find new protocols with discrete variables that
could maybe present better properties than BB84. The two main properties that were
observed are the QBER above which it is impossible to obtain a secure communication and
the bit rate that can be obtained for the different QBER. The intuition was that better
results would be obtained as is the case for continuous variables if reverse reconciliation
is used.

This report was divided in two parts. The first part was focused on the definition
of different tools as well as the presentation of the state of the art about quantum key
distribution. The first chapter was dedicated to the fundamental notions of quantum me-
chanics with discrete variables among which the density matrix, the POVM,... Thereafter,
the second chapter dealt with the Shannon information theory. In the framework of this
thesis, this theory is very important as when the different measurements were performed,
the end of the protocol became classical. To be sure that Alice and Bob could exchange
a secret message, we had to calculate the mutual information which is a central element
of Shannon’s theory. The third chapter focused on cryptography protocols and a special
part was dedicated to BB84 as it is one of the protocols that would be described in the
second part of the thesis. The last chapter was about cloning machines. We presented
the no-cloning theorem which states that any quantum state cannot be cloned perfectly.
Even if it is impossible to clone perfectly a state, it is possible to make imperfect cloning.
These imperfect cloning machines were also presented in that chapter.

The second part presented the new contributions in this thesis. It was divided in two
main chapters. In the first one, the objective was to define the protocols. This has led us
to the definition of POVM but also to a change of basis in the cloning machine in order to
fit with the wanted scheme. Thereafter, the probabilities of different measurements were
computed with the objective to calculate the security bounds. Once these were found,
the coherence of the calculations was verified by comparing the results to the ones already
known for BB84. Thereafter, the results were studied for the three new protocols but none
has shown better properties than BB84. Finally, the reverse reconciliation was studied in
the last chapter. Here again, no improvement with respect with direct reconciliation was
observed, in contrast with our expectation.

Let us conclude by discussing the possible origin for these discrepancies between
discrete-variable and continuous-variable protocols, especially the fact that reverse rec-
onciliation does not give better results than direct reconciliation. We can see three main
differences between discrete- and continuous-variable protocols that could explain our
unexpected results, but a more detailed study should be done in order to confirm the
mechanism.

The first difference is related to the different status of noise and losses. Indeed, in
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continuous-variables protocols, noise is always present. If a squeezed or coherent state is
sent by Alice, this state always exhibits quantum noise on its two quadratures at Bob’s
side, even if everything was perfect. In contrast, with a discrete-variable protocol, there
is no noise on the detector’s side when the line is perfect. The line losses simply appear as
added noise in discrete-variable protocols (due to the dark counts of the detectors), but
otherwise they decrease the key rate without giving an advantage to Bob. In contrats,
in continuous-variable protocols, line losses have a very detrimental affect as the fraction
of the input beam that does not reach Bob could potentially be exploited by Eve. This
is why in direct reconciliation, the maximum tolerable loss is only 3 dB in continuous-
variable protocols. Reverse reconciliation was specifically devised to allow for higher losses
in such protocols. We believe that a way of finding the same advantage with discrete-
variable protocols could be to consider that Bob measures a ternary observable (where,
in addition to 0 and 1, the third possible outcome would correspond to when the detector
does not click). If this was taken into account in our analysis of discrete-variable protocols,
reverse reconciliation might potentially lead to some advantage.

A second difference between discrete- and continuous-variable protocols is connected
with the measurement step, in particular with heterodyne measurements in which the two
quadratures are measured simultaneously. In our analogous discrete version, heterodyne
measurement is described by a POVM measurement with four elements (associated with
two output bits). However, given its structure, such a POVM happens to be realizable as
a random choice between two bases followed by a projective measurement discriminating
the two states of the chosen basis. This is qualitatively very different from a heterodyne
measurement, which cannot be realized as a random basis choice followed by homodyne
measurement.

A third difference is related to the fact that there is no maximally-entangled state for
continuous variables (this would imply a divergence of the mean photon number). Thus,
in continuous-variable protocols, the squeezed states sent by Alice over the channel to Bob
always have a finite squeezing. This means that their variance is not equal to zero. Even
in the entanglement-based equivalent protocol, Alice’s homodyne measurement (built on
a resolution of the identity with infinitely squeezed states) gives rise to finite squeezed
states that are sent over the channel to Bob. However, with his homodyne measurement,
Bob projects onto an infinitely squeezed states (built on a resolution of the identity).
Therefore, when reversing the time evolution as we do in reverse reconciliation, the states
that are back-propagated (i.e., Bob’s projected states) have infinite squeezing, while the
states sent by Alice in direct reconciliation have finite squeezing. Such a difference between
direct and reverse does not exist in discrete-variable protocols, which is perhaps why we
did not observe any difference between direct and reverse reconciliation.

As a conclusion, we have established that all the discrete-variable protocols that we
have studied have the same efficiency as BB84, or a even lower one. In this sense, BB84
should then be viewed as the best protocol in this family. This conclusion should, however,
be tempered by that it is conditional on the specific model we have studied and on the
hypotheses we have made (e.g. restricting to cloning-based individual attacks). Notably,
if losses had been incorporated in our discrete-variable protocols, it remains possible that
reverse reconciliation may prove useful as with continuous-variable protocols.
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Appendix A

Codes for the numerical simulations

In this annex, all the codes that were used in order to obtain the graphs are presented.
The annex is divided in two sections and each section correspond to the analysis of the
protocols with either direct or reverse reconciliation.

A.1 Protocols with direct reconciliation
The codes presented in this section are the ones that were used to make the different
calculations of the chapter 6.

A.1.1 Calculation of the probability with Mathematica

The first step of these calculations was the calculation of the probability for Bob and Eve
to measure certain angles. The calculations were done using Mathematica:
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In[1]:= (* Density matrix for Bob and Eve *)

In[2]:= m =

1

2

1 Cos[alpha] Exp[-I theta] Sin [alpha] Exp[-I theta] 0
Cos[alpha] Exp[I theta] (Cos[alpha])^2 Cos[alpha] Sin[alpha] 0
Sin [alpha] Exp[I theta] Cos[alpha] Sin[alpha] (Sin[alpha])^2 0

0 0 0 0

Out[2]= 
1

2
,
1

2
- theta Cos[alpha],

1

2
- theta Sin[alpha], 0,


1

2
 theta Cos[alpha],

Cos[alpha]2

2
,
1

2
Cos[alpha] Sin[alpha], 0,


1

2
 theta Sin[alpha],

1

2
Cos[alpha] Sin[alpha],

Sin[alpha]2

2
, 0, {0, 0, 0, 0}

In[3]:= (* Measurement operators *)

In[4]:= Mb =
cb

2

1 Exp[-I thetab]
Exp[I thetab] 1

Out[4]= 
cb

2
,
1

2
cb - thetab, 

1

2
cb  thetab,

cb

2


In[5]:= Me =
ce

2

1 Exp[-I thetae]
Exp[I thetae] 1

Out[5]= 
ce

2
,
1

2
ce - thetae, 

1

2
ce  thetae,

ce

2


In[6]:= Mtot =
produit Kronecker
KroneckerProduct[Mb, Me]

Out[6]= 
cb ce

4
,
1

4
cb ce - thetae,

1

4
cb ce - thetab,

1

4
cb ce - thetab- thetae,


1

4
cb ce  thetae,

cb ce

4
,
1

4
cb ce - thetab+ thetae,

1

4
cb ce - thetab,


1

4
cb ce  thetab,

1

4
cb ce  thetab- thetae,

cb ce

4
,
1

4
cb ce - thetae,


1

4
cb ce  thetab+ thetae,

1

4
cb ce  thetab,

1

4
cb ce  thetae,

cb ce

4


In[7]:= (* Calculation of the probability *)
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In[8]:= final =
simplifie
Simplify[ m.Mtot]

Out[8]= 
1

8
cb ce - theta  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - (theta+thetae)  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - (theta+thetab)  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - (theta+thetab+thetae)  theta +  thetae Cos[alpha] +  thetab Sin[alpha],


1

8
cb ce Cos[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - thetae Cos[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - thetab Cos[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - (thetab+thetae) Cos[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],


1

8
cb ce Sin[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - thetae Sin[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - thetab Sin[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha],

1

8
cb ce - (thetab+thetae) Sin[alpha]

 theta +  thetae Cos[alpha] +  thetab Sin[alpha], {0, 0, 0, 0}

In[9]:=

probability =
trace tr
Tr[final]

Out[9]=

1

8
cb ce - theta  theta +  thetae Cos[alpha] +  thetab Sin[alpha] +

1

8
cb ce - thetae Cos[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha] +

1

8
cb ce - thetab Sin[alpha]  theta +  thetae Cos[alpha] +  thetab Sin[alpha]

In[10]:=

simplifie complètement
FullSimplify[probability]

Out[10]=

1

8
cb ce 1 + Cos[alpha]2 + 2 Cos[theta - thetab] Sin[alpha] + Sin[alpha]2 +

2 Cos[alpha] (Cos[theta - thetae] + Cos[thetab - thetae] Sin[alpha])

2     direct.nb
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A.1.2 Analysis of the different protocols

Once the probability was obtained, the different graphs showing the mutual information
were obtained using a code in Matlab. They were used to analyse the security of all the
protocols and to compare them to BB84.

1 % Condi t iona l p r obab i l i t y f o r the measure o f the ang l e s theta_b
and theta_e by Bob and Eve i f A l i c e sent the ang le theta_a

2

3 f = @(c_b , c_e , theta_a , alpha_cloner , theta_b , theta_e ) (1/4) ∗c_b∗
c_e∗(1+ cos ( alpha_cloner ) .∗ cos ( theta_a − theta_e )+cos ( theta_a
− theta_b ) .∗ s i n ( alpha_cloner )+cos ( alpha_cloner ) .∗ cos (

theta_b − theta_e ) .∗ s i n ( alpha_cloner ) ) ;
4

5

6 % Se l e c t i o n o f the p ro to co l
7 BB84 = true ;
8 no i s e = f a l s e ;
9 au s t r a l i a n = f a l s e ;

10 GrosshansGrangier = f a l s e ;
11

12 % Parameters depending on the p ro to co l
13 i f ( no i s e )
14 AngleAl ice = pi /2 : p i : 3∗ pi /2 ;
15 AngleBob = pi /4 : p i /2 :7∗ pi /4 ;
16 AngleEve = pi /4 : p i /2 :7∗ pi /4 ;
17 cBob = 1/2 ;
18 cEve = 1/2 ;
19 p_Alice = 1/2 ;
20 end
21 i f (BB84)
22 AngleAl ice = 0 : p i : p i ;
23 AngleBob = 0 : p i : p i ;
24 AngleEve = 0 : p i : p i ;
25 cBob = 1 ;
26 cEve = 1 ;
27 p_Alice = 1/2 ;
28 end
29 i f ( a u s t r a l i a n )
30 AngleAl ice = pi /4 : p i /2 :7∗ pi /4 ;
31 AngleBob = pi /4 : p i /2 :7∗ pi /4 ;
32 AngleEve = pi /4 : p i /2 :7∗ pi /4 ;
33 cBob = 1/2 ;
34 cEve = 1/2 ;
35 p_Alice = 1/4 ;
36 end
37 i f ( GrosshansGrangier )
38 AngleAl ice = pi /4 : p i /2 :7∗ pi /4 ;
39 AngleBob = pi /2 : p i : 3∗ pi /2 ;
40 AngleEve = pi /2 : p i : 3∗ pi /2 ;
41 cBob = 1 ;
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42 cEve = 1 ;
43 p_Alice = 1/4 ;
44 end
45

46

47 % Joint p r obab i l i t y
48

49 h = @( alpha , Al ice , Bob , Eve ) f ( cBob , cEve , Al ice , alpha , Bob , Eve ) ;
50 j o in tp roba = @(a , Al ice , Bob , Eve ) p_Alice∗h(a , Al ice , Bob , Eve ) ;
51

52 % Calcu l a t i on o f the d i f f e r e n t p r o b a b i l i t i e s
53 proba_a_and_b = @( alpha , Al ice , Bob) 0 ;
54 f o r i = 1 : l ength (AngleEve )
55 proba_a_and_b = @( alpha , Al ice , Bob) (proba_a_and_b( alpha ,

Al ice , Bob)+jo in tp roba ( alpha , Al ice , Bob , AngleEve ( i ) ) ) ;
56 end
57 proba_a_and_e = @( alpha , Al ice , Eve ) 0 ;
58 f o r j = 1 : l ength (AngleBob )
59 proba_a_and_e = @( alpha , Al ice , Eve ) (proba_a_and_e( alpha ,

Al ice , Eve )+jo in tp roba ( alpha , Al ice , AngleBob ( j ) ,Eve ) ) ;
60 end
61 proba_a = @( alpha , A l i c e ) 0 ;
62 f o r l = 1 : l ength (AngleBob )
63 proba_a = @( alpha , A l i c e ) ( proba_a ( alpha , A l i c e )+

proba_a_and_b( alpha , Al ice , AngleBob ( l ) ) ) ;
64 end
65 proba_b = @( alpha , Bob) 0 ;
66 f o r m = 1 : l ength ( AngleAl ice )
67 proba_b = @( alpha , Bob) ( proba_b ( alpha , Bob)+proba_a_and_b(

alpha , AngleAl ice (m) ,Bob) ) ;
68 end
69 proba_e = @( alpha , Eve ) 0 ;
70 f o r n = 1 : l ength ( AngleAl ice )
71 proba_e = @( alpha , Eve ) ( proba_e ( alpha , Eve )+proba_a_and_e(

alpha , AngleAl ice (n) ,Eve ) ) ;
72 end
73

74 % Calcu l a t i on o f the en t r op i e s
75 H_A = @( alpha ) 0 ;
76 f o r o = 1 : l ength ( AngleAl ice )
77 H_A = @( alpha ) (H_A( alpha )−proba_a ( alpha , AngleAl ice ( o ) ) .∗

l og2 ( proba_a ( alpha , AngleAl ice ( o ) ) ) ) ;
78 end
79 H_B = @( alpha ) 0 ;
80 f o r p = 1 : l ength (AngleBob )
81 H_B = @( alpha ) (H_B( alpha )−proba_b ( alpha , AngleBob (p) ) .∗ l og2 (

proba_b ( alpha , AngleBob (p) ) ) ) ;
82 end
83 H_E = @( alpha ) 0 ;
84 f o r q = 1 : l ength (AngleEve )
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85 H_E = @( alpha ) (H_E( alpha )−proba_e ( alpha , AngleEve (q ) ) .∗ l og2 (
proba_e ( alpha , AngleEve (q ) ) ) ) ;

86 end
87 H_AB = @( alpha ) 0 ;
88 f o r r = 1 : l ength (AngleBob )
89 f o r s = 1 : l ength ( AngleAl ice )
90 H_AB = @( alpha ) (H_AB( alpha )−proba_a_and_b( alpha ,

AngleAl ice ( s ) , AngleBob ( r ) ) .∗ l og2 (proba_a_and_b( alpha ,
AngleAl ice ( s ) , AngleBob ( r ) ) ) ) ;

91 end
92 end
93 H_AE = @( alpha ) 0 ;
94 f o r t = 1 : l ength (AngleEve )
95 f o r u = 1 : l ength ( AngleAl ice )
96 H_AE = @( alpha ) (H_AE( alpha )−proba_a_and_e( alpha ,

AngleAl ice (u) , AngleEve ( t ) ) .∗ l og2 (proba_a_and_e( alpha ,
AngleAl ice (u) , AngleEve ( t ) ) ) ) ;

97 end
98 end
99

100 % Calcu l a t i on o f the mutual in fo rmat ion
101 I_AB = @( alpha ) (H_A( alpha )+H_B( alpha )−H_AB( alpha ) ) ;
102 I_AE = @( alpha ) (H_A( alpha )+H_E( alpha )−H_AE( alpha ) ) ;
103

104 % Plot
105 alpha = 0 : ( p i /200) : p i /2 ;
106 QBER = 1−((1/2)∗(1+ s i n ( alpha ) ) ) ;
107 y = r e a l (I_AB( alpha ) ) ;
108 z = r e a l (I_AE( alpha ) ) ;
109 p lo t (QBER, y/2 , ’b ’ )
110 hold on ;
111 p lo t (QBER, z /2 , ’ r ’ )
112 g r id on ; g r i d minor ;
113 p lo t (QBER,max(y−z , 0 ) /2 , ’ g ’ )
114 ax i s ( [ 0 0 . 5 0 0 . 5 ] )
115 x l ab e l ( ’QBER = 1− f i d e l i t y ’ )
116 y l ab e l ( ’Mutual in fo rmat ion ’ )
117 l egend ( ’I_A_B ’ , ’I_A_E ’ , ’ \Delta I = max(I_A_B−I_A_E, 0 ) ’ )
118

119

120 i f (BB84)
121 f i g u r e (2 )
122 % Theo r e t i c a l va lue s f o r BB84
123 t e s t = 1−(−QBER. ∗ ( log2 (QBER) ) − (1−QBER) . ∗ ( log2 ((1−QBER) ) ) ) ;
124 xBB = (1 +s in ( acos (−2.∗QBER + 1) ) ) /2 ;
125 IAEBB = 1 + xBB.∗ l og2 (xBB) +(1−xBB) .∗ l og2 (1−xBB) ;
126

127 % Plot o f the d i f f e r e n c e s imu la t i on / theory
128 p lo t (QBER, te s t−y , ’b ’ )
129 hold on ; g r i d on ;
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130 p lo t (QBER, IAEBB−z , ’ r ’ )
131 p lo t (QBER, z e ro s (1 , l ength (QBER) ) , ’ g ’ )
132 l egend ( ’ D i f f e r e n c e I_A_B with t h e o r e t i c a l I_A_B ’ , ’ D i f f e r e n c e

I_A_E with t h e o r e t i c a l I_A_E ’ )
133

134 % Theo r e t i c a l curves f o r BB84
135 f i g u r e (3 )
136 p lo t (QBER, te s t , ’ b ’ )
137 hold on ;
138 p lo t (QBER, IAEBB, ’ r ’ )
139 x l ab e l ( ’QBER = 1− f i d e l i t y ’ )
140 y l ab e l ( ’Mutual in fo rmat ion ’ )
141 l egend ( ’I_A_B ’ , ’I_A_E ’ )
142 end

A.1.3 Evolution of the probability

Finally, the different probabilities were analysed with another code in Matlab.

1 c l e a r a l l ; c l o s e a l l ;
2

3 % Condi t iona l p r obab i l i t y f o r the measure o f Bob and Eve as a
func t i on o f the s t a t e sent by Al i c e

4

5 f = @(c_b , c_e , theta_a , alpha , theta_b , theta_e ) (1/4) ∗c_b∗c_e∗(1+
cos ( alpha ) .∗ cos ( theta_a − theta_e )+cos ( theta_a − theta_b ) .∗
s i n ( alpha )+cos ( alpha ) .∗ cos ( theta_b − theta_e ) .∗ s i n ( alpha ) ) ;

6

7 % Parameters f o r BB84
8 AngleAl ice = 0 : p i : p i ;
9 AngleBob = 0 : p i : p i ;

10 AngleEve = 0 : p i : p i ;
11 cBob = 1 ;
12 cEve = 1 ;
13 p_a = 1/2 ;
14

15 % Joint p r obab i l i t y
16 h = @( alpha , Al ice , Bob , Eve ) f ( cBob , cEve , Al ice , alpha , Bob , Eve ) ;
17 j o in tp roba = @(a , Al ice , Bob , Eve )p_a∗h(a , Al ice , Bob , Eve ) ;
18

19

20 % Calcu l a t i on o f the d i f f e r e n t p r o b a b i l i t i e s
21 proba_a_and_b = @( alpha , Al ice , Bob) 0 ;
22 f o r i = 1 : l ength (AngleEve )
23 proba_a_and_b = @( alpha , Al ice , Bob) (proba_a_and_b( alpha ,

Al ice , Bob)+jo in tp roba ( alpha , Al ice , Bob , AngleEve ( i ) ) ) ;
24 end
25 proba_a_and_e = @( alpha , Al ice , Eve ) 0 ;
26 f o r j = 1 : l ength (AngleBob )
27 proba_a_and_e = @( alpha , Al ice , Eve ) (proba_a_and_e( alpha ,

Al ice , Eve )+jo in tp roba ( alpha , Al ice , AngleBob ( j ) ,Eve ) ) ;
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28 end
29

30 % State sent by Al i c e
31 Al i c e = 0 ;
32 Bob= 0 : p i /200:2∗ pi ;
33

34 % Graph f o r an ang le o f the c l on ing machine equal to 0
35 f i g u r e (1 )
36 po l a rpa t t e rn (proba_a_and_b(0 , Al ice , Bob) ) ;
37 hold on ;
38 po l a rpa t t e rn (proba_a_and_e (0 , Al ice , Bob) ) ;
39 l egend ( ’Bob ’ , ’Eve ’ )
40

41 % Graph f o r an ang le o f the c l on ing machine equal to p i /2
42 f i g u r e (2 )
43 po l a rpa t t e rn (proba_a_and_b( p i /2 , Al ice , Bob) , ’ EdgeColor ’ , ’ g ’ ) ;
44 hold on ;
45 po l a rpa t t e rn (proba_a_and_e( p i /2 , Al ice , Bob) ) ;
46 l egend ( ’Bob ’ , ’Eve ’ )
47

48 % Graph showing the evo lu t i on o f the p r obab i l i t y as a func t i on
o f the ang le o f the c l on ing machine

49 f i g u r e (3 )
50 po l a rpa t t e rn (proba_a_and_b(0 , Al ice , Bob) ) ;
51 hold on ;
52 po l a rpa t t e rn (proba_a_and_b( p i /10 , Al ice , Bob) ) ;
53 po l a rpa t t e rn (proba_a_and_b( p i /5 , Al ice , Bob) ) ;
54 po l a rpa t t e rn (proba_a_and_b(3∗ pi /10 , Al ice , Bob) ) ;
55 po l a rpa t t e rn (proba_a_and_b( p i /4 , Al ice , Bob) ) ;
56 po l a rpa t t e rn (proba_a_and_b(2∗ pi /5 , Al ice , Bob) ) ;
57 po l a rpa t t e rn (proba_a_and_b( p i /2 , Al ice , Bob) ) ;
58 l egend ( ’ 0 ’ , ’ p i /10 ’ , ’ p i /5 ’ , ’ 3∗ pi /10 ’ , ’ p i /4 ’ , ’ 2∗ pi /5 ’ , ’ p i /2 ’ )

A.2 Protocols with reverse reconciliation
The codes presented in this section are the ones that were used to make the different
calculations of the chapter 7.

A.2.1 Calculation of the probability with Mathematica and of
the fidelity between Alice and Bob

The first step of the calculation is to find the joint probability. In order to do that, it is
necessary to inverse the matrix of the cloning machine and to apply the controlled sign
flip on the bit of Eve. This is done in the following Mathematica code. Thereafter, the
fidelity between Alice and Bob is also calculated.
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In[1]:= (* Matrix of the cloning machine *)

In[2]:= U =

1 0 0 0

0 Sin[alpha] -Cos[alpha] 0
0 Cos[alpha] Sin[alpha] 0
0 0 0 1

Out[2]= {{1, 0, 0, 0}, {0, Sin[alpha], -Cos[alpha], 0},

{0, Cos[alpha], Sin[alpha], 0}, {0, 0, 0, 1}}

In[3]:= (* Adjoint of the matrix *)

In[4]:= Udag =
affine
Refine[

transposé conjugué
ConjugateTranspose[U], alpha ∈

nombres réels
Reals]

Out[4]= {{1, 0, 0, 0}, {0, Sin[alpha], Cos[alpha], 0},

{0, -Cos[alpha], Sin[alpha], 0}, {0, 0, 0, 1}}

In[5]:= (* Verification that it is unitary *)

In[6]:= Verification =
simplifie complètement
FullSimplify[U.Udag]

Out[6]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[7]:= (* Calculation of the state after the cloning machine *)

In[8]:= Input1 =

0
0
0
1

Output1 = U.Input1

Out[8]= {{0}, {0}, {0}, {1}}

Out[9]= {{0}, {0}, {0}, {1}}

In[10]:= Input2 =

0
0
1
0

Output2 = U.Input2

Out[10]= {{0}, {0}, {1}, {0}}

Out[11]= {{0}, {-Cos[alpha]}, {Sin[alpha]}, {0}}

In[12]:= Input3 =

0
1
0
0

Output3 = U.Input3

Out[12]= {{0}, {1}, {0}, {0}}

Out[13]= {{0}, {Sin[alpha]}, {Cos[alpha]}, {0}}
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In[14]:= Input4 =

1
0
0
0

Output4 = U.Input4

Out[14]= {{1}, {0}, {0}, {0}}

Out[15]= {{1}, {0}, {0}, {0}}

In[16]:= one =
produit Kronecker
KroneckerProduct[Input4, Output1]

Out[16]= {{0}, {0}, {0}, {1}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}

In[17]:= two =
produit Kronecker
KroneckerProduct[Input3, Output2]

Out[17]= {{0}, {0}, {0}, {0}, {0}, {-Cos[alpha]},

{Sin[alpha]}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}

In[18]:= three =
produit Kronecker
KroneckerProduct[Input2, Output3]

Out[18]= {{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0},

{Sin[alpha]}, {Cos[alpha]}, {0}, {0}, {0}, {0}, {0}}

In[19]:= four =
produit Kronecker
KroneckerProduct[Input1, Output4]

Out[19]= {{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {1}, {0}, {0}, {0}}

In[20]:= FinalState =
1

2
(one + two + three + four)

Out[20]= {0}, {0}, {0}, 
1

2
, {0}, -

Cos[alpha]

2
, 

Sin[alpha]

2
,

{0}, {0}, 
Sin[alpha]

2
, 

Cos[alpha]

2
, {0}, 

1

2
, {0}, {0}, {0}

In[21]:= BraFinal =
affine
Refine[

transposé conjugué
ConjugateTranspose[FinalState], alpha ∈

nombres réels
Reals]

Out[21]= 0, 0, 0,
1

2
, 0, -

Cos[alpha]

2
,
Sin[alpha]

2
, 0, 0,

Sin[alpha]

2
,
Cos[alpha]

2
, 0,

1

2
, 0, 0, 0

In[22]:= (* Density matrix for the four bits *)
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In[23]:= DensityMatrixFinal =
simplifie complètement
FullSimplify[FinalState.BraFinal]

Out[23]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
1

4
, 0, -

Cos[alpha]

4
,
Sin[alpha]

4
, 0, 0,

Sin[alpha]

4
,
Cos[alpha]

4
, 0,

1

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0, -
Cos[alpha]

4
, 0,

Cos[alpha]2

4
, -

1

4
Cos[alpha] Sin[alpha], 0,

0, -
1

4
Cos[alpha] Sin[alpha], -

1

4
Cos[alpha]2, 0, -

Cos[alpha]

4
, 0, 0, 0,

0, 0, 0,
Sin[alpha]

4
, 0, -

1

4
Cos[alpha] Sin[alpha],

Sin[alpha]2

4
, 0,

0,
Sin[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0,

Sin[alpha]

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
Sin[alpha]

4
, 0, -

1

4
Cos[alpha] Sin[alpha],

Sin[alpha]2

4
,

0, 0,
Sin[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0,

Sin[alpha]

4
, 0, 0, 0,

0, 0, 0,
Cos[alpha]

4
, 0, -

1

4
Cos[alpha]2,

1

4
Cos[alpha] Sin[alpha], 0,

0,
1

4
Cos[alpha] Sin[alpha],

Cos[alpha]2

4
, 0,

Cos[alpha]

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
1

4
, 0, -

Cos[alpha]

4
,
Sin[alpha]

4
, 0, 0,

Sin[alpha]

4
,
Cos[alpha]

4
, 0,

1

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

In[24]:= (*
fonction
Function calculating different partial traces. Source: http://

library.wolfram.com/infocenter/MathSource/5571/#downloads *)

In[25]:= SwapParts[expr_, pos1_, pos2_] :=

remplace une partie
ReplacePart[#, #, {pos1, pos2}, {pos2, pos1}] &[expr]

TraceSystem[D_, s_] := 

Qubits =
renverses
Reverse[

trie
Sort[s]];

TrkM =
dérivée d
D;
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z = (
dimensions
Dimensions[Qubits][[1]] + 1);

pour chaque
Forq = 1, q < z, q++,

n =
logarit⋯
Log[2, (

dimensions
Dimensions[TrkM][[1]])];

M = TrkM;

k = Qubits[[q]];

si
Ifk  n,

TrkM = {};

pour chaque
Forp = 1, p < 2n + 1, p = p + 2,

TrkM =

appose
AppendTrkM,

prends
TakeM[[p,

tout
All]], 1, 2n, 2 +

prends
TakeM[[p + 1,

tout
All]], 2, 2n, 2;

,

pour chaque
Forj = 0, j < (n - k), j++,

b = {0};

pour chaque
Fori = 1, i < 2n + 1, i++,

si
If(

mod⋯
Mod[(

chiffres d'entier
IntegerDigits[i - 1, 2, n][[n]] +

chiffres d'entier
IntegerDigits[i - 1, 2, n][[n - j - 1]]),

2]) == 1 &&
compte
Count[b, i]  0, Permut = {i, (

depuis chiffres
FromDigits[

SwapParts[(
chiffres d'entier
IntegerDigits[i - 1, 2, n]), {n}, {n - j - 1}], 2] + 1)};

b =
appose
Append[b, (

depuis chiffres
FromDigits[SwapParts[(

chiffres d'entier
IntegerDigits[i - 1, 2, n]),

{n}, {n - j - 1}], 2] + 1)];

c =
plage
Range2n;

perm = SwapParts[c, {i}, {(
depuis chiffres
FromDigits[

SwapParts[(
chiffres d'entier
IntegerDigits[i - 1, 2, n]), {n}, {n - j - 1}], 2] + 1)}];

M = M[[perm, perm]];



 ;

TrkM = {};

pour chaque
Forp = 1, p < 2n + 1, p = p + 2,

TrkM =

appose
AppendTrkM,

prends
TakeM[[p,

tout
All]], 1, 2n, 2 +

prends
TakeM[[p + 1,

tout
All]], 2, 2n, 2;
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;





;
reviens
Return[TrkM]

In[27]:= (* Measurement operator *)

In[28]:= Ma =
ca

2

1 Exp[- I thetaa]
Exp [I thetaa] 1

Out[28]= 
ca

2
,
1

2
ca - thetaa, 

1

2
ca  thetaa,

ca

2


In[29]:= Mb =
cb

2

1 Exp[- I thetab]
Exp [I thetab] 1

Out[29]= 
cb

2
,
1

2
cb - thetab, 

1

2
cb  thetab,

cb

2


In[30]:= Mc =
ce

2

1 Exp[- I thetae]
Exp [I thetae] 1

Out[30]= 
ce

2
,
1

2
ce - thetae, 

1

2
ce  thetae,

ce

2
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In[31]:= Mtot =
produit Kronecker
KroneckerProduct[Ma, Mc, Mb]

Out[31]= 
ca cb ce

8
,
1

8
ca cb ce - thetab,

1

8
ca cb ce - thetae,

1

8
ca cb ce - thetab- thetae,

1

8
ca cb ce - thetaa,

1

8
ca cb ce - thetaa- thetab,

1

8
ca cb ce - thetaa- thetae,

1

8
ca cb ce - thetaa- thetab- thetae, 

1

8
ca cb ce  thetab,

ca cb ce

8
,

1

8
ca cb ce  thetab- thetae,

1

8
ca cb ce - thetae,

1

8
ca cb ce - thetaa+ thetab,

1

8
ca cb ce - thetaa,

1

8
ca cb ce - thetaa+ thetab- thetae,

1

8
ca cb ce - thetaa- thetae,


1

8
ca cb ce  thetae,

1

8
ca cb ce - thetab+ thetae,

ca cb ce

8
,
1

8
ca cb ce - thetab,

1

8
ca cb ce - thetaa+ thetae,

1

8
ca cb ce - thetaa- thetab+ thetae,

1

8
ca cb ce - thetaa,

1

8
ca cb ce - thetaa- thetab, 

1

8
ca cb ce  thetab+ thetae,

1

8
ca cb ce  thetae,

1

8
ca cb ce  thetab,

ca cb ce

8
,
1

8
ca cb ce - thetaa+ thetab+ thetae,

1

8
ca cb ce - thetaa+ thetae,

1

8
ca cb ce - thetaa+ thetab,

1

8
ca cb ce - thetaa,


1

8
ca cb ce  thetaa,

1

8
ca cb ce  thetaa- thetab,

1

8
ca cb ce  thetaa- thetae,

1

8
ca cb ce  thetaa- thetab- thetae,

ca cb ce

8
,
1

8
ca cb ce - thetab,

1

8
ca cb ce - thetae,

1

8
ca cb ce - thetab- thetae, 

1

8
ca cb ce  thetaa+ thetab,

1

8
ca cb ce  thetaa,

1

8
ca cb ce  thetaa+ thetab- thetae,

1

8
ca cb ce  thetaa- thetae,

1

8
ca cb ce  thetab,

ca cb ce

8
,
1

8
ca cb ce  thetab- thetae,

1

8
ca cb ce - thetae,


1

8
ca cb ce  thetaa+ thetae,

1

8
ca cb ce  thetaa- thetab+ thetae,

1

8
ca cb ce  thetaa,

1

8
ca cb ce  thetaa- thetab,

1

8
ca cb ce  thetae,

1

8
ca cb ce - thetab+ thetae,

ca cb ce

8
,
1

8
ca cb ce - thetab, 

1

8
ca cb ce  thetaa+ thetab+ thetae,

1

8
ca cb ce  thetaa+ thetae,

1

8
ca cb ce  thetaa+ thetab,

1

8
ca cb ce  thetaa,

1

8
ca cb ce  thetab+ thetae,

1

8
ca cb ce  thetae,

1

8
ca cb ce  thetab,

ca cb ce

8


In[32]:= (* Application of the conditional sign-flip *)
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In[33]:= identity =
1 0
0 1

Out[33]= {{1, 0}, {0, 1}}

In[34]:= signflip =
1 0
0 -1

Out[34]= {{1, 0}, {0, -1}}

In[35]:= u1 =
1 0
0 0

Out[35]= {{1, 0}, {0, 0}}

In[36]:= u2 =
0 0
0 1

Out[36]= {{0, 0}, {0, 1}}

In[37]:= total =
produit Kronecker
KroneckerProduct[identity, identity, identity, u1] +

produit Kronecker
KroneckerProduct[identity, signflip, identity, u2]

Out[37]= {{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}}
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In[38]:= matrixaftersignflip = total.DensityMatrixFinal.total

Out[38]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
1

4
, 0,

Cos[alpha]

4
,
Sin[alpha]

4
, 0, 0,

Sin[alpha]

4
,
Cos[alpha]

4
, 0,

1

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
Cos[alpha]

4
, 0,

Cos[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0,

0,
1

4
Cos[alpha] Sin[alpha],

Cos[alpha]2

4
, 0,

Cos[alpha]

4
, 0, 0, 0,

0, 0, 0,
Sin[alpha]

4
, 0,

1

4
Cos[alpha] Sin[alpha],

Sin[alpha]2

4
, 0, 0,

Sin[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0,

Sin[alpha]

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
Sin[alpha]

4
, 0,

1

4
Cos[alpha] Sin[alpha],

Sin[alpha]2

4
, 0,

0,
Sin[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0,

Sin[alpha]

4
, 0, 0, 0,

0, 0, 0,
Cos[alpha]

4
, 0,

Cos[alpha]2

4
,
1

4
Cos[alpha] Sin[alpha], 0, 0,

1

4
Cos[alpha] Sin[alpha],

Cos[alpha]2

4
, 0,

Cos[alpha]

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

0, 0, 0,
1

4
, 0,

Cos[alpha]

4
,
Sin[alpha]

4
, 0, 0,

Sin[alpha]

4
,
Cos[alpha]

4
, 0,

1

4
, 0, 0, 0,

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

In[39]:= (* Tracing out of the fourth bit *)
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In[40]:= rhoAEB =
simplifie complètement
FullSimplify[TraceSystem[matrixaftersignflip, {4}]]

Out[40]= {0, 0, 0, 0, 0, 0, 0, 0}, 0,
1

4
,
Cos[alpha]

4
, 0,

Sin[alpha]

4
, 0, 0, 0,

0,
Cos[alpha]

4
,
Cos[alpha]2

4
, 0,

1

4
Cos[alpha] Sin[alpha], 0, 0, 0,

0, 0, 0,
Sin[alpha]2

4
, 0,

1

4
Cos[alpha] Sin[alpha],

Sin[alpha]

4
, 0,

0,
Sin[alpha]

4
,
1

4
Cos[alpha] Sin[alpha], 0,

Sin[alpha]2

4
, 0, 0, 0,

0, 0, 0,
1

4
Cos[alpha] Sin[alpha], 0,

Cos[alpha]2

4
,
Cos[alpha]

4
, 0,

0, 0, 0,
Sin[alpha]

4
, 0,

Cos[alpha]

4
,
1

4
, 0, {0, 0, 0, 0, 0, 0, 0, 0}

In[41]:= Proba =
simplifie complè⋯
FullSimplify[

trace tr
Tr[rhoAEB.Mtot]]

Out[41]=

1

8
ca cb ce (1 + Cos[thetaa - thetab] Sin[alpha] +

Cos[alpha] (Cos[thetab - thetae] + Cos[thetaa - thetae] Sin[alpha]))

In[42]:= (* Calculation of the density matrix

of Alice and Bob used to calculate the fidelity *)

In[43]:= rhoAB = TraceSystem[rhoAEB, {2}]

Out[43]= 
Cos[alpha]2

4
, 0, 0, 0, 0,

1

4
+
Sin[alpha]2

4
,
Sin[alpha]

2
, 0,

0,
Sin[alpha]

2
,
1

4
+
Sin[alpha]2

4
, 0, 0, 0, 0,

Cos[alpha]2

4


reverse.nb    9
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In[44]:= (* Projector on the state of Bob *)

In[45]:= B =
1

Sqrt[2]

Cos
angle

2
 - I Sin

angle

2


Cos
angle

2
 + I Sin

angle

2


Out[45]= 
Cos

angle

2
 -  Sin

angle

2


2
, 

Cos
angle

2
 +  Sin

angle

2


2


In[46]:= Bprim =
affine
Refine[

transposé conjugué
ConjugateTranspose[B], angle ∈

nombres réels
Reals]

Out[46]= 
Cos

angle

2
 +  Sin

angle

2


2
,
Cos

angle

2
 -  Sin

angle

2


2


In[47]:= projector =
simplifie complètement
FullSimplify[B.Bprim]

Out[47]= 
1

2
,
- angle

2
, 

 angle

2
,
1

2


In[48]:= (*
identité
Identity on the state of A *)

In[49]:= identityA =
1 0
0 1

Out[49]= {{1, 0}, {0, 1}}

In[50]:= totalprojector =
produit Kronecker
KroneckerProduct[identityA, projector]

Out[50]= 
1

2
,
- angle

2
, 0, 0, 

 angle

2
,
1

2
, 0, 0, 0, 0,

1

2
,
- angle

2
, 0, 0,

 angle

2
,
1

2


In[51]:= (* Calcul fidelity between Alice et Bob *)

In[52]:= projectedstate =
simplifie complètement
FullSimplify[rhoAB.totalprojector]

Out[52]= 
Cos[alpha]2

8
,
1

8
- angle Cos[alpha]2, 0, 0,


1

8
 angle 1 + Sin[alpha]2,

1

8
1 + Sin[alpha]2,

Sin[alpha]

4
,
1

4
- angle Sin[alpha],


1

4
 angle Sin[alpha],

Sin[alpha]

4
,
1

8
1 + Sin[alpha]2,

1

8
- angle 1 + Sin[alpha]2,

0, 0,
1

8
 angle Cos[alpha]2,

Cos[alpha]2

8


In[53]:= rhoAknowingB = TraceSystem[projectedstate, {2}]

Out[53]= 
Cos[alpha]2

8
+
1

8
1 + Sin[alpha]2,

1

4
- angle Sin[alpha],


1

4
 angle Sin[alpha],

Cos[alpha]2

8
+
1

8
1 + Sin[alpha]2
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In[54]:= norm =
simplifie complètement
FullSimplify[TraceSystem[projectedstate, {1, 2}]]

Out[54]= 
1

2


In[55]:= rhoAknowingBnorm =
simplifie complètement
FullSimplify

1

norm[[1, 1]]
rhoAknowingB 

Out[55]= 
1

2
,
1

2
- angle Sin[alpha], 

1

2
 angle Sin[alpha],

1

2


In[56]:=

trace tr
Tr[rhoAknowingBnorm.projector]

Out[56]=

1

2
+
Sin[alpha]

2

2     fidelity.nb
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A.2.2 Analysis of the different protocols

Once again, a Matlab code is used to compare the different protocols:

1 % Joint p r obab i l i t y
2 f = @(c_a , c_b , c_e , alpha , theta_a , theta_b , theta_e ) 1/8∗c_a∗c_b∗c_e

∗(1+ cos ( theta_a−theta_b )∗ s i n ( alpha )+cos ( alpha ) . ∗ ( cos ( theta_b−
theta_e )+cos ( theta_a−theta_e )∗ s i n ( alpha ) ) ) ;

3

4

5 % Se l e c t i o n o f the p ro to co l
6 BB84 = f a l s e ;
7 no i s e = f a l s e ;
8 au s t r a l i a n = f a l s e ;
9 GrosshansGrangier = true ;

10

11 % Parameters depending on the p ro to co l
12 i f ( no i s e )
13 AngleAl ice = pi /2 : p i : 3∗ pi /2 ;
14 AngleBob = pi /4 : p i /2 :7∗ pi /4 ;
15 AngleEve = pi /2 : p i : 3∗ pi /2 ;
16 cA l i c e = 1 ;
17 cBob = 1/2 ;
18 cEve = 1 ;
19 end
20 i f (BB84)
21 AngleAl ice = 0 : p i : p i ;
22 AngleBob = 0 : p i : p i ;
23 AngleEve = 0 : p i : p i ;
24 cA l i c e = 1 ;
25 cBob = 1 ;
26 cEve = 1 ;
27 end
28 i f ( a u s t r a l i a n )
29 AngleAl ice = pi /4 : p i /2 :7∗ pi /4 ;
30 AngleBob = pi /4 : p i /2 :7∗ pi /4 ;
31 AngleEve = pi /4 : p i /2 :7∗ pi /4 ;
32 cA l i c e = 1/2 ;
33 cBob = 1/2 ;
34 cEve = 1/2 ;
35 end
36 i f ( GrosshansGrangier )
37 AngleAl ice = pi /4 : p i /2 :7∗ pi /4 ;
38 AngleBob = 0 : p i : p i ;
39 AngleEve = pi /4 : p i /2 :7∗ pi /4 ;
40 cA l i c e = 1/2 ;
41 cBob = 1 ;
42 cEve = 1/2 ;
43 end
44

45
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46

47

48 j o in tp roba = @( alpha , Al ice , Bob , Eve ) f ( cAl ice , cBob , cEve , alpha ,
Al ice , Bob , Eve ) ;

49

50 % Calcu l a t i on o f the d i f f e r e n t p r o b a b i l i t i e s
51 proba_a_and_b = @( alpha , Al ice , Bob) 0 ;
52 f o r i = 1 : l ength (AngleEve )
53 proba_a_and_b = @( alpha , Al ice , Bob) (proba_a_and_b( alpha ,

Al ice , Bob)+jo in tp roba ( alpha , Al ice , Bob , AngleEve ( i ) ) ) ;
54 end
55 proba_b_and_e = @( alpha , Bob , Eve ) 0 ;
56 f o r j = 1 : l ength ( AngleAl ice )
57 proba_b_and_e = @( alpha , Bob , Eve ) (proba_b_and_e( alpha , Bob ,

Eve )+jo in tp roba ( alpha , AngleAl ice ( j ) ,Bob , Eve ) ) ;
58 end
59 proba_a = @( alpha , A l i c e ) 0 ;
60 f o r l = 1 : l ength (AngleBob )
61 proba_a = @( alpha , A l i c e ) ( proba_a ( alpha , A l i c e )+

proba_a_and_b( alpha , Al ice , AngleBob ( l ) ) ) ;
62 end
63 proba_b = @( alpha , Bob) 0 ;
64 f o r m = 1 : l ength ( AngleAl ice )
65 proba_b = @( alpha , Bob) ( proba_b ( alpha , Bob)+proba_a_and_b(

alpha , AngleAl ice (m) ,Bob) ) ;
66 end
67 proba_e = @( alpha , Eve ) 0 ;
68 f o r n = 1 : l ength (AngleBob )
69 proba_e = @( alpha , Eve ) ( proba_e ( alpha , Eve )+proba_b_and_e(

alpha , AngleBob (n) ,Eve ) ) ;
70 end
71

72 % Calcu l a t i on o f the en t r op i e s
73 H_A = @( alpha ) 0 ;
74 f o r o = 1 : l ength ( AngleAl ice )
75 H_A = @( alpha ) (H_A( alpha )−proba_a ( alpha , AngleAl ice ( o ) ) .∗

l og2 ( proba_a ( alpha , AngleAl ice ( o ) ) ) ) ;
76 end
77 H_B = @( alpha ) 0 ;
78 f o r p = 1 : l ength (AngleBob )
79 H_B = @( alpha ) (H_B( alpha )−proba_b ( alpha , AngleBob (p) ) .∗ l og2 (

proba_b ( alpha , AngleBob (p) ) ) ) ;
80 end
81 H_E = @( alpha ) 0 ;
82 f o r q = 1 : l ength (AngleEve )
83 H_E = @( alpha ) (H_E( alpha )−proba_e ( alpha , AngleEve (q ) ) .∗ l og2 (

proba_e ( alpha , AngleEve (q ) ) ) ) ;
84 end
85 H_AB = @( alpha ) 0 ;
86 f o r r = 1 : l ength (AngleBob )

87
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87 f o r s = 1 : l ength ( AngleAl ice )
88 H_AB = @( alpha ) (H_AB( alpha )−proba_a_and_b( alpha ,

AngleAl ice ( s ) , AngleBob ( r ) ) .∗ l og2 (proba_a_and_b( alpha ,
AngleAl ice ( s ) , AngleBob ( r ) ) ) ) ;

89 end
90 end
91 H_BE = @( alpha ) 0 ;
92 f o r t = 1 : l ength (AngleEve )
93 f o r u = 1 : l ength (AngleBob )
94 H_BE = @( alpha ) (H_BE( alpha )−proba_b_and_e( alpha ,

AngleBob (u) , AngleEve ( t ) ) .∗ l og2 (proba_b_and_e( alpha ,
AngleBob (u) , AngleEve ( t ) ) ) ) ;

95 end
96 end
97

98 % Calcu l a t i on o f the mutual in fo rmat ion
99 I_AB = @( alpha ) (H_A( alpha )+H_B( alpha )−H_AB( alpha ) ) ;

100 I_BC = @( alpha ) (H_B( alpha )+H_E( alpha )−H_BE( alpha ) ) ;
101

102 % Plot
103 alpha = 0 : ( p i /200) : p i /2 ;
104 QBER = 1−((1/2)+( s i n ( alpha ) /2) ) ;
105 y = r e a l (I_AB( alpha ) ) ;
106 z = r e a l (I_BC( alpha ) ) ;
107 p lo t (QBER, y , ’ r ’ )
108 hold on ;
109 p lo t (QBER, z , ’b ’ )
110 g r id on ; g r i d minor ;
111 p lo t (QBER,max(y−z , 0 ) , ’ g ’ )
112 x l ab e l ( ’QBER = 1− f i d e l i t y ’ )
113 y l ab e l ( ’Mutual in fo rmat ion ’ )
114 l egend ( ’I_A_B ’ , ’I_B_E ’ , ’ \Delta I = max(I_A_B−I_B_E, 0 ) ’ )
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