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Gaussian work extraction for multimode bosonic systems

Uttam Singh ,1,* Michael G. Jabbour,1,2,† Zacharie Van Herstraeten,1,‡ and Nicolas J. Cerf1,§

1Centre for Quantum Information and Communication, École polytechnique de Bruxelles,
CP 165, Université libre de Bruxelles, 1050 Bruxelles, Belgium

2DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom

(Received 23 May 2019; published 4 October 2019)

Quantum thermodynamics can be cast as a resource theory by considering free access to a heat bath, thereby
viewing the Gibbs state at a fixed temperature as a free state and hence any other state as a resource. Here,
we consider a multipartite scenario where several parties attempt at extracting work locally, each having access
to a local heat bath (possibly with a different temperature), assisted with an energy-preserving global unitary.
As a specific model, we analyze a collection of harmonic oscillators or a multimode bosonic system. Focusing
on the Gaussian paradigm, we construct a reasonable resource theory of local activity for a multimode bosonic
system, where we identify as free any state that is obtained from a product of thermal states (possibly at different
temperatures) acted upon by any linear-optics (passive Gaussian) transformation. The associated free operations
are then all linear-optics transformations supplemented with tensoring and partial tracing. We show that the local
Gaussian extractable work (if each party applies a Gaussian unitary, assisted with linear optics) is zero if and
only if the covariance matrix of the system is that of a free state. Further, we develop a resource theory of local
Gaussian extractable work, defined as the difference between the trace and symplectic trace of the covariance
matrix of the system. We prove that it is a resource monotone that cannot increase under free operations. We also
provide examples illustrating the distillation of local activity and local Gaussian extractable work.
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I. INTRODUCTION

Thermodynamics is a macroscopic theory applicable in the
limit where the number of particles and volume tend to infinity
[1]. However, with our increasing ability to control or manip-
ulate small systems and the realization of molecular motors
[2–4] and nanomachines [5–9], the scope of applicability of
thermodynamics is starting to stretch beyond the macroscopic
region. One of the main goals of the thermodynamics of
small systems—quantum thermodynamics—is the extraction
of work by means of cyclic Hamiltonian transformations
of a quantum state. Evidently, it is of great importance to
know which states do not allow for any work extraction
under Hamiltonian transformations. Such states are known as
passive states [10,11]. For a quantum system in a state ρ with
a given Hamiltonian Ĥ , the maximum amount of work that
can be extracted using any unitary U is defined as

W (ρ, Ĥ ) := max
U

Tr[Ĥ (ρ − UρU †)].

Thus, a passive state ρp is such that W (ρp, Ĥ ) = 0. It is also
known that, given a passive state ρp, a tensor power of it may
or may not be passive; i.e., W (ρ⊗n

p , Ĥtot ) may or may not be
zero for some integer n, where Ĥtot is the total Hamiltonian. A
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passive state ρp that remains passive for all its tensor powers
ρ⊗n

p , ∀n, is known as completely passive. A central result in
quantum thermodynamics is that the only completely passive
states are the thermal Gibbs states ρ ∝ exp(−βĤ ) [11].

A resource theory of thermodynamics can be developed
to systematically describe work extraction from a quantum
system and, in general, the allowed state transformations are
those where the system interacts via an energy-preserving
unitary together with an ancilla chosen to be in a thermal
Gibbs state (with an arbitrary Hamiltonian) at some fixed
temperature [12–15]. In this resource-theoretic treatment of
quantum thermodynamics, the thermal Gibbs state of the
system at the same temperature as that of the ancilla is the only
free state [12–14]. Although considering arbitrary Hamiltoni-
ans and arbitrary energy-preserving unitaries is satisfying in
the context of establishing a general framework for quantum
thermodynamics, it may also be interesting to focus on states
and unitaries of higher practical relevance. For bosonic sys-
tems, for example, restricting to Gaussian states and Gaussian
operations has proven to be very fruitful, particularly in the
field of quantum information theory with continuous variables
[16–18]. Similarly, exploring quantum thermodynamics with
Gaussian bosonic systems is a promising avenue [19], which
we investigate here.

In this paper, we explore a multipartite quantum ther-
modynamical scenario as illustrated in Fig. 1, where each
party can extract work locally by applying a local unitary
and this process is being assisted with a global energy-
preserving unitary (hence, allowing no global work extraction
as such). This is not a trivial extension of work extraction for a
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FIG. 1. Multipartite quantum thermodynamical scenario in
which each party extracts work locally and this process is being
assisted with a global energy-preserving unitary (allowing the parties
to exchange energy among them but not allowing global work
extraction). Here, we consider the model where the quantum system
held by each party is a harmonic oscillator (or a bosonic mode) and
local work extraction is restricted to Gaussian unitaries (especially
squeezing). It is assisted with a global energy-preserving (passive)
Gaussian unitary, which corresponds to any linear-optics circuit.

single party because there exist situations where an energy-
preserving coupling allows the parties to extract work locally
even though their local (reduced) states are initially passive.
Given the definition of passive states, a natural choice may be
to consider them (instead of Gibbs states) as free states in a
resource theory for extractable work. However, considering
passive states as free states defies a plausible criterion for
any reasonable resource theory, namely that if a state ρ is
free, then ρ⊗n should also be free for any integer n [20]. For
this reason, we rather take Gibbs states as building blocks of
our free states for each party, which allows us to develop a
multipartite resource theory for local extractable work within
this restriction.

In particular, we examine a multimode bosonic system as a
specific model, where the Hamiltonian is that of N harmonic
oscillators. Hence, the Gibbs states reduce to Gaussian ther-
mal states and energy-preserving unitaries become passive
Gaussian unitaries (i.e., all linear-optics transformations). In
order to develop a multipartite resource theory, we consider
as free states the products of thermal states (possibly at differ-
ent temperatures) acted upon by linear-optics transformations
[see Fig. 2(a)]. We first discuss the properties of this set of free
states, denoted as If , and build the set of free operations �f

that is consistent with If . Specifically, a free operation cannot
create local activity (i.e., a resource state) when acting upon
any free state. We note that If is not convex, owing to the fact
that the set of Gaussian states is not convex. This issue might
be solved by using the convex hull of If (see, e.g., [21,22]),
but we choose not to follow this procedure here as there is
a physically motivated way to define a convex set IW that
contains If (see Fig. 3). Indeed, it appears that the covariance
matrices of our free states, which we call free covariance

FIG. 2. (a) Definition of an N-mode free state ρ
f
1···N . Here,

τ1 ⊗ · · · ⊗ τN is a tensor product of N thermal states (possibly with
different temperatures) and LI represents a linear interferometer. The
single-mode reduced states of ρ

f
1···N are thermal states τ ′

1, . . . , τ
′
N .

(b) From the definition (a), it is clear that the tensor product of free
states is itself a free state.

matrices, form a convex set. Furthermore, we prove that the
states admitting a free covariance matrix coincide with the
states from which no work can be extracted by local Gaussian
unitaries assisted with linear optics. This set of states with no
extractable work, noted IW, is therefore convex. Clearly, If is
contained in IW as it corresponds to the subset of Gaussian
states within IW, that is, the Gaussian states from which no
local Gaussian work extraction assisted with linear optics is
possible (the non-Gaussian states with no extractable work
belong then to IW \ If ). It must be noticed that there exist
states in IW that do not belong to the convex hull of If , as
sketched in Fig. 3. These are non-Gaussian states with no
extractable work that cannot be written as convex mixtures
of (Gaussian) free states.

In this work, we start by developing a resource theory of
local activity in terms of quantum states (that is, building on
the set of free states If ; hence not being in If is viewed as a
resource). We dub the resource states, i.e., the states ρ /∈ If , as
locally active states in the sense that they contrast with passive
states. We develop resource monotones for local activity based
on contractive distance measures, with a particular emphasis

FIG. 3. Within the set of all quantum states I, we define the set
of states IW from which no local Gaussian work extraction (assisted
with linear optics) is possible, namely states ρ such that Wl (ρ ) = 0.
The subset of Gaussian states within IW is our set of free states
If , namely states ρ whose local activity Al (ρ ) = 0. Note that If is
not convex, owing to the fact that Gaussian states do not form a
convex set, but it is strictly included in the convex set IW. Thus, there
exist non-Gaussian locally active states (Al �= 0) from which no local
Gaussian extraction of work is possible (Wl = 0).
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on relative entropy. We find that the relative entropy of local
activity of a state ρ, noted Al (ρ), is additive for product states;
however, it is neither sub- nor superadditive for arbitrary
quantum states (although we can express a relaxed form
of subadditivity). Next, we explicitly calculate the relative
entropy of local activity for arbitrary two-mode Gaussian
states. Moreover, through explicit examples, we show that it
is possible to obtain a more resourceful state starting from
two copies of a less resourceful state. This shows that the
distillation of local activity is, in principle, possible.

In the second part of this work, we develop a resource
theory in terms of covariance matrices (that is, building on the
set of free covariance matrices instead of free states; hence
not being in IW is viewed here as a resource). This leads to
a resource theory of local Gaussian work extraction assisted
with linear optics. We elaborate on the properties of local
Gaussian extractable work in this multipartite setting, noted
Wl (ρ), and discuss its possible distillation. Interestingly, it
can be expressed as the difference between the trace and
symplectic trace of the covariance matrix associated with the
state, allowing us to access its properties by exploiting the
symplectic formalism of quantum optics.

The rest of the paper is organized as follows. We first set
the notations and some preliminaries in Sec. II. In Sec. III,
we introduce the set of free states and free operations for our
resource theory of local activity and discuss their properties.
In Sec. IV, we define local-activity monotones and then
provide some explicit calculations in Sec. V. In particular, we
derive a closed-form formula for the relative entropy of local
activity for arbitrary two-mode Gaussian states. In Sec. VI,
we introduce local Gaussian extractable work viewed as a
resource, and discuss its various properties. In Sec. VII, we
discuss the possibility of distillation of various resources. We
conclude in Sec. VIII, with a discussion on the implications
of our findings. Finally, in the appendices, we provide details
on some of our calculations.

II. PRELIMINARIES AND NOTATIONS

Gaussian states. Let us consider a system of N bosonic
modes with quadrature operators x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T

which satisfy the canonical commutation relations [16]

[x̂i, x̂ j] = i�i j (i, j = 1, . . . , 2N ),

where

� =
N⊕

k=1

ωωω, ωωω =
(

0 1

−1 0

)
, (1)

and we have set h̄ = 1. The corresponding N pairs of annihi-
lation and creation operators are defined as âi = 1√

2
(q̂i + i p̂i )

and â†
i = 1√

2
(q̂i − i p̂i ). The Hamiltonian corresponding to

mode i is given by Ĥi = â†
i âi + 1/2, where we have consid-

ered all angular frequencies to be the same and equal to one.
Given an N-mode quantum state ρ, the first-order moments
constitute the displacement vector, defined as

x̄ := 〈x̂〉 = Tr(x̂ρ̂). (2)

The second-order moments make the covariance matrices
(CMs), defined as

�i j := 1
2 〈{x̂i − 〈x̂i〉, x̂ j − 〈x̂ j〉}〉, (3)

where {·, ·} represents the anticommutator. The matrix ��� is
a positive-definite matrix. In particular, any positive-definite
matrix which satisfies the uncertainty relation qualifies as a
valid CM [23].

A Gaussian quantum state ρ = ρ(x̄,���) has a Gaussian
Wigner representation. As a consequence, it is described
fully in terms of its first two statistical moments, namely,
the displacement vector and the CM [24]. The vacuum state
|0〉 is a Gaussian state with zero displacement and CM ��� =
1
2I2, where I2 denotes a 2 × 2 identity matrix. Similarly, the
thermal state ρth is a Gaussian state with zero displacement
and CM ��� = (n̄ + 1

2 )I2, where n̄ = Tr[ρthâ†â] [16].
The total energy of a system of N bosonic modes in an

arbitrary state ρ is given by E =∑i Tr[ρĤi]. This can be
reexpressed as

E = 1
2 (Tr[���] + |x̄|2), (4)

where ��� and x̄ are the CM and displacement vector of state ρ,
respectively. Note that the expression of the energy holds for
any state (Gaussian or not).

It is worthwhile to notice that an arbitrary N-mode Gaus-
sian state ρ(x̄,���) can be written as [25]

ρ(x̄,���) = exp
[− 1

2 (x̂ − x̄)T G(x̂ − x̄)
]

det(��� + i���/2)1/2
, (5)

where the matrix G can be defined in terms of the covariance
matrix ��� as

G = 2i��� coth−1(2��� i���). (6)

From the Williamson theorem [16,26], any CM ��� can be
brought into the form D =⊕N

k=1 νkI2 through expression
��� = SDST , where S is a symplectic matrix (it satisfies
S���ST = ���) and the variables νk are called symplectic eigen-
values (they satisfy the uncertainty principle νk � 1/2, ∀k).
Using this, one has G = −���SG(D)ST���, where G(x) =
2 coth−1(2x) [25].

Gaussian unitary operations. A Gaussian unitary transfor-
mation is a unitary transformation that preserves the Gaussian
character of a quantum state [16]. In terms of quadrature
operators, a Gaussian unitary transformation is an affine map

(S, d) : x̂ → S x̂ + d, (7)

where S is a 2N × 2N real symplectic matrix and d is a
2N × 1 real vector. Under Gaussian unitary transformations,
x̄ → S x̄ + d and ��� → S���ST . The Gaussian unitary is called
passive if it is energy conserving (or photon-number conserv-
ing). In the rest of this work, we denote passive Gaussian uni-
taries as U PG. Such a unitary implies an orthogonal symplectic
transformation S on the quadrature operators. Physically, pas-
sive Gaussian unitaries correspond to all linear-optics circuits,
that is, any multiport interferometer made of beam splitters
and phase shifters.
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Von Neumann entropy of a Gaussian state. The von Neu-
mann entropy of a Gaussian state ρ can be written as [16,27]

S(ρ) =
N∑

k=1

g(νk ), (8)

where the νk are the symplectic eigenvalues of ρ, while

g(y) =
(

y + 1

2

)
ln

(
y + 1

2

)
−
(

y − 1

2

)
ln

(
y − 1

2

)
. (9)

Here, the logarithm is considered in base e. For a thermal state
ρth, νk = n̄k + 1/2, where n̄k = Tr[ρâ†

k âk] is the mean number
of photons in the kth mode, so that its entropy is given by

S(ρth ) =
N∑

k=1

[(n̄k + 1) ln(n̄k + 1) − n̄k ln n̄k]. (10)

Relative entropy between Gaussian states. The relative
entropy between two arbitrary Gaussian states ρ(x̄1,���1) and
σ (x̄2,���2) is given by [28]

S(ρ(x̄1,���1)||σ (x̄2,���2))

= S(ρ) + 1

2

[
ln det

(
���2 + i���

2

)
+ Tr(���1G2) + δδδT G2δδδ

]
,

(11)

where δδδ := x̄1 − x̄2 and G2 is defined through Eq. (6). See
Refs. [29,30] for other formulations of the relative entropy
between Gaussian states.

III. BASIC FRAMEWORK: FREE STATES
AND FREE OPERATIONS

A general resource theory comprises two basic elements:
the set of free states and the set of free operations. Based on
these two elements, the resource states can be identified and
the amount of the resource is then quantified with the help of
resource monotones which satisfy certain bona fide criteria.
For more details on the structure of resource theories, see
Refs. [20,31]. For examples of well-studied resource theories,
see Refs. [12–14,21,22,32–45].

In the following, we introduce the free states and free
operations suitable for our purposes of describing local Gaus-
sian work extraction scenarios and discuss the implications of
these two basic elements.

(1) Free states. A state is free if it is a passive Gaussian
unitary equivalent of a product of thermal states, as illustrated
in Fig. 2(a). In other words, it is a product of thermal states
acted upon by any passive Gaussian unitary. Let us denote the
set of free states as If = {U PG(τ1 ⊗ · · · ⊗ τN )U PG†}, where
U PG is a passive Gaussian unitary transformation and {τi} are
thermal states corresponding to different modes (possibly with
different temperatures). As already mentioned, any passive
Gaussian unitary can be built with linear optics (it is a con-
catenation of beam splitters and phase shifters). In the case
of two modes, U PG is a combination of just a single beam
splitter and three phase shifters. In particular, any N-mode
passive Gaussian unitary can be written as a concatenation
of N (N − 1)/2 beam splitters and N (N + 1)/2 phase shifters
[23].

Remark 1. The free states are Gaussian states such that the
reduced state of each mode is a thermal state (the converse
is not true). This directly follows from the structure of their
covariance matrix [see Eq. (13)].

Remark 2. The free states are separable. This follows from
Refs. [46,47], which state that the output state of a beam
splitter is always a separable state if the input is classical; i.e.,
it has a positive P function [48–50]. However, the converse
is not true and all Gaussian separable states do not belong to
the set of free states. In order to see that, consider a coherent
state as an example of a state with a positive P function. If
a coherent state is fed in one input of a beam splitter and a
vacuum in its other input, the output gives rise to a Gaussian
separable state, while it is not free according to our definition.

Remark 3. The set of free states If is not convex. This
follows from the fact that the set of Gaussian states is not
convex; i.e., if we consider the convex combination of free
states, then the resulting state will generally not be free as it
might be non-Gaussian.

Since the free states are Gaussian states, we can describe
them using their displacement vector and covariance matrix.
Indeed, an N-mode free state U PG(τ1 ⊗ · · · ⊗ τN )U PG† can be
seen as a Gaussian state with displacement zero and CM

���(N ) = O
(⊕N

i=1 νi I2
)
OT , (12)

where νi = n̄i + 1/2, with n̄i being the average photon num-
ber in the ith thermal state τi and O being an orthogonal sym-
plectic transformation that corresponds to U PG. Furthermore,
we show that the CM of an N-mode free state can be written
in a simple form as

���(N ) =

⎛
⎜⎜⎜⎜⎜⎝

a11I2 R12 · · · R1N

RT
12 a22I2 · · · R2N

...
...

. . .
...

RT
1N RT

2N · · · aNNI2

⎞
⎟⎟⎟⎟⎟⎠, (13)

where Ri j are 2 × 2 matrices such that Ri jRT
i j ∝ I2 and

Ri jωωωRT
i j ∝ ωωω. This can be proved using mathematical induc-

tion and the fact that any passive Gaussian unitary can be
built with linear optics. The interested reader is referred to
Appendix A for a proof. Note also that the symplectic eigen-
values of ���(N ) in Eq. (13) are the same as its eigenvalues.

Remark 4. The covariance matrices corresponding to free
states form a convex set. That is, if ���

(1)
free and ���

(2)
free are two

CMs corresponding to two free states [Eq. (13)], then for
0 � p � 1, p���(1)

free + (1 − p)���(2)
free is also of the form given by

Eq. (13). See Appendix B for a proof. Note that this is not
in contradiction with the fact that the set of free states is not
convex. Indeed, the covariance matrix that we obtain after
mixing two covariance matrices corresponding to Gaussian
free states can very well describe a non-Gaussian state, which
is not free according to our definition. However, in situations
where we are only concerned with covariance matrices (for
example, if we are interested in work extraction), we recover
convexity of the set IW (see Fig. 3) since the mixture of free
covariance matrices is free.

From the structure of the covariance matrices of our free
states, Eq. (13), it is obvious that locally, for each mode,
we get the covariance matrix of a thermal state. Therefore,
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FIG. 4. Partial-tracing the last mode of an N-mode free state
ρ

f
1···N results in another free state, which can be decomposed back

into another product of thermal states τ ′
1 ⊗ · · · τ ′

N via another linear
interferometer LI′. This results from Cauchy’s interlacing theorem
and from the structure of free covariance matrices, Eq. (13).

one understands that no work can be extracted locally from
these free states. This hints at the fact that we are in the
right direction if our goal is to develop a resource theory
of local Gaussian work extraction. In fact, we will later
prove that the free covariance matrices are actually the only
covariance matrices that do not allow for any local Gaussian
work extraction, even when assisted with linear optics.

As already noted, free covariance matrices may also char-
acterize non-Gaussian states in state space. As a consequence,
defining the resource of an arbitrary state in terms of its
distance to the set of free states If in state space does not
necessarily quantify its usefulness for local Gaussian work ex-
traction. Therefore, we choose the denomination local activity
for the distance-based monotones in state space as defined
in Sec. IV, making an explicit distinction with the local
extractable work later considered in Sec. VI based on the
phase-space picture. This distinction is connected to the fact
there exist states out of If (hence, locally active) belonging
to IW (hence, having no local Gaussian extractable work) as
shown in Fig. 3.

(2) Free operations.
O1: Passive (energy-conserving) Gaussian unitaries. These

are by definition free operations.
O2: Tensoring of free states. Given an N-mode free state

U PG(τ1 ⊗ · · · ⊗ τN )U PG†, if we tensor it with any other
M-mode free state V PG(τ ′

1 ⊗ · · · ⊗ τ ′
M )V PG†, then U PG ⊗

V PG(τ1 ⊗ · · · ⊗ τN ) ⊗ (τ ′
1 ⊗ · · · ⊗ τ ′

M )U PG† ⊗ V PG† is again
a free state as U PG ⊗ V PG is another passive Gaussian unitary.
Similarly, since tensoring in state space means applying direct
summation in phase space, it is easy to understand that, if ���

(1)
free

and ���
(2)
free are two free covariance matrices, then ���

(1)
free ⊕ ���

(2)
free

is also free. This is obvious from Eq. (13).
O3: Partial tracing. That partial tracing is a free operation

can be seen most conveniently in the phase-space picture.
Suppose we have an N-mode free state as given in Eq. (12).
Now, suppose we trace out one mode, say the last one; then,
at the level of covariance matrices, this translates into deleting
rows and columns of the corresponding mode. The remaining
covariance matrix ���′(N − 1) then corresponds to the partial-
traced state. Now, let us show that the remaining covariance
matrix can be written as

���′(N − 1) = O′(⊕N−1
i=1 ν ′

i I2
)
O′T ,

so that the remaining state is indeed free, as illustrated in
Fig. 4. To prove the above, it suffices to prove that ���′(N − 1)
has a similar structure to Eq. (13) and has all its eigenval-
ues greater than or equal to half. The fact that ���′(N − 1)

has eigenvalues greater than or equal to half follows from
Cauchy’s interlacing theorem for symmetric matrices. In par-
ticular, λmin(���′(N − 1)) � λmin(���N ) � 1/2, where λmin(���N )
represents the smallest eigenvalue of ���N . The fact that the
reduced covariance matrix ���′(N − 1) can be written in a
similar form to that in Eq. (13) is clear since we simply have
deleted the last two rows and columns.

Thus, having in mind that in state space, partial-tracing
over a multimode Gaussian state yields another Gaussian
state, one understands that the resulting (N − 1)-mode state
corresponds to a free state. Therefore, we conclude that
partial-tracing one of the modes is a free operation. The same
argument can be applied recursively to the partial-tracing of
any number of modes.

In the following, we denote the set of free operations as �f ,
consisting of all operations from O1 to O3. It is of interest to
note that �f includes the (free) quantum channels 
 f , which
are generated as


 f (ρS ) = TrA
[
U PG

SA

(
ρS ⊗ ρA

f

)
U PG†

SA

]
, (14)

where ρS is the state of the system, ρA
f is a free state of the

ancilla, and U PG
SA is a passive Gaussian unitary. In particular,

if the system and ancilla are single-mode each, one recovers
a thermal bosonic channel where the system mode is coupled
with an ancilla mode in the thermal states τA

th (note that the
temperature of the thermal state is unspecified here, in contrast
to Refs. [12–14]). Let us denote the Kraus operators of this
single-mode channel 
 f by {Ki}. If we want to include post-
selection in the context of our free operations, i.e., if we as-
sume the access to individual Kraus operators, this necessarily
demands that KiτthK†

i is proportional to some thermal state for
each index i. This extra condition on the Kraus operators does
not follow from 
 f being a free channel and, in fact, many
desirable free channels do not satisfy this extra condition. For
instance, consider a single-mode pure-loss channel, which is
defined as


PL(ρS ) = TrA
[
U BS

SA (ρS ⊗ |0〉 〈0|A)U BS†
SA

]
, (15)

where U BS
SA is a beam-splitter unitary and |0〉 is the vacuum

state. The Kraus operators for such a channel are listed in
Ref. [51]. It is easy to see that the individual Kraus operators
of a pure-loss channel do not map thermal states onto thermal
states (see Appendix C for more details on postselection).
Therefore, requiring postselection to be free is a very stringent
condition on the allowed set of quantum operations which we
choose not to consider here.

IV. LOCAL-ACTIVITY MONOTONES

In the resource theory that we define based on If and
�f (in the state-space picture), local activity is deemed as a
resource as it cannot be created from free states using free
operations. As in other resource theories, the local activity can
be quantified using any contractive distance,

Al (ρ) = min
σ∈If

D(ρ, σ ),

where D is a contractive distance; i.e., it verifies
D(�(ρ),�(σ )) � D(ρ, σ ) with � being a completely
positive trace preserving map. Here, we choose to consider a
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specific monotone that is based on the relative entropy. If we
take D to be the relative entropy, then the relative entropy of
local activity can be defined as

Al (ρ) = min
σ∈If

S(ρ ‖ σ ).

Here the relative entropy S(ρ ‖ σ ) = Tr[ρ(ln ρ − ln σ ] if
supp(ρ) ⊆ supp(σ ) and ∞ otherwise. We now list some of
the properties of Al (ρ).

P1: Monotonicity of the relative entropy of local activity
under free operations. To see this, let the minimum of the
distance for a state ρ be achieved at some free state σ ∗ ∈ If .
Then,

Al (ρ) = S(ρ ‖ σ ∗)

� S(�f [ρ] ‖�f [σ
∗])

= S(�f [ρ] ‖ σ̃ )

� min
σ∈If

S(�f [ρ] ‖ σ ) = Al (�f [ρ]),

where σ̃ = �f [σ ∗] is necessarily some free state. The above
is true for any contractive distance D.

P2: Invariance of the relative entropy of local activity under
passive Gaussian unitaries. Let U PG be a passive Gaussian
unitary transformation; then

Al (U
PGρU PG†) = Al (ρ). (16)

It follows from the fact that S(U PGρU PG† ‖ σ ∗) =
S(ρ ‖U PG†σ ∗U PG) and U PG†σ ∗U PG is a free state if σ ∗
is a free state. Minimizing over U PG†σ ∗U PG is just equivalent
to minimizing over free states (the set If is closed under
passive Gaussian unitaries).

P3: Relaxed subadditivity of the relative entropy of local
activity. We are looking for a relation between the relative
entropy of local activity of a composite state and the relative
entropy of local activity of its marginals. Consider a quantum
system composed of M + N modes in a state ρAB; here A (B)
are subsystems of the composite system AB with M (N )
modes. Let Al (ρA) = S(ρA ‖ σ ∗

A ) and Al (ρB) = S(ρB ‖ σ ∗
B ),

where σ ∗
A and σ ∗

B are the free states that achieve the minima
for the respective reduced states ρA and ρB. Then,

Al (ρA) + Al (ρB) = S(ρA ‖ σ ∗
A ) + S(ρB ‖ σ ∗

B )

= −S(ρAB ‖ ρA ⊗ ρB) + S(ρAB ‖ σ ∗
A ⊗ σ ∗

B )

� −S(ρAB ‖ ρA ⊗ ρB) + min
σAB∈If

S(ρAB ‖ σAB)

= −S(ρAB ‖ ρA ⊗ ρB) + Al (ρAB).

Therefore,

Al (ρAB) � Al (ρA) + Al (ρB) + S(ρAB ‖ ρA ⊗ ρB),

where S(ρAB ‖ ρA ⊗ ρB) = S(ρA) + S(ρB) − S(ρAB) � 0 is
the quantum mutual information between the states ρA and ρB.
As a consequence, in the special case where ρAB = ρA ⊗ ρB,
this “relaxed” form of subadditivity translates into subadditiv-
ity for product states (see also P4).

The subadditivity of Al may look undesirable since it trans-
lates the fact that a composite system holds fewer resources
than the sum of its components. The reason why this is
possible is linked to the fact that If is not convex. In contrast,

as we will see in Sec. VI, the extractable work under local
Gaussian unitaries Wl is superadditive as a consequence of the
convexity of IW.

P4: Additivity of the relative entropy of local activity for the
product of single-mode states with zero-displacement vectors.
We have

Al
(⊗m

i=1 ρi
) =

m∑
i=1

Al (ρi ). (17)

The inequality “�” is immediate from property P3, but the in-
equality “�” holds too. The proof of this property is provided
in the next section as we need the explicit expression of Al for
one-mode states.

V. RELATIVE ENTROPY OF LOCAL ACTIVITY

After having defined and established properties of the
relative entropy of local activity, let us explicitly calculate its
value for some single-mode and two-mode cases.

A. Single-mode case

For a single mode, the only free states are thermal states
at different temperatures. The expression of a thermal state in
the Fock basis is given by

τn̄ =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|n〉 〈n| ,

where n̄ is the mean photon number. In the single-mode case,
the relative entropy of local activity for a state ρ is given by

Al (ρ) = min
n̄

S(ρ ‖ τn̄)

= min
n̄

[−S(ρ) − Tr(ρ ln τn̄)].

It is easy to check that the minimum appearing in this equa-
tion is attained for n̄ =∑n nρnn = n̄ρ = Tr[ρâ†â], where the
ρnn = 〈n|ρ|n〉 represent the diagonal elements of ρ in the Fock
basis. Thus,

Al (ρ) = −S(ρ) −
∞∑

n=0

ρnn[n ln n̄ρ − (n + 1) ln(n̄ρ + 1)]

= −S(ρ) + g(n̄ρ + 1/2),

where

g(n̄ρ + 1/2) = (n̄ρ + 1) ln(n̄ρ + 1) − n̄ρ ln n̄ρ

denotes the entropy of a thermal state τn̄ρ
having the same

energy as ρ. The local activity of a single-mode state is just
the relative entropy between the state ρ and the thermal state
τn̄ρ

with the same energy, namely Al (ρ) = S(ρ ‖ τn̄ρ
). Hence,

the activity of a quantum system in a state ρ measures a
sort of distance from the thermal state having the same mean
photon number. As it happens, the same quantity appears as
the definition of the coherence measure of Gaussian states for
a single mode [52] (see also Sec. V E).

B. Application to the proof of additivity

We are now in position to prove the additivity property
P4 of the relative entropy of local activity for products of
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single-mode states. We have

Al
(⊗m

i=1ρi
) = min

U PG,n̄1,...,n̄m

S

(
m⊗

i=1

ρi

∥∥∥∥U PG
m⊗

i=1

τn̄i U PG†

)

= min
U PG,n̄1,...,n̄m

S

(
U PG†

m⊗
i=1

ρi U PG

∥∥∥∥
m⊗

i=1

τn̄i

)

= min
U PG,n̄1,...,n̄m

[
−

m∑
i=1

S(ρi ) −
m∑

i=1

Tr
(
ρ̃i ln τn̄i

)]

= −
m∑

i=1

S(ρi ) + min
U PG

m∑
i=1

g
(
n̄ρ̃i + 1/2

)
, (18)

where ρ̃1...m = U PG†⊗m
i=1 ρi U PG and ρ̃1 = Tr¬1(ρ̃1...m), and

so on. Here, we have used the result of the minimization
over n̄1, . . . , n̄m coming from the single-mode case. Now,
we show that minU PG

∑m
i=1 g(n̄ρ̃i + 1

2 ) =∑m
i=1 g(n̄ρi + 1

2 ). To
prove this, let us note that U PG transforms the annihilation
operators as follows:

ˆ̃ai =
m∑

j=1

ui j â j, (19)

where ui j are the matrix elements of an arbitrary uni-
tary matrix u. Note that n̄ρ̃i = Tr[ ˆ̃a†

i
ˆ̃ai
⊗m

i=1 ρi] = 〈 ˆ̃a†
i
ˆ̃ai〉 and

n̄ρi = Tr[â†
i âi
⊗m

i=1 ρi] = 〈â†
i âi〉. We have

n̄ρ̃i + 1

2
=

m∑
j,l=1

u∗
i juil〈â†

j âl〉 + 1

2

=
m∑

j=1

u∗
i jui j〈â†

j â j〉 +
m∑

j, l = 1
j �= l

u∗
i juil〈â†

j âl〉 + 1

2

=
m∑

j=1

u∗
i jui j n̄ρ j +

m∑
j, l = 1
j �= l

u∗
i juil〈â†

j〉〈âl〉 + 1

2

=
m∑

j=1

u∗
i jui j

(
n̄ρ j + 1

2

)
,

where for the last step we have assumed that all the Gaus-
sian states ρi (i = 1, . . . , m) have a zero-displacement vector.
Now, from the concavity of function g, we have

m∑
i=1

g

(
n̄ρ̃i + 1

2

)
�

m∑
i=1

m∑
j=1

u∗
i jui j g

(
n̄ρ j + 1

2

)

=
m∑

j=1

(
m∑

i=1

u∗
i jui j

)
g

(
n̄ρ j + 1

2

)

=
m∑

j=1

g

(
n̄ρ j + 1

2

)
,

where equality is achieved when U PG = I or ui j = δi j . Thus,
applying a passive Gaussian unitary U PG can only increase the

value of
∑m

i=1 g(n̄ρ̃i + 1
2 ). Hence, using P3 and above, we have

Al
(⊗m

i=1ρi
) = −

m∑
i=1

S(ρi ) +
m∑

i=1

g(n̄ρi + 1/2)

=
m∑

i=1

Al (ρi ).

C. Two-mode case

Consider a Gaussian state ρ1(d,���1) of two modes with
covariance matrix

���1 =
(

A C

CT B

)

and the displacement vector d = (d1 d2 d3 d4)T .
Define α = Tr[A], β = Tr[B], c = Tr[C], and υ = −Tr[ωC].
Furthermore, define α̃ = (α + β + d̃1), β̃ = (α − β + d̃2),
c̃ = (c + d̃3), and υ̃ = (υ + d̃4), where d̃1 = (d2

1 + d2
2 +

d2
3 + d2

4 ), d̃2 = (d2
1 + d2

2 − d2
3 − d2

4 ), d̃3 = (d1d3 + d2d4),
and d̃4 = (d1d4 − d2d3). Finally, let us define

S =
(

R1 0

0 R2

)(
cos θI2 sin θI2

− sin θI2 cos θI2

)(
R3 0

0 R4

)

=
(

cos θR1R3 sin θR1R4

− sin θR2R3 cos θR2R4

)
,

and for i = 1, . . . , 4,

Ri =
(

cos φi sin φi

− sin φi cos φi

)
,

with δφ = φ1 − φ2. We see that the angles φ3 and φ4 do not
actually matter in the definition of the most general case. We
show in Appendix D that the closest free state to ρ1(d,���1)
corresponds to

���free = S
(

b1I2 0

0 b2I2

)
ST ,

with the following definitions:

b1 = 1

4
[α̃ +

√
β̃2 + 4(c̃2 + υ̃2)],

b2 = 1

4
[α̃ −

√
β̃2 + 4(c̃2 + υ̃2)],

θ = −1

2
arctan

(
2
√

c̃2 + υ̃2

β̃

)
,

δφ = arctan(υ̃/c̃).

In this case, the relative entropy of local activity is given by

Al (ρ) =
2∑

i=1

[g(bi ) − g(νi )],

where the νi are the symplectic eigenvalues of ρ. The details
of the calculations are provided in Appendix D.
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D. Examples

In the following, we give some examples of values of the
relative entropy of local activity for some quantum states of
interest.

(1) Fock states. The Fock state |n〉 has a value of the relative
entropy of local activity given by Al = g(n + 1

2 ).
(2) Squeezed state. The squeezed vacuum state |Sq〉 of

squeezing parameter r has a value of the relative entropy of
local activity given by Al = g(sinh2 r + 1

2 ).
(3) Coherent state. The coherent state |α〉 of complex

amplitude α has a value of the relative entropy of local activity
given by Al = g(|α|2 + 1

2 ).
(4) Two-mode squeezed vacuum state. The two-mode

squeezed vacuum state |TMS〉 of squeezing parameter r has
a value of the relative entropy of local activity given by
Al = 2 g(sinh2 r + 1

2 ). This results from the fact that it can be
obtained with a 50 : 50 beam splitter (i.e., a passive Gaussian
unitary) applied on a product of two single-mode squeezed
vacuum states (with squeezing of orthogonal quadratures).

E. Comparison with coherence of Gaussian states

The relative entropy of coherence for Gaussian states was
defined in Ref. [52]. For the sake of clarity, we remind the
reader of its expression here. For an N-mode Gaussian state
ρ, the Gaussian (relative entropy of) coherence is given by
[52]

CG(ρ) =
N∑

i=1

[
g

(
nρi + 1

2

)
− g(νi )

]
,

where the νi are the symplectic eigenvalues of ρ and nρi =
Tr[â†

i âiρ] is the mean number of photons of the state ρi. We
note that

Al (ρ) = min
U PG,τ1,...,τN

S(ρ ‖U PG(τ1 ⊗ · · · ⊗ τN )U PG†)

� min
τ1,··· ,τN

S(ρ ‖ τ1 ⊗ · · · ⊗ τN ) := CG(ρ).

Also, we have shown that CG(ρ) coincides with the relative
entropy of local activity in the single-mode case. This is
precisely because our free states and the Gaussian incoherent
states coincide in the case of one mode. However, for more
than one mode, the two monotones are different in general.
Still, in the special case of an N-mode state ρ(N ) that can be
written as U PG(ρ1 ⊗ · · · ⊗ ρN )U PG†, we recover Al (ρ(N )) =
CG(ρ(N )). For instance, this happens to be the case for a
two-mode squeezed vacuum state.

VI. EXTRACTABLE WORK UNDER LOCAL
GAUSSIAN UNITARIES

It is known that passive states are those states from which
no work can be extracted unitarily [10,11]. Similarly, if we
restrict ourselves to extracting work using only Gaussian uni-
tary transformations, the Gaussian-passive states are the states
from which no work can be extracted using Gaussian unitaries
(the Gaussian-passive states and their characterization have
been presented in Ref. [19]). Here, we consider local Gaus-
sian work extraction scenarios as pictured in Fig. 1, where
multiple parties try to extract work from a multimode system

via local Gaussian unitary transformations (i.e., single-mode
squeezers) assisted with a global linear interferometer (LI).
We will define a measure of the maximum local Gaussian
extractable work, noted Wl , and show that it is a monotone
under free operations �f . From now on, we rather use the
phase-space picture and work with displacement vectors and
covariance matrices, which is natural since the energy of a
state only depends on first- and second-order moments of
the field operators. Let us consider an N-mode arbitrary state
ρ(���, x̄) with covariance matrix ��� and displacement vector
x̄. The local Gaussian extractable work assisted with LIs is
defined as

Wl (ρ) = max
U PG,Dα,Usq

Tr[H (ρ − UsqU PGDαρD†
αU PG†U †

sq )]

= max
U PG,Dβ ,Usq

Tr[H (ρ − DβUsqU PGρU PG†U †
sqD†

β )],

where the maximum is taken over all LIs (U PG), single-mode
squeezers (Usq ), and displacement operators (Dα or Dβ). The
second line follows from the fact that if we exchange a
displacement operator with parameter α with a combination
of squeezers and/or LIs, it remains a displacement operator
(with another parameter β). This means that the application of
displacement operators before or after the squeezers does not
change the maximum local Gaussian extractable work. Thus,
in order to extract work locally using Gaussian unitaries, we
may first apply with no loss of generality a displacement
operator on each mode and extract the available work due to x̄,
thereby making x̄ = 0 for subsequent work extraction. Hence,
the component of the extractable work due to displacements
is trivial and may be disregarded for simplicity.

The energy of an N-mode state ρ(���, x̄) is given by Eq. (4),
and, in particular, the energy of ρ(���, 0) is given by Tr[���]/2.
We will now deduce from it an expression for the local
extractable work Wl (���) in phase space (we use the notation
Wl when it is written as a function of the CM and Wl when it
is a function of the state). A particularly relevant tool in this
analysis will be the so-called Bloch-Messiah decomposition
[16,53,54] of symplectic matrices, which states that for any
symplectic matrix S , S = O1 ⊕i S(ri) O2, where O1 and O2

are orthogonal symplectic matrices (i.e., LIs) and S(ri ) are
single-mode squeezers, namely,

S(ri ) =
(

eri 0

0 e−ri

)
.

Another useful property is that, given any 2N × 2N positive-
definite matrix ��� [55]

min
S:S���ST=���

Tr[S���ST ] = Str[���] ≡ 2
N∑

i=1

νi, (20)

where Str[���] represents the symplectic trace of ���, and is equal
to twice the sum of the symplectic eigenvalues νi. Using this,
the local Gaussian extractable work assisted with global LIs
from an N-mode Gaussian state with covariance matrix ��� (and
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displacement vector x̄ = 0) is defined as

Wl (���) := 1

2
max

O,{S(ri )}
Tr[��� − ⊕iS(ri) O���OT ⊕i S(ri)]

= 1

2
(Tr[���] − Str[���])

= 1

2
Tr[��� − ���th] = 1

2

2N∑
i=1

λi −
N∑

i=1

νi, (21)

where λi and νi are the eigenvalues and symplectic eigenval-
ues of ���, respectively. The second line in the chain of equal-
ities above follows from the Bloch-Messiah decomposition
and Eq. (20). In particular,

min
O,{S(ri )}

Tr[⊕iS(ri ) O���OT ⊕i S(ri)]

= min
S:S���ST=���

Tr[S���ST ] = Str[���]. (22)

The third line in Eq. (21) follows from the fact that the
symplectic trace of the covariance matrix ��� is equal to the
trace of the covariance matrix ���th of the product of thermal
states having the same symplectic spectrum.

Next, we list some of the important properties of the local
extractable work Wl (���).

P′
1: The local extractable work Wl (���) is positive semidefi-

nite. Since we have

Str[���] = min
S:S���ST=���

Tr[S���ST ] � Tr[���],

it is clear that Wl (���) � 0.
P′

2: The local extractable work Wl (���) is a convex function
of covariance matrices ���. From Eq. (20), it follows that given
two positive-definite matrices C and D [55]

Str[C + D] � Str[C] + Str[D]. (23)

This property of the symplectic trace implies immediately that
Wl (���) is convex; i.e., if a covariance matrix is given by ��� =∑m

j=1 p j���
( j), with p j � 0 and

∑
j p j = 1, then

Wl

⎛
⎝ m∑

j=1

p j���
( j)

⎞
⎠ = 1

2

⎛
⎝ m∑

j=1

p jTr[���( j)] − Str

⎡
⎣ m∑

j=1

p j���
( j)

⎤
⎦
⎞
⎠

�
m∑

j=1

p j Wl (���
( j) ). (24)

This simply means that if we “forget” which term j the state
belongs to within a convex mixture, this can only reduce the
maximum local extractable work.

Note also that for a free state as defined in Sec. III, i.e.,
a Gaussian state with covariance matrix of the form ���free =
O���thO, the symplectic eigenvalues and eigenvalues of the
covariance matrix coincide, so that Wl (���free ) = 0. Moreover,
from the convexity of Wl , we have

Wl

⎛
⎝ m∑

j=1

p j���
( j)
free

⎞
⎠ = 0,

so the set of free covariances matrices is convex. We note here
that

∑m
j=1 p j���

( j)
free can always be written as ���free = O���thOT ,

where O is some orthogonal symplectic matrix.

P′
3: The local extractable work Wl (���) = 0 if and only if

��� = O2���thOT
2 . As already mentioned in P′

2, if ��� = O2���thOT
2 ,

then trivially Wl (���) = 0. For proving the converse, we use
the Williamson theorem and Bloch-Messiah decomposition in
order to write ��� = O1

⊕
i S(ri)O2���thOT

2

⊕
i S(ri)OT

1 , so we
have

Wl (���) = 0

⇒ Tr
[⊕iS(ri ) O2���thOT

2 ⊕i S(ri)
]− Tr[���th] = 0

⇒ ⊕iS(ri) = I2N .

The last implication follows from the observation that the
energy of a state of the form O2���thOT

2 is always increased
if we apply some single-mode squeezers on it. Therefore, the
local extractable work vanishes if and only if the covariance
matrix is free, namely

Wl (���) = 0 ⇔ ��� = O2���thOT
2 . (25)

P′
4: The local extractable work Wl (���) is superadditive. In

other words,

Wl (���) � Wl (���A) + Wl (���B),

where the N-mode covariance matrix ��� is partitioned into
two subsets A and B consisting of m and (N − m) modes,
respectively, that is,

��� =
(

���A ���AB

���T
AB ���B

)
. (26)

Without loss of generality, we can find two symplectic matri-
ces SA and SB such that

(SA ⊕ SB)���(SA ⊕ SB)T =
(

���th
A ���′

AB

���′T
AB ���th

B

)
:= ���′. (27)

We have

Wl (���) = Tr[���] − Str[���]

= Tr[���A] + Tr[���B] − Str[���′]

� Tr[���A] + Tr[���B] − Tr[���′]

= Tr[���A] − Tr
[
���th

A

]+ Tr[���B] − Tr
[
���th

B

]
= Wl (���A) + Wl (���B). (28)

In the second line, we have used the invariance of the sym-
plectic trace under symplectic transformations. In the third
line, we used the fact that Str[���′] � Tr[���′], which follows
from Eq. (20). It is easy to see that for product states, i.e.,
��� = ���A ⊕ ���B, the equality holds. Thus, we have shown that
Wl (���) is superadditive, which reflects the fact that more work
can potentially be extracted from the joint system rather than
from its two components separately. Indeed, we can use a
LI involving all n modes instead of two separate LIs on
the first m modes and last (N − m) modes. Furthermore, the
superadditivity property implies that

Wl (���) �
N∑

i=1

Wl (���i ),

where ���i is the covariance matrix of the ith mode.
P′

5: Wl (���) is monotonically decreasing under free oper-
ations �f . We have seen that Wl (���) is a faithful resource
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measure, i.e., Wl (���) � 0, while the equality holds if and only
if the CM is free, ��� = O2���thOT

2 . Now, to obtain a really
meaningful resource measure, it remains to be checked that
Wl (���) decreases under free operations as defined in Sec. III.
First, it is obvious to see that Wl (���) = Wl (O���OT ), where
O is an orthogonal symplectic matrix. Next, we have seen
that Wl (���A ⊕ ���B) = Wl (���A) + Wl (���B), which ensures that
tensoring cannot increase the extractable work. Finally, we
need to prove that Wl (���) monotonically decreases under
partial tracing. This follows trivially from the superadditivity
property P′

4 (which is actually a stronger result than mono-
tonicity under partial tracing). Thus, we have shown that
Wl (���) is a superadditive measure that is monotonic under
partial tracing.

To summarize this section, we have defined the extractable
work Wl or Wl via local Gaussian unitaries (single-mode
squeezers) assisted with global linear interferometers (LIs)
from a multimode bosonic system, and have proved that this is
a monotone under the free operations �f of our resource the-
ory of local activity; see Sec. III. Our work extraction scenario
(see Fig. 1) can be understood operationally as follows. Given
a bosonic system in a quantum state (Gaussian or not) with
covariance matrix ��� and displacement vector x̄, we first apply
local displacements to extract work that is there due to x̄. This
step makes x̄ = 0. Since we are allowed to use LIs before
extracting work, we can appropriately convert (using the
Bloch-Messiah decomposition) the given covariance matrix

���
LI−→ ( ⊕i S(ri ) O2���thOT

2 ⊕i S(ri )), where ���th has the same

symplectic spectrum as ���. Now, the maximal Gaussian local
work is obtained from such a state by applying single-mode
squeezers

⊕
i S(ri ). After this last step, no further work can

be obtained using local Gaussian unitaries, i.e., squeezers, and
the covariance matrix becomes free, namely O2���thOT

2 .

VII. DISTILLATION

One of the key advantages offered by the resource-theoretic
paradigm of any resource is the succinct description of its
interconversion (specifically, its distillation and formation).
However, not any interconversion of resources is possible in
every resource theory [20,31]. For instance, it is well known
that Gaussian entanglement cannot be distilled using Gaussian
local operations and classical communication only [56–58].
More recently, under reasonable assumptions, a general no-
go theorem for the distillation of Gaussian resources under
resource nongenerating operations was proved [31]. In this
section, we show the possibility of distillation of resources
considered in the present work and discuss the consequences
it entails, as well as some open problems.

A. For local activity

Let us first consider the following question. Is it possible
to have a deterministic transformation

ρ ⊗ ρ
?−−−−−−−→

free operations
σ,

where ρ and σ are both single-mode states such that Al (σ ) >

Al (ρ)? We show that this is not possible. Let us consider that

the covariance matrix of ρ is given by a 2 × 2 matrix γγγ , so
that the covariance matrix of ρ ⊗ ρ is given by

���(ρ ⊗ ρ) =
(

γγγ 02×2

02×2 γγγ

)
.

The free operation one can apply on the two copies of ρ is just
a beam splitter with phase shifters, and is represented by

S =
(

cos θR1R3 sin θR1R4

− sin θR2R3 cos θR2R4

)
,

where the Ri’s are phase shifters for each i = 1, . . . , 4. Now,
let ���′ = S���(ρ ⊗ ρ)ST and denote by γγγ ′

1 and γγγ ′
2 the local

covariance matrices of the output states ρ ′
1 and ρ ′

2 of mode
one and mode two, respectively. Then,

RT
1 γγγ ′

1R1 = (cos2 θR3γγγ RT
3 + sin2 θR4γγγ RT

4

)
,

RT
2 γγγ ′

2R2 = (sin2 θR3γγγ RT
3 + cos2 θR4γγγ RT

4

)
. (29)

It is clear that the mean number of photons in state ρ ′
1 (of

CM γγγ ′
1) is the same as that of the initial state ρ (of CM γγγ ).

Therefore,

Al (ρ
′
1) − Al (ρ) = S(ρ) − S(ρ ′

1) � 0.

The last inequality follows from the linear entropy power
inequality for beam splitters. Obviously, a similar inequality is
true for the state having covariance matrix γγγ ′

2. This shows that
it is impossible to increase the local activity of any one-mode
state under free operations starting from two copies of the
one-mode state. However, we show in the following that this is
not the case if we start from two copies of a two-mode states.

We now provide an example which shows that the deter-
ministic distillation of local activity from a two-mode state is
in principle possible, starting from two copies of that state.
We consider two copies of a nonfree two-mode Gaussian state
ρ with relative entropy of local activity Al (ρ), and show that
by using free operations on the four modes, one can generate
a two-mode state σ with relative entropy of local activity
Al (σ ) such that Al (σ ) > Al (ρ). In particular, let us start with
a two-mode Gaussian state that is in a product of a squeezed
thermal state and a vacuum state, i.e., a state with covariance
matrix ���(ρ) defined as

���(ρ) = 1

2

⎛
⎜⎜⎜⎝

1 0 0 0

0 16 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠.

Now, the free operation that we choose to apply on ρ is a
passive Gaussian unitary U which acts on the annihilation
operators of the four modes as

U = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i

⎞
⎟⎟⎟⎠.

Let O be the corresponding symplectic transformation, so
that ���′ = O���(ρ ⊗ ρ)OT . The first two-mode state has a
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covariance matrix ���(σ ) that is given by

���(σ ) =
2⊕

i=1

1

4

(
2 0

0 17

)
.

It is easy to check that Al (ρ) = 0.7621 and Al (σ ) = 1.0019 >

Al (ρ). This example tells us that it is in principle possible
to distill the relative entropy of local activity. This begs us
to define a standard unit resource for distillation purposes.
However, the (non)existence of a standard unit resource is
a mathematically involved problem and requires a separate
exposition which we leave for future explorations.

Now, if we assume that it is possible to convert determin-
istically n copies of a state ρ into m copies of state, say σ ,
using free operations, then the rate Rρ→σ of conversion can
be defined as

Rρ→σ = m

n
� Al (ρ)

Al (σ )
. (30)

The inequality above follows from the additivity and mono-
tonicity of the relative entropy of activity. It will be very
interesting to consider the asymptotic scenario for conversion,
prove its existence, and show that the optimal asymptotic
rate of conversion is given by a ratio of relative entropies of
activity. However, we will not deal with these questions here.
Moreover, with a probabilistic transformation (if possible), it
is possible to increase the local activity of a one-mode state
with a free operation starting from two copies of the one-mode
state. For example, starting from two copies of a single-photon
state |1〉, we can send them into a 50 : 50 beam splitter (free
operation) and postselect the second mode onto the vacuum
state |0〉, which is a free state. The outcome is the Fock state
|2〉, which has local activity g(2 + 1/2) greater than that of the
initial states g(1 + 1/2). However, the existence of free Kraus
operators that will allow postselection over free states is an
issue we leave open here.

B. For local Gaussian extractable work

Just like in the case of the relative entropy of activity, the
local Gaussian extractable work assisted with linear interfer-
ometers cannot be distilled from two copies of a single-mode
state. In order to see this, recall that the local covariance ma-
trices after processing the two copies of an initial state through
a beam splitter and phase shifters are given by Eq. (29). Now,
we have

Wl (γγγ
′
1) = Tr[γγγ ′

1] − Str[γγγ ′
1] � Tr[γγγ ] − Str[γγγ ] = Wl (γγγ ).

The inequality in the equation above comes from the use
of Eq. (23). This shows that the two copies of single-mode
states are useless for deterministic work extraction. However,
we again have a simple example of a two-mode state, from
two copies of which we can distill some work. Consider a
two-mode state with covariance matrix ��� = γγγ A ⊕ γγγ B such
that Wl (γγγ A) > Wl (γγγ B). The two copies of this state will be
denoted by the covariance matrix ���⊕2 = (γγγ A ⊕ γγγ B) ⊕ (γγγ A ⊕
γγγ B). Now, we can apply a swap between auxiliary modes two
and three (using a beam splitter) to get a covariance matrix
�̃��

⊕2 = (γγγ A ⊕ γγγ A) ⊕ (γγγ B ⊕ γγγ B). One can see that the first two
modes provide an amount of work that is greater than the work

that might be obtained from the initial state ���. Again, the
tasks of designing optimal deterministic conversion protocols
and probabilistic protocols are left open and will be studied
separately.

VIII. CONCLUSION

In this work, we have explored a possible multipartite
extension of a resource theory for quantum thermodynamics,
where each party has access to a local heat bath possibly
with a different temperature. Specifically, we have developed
a resource theory of local Gaussian work extraction assisted
with linear optics (linear interferometers). In doing so, we
first introduced a set If of free states, namely, products of
thermal states (possibly at different temperatures) acted upon
by an arbitrary linear interferometer. The states which are not
free are then deemed to have a resource called local activity.
We introduced the relative entropy of local activity Al as a
resource monotone and calculated it explicitly for various
exemplary cases. In particular, we obtained a closed-form
formula for the relative entropy of local activity for arbitrary
two-mode Gaussian states. We also noted that the free states
in If are locally thermal; hence they are inactive for local
Gaussian work extraction (however, there exist nonfree states
that are locally thermal too, such as the two-mode squeezed
vacuum state). Then, we turned to a resource theory of local
Gaussian work extraction assisted with linear optics, based
on covariance matrices. The local Gaussian extractable work
assisted with linear optics Wl was shown to be a resource
monotone, whose properties were discussed in detail. Finally,
we showed examples (both for local activity and local Gaus-
sian extractable work) where we start with two copies of
a resource state and apply free operations to get a single
state with more resources. These examples are reminiscent of
resource distillation protocols in quantum information theory.

Our results generalize and further advance the resource
theory of quantum thermodynamics in a multipartite setting,
and could be extended in several directions. Here, we have
successfully characterized the set of states IW whose covari-
ance matrices are such that no local Gaussian work can be
extracted, assisted with linear optics. However, it would be
very interesting to characterize the set of all states from which
no local work extraction is possible, i.e., characterization of
the set of quantum states which are locally passive. This is
a special case of the so-called quantum marginal problem
[59–66] which aims at finding global quantum states such
that the marginals are fixed and are given. Therefore, the
investigation of this problem will shed light on the differ-
ent possible versions of the quantum marginal problem and
solutions thereof. Furthermore, we note that in the rapidly
growing field of quantum thermodynamics, mainly in the
resource theory of quantum thermodynamics, the discussions
on postselection onto free states are rather scarce compared
to corresponding theories of entanglement and coherence. In
this work, we envisaged the possibility of postselection onto
thermal states; however, this seemed an involved problem and
requires further dedicated exposition on its own. Finally, this
work is highly relevant to all optical heat engines such as in
Ref. [67] and we hope that it will lead to further developments
in this area in the new setting of resource theories.
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APPENDIX A: COVARIANCE MATRIX FOR
N-MODE FREE STATES

In this section, we will show by mathematical induction
that the form of the covariance matrix of an N-mode free state
is given by

���(N ) =

⎛
⎜⎜⎜⎜⎜⎝

a11I2 R12 · · · R1N

RT
12 a22I2 · · · R2N

...
...

. . .
...

RT
1N RT

2N · · · aNNI2

⎞
⎟⎟⎟⎟⎟⎠, (A1)

where Ri j are 2 × 2 matrices such that Ri jRT
i j ∝ I2 and

Ri jωωωRT
i j ∝ ωωω. Moreover, all the constants and proportionality

constants are such that the covariance matrix is physical. First,
we show that the covariance matrix of any two-mode free state
can always be written as

���(2) =
(

a11I2 R12

RT
12 a22I2

)
, (A2)

where R12 is such that R12RT
12 ∝ I2 and R12ωωωRT

12 ∝ ωωω. By def-
inition, an arbitrary two-mode free state has covariance matrix
���(2) = S (b11I2 ⊕ b22I2)ST , where bii (i = 1, 2) correspond
to local temperatures of initial thermal states and S is an
orthogonal symplectic transformation which is combination
of a single beam splitter and at least three phase shifters. Thus,

for two modes, S is given by

S =
(

R1 0

0 R2

)(
cos θI2 sin θI2

− sin θI2 cos θI2

)(
R3 0

0 R4

)

=
(

cos θR1R3 sin θR1R4

− sin θR2R3 cos θR2R4

)
.

Now, it is easy to see that ���(2) has a similar form to Eq. (A2).
Let us assume that any N-mode covariance matrix ���(N ) of

any free state state can be written as Eq. (A1). Now, we bring
another mode in a thermal state, and the (N + 1)-mode free
state (as adding ancillae in thermal states is freely allowed) is
written as follows.

���(N + 1)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11I2 · · · R1(N−1) R1N 0
...

. . .
...

...
...

RT
1(N−1) · · · a(N−1)(N−1)I2 R(N−1)N 0
RT

1N · · · RT
(N−1)N aNNI2 0

0 · · · 0 0 bI2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A3)

We next apply the linear interferometric transformation on
this covariance matrix, which can be factorized into N beam
splitter and phase shifter transformations acting sequentially
between the N th and (N + 1)th, (N − 1)th and (N + 1)th, up
to 1st and (N + 1)th modes. This provides the most general
N + 1 free state. The beam splitter and phase shifters on
N th and (N + 1)th modes correspond to following orthogonal
symplectic matrix:

S =

⎛
⎜⎜⎜⎜⎝
I2 · · · 0 0 0
...

. . .
...

...
...

0 · · · I2 0 0
0 · · · 0 cos θT1 sin θT1T4

0 · · · 0 − sin θT2 cos θT2T4

⎞
⎟⎟⎟⎟⎠, (A4)

where T1, T2, and T4 are rotation matrices. This yields

S���(N + 1)ST

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11I2 R12 · · · R1(N−1) cos θR1N T T
1 − sin θR1N T T

2
RT

12 a22I2 · · · R2(N−1) cos θR2N T T
1 − sin θR2N T T

2
...

...
. . .

...
...

...
RT

1(N−1) RT
2(N−1) · · · a(N−1)(N−1)I2 cos θR(N−1)N T T

1 − sin θR(N−1)N T T
2

cos θT1RT
1N cos θT1RT

2N · · · cos θT1RT
(N−1)N (aNN cos2 θ + b sin2 θ )I2 (b − aNN ) sin θ cos θT1T T

2

− sin θT2RT
1N − sin θT2RT

2N · · · − sin θT2RT
(N−1)N (b − aNN ) sin θ cos θT2T T

1 (aNN sin2 θ + b cos2 θ )I2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above matrix is of the form given by Eq. (A1). Now,
we can apply the beam splitter and phase shifters between
(N − 1)th and (N + 1)th mode and so on. It can be seen by
mere inspection that the application of the beam splitter and
phase shifters always yields the covariance matrix compatible
with Eq. (A1). Thus, after application of all beam splitters and

phase shifters, we have

���(N + 1) =

⎛
⎜⎜⎜⎝

a11I2 R12 · · · R1(N+1)

RT
12 a22I2 · · · R2(N+1)
...

...
. . .

...
RT

1(N+1) RT
2(N+1) · · · a(N+1)(N+1)I2

⎞
⎟⎟⎟⎠.

(A5)
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Therefore, from mathematical induction, we prove that the
form of covariance matrices of free states is given by Eq. (A1).

APPENDIX B: CONVEXITY OF THE COVARIANCE
MATRICES OF THE SET OF FREE STATES

We have already noted that the set of free states is not
convex as the set of Gaussian states is not convex. However,
we show here that the covariance matrices of the set of free
states form a convex set. Let us first consider a very simple
example of two thermal states corresponding to two different
modes with covariance matrices �1 = aI and �2 = bI. After
the beam-splitter transformation SBS(η) of transmittivity η on
both modes, we have

���′ = SBS(η)�1 ⊕ �2ST
BS(η)

=
(

[aη + b(1 − η)]I2 (b − a)
√

η(1 − η)I2

(b − a)
√

η(1 − η)I2 [a(1 − η) + bη]I2

)
.

Similarly,

���′′ = 1
2SBS(η)�1 ⊕ �2ST

BS(η) + 1
2SBS(τ )�1 ⊕ �2ST

BS(τ )

=
(

αI2 γ I2

γ I2 βI2

)
,

where

α = a
(η + τ )

2
+ b

(
1 − (η + τ )

2

)
,

β = a

(
1 − (η + τ )

2

)
+ b

(η + τ )

2
,

γ = (b − a)

2
[
√

η(1 − η) +
√

τ (1 − τ )].

The above covariance matrix can be written as

���′′ = SBS(μ)

(
cI2 0

0 dI2

)
ST

BS(μ),

where

c = 1

2
[(α + β ) +

√
(β − α)2 + 4γ 2],

d = 1

2
[(α + β ) −

√
(β − α)2 + 4γ 2],

μ = cos2 θ, θ = 1

2
arctan

(
2γ

β − α

)
.

This shows that ���′′ is a free covariance matrix.
Proposition 1. The free covariance matrices form a convex

set.
Proof. Let us consider a set of free covariance matrices

{���( j)
free}M

j=1. Then, to prove the proposition we need to show

that for any probability distribution {p j}M
j=1,
∑

j p j���
( j)
free is also

a free covariance matrix. Further, it suffices to prove this for
convex combination of two free covariance matrices of two
modes only. Then using Eq. (13), consider two two-mode free
covariance matrices

���
(1)
free =

(
a1I2 R1

RT
1 a2I2

)
, ���

(2)
free =

(
b1I2 R2

RT
2 b2I2

)
.

Now,

p1���
(1)
free + p2���

(2)
free =

(
(p1a1 + p2b1)I2 R̃

R̃T p1(a2 + p2b2)I2

)
,

where R̃ = p1R1 + p2R2. For the above to be a free covariance
matrix, we need to show that R̃R̃T ∝ I2 and R̃ωωωR̃T ∝ ωωω. We
see that

R̃R̃T ∝ p2
1I2 + p1 p2

(
R1RT

2 + R2RT
1

)+ p2
2I2 ∝ I2.

The last proportionality follows from the fact that for two real
matrices {Ri}2

i=1 such that RiRT
i ∝ I2, R1RT

2 + R2RT
1 is also

proportional to identity. Further,

R̃ωωωR̃T ∝ p2
1ωωω + p2

2ωωω + p1 p2
(
R1ωωωRT

2 + R2ωωωRT
1

) ∝ ωωω.

The last proportionality again follows from the fact that for
two real matrices {Ri}2

i=1 such that RiωωωRT
i ∝ ωωω and RiRT

i ∝ I2

then R1ωωωRT
2 + R2ωωωRT

1 is also proportional ωωω. This completes
the proof of the proposition.

Remark 5. The convexity of the set of free covariance
matrices seems to be a general property of Gaussian free
states under certain assumptions [31], which we choose not
to discuss in the present work.

APPENDIX C: POSTSELECTING ONTO FREE STATES

In order to prove that postselection onto a free state is a
free operation, we use the phase-space picture. We start by
considering the case where one postselects only one mode,
say, the last one. Suppose that we are given a free state ���(N )
as in Eq. (13) which can be rewritten as

���(N ) =
(
���AA ���AB

���T
AB ���BB

)
.

Here ���AA is a 2(N − 1) × 2(N − 1) covariance matrix, ���BB is
2 × 2 covariance matrix which is proportional to identity, and
���AB is a 2(N − 1) × 2 matrix. The structure of these matrices
can be read from Eq. (13). Now, we want to postselect the N th
mode in the covariance matrix γγγ = (n̄′ + 1/2)I2. Such a post-
selection results in the remaining (N − 1) modes covariance
matrix, which is given by

�̃��(N − 1) = ���AA − ���AB(���BB + γγγ )−1���T
AB

= ���′′(N )/(���BB + γγγ ),

where ���′′(N )/(���BB + γγγ ) denotes the Schur complement of
(���BB + γγγ ) in ���′′(N ) and

���′′(N ) =
(
���AA ���AB

���T
AB ���BB + γγγ

)
.

Now, using Cauchy’s interlacing theorem for the eigenvalues
of Schur complements [68] and eigenvalues of symmetric
matrices, we have

λmin(���′′(N )/(���BB + γγγ )) � λmin(���′′(N ))

= λmin(���BB + γγγ )

� λmin(���BB) + λmin(γγγ )

� 1.
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FIG. 5. The figure shows that the postselection of the last two
modes of an N-mode free state ρ

f
1···N onto a free state results in

another free state.

In the above, we have used the fact that λmin(A + B) �
λmin(A) + λmin(B) which follows from the Courant-Fischer-
Weyl min-max theorem [68]. Thus, λmin(�̃��(N − 1)) � 1.
Now, notice that ���BB + γγγ is proportional to I2 and let ���BB +
γγγ = xI2 with x � 1. Therefore,

�̃��(N − 1) = ���AA − x−1���AB���
T
AB.

Notice from Eq. (13) that

���AB =

⎛
⎜⎝

R1N
...

R(N−1)N

⎞
⎟⎠.

Therefore,

���AB���
T
AB =

⎛
⎜⎝

R1N
...

R(N−1)N

⎞
⎟⎠(RT

1N · · · RT
(N−1)N

)

=

⎛
⎜⎜⎜⎝

c11I2 R′
12 · · · R′

1(N−1)
R′T

12 c22I2 · · · R′
2(N−1)

...
...

. . .
...

R′T
1(N−1) R′T

2(N−1) · · · c(N−1)(N−1)I2

⎞
⎟⎟⎟⎠,

where, cii = RiN RT
iN and R′

i j = RiN RT
jN for i < j. Also,

R′
i jR

′T
i j ∝ I2 and R′

i jωωωR′T
i j ∝ ωωω. Thus, �̃��(N − 1) has the fol-

lowing form:

�̃��(N − 1) =

⎛
⎜⎜⎜⎝

d11I2 R′′
12 · · · R′′

1(N−1)
R′′T

12 d22I2 · · · R′′
2(N−1)

...
...

. . .
...

R′′T
1(N−1) R′′T

2(N−1) · · · d(N−1)(N−1)I2

⎞
⎟⎟⎟⎠,

where R′′
i jR

′′T
i j ∝ I2 and R′′

i jωωωR′′T
i j ∝ ωωω. We have also used the

fact that given two matrices T1 and T2 such that TiT T
i ∝ I2

and TiωωωT T
i ∝ ωωω (i = 1, 2), we have T ′ = (T1 − T2) such that

T ′T ′T ∝ I2 and T ′ωωωT ′T ∝ ωωω. The above matrix �̃��(N − 1) has
a similar form to Eq. (13). Thus, we have proved that postse-
lection onto a single-mode free state leaves the remaining state
free (see Fig. 5). Similar arguments can be presented to show
that postselection onto any free state leaves the remaining
state free and, therefore, postselection onto a free state is a
free operation.

Proposition 2. For a free channel as given in Eq. (14) such
that for all its Kraus operators Ki, KiσK†

i is a free state if
σ ∈ If , then

Al (ρ) �
∑

i

piAl (ρi ),

where ρi = (KiρK†
i )/pi and pi = Tr(KiρK†

i ). This property
implies monotonicity of the relative entropy of local activity
on an average under selective free operations.

Proof. The proof follows from the property of the relative
entropy [69], which states that

S(ρ ‖ σ ) �
∑

i

piS

(
ρi

∥∥∥∥ KiσK†
i

qi

)
, (C1)

where qi = Tr(KiσK†
i ). From Eq. (C1), we have

Al (ρ) = S(ρ ‖ σ ∗)

�
∑

i

piS

(
ρi

∥∥∥∥ Kiσ
∗K†

i

qi

)

=
∑

i

piS(ρi ‖ σ̃i )

�
∑

i

pi min
σ̃i∈If

S(ρi ‖ σ̃i ) =
∑

i

piAl (ρi ).

This completes the proof of the proposition.
Now, we address the question of the existence of free

channels such that all of their Kraus operators are free; i.e.,
KiσK†

i is a free state if σ ∈ If for all i. We show that an
arbitrary single-mode free channel [Eq. (14)] does not admit
a Kraus decomposition such that all its Kraus operators are
free. To this end, consider a single-mode free channel which,
without loss of generality, can be defined as follows:


LT (ρS ) = TrA
[
U BS

SA

(
ρS ⊗ τA

th

)
U BS†

SA

]
, (C2)

where U BS
SA is a beam-splitter unitary and

τA
th =

∞∑
n=0

pn |n〉 〈n| =
∞∑

n=0

n̄n
τ

(n̄τ + 1)(n+1)
|n〉 〈n|

= (1 − x)
∞∑

n=0

xn |n〉 〈n| ,

where x = n̄τ /(n̄τ + 1) and n̄τ is the average number of
photons in state τth. Now,


LT (ρS ) =
∞∑

m,n=0

(√
pn 〈m|U BS

SA |n〉)ρS
(√

pn 〈n|U BS†
SA |m〉)

=
∞∑

m,n=0

Kmnρ
SK†

mn,

where Kmn = √
pn 〈m|U BS

SA |n〉. The expression for these
Kraus operators can be found readily using Ref. [51]. In par-
ticular, Kmn =∑∞

m1,n1=0
√

pn 〈m1, m|U BS
SA |n1, n〉 |m1〉 〈n1| and

〈m1, m|U BS
SA |n1, n〉

=
√

m1! m!

n1! n!

n1∑
s=0

n∑
t=0

(
n1

s

)(
n

t

)
(−1)n−t

× ηn1−s+t (
√

1 − η2)s+n−tδm,s+tδm1,n1+n−s−t ,
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where η is the transmittance of the beam splitter. Now, let us
consider the Kraus operator K00; this is given by

K00 =
∞∑

m1=0

√
p0 ηm1 |m1〉 〈m1| .

Let us consider that ρS = (1 − y)
∑∞

n=0 yn |n〉 〈n| is a thermal
state with y = n̄ρ

n̄ρ+1 . Then,

ρS
00 ≡ K00ρ

SK†
00

Tr[K00ρSK†
00]

= (1 − yη2)
∞∑

n=0

(yη2)
n |n〉 〈n|

= (1 − z)
∞∑

n=0

zn |n〉 〈n| ,

where z = yη2. Therefore, ρS
00 is indeed a thermal state.

However, K00 is the only Kraus operator that maps a thermal

state to another thermal state. Let us consider another Kraus
operator K10, which is given by

K10 =
∞∑

m1=0

√
p0

√
m1 + 1ηm1

√
1 − η2 |m1〉 〈m1 + 1| .

Now,

ρS
10 ≡ K10ρ

SK†
10

Tr[K10ρSK†
10]

=
∑∞

n=0(n + 1)η2nyn+1 |n〉 〈n|∑∞
n=0(n + 1)η2nyn+1

= (1 − yη2)
∞∑

n=0

(n + 1)(yη2)n |n〉 〈n| .

This implies that ρS
10 is not a thermal state. Therefore, for the

one-mode case, all the Kraus operators corresponding to the
most general free channel are not free.

APPENDIX D: RELATIVE ENTROPY OF LOCAL ACTIVITY FOR TWO MODES

In this section, we calculate explicitly the relative entropy of local activity for any arbitrary two-mode Gaussian state. Consider
a Gaussian state ρ1(d,���1) of two modes with covariance matrix

���1 =
(

A C
CT B

)

and the displacement vector d = (d1 d2 d3 d4)T . Consider a generic free state ρ2(0,���2) = U PG(τ1 ⊗ τ2)U PG† such that
���2 = S (b1I2 ⊕ b2I2)ST , where S is an orthogonal symplectic matrix and is given by

S =
(

R1 0
0 R2

)(
cos θI2 sin θI2

− sin θI2 cos θI2

)(
R3 0
0 R4

)
=
(

cos θR1R3 sin θR1R4

− sin θR2R3 cos θR2R4

)
.

Also, the symplectic form is given by

��� = ωωω ⊕ ωωω and ωωω =
(

0 1
−1 0

)
.

Now, the relative entropy between ρ1(d,���1) and ρ2(0,���2) is given by ([28]; also see Sec. II)

S(ρ1(d,���1) ‖ ρ2(0,���2)) = −S(ρ1) + 1

2
ln det

(
���2 + i

�

2

)
+ 1

2
Tr(���1G2) + 1

2
dT G2d := S(���1 ‖���2),

where

G2 = −���S (a1I2 ⊕ a2I2)ST��� = −SST���S (a1I2 ⊕ a2I2)ST���SST = S (a1I2 ⊕ a2I2)ST .

Here ai = 2 coth−1(2bi ), (i = 1, 2). Let us first calculate G2 and ���1G2:

G2 =
(

cos θR1R3 sin θR1R4

− sin θR2R3 cos θR2R4

)(
a1I2 0

0 a2I2

)(
cos θRT

3 RT
1 − sin θRT

3 RT
2

sin θRT
4 RT

1 cos θRT
4 RT

2

)

=
(

(a1 cos2 θ + a2 sin2 θ )I2 (a2 − a1) sin θ cos θR12

(a2 − a1) sin θ cos θRT
12 (a1 sin2 θ + a2 cos2 θ )I2

)
,

���1G2 =
(

A C
CT B

)(
(a1 cos2 θ + a2 sin2 θ )I2 (a2 − a1) sin θ cos θR12

(a2 − a1) sin θ cos θRT
12 (a1 sin2 θ + a2 cos2 θ )I2

)

=
(

(a1 cos2 θ + a2 sin2 θ )A + (a2 − a1) sin θ cos θCRT
12 (a2 − a1) sin θ cos θAR12 + (a1 sin2 θ + a2 cos2 θ )C

(a1 cos2 θ + a2 sin2 θ )CT + (a2 − a1) sin θ cos θBRT
12 (a1 sin2 θ + a2 cos2 θ )B + (a2 − a1) sin θ cos θCT R12

)
,
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where R12 = R1RT
2 and

CRT
12 =

(
c1 c2

c3 c4

)(
cos δφ − sin δφ

sin δφ cos δφ

)
=
(

c1 cos δφ + c2 sin δφ −c1 sin δφ + c2 cos δφ

c3 cos δφ + c4 sin δφ −c3 sin δφ + c4 cos δφ

)
.

Thus, denoting Tr[C] = c and c2 − c3 = υ, we have Tr[CRT
12 + CT R12] = 2c cos δφ + 2υ sin δφ. Therefore,

Tr(���1G2) = α(a1 cos2 θ + a2 sin2 θ ) + β(a1 sin2 θ + a2 cos2 θ ) + (a2 − a1) sin θ cos θ (2c cos δφ + 2υ sin δφ)

= 1
2 [(a1 + a2)(α + β ) + (a1 − a2)(α − β ) cos 2θ + 2(a2 − a1) sin 2θ (c cos δφ + υ sin δφ)],

where α = Tr[A] and β = Tr[B]. Let us now calculate det(���2 + i���
2 ):

det

(
���2 + i

���

2

)
= det

[
S (b1I2 ⊕ b2I2)ST + i

���

2

]

= det

[
(b1I2 ⊕ b2I2) + i

���

2

]
=
(

b2
1 − 1

4

)(
b2

2 − 1

4

)
.

Further, we have

dT G2d = (d1 d2 d3 d4)

(
(a1 cos2 θ + a2 sin2 θ )I2 (a2 − a1) sin θ cos θR12

(a2 − a1) sin θ cos θRT
12 (a1 sin2 θ + a2 cos2 θ )I2

)⎛⎜⎜⎝
d1

d2

d3

d4

⎞
⎟⎟⎠

= (a1 cos2 θ + a2 sin2 θ )
(
d2

1 + d2
2

)+ (a1 sin2 θ + a2 cos2 θ )
(
d2

3 + d2
4

)
+ (a2 − a1) sin 2θ [(d1d3 + d2d4) cos δφ + (d1d4 − d2d3) sin δφ]

= 1
2 [(a1 + a2)d̃1 + (a1 − a2)d̃2 cos 2θ + 2(a2 − a1) sin 2θ (d̃3 cos δφ + d̃4 sin δφ)],

where d̃1 = (d2
1 + d2

2 + d2
3 + d2

4 ), d̃2 = (d2
1 + d2

2 − d2
3 − d2

4 ), d̃3 = (d1d3 + d2d4), and d̃4 = (d1d4 − d2d3). Thus, writing the
relative entropy as a function of CMs to simplify the notation, we have

S(���1 ‖���2) = −S(ρ1) + 1

2
ln

(
b2

1 − 1

4

)
+ 1

2
ln

(
b2

2 − 1

4

)
+ 1

4
[(a1 + a2)(α + β + d̃1) + (a1 − a2)(α − β + d̃2) cos 2θ ]

+ 1

2
(a2 − a1) sin 2θ [(c + d̃3) cos δφ + (υ + d̃4) sin δφ]

= −S(ρ1) + 1

2
ln

(
b2

1 − 1

4

)
+ 1

2
ln

(
b2

2 − 1

4

)
+ 1

4
[(a1 + a2)α̃ + (a1 − a2)β̃ cos 2θ ]

+ 1

2
(a2 − a1) sin 2θ (c̃ cos δφ + υ̃ sin δφ),

where α̃ = (α + β + d̃1), β̃ = (α − β + d̃2), c̃ = (c + d̃3), and υ̃ = (υ + d̃4). We now want to minimize S(���1 ‖���2) with respect
to b1, b2, θ , and δφ = φ1 − φ2 and for that we put first derivatives of S(���1 ‖���2) with respect to b1, b2, θ , and δφ equal to zero:

∂S(���1 ‖���2)

∂b1
= −4b1 + α̃ + [β̃ cos 2θ − 2(c̃ cos δφ + υ̃ sin δφ) sin 2θ ]

1 − 4b2
1

= 0,

∂S(���1 ‖���2)

∂b2
= −4b2 + α̃ − [β̃ cos 2θ − 2(c̃ cos δφ + υ̃ sin δφ) sin 2θ ]

1 − 4b2
2

= 0,

∂S(���1 ‖���2)

∂θ
= 1

2
(a2 − a1)[β̃ sin 2θ + 2(c̃ cos δφ + υ̃ sin δφ) cos 2θ ] = 0,

∂S(���1 ‖���2)

∂δφ
= 1

2
(a2 − a1) sin 2θ (−c̃ sin δφ + υ̃ cos δφ) = 0.

To solve the above equation, we consider the following cases.
Case 1. tan δφ = υ̃/c̃, thus, cos δφ = c̃/

√
c̃2 + υ̃2 and sin δφ = υ̃/

√
c̃2 + υ̃2. In this case, tan 2θ = −2

√
c̃2 + υ̃2/β̃. This

means cos 2θ = β̃√
β̃2+4(c̃2+υ̃2 )

and sin 2θ = − 2
√

c̃2+υ̃2√
β̃2+4(c̃2+υ̃2 )

. In this case,

b1 = 1
4 [α̃ +

√
β̃2 + 4(c̃2 + υ̃2)], b2 = 1

4 [α̃ −
√

β̃2 + 4(c̃2 + υ̃2)]. (D1)
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Case 2. a1 = a2. This implies b1 = b2, i.e., tan 2θ = β̃

2(c̃ cos δφ+υ̃ sin δφ) . This implies cos 2θ = 2(c̃ cos δφ+υ̃ sin δφ)√
4(c̃ cos δφ+υ̃ sin δφ)2+β̃2

and

sin 2θ = β̃√
4(c̃ cos δφ+υ̃ sin δφ)2+β̃2

. Therefore, b1 = α̃
4 = b2.

Case 3. θ = 0; then tan δφ = −c̃/υ̃, cos δφ = υ̃/
√

c̃2 + υ̃2, and sin δφ = −c̃/
√

c̃2 + υ̃2. Here b1 = (α̃ + β̃ )/4 and b2 =
(α̃ − β̃ )/4.

Let us consider now double derivatives of S(���1 ‖���2) and construct the Hessian matrix in order to find the true minimum out
of all the above extrema:

∂2S(���1 ‖���2)

∂b2
1

= 8b1{−4b1 + α̃ + [β̃ cos 2θ − 2(c̃ cos δφ + υ̃ sin δφ) sin 2θ ]} − 4
(
1 − 4b2

1

)
(
1 − 4b2

1

)2 ,

∂2S(���1 ‖���2)

∂b1∂b2
= 0,

∂2S(���1 ‖���2)

∂b1∂θ
= − 2

1 − 4b2
1

[β̃ sin 2θ + 2(c̃ cos δφ + υ̃ sin δφ) cos 2θ ],

∂2S(���1 ‖���2)

∂b1∂δφ
= −2(−c̃ sin δφ + υ̃ cos δφ) sin 2θ

1 − 4b2
1

,

∂2S(���1 ‖���2)

∂b2
2

= 8b2{−4b2 + α̃ − [β̃ cos 2θ − 2(c̃ cos δφ + υ̃ sin δφ) sin 2θ ]} − 4
(
1 − 4b2

2

)
(
1 − 4b2

2

)2 ,

∂2S(���1 ‖���2)

∂b2∂θ
= 2

1 − 4b2
2

[β̃ sin 2θ + 2(c̃ cos δφ + υ̃ sin δφ) cos 2θ ],
∂2S(���1 ‖���2)

∂b2∂δφ
= 2(−c̃ sin δφ + υ̃ cos δφ) sin 2θ

1 − 4b2
2

,

∂2S(���1 ‖���2)

∂θ2
= (a2 − a1)[β̃ cos 2θ − 2(c̃ cos δφ + υ̃ sin δφ) sin 2θ ],

∂2S(���1 ‖���2)

∂θ∂δφ
= (a2 − a1)(−c̃ sin δφ + υ̃ cos δφ) cos 2θ,

∂2S(���1 ‖���2)

∂δφ2
= −1

2
(a2 − a1)(c̃ cos δφ + υ̃ sin δφ) sin 2θ.

For case 1, we have

∂2S(���1 ‖���2)

∂b2
1

= 4(
4b2

1 − 1
) , ∂2S(���1 ‖���2)

∂b1∂b2
= 0,

∂2S(���1 ‖���2)

∂b1∂θ
= 0,

∂2S(���1 ‖���2)

∂b1∂δφ
= 0,

∂2S(���1 ‖���2)

∂b2
2

= 4(
4b2

2 − 1
) , ∂2S(���1 ‖���2)

∂b2∂θ
= 0,

∂2S(���1 ‖���2)

∂b2∂δφ
= 0,

∂2S(���1 ‖���2)

∂θ2
= (a2 − a1)

√
β̃2 + 4(c̃2 + υ̃2),

∂2S(���1 ‖���2)

∂θ∂δφ
= 0,

∂2S(���1 ‖���2)

∂δφ2
= (a2 − a1)(c̃2 + υ̃2)√

β̃2 + 4(c̃2 + υ̃2)
.

All eigenvalues of the corresponding Hessian are positive, so this case corresponds to a minimum. Let the solution correspond
to (b1, b2, θ, δφ) = (b∗

1, b∗
2, θ

∗, δφ∗); then

S(���1 ‖���2) = −S(ρ1) + 1

2
ln

(
b∗2

1 − 1

4

)
+ 1

2
ln

(
b∗2

2 − 1

4

)
+ 1

4
(a∗

1 + a∗
2 )α̃

+ 1

4
(a∗

1 − a∗
2 )[β̃ cos 2θ∗ − 2(c̃ cos δφ∗ + υ̃ sin δφ∗) sin 2θ∗]

= −S(ρ1) + 1

2
ln

(
b∗2

1 − 1

4

)
+ 1

2
ln

(
b∗2

2 − 1

4

)
+ a∗

1b∗
1 + a∗

2b∗
2

= −S(ρ1) + 1

2

2∑
i=1

[
ln

(
b∗

i + 1

2

)
+ ln

(
b∗

i − 1

2

)]
+

2∑
i=1

[
b∗

i ln

(
b∗

i + 1

2

)
− b∗

i ln

(
b∗

i − 1

2

)]

= −S(ρ1) +
2∑

i=1

(
b∗

i + 1

2

)
ln

(
b∗

i + 1

2

)
−
(

b∗
i − 1

2

)
ln

(
b∗

i − 1

2

)
=

2∑
i=1

[g(b∗
i ) − g(νi )].
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For case 2, we have

∂2S(���1 ‖���2)

∂b2
1

= 4(
4b2

1 − 1
) , ∂2S(���1 ‖���2)

∂b1∂b2
= 0,

∂2S(���1 ‖���2)

∂b1∂θ
= 2

4b2
1 − 1

√
4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2,

∂2S(���1 ‖���2)

∂b1∂δφ
= − 2β̃(−c̃ sin δφ + υ̃ cos δφ)

(1 − 4b2
1)
√

4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2
,

∂2S(���1 ‖���2)

∂b2
2

= 4(
4b2

1 − 1
) ,

∂2S(���1 ‖���2)

∂b2∂θ
= − 2

4b2
1 − 1

√
4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2,

∂2S(���1 ‖���2)

∂b2∂δφ
= 2β̃(−c̃ sin δφ + υ̃ cos δφ)

(1 − 4b2
1)
√

4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2
,

∂2S(���1 ‖���2)

∂θ2
= 0,

∂2S(���1 ‖���2)

∂θ∂δφ
= 2(a2 − a1)(c̃ cos δφ + υ̃ sin δφ)(−c̃ sin δφ + υ̃ cos δφ)√

4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2
,

∂2S(���1 ‖���2)

∂δφ2
= β̃(a2 − a1)(c̃ cos δφ + υ̃ sin δφ)

2
√

4(c̃ cos δφ + υ̃ sin δφ)2 + β̃2
.

Since in this case the angle δφ does not affect the minimization, we can choose it as per our convenience. Without any loss of
generality, we choose tan δφ = −c̃/υ̃, which implies cos δφ = υ̃/

√
c̃2 + υ̃2 and sin δφ = −c̃/

√
c̃2 + υ̃2. The Hessian matrix in

this case becomes

H∗ = 1

4b2
1 − 1

⎛
⎜⎜⎜⎝

4 0 2β̃ −2w̃

0 4 −2β̃ 2w̃

2β̃ −2β̃ 0 0
−2w̃ 2w̃ 0 0

⎞
⎟⎟⎟⎠,

where w̃ = √
c̃2 + υ̃2. This matrix has eigenvalues 2

4b2
1−1

{2, 0, 1 −
√

1 + 2β̃2 + 2w̃2, 1 +
√

1 + 2β̃2 + 2w̃2}. Since there exists
a negative eigenvalue of the Hessian, therefore, this case does not correspond to a minimum.

For case 3, we have ∂2S(���1 ‖���2 )
∂b2

1
= 4

4b2
1−1

, ∂2S(���1 ‖���2 )
∂b1∂b2

= 0, ∂2S(���1 ‖���2 )
∂b1∂θ

= 0, ∂2S(���1 ‖���2 )
∂b1∂δφ

= 0, ∂2S(���1 ‖���2 )
∂b2

2
= 1

4b2
2−1

, ∂2S(���1 ‖���2 )
∂b2∂θ

= 0,
∂2S(���1 ‖���2 )

∂b2∂δφ
= 0, ∂2S(���1 ‖���2 )

∂θ2 = (a2 − a1)β̃, ∂2S(���1 ‖���2 )
∂θ∂δφ

= (a2 − a1)
√

c̃2 + υ̃2, and ∂2S(���1 ‖���2 )
∂δφ2 = 0. The eigenvalues of the Hessian

matrix in this case are { 4
4b2

1−1
, 4

4b2
2−1

, a2−a1
2 [β̃ ±

√
β̃2 + 4(c̃2 + υ̃2)]}. So, one eigenvalue is always negative in this case.

Therefore, this case also does not correspond to a minimum. Thus, the above analysis shows that the only minimum of relative
entropy S(���1 ‖���2) is given by case 1. Therefore, for a Gaussian state ρ(���, d), the relative entropy of local activity is given by

Al (ρ) =
2∑

i=1

[g(b∗
i ) − g(νi )],

where νi (i = 1, 2) are symplectic eigenvalues of covariance matrix ��� of ρ, and b∗
i (i = 1, 2) are given by Eq. (D1).
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