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Two-boson quantum interference in time
Nicolas J. Cerfa,1 and Michael G. Jabbourb

aCentre for Quantum Information and Communication, Ecole polytechnique de Bruxelles, Université libre de Bruxelles, 1050 Bruxelles, Belgium;
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The celebrated Hong–Ou–Mandel effect is the paradigm of two-
particle quantum interference. It has its roots in the symmetry of
identical quantum particles, as dictated by the Pauli principle. Two
identical bosons impinging on a beam splitter (of transmittance
1/2) cannot be detected in coincidence at both output ports, as
confirmed in numerous experiments with light or even matter.
Here, we establish that partial time reversal transforms the beam
splitter linear coupling into amplification. We infer from this dual-
ity the existence of an unsuspected two-boson interferometric
effect in a quantum amplifier (of gain 2) and identify the underly-
ing mechanism as time-like indistinguishability. This fundamental
mechanism is generic to any bosonic Bogoliubov transformation,
so we anticipate wide implications in quantum physics.

quantum interference | boson bunching | time reversal

The laws of quantum physics govern the behavior of identical
particles via the symmetry of the wave function, as dictated

by the Pauli principle (1). In particular, it has been known since
Bose and Einstein (2) that the symmetry of the bosonic wave
function favors the so-called bunching of identical bosons. A
striking demonstration of bosonic statistics for a pair of iden-
tical bosons was achieved in 1987 in a seminal experiment by
Hong, Ou, and Mandel (HOM) (3), who observed the cancel-
lation of coincident detections behind a 50:50 beam splitter (BS)
when two indistinguishable photons impinge on its two input
ports (Fig. 1A). This HOM effect follows from the destructive
two-photon interference between the probability amplitudes for
double transmission and double reflection at the BS (Fig. 1B).
Together with the Hanbury Brown and Twiss effect (4, 5) and
the violation of Bell inequalities (6, 7), it is often viewed as the
most prominent genuinely quantum feature: it highlights the sin-
gularity of two-particle quantum interference as it cannot be
understood in terms of classical wave interference (8, 9). It has
been verified in numerous experiments over the last 30 y (see,
e.g., refs. 10–13), even in case the single photons are simulta-
neously emitted by two independent sources (14–16) or within
a silicon photonic chip (17, 18). Remarkably, it has even been
experimentally observed with 4He metastable atoms, demon-
strating that this two-boson mechanism encompasses both light
and matter (19).

Here, we explore how two-boson quantum interference trans-
forms under reversal of the arrow of time in one of the two
bosonic modes (Fig. 2A). This operation, which we dub par-
tial time reversal (PTR), is unphysical but nevertheless cen-
tral as it allows us to exhibit a duality between the linear
optical coupling effected by a BS and the nonlinear optical
(Bogoliubov) transformation effected by a parametric amplifier.
As a striking implication of these considerations, we predict a
two-photon interferometric effect in a parametric amplifier of
gain 2 (which is dual to a BS of transmittance 1/2). We argue
that this unsuspected effect originates from the indistinguisha-
bility between photons from the past and future, which we coin
“time-like” indistinguishability as it is the partial time-reversed
version of the usual “space-like” indistinguishability that is at
work in the HOM effect.

Since Bogoliubov transformations are ubiquitous in quantum
physics, it is expected that this two-boson interference effect in

time could serve as a test bed for a wide range of bosonic trans-
formations. Furthermore, from a deeper viewpoint, it would be
fascinating to demonstrate the consequence of time-like indistin-
guishability in a photonic or atomic platform as it would help in
elucidating some heretofore overlooked fundamental property
of identical quantum particles.

Hong–Ou–Mandel Effect
The HOM effect is a landmark in quantum optics as it is
the most spectacular manifestation of boson bunching. It is a
two-photon intrinsically quantum interference effect where the
probability amplitude of both photons being transmitted cancels
out the probability amplitude of both photons being reflected.
A 50:50 BS effects the single-photon transformations (for
details, see Materials and Methods, Gaussian Unitaries for a BS
and PDC)

|1〉a→
1√
2

(|1〉a︸︷︷︸
trans

− |1〉b︸︷︷︸
ref

), |1〉b→
1√
2

(|1〉a︸︷︷︸
ref

+ |1〉b︸︷︷︸
trans

), [1]

where a and b label the bosonic modes and |1〉a/b stands for
a single-photon state in mode a/b (here, “trans” stands for
transmitted and “ref” for reflected). Hence, the state of two
indistinguishable photons (one in each mode) transforms as

|1〉a |1〉b→
1√
2

(|1〉a |1〉a − |1〉b |1〉b) [2]

since the double-transmission term |1〉a |1〉b cancels out the
double-reflection term |1〉b |1〉a . More generally, the probability
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Fig. 1. (A) If two indistinguishable photons (represented in red and green
for the sake of argument) simultaneously enter the two input ports of
a 50:50 BS, they always exit the same output port together (no coinci-
dent detection can be observed). (B) The probability amplitudes for double
transmission (Left) and double reflection (Right) precisely cancel each other
when the transmittance is equal to 1/2. This is a genuinely quantum effect,
which cannot be described as a classical wave interference. (C) The correla-
tion function exhibits an HOM dip when the time difference ∆t between
the two detected photons is close to zero (i.e., when they tend to be
indistinguishable).

for coincident detections is given by (for details, see Materials
and Methods, Two-Photon Interference in a BS and PDC)

Pcoinc(η) = | 〈1, 1|UBS
η |1, 1〉 |2 = (2η− 1)2, [3]

where UBS
η denotes the unitary corresponding to a BS of

transmittance η. In a nutshell, the HOM effect boils down to
〈1, 1|UBS

1/2 |1, 1〉= 0. Its experimental manifestation is the pres-
ence of a dip in the correlation function, witnessing that two
photons cannot be coincidently detected at the two output ports
when η= 1/2 (Fig. 1C).

Partial Time Reversal
Bogoliubov transformations on two bosonic modes comprise
passive and active transformations. The BS is the fundamen-
tal passive transformation, while parametric down conversion
(PDC) gives rise to the class of active transformations (also
called nondegenerate parametric amplification). Although the
involved physics is quite different (a simple piece of glass makes
a BS, while an optically pumped nonlinear crystal is needed to
effect PDC), the Hamiltonians generating these two unitaries are
amazingly close, namely

HBS = i(â†b̂− â b̂†), HPDC = i(â†b̂†− â b̂), [4]

where â and b̂ are mode operators. It is striking that a simple
swap b̂↔ b̂† transforms HBS into HPDC, suggesting a deep dual-
ity between a BS and a PDC by reversing the arrow of time in
mode b̂ (keeping mode â untouched).

The underlying concept of PTR will be formalized in Eq. 7,
but we first illustrate this duality between a BS and PDC with
the simple example of Fig. 2A, where n photons impinge on port
b̂ of a BS (with vacuum on port â), resulting in the binomial
output state

UBS
η |0,n〉=

n∑
k=0

(
n

k

)1/2

(sin θ)k (cos θ)n−k |k ,n − k〉 , [5]

with η= cos2 θ (see Gaussian Unitaries for a BS and PDC). The
path where all photons are reflected (k =n) is associated with
the transition probability amplitude 〈n, 0|UBS

η |0,n〉= sinn θ.
Reversing the arrow of time on mode b̂ (Fig. 2A) leads us to
consider the transition probability amplitude for a PDC of gain
g = cosh2 r with vacuum state on its two inputs and n photon
pairs on its outputs, that is, 〈n,n|UPDC

g |0, 0〉= tanhn r/ cosh r

A

B

Fig. 2. (A) BS under PTR, flipping the arrow of time in mode b̂. The PTR
duality is illustrated when n photons impinge on port b̂ (with vacuum
on port â), and we condition on all photons being reflected. The retro-
dicted state of mode b̂′ (initially the vacuum state |0〉) back propagates
from the detector to the source (suggested by a wavy arrow). This yields
the same transition probability amplitude (up to a constant) as for a PDC
of gain g = 1/η with input state |0, 0〉 and output state |n, n〉. PDC is an
active Bogoliubov transformation, requiring a pump beam (represented in
blue). Note that the PTR duality is rigorously valid when this pump beam
is of high intensity (i.e., treated as a classical light beam) since the Hamil-
tonian HPDC of Eq. 4 holds in this limit only. (B) Operational view of the
PTR duality. As noted in ref. 20, if we prepare the entangled (EPR) state
|Ψ〉

b,b′′ ∝
∑∞

n=0 |n, n〉 and send mode b̂ in the BS, we get the output state

|Ψ〉
a′ ,b′′ ∝

∑∞
n=0 sinnθ |n, n〉, which is precisely the two-mode squeezed vac-

uum state produced by PDC when the signal and idler modes are initially in
the vacuum state.

33108 | www.pnas.org/cgi/doi/10.1073/pnas.2010827117 Cerf and Jabbour
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(see Gaussian Unitaries for a BS and PDC). Strikingly, the above
two amplitudes can be made equal (up to a constant cosh r) if we
set sin θ= tanh r or equivalently, η= 1/g . Thus, we have

〈n,n|UPDC
g |0, 0〉= g−1/2 〈n, 0|UBS

1/g |0,n〉 . [6]

The case of m photons (instead of vacuum) impinging on port â
and n photons impinging on port b̂ is illustrated in Materials and
Methods, Example of PTR. Conditioning again the output port b̂′

on vacuum and reversing the arrow of time, we obtain the same
output as for a PDC of gain g = 1/η with input state |m, 0〉.

These examples reflect the existence of a general duality
between a BS and PDC. Indeed, as demonstrated in Materials
and Methods, Proof of PTR Duality, partial transposition in Fock
basis gives rise to PTR duality

〈n, j |UPDC
g |i ,m〉= g−1/2 〈n,m|UBS

1/g |i , j 〉 , [7]

where indices j and m have been swapped (this can alternatively
be expressed as Eq. 24 or 25). The PTR duality is nicely evi-
denced by the conservation rules exhibited by the BS and PDC
transformations: the former conserves the total photon number,
while the latter conserves the difference between the photon
numbers. In Eq. 7, the only nonzero matrix elements for a BS
are those satisfying i + j =n +m . This directly implies that the
only nonzero matrix elements for a PDC satisfy i −m =n − j , as
expected.

The notion of time reversal can be conveniently interpreted
using the so-called “retrodictive” picture of quantum mechanics
(21). Along this line, PTR must be understood here as the fact
that the “retrodicted” state of mode b̂ propagates backward in
time, while the state of mode â normally propagates forward in
time (this is made precise in Materials and Methods, Retrodictive
Picture of Quantum Mechanics). As shown in Fig. 2B, the PTR
duality can be made operational by sending half of a so-called
Einstein–Podoslky–Rosen (EPR) entangled state on mode b̂,
so that we access the output retrodicted state on the second
entangled mode b̂

′′
.

Two-Boson Interference in an Amplifier
Due to this duality, the HOM effect for a BS of transmittance
1/2 immediately suggests the possible existence of a related
interferometric suppression effect in a PDC of gain 2, namely
〈1, 1|UPDC

2 |1, 1〉= 0. This striking prediction can indeed be ver-
ified by examining the state at the output of a PDC of gain g = 2
(see Two-Photon Interference in a BS and PDC):

|Ψ〉≡UPDC
2 |1, 1〉= 1

2

∞∑
n=0

n − 1

2n/2
|n,n〉 . [8]

As it appears, the component with a single photon on each out-
put mode (n = 1) is indeed suppressed, which is reminiscent of
the HOM effect. However, the structure of |Ψ〉 is more compli-
cated here as the PDC (unlike the BS) does not conserve the
total photon number; hence, we observe terms with n ≥ 2 pho-
tons on each mode. The distribution of the photon pair number
is illustrated in Fig. 3A.

The dependence of the probability of detecting a single pair
(n = 1) on the gain g of PDC is given by (see Two-Photon
Interference in a BS and PDC)

P ′coinc(g) = | 〈1, 1|UPDC
g |1, 1〉 |2 = (2− g)2/g3, [9]

confirming that the probability for coincident detections vanishes
if the gain g = 2. Note that if we substitute η by 1/g in Eq. 3
and divide by g , we get exactly Eq. 9, as implied by PTR dual-
ity. More generally, we show in Materials and Methods, Extension

to a PDC with Integer Gain that this interferometric suppression
effect actually extends to any larger integer value of the gain (e.g.,
g = 3, 4, · · · ). As illustrated in Fig. 3B, the probability of detect-
ing n photons simultaneously on each output port vanishes when
the gain g =n + 1. Again, this is the consequence of PTR duality
applied to an extended HOM effect.

Space-Like vs. Time-Like Indistinguishability
The origin of the two-boson quantum interference effect that
we predict can be traced back to boson indistinguishability,
similarly as for the HOM effect albeit in a time-like version
(involving bosons from the past and future). We first recall
that the HOM effect originates from what can be viewed
as space-like indistinguishability (Fig. 4, Upper). When two
photons impinge on a BS of transmittance η, each photon
has a probability amplitude

√
η of being transmitted, so the

double-transmission amplitude is Adt = η. In contrast, the prob-
ability amplitude of reflection is

√
1− η but with opposite

signs for the two photons, so the double-reflection ampli-
tude is Adr =−(1− η). Since a double-transmission event is

A

B

Fig. 3. (A) Probability Pn of observing n photon pairs at the output of a
PDC of gain g = 2 when a single photon impinges on both the signal and
idler input ports. The output state

UPDC
2 |1, 1〉=

1

2

(
−|0, 0〉+

√
1

4
|2, 2〉+

√
1

2
|3, 3〉

+

√
9

16
|4, 4〉+

√
1

2
|5, 5〉+ · · ·


has a vanishing |1, 1〉 component, owing from two-photon interferometric
suppression. The significant components are the vacuum as well as the terms
with 2 to∼10 pairs (the next terms quickly decay to zero). (B) Corresponding
distributions of the photon pair number for a gain g = 3 (showing a dip at
n = 2) and g = 4 (showing a dip at n = 3). The distributions are shown as
continuous curves in order to guide the eye, but only integer values of n are
relevant. The curve for g = 2 is also plotted for comparison.
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indistinguishable from a double-reflection event, we must add
probability amplitudes, leading to |Adt +Adr|2 =Pcoinc(η). The
double-transmission and double-reflection amplitudes exactly
cancel out for η= 1/2, which originates from the fact that an
exchange of the two indistinguishable photons in space (which
turns a double-transmission into a double-reflection event)
cannot lead to any observable consequence.

We now argue that it is the exchange of indistinguishable pho-
tons in time that is responsible for the interference effect in
an amplifier (Fig. 4, Lower). When two photons impinge on a
PDC with gain g , they can be both transmitted without trigger-
ing a stimulated event, which is dual to the double transmission
in a BS (where η is substituted by 1/g). Hence, the double-
transmission amplitude in a PDC is A′dt = g−1/2Adt = 1/g3/2.
Another possible path giving rise to the coincident detection of
two single photons is the combination of the stimulated anni-
hilation and emission of a pair of photons, which is dual to
the double reflection in a BS. This double-stimulated event
admits a probability amplitude A′st = g−1/2Adr =−(g − 1)/g3/2,
where the minus sign results from the fact that the probability
amplitude that the input pair disappears by stimulated annihi-
lation and the probability amplitude that a new pair is created
by stimulated emission have opposite signs. Again, since the
double-transmission and double-stimulated events are indistin-
guishable, we must add their probability amplitudes and get
|A′dt +A′st|2 =P ′coinc(g), which vanishes when g = 2. Roughly
speaking, we cannot know whether the “old” photons have been
replaced by “new” photons or have been left unchanged, which
we dub time-like indistinguishability.

Discussion and Conclusion
The role of time reversal in quantum physics has long been a
fascinating subject of questioning (see, e.g., ref. 22 and refer-
ences therein), but the key idea of the present work is to consider
a bipartite quantum system (two bosonic modes) with counter-
propagating times. Incidentally, we note that the notion of time

Fig. 4. The HOM effect (Upper) is due to space-like indistinguishability:
the double-transmission path (of amplitude Adt) where the two photons
are transmitted interferes destructively with the double-reflection path (of
amplitude Adr) where the two photons are reflected. Exchanging the two
photons in space leads to the HOM effect in a BS of transmittance η= 1/2.
According to PTR duality (by reversing the arrow of time in the second
mode; Lower), the two interfering paths in a PDC correspond to the double-
transmission event associated with amplitude A′dt (the two photons simply
cross the PDC) and double-stimulated event of amplitude A′st (the input
photon pair is up converted into the pump beam, and another pump pho-
ton is down converted into a new photon pair). Exchanging the photon
pairs in time induces a time-like interferometric suppression in a PDC of
gain g = 2.

reversal has been exploited in the context of defining separability
criteria (23, 24), but this seems to be unrelated to PTR duality.
Further, the link between time reversal and optical-phase con-
jugation has been mentioned in the quantum optics literature
(see, e.g., ref. 25), but it exploits the fact that the complex con-
jugate of an electromagnetic wave is the time-reversed solution
of the wave equation (the phase conjugation time-reversal mir-
ror concerns one mode only). The PTR duality introduced here
bears some resemblance with an early model of lasers (26) based
on the coupling of an “inverted” harmonic oscillator (having a
negative frequency ω) with a heat bath. The inverted harmonic
oscillator (e−iωt→ eiωt ) can indeed be viewed as a time-reversed
harmonic oscillator. Quantum amplification in this model occurs
from a PDC-like coupling of this inverted harmonic oscillator,
whereas quantum damping follows from the BS-like coupling of
a usual harmonic oscillator with the bath. The PTR duality is
also reminiscent of Klyshko’s so-called “advanced-wave picture”
in PDC (27), which provides an interpretation of coincidence-
based two-photon experiments: the wave that is detected by one
of the detectors behind PDC can be viewed as resulting from
an “advanced wave” emitted by the second detector, so that
PDC acts as a mirror (28). This picture may indeed be inter-
preted as a special case of Eq. 25, namely 〈0, 0|UPDC

g |ψ,φ〉=
g−1/2 〈0,φ∗|UBS

1/g |ψ, 0〉. In the limit where the gain g→∞, the
two outputs of PDC can be viewed as the input ψ and output φ∗

of a fully reflecting (phase-conjugating) mirror with η→ 0.
In this work, we have promoted PTR as the proper way to

approach the duality between passive and active bosonic trans-
formations. As a compelling application of PTR duality, we
have unveiled a hitherto unknown quantum interference effect,
which is a manifestation of quantum indistinguishability for
identical bosons in active transformations (space-like indistin-
guishability, which is at the root of the HOM effect, transforms
under PTR into time-like indistinguishability). The interferomet-
ric suppression of the coincident |1, 1〉 term is induced by the
indistinguishability between a photon pair originating from the
past and a photon pair going to the future. Stated more dramati-
cally, while the two photons may cross the amplification medium
and be detected, the sole fact that they could instead be anni-
hilated and replaced by two other photons makes the detection
probability drop to zero when g = 2.

The experimental verification of this effect can be envisioned
with present technologies (see Experimental Scheme). A coinci-
dence probability lower than 25% would be sufficient to rule out
a classical interpretation, which could in principle be reached
with a moderate gain of 1.28 (see Classical Baseline). Observ-
ing time-like two-photon interference in experiments involving
active optical components would then be a highly valuable
metrology tool given that the HOM dip is commonly used
today as a method to benchmark the reliability of single-particle
sources and mode matching. More generally, the interference of
many photons scattered over many modes in a linear optical net-
work has generated a tremendous interest in the recent years,
given the connection with the “boson sampling” problem [i.e.,
the hardness of computing the permanent of a random matrix
(29)], and technological progress in integrated optics now makes
it possible to access large optical circuits (see, e.g., ref. 30). In
this context, it would be exciting to uncover new consequences of
PTR duality and time-like interference.

Finally, we emphasize that our analysis encompasses all
bosonic Bogoliubov transformations, which are widespread in
physics, appearing in quantum optics, quantum field theory, or
solid-state physics, but also in black hole physics or even in the
Unruh effect (describing an accelerating reference frame). This
suggests that time-like quantum interference may occur in vari-
ous physical situations where identical bosons participate in such
a transformation. Beyond bosons, let us point out an intriguing

33110 | www.pnas.org/cgi/doi/10.1073/pnas.2010827117 Cerf and Jabbour

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ja
nu

ar
y 

29
, 2

02
1 

https://www.pnas.org/cgi/doi/10.1073/pnas.2010827117


PH
YS

IC
S

connection with the notion of “crossing” in quantum electrody-
namics (31, 32). Crossing symmetry refers to a substitution rule
connecting two scattering matrix elements that are related by
a Wick rotation (antiparticles being turned into particles going
backward in time). For example, the scattering of a photon by an
electron (Compton scattering) and the creation of an electron–
positron pair by two photons are processes that are related to
each other by such a substitution rule (see, e.g., ref. 33). This
is in many senses analogous to the PTR duality described here:
since a photon (or truly neutral boson) is its own antiparticle,
we may view PTR duality as a substitution rule connecting the
BS diagram to the PDC diagram. We hope that this connec-
tion with quantum electrodynamics may open up even broader
perspectives.

Materials and Methods
Gaussian Unitaries for a BS and PDC. Passive and active Gaussian unitaries
are effected by linear optical interferometry or parametric amplification,
respectively (34). The fundamental passive two-mode Gaussian unitary,
namely the BS unitary

UBS
η = exp

[
θ(â†b̂− âb̂†)

]
, η= cos2

θ, [10]

effects an energy-conserving linear coupling between modes â and b̂ and
acts in the Heisenberg picture as

â→ â′ = UBS†
η â UBS

η = â cos θ+ b̂ sin θ,

b̂→ b̂′ = UBS†
η b̂ UBS

η =−â sin θ+ b̂ cos θ,
[11]

where â and b̂ are the mode operators and η is the transmittance (0≤ η≤
1). Similarly, the unitary

UPDC
g = exp

[
r(â†b̂†− âb̂)

]
, g = cosh2 r, [12]

models the generation of pairs of entangled photons by PDC due to the
optical pumping of a nonlinear crystal. It transforms the mode operators
according to the Bogoliubov transformation

â→ â′ = UPDC†
g â UPDC

g = â cosh r + b̂† sinh r,

b̂→ b̂′ = UPDC†
g b̂ UPDC

g = â† sinh r + b̂ cosh r,
[13]

where g is the parametric gain (g≥ 1) and r is the squeezing parameter. The
photon number difference is conserved by the PDC transformation, namely
â′†â′− b̂′†b̂′ = â†â− b̂†b̂.

The action of UBS
η on Fock states can be expressed by using the

decomposition of the exponential

UBS
η = exp

(
â†b̂ tan θ

)( 1

cos θ

)̂a† â−b̂† b̂

× exp
(
−âb̂† tan θ

)
. [14]

Alternatively, it can easily be computed by using the canonical transforma-
tion, Eq. 11. For example, when n photons impinge on one of the input
ports, each photon may be transmitted or reflected, so we get the binomial
state

UBS
η |n, 0〉=

(â† cos θ− b̂† sin θ)n

√
n!

UBS
η |0, 0〉

=
n∑

k=0

(n

k

)1/2
(cos θ)k(− sin θ)n−k |k, n− k〉 [15]

or

UBS
η |0, n〉=

(â† sin θ+ b̂† cos θ)n

√
n!

UBS
η |0, 0〉

=
n∑

k=0

(n

k

)1/2
(sin θ)k(cos θ)n−k |k, n− k〉. [16]

The action of UPDC
g on Fock states can be conveniently expressed by use of

the disentanglement formula,

UPDC
g = exp

(
â†b̂† tanh r

)( 1

cosh r

)1+â† â+b̂† b̂

× exp
(
−âb̂ tanh r

)
. [17]

For example, the two-mode squeezed vacuum state is obtained by applying
UPDC

g onto the vacuum state, namely

UPDC
g |0, 0〉=

1

cosh r

∞∑
n=0

tanhn r |n, n〉, [18]

where the nth term in the right-hand side corresponds to the stimulated
emission of n photon pairs. In the more general case where m photons are
impinging into mode â (with vacuum in the other input mode), we have

UPDC
g |m, 0〉=

1

(cosh r)m+1

∞∑
n=0

(n + m

m

)1/2

× tanhn r |n + m, n〉, [19]

where each term corresponds again to the stimulated emission of n photon
pairs, with m extra photons traveling in mode â.

Example of PTR. We illustrate the PTR duality between a BS and PDC by con-
sidering the additional example of a BS with m photons impinging on input
port â and n photons impinging on input port b̂ (Fig. 5A). If we condition
on the vacuum on mode b̂′ at the output of the BS, the (unnormalized)
conditional output state of mode â′ is

|φn〉=
(n + m

m

)1/2
sinn

θ cosm
θ |n + m〉. [20]

Hence, we have the probability amplitude

〈n + m, 0|UBS
η |m, n〉=

(n + m

m

)1/2
sinn

θ cosm
θ. [21]

The special case m = 0 is considered in the text (Fig. 2) and corresponds to
|φn〉= sinnθ |n〉. By reversing the arrow of time on mode b̂, we compare the
probability amplitude of Eq. 21 with the probability amplitude

〈n + m, n|UPDC
g |m, 0〉=

(n + m

m

)1/2 tanhn r

(cosh r)m+1
[22]

for a PDC of gain g (Eq. 19). Now, if we make the substitution sin θ= tanh r
and cos θ= (cosh r)−1, which is equivalent to g = 1/η, we confirm that Eqs.
21 and 22 are dual under PTR, namely

〈n + m, n|UPDC
g |m, 0〉=

1
√

g
〈n + m, 0|UBS

1/g |m, n〉. [23]

As shown in Fig. 5B, if the input mode b̂ is entangled (that is, if we
use the entangled state |Ψ〉

b,b′′ ∝
∑∞

n=0 |n, n〉), we get the output state
|Ψ〉

a′ ,b′′ ∝
∑∞

n=0 |φn, n〉, which is precisely proportional to the output of
a PDC when the signal and idler modes are initially in states |m〉 and |0〉,
respectively (Eq. 19).

Proof of PTR Duality. The PTR duality is illustrated in Table 1 for few pho-
tons. As expressed by Eq. 7, it can be viewed as a consequence of partial
transposition of the state of mode b̂ (leaving mode â unchanged), namely
the fundamental relation (

UPDC
g

)Tb
=

1
√

g
UBS

1/g, [24]

where Tb stands for transposition in the Fock basis of the Hilbert space asso-
ciated with mode b̂. This is sketched in Fig. 6A and can also be interpreted
by comparing the unitaries UBS

η and UPDC
g in Eqs. 10 and 12 or their corre-

sponding decompositions, Eqs. 14 and 17. In general terms, we may say that
the (passive) linear coupling of two bosonic modes is dual, under PTR, to an
(active) Bogoliubov transformation, which is expressed as

〈φa,φb|U
PDC
g |ψa,ψb〉=

1
√

g

〈
φa,ψb*

∣∣UBS
1/g

∣∣ψa,φb*
〉

[25]

for any states ψa, ψb, φa, and φb, where * denotes the complex conjuga-
tion in the Fock basis. In Fig. 6B, the corresponding operational scheme is
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A

B

Fig. 5. (A) PTR duality in a more general case with m and n photons
impinging on modes â and b̂ of a BS. By conditioning the output mode
b̂′ on vacuum and reversing the arrow of time, we get the same transi-
tion probability amplitude (up to a constant) as for a PDC of gain g = 1/η
with input state |m, 0〉 and output state |n + m, n〉. (B) Corresponding oper-
ational scheme using an entangled (EPR) state at the input of mode b̂. This
makes it possible to access the output retrodicted state on mode b̂

′′
.

depicted, relying on the preparation of an entangled (EPR) state at the input
of mode b̂ and the projection onto an entangled (EPR) state at the output
of mode b̂′.

We now prove PTR duality by reexpressing Eq. 24 in the Heisenberg
picture, namely

VTa â VTb = (â cos θ+ b̂ sin θ)/g,

VTa b̂ VTb = (b̂ cos θ− â sin θ)/g,
[26]

where V ≡UPDC
g . Note that â and b̂ are real operators in Fock basis;

hence, the same is true for V . Therefore, we have â† = aT , b̂† = bT , and
V† = VT , where T stands for transposition in Fock basis. Obviously, we
have (VTb )T = VTa . By using the identity ((A⊗ B)M)Tb = (A⊗ 1)MTb (1⊗ BT ),
where 1 represents the identity operator, we express âPTR≡VTa â VTb as

VTa (â V)Tb = VTa (VV†â V)Tb

= VTa [V(â cosh r + b̂† sinh r)]Tb

= VTa VTb â cosh r + VTa b̂ VTb sinh r. [27]

Equivalently, using ((A⊗ B)M)Ta = (1⊗ B)MTa (AT ⊗ 1), we may also reex-
press âPTR as

(â†V)Ta VTb = (VV†â†V)Ta VTb

= [V(â† cosh r + b̂ sinh r)]Ta VTb

= â VTa VTb cosh r + VTa b̂ VTb sinh r. [28]

Defining the operators b̂PTR≡VTa b̂ VTb , W ≡VTa VTb , and identifying
Eq. 27 with Eq. 28, we see that

âPTR = â W cosh r + b̂PTR sinh r, [W , â] = 0. [29]

We can perform a similar development starting from b̂PTR, resulting in

b̂PTR = b̂ W cosh r− âPTR sinh r, [W , b̂] = 0. [30]

Now, solving Eqs. 29 and 30 for âPTR and b̂PTR, we get

âPTR = â W cos θ+ b̂ W sin θ,

b̂PTR = b̂ W cos θ− â W sin θ,
[31]

where we have made the substitutions cosh r = (cos θ)−1 and sinh r = tan θ.

Similar equations can be derived starting from VTa â† VTb and VTa b̂† VTb ,
which imply that the operator W also commutes with â† and b̂†. Hence, W
is a scalar (proportional to 1), and it is sufficient to compute its diagonal
matrix element in an arbitrary state (e.g., |0, 0〉). Recalling that V† = VT , we
have W = (V†)Tb VTb , so that

〈0, 0|W |0, 0〉=
∞∑

k,l=0

〈0, 0| (V†)Tb |k, l〉 〈k, l|VTb |0, 0〉

=
∞∑

k,l=0

〈0, l|V† |k, 0〉 〈k, 0|V |0, l〉

= |〈0, 0|V |0, 0〉 |2

= 1/g. [32]

Substituting W with 1/g in Eq. 31, we get Eq. 26, which concludes the proof
of Eq. 24.

Note that PTR duality can be reexpressed by using the identity

Tr
[
Uab

(
X̂a⊗ X̂b

)
U†ab

(
Ŷa⊗ Ŷb

)]
= Tr

[
U

Tb
ab

(
X̂a⊗ ŶT

b

)(
U

Tb
ab

)
†
(

Ŷa⊗ X̂T
b

)]
,

[33]

which is valid for any joint unitary Uab and for any operators X̂a(b) and Ŷa(b)

acting on mode a (b). Plugging Uab = UPDC
g into Eq. 33 and using Eq. 24

implies the general relation

Tr
[
UPDC

g

(
X̂a⊗ X̂b

)
UPDC†

g

(
Ŷa⊗ Ŷb

)]
=

1

g
Tr
[
UBS

1/g

(
X̂a⊗ ŶT

b

)
UBS†

1/g

(
Ŷa⊗ X̂T

b

)]
.

[34]

This equation is needed to interpret PTR in the context of the retrodictive
picture of quantum mechanics.

Retrodictive Picture of Quantum Mechanics. In the usual, predictive approach
of quantum mechanics, one deals with the preparation of a quantum system
followed by its time evolution and ultimately, its measurement. Specifically,

Table 1. Illustration of PTR duality with few photons

BS PDC

〈0, 0|UBS
η |0, 0〉= 1 〈0, 0|UPDC

g |0, 0〉= 1/
√

g
〈1, 0|UBS

η |1, 0〉=√η 〈1, 0|UPDC
g |1, 0〉= 1/g

〈0, 1|UBS
η |0, 1〉=√η 〈0, 1|UPDC

g |0, 1〉= 1/g
〈0, 1|UBS

η |1, 0〉=−
√

1− η 〈0, 0|UPDC
g |1, 1〉=−

√
g− 1/g

〈1, 0|UBS
η |0, 1〉=

√
1− η 〈1, 1|UPDC

g |0, 0〉=
√

g− 1/g

The second column (PDC) is obtained from the first column (BS) by time-
reversing mode b̂, substituting η with 1/g and dividing by the factor

√
g.

The first row explains the latter factor: vacuum is obviously conserved in a
BS, while PDC implies the stimulated emission of photon pairs (hence, the
probability of keeping vacuum is strictly lower than one). The second and
third rows correspond to the transmission of a single photon through the
BS or PDC. The fourth and fifth rows correspond to the reflection of a single
photon by the BS or the stimulated annihilation (fourth row) or emission
(fifth row) of a photon pair by PDC.
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Fig. 6. (A) General statement of the PTR duality as expressed in Eq. 7, when
i and j photons impinge on input modes â and b̂ of a BS, while n and m pho-
tons are detected in output modes â′ and b̂′. We recover a PDC with input
|i, m〉 and output |n, j〉. (B) Corresponding operational scheme, where a PDC
is emulated with a BS. The input state |ψa〉 of mode â simply propagates
through the BS and is projected onto |φa〉. The input state |ψb〉 of mode

b̂
′′′

is converted, by projection on an EPR state, into the retrodicted state
|ψ*

b 〉 of mode b̂′, which back propagates through the BS and is projected

onto |φ*
b 〉 in mode b̂. We obtain the corresponding output state |φb〉 on

mode b̂
′′

by using an EPR pair. We thus recover a PDC with input |ψa,ψb〉
and output |φa,φb〉, as encapsulated by Eq. 25.

one uses the prior knowledge on the state ρ̂j (prepared with probability
pj) in order to make predictions about the outcomes of a measurement
{Π̂m}. If the state evolves according to unitary U before being measured,
Born’s rule provides the conditional probabilities P(m|j) = Tr[Uρ̂jU

†Π̂m]. In
contrast, in the retrodictive approach of quantum mechanics (21), one
postselects the instances where a particular measurement outcome m was
observed, and one focuses on the probability of the preparation variable
j conditionally on this measurement outcome. This can be interpreted as
if the actually measured state had propagated backward in time to the
preparer (Fig. 7A). Specifically, one associates a retrodicted state σ̂m with
the observed outcome m and makes retrodictions about the preparation by
evolving σ̂m according to U† and applying a measurement {Θ̂j}, whose out-
come j discriminates the prepared state ρ̂j . In the simplest case (to which we
restrict here) where there is no a priori information about the source, one
sets

∑
j pj ρ̂j ∝ 1. Then, by defining

σ̂m =
Π̂m

Tr[Π̂m]
, Θ̂j = pj ρ̂j , [35]

one recovers the expected properties of a state (σ̂m≥ 0, Tr σ̂m = 1) and of a
measurement (Θ̂j ≥ 0,

∑
j Θ̂j = 1). Now, applying Born’s rule to the retrod-

icted state σ̂m having evolved according to U† followed by a measurement
Θ̂j , we get

Tr[U†σ̂mUΘ̂j] =
pjTr[ρ̂jU

†Π̂mU]∑
j pjTr[Uρ̂jU†Π̂m]

= P(j|m), [36]

which is consistent with Born’s rule in the forward direction combined with
Bayes’ rule.

The retrodictive picture can be successfully exploited in different situa-
tions [for example, to characterize the quantum properties of an optical
measurement device (35)], but it is always used in lieu of the predictive pic-
ture. Here, we instead combine it with the predictive picture in order to
properly define PTR duality and describe a composite system that is propa-
gated partly forward and partly backward in time, as represented in Fig. 7
B, Right. Specifically, we consider a composite system prepared in a product
state ρ̂a

i ⊗ ρ̂
b
j , then undergoing a unitary evolution Uab followed by a prod-

uct measurement {Π̂a
n⊗ Π̂b

m}. In the fully predictive picture (Fig. 7 B, Left),
the conditional probabilities are given by

P(n, m|i, j) = Tr
[
Uab

(
ρ̂

a
i ⊗ ρ̂

b
j

)
U†ab

(
Π̂

a
n⊗ Π̂

b
m

)]
. [37]

In our intermediate picture, we postselect the instances where a particular
measurement outcome m was observed in subsystem b when subsystem a
was prepared in state ρ̂a

i and consider the joint probability of the prepara-
tion variable j of subsystem b together with the measurement outcome n of
subsystem a. Bayes’ rule yields

P(n, j|i, m) =
P(i) P(j) P(n, m|i, j)

P(i)
∑

n′ j′ P(j′) P(n′, m|i, j′)

=
pb

j P(n, m|i, j)∑
n′ j′ pb

j′ P(n′, m|i, j′)
, [38]

where pb
j is the probability that subsystem b is prepared in state ρ̂b

j . Similarly

as before, without information about the source, we set
∑

j pb
j ρ̂

b
j ∝ 1. We

associate a retrodicted state σ̂b
m with the observed outcome m on subsys-

tem b, while subsystem a is still considered in the initial state ρ̂a
i . Similarly,

we make retrodictions about the preparation of subsystem b by applying
measurement {Θ̂b

j }, whose outcome j discriminates the prepared state ρ̂b
j ,

while still measuring subsystem a according to {Π̂a
n}. Using identity (33) and

defining

σ̂
b
m =

(
Π̂b

m

)
T

Tr
[
Π̂b

m

], Θ̂
b
j = pb

j

(
ρ̂

b
j

)T
, [39]

which are easily seen to behave as a proper state and measurement, we may
reexpress Eq. 38 as

P(n, j|i, m) = Tr
[
Vab

(
ρ̂

a
i ⊗ σ̂

b
m

)
V†ab

(
Π̂

a
n⊗ Θ̂

b
j

)]
, [40]

where Vab≡U
Tb
ab . This can be viewed as the evolution of state ρ̂a

i ⊗ σ̂
b
m

according to Vab, followed by the measurement of Π̂a
n⊗ Θ̂b

j . In other

Fig. 7. (A) Predictive (Left) and retrodictive (Right) pictures, describing the
same experiment where state ρ̂j is prepared, evolves according to U, and
leads to measurement outcome associated with Π̂m. The probability P(j|m)
can be written as resulting from the retrodictive state σ̂m back propagat-
ing according to U†, followed by measurement Θ̂j . (B) Predictive (Left) and
intermediate (Right) pictures for a bipartite system. In the latter picture,
associated with PTR, the retrodictive state of subsystem b propagates back-
ward in time, while the predictive state of subsystem a propagates forward

in time. If Uab is a unitary, Vab = U
Tb
ab is not necessarily proportional to a

unitary; however, it is the case when considering the BS vs. PDC duality.
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words, in Eq. 40, the predictive picture is used for subsystem a, while the
retrodictive picture is used for subsystem b.

In our analysis of a BS under PTR, we have Uab = UPDC
g and Vab =

UBS
1/g/
√

g, so that Eq. 33 reduces to Eq. 34. Hence, Vab is unitary (up to a
constant) and can be interpreted as the propagation of the retrodicted state
of mode b̂ backward in time through the BS, while the predictive state of
mode â normally propagates forward in time through the BS. According to
Eq. 40, the joint state is then shown to evolve according to a PDC. Note that
it is not always possible to construct an operator Vab that is proportional to
a unitary operator, as it is the case here.

Two-Photon Interference in a BS and PDC. The HOM effect can be sim-
ply understood by calculating the probability amplitude for coincident
detection

c≡〈1, 1|UBS
η |1, 1〉= 〈0, 0| âb̂ UBS

η â†b̂† |0, 0〉 [41]

at the output of a BS. By using Eq. 11, it is simple to rewrite it as c = cos 2θ,
which yields the coincidence probability

Pcoinc(η) = |c|2 = (2η− 1)2
. [42]

If the transmittance η= 1/2, no coincident detections can be observed as a
result of destructive interference.

Now, we examine the corresponding quantum interferometric suppres-
sion in a PDC and its dependence in the parametric gain g. Let us calculate
the probability amplitude for coincident detection

c′≡〈1, 1|UPDC
g |1, 1〉= 〈0, 0|VV†âVV†b̂Vâ†b̂† |0, 0〉 , [43]

where V is a short-hand notation for UPDC
g . Thus, we get the scalar product

between V† |0, 0〉, which is the state of Eq. 18 up to changing the sign of r,
and the ket V†âVV†b̂Vâ†b̂† |0, 0〉, which can be reexpressed as

cosh2 r |0, 0〉+ 3 cosh r sinh r |1, 1〉+ 2 sinh2 r |2, 2〉 [44]

by use of Eq. 13. This gives c′ = (1− sinh2 r)/ cosh3 r, so that the probability
for coincidence is written as

P′coinc(g) = |c′|2 = (2− g)2
/g3

. [45]

If the gain g = 2, the probability for coincident detections fully vanishes.
More generally, the joint state at the output of a PDC of arbitrary gain g
when the input state is |1, 1〉 reads

UPDC
g |1, 1〉=

∞∑
n=0

(sinh r)n−1

(cosh r)n+2

(
n− sinh2 r

)
|n, n〉. [46]

A parametric gain g = 2 corresponds to cosh r =
√

2 and sinh r = 1, so we
recover Eq. 8.

Extension to a PDC with Integer Gain. We may also consider the case where
the gain takes a larger integer value (e.g., g = 3, 4, · · · ). A closer look at
Eq. 46 reveals that the output term with g− 1 photon pairs fully vanishes
when g is an integer. The corresponding distribution of the output photon
pair number

∣∣∣〈n, n|UPDC
g |1, 1〉

∣∣∣2 =
(g− 1)n−1

gn+2
(n + 1− g)2 [47]

is displayed in Fig. 3B for g = 3 and 4. This interferometric suppression
〈n, n|UPDC

n+1 |1, 1〉= 0, ∀n, can be interpreted as dual, under PTR, to the

extended HOM effect 〈n, 1|UBS
1/(n+1) |1, n〉= 0 for a BS of transmittance

1/(n + 1) (Fig. 8, Left). The latter effect is easy to understand as the inter-
ference between the amplitude with all n + 1 photons being reflected and
the amplitude with one photon of each mode being transmitted (the other
n− 1 being reflected). Indeed, the operator â†(b̂†)n transforms into

1

(n + 1)
n+1

2

(
a′†−

√
n b′†

)(√
n a′† + b′†

)n
. [48]

The term proportional to (a′†)n b′† vanishes as a result of the cancellation
of the term where the photon on mode â is reflected and the n photons on
mode b̂ are reflected, together with the term where the photon on mode â
is transmitted and one of the photons on mode b̂ is transmitted (the other

Fig. 8. Extended quantum interferometric suppression in an amplifier
where the detection of n photon pairs at the output is suppressed if the
gain g = n + 1. This is the PTR dual of the extended HOM effect when a sin-
gle photon and n photons impinge on the two input ports of an unbalanced
BS of transmittance η= 1/(n + 1). The interference at play in the extended
HOM is again the cancellation between a double reflection and double
transmission (with n− 1 other photons being always reflected from mode b̂
to mode â). Applying PTR, this translates into the cancellation between the
amplitude for the two photons crossing the crystal and the amplitude for
the stimulated annihilation combined with stimulated emission of the two
photons (accompanied, in both cases, with the stimulated emission of n− 1
pairs). In other words, the input pair may be up converted into the pump
beam while n pump photons are down converted, or the input pair may sim-
ply be transmitted while n− 1 pump photons are down converted. Since the
two scenarios are time-like indistinguishable, they interfere destructively.

n− 1 photons being reflected). This is sketched in Fig. 8, Right. More gen-
erally, the transition probability 1, n→ n, 1 for a BS of transmittance η is
given by ∣∣∣〈n, 1|UBS

η |1, n〉
∣∣∣2 = (1− η)n−1

[(n + 1)η− 1]
2, [49]

which is consistent with Eq. 47 under PTR, namely

∣∣∣〈n, n|UPDC
g |1, 1〉

∣∣∣2 =
1

g

∣∣∣〈n, 1|UBS
1/g |1, n〉

∣∣∣2 . [50]

Experimental Scheme. The HOM effect is considered a most spectacular evi-
dence of genuinely quantum two-boson interference, and we expect the
same for its PTR counterpart as it admits no classical interpretation. The
experimental verification of our effect can be envisioned with present tech-
nologies, as sketched in Fig. 9. We would need two single-photon sources,
which could be heralded by the detection of a trigger photon at the out-
put of a PDC with low gain (the single photon being prepared conditionally
on the detection of the trigger photon in the twin beam). The two single
photons would impinge on a PDC of gain 2, whose output modes should
be monitored: the probability of detecting exactly one photon on each
mode should be suppressed as a consequence of time-like indistinguisha-
bility. In principle, photon number resolution would be needed in order
to discriminate the output term with one photon pair (n = 1) from the
terms with more pairs (n≥ 2). The ability of counting photons has become
increasingly available over the last years (e.g., exploiting superconducting
detectors), but this could also be achieved by splitting each of the two
output modes into several modes followed by an array of on/off photode-
tectors. Experiments involving PDC in three coherently pumped crystals have
already been achieved recently (36, 37), aiming at observing induced deco-
herence, so the proposed setup here should be implementable along the
same lines. The squeezing needed to reach a gain 2 amounts to 7.66 dB,
which is high but lies in the range of experimentally accessible values (in
the continuous-wave regime). The experiment could alternatively be car-
ried out with a lower gain (especially in the pulsed regime) provided the
observed dip is sufficient to rule out a classical interpretation. As a mat-
ter of fact, a coincidence probability lower than 1/4 would be needed (see
Classical Baseline), which could in principle be reached with a gain of 1.28
(i.e., a squeezing of 4.39 dB). Of course, the effect of losses should also be
carefully analyzed in order to assess the feasibility of the scheme depicted
in Fig. 9.

Demonstrating this effect would be invaluable in view of the fact
that the HOM dip is widely used to test the indistinguishability of single
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Fig. 9. Schematic of a potential demonstration of two-photon quantum
interference in the amplification of light with gain 2. Two heralded single-
photon sources (exploiting an avalanche photodetector [APD]) are used
to feed the signal and idler modes of a PDC, and two photon number-
resolving (PNR) detectors are used to monitor the presence of a single
photon in each output port. The two-photon interference effect would be
demonstrated by measuring a depletion of fourfold coincidences between
the two trigger photons (heralding the preparation of two single pho-
tons) and the two output photons (here, the detectors should filter out
the output states with ≥ 2 photons on each mode). The dominant terms
will then consist of the stimulated annihilation of the two input photons
(witnessed by two trigger photons but no output photons) as well as the
stimulated emission of a photon pair (witnessed by two output photons
but no trigger photons). When the time lapse between the detection of
the trigger and output photons is close to zero (which means a perfect
match of the timing of the output photons originating from the input pho-
tons associated with the trigger photons) the two terms should interfere
destructively.

photons and to benchmark mode matching: it witnesses the fact that
the photons are truly indistinguishable (they admit the same polarization
and couple to the same spatiotemporal mode). For example, HOM exper-
iments have been used to test the indistinguishability of single photons
emitted by a semiconductor quantum dot in a microcavity (10), while the
interference of two single photons emitted by two independently trapped
rubidium-87 atoms has been used as an evidence of their indistinguisha-
bility (15). The HOM effect has also been generalized to three-photon
interference in a three-mode optical mixer (38), while the case of many
photons in two modes has been analyzed in ref. 39, implying a possible
application of the quantum Kravchuk–Fourier transform (40). We antici-
pate that most of these ideas could extend to interferences in an active
optical medium.

Classical Baseline. The two-photon quantum interference effect in ampli-
fication cannot be interpreted within a classical model of PDC, where a
pair can be annihilated or created with some probability. We have two
possible indistinguishable paths (the photon pair either going through the
crystal or being replaced by another one) with equal individual probabil-
ities but opposite probability amplitudes; hence, the resulting probability
vanishes (whereas the two probabilities would add for classical particles).
In order to assess an experimental verification of this effect, it is necessary
to establish a classical baseline, namely to determine the depletion of the
probability of coincident detections that can be interpreted classically. As
a guide, consider first a classical model of the HOM effect where the two
input photons are distinguishable. We have to add the double-transmission
probability |Adt|2 with the double-reflection probability |Adr|2 since these
two paths can be distinguished. Then, the classical probability for coincident
detections is

Pcl(η) = |Adt|
2

+ |Adr|
2

= η
2

+ (1− η)2 [51]

to be compared with Pcoinc(η) of Eq. 3. For a 50:50 BS, Pcl(1/2) = 1/2; hence,
a depletion below 50% ensures that that the dip is quantum. Similarly, in
a classical model of PDC, we can distinguish the path where the two input
photons are transmitted (probability |A′dt|

2) from the path where they are
replaced by another pair (probability |A′st|

2). Thus, the classical probability
for coincident detections is

P′cl(g) = |A′dt|
2

+ |A′st|
2

=
1 + (g− 1)2

g3
[52]

to be compared with P′coinc(g) of Eq. 9. For a gain 2 PDC, P′cl(2) = 1/4; hence,
we need to have a coincidence probability less than 25% in order to exclude
a classical interpretation of the dip. Interestingly, this suggests that a gain
lower than two may be utilized for demonstrating this quantum effect,
thus lowering the experimental requirements. Solving P′coinc(g) = 1/4, we
obtain g = 1.28, implying that the partial indistinguishability between the
two paths achieved with this lower gain would be sufficient for observing
a quantum effect. With this gain, the probability amplitude correspond-
ing to the transmission through the crystal is larger than (minus) the one
corresponding to double-stimulated events, but the partial destructive inter-
ference between the two paths is sufficient to reduce the coincidence
probability to 1/4.

Data Availability. There are no data underlying this work.
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