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Werner Heisenberg and Erwin Schrödinger are traveling in a car and get pulled over by a
police officer. The officer asks, “Do you know how fast you were going?”

Heisenberg replies “I do not, but I do know where I am !”

Full of suspicion, the officer then asks to check their trunk. He looks inside and, horrified,
asks “Do you know that there is a dead cat in your trunk ?”

To which Schrödinger replies, “Well, now I do !”



Abstract

The Heisenberg uncertainty principle is a fundamental pillar of quantum mechanics. It
expresses the impossibility for the uncertainties on both the position and momentum of
a particle to be vanishingly small, a feature that originates from the non-commutativity
of the corresponding observables. Uncertainty relations are traditionally expressed as
a non-trivial lower bound on the product of variances. Recently, however, alternative
uncertainty relations have appeared in the literature which are based on the sum of
variances. The interest of such additive uncertainty relations resides in the fact that the
lower bound on the sum of variances remains non-trivial even when considering eigenstates
of any one of the observables. We focus on the additive uncertainty relation due to
Maccone and Pati, which holds for any pair of observables. We investigate the specific
case where the observables are single-mode or two-mode quadratures of light, which are
essential quantities in quantum optics. We find an additive uncertainty relation for the
single-mode x and p quadrature operators and prove that it is saturated for all single-
mode Gaussian states as well as for all displaced and squeezed single-mode Fock states,
a situation which is in stark contrast with the usual Schrödinger-Robertson uncertainty
relation. Interestingly, the relation is even saturated for Schrödinger cat states. For the
two-mode case, we consider so-called EPR observables and show that the corresponding
additive uncertainty relation is saturated for displaced two-mode squeezed vacuum states,
displaced two-mode squeezed Fock states, and even for products of cat states. The fact
that this additive uncertainty relation is saturated for such a large set of non-Gaussian
states makes it a good candidate for building a new separability criterion that would detect
a wide class of non-Gaussian entangled states, which is a notably hard problem. As a
final touch, we consider the extension of additive uncertainty relations to more than two
observables and establish a connection between the works of Song-Qiao, Kechrimparis-
Weigert and Maccone-Pati, which in turn helps us prove a tighter additive uncertainty
relation for N variables.



Résumé

Le principe d’incertitude d’Heisenberg est l’un des piliers fondamentaux de la mécanique
quantique. Il exprime qu’il est impossible que les incertitudes sur la position et l’impulsion
d’une particule soient simultanément arbitrairement petites, ce qui constitue une con-
séquence directe de la non-commutativité de ces deux observables. Traditionnellement,
les relations d’incertitude sont exprimées comme une borne inférieure non-triviale sur le
produit des variances. Toutefois, récemment, des relations d’incertitude alternatives ont
vu le jour dans la littérature, basées, cette fois-ci, sur des sommes de variances. L’intérêt
de telles relations d’incertitude additives réside dans le fait que la borne inférieure sur la
somme des variances reste non-triviale, et ce, même lorsque l’état considéré est un état
propre de l’un des deux observables. Nous nous concentrons sur la relation d’incertitude
de Maccone et Pati, qui est valable pour n’importe quelle paire d’observables. Nous étu-
dions le cas particulier où les observables considérés sont les quadratures de la lumière
à un et deux modes, qui sont des grandeurs physiques essentielles en optique quantique.
Nous trouvons une relation d’incertitude pour les opérateurs de quadrature x et p et nous
prouvons qu’elle est saturée par tous les états gaussiens ainsi que pour les états de Fock
à un mode comprimés et déplacés, une situation en contraste direct avec la traditionnelle
relation d’incertitude de Robertson-Schrödinger. De façon intéressante, les états chats
de Schödinger saturent également la relation de Maccone et Pati. Pour le cas à deux
modes, nous considérons des observables de type EPR et nous montrons que la relation
d’incertitude additive correspondante est saturée pour tous les états du vide à deux modes
comprimés et déplacés, pour les états de Fock à deux modes comprimés et déplacés et
même pour les produits d’états chat. Le fait que cette relation d’incertitude additive soit
saturée par un ensemble aussi large d’états non-gaussiens fait d’elle une excellente candi-
date pour le développement d’un nouveau critère de séparabilité qui pourrait détecter une
large gamme d’états intriqués non-gaussiens, ce qui constitue un problème particulière-
ment complexe. Enfin, nous considérons l’extension des relations d’incertitude au cas à
plus de 2 variables et établissons un lien entre les travaux de Song-Qiao, Kechrimparis-
Weigert et Maccone-Pati, ce qui nous permet de prouver une relation d’incertitude addi-
tive à N-variables plus stricte.
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Introduction

When speaking about quantum mechanics, the most striking feature that comes to
mind is arguably its inherent probabilistic nature. Indeed, in contrast with classical
mechanics, a particle is not described by a point in phase space anymore, but instead,
by a complex wave function ψ(x). The probability to find the particle at a point x0

will then be given, using Born’s rule, with a probability density |ψ(x0)|2. This statistical
interpretation of quantum mechanics naturally implies the notion of uncertainty, since it
is impossible to know the position of the particle with certainty before actually making a
measurement. This notion of uncertainty took a step further when, in 1927, Heisenberg
[1] formulated the famous Heisenberg uncertainty principle:

σ2
xσ

2
p ≥

~
4

where σ2
x and σ2

p are , respectively, the variance on the position and momentum and
where ~ is the reduced Planck constant. This inequality expresses that it is impossible for
a system to be in a state where both the uncertainties σ2

x and σ2
p are simultaneously small.

To put it in other words, although it is possible for the uncertainties on the position and
momentum to be arbitrarily small, when measured individually, it is impossible for the
product of these uncertainties to be small, when measured simultaneously. Later, in 1929,
Robertson generalized the Heisenberg uncertainty relation and showed that for any pair
of observables Â and B̂ [2] :

σ2
Aσ

2
B ≥

1

4
| 〈ψ| [Â, B̂] |ψ〉 |2

where [Â, B̂] denotes the commutator. Let us note that in contrast with the lower bound of
Heisenberg’s inequality, the lower bound in the Robertson uncertainty relation depends on
the state ψ, which can sometimes be problematic. Indeed, if the state ψ is an eigenstate of
any of the two observables, the lower bound becomes trivial and therefore, the uncertainty
relation loses interest.

To address this issue, many recent uncertainty relations based on the sum of variances have
emerged in the literature [3, 4, 5, 6, 7]. These additive uncertainty relations present the
advantage of guaranteeing the lower bound to be nontrivial whenever the state considered
is an eigenstate of one of the observables. The study of such additive uncertainty relations
is the main topic of this thesis.

As elegant and puzzling as they are, quantum uncertainty relations are not only studied
because of their fundamental nature. Recently, the study of quantum uncertainty has
been motivated by the rise of quantum information theory. More specifically, quantum
key distribution is readily available in the market and its security relies on the uncer-
tainty principle [8]. We will not go into much details here, but as a consequence of the
uncertainty principle, the amount of eavesdropping noise as detected by Alice and Bob
is complementary to the amount of noise impairing Eve’s tapped version of the conversa-
tion. Another application of interest for the uncertainty principle is the determination of

1



separability criteria, which allow us to distinguish between an entangled and a separable
state. In a few words, the entanglement of a state can be detected with the so-called Pos-
itive Partial Transpose (PPT) criterion. This criterion states that if a state is separable,
then its density matrix remains positive (and thus, physical) after a partial transposition1.
For the case of continuous variables, the physicality of the partial transpose is precisely
verified using uncertainty relations. The tighter the relation, the better the separability
criterion, as it facilitates the detection of entanglement.

Initially, the uncertainty principle was expressed using variances. In 1948, however, Shan-
non came up with another way to quantify the uncertainty linked to the informational
content of a random message, namely Shannon entropy [9]. Recently, entropic uncer-
tainty relations have seen quite a success, as it has been shown that they directly imply
the Heisenberg uncertainty principle [10] and as they can take account of non-classical
correlations between the measured system and its environment [8].

This thesis is divided in two parts : in the first part, we present the theoretical background
that will be of use in this work as well as the state of the art regarding uncertainty relations
while in the second part, we present the results obtained in the course of this work. The
first chapter covers the basic notions of quantum optics such as the mode operators, the
number states, the Gaussian states and unitaries and the cat states. In Chapter 2, we give
a brief review about Shannon’s information theory. The third chapter combines the former
two and is about uncertainty relations, whether they are variance-based or entropy-based.
In the second part of this work, we thoroughly analyze an additive uncertainty relation due
to Maccone and Pati [3] and investigate its application to the pair of canonically conjugate
variables x and p. We apply the derived inequality to various common states in quantum
optics and attempt at explicitly maximizing the lower bound of the inequality so that it
becomes saturated for the set of all the states we introduced in the first part of this thesis.
We also attempt to formulate an additive entropic uncertainty relation, although this route
turns out to be less promising than expected. Lastly, we study a three-variable additive
uncertainty relation and prove a tighter N -variables additive uncertainty relation. In the
conclusion of this thesis, we discuss the obtained results and comment on the prospects.

1Let us note that the PPT criterion is a necessary but usually not sufficient condition for the separa-
bility of a state.
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Theoretical Background
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Chapter 1

Basics of quantum optics

In this chapter, we review all the basic notions in quantum mechanics that will be used
through this thesis. We first start with a theoretical reminder of the density operator and
the Wigner function, which are mathematical tools used to characterize quantum physical
states. Then, we introduce the ladder operators and the quadratures of the electromag-
netic field, as well as the Fock states. These states play an essential role in quantum
optics, which is a branch of physics that uses quantum mechanics to describe light as par-
ticles, named photons, rather than considering light as a classical electromagnetic field.
In the following section, we address Gaussian states and the Gaussian unitaries that are
necessary to produce them. Finally, we also present the Schrödinger cat states.

Across this chapter, we will mainly refer to [11, 12] for the equations related to the density
operator and the Wigner function, to [13] for the section about Fock states and to [14,
15, 16] for the definitions of Gaussian states and unitaries. Note that for simplicity, we
will use the convention ~ = 1 in the rest of this chapter.

1.1 Density operator
In quantum mechanics, the physical state of a system is described by a vector in a

Hilbert space H and is noted with a ket |ψ〉. This representation is perfectly sufficient
when considering pure states, which are states that can be completely characterized by a
single ket |ψ〉. However, in practice, the system is often in a statistical mixture of pure
states. For instance, we know that a photon from a natural source of light can have any
polarization state, each with an equal probability [11, p. 303]. By representing a physical
state with a density matrix, which can be viewed as the generalization of a state vector,
it becomes possible to take account of such mixed states. The density matrix associated
to a system is defined as :

ρ̂ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

piρ̂i (1.1)

where ρ̂i is the projector on the pure state |ψi〉. This notation highlights the fact that the
density operator is a combination of pure density operators ρ̂i, weighted by a probability
pi. Of course, the probabilities must sum up to 1 :∑

i

pi = 1 (1.2)

It is important to keep in mind that a statistical mixture is very different from a super-
position of states. In the case of a superposition, e.g. |Φ〉 = α |φ1〉 + β |φ2〉, the system

4



1.2. WIGNER FUNCTION Chapter 1

is simultaneously in two states and it only collapses to either |φ1〉 or |φ2〉 after a mea-
surement. This is in total contrast with a mixed state which is a statistical distribution
of well defined states.
The density operator possesses three well-known properties :

1. ρ̂ = ρ̂†, implying thus that the eigenvalues of the density operator are real.

2. ρ̂ is a positive operator and its eigenvalues are therefore positive.

3. Tr(ρ̂) = 1, meaning that the sum of the eigenvalues of ρ̂ is equal to 1. Here, Tr(Â)
designates the trace of the operator Â and is defined as follows :

Tr(Â) =
∑
i

〈i| Â |i〉 (1.3)

where {|i〉} is an arbitrary orthonormal basis of the Hilbert space.

1.2 Wigner function
In classical mechanics, it is possible to specify, with an arbitrary precision, both the

position x and the momentum p of a particle at the same time. This particle is then
represented in phase space by a single point (x, p). Such a deterministic representation is
impossible for a quantum particle, due to the probabilistic nature of quantum mechanics.
It becomes therefore crucial to introduce a function that allows to convey information
about position and momentum while also satisfying the general rules of quantum me-
chanics, which impose a certain limit to the precision of simultaneous measurements [12,
p. 735]. This function is the Wigner quasi-probability distribution, proposed by Eugene
Wigner in 1932 [17].
The aim of this section is to exhibit how we can associate each density operator ρ̂ to a
Wigner quasi-probability distribution. By definition :

W (x,p) =
1

(2π~)3

∫ ∞
−∞

d3y e−ip.y/~
〈
x +

y
2

∣∣∣ ρ̂ ∣∣∣x− y
2

〉
(1.4)

where x = (x̂1, x̂2, x̂3) and p = (p̂1, p̂2, p̂3) are 3-dimensional canonically conjugate1 vari-
ables that span the 6-dimensional phase space.
The Wigner function is a real function and, just like any other probability distribution,
it is normalized to one. This mathematically translates into :∫ ∞

−∞
dx dp W (x,p) = 1 (1.5)

However, becauseW (x,p) can sometimes take negative values, it is called a quasi-probability
distribution2. Nevertheless, it has been shown by R.L. Hudson in [18] that W (x,p) is al-
ways positive if and only if we consider Gaussian states. In the particular case where the
particle is described by a pure state |ψ〉, we have :

W (x,p) =
1

(2π~)3

∫ ∞
−∞

d3y e−ip.y/~ ψ(x +
y
2

)ψ∗(x− y
2

) (1.6)

where ψ(x) = 〈x|ψ〉 is the wave function of the particle in the position basis.
1By canonically conjugate variables, we mean that the variables are linked by a Fourier transform.
2To be more accurate, since we are dealing with continuous variables, it is a quasi-probability density

function. From here on out, we will simply refer to it as the Wigner distribution, having in mind that it
is a misuse of language.
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1.3. MODE AND QUADRATURE OPERATORS Chapter 1

Self-evidently, equations (1.4) and (1.6) can also be derived in the momentum represen-
tation :

W (x,p) =
1

(2π~)3

∫ ∞
−∞

d3q eiq.x/~
〈
p +

q
2

∣∣∣ ρ̂ ∣∣∣p− q
2

〉
(1.7)

and

W (x,p) =
1

(2π~)3

∫ ∞
−∞

d3q eiq.x/~ ψ̄(p +
q
2

)ψ̄∗(p− q
2

) (1.8)

where ψ̄(p) = 〈p|ψ〉 is the wave function of the particle in the momentum basis.

If the Wigner function is integrated over x or p, one gets the (classical) probability
distributions for p or x. These marginals of the Wigner distribution are positive and
normalized to one. ∫ ∞

−∞
dx W (x,p) = W (p) (1.9)∫ ∞

−∞
dp W (x,p) = W (x) (1.10)

1.3 Mode and quadrature operators

1.3.1 Fock states

A first way of describing mode operators, is by defining them as operators that act, in a
particular manner, on Fock states. Fock states also known as number states, are quantum
states which are characterized by a fixed number of (quasi-)particles. They are noted |n〉
and they correspond to the eigenstates of the quantum harmonic oscillator :

Ĥ |n〉 = En |n〉 =

(
n+

1

2

)
ω |n〉 (1.11)

Let us note that the Hamiltonian of the harmonic oscillator can be written in terms of
the number operator or the quadratures of the electromagnetic field, that will be defined
later in this section :

Ĥ = N̂ +
1

2
=

1

2
(x̂2 + p̂2) (1.12)

Since the eigenstates of the Hamiltonian form an orthonormal basis, we have :

〈n′|n〉 = δn′n (1.13)

Moreover, the Fock state basis is complete, or mathematically speaking :

∞∑
n=0

|n〉 〈n| = 1 (1.14)

where 1 is the identity operator.
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1.3. MODE AND QUADRATURE OPERATORS Chapter 1

We now define the mode operators, namely the creation operator â† and the annihilation
operator â. Their action on the Fock states are given by :

â† |n〉 =
√
n+ 1 |n+ 1〉 and â |n〉 =

√
n |n− 1〉 (1.15)

From these definitions, â† can be interpreted as the creation operator which creates one
particle by raising the system from the state |n〉 to |n+ 1〉 while â is the annihilation
operator which deletes one particle and lowers the system from the state |n〉 to |n− 1〉.
More generally, we can consider an n-mode Fock state, which can be viewed as a Fock
state with n spatial degrees of freedom :

|n1, n2, ..., ni, ..., nn〉 (1.16)

where ni is the number of particles that occupy the ith mode. Consequently, the mode
operators become :

â†i |n1, n2, ..., ni, ..., nn〉 =
√
ni + 1 |n1, n2, ..., ni + 1, ..., nn〉

âi |n1, n2, ..., ni, ..., nn〉 =
√
ni |n1, n2, ..., ni − 1, ..., nn〉

(1.17)

and they obey the following commutation relations :

[âi, âj] = 0

[â†i , â
†
j] = 0

[âi, â
†
j] = δij

(1.18)

These relations indicate that creating or annihilating a particle in the ith then in the jth

mode is equivalent to creating or annihilating a particle in the jth then in the ith. However,
creating then annihilating a particle in the same mode is not the same as annihilating
then creating : the order of the operators is important.

Another way to define the Fock states is to define them as the eigenstates of the number
operator, which is defined as :

N̂i = â†i âi (1.19)

Using equations (1.17) and (1.19), it is easy to see that the number operator provides the
number of particles in the ith mode :

N̂i |n1, n2, ..., ni, ..., nn〉 = â†i âi |n1, n2, ..., ni, ..., nn〉
= â†i
√
ni |n1, n2, ..., ni − 1, ..., nn〉

=
√
ni − 1 + 1

√
ni |n1, n2, ..., ni, ..., nn〉

= ni |n1, n2, ..., ni, ..., nn〉

(1.20)

1.3.2 Quantization of the electromagnetic field

The mode operators we defined in the above subsection play an important role in the
quantization of the electromagnetic field. To understand why, we use Maxwell equations
to first classically describe the electromagnetic field, and we will then make the transition
from classical to quantum optics. Without going too much into details, we define the
potential vector A(r, t), from which we can determine the magnetic field B(r, t) and the
electric field E(r, t) [19] :

B(r, t) = ∇×A(r, t) and E(r, t) = −∂A(r, t)
∂t

(1.21)

7
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with the Coulomb gauge condition :

∇.A(r, t) = 0 (1.22)

From the Maxwell equations, we can derive :

∇2A(r, t) =
1

c2

∂2A(r, t)
∂t

(1.23)

By solving this equation, and using (1.21), we can get the expression of the electric field :

E(r, t) =
∑
k

∑
λ=1,2

1√
2
Ekekλ{Akλe

−i(ωkt+k.r) + A∗kλe
i(ωkt−k.r)} (1.24)

where k is the index of the mode, λ the polarization, ekλ the polarization vector, ωk
is the angular frequency of the k-mode, Ek is a constant containing all the dimensional
components and Akλ and A∗kλ are the complex field amplitudes. Roughly speaking, the
transition from the classical electromagnetic field to quantum mechanics is accomplished
by replacing the complex amplitudes by the mode operators.

Akλ → âkλ

A∗kλ → â†kλ
(1.25)

For simplicity, we assume that the light is monochromatic, that it is polarized along the
x-axis and that the wave’s direction of propagation is along the z-axis. This allows us to
drop the indices k and λ. The electric field then becomes :

Ex(z, t) =
1√
2
E ~1x{âe−iωt+kz + â†eiωt−kz} (1.26)

We now define the dimensionless position x̂ and momentum p̂ operators :

x̂ =
1√
2

(â+ â†) (1.27)

p̂ =
−i√

2
(â− â†) (1.28)

which correspond to the position and momentum of a harmonic oscillator of mass m and
angular frequency ω. By expressing the mode operators in terms of the position and
momentum operator, eq. (1.26) becomes :

Ex(z, t) = E ~1x{x̂ cos (−iωt+ kz) + p̂ sin (iωt− kz)} (1.29)

Therefore, we see that x̂ and p̂ are (respectively) the amplitudes of the co-sinusoidal
and sinusoidal components of the electric field. Because there is a phase shift of π/2
between these two components, the operators x̂ and p̂ are called the quadratures of the
electromagnetic field. From (1.18) we can see that they satisfy the canonical commutation
relation :

[x̂, p̂] = x̂p̂− p̂x̂ = i (1.30)

Unlike the ladder and the number operators, these quadratures have continuous spectra.
Their eigenvectors are defined as :

x̂ |x〉 = x |x〉 and p̂ |p〉 = p |p〉 (1.31)

8
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where x, p are real numbers and {|x〉},{|p〉} are two bases that are linked by a Fourier
transform :

|x〉 =
1

2π

∫ ∞
−∞

eixp |p〉 dp and |p〉 =
1

2π

∫ ∞
−∞

e−ixp |x〉 dx (1.32)

Just like Fock states, {|x〉},{|p〉} form complete and orthogonal bases :

∫ ∞
−∞
|x〉 〈x| dx = 1 and

∫ ∞
−∞
|p〉 〈p| dp = 1 (1.33)

〈x′|x〉 = δx′x and 〈p′|p〉 = δp′p (1.34)

Let us end this section by giving the Wigner function Wn(x, p) of Fock states |n〉, which
depends on the Laguerre polynomials Ln(x) [11] :

Wn(x, p) =
(−1)n

π
e−(x2+p2)Ln(2(x2 + p2)) (1.35)

As illustrated in Fig. 1.1, the Wigner function can take negative values, which was already
mentioned in section 1.2. The wave function ψn(x) of Fock states is given by [20]:

ψn(x) =
1

π1/4
√

2nn!
Hn(x)e−x

2/2 (1.36)

where Hn(x) are the Hermite polynomials.

(a) Vacuum state |0〉 (b) State |1〉 (c) State |3〉

Figure 1.1: Wigner functions of different Fock states. It should be noted that these states
are centered on the origin.

1.4 One-mode Gaussian states and unitaries
Gaussian states are continuous-variable states that are described with a Gaussian

Wigner function. The most relevant quantities that characterize these states are their
statistical moments [14], and more specifically, the first and second moments. The first
moment is called the displacement vector or more simply, the mean value :

〈r̂〉 ≡ Tr(r̂ρ̂) (1.37)

where r̂ = (x̂1, p̂1, x̂2, p̂2, ..., x̂n, p̂n)T is the quadratures vector, while the second moment
is called the covariance matrix, whose elements are defined by :

γij ≡
1

2
〈{∆r̂i,∆r̂j}〉 (1.38)

9
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where ∆r̂i = r̂i − 〈r̂i〉 and {Â, B̂} = ÂB̂ + B̂Â stands for the anti-commutator. For a
single-mode state, the covariance matrix is a 2 × 2 real and symmetric matrix that can
be written as :

γ =

(
σ2
x σxp

σpx σ2
p

)
(1.39)

where σ2
x and σ2

p are the position and momentum variances and σxp = σpx is the covariance.
Note that depending on the reference considered, the notation of the variance of the
random variable x (for instance) is written as σ2

x or ∆x2.

As stated previously, the Wigner function of a n-mode Gaussian state is a Gaussian
distribution and is given by :

WG(r) =
1

(2π)n
√
detγ

e−
1
2

(r−〈r〉)T γ−1(r−〈r〉) (1.40)

This expression clearly shows that the displacement vector and the covariance matrix are
indeed the only information needed in order to completely describe a Gaussian state.

The most basic example of a Gaussian state is the one with 0 photon, i.e. the vacuum
state, whose Wigner function is plotted in Fig. 1.1a. Its mean value and covariance
are equal to 0 while the position and momentum variances are both equal to 1/2. The
uncertainties on the x and p quadratures can be seen in Fig. 1.2.

Figure 1.2: Projection of the vacuum state Wigner function in phase space.

The thermal state is very similar to the vacuum state, in the sense that both quadratures
have the same uncertainties, only this time, the variances are greater than 1/2 (we also
have, just like for the vacuum state, 〈r̂〉 = σxp = σpx = 0).

In the following subsections, we will study Gaussian unitaries that will allow us to create
other types of Gaussian states, starting from the vacuum state. Gaussian unitaries are,
in particular, unitary transformations U−1 = U † that map a Gaussian state onto another
Gaussian state :

10
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Figure 1.3: The coherent state |α〉 (blue) is created by applying the displacement operator
on the vacuum state |0〉 (red-dashed).

ρ̂→ Uρ̂U † (1.41)

In terms of the quadrature operators, a Gaussian unitary is more simply described by an
affine map [14]:

r̂→ Sr̂ + d (1.42)

where d is a real vector of dimension 2n and S a 2n× 2n symplectic matrix. By definition,
a symplectic matrix is a real matrix such as :

SΩST = Ω (1.43)

with Ω known as the symplectic form :

Ω =
n⊕
k=1

ω , ω =

(
0 1
−1 0

)
(1.44)

where
⊕

denotes the matrix direct sum.

Let us mention that every symplectic matrix has a determinant equal to 1.

1.4.1 Coherent states and displacement operator

Let us start by introducing the displacement operator :

D̂(α) ≡ eαâ
†−α∗â (1.45)

where α = (x + ip)/
√

2 is the complex amplitude. A coherent state |α〉 can simply be
seen as a displaced vacuum state, such as shown in Fig. 1.3 :

11
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|α〉 ≡ D̂(α) |0〉 (1.46)

Under the action of D̂(α), the creation and annihilation operators become :

D̂†(α)âD̂(α) = â+ α

D̂†(α)â†D̂(α) = â† + α∗
(1.47)

while the quadratures transform as :

D̂†(α)x̂D̂(α) = x̂+ Re(α)

D̂†(α)p̂D̂(α) = p̂+ Im(α)
(1.48)

where Re(α) and Im(α) respectively stand for the real and imaginary part of α. It is clear
from these equations that the displacement operator translates the vacuum state in phase
space. Or in other words, it modifies the mean value vector while leaving the covariance
matrix intact :

〈r̂〉 =
√

2

(
Re(α)
Im(α)

)
and γα = γvac =

1

2
1 (1.49)

Coherent states can also be defined as a linear superposition of Fock states [21, p.191] :

|α〉 = e−|α|
2/2

∞∑
n=0

αn

(n!)1/2
|n〉 (1.50)

These states are normalized (〈α|α〉 = 1) but are never orthogonal as, for two different
complex number α and β, we have :

〈α|β〉 = e−
1
2
|α|2− 1

2
|β|2+α∗β (1.51)

Let us point out that the lack of orthogonality between coherent states is a result from
the fact that they form an overcomplete set of states [21, p. 191].The coherent states can
also be viewed as eigenstates of the annihilation operator :

â |α〉 = e−|α|
2/2

∞∑
n=0

αn

(n!)1/2

√
n |n− 1〉

= αe−|α|
2/2

∞∑
n=1

αn−1

(n− 1!)1/2
|n− 1〉

= αe−|α|
2/2

∞∑
n=0

αn

(n!)1/2

√
n |n− 1〉

= α |α〉

(1.52)

Of course, the following conjugate relation holds :

(â |α〉)† = (α |α〉)†

⇔〈α| â† = 〈α|α∗
(1.53)
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Figure 1.4: The vacuum circle (red-dashed) has been squeezed along the x-axis into an
ellipse (blue).

1.4.2 Squeezed states and squeezing operator

The vacuum and coherent states mentioned previously are both examples of states
that saturate the Heisenberg uncertainty relation3 :

σ2
xσ

2
p ≥

1

4
(1.54)

Moreover, the uncertainties of their quadratures are both equal to 1/2. However, the
uncertainty relation can also be saturated for states with different uncertainties on their
quadratures. This can be achieved using the squeezing operator :

Ŝ(z) ≡ e
1
2

(z∗â2−zâ†2) (1.55)

where z = reiφ and r ∈ R+ is the squeezing parameter, while is the squeezing angle. In
all generality, a squeezed state is written :

|α, z〉 ≡ D̂(α)Ŝ(z) |0〉 (1.56)

Note that the D̂(α) and Ŝ(z) do not commute, meaning that D̂(α)Ŝ(z) 6= Ŝ(z)D̂(α).
However, as calculated in [22], we have :

D̂(α)Ŝ(z) = Ŝ(z)D̂(β) , β = αcosh r − α∗eiθsinh r (1.57)

which implies that the order of these operators in the definition of squeezed states is
only a convention, as it is possible to generate all the possible squeezed states, regardless

3More details in Chapter 3.
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of whether we first apply the displacement operator and then the squeezing operator or
inversely. When there is no displacement, we can write the squeezed vacuum state as :

|0, z〉 = Ŝ(z) |0〉 =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!
einφ(tanh r)n |2n〉 (1.58)

As shown in Fig. 1.4, the squeezed state is an ellipse which has the same area as the un-
certainty circle of the vacuum in phase space. This is because symplectic transformations
conserve the area of a state in phase space.

Under the action of Ŝ(z), the ladder operator transform as :

Ŝ†(z)âŜ(z) = âcosh r − â†eiφsinh r
Ŝ†(z)â†Ŝ(z) = â†cosh r − âe−iφsinh r

(1.59)

while the x̂ and p̂ quadratures transform as :

Ŝ†(z)x̂Ŝ(z) = (cosh r − cosφ sinh r)x̂− (sinφ sinh r)p̂

Ŝ†(z)p̂Ŝ(z) = −(sinφ sinh r)x̂+ (cosh r + cosφ sinh r)p̂
(1.60)

Fixing φ = 0 and therefore z = r, the quadratures become :

Ŝ†(z)x̂Ŝ(z) = e−rx̂

Ŝ†(z)p̂Ŝ(z) = erp̂
(1.61)

which clearly highlights that the squeezing operator squeezes one quadrature and dilates
the other one in phase space. Consequently, the symplectic transformation associated to
this operator is :

Ssqueeze =

(
e−r 0
0 er

)
(1.62)

and the covariance matrix transforms into :

γsqueeze = SγvacS
T =

1

2

(
e−2r 0

0 e2r

)
(1.63)

1.4.3 Phase rotation

The last single-mode Gaussian unitary we introduce is called the phase-shift operator,
or the rotation operator :

R̂(θ) ≡ e−iθâ
†â (1.64)

This operator simply adds a phase to the mode operators :

R̂†(θ)âR̂(θ) = e−iθâ

R̂†(θ)â†R̂(θ) = eiθâ†
(1.65)

or, in phase space, it rotates the quadratures by an angle θ :

R̂†(θ)x̂R̂(θ) = x̂ cos θ + p̂ sin θ

R̂†(θ)p̂R̂(θ) = −x̂ sin θ + p̂ cos θ
(1.66)

Consequently, the associated symplectic matrix is :
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Srot =

(
cos θ sin θ
−sin θ cos θ

)
(1.67)

Now that this last unitary has been reviewed, we can define the notation :

|α, θ, z〉 ≡ D̂(α)R̂(θ)Ŝ(z) |0〉 (1.68)

which is the most general one-mode pure Gaussian state : a rotated and displaced squeezed
state. Note that R̂(θ) does not commute with D̂(α) or Ŝ(z), but as already pointed out
in the previous subsection, the order of the operators does not matter in order to generate
any arbitrary pure Gaussian state.

1.5 Two-mode Gaussian states and unitaries
We now review the two-mode Gaussian states which are produced from two harmonic

oscillators. Each oscillator can be described by its own set of ladder operators (â1, â
†
1

and â2, â
†
2), or equivalently, by its own dimensionless quadratures (x̂1, p̂1 and x̂2, p̂2). We

first examine the two-mode vacuum state, which is denoted by the tensor product of two
single-mode vacuum states |0〉1 ⊗ |0〉2, or, more concisely, |0, 0〉. In the position basis, its
wave function [23]

ψ00(x1, x2) =
1√
π
e−x

2
1/2e−x

2
2/2 (1.69)

can be rewritten as :

ψ00(x1, x2) =
1√
π
e−(x1−x2)2/4e−(x1+x2)2/4 (1.70)

Following this equation, we can define the observables x̂± = (x̂1 ± x̂2)/
√

2, which have
Gaussian distributions and which variances can be computed, by definition, as :

∆x2
± = 〈0, 0| x̂2

± |0, 0〉 − 〈0, 0| x̂± |0, 0〉
2 =

1

2
(1.71)

This result was to be expected because the double-vacuum state corresponds to a physical
state where there is no photon in either mode, meaning that there cannot be any inter-
action (or correlation) between the two modes. Therefore, we could have also calculated
the variances of x̂± by knowing that ∆x2

1 = ∆x2
2 = 1/2 for a single mode vacuum state

and by remembering that the variance of a sum of two uncorrelated variables A and
B is given by Var(A + B) = Var(A) + Var(B), and that the variance of a variable A
multiplied by a scalar a is given by Var(aA) = a2Var(A) :

∆(x±)2 = ∆

(
(x1 ± x2)√

2

)2

=
1

2

(
1

2
+

1

2

)
=

1

2
(1.72)

The same reasoning can be followed for the momentum quadratures p̂± = (p̂1 ± p̂2)/
√

2

As we will see, things get a little bit trickier when we consider a two-mode squeezed
vacuum state, but let us first define the two-mode displacement operator, which does not
cause any correlation between the two modes.

15



1.5. TWO-MODE GAUSSIAN STATES AND UNITARIES Chapter 1

1.5.1 Two-mode displaced states

The two-mode displacement operator is simply the tensor product of two single-mode
displacement operators, each acting on its own corresponding mode [15, p. 54]. The
two-mode displaced states are thus written :

D̂TM(α1, α2) |0〉1 |0〉2 ≡ (D̂(α1)⊗ D̂(α2)) |0〉1 |0〉2
= D̂(α1) |0〉1 D̂(α2) |0〉2
= |α1〉 |α2〉

(1.73)

1.5.2 Two-mode squeezing operator

It is important to distinguish between the product of two single-mode squeezing opera-
tors, which physically represents a situation where two harmonic oscillators are separately
squeezed, and a two-mode squeezing operator, where the two harmonic oscillators become
correlated [16]. We introduce the two-mode squeezing operator :

STM ≡ e
1
2

(z∗â1â2−zâ†1â
†
2) (1.74)

The action of STM on the ladder operator âi and â†i is given by [16] :

Ŝ†TM(z)â1ŜTM(z) = â1cosh r + â†2e
iφsinh r

Ŝ†TM(z)â†1ŜTM(z) = â†1cosh r + â2e
−iφsinh r

Ŝ†TM(z)â2ŜTM(z) = â2cosh r + â†1e
iφsinh r

Ŝ†TM(z)â†2ŜTM(z) = â†2cosh r + â1e
−iφsinh r

(1.75)

When applying the two-mode squeezing operator on the double-vacuum state, we obtain
the two-mode squeezed vacuum state, also called the EPR state (for Einstein-Podolski-
Rosen) [24]:

|EPR〉 ≡ STM(r) |0, 0〉 =
1

cosh r

∞∑
n=0

(tanh r)n |n, n〉 (1.76)

The particularity of this EPR state is that it exhibits a non-classical correlation between
the two modes. To understand what we mean by non-classical, we consider the extreme
case of an infinite squeezing r, and a squeezing angle φ = π. Therefore, the wave functions
of the two-mode squeezed state takes the form of :

ψ(x1, x2) ∝ δ(x1 − x2)

ψ̄(p1, p2) ∝ δ(p1 + p2)
(1.77)

Let us assume that Alice and Bob, two fictional observers, are sharing the EPR state : the
quadratures of the first mode are associated to Alice, while the quadratures of the second
mode are associated to Bob. Suppose now that Alice and Bob are located far away from
each other so that any form of communication is impossible (in the short time during
which Alice and Bob operate). Without measurement, the position and momentum of
Alice’s half of the state are completely uncertain (the same goes for Bob’s position and
momentum). However, if Alice measures the position of her part of the state and gets
x1, then, according to eq. (1.77), Bob’s position becomes precisely equal to that of Alice
and he should thus also measure x1. If Alice measures the momentum and gets p1, then
again, according to (1.77), Bob’s momentum becomes precisely opposite to that of Alice
and he obtains −p1.
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Figure 1.5: Action of a beam splitter on two different input beams.

The problem in this thought experiment resides in the fact that when Alice makes a
measurement, Bob’s half of the state instantaneously collapses to a state with a well
defined position or momentum, even though Alice and Bob are far away from each other.
This would imply that the information of the collapse of Alice’s state had to travel faster
than the speed of light from Alice to Bob, which is impossible according to the special
theory of relativity. EPR proposed instead that the states of Alice and Bob had a well-
defined position and momentum from the very beginning, or in other words, that the
information was locally hidden in the two states so that when they were moved apart, no
communication had to take place. This is known as the local hidden-variable theory.

If Alice and Bob’s states had a predetermined position and momentum from the start,
then the Heisenberg uncertainty relation, which states that the position and momentum
cannot simultaneously have a precise value, would be violated. With this argument, EPR
challenged the completeness of quantum mechanics.

In 1964, J.S. Bell proved with his inequalities that the local hidden-variable theory was
incompatible with the statistical predictions of quantum mechanics [25], exposing thus
that quantum states can exhibit correlations that cannot be reproduced or explained by
classical physics. Quantum entanglement is an example of such correlation. The EPR
state we considered previously is an entangled state, i.e. a state such that when the wave
function of one part of the system collapses, then the state of the other part of the system
is determined by the measurement on the first one.

In practice, the EPR state can be achieved by using a beam splitter, which is an optical
device that splits an incoming beam into two parts : one that is reflected and another
that is transmitted. Its action on two beams is schematized in Fig. 1.5 . The beam splitter
operator is defined by :

B(θ) = eθ(â1â
†
2−â

†
1â2) (1.78)

where θ determines the transmissivity of the beam splitter τ = cos2(θ) ∈ [0, 1]. The beam
splitter is said to be balanced (or 50:50) if τ = 1/2.
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An ideal beam splitter transforms the ladder operators as :(
â′1
â′2

)
=

(
cos θ sin θ
−sin θ cos θ

)(
â1

â2

)
(1.79)

As shown in [26], the two-mode squeezed vacuum state produced by the operator in eq.
(1.74) is equivalent to the two-mode state emerging from a 50:50 beam splitter with a
single-mode vacuum state squeezed along x and a single-mode vacuum state squeezed
along p at the input.

1.5.3 Two-mode rotation operation

The beam splitter is an example of a two-mode rotation operation. Another example
is simply the tensor product of two single-mode rotation operators, each acting on its
corresponding mode. The two-mode rotated states are thus written :

R̂TM(θ1, θ2) |ψ〉1 |ψ〉2 ≡ (R̂(θ1)⊗ R̂(θ2)) |ψ〉1 |ψ〉2
= R̂(θ1) |ψ〉1 R̂(θ2) |ψ〉2

(1.80)

1.6 Cat states
We conclude this chapter by briefly defining quantum (Schrödinger) cat states. These

states are a superposition of coherent states, taking the form of :

|cat〉± ≡
1√
N

(|α〉 ± |−α〉) with N = 2(1± e−2|α|2) (1.81)

where N is the normalization factor, |cat〉+ is called an even cat state and |cat〉− is called
an odd cat state. Their names come from the fact that, when expressed in terms of a
sum of Fock states (see eq. (1.50)), they only contain (respectively) even or odd number
states. As seen in Fig. 1.6, |α〉 and |−α〉 are diametrically opposed in phase space.
It can be proven that even and odd cat states are orthogonal :

− 〈cat|cat〉+ =
1

N
(〈α| − 〈−α|)(|α〉+ |−α〉)

=
1

N
(〈α|α〉+ 〈α|−α〉 − 〈−α|α〉 − 〈−α|−α〉)

=
1

N
(1 + e−2|α|2 − e−2|α|2 − 1) = 0

(1.82)

where we used eq. (1.51). The cat states can be generalized to a superposition of N
coherent states of the same amplitude α but evenly-distributed phases 2πn/N (n =
0, 1, ...N − 1). They can be represented by [27] :

|catN(α)〉 ≡ 1√
MN(α)

N−1∑
n=0

∣∣α ei2π nN 〉 (1.83)

whereMN(α) is the normalization constant. Such states are also refered to asmulti-headed
cat states.
Note that the constituent states of a Schrödinger cat state (SCS) can become macro-
scopically distinguishable in the limit of a large amplitude, and the SCS may become an
important tool to study a lot of fundamental issues, e.g. the decoherence of macroscopic
superposition states [27].
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Figure 1.6: Even and odd cat states projected onto phase space.

1.7 Conclusion
In this chapter we have reviewed the basic notions of quantum mechanics that will be

used in this thesis. We first started with a reminder about the density operator, which is
a generalization of the state vector representation, followed by a definition of the Wigner
function. Then, we introduced the number state formalism that allows us to characterize
states by the number of particles (or photons) that they contain. The ladder operator and
the quadratures of the electromagnetic field were also defined. Next, we studied different
Gaussian states which were all generated by applying some unitary transformation to the
single-mode or two-mode vacuum state. Finally, the cat states have been briefly defined
as the superposition of two diametrically opposed coherent states.
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Chapter 2

Basics of information theory

In 1948, Claude E. Shannon published an article called "The Mathematical Theory of
Communication" [9] which has become the pillar of information theory. One key quantity
of the whole theory is called the Shannon entropy. Interestingly, as we will see later, this
classical physical quantity will also be useful to measure the uncertainty of a quantum
random variable. Although we are mainly interested in continuous variables, we will
first review the Shannon entropy of discrete variables, since information theory was first
developed for discrete variables and then extended to continuous variables.

Information theory is such a wide field of study that the focus of this chapter will be on
the definitions that are useful in the scope of this thesis.

2.1 Shannon entropy
Let us consider a discrete random variable X which can take the values x ∈ X with a

probability p(x). The Shannon entropy of this variable is given by :

H(X) ≡ H(p) = −
∑
x∈X

p(x)log(p(x)) (2.1)

As stated by Shannon in his paper [9], the choice of a logarithmic base corresponds to the
choice of a unit for measuring information. Here, the logarithm is in base 2, meaning that
the entropy is expressed in binary digits, or bits. The entropy H(X) can be interpreted as
the number of bits needed, on average, to describe the outcome of a random variable. The
most common example often given to illustrate this interpretation is the coin flipping. If
we toss a coin, there are two possible outcomes, heads or tails, each with a probability of
1/2. The entropy of the distribution is then :

H(Coin flip) = −
∑
x

p(x)log(p(x)) = −1

2
log(

1

2
)− 1

2
log(

1

2
) = 1 (2.2)

This tells us that to describe this variable, we only need one bit. For instance, we can
associate the value 0 to the outcome "heads" and the value 1 to the outcome "tails".

To complete this definition, we must add the convention :

0 log(0) ≡ 0 (2.3)

Indeed, adding a term with a zero probability shouldn’t change the entropy. This is
justified when we look at the limit of the contribution of a vanishing probability :
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Figure 2.1: The Shannon discrete entropy is always positive, since 0 ≤ p(x) ≤ 1.

lim
x→0

x log(x) = 0 (2.4)

An important property of the Shannon entropy is that it always is positive, as shown in
Fig 2.1. This property is however not verified anymore for continuous variables, as we
will see in the next section.

Another interesting property of the Shannon entropy is that it is a concave function and
that it respects thus the Jensen’s inequality, given by [28]:

H

(
n∑
k=1

λkpk

)
≥

n∑
k=1

λkH(pk) (2.5)

where λk ∈ [0, 1] and
∑n

k=1 λn = 1.

2.2 Shannon differential entropy
When examining the entropy of continuous distributions, we speak of differential en-

tropy, which is very similar to the discrete case. It is defined as :

h(X) ≡ h(p) = −
∫ ∞
−∞

dx p(x)log(p(x)) (2.6)

In the case of a probability distribution p(x1, x2, ..., xn) of n continuous variables, we define
the joint differential entropy of the vector X = (X1, ..., Xn), which is written as :

h(X) = −
∫ ∞
−∞

dx1 ... dxn p(x1, ... , xn) log(x1, ... , xn) (2.7)

Although eq. (2.6) looks like we took eq. (2.1) and replaced the sum by an integral,
the reality is not that simple. To be more precise, the relation between the differential
entropy h(X) and the Shannon entropy H(X) is given by :

lim
∆→0

H(X∆) + log∆ = h(X) (2.8)
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where X∆ is the quantized entropy of X (more details in [29]). In other words, the dif-
ferential entropy is the continuous version of the Shannon entropy, up to a constant. The
difference between the discrete case and the continuous case is, in short, that the Shannon
entropy measures the absolute randomness of a variable, whereas the differential entropy
measures the relative randomness to an assumed standard, namely the coordinate system
over which we perform the integration [9]. Due to this difference, the differential entropy
can sometimes be negative. Let us, for example, take a random variable uniformly dis-
tributed on an interval from 0 to a, so that its density is 1/a from 0 to a and 0 elsewhere.
Its differential entropy is then :

h(X) = −
∫ a

0

1

a
log(

1

a
)dx = log a (2.9)

which is negative for a < 1.

2.2.1 Entropy of Gaussian distributions

As detailed in Chapter 1, Gaussian states are states that are characterized by Gaussian
functions. It feels only natural to now compute the differential entropy of Gaussian
distributions, as they exhibit an interesting property regarding differential entropies.

Let us assume a Gaussian random variable :

X ∼ p(x) =
1√

2πσ2
e
−x2
2σ2 (2.10)

Then, calculating the differential entropy in nats, i.e. using the natural logarithm instead
of the logarithm to the base 2, we obtain :

h(X) = −
∫ ∞
−∞

p(x)ln(p(x))dx

= −
∫ ∞
−∞

p(x)

(
−x2

2σ2
− ln
√

2πσ2

)
=

Var(p(x))

2σ2
+

1

2
ln 2πσ2

=
1

2
+

1

2
ln 2πσ2

=
1

2
ln e+

1

2
ln 2πσ2

=
1

2
ln 2πeσ2

(2.11)

Changing the base of the logarithm, we have :

h(X) =
1

2
log 2πeσ2 (2.12)

It is possible to generalize this result to a normal distribution of n variables, which ex-
pression is given by:

pN (x) =
1√

(2π)n detγ
e−

1
2

(x−〈x〉)T γ−1(x−〈x〉) (2.13)

where γ is the covariance matrix defined in Chapter 1. In this case, the entropy is equal
to :

h(pN ) =
1

2
ln((2πe)ndetγ) (2.14)
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The striking feature of Gaussian distributions is that they maximize the differential en-
tropy over all distributions with the same covariance, or mathematically :

h(pN ) ≥ h(p) ∀p(x) (2.15)

For curious readers, the proof of this relation can be found in [29, p. 255-256].

2.3 Entropy powers
Sometimes, it is more convenient to work with the entropy power of a random variable,

which is a derived quantity of the differential entropy h(X). The entropy power of an
n-variables distribution is written :

N(X) =
1

2πe
e

2h(X)
n (2.16)

where X = (X1, X2, ..., Xn)T is a multivariate random variable.

In the particular case of a one-mode Gaussian distribution of variance σG, we have :

NG =
1

2πe
eln(2πeσ2

G) = σ2
G (2.17)

Combining this result with the fact that the differential entropy is maximized by Gaussian
distributions, we have the following inequality :

σ2
x ≥ N(x) (2.18)

As we will see, entropy powers are very appropriate to write uncertainty relations. More
specifically, variance-based quantum uncertainty relations can be derived from entropic
uncertainty relations.

2.4 Conclusion
In this chapter, we briefly reviewed some definitions in information theory which help

us measure uncertainty differently than by using variances, namely, using the Shannon
entropy. We will see in this next chapter, that although Shannon information theory is a
classical theory, it can still be applied for quantum uncertainty relations.
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Chapter 3

Uncertainty Relations

In classical physics, when performing an experiment and then, repeating it under
the same exact conditions, it is expected of the two outcomes to be exactly the same.
This doctrine is called determinism [30, p. 5]. However, in quantum mechanics, there
is an inherent probabilistic aspect that is well emphasized by the uncertainty relations.
Indeed, it is, for instance, impossible to know with absolute precision the position and
the momentum of a quantum particle simultaneously. This was first expressed by
Heisenberg in 1927 and since then, many new uncertainty relations have been established.
Some relations hold for any pair of arbitrary observables Â and B̂ [2, 3], some are extended
to more than two variables [31, 32, 4, 5, 6, 7], and others are independent of the quantum
physical state [32, 33]. More recently, entropic uncertainty relations have emerged as
a tool to verify the security of quantum cryptographic protocols, such as quantum key
distribution or two-party quantum cryptography [8].

The work presented in this thesis is based on the study of specific uncertainty relations
and is appreciably inspired by the PhD thesis of A. Hertz [34]. In this chapter, we review
some historical uncertainty relations that are based on the product of variances. Then,
we give an overview of more "modern" uncertainty relations that are based on the sum of
variances, some of which will be more thoroughly studied in the second part of this thesis.
Finally, we close this chapter by giving a few well-known entropic uncertainty relations.

Note that for clarity, we often refer to uncertainty relations that are based on products as
multiplicative uncertainty relations, as opposed to additive uncertainty relations, which
are based on sums.

3.1 Uncertainty relations based on product of variances

3.1.1 Heisenberg uncertainty relation

In 1927, Heisenberg conducted a thought experiment, in which he intended to deter-
mine the position of an electron by illuminating it with a photon and then looking at it
under the microscope [1]. Classical optics tell us that the electron position can only be
resolved up to an uncertainty δx, which depends on the wavelength λ of the incoming
light and on the diameter of the lens D. Let us assume that we use a γ−ray microscope
that allows us to measure the position of the electron with most possible precision, i.e. by
selecting a wide lens and a short wavelength 1. This arbitrarily precise measurement cre-

1Note that in practice, it is impossible to observe the electron with an uncertainty strictly equal to 0,
because the diameter of the lens is finite and the wavelength cannot be null. This is completely analog
to the fact that one cannot create a quantum state where the position of a particle is perfectly known.
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ates another problem on its own. Indeed, due to the Compton effect, the incident photon
is scattered by the electron and as a result, the electron gains some momentum. However,
because the wavelength of the photon was set small, the photon carried a more important
momentum (following de Broglie’s formula p = h/λ) and could potentially transmit more
energy to the electron, increasing thus the uncertainty on the momentum. In conclusion,
to know the position precisely, one must use short wavelengths, but doing so increases
the uncertainty on the momentum. On the contrary, to know the momentum precisely,
one must use greater wavelengths, at the expense of a larger uncertainty on the position.
Heisenberg formulated that that there was a trade-off between the two measurements and
expressed it as :

δxδp ∼ h (3.1)

Soon after, Kennard mathematically formalized Heisenberg’s results and demonstrated
that [35]:

σ2
xσ

2
p ≥

~2

4
(3.2)

where σ2
x and σ2

p are the position and momentum variances of a quantum particle.

At this point, it is relevant to make the distinction between uncertainty relations and the
uncertainty principle. As explained by Peres in [30], the uncertainty relation given by
eq. (3.2) only reflects the intrinsic randomness of the outcomes of quantum tests while
the uncertainty principle refers to the disturbance in the measurements induced by the
apparatus, such as described in the recent literature by Ozawa or Busch [36, 37]. In
Heisenberg’s initial paper, it is not evident whether the uncertainties originate from the
physical state itself or from the disturbances induced by the measurements. However, eq.
(3.2) is clearly an uncertainty relation : it highlights that it is impossible for a physical
state to have both its position and momentum uncertainties simultaneously small. This
intrinsic property of the physical state is a direct consequence of Fourier transform.

3.1.2 Robertson-Schrödinger uncertainty relation

In 1929, Robertson generalized the Heisenberg relation for two arbitrary observables
Â and B̂ [2]:

σ2
Aσ

2
B ≥

1

4
| 〈ψ| [Â, B̂] |ψ〉 |2 (3.3)

Of course, if we consider the operators Â = x̂ and B̂ = p̂, we get back to the Heisenberg
relation, since [x̂, p̂] = i~. Note that for convenience, we fix ~ = 1 throughout the rest of
this thesis.

Relation (3.2) is invariant under (x, p)-displacement in phase space, meaning that if the
state |ψ〉 is displaced in phase space with the use of an operator D(α), then the inequality
remains the same. This is because variances are central moments and are thus invariant
under translation, i.e. for any random variable A and constant a, we have Var(A + a) =
Var(A). Furthermore, if we apply the displacement operator on the right side of the
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inequality, we get :

σ2
xσ

2
p ≥

1

4
| 〈ψ| D̂†(α)[x̂, p̂]D̂(α) |ψ〉 |2

≥ 1

4
| 〈ψ| D̂†(α)D̂(α)[x̂, p̂] |ψ〉 |2

≥ 1

4
| 〈ψ| [x̂, p̂] |ψ〉 |2

(3.4)

where we used the fact that the displacement operator is a unitary and that the commu-
tator [x̂, p̂] is a scalar. This proves that the inequality is indeed invariant under (x, p)-
translation.
Let us note that the inequality (3.2) is saturated by the vacuum state, coherent states
and squeezed states, provided that they are squeezed along the x- or p-axis.
Robertson’s uncertainty relation was later strengthened by Schrödinger who pointed out
that one could add an anti-commutator term [38]:

σ2
Aσ

2
B ≥

1

4
|〈{Â, B̂}〉 − 2〈Â〉〈B̂〉|2 +

1

4
|〈[Â, B̂]〉|2 (3.5)

Taking Â = x̂ and B̂ = p̂, the Robertson-Schrödinger uncertainty can be expressed as :

det(γ) ≥ 1

4
(3.6)

where γ is the covariance matrix defined in Chapter 1. The uncertainty relation (3.6) is
invariant under all Gaussian unitary transformations (displacement, squeezing and rota-
tion) and is therefore saturated by all pure Gaussian states. This can be simply verified
by taking the covariance matrix γ of any Gaussian state and then applying a symplectic
transformation onto it. Similarly to eq. (1.63), γ transforms into SγST . Then, remem-
bering that the determinant of a product is equal to the product of the determinants,
that the determinant of a matrix is equal to the determinant of its transpose and that
the determinant of a symplectic matrix is equal to one, we get :

det(SγST ) = det(S)det(γ)det(S) = det(γ) (3.7)
which proves that det(γ) is invariant under symplectic transformation.

3.2 Uncertainty relations based on sum of variances
The Robertson-Schrödinger uncertainty relation exhibits the impossibility to precisely

measure two non-commuting (or incompatible) observables. Indeed, if the two observables
commute, it is easy to see that the lower bound of eq. (3.5) becomes null and that
therefore, there is no limitation in our knowledge of the physical state. However, this
lower bound can also become trivial when the physical state is an eigenstate of one of the
two observables. For instance, if the physical state is an eigenstate |ψA〉 of the observable
Â, such that Â |ψ〉 = a |ψ〉, we’ll have :

∆A2 = 〈Â2〉−〈Â〉2 = 〈ψA| Â2 |ψA〉−〈ψA| Â |ψA〉2 = a2 〈ψA|ψA〉− (a 〈ψA|ψA〉)2 = 0 (3.8)

and therefore, the lower bound becomes trivial even if the other variance is non-zero :
this is because the uncertainty relation is based on a product of variances. To solve
this issue, many recent papers focused on uncertainty relations that are based on sum of
variances, as they guarantee the lower bound to be greater than 0 even if the state is an
eigenstate of one of observables.
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3.2.1 Maccone and Pati uncertainty relations

The Maccone and Pati uncertainty relation [3] is at the core of this thesis, and will be
later studied for the specific case of the x̂ and p̂ observables. This uncertainty relation is
characterized by two inequalities, the first one being :

∆A2 + ∆B2 ≥ ±i〈[Â, B̂]〉+ | 〈ψ| Â± iB̂
∣∣ψ⊥〉 |2 (3.9)

where
∣∣ψ⊥〉 designates an arbitrary state which is orthogonal to |ψ〉. The second inequality

reads :

∆A2 + ∆B2 ≥ 1

2
|
〈
ψ⊥A+B

∣∣ Â+ B̂ |ψ〉 |2 (3.10)

where
∣∣ψ⊥A+B

〉
∝ (Â+ B̂−〈Â+ B̂〉) |ψ〉 is a state orthogonal to |ψ〉. The notation

∣∣ψ⊥A+B

〉
implies that the right-hand-side of the inequality is non-trivial unless |ψ〉 is an eigenstate
of Â + B̂. By combining eq. (3.9) and (3.10), we obtain the Maccone Pati uncertainty
relation :

∆A2 + ∆B2 ≥ max(L1,L2) (3.11)

with L1,2 being the right-hand-side of eq. (3.9) and (3.10) respectively.

Two different proofs were provided in the original paper. One given by Maccone and Pati
themselves and the other given by an anonymous referee. Because this relation is at the
root of this thesis, we present here the proof given by the anonymous referee, which is
also the most elegant one, according to us but also according to the original authors.

To prove (3.9), we define the following operators :

Ĉ ≡ Â− 〈Â〉
D̂ ≡ B̂ − 〈B̂〉

(3.12)

so that

∆A =
∥∥∥Ĉ |ψ〉∥∥∥

∆B =
∥∥∥iD̂ |ψ〉∥∥∥ (3.13)

where ‖|ψ〉‖ ≡
√
〈ψ|ψ〉 designates the norm of |ψ〉 and where the imaginary unit i has

been added for later convenience. We have thus :

∥∥∥Ĉ ∓ iD̂ |ψ〉∥∥∥2

= 〈ψ| (Ĉ† ± iD̂†)(Ĉ ∓ iD̂) |ψ〉

=
∥∥∥Ĉ |ψ〉∥∥∥2

+
∥∥∥D̂ |ψ〉∥∥∥2

∓ i 〈ψ| (ĈD̂ − D̂Ĉ) |ψ〉

=
∥∥∥Ĉ |ψ〉∥∥∥2

+
∥∥∥iD̂ |ψ〉∥∥∥2

∓ i 〈ψ| (ÂB̂ − B̂Â) |ψ〉

=
∥∥∥Ĉ |ψ〉∥∥∥2

+
∥∥∥iD̂ |ψ〉∥∥∥2

∓ i 〈ψ| [Â, B̂] |ψ〉

= ∆A2 + ∆B2 ∓ i〈[Â, B̂]〉

(3.14)

The left-hand-side can be lower bounded through the Cauchy-Schwarz inequality which
states that for for any pair of non-null vectors |ψ〉 and |φ〉 in a Hilbert space H :
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Figure 3.1: The parallelogram law states that the sum of the squares of the diagonals of
a parallelogram is equal to the sum of the squares of its sides.

|〈ψ|φ〉|2 ≤ 〈ψ|ψ〉 〈φ|φ〉 = ‖ψ‖2‖φ‖2 (3.15)

Therefore, using the Cauchy-Schwarz inequality, we can write :

∣∣∣〈ψ| (Â± iB̂)
∣∣ψ⊥〉∣∣∣2 =

∣∣∣〈ψ| (Â± iB̂ − 〈Â± iB̂〉) ∣∣ψ⊥〉∣∣∣2
=
∣∣∣〈ψ| (Ĉ ± iD̂)

∣∣ψ⊥〉∣∣∣2
≤
∥∥∥(Ĉ ∓ iD̂) |ψ〉

∥∥∥2

(3.16)

which is valid for all
∣∣ψ⊥〉 orthogonal to |ψ〉. By combining (3.14) and (3.16), we naturally

obtain eq. (3.9).

To prove eq. (3.10), we use (3.12) and (3.13), with the difference that this time, we do
not add the imaginary unit i, i.e. ∆B =

∥∥∥D̂ |ψ〉∥∥∥. We then apply the parallelogram law
in Hilbert space (see Fig. 3.1) :

2∆A2 + 2∆B2 =
∥∥∥(Ĉ + D̂) |ψ〉

∥∥∥2

+
∥∥∥(Ĉ − D̂) |ψ〉

∥∥∥2

(3.17)

Since ∆(A + B) =
∥∥∥(Ĉ + D̂) |ψ〉

∥∥∥ and ∆(A − B) =
∥∥∥(Ĉ − D̂) |ψ〉

∥∥∥, we can rewrite the
previous equation as :

∆A2 + ∆B2 =
1

2
[∆(A+B)2 + ∆(A−B)2]

≥ 1

2
∆(A+B)2

(3.18)

which is equivalent to (3.10), since
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∆(A+B)2 =
∥∥∥(Ĉ + D̂) |ψ〉

∥∥∥2

= 〈ψ| (Ĉ + D̂)(Ĉ + D̂) |ψ〉
= 〈ψ| (Ĉ + D̂)(Ĉ + D̂) |ψ〉

〈
ψ⊥A+B

∣∣ψ⊥A+B

〉
=
∣∣∣〈ψ⊥A+B

∣∣ Ĉ + D̂ |ψ〉
∣∣∣2

=
∣∣∣〈ψ⊥A+B

∣∣ (Â+ B̂)− (〈Â〉+ 〈B̂〉) |ψ〉
∣∣∣2

=
∣∣∣〈ψ⊥A+B

∣∣ Â+ B̂ |ψ〉 − (〈Â〉+ 〈B̂〉)
〈
ψ⊥A+B

∣∣ψ〉∣∣∣2
=
∣∣∣〈ψ⊥A+B

∣∣ Â+ B̂ |ψ〉
∣∣∣2

(3.19)

Note that at the fourth equality sign, we used the fact that
∣∣ψ⊥A+B

〉
∝ (Â+B̂−〈Â+B̂〉) |ψ〉

in order to turn the Cauchy-Schwarz inequality into an equality.

3.2.2 Kechrimparis and Weigert uncertainty relations

Independently of Maccone and Pati, Kechrimparis and Weigert have recently worked
on uncertainty relations for more than two variables that were based on sums and products
of variances. In 2014, they proved that for x̂, p̂ and r̂ = −x̂− p̂, which are three pairwise
canonically conjugate observables (i.e. [p̂, x̂] = [x̂, r̂] = [r̂, p̂] = −i), the lower bound on
the product of variances is given by [31]:

∆x2∆p2∆r2 ≥
(τ

2

)3

(3.20)

where the number τ is the triple constant with value

τ ≡
√

4

3
(3.21)

In terms of the sum of variances, the uncertainty relation reads :

∆x2 + ∆p2 + ∆r2 ≥ τ
3

2
=
√

3 (3.22)

This uncertainty relation is saturated by the generalized squeezed state |Ξα〉 :

|Ξα〉 ≡ Ŝ i
4
ln 3 |α〉 (3.23)

which is generated by contracting a coherent state |α〉 by an amount of ln 4
√

3 at a squeezing
angle of 3π/4 (as an illustration, |Ξ0〉 is represented in Fig. 3.2).

Later, in 2018 [32], they generalized this uncertainty relation for linear combinations of
position and momentum operators, defined as :

r̂j = aj p̂j + bjx̂j, aj, bj ∈ IR, j = 1, ...,N. (3.24)

where at least two of the operators r̂j, j = 1, ..., N , should not commute (to exclude a
trivial situation). Moreover, we note that by using a system of units in which both position
and momentum have physical dimension

√
~, the coefficients, aj and bj are dimensionless.

As seen in Fig. 3.3, each observable r̂j can be represented by a vector in a two-dimensional
Euclidean space :
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Figure 3.2: The state |Ξ0〉 (full line) is generated by squeezing the vacuum state (dashed).
Figure reprinted from [31].

rj =

(
aj
bj

)
∈ IR2, j = 1, ...,N. (3.25)

We call ‖r̂j‖ =
√
a2
j + b2

j the "length" of the observable r̂j.

In the particular case of N observables (N > 2) arranged in a symmetric way, meaning
that we assume that the tips of the vectors rj ∈ IR2 are located on a circle of radius
R ∈ (0,∞) and that they are distributed homogeneously, we have :

r̂j = (R cosφj)p̂+ (R sinφj)x̂, φj =
2π(j − 1)

N
, j = 1, ..., N . (3.26)

Remark that from a structural point of view, the value of the constant R is not important
as it only rescales the all observables. We can fix it in such a way that any two adjacent
observables form a canonical pair, i.e. :

[r̂j, r̂j+1] = −iÎ, r̂N+1 ≡ r̂1, j = 1, ..., N (3.27)

where Î is the identity operator. These conditions are satisfied if the circumradius R of
the polygon takes the value

RN =
1√

sin∆N

, ∆N =
2π

N
(3.28)

For the observables described by eq. (3.26), the N -variables uncertainty relation takes
the form of :

N∑
j=1

∆r2
j ≥

N

2sin∆N

or
N∏
j=1

∆r2
j ≥

(
1

2sin∆N

)N
(3.29)
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Figure 3.3: A regular pentagon in the dimensionless "phase space" IR2.

It is possible to absorb the factor sin∆N on the right-hand-side of these inequalities by
considering the r̂j operators with tips located on the unit circle (meaning RN = 1), then,
the uncertainty relations take particularly simple forms [32] :

N∑
j=1

∆r2
j ≥

N

2
or

N∏
j=1

∆r2
j ≥

(
1

2

)N
(3.30)

These uncertainty relations are saturated for coherent states |α〉 = D̂(α) |0〉, contrarily to
the uncertainty relations (3.20) and (3.22) that were saturated for generalized squeezed
states |Ξα〉. This difference can be explained by the fact that the observables involved in
eq. (3.29) all have the same scaling and are evenly distributed.

It is interesting to note that unlike Maccone and Pati relations, the Kechrimparis and
Weigert uncertainty relations do not depend on the measured state. However, they are
restricted to quadrature observables

3.2.3 Song and Qiao uncertainty relation for 3 observables

Following the work of Maccone and Pati, Song and Qiao proposed an uncertainty
relation based of the sum of variances of three observables Â, B̂, Ĉ :

∆A2 + ∆B2 + ∆C2 ≥ 1

3

∣∣∣〈ψ⊥ABC∣∣ Â+ B̂ + Ĉ |ψ〉
∣∣∣2

+

√
3

3

∣∣∣i〈[Â, B̂, Ĉ]〉
∣∣∣+

2

3

∣∣∣〈ψ| Â+ B̂e±2πi/3 + Ĉe±4πi/3
∣∣ψ⊥〉∣∣∣2 (3.31)

where
∣∣ψ⊥〉 is a state orthogonal to the state of the system |ψ〉,

∣∣ψ⊥ABC〉 ∝ (Â+ B̂ + Ĉ −
〈Â + B̂ + Ĉ〉) |ψ〉 and 〈[Â, B̂, Ĉ]〉 ≡ 〈[Â, B̂]〉 + 〈[B̂, Ĉ]〉 + 〈[Ĉ, Â]〉. The sign in the last
term of (3.31) is +(−) when i〈[Â, B̂, Ĉ]〉 is positive (negative).
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Remark that applying the three pairwise canonical observables from Kechrimparis and
Weigert’s relation (3.22) to the inequality (3.31), one gets :

∆x2 + ∆p2 + ∆r2 ≥
√

3 +
2

3

∣∣〈ψ| x̂+ p̂e±2πi/3 + r̂e±4πi/3
∣∣ψ⊥〉∣∣2 (3.32)

which is obviously stronger than the Kechrimparis and Weigert’s relation since it contains
an extra positive term to the right side of eq. (3.22).

3.3 Entropic uncertainty relations
Because entropies are natural quantities in (quantum) information sciences, entropic

uncertainty relations have gained a lot of interest over the recent years. For instance, they
can be used as a way to distinguish entangled states, for quantum key distribution or for
two-party cryptography [8].

3.3.1 Hirschman uncertainty relation

In Chapter 2, we have seen that the Shannon entropies measure the randomness (or
uncertainty) of a variable. In 1957, Hirschman assumed that it should be therefore possible
to derive uncertainty relations that are based on Shannon entropies and conjectured that
for any n-modal state :

h(x) + h(p) ≥ n ln(πe~) (3.33)

where x = (x̂1, ...x̂n) and p = (p̂1, ...p̂n). This relation was formally proved in 1975 by
Beckner [39] and independently, in the same year, by Białynicki-Birula and Mycielski [40].

At first sight, eq. (3.33) may seem odd because we take the logarithm of a quantity
with dimension ~ in the right-hand-side. However, since the definition of the differential
entropy h(·) involves taking the logarithm of a quantity and since h(x) + h(p) = h(x.p)
(where x.p represents an inner product), we notice that the problem cancels out since we
have dimension ~ in both sides of the inequality. This motivates the use of the convention
~ = 1 that we used earlier in this chapter, being aware that it is an abuse of notation.

An interesting feature of the entropic uncertainty relation (3.33) is that it implies the
Heisenberg relation. Indeed, if we write (3.33) in terms of entropy powers, we get [41]:

N(x)N(p) =
1

2πe
e2h(x) 1

2πe
e2h(p)

=

(
1

2πe

)2

e2[h(x)+h(p)]

≥
(

1

2πe

)2

e2ln(πe) =
1

4

(3.34)

As detailed in Chapter 2, we have N(x) ≤ σ2
x, which highlights the fact that Gaussian

distributions maximize the entropy for a fixed variance. This allows us to write [41] :

σ2
xσ

2
p ≥ N(x)N(p) ≥ 1

4
(3.35)

which clearly shows that the entropic uncertainty relation implies the Heisenberg relation
(3.2).
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3.3.2 Other entropic uncertainty relations

In 2009, Guanlei et al. formulated a similar entropic uncertainty relation to (3.33) but
for two single-mode rotated quadratures [42] :

h(xθ) + h(xφ) ≥ ln(πe|sin(θ − φ)|) (3.36)

where x̂θ = x̂ cos θ + p̂ sin θ and x̂φ = x̂ cosφ+ p̂ sinφ. The n-modal generalization of the
entropic uncertainty relation was derived in [43], where the lower bound is expressed in
terms of the determinant of a matrix of commutators between the measured variables.

More recently, an improved version of the single-mode entropic uncertainty relation (3.33),
which is saturated for all Gaussian states, was proposed by Hertz, Jabbour and Cerf in
[41] :

h(x) + h(p)− 1

2
ln
(
σ2
xσ

2
p

detγ

)
≥ ln(πe) (3.37)

This uncertainty relation was proved under two reasonable assumptions (for more details,
see [34, p. 71]).

Morever, following a similar approach, Hertz and Cerf gave a proof (in [10]) of the entropic
version of Kechrimparis and Weigert uncertainty relation that was initially conjectured
in [32] :

2

N
(h1 + h2 + ...+ hN) ≥ ln(eπ) (3.38)

3.4 Conclusion
In this chapter, we have briefly outlined the history of uncertainty relations. In 1927,

Heisenberg showcased that there was a trade-off between the measurement of the position
of a particle and the measurement of its momentum. In this thesis, we focus on uncertainty
relations, i.e. relations that highlight the intrinsic random aspect in quantum measure-
ments. The Heisenberg relation was first mathematically formalized by Kennard and later
generalized by Schrödinger and Robertson for two arbitrary observables. In the recent
years, many new uncertainty relations based on sum of variances have emerged, as they
present the advantages of having a non-trivial lower-bound when the quantum state mea-
sured is an eigenstate of one of the two observables. The Maccone and Pati relation will be
thoroughly analyzed in the second part of this thesis, as well as the Kechrimparis-Weigert
relation, and the Song-Qiao relation. In parallel, many entropic uncertainty relations were
established, as they find many applications in quantum information sciences.
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Chapter 4

Additive uncertainty relation for
single-mode quadratures

In this chapter, we thoroughly analyze the Maccone-Pati (M-P) uncertainty relation for
the specific case where the arbitrary observables Â and B̂ are the position and momentum
operators x̂ and p̂. We study the lower bound of the inequality for different single-mode
states and determine the state

∣∣ψ⊥〉 that maximizes it. Then, we establish a connexion
between this uncertainty relation and some other work that can be found in the literature,
regarding nonclassicality criteria. Finally, we attempt to derive an entropic uncertainty
relation based on the sum of entropy powers. Note that in this chapter and in the next
ones, we use the convention ~ = 1.

4.1 M-P relation for the quadratures of light
As we have seen in Chapter 3, the M-P relation is an additive uncertainty relation

that holds for any pair of arbitrary observables Â and B̂. It is expressed as :

∆A2 + ∆B2 ≥ max(L1,L2) (4.1)

where

L1 = ±i〈[Â, B̂]〉+ | 〈ψ| Â± iB̂
∣∣ψ⊥〉 |2

L2 =
1

2
|
〈
ψ⊥A+B

∣∣ Â+ B̂ |ψ〉 |2
(4.2)

In this chapter, and in the rest of this thesis, we focus on L1, as it appears, from the original
paper of Maccone and Pati, that selecting the orthogonal state

∣∣ψ⊥〉 which maximizes the
quantity | 〈ψ| Â±iB̂

∣∣ψ⊥〉 |2 makes the inequality tight. By substituting Â = x̂ and B̂ = p̂,
we obtain the following expression for L1 :

L1 = ~ + | 〈ψ| x̂− ip̂
∣∣ψ⊥〉 |2

= ~ + 2| 〈ψ| â†
∣∣ψ⊥〉 |2

= ~ + 2|
〈
ψ⊥
∣∣ â |ψ〉 |2 (4.3)

where the sign - has been selected so that i〈[x̂, p̂]〉 becomes a positive quantity and where
we used eq. (1.27) and (1.28) to define the creation operator in terms of the quadratures
of light. The Maccone and Pati uncertainty relation for the quadratures of light is thus
given by (setting ~ = 1):
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∆x2 + ∆p2 ≥ 1 + 2 max
{|ψ⊥〉}

|
〈
ψ⊥
∣∣ â |ψ〉 |2 (4.4)

where max{
∣∣ψ⊥〉} indicates that we choose the state ∣∣ψ⊥〉 which maximizes |

〈
ψ⊥
∣∣ â |ψ〉 |2.

4.1.1 Invariances of the inequality

When faced with any uncertainty relation, an important question to ask is whether or
not the relation is invariant under Gaussian unitaries. In this subsection, we show that
the M-P uncertainty relation is indeed invariant under displacement and rotation. These
results will be useful in the following sections, where we will compute the variances of
the quadratures of light for different states, as well as the maximum value of the term
|
〈
ψ⊥
∣∣ â |ψ〉 |2.

Invariance under displacement

We already know that the left member of the inequality is invariant under displacement,
because variances are invariant under translation. We now need to check that this is
also the case for the right member . This is mathematically achieved by applying the
displacement operator on the states |ψ〉 and

∣∣ψ⊥〉. Indeed, it is easily verified that applying
the displacement operators on these two states does not change their orthogonality :〈

ψ⊥
∣∣ D̂†(α)D̂(α) |ψ〉 =

〈
ψ⊥
∣∣1 |ψ〉 = 0 (4.5)

Consequently, the right member of eq. (4.4) becomes :

1 + 2|
〈
ψ⊥
∣∣ D̂†(α)âD̂(α) |ψ〉 |2 = 1 + 2|

〈
ψ⊥
∣∣ â+ α |ψ〉 |2

= 1 + 2|
〈
ψ⊥
∣∣ â |ψ〉 |2 (4.6)

where we used eq. (1.47) to compute the action of the displacement operator on the
annihilation operator. This proves that the M-P uncertainty relation is invariant under
displacement.

Invariance under rotation

Similarly, by applying the phase-shift operator on the states |ψ〉 and
∣∣ψ⊥〉 and by remem-

bering that the action of the phase-shift operator on the mode operators is given by eq.
(1.65) :

1 + 2|
〈
ψ⊥
∣∣ R̂†(θ)âR̂(θ) |ψ〉 |2 = 1 + 2|

〈
ψ⊥
∣∣ â e−iθ |ψ〉 |2

= 1 + 2|e−iθ|2|
〈
ψ⊥
∣∣ â |ψ〉 |2

= 1 + 2|
〈
ψ⊥
∣∣ â |ψ〉 |2 (4.7)

which clearly shows that the right member is invariant under rotation. In parallel, we
know that the left member is invariant under rotation because it corresponds to the trace
of the covariance matrix and the trace of a matrix is invariant under any orthogonal
transformation (and in particular, a rotation).
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4.2 Single-mode Gaussian states
In this section, we prove that the M-P uncertainty relation is saturated for all single-

mode Gaussian states.

The vacuum state

We start with the simplest type of Gaussian state : the vacuum state. After computing
the right member of the M-P inequality, we obtain:

∆x2 + ∆p2 ≥ 1 + 2|
〈
ψ⊥
∣∣ â |0〉 |2

⇔ ∆x2 + ∆p2 ≥ 1
(4.8)

for any
∣∣ψ⊥〉 which respects

〈
ψ⊥
∣∣0〉 = 0.

The variances ∆x2 and ∆p2 for the vacuum state are given by :

∆x2 + ∆p2 = 〈0| x̂2 + p̂2 |0〉 − 〈0| x̂ |0〉2 − 〈0| p̂ |0〉2

= 〈0| 1 + 2â†â |0〉 − 1

2
〈0| â+ â† |0〉2 +

1

2
〈0| â− â† |0〉2

= 1 + 2 〈0| N̂ |0〉
= 1

(4.9)

The left and right members of the inequality are thus identical : this indicates that the
vacuum state saturates the M-P uncertainty relation.

Coherent states

Since the M-P uncertainty relation is invariant under displacement, coherent states also
saturate the inequality.

Squeezed states

We now focus on another class of Gaussian states : squeezed states. As seen in Chapter
1, a squeezed state can be written as :

|ψ〉 = Ŝ(z) |0〉 (4.10)

The most general orthogonal state to this squeezed state is the complex linear combination
of squeezed Fock states given by:

∣∣ψ⊥〉 =
∞∑
n≥1

αnŜ(z) |n〉 with
∞∑
n≥1

|αn|2 = 1 (4.11)

Indeed, it is quite straightforward to see that :

〈
ψ⊥
∣∣ψ〉 = 〈n|

∞∑
n≥1

α∗nŜ
†(z)Ŝ(z) |0〉 =

∞∑
n≥1

α∗n 〈n|0〉 = 0 (4.12)

The M-P uncertainty relation becomes thus :
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∆x2 + ∆p2 ≥ 1 + 2max
{αn}

∣∣∣∣∣
∞∑
n≥1

α∗n 〈n| Ŝ(z)†âŜ(z) |0〉

∣∣∣∣∣
2

(4.13)

The coefficients αn must now be chosen in order to maximize the right member of the
inequality. Conveniently, remembering the action of the squeezing operator on the anni-
hilation operator, which is given by eq. (1.59), we determine that, in order to maximize
the right member of the inequality, every coefficient αn must be null, except for the coef-
ficient α1, which is linked to the state |1〉 and whose modulus |α1|2 is equal to 1 for the
normalization:

∆x2 + ∆p2 ≥ 1 + 2max
{αn}

∣∣∣∣∣
∞∑
n≥1

α∗n 〈n| Ŝ(z)†âŜ(z) |0〉

∣∣∣∣∣
2

≥ 1 + 2max
{αn}

∣∣∣∣∣
∞∑
n≥1

α∗n 〈n| (âcosh r − â†eiφsinh r) |0〉

∣∣∣∣∣
2

≥ 1 + 2max
{αn}
|α∗1(−eiφsinh r) 〈1| â† |0〉 |2

≥ 1 + 2 sinh2 r

≥ cosh 2r

(4.14)

To determine the left member of the inequality, we can compute the trace of the covariance
matrix for a Gaussian squeezed state, given by eq. (1.63). The sum of variances ∆x2+∆p2

is thus equal to :

Tr(γ) = Tr
(

∆x2 σxp
σpx ∆p2

)
= Tr

(
e−2r

2
σxp

σpx
e2r

2

)
=
e−2r + e2r

2
= cosh 2r (4.15)

Subsequently, the M-P uncertainty relation is also saturated for squeezed states.

Generalized Gaussian states

Since the M-P uncertainty relation is saturated for squeezed states, and since it is also
invariant under displacement and rotation, we conclude that the generalized Gaussian
states |α, θ, z〉 saturate the uncertainty relation.

|α, θ, z〉 ≡ D̂(α)R̂(θ)Ŝ(z) |0〉 (4.16)

4.3 Single-mode Fock states
When considering an arbitrary number state |n〉, the most general orthogonal state is

given by : ∣∣ψ⊥〉 =
∞∑
m 6=n

αm |m〉 with
∞∑
m 6=n

|αm|2 = 1 (4.17)

and the M-P uncertainty relation becomes :
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∆x2 + ∆p2 ≥ 1 + 2max
{αm}

∣∣∣∣∣
∞∑
m 6=n

α∗m 〈m| â |n〉

∣∣∣∣∣
2

≥ 1 + 2max
{αm}

∣∣∣∣∣
∞∑
m 6=n

α∗m 〈m|
√
n |n− 1〉

∣∣∣∣∣
2

≥ 1 + 2
∣∣α∗n−1

√
n 〈n− 1|n− 1〉

∣∣2
≥ 1 + 2n

(4.18)

where |αn−1|2 = 1 and all the other coefficients αm vanished in order to maximize the
right side of the inequality. Looking at the variances, we obtain :

∆x2 + ∆p2 = 〈n| x̂2 + p̂2 |n〉 − 〈n| x̂ |n〉2 − 〈n| p̂ |n〉2

= 〈n| 1 + 2â†â |n〉 − 0

= 1 + 2n

(4.19)

where we used the fact that Fock states are centered states, i.e. that the mean values
〈n| x̂ |n〉 and 〈n| p̂ |n〉 are null. Consequently, Fock states also saturate the M-P uncertainty
relation.

Squeezed Fock states

We will handle squeezed Fock states similarly to what we have done for the squeezed
coherent states. Instead of squeezing the vacuum, we squeeze an arbitrary number state
|n〉. Consequently, we have :

|ψ〉 = Ŝ(z) |n〉 and
∣∣ψ⊥〉 =

∞∑
m 6=n

αmŜ(z) |m〉 with
∞∑
m6=n

|αm|2 = 1 (4.20)

Simplifying the right member of the M-P uncertainty relation gives us :

1 + 2max
{αm}

∣∣∣∣∣
∞∑
m6=n

α∗m 〈m| Ŝ(z)†âŜ(z) |n〉

∣∣∣∣∣
2

= 1 + 2max
{αm}

∣∣∣∣∣
∞∑
m 6=n

α∗m 〈m| âcosh r − â†eiφsinh r |n〉

∣∣∣∣∣
2

= 1 + 2max
{αm}

∣∣∣∣∣
∞∑
m 6=n

α∗m 〈m|
√
ncosh r |n− 1〉 − 〈m|

√
n+ 1 eiφsinh r |n+ 1〉

∣∣∣∣∣
2

= 1 + 2max
{αm}

∣∣∣α∗n−1

√
ncosh r − α∗n+1

√
n+ 1 eiφsinh r

∣∣∣2
(4.21)

In order to find the state
∣∣ψ⊥〉 that maximizes the lower bound of the uncertainty relation,

we must determine the coefficients αn−1 and αn+1. For this purpose, we develop the square
modulus in eq. (4.21) and use the Lagrange multipliers method [44], with the constraint
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that the square moduli of αn−1 and αn+1 must sum up to one. For simplicity, we rewrite
the complex coefficients in their exponential form and define the angle of dephasing θ :

α∗n−1 ≡ x eiθx

α∗n+1 ≡ y eiθy

θ ≡ θx − θy
(4.22)

with x, y ∈ R+. The square modulus in eq.(4.21) becomes thus :

∣∣∣α∗n−1

√
ncosh r − α∗n+1

√
n+ 1 eiφsinh r

∣∣∣2 = x2n cosh2 r + y2(n+ 1)sinh2 r

− xy ei(θ+φ)cosh r sinh r
√
n2 + n− xy e−i(θ+φ)cosh r sinh r

√
n2 + n

(4.23)

and the associated Lagrangian L is :

L = x2n cosh2 r+ y2(n+ 1)sinh2 r−xy sinh 2r
√
n2 + n cos(θ+φ)−λ(x2 + y2− 1) (4.24)

where we further simplified eq. (4.23) by factoring out the exponentials in order to reveal
a cosine and where we used the hyperbolic identity sinh 2r = 2sinh r cosh r.

We now have to solve the following system of equations :

∂L

∂x
= 2xn cosh2 r − y sinh 2r

√
n2 + n cos(θ + φ)− 2λx = 0 (4.25)

∂L

∂y
= 2y(n+ 1) sinh2r − x sinh 2r

√
n2 + n cos(θ + φ)− 2λy = 0 (4.26)

∂L

∂θ
= xy sinh 2r

√
n2 + n sin(θ + φ) = 0 (4.27)

∂L

∂λ
= x2 + y2 − 1 = 0 (4.28)

From eq.(4.27), we deduce three possible cases to consider :
1. x = 0

From eq. (4.28), we get y = 1. The reduced system takes the form of :{
−sinh 2r

√
n2 + n cos(θ + φ) = 0 (4.29)

2(n+ 1) sinh2r − 2λ = 0 (4.30)

We thus get θ = (k + 1)π
2
− φ (with k ∈ Z). As a result, the right member of the M-P

uncertainty relation is found to be equal to :

1 + 2
∣∣∣α∗n−1

√
ncosh r − α∗n+1

√
n+ 1 eiφsinh r

∣∣∣2 = 1 + 2(n+ 1)sinh2 r (4.31)

2. y = 0

From eq. (4.28), we get x = 1. The reduced system takes the form of :{
2n cosh2 r − 2λ = 0 (4.32)
−sinh 2r

√
n2 + n cos(θ + φ) = 0 (4.33)

We thus get θ = (k + 1)π
2
− φ (with k ∈ Z). As a result, the right member of the M-P

uncertainty relation is found to be equal to :

1 + 2
∣∣∣α∗n−1

√
ncosh r − α∗n+1

√
n+ 1 eiφsinh r

∣∣∣2 = 1 + 2n cosh2 r (4.34)
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3. θ = kπ (with k ∈ Z)

Note that in this case, the two coeffcients are in phase opposition. The reduced system
takes the form of : 

2xn cosh2 r ± y sinh 2r
√
n2 + n− 2λx = 0 (4.35)

2y(n+ 1) sinh2r ± x sinh 2r
√
n2 + n− 2λy = 0 (4.36)

y =
√

1− x2 (4.37)

A lengthy calculation gives us :

x =

√
n cosh r√

n cosh2 r + (n+ 1)sinh2 r
(4.38)

y =

√
n+ 1 sinh r√

n cosh2 r + (n+ 1)sinh2 r
(4.39)

This results in the following lower bound :

1 + 2
∣∣∣α∗n−1

√
ncosh r − α∗n+1

√
n+ 1 eiφsinh r

∣∣∣2 = 1 + 2(n cosh2 r + (n+ 1)sinh2 r)

= (2n+ 1)cosh 2r
(4.40)

where we used the hyperbolic identities cosh2 r+sinh2 r = cosh 2r and cosh2 r−sinh2 r = 1
to further simplify the expression. The lower bound of the M-P uncertainty relation is
thus given by eq. (4.40), as it is greater than the two sub-optimal lower bounds given by
eq. (4.31) and (4.34).

We now compute the left member of the M-P uncertainty relation :

∆x2 + ∆p2 = 〈n| Ŝ†(z)(x̂2 + p̂2)Ŝ(z) |n〉 − 〈n| Ŝ(z)†x̂Ŝ(z) |n〉2 − 〈n| Ŝ(z)†p̂Ŝ(z) |n〉2

= 1 + 2 〈n| Ŝ†(z)(â†â)Ŝ(z) |n〉
= 1 + 2 〈n| Ŝ†(z)â†Ŝ(z)Ŝ†(z)âŜ(z) |n〉
= 1 + 2 〈n| (â†cosh r − âe−iφsinh r)(âcosh r − â†eiφsinh r) |n〉
= 1 + 2 〈n| â†â cosh2r + ââ† sinh2r |n〉 − 0

= 1 + 2 〈n| (â†â cosh2r + (1 + â†â) sinh2r) |n〉
= 1 + 2(n cosh2 r + (n+ 1)sinh2 r)

= (2n+ 1)cosh 2r

(4.41)

where the mean values of x̂ and p̂ vanished because the states are centered, where
Ŝ†(z)Ŝ(z) = 1 because the squeezing operator is a unitary transformation and where
we used the fact that [â, â†] = 1. Because expression (4.40) and (4.41) are equal, we
conclude that squeezed Fock states saturate the M-P uncertainty relation.

Generalized Fock states

From the above results, we conclude that rotated and displaced squeezed Fock states,
which we call generalized Fock states |α, θ, z, n〉 , form a set of states that saturate the
M-P uncertainty relation.

|α, θ, z, n〉 ≡ D̂(α)R̂(θ)Ŝ(z) |n〉 (4.42)
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4.4 Single-mode cat states
In this section, we examine the M-P uncertainty relation for two specific single-mode

cat states : the even and the odd cat states, previously defined in Chapter 1. Let us start
our calculations with the odd cat state defined by :

|ψ〉 = |cat〉− =
1√
N−

(|α〉 − |−α〉) with N− = 2(1− e−2|α|2) (4.43)

Intuitively, we are tempted to choose the even cat state as the orthogonal state
∣∣ψ⊥〉1 :

∣∣ψ⊥〉 = |cat〉+ =
1√
N+

(|α〉+ |−α〉) with N+ = 2(1 + e−2|α|2) (4.44)

We will later see that this state maximizes in fact the lower bound of the inequality. By
noticing that :

â |cat〉− =
1√
N−

α(|α〉+ |−α〉) =

√
N+

N−
α |cat〉+ (4.45)

we can easily simplify the lower bound of the M-P relation :

∆x2 + ∆p2 ≥ 1 + 2

∣∣∣∣∣+ 〈cat|
√
N+

N−
α |cat〉+

∣∣∣∣∣
2

≥ 1 + 2
N+

N−
|α|2

(4.46)

This inequality is indeed saturated for odd cat states, since we have :

∆x2 + ∆p2 =− 〈cat| 1 + 2â†â |cat〉− − 0

= 1 + 2 −〈cat| â†â |cat〉−

= 1 + 2 +〈cat|

√
N+

N−

√
N+

N−
αα∗ |cat〉+

= 1 + 2
N+

N−
|α|2

(4.47)

where we used the fact that the mean value of x̂ and p̂ for cat states are null, as illustrated
by Fig. 1.6.

Following the same reasoning for even cat states, we obtain the following uncertainty
relation :

∆x2 + ∆p2 ≥ 1 + 2
N−
N+

|α|2 (4.48)

which is also saturated, meaning that two-headed cat states form a set of states that
saturate the M-P uncertainty relation.

1The proof of the orthogonality between the odd and the even cat state was already given by eq.
(1.82).
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4.5 M-P relation and nonclassicality
In the previous sections, we have analyzed the M-P uncertainty relation and showed

that it was saturated for all single-mode Gaussian states as well as for all single-mode
generalized Fock states and even for Schrödinger cat states. This was achieved by selecting
an adequate state

∣∣ψ⊥〉 that maximizes the lower bound of the inequality. Another way
to look at this uncertainty relation is by expressing the variances on x̂ and p̂ in terms of
the ladder operator and by defining the operator σ̂ = â |ψ〉 〈ψ| â†:

∆x2 + ∆p2 ≥ 1 + 2 max
{|ψ⊥〉}

|
〈
ψ⊥
∣∣ â |ψ〉 |2

⇔〈ψ| 1 + 2â†â |ψ〉 − 1

2
〈ψ| â+ â† |ψ〉2 +

1

2
〈ψ| â− â† |ψ〉2 ≥ 1 + 2 max

{|ψ⊥〉}
|
〈
ψ⊥
∣∣ â |ψ〉 |2

⇔2 〈ψ| â†â |ψ〉 − 2 〈ψ| â† |ψ〉 〈ψ| â |ψ〉 ≥ 2 max
{|ψ⊥〉}

|
〈
ψ⊥
∣∣ â |ψ〉 |2

⇔〈â†â〉 − 〈â†〉〈â〉 ≥ max
{|ψ⊥〉}

〈
ψ⊥
∣∣ σ̂ ∣∣ψ⊥〉

(4.49)

In this notation, the left member of the inequality represents the total number of chaotic
photons, i.e., the total number of photons minus the number of coherent photons. The
right member, on the other hand, shows another approach at finding the maximal lower
bound of the inequality : instead of determining the state

∣∣ψ⊥〉 that maximizes the
quantity |

〈
ψ⊥
∣∣ â |ψ〉 |2, one can focus on computing the maximal eigenvalue λσ ∈ R+ of

the restriction of the operator σ to the subspace orthogonal to |ψ〉, which further simplifies
the uncertainty relation into :

〈â†â〉 − 〈â†〉〈â〉 ≥ λσ (4.50)

Let us point out that the left member of the inequality corresponds to the second order
determinant d2, where the N -th order determinant dN is defined by [45]:

dN =

∣∣∣∣∣∣∣∣∣∣
1 〈â〉 〈â†〉 〈â2〉 〈â†â〉 ...

〈â†〉 〈â†â〉 〈â†2〉 〈â†â2〉 〈â†2 â〉 ...
〈â〉 〈â2〉 〈â†â〉 〈â3〉 〈â†â2〉 ...

〈â†2〉 〈â†2 â〉 〈â†3〉 〈â†2 â2〉 〈â†3 â〉 ...
... ... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣
(4.51)

The dN determinants play a central role in the determination of a nonclassicality criterion,
as detailed by Schukin and Vogel in [45]. This criterion can be expressed by the following
theorem : "A quantum state is nonclassical if and only if at least one of the determinants
dN is strictly negative. "

Unfortunately, since d2 is always non-negative, it yields no condition for nonclassical-
ity, but we deemed that the connection between the M-P uncertainty relation and the
nonclassicality criteria detailed in [45] or [46] was worth mentioning.

4.6 Towards an entropic uncertainty relation
As explained in Chapter 3, the entropic formulation of an uncertainty relation is more

robust than the variance-based formulation, as the former implies the latter. Moreover,
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entropic uncertainty relations find many applications in quantum information science.
This motivates our attempt at finding an entropic version of the additive uncertainty
relation of Maccone and Pati. In this section, we first give an entropic uncertainty relation
based on the sum of entropy powers. Then, we numerically check the validity of a variation
of the Maccone and Pati uncertainty relation where we replace the variances by entropy
powers.

4.6.1 Entropic formulation of the M-P uncertainty relation

Putting together an entropic formulation of the M-P uncertainty relation is a chal-
lenging task on its own, especially because of the second term in the right member of
the inequality. In this subsection we attempt to derive an additive entropic uncertainty
relation by checking, as a first step, if the following uncertainty relation holds :

Nx +Np

?

≥ 1 (4.52)

where Nx, Np are the entropy powers of x and p, defined by eq. (2.16). This inequality
corresponds to the M-P uncertainty relation (4.4) where we discarded the square modulus
in the right member and where we replaced the variances in the left member by the
entropy powers. To better understand what motivated us to prove (4.52) we refer to Fig.
4.1. As illustrated, the Robertson-Schrödinger relation is stronger than the restricted
M-P uncertainty relation2 : if a state is in the red region, it means that it respects
the Robertson-Schrödinger uncertainty relation, but also the M-P restricted uncertainty
relation. As a consequence, if the Robertson-Schrödinger uncertainty relation holds if we
replace the variances by entropy powers (as shown by (3.35)), then, relation (4.52) is also
expected to hold.

Proving (4.52) is equivalent to proving :

1

2πe
(e2h(x) + e2h(p))

?

≥ 1

⇔ 1

2
e2h(x) +

1

2
e2h(p)

?

≥ πe

(4.53)

Taking the logarithm of both sides, we get :

ln
(

1

2
e2h(x) +

1

2
e2h(p)

)
?

≥ ln(πe) (4.54)

Using the property of the concavity of a logarithm given by eq. (2.5), we obtain :

ln
(

1

2
e2h(x) +

1

2
e2h(p)

)
≥ 1

2
ln(e2h(x)) +

1

2
ln(e2h(p)) = h(x) + h(p) (4.55)

However, we know from eq. (3.33) that h(x)+h(p) ≥ ln(πe). Thus, the entropic version of
this restricted version of the M-P relation holds, but it is unfortunately not constraining
as it results from the Hirschman uncertainty relation.

We now attempt to derive an entropic version of the “unrestricted” M-P uncertainty
relation by conjecturing the following inequality for single-mode Fock states :

Nx +Np

?

≥ 1 + 2 max
{|ψ⊥〉}

|
〈
ψ⊥
∣∣ â |ψ〉 |2 = 1 + 2n (4.56)

2By restricted M-P uncertainty relation, we mean ∆x2 + ∆p2 ≥ 1.
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Figure 4.1: Graphical comparison between the Robertson-Schrödinger uncertainty rela-
tion (red) and the restricted Maccone-Pati uncertainty relation (blue).

Note that the lower bound was calculated in (4.19). We numerically compute3 the sum of
the entropy powers Nx and Np and then we compare it to the lower bound of the above
inequality. Unfortunately, as shown by Fig. 4.2, the inequality is violated since we have
Nx + Np ≤ 1 + 2n. Let us stress that eq. (4.56) was a naive conjecture based on the
correspondence with variance-based uncertainty relations and had no deep justification,
but we still list it in this report in order to prevent the reader from losing time on making
the calculations and to satisfy his/her curiosity.

4.7 Conclusion
In this chapter, we have derived an additive uncertainty relation for the quadratures of

light x̂ and p̂ from the M-P uncertainty relation. We have proved that when considering
these observables, the relation was invariant under displacement and rotation in phase
space. We showed that the inequality was saturated for displaced and rotated squeezed
Gaussian states but also for some non-Gaussian states, including displaced and rotated
squeezed Fock states as well as for cat states. Then, we expressed the uncertainty re-
lation in such a way that it exhibits a second order determinant of a particular matrix
involved in the determination of a nonclassicality criterion. Finally, we attempted to es-
tablish an additive entropic uncertainty relation, but our efforts were proved to be rather
unsuccessful.

3See Appendix A
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Figure 4.2: The green line represents the minimal uncertainty for Fock states with respect
to the mean number of photons 〈n〉, while the blue dots correspond to the sum of the
entropy powers Nx and Np for a Fock state |n〉.
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Chapter 5

Additive uncertainty relation for
two-mode quadratures

The aim of this chapter is to conduct the same analysis of the M-P uncertainty relation
that was done in the previous chapter, only this time, we consider two-mode EPR-like
operators. We hope that our calculations will serve as a stepping stone to the formulation
of a new separability criterion, i.e., a criterion that will allow us to distinguish a separable
state from an entangled state.

5.1 M-P relation for two-mode position and momentum
operators

In order to get a two-mode additive uncertainty relation, we take the M-P uncertainty
relation that was studied in Chapter 4 :

∆A2 + ∆B2 ≥ ±i〈[Â, B̂]〉+ | 〈ψ| Â± iB̂
∣∣ψ⊥〉 |2 (5.1)

and we substitute Â and B̂ by two-mode position and momentum operators. Following
the notation of Duan et al. [47], we define the EPR-like operators :

û = |a|x̂1 +
1

a
x̂2 (5.2)

v̂ = |a|p̂1 −
1

a
p̂2 (5.3)

where a is a non-zero real number. Let us point out that in the particular case where
a = 1, these EPR-like operators become the two-mode position and momentum operators1
(x+ and p−) that were defined in section 1.5.

We now proceed to simplify the right member of (5.1) by first computing the following
commutator :

[û, v̂] =

[
|a|x̂1 +

1

a
x̂2, |a|p̂1 −

1

a
p̂2

]
= i|a|2 − i 1

a2
= i

(
a2 − 1

a2

) (5.4)

1Ignoring a multiplicative constant 1√
2
.
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where we used the canonical commutation relation [x̂i, p̂j] = iδij and the following com-
mutator properties :

[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ]

[λÂ, B̂] = λ[Â, B̂]
(5.5)

where λ is a scalar. Consequently, since the sign in eq. (5.1) is selected so that the commu-
tator becomes a positive quantity, we obtain 2 different uncertainty relations, depending
on the value of a. For |a| > 1 and |a| < 1, we get (respectively) :

∆u2 + ∆v2 ≥ a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2 (5.6)

∆u2 + ∆v2 ≥ 1

a2
− a2 + 2 max

{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1
† +

1

a
â2 |ψ〉

∣∣∣∣2 (5.7)

Note however, it can be shown that these two inequalities provide the same lower bounds.
In the rest of this chapter, we will focus on the inequality (5.6).

5.1.1 Invariances of the inequality

In the previous chapter, we proved that the M-P uncertainty relation for the single-
mode quadratures of light was invariant under displacement and rotation in phase-space.
We now verify if it is still the case for the two-mode inequality. Similarly to what has been
done in eq. (4.6) and using the two-mode displacement operator defined by eq. (1.73),
we find for the right member of (5.6) :

1

a2
− a2 +

∣∣∣∣〈ψ⊥∣∣ D̂†(α2)D̂†(α1)

(
|a|â1 +

1

a
â2
†
)
D̂(α1)D̂(α2) |ψ〉

∣∣∣∣2
=

1

a2
− a2 +

∣∣∣∣〈ψ⊥∣∣ (|a|â1 + |a|α1 +
1

a
â2
† +

1

a
α∗2

)
|ψ〉
∣∣∣∣2

=
1

a2
− a2 +

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2
(5.8)

which proves that the uncertainty relation (5.6) is invariant under displacement in phase
space, since variances are invariant under translation. Nevertheless, the relation is not
invariant under rotation anymore, as shown by the below equation :

1

a2
− a2 +

∣∣∣∣〈ψ⊥∣∣ R̂†(θ2)R̂†(θ1)

(
|a|â1 +

1

a
â2
†
)
R̂(θ1)R̂(θ2) |ψ〉

∣∣∣∣2
=

1

a2
− a2 +

∣∣∣∣〈ψ⊥∣∣ (e−iθ1|a|â1 + eiθ2
1

a
â2
†
)
|ψ〉
∣∣∣∣2

(5.9)

where we used the definition of the two-mode rotation operator given by eq. (1.80). Note,
however, that in the special case where θ1 = −θ2, eq. (5.9) remains unchanged. The same
applies for the left member of the inequality, implying thus that the relation is invariant
under restricted rotation.

5.2 Two-mode Gaussian states
In this section, we compute the lower bound for the two-mode M-P uncertainty relation

and show that the relation is saturated by displaced two-mode squeezed vacuum states.
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Two-mode vacuum state

We start with the two-mode vacuum state, which is a tensor product of two single-
mode vacuum states :

|0〉 ≡ |0〉1 ⊗ |0〉2 = |0〉1 |0〉2 (5.10)
where each subscript indicates the index of the mode. To compute the lower bound of
the uncertainty relation, we need to simplify the following term :

〈
ψ⊥
∣∣ |a|â1 +

1

a
â†2 |0, 0〉 = 0 +

〈
ψ⊥
∣∣ â†2
a
|0, 0〉

=
1

a

〈
ψ⊥
∣∣0, 1〉 (5.11)

From this expression, we conclude that the orthogonal state that maximizes the lower
bound of the M-P inequality is

∣∣ψ⊥〉 = |0, 1〉. By injecting this result in (5.6), we get :

∆u2 + ∆v2 ≥ a2 − 1

a2
+ 2

1

|a|2
= a2 +

1

a2
(5.12)

Let us remark that this relation is very similar to the separability criterion established
by Duan et al. in [47], which states that if a two-mode state is separable, then its EPR
variance ∆EPR obeys the following inequality :

∆EPR ≡
〈
(∆u)2

〉
+
〈
(∆v)2

〉
≥ a2 +

1

a2
(5.13)

where 〈(∆u)2〉 corresponds to the usual variance 〈u2〉 − 〈u〉2. This sufficient2 criterion
for separability implies thus that if a state violates the inequality (5.13), for any value
of a, it is entangled. The resemblance between (5.12) and (5.13) further motivates the
work in this Chapter and we have high hopes that the M-P uncertainty relation can lead
to a new, improved separability criterion. We want to stress however that, although the
inequalities are similar, they do not express the same thing. The M-P inequality is a
physicality criterion : if a state violates the inequality, it is not physical and can never
be observed, whereas the separability criterion only gives us a bound that allows us to
determine whether a state is entangled or not.

We now directly compute the variances of the EPR-like operators for the vacuum state:

∆u2 + ∆v2

= 〈0, 0| û2 + v̂2 |0, 0〉 − 〈0, 0| û |0, 0〉2 − 〈0, 0| v̂ |0, 0〉2

= 〈0, 0| û2 + v̂2 |0, 0〉 − 0− 0

= 〈0, 0| a2x̂2
1 +

1

a2
x̂2

2 + 2 sign(a)x̂1x̂2 |0, 0〉+ 〈0, 0| a2p̂2
1 +

1

a2
p̂2

2 − 2 sign(a)p̂1p̂2 |0, 0〉

=a2 +
1

a2
+ 2a2 〈0, 0| â†1â1 |0, 0〉+

2

a2
〈0, 0| â†2â2 |0, 0〉+ 2 sign(a) 〈0, 0| â1â2 + â†1â

†
2 |0, 0〉

=a2 +
1

a2
+ 0

(5.14)

where the mean values 〈0, 0| û |0, 0〉 and 〈0, 0| v̂ |0, 0〉 vanished because the state is centered
and where, again, we used (1.27) and (1.28) to express x̂i and p̂i in terms of the ladder
operators. As we expected, the M-P uncertainty relation is also saturated by the two-mode
vacuum state.

2For two-mode Gaussian states only.
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Two-mode coherent states

Since the uncertainty relation is invariant under displacement in phase space, and since
it is saturated for the two-mode vacuum state, it is also saturated for two-mode coherent
states.

Two-mode squeezed states

We continue this section by computing the maximal lower bound of the M-P uncertainty
relation for two-mode squeezed states. Those states are created by applying the two-mode
squeezing operator defined by eq. (1.74) on the two-mode vacuum state :

|ψ〉 = ŜTM(z) |0, 0〉 (5.15)
Accordingly, the orthogonal state

∣∣ψ⊥〉 is given by :

∣∣ψ⊥〉 =
∞∑

n1,n2≥1

αn1n2ŜTM(z) |n1, n2〉 with
∞∑

n1,n2≥1

|αn1n2|2 = 1 (5.16)

Substituting these two expressions in the right member of (5.6), we find :

a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2
=a2 − 1

a2

+ 2 max
{|ψ⊥〉}

∣∣∣∣∣
∞∑

n1,n2≥1

α∗n1n2

(
|a| 〈n1, n2| Ŝ†TM(z)â1ŜTM(z) |0, 0〉+

1

a
〈n1, n2| Ŝ†TM(z)â†2ŜTM(z) |0, 0〉

)∣∣∣∣∣
2

(5.17)

To further simplify the expression, we remember the action of the two-mode squeezing
operator on the ladder operator which was given by eq. (1.75) :

Ŝ†TM(z)â1ŜTM(z) = â1cosh r + â†2e
iφsinh r (5.18)

Ŝ†TM(z)â†2ŜTM(z) = â†2cosh r + â1e
−iφsinh r (5.19)

Eq. (5.17) therefore reduces to (with the optimal state
∣∣ψ⊥〉 = Ŝ†TM(z) |0, 1〉) :

a2 − 1

a2
+

∣∣∣∣〈0, 1|(1

a
cosh r + |a|eiφsinh r

)
|0, 1〉

∣∣∣∣2
=a2 − 1

a2
+ |a|2sinh2r +

1

a2
cosh2r + 2 sign(a)cosh r sinh r cosφ

=a2 − 1

a2
+ 2

(
a2sinh2r +

1

a2
(sinh2r + 1) + 2 sign(a)cosh r sinh r cosφ

)
=

(
a2 +

1

a2

)
(1 + 2sinh2r) + 2 sign(a)cosh r sinh r cosφ

(5.20)

Let us point out that in the particular case where a = 1, φ = π and where the squeezing is
infinite (r →∞), this lower bound tends towards zero, which was to be expected because
in the limit of an infinite squeezing, the EPR state given by (5.15) represents a maximally
entangled state : we observe a perfect correlation between the two position operators and
a perfect anti-correlation between the two momentum operators.
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Of course, we obtain the same result by directly computing the variances of û and v̂ :

∆u2 + ∆v2 =a2 +
1

a2
+ 2a2 〈0, 0| Ŝ†TM(z)â†1ŜTM(z)Ŝ†TM(z)â1ŜTM(z) |0, 0〉

+
2

a2
〈0, 0| Ŝ†TM(z)â†2ŜTM(z)Ŝ†TM(z)â2ŜTM(z) |0, 0〉

+ 2 sign(a) 〈0, 0| Ŝ†TM(z)â1ŜTM(z)Ŝ†TM(z)â2ŜTM(z) |0, 0〉
+ 2 sign(a) 〈0, 0| Ŝ†TM(z)â†1ŜTM(z)Ŝ†TM(z)â†2ŜTM(z) |0, 0〉

=a2 +
1

a2
+ 2a2 〈0, 1| sinh2r |0, 1〉+

2

a2
〈1, 0| sinh2r |1, 0〉

+ 2 sign(a)cosh r sinh r eiφ + 2 sign(a)cosh r sinh r e−iφ

=

(
a2 +

1

a2

)
(1 + 2sinh2r) + 2 sign(a)cosh r sinh r cosφ

(5.21)

which proves that the inequality is saturated for all two-mode squeezed vacuum states
(and the EPR state).

5.3 Two-mode Fock states
We now take a look at the uncertainty relation while considering two-mode Fock states.

Similarly to what has been done in the previous section, we define :

|ψ〉 = |n1, n2〉∣∣ψ⊥〉 =
∞∑

m1,m2 6=n1,n2

αm1m2 |m1,m2〉 with
∞∑

m1,m2 6=n1,n2

|αm1m2|2 = 1
(5.22)

The square modulus in the right member of (5.6) becomes thus :

2 max
{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2

=2 max
{αm1m2}

∣∣∣∣∣
∞∑

m1,m2 6=n1,n2

α∗m1m2
〈m1,m2| |a|â1 +

1

a
â2
† |n1, n2〉

∣∣∣∣∣
2

=2 max
{αm1m2}

∣∣∣∣α∗n1−1,n2
〈n1 − 1, n2| |a|

√
n1 |n1 − 1, n2〉+ 〈n1, n2 + 1|αn1,n2+1

1

a
|n1, n2 + 1〉

∣∣∣∣2
=2 max
{αm1m2}

∣∣∣α∗n1−1,n2
|a|
√
n1 +

αn1,n2+1

a

√
n2 + 1

∣∣∣2
(5.23)

By defining :

α∗n1−1,n2
≡ x eiθx

α∗n1,n2+1 ≡ y eiθy

θ ≡ θx − θy

(5.24)

with x, y ∈ R+, we can develop the square modulus and, just like we did in Chapter 4
for single-mode Fock states, use the Lagrange multipliers method to find the coefficients
that maximize the lower bound of the inequality.
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The Lagrangian L is given by :

L = a2x2n1 +
y2

a2
(n2 + 1) + 2xy

√
n1(n2 + 1) sign(a) cos θ − λ(x2 + y2 − 1) (5.25)

and the system we have to solve is :



∂L

∂x
= 2a2xn1 + 2y

√
n1(n2 + 1) sign(a) cos θ = 0 (5.26)

∂L

∂y
=
y2

a2
(n2 + 1) + 2x

√
n1(n2 + 1) sign(a) cos θ = 0 (5.27)

∂L

∂θ
= −2xy

√
n1(n2 + 1) sign(a) sin θ = 0 (5.28)

∂L

∂λ
= x2 + y2 − 1 = 0 (5.29)

Remark that, similarly to the calculations for the single-mode squeezed Fock states, we
are faced with three different cases :

1. x = 0, y = 1

2. x = 1, y = 0

3. θ = kπ (with k ∈ Z)

We find that (5.23) is maximized when we consider θ = 0 and the coefficients are therefore
given by :

x =
a2√n1√

a4n1 + n2 + 1

y =

√
n2 + 1√

a4n1 + n2 + 1

(5.30)

Consequently, the lower bound of the inequality becomes :

a2 − 1

a2
+ 2 max
{αm1m2}

∣∣∣α∗n1−1,n2
|a|
√
n1 +

αn1,n2+1

a

√
n2 + 1

∣∣∣2 = a2 − 1

a2
+ 2(a2n1 +

n2

a
+

1

a2
)

= a2(1 + 2n1) +
1

a2
(1 + 2n2)

(5.31)

To see if the inequality is saturated, we directly compute the variances :

∆u2 + ∆v2 =a2 +
1

a2
+ 2a2 〈n1, n2| â1

†â1 |n1, n2〉+
2

a2
〈n1, n2| â2

†â2 |n1, n2〉

+ 2 sign(a) 〈n1, n2| â1â2 + â1
†â2
† |n1, n2〉

=a2 +
1

a2
+ 2a2n1 +

2

a2
n2 = a2(1 + 2n1) +

1

a2
(1 + 2n2)

(5.32)

Therefore, we conclude that two-mode Fock states, as well as two-mode displaced Fock
states (because the uncertainty relation is invariant under displacement) saturate the
uncertainty relation.
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Two-mode squeezed Fock states

Let us now examine the two-mode M-P uncertainty relation for two-mode squeezed
Fock states. Those states are created after applying the two-mode squeezing operator to
an arbitrary two-mode Fock state :

|ψ〉 = ŜTM(z) |n1, n2〉 (5.33)

Accordingly, the orthogonal state
∣∣ψ⊥〉 is given by :

∣∣ψ⊥〉 =
∞∑

m1,m2 6=n1,n2

αm1m2ŜTM(z) |m1,m2〉 with
∞∑

m1,m2 6=n1,n2

|αm1m2|2 = 1 (5.34)

By injecting these states in the right member of (5.6), we obtain :

a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2

=a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣∣
∞∑

m1,m2 6=n1,n2

αm1m2 〈m1,m2| Ŝ†TM(z)(|a|â1 +
1

a
â2
†)ŜTM(z) |n1, n2〉

∣∣∣∣∣
2

(5.35)

Using (5.18) and (5.19), the expression breaks down to :

a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣∣
∞∑

m1,m2 6=n1,n2

αm1m2

[
〈m1,m2| â1

(
|a| cosh r +

e−iφ

a
sinh r

)
|n1, n2〉

+ 〈m1,m2| â2
†
(
|a|eiφ sinh r +

1

a
cosh r

)
|n1, n2〉

]∣∣∣∣∣
2

=a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣∣αn1−1,n2

√
n1

(
|a| cosh +

e−iφ

a
sinh r

)

+ αn1,n2+1

√
n2 + 1

(
|a|eiφ sinh r +

1

a
cosh r

) ∣∣∣∣∣
2

(5.36)

Although the expression is more complicated than previously, the methodology is the
same as before : we use the Lagrange multipliers method in order to find the coefficients
that maximize the lower bound of the M-P uncertainty relation. We spare the reader from
the painful calculations and skip straight to the results. The M-P uncertainty relations
for two-mode squeezed Fock states reads :

∆u2 + ∆v2 ≥a2
(
1 + 2(n1 cosh2r + n2 sinh2r)

)
+

1

a2

(
1 + 2(n2 cosh2r + n1 sinh2r)

)
+ 4 sign(a) (n1sinh r cosh r + n2 sinh r cosh r) cos(φ)

(5.37)

Directly computing the variances gives us :
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∆u2 + ∆v2 =a2 +
1

a2
+ 2a2 〈n1, n2| Ŝ†TM(z)â1

†ŜTM(z)Ŝ†TM(z)â1ŜTM(z) |n1, n2〉

+
2

a2
〈n1, n2| Ŝ†TM(z)â2

†ŜTM(z)Ŝ†TM(z)â2ŜTM(z) |n1, n2〉

+ 2 sign(a) 〈n1, n2| Ŝ†TM(z)â1ŜTM(z)Ŝ†TM(z)â2ŜTM(z) |n1, n2〉
+ 2 sign(a) 〈n1, n2| Ŝ†TM(z)â1

†ŜTM(z)Ŝ†TM(z)â2
†ŜTM(z) |n1, n2〉

=a2 +
1

a2
+ 2a2(n1cosh2r + n2 sinh2r) +

2

α
(n2cosh2r + n1 sinh2r)

+ 4 sign(a) (n1sinh r cosh r + n2 sinh r cosh r) cos(φ)

(5.38)

which is equivalent to (5.37). Therefore, we have shown that two-mode squeezed Fock
states saturate the uncertainty relation.

5.4 Two-mode cat states
We finish this chapter by considering the product of 2 single-mode cat states :

|cat α〉± ≡
1√
N

(|α〉 ± |−α〉) with N = 2(1± e−2|α|2) (5.39)

|cat β〉± ≡
1√
N

(|β〉 ± |−β〉) with N = 2(1± e−2|β|2) (5.40)

This leads to the following set of two-mode product cat states :

|ψ1〉 = |cat α〉− |cat β〉− (5.41)
|ψ2〉 = |cat α〉+ |cat β〉+ (5.42)
|ψ3〉 = |cat α〉+ |cat β〉− (5.43)
|ψ4〉 = |cat α〉− |cat β〉+ (5.44)

with |cat〉−, |cat〉+, N−, N+ having the same expression as in section 4.4. Remark that all
these states are orthogonal. We analyze the lower bound of two mode M-P uncertainty
relation for |ψ〉 = |ψ1〉 :

a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣〈ψ⊥∣∣ |a|â1 +
1

a
â2
† |ψ〉

∣∣∣∣2
=a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣(〈ψ⊥∣∣ |a|â1 |cat α〉− |cat β〉− +
〈
ψ⊥
∣∣ 1

a
â2
† |cat α〉− |cat β〉−

)∣∣∣∣2
(5.45)

From this expression, and by keeping in mind (4.45), we deduce that the state
∣∣ψ⊥〉 which

optimizes the lower bound is given by the complex linear combination of :∣∣ψ⊥〉 = x |ψ3〉+ y |ψ4〉 with |x|2 + |y|2 = 1 (5.46)
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Again, we are faced with an optimization problem that we solve using the Lagrange
multipliers method. Doing so gives us the following lower bound :

a2 − 1

a2
+ 2 max
{|ψ⊥〉}

∣∣∣∣∣x∗|a|
√
N+

N−
α +

y∗

a
α∗

√
N−
N+

∣∣∣∣∣
2

=a2

(
1 + 2|α|2N+

N−

)
+

1

a2

(
1 + 2|β|2N−

N+

) (5.47)

By directly computing the variances, we obtain the same result. We can repeat this
reasoning for |ψ〉 = |ψ2〉 , |ψ3〉 or |ψ4〉 to conclude that the set of two-mode two-headed
cat states saturate the M-P uncertainty relation.

5.5 Conclusion
In this chapter, we have studied the M-P uncertainty relation for two-mode EPR-like

operators. We proved that, analogously to the one-mode case, the relation is invari-
ant under displacement. However, the relation is not generally invariant under rotation
anymore, except for the case where the two rotation angles are opposite. We showed
that the inequality was saturated for the following set of product states : displaced and
squeezed vacuum states, two-mode displaced and squeezed Fock states and for two-mode
two-headed cat states. These results are very encouraging for the formulation of a sepa-
rability criterion, but much work remains to be done in order to actually derive it.
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Chapter 6

Additive uncertainty relation for more
than two observables

In this chapter, we aim at making connections between three different uncertainty
relations, namely the Maccone-Pati uncertainty relation [3], the Kechrimparis-Weigert
uncertainty relation [32] and the Song-Qiao uncertainty relation [32]. Concretely, we
show that substituting the 3 observables from the Song-Qiao inequality with the rotated
quadratures from the Kechrimparis-Weigert uncertainty leads to an uncertainty relation
that closely resemble the Maccone-Pati uncertainty relation that we derived in Chapter 4.
Inspired by this result, we conjecture, then prove a tighter additive uncertainty relation
for N rotated quadratures than the one proposed by Kechrimparis and Weigert in [32].

6.1 The Song-Qiao uncertainty relation
The Song-Qiao uncertainty relation is an additive uncertainty relation that holds for

any three observable Â, B̂, Ĉ:

∆A2 + ∆B2 + ∆C2 ≥ 1

3

∣∣∣〈ψ⊥ABC∣∣ Â+ B̂ + Ĉ |ψ〉
∣∣∣2

+

√
3

3

∣∣∣i〈[Â, B̂, Ĉ]〉
∣∣∣+

2

3

∣∣∣〈ψ| Â+ B̂e±2πi/3 + Ĉe±4πi/3
∣∣ψ⊥〉∣∣∣2 (6.1)

where
∣∣ψ⊥〉 is a state orthogonal to the state of the system |ψ〉,

∣∣ψ⊥ABC〉 ∝ (Â+ B̂ + Ĉ −
〈Â + B̂ + Ĉ〉) |ψ〉 and 〈[Â, B̂, Ĉ]〉 ≡ 〈[Â, B̂]〉 + 〈[B̂, Ĉ]〉 + 〈[Ĉ, Â]〉. The sign in the last
term of (3.31) is +(−) when i〈[Â, B̂, Ĉ]〉 is positive (negative).

We already pointed out in Chapter 3, that replacing Â, B̂, Ĉ by the three operators x̂, p̂ and
r̂ = −x̂− p̂ results in a stronger uncertainty relation that the one given by Kechrimparis
and Weigert in 2014 [31]. In this section, we substitute the Â, B̂, Ĉ operators by 3 equally
distributed quadratures, as expressed in [32] :

p̂0 ≡ p̂

p̂ 2π
3
≡ cos

2π

3
p̂+ sin

2π

3
x̂ =
−1

2
p̂+

√
3

2
x̂

p̂ 4π
3
≡ cos

4π

3
p̂+ sin

4π

3
x̂ =
−1

2
p̂−
√

3

2
x̂

(6.2)

We now compute the right member of the Song-Qiao inequality, by assessing each term
one by one. For the first term, we have :
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1

3

∣∣∣〈ψ⊥ABC∣∣ Â+ B̂ + Ĉ |ψ〉
∣∣∣2 =

1

3

∣∣∣∣∣〈ψ⊥ABC∣∣
(
p̂− 1

2
p̂+

√
3

2
− 1

2
p̂−
√

3

2

)
|ψ〉

∣∣∣∣∣
2

= 0 (6.3)

For the second term, we have :

√
3

3

∣∣∣i〈[Â, B̂, Ĉ]〉
∣∣∣ =

√
3

3

∣∣∣i(〈[p̂0, p̂ 2π
3

]〉+ 〈[p̂ 2π
3
, p̂ 4π

3
]〉+ 〈[p̂ 4π

3
, p̂0]〉)

∣∣∣
=

√
3

3

∣∣∣∣∣i
(
−i
√

3

2
− i
√

3

2
− i
√

3

2

)∣∣∣∣∣
=

3

2

(6.4)

where we calculated the commutators using the commutator properties from eq. (5.5) .
Finally, for the third term, we have :

2

3

∣∣∣〈ψ| Â+ B̂e2πi/3 + Ĉe4πi/3
∣∣ψ⊥〉∣∣∣2

=
2

3

∣∣∣∣∣〈ψ| p̂+ (
−1

2
p̂+

√
3

2
x̂)e2πi/3 + (

−1

2
p̂−
√

3

2
x̂)e4πi/3

∣∣ψ⊥〉∣∣∣∣∣
2

=
2

3

∣∣∣∣〈ψ| p̂(1 +
eiπ/3

2
+
e−iπ/3

2

)
+ x̂
√

3

(
−eiπ/3

2
+
e−iπ/3

2

) ∣∣ψ⊥〉∣∣∣∣2
=

2

3

∣∣∣∣〈ψ|(3

2
p̂+ i

3

2
x̂

) ∣∣ψ⊥〉∣∣∣∣2
=

3

2

∣∣〈ψ| (p̂+ ix̂)
∣∣ψ⊥〉∣∣2

=3|
〈
ψ⊥
∣∣ â |ψ〉 |2

(6.5)

Reassembling each term, we get the following uncertainty relation for our three rotated
quadratures :

∆p2
0 + ∆p2

2π
3

+ ∆p2
4π
3
≥ 3

2
(1 + 2|

〈
ψ⊥
∣∣ â |ψ〉 |2) (6.6)

We notice that the right member of the inequality strongly resembles (up to a multi-
plicative factor) to the right member of the one-mode M-P uncertainty relation that was
thoroughly studied in Chapter 4. Moreover, if we discard the term 2|

〈
ψ⊥
∣∣ â |ψ〉 |2, we

get back to the Kechrimparis and Weigert additive uncertainty relation for three vari-
ables (3.30). This result highlights the importance of the Maccone and Pati uncertainty
relation, as it seems to improve the Kechrimparis and Weigert uncertainty relation1.

6.2 Uncertainty relation for N variables
Looking back at (6.6), and comparing it to (3.29), we conjecture the following uncertainty
relation : ∑

j=1

∆r2
j ≥

N

2
(1 + 2|

〈
ψ⊥
∣∣ â |ψ〉 |2) (6.7)

1Indeed, as mentioned in Chapter 3, the Kechrimparis and Weigert relation is saturated for the
displaced vacuum state only, while the M-P uncertainty relation is saturated for a larger set of states, as
shown in Chapter 4 and 5
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where r̂j is the rotated quadrature defined by :

r̂j = cosφj p̂+ sinφj x̂, φj =
2π(j − 1)

N
, j = 1, ..., N . (6.8)

which is very similar to eq. (3.26), except for the fact that we dropped the scaling factor
R for simplicity.

We start the proof of our conjecture with the following equality for the sum of the variances
∆r2

j , given by Kechrimparis and Weigert in [32] :

N∑
j=1

∆r2
j = |a|2∆p2 + |b|2∆q2 + 2 a.bCpq (6.9)

where a, b are vectors, and a.b denotes a scalar product:

|a| =

√√√√ N∑
j=1

cos2φj , |b| =

√√√√ N∑
j=1

sin2φj , a.b =
N∑
j=1

cosφj sinφj (6.10)

and where Cpq is the covariance :

Cpq =
1

2
(〈ψ| (p̂q̂ + q̂p̂) |ψ〉)− 〈ψ| p̂ |ψ〉 〈ψ| q̂ |ψ〉) (6.11)

Using the following trigonometric identities (see Appendix B) :

N∑
j=1

cosφj sinφj =
N∑
j=1

sin 2φj = 0

N∑
j=1

cos2φj =
N∑
j=1

1 + cos 2φj
2

=
N

2

N∑
j=1

sin2φj =
N∑
j=1

1 + sin 2φj
2

=
N

2

(6.12)

Consequently, we have :
N∑
j=1

∆r2
j =

N

2
(∆p2 + ∆q2) (6.13)

And keeping in mind the Maccone Pati uncertainty relation, we can write :
N∑
j=1

∆r2
j =

N

2
(∆p2 + ∆q2) ≥ N

2
(1 + 2|

〈
ψ⊥
∣∣ â |ψ〉 |2) (6.14)

which proves our conjecture.

6.3 Conclusion
In this chapter, we have established that when considering three rotated quadrature

operators, as defined by Kechrimparis and Weigert, the uncertainty relation they de-
rived in [32] is equivalent to that of Song and Qiao [7]. Moreover, it corresponds to the
Maccone-Pati uncertainty relation, up to a multiplicative factor. Based on this result,
we conjectured and proved a tighter version of the Kechrimparis and Weigert uncertainty
relation.
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Conclusion and prospects

The aim of this work was to investigate additive uncertainty relations for the quadra-
tures of light x̂ and p̂. This study was motivated by the recent success of such uncertainty
relations, as they guarantee the lower bound of the inequality to be nontrivial whenever
the state under consideration is an eigenstate of any of the observables, which is an im-
provement over the traditional product-based uncertainty relations. The common root of
most of the new additive uncertainty relations is the Maccone-Pati relation [3], hence our
interest in this particular uncertainty relation.

The lower bound of the M-P inequality is not easily calculated because it depends on
a particular state

∣∣ψ⊥〉, which is orthogonal to the state |ψ〉 we consider. This can be
considered as a drawback when compared to the original Heisenberg uncertainty relation,
whose lower bound is given by a fixed value of ~/4. However, it should be noted that this
difficulty to compute the lower bound is a trade-off for a stronger uncertainty relation.
As mentioned by Maccone and Pati [3], it is always possible to find a state

∣∣ψ⊥〉 which
maximizes the lower bound and thus, makes the inequality tight for the considered state
|ψ〉. Nevertheless, determining the explicit form of this "optimal"

∣∣ψ⊥〉 state proves to
be a nontrivial problem.

We first developed the formalism of Maccone and Pati (M-P) for the single-mode quadra-
tures of light and explicitly computed the lower bound for a large set of standard states in
quantum optics. We showed that all single-mode Gaussian states, displaced and squeezed
single-mode Fock states and Schrödinger cat states saturate the uncertainty relation. The
interesting feature here is that the optimal orthogonal state can be easily expressed ex-
plicitly. Keeping in mind that entropic uncertainty relations are more robust than their
variance-based counterparts, we attempted to derive an entropic formulation of the M-P
uncertainty relation, based on the sum of entropy powers instead of sum of variances.
Although very appealing, this attempt appeared to be rather unsuccessful.

Following these first results, we developed the M-P formalism for two-mode so-called
EPR (for Einstein-Podolsky-Rosen) observables. We showed that the corresponding un-
certainty relation is saturated for displaced two-mode squeezed vacuum states, displaced
two-mode squeezed Fock states and even for products of cat states. Although we did not
provide concrete results about a separability criterion in this master thesis, we anticipate
that there could be a link between the two-mode M-P uncertainty relation and a separa-
bility criterion, in view of the fact that the Duan-Simon criterion [47][48] is also expressed
as a lower bound on the sum of the EPR variances. Moreover, the M-P relation seems
very promising since it is saturated (with an easy choice of the orthogonal state) for a
large set of non-Gaussian states.

Lastly, we established a connection between the work of Kechrimparis-Weigert [32], Song-
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Qiao [6] and Maccone-Pati. We showed that when considering 3 rotated quadratures,
evenly distributed in phase space, the Kechrimparis-Weigert and Song-Qiao additive un-
certainty relations are, in fact, equivalent. Moreover, they also correspond to the M-P
uncertainty relation, multiplied by a factor of 3/2. This made us conjecture and prove
that for N quadratures even distributed in phase space, the Kechrimparis-Weigert and
Song-Qiao uncertainty relations correspond to the Maccone-Pati uncertainty relation,
multiplied by N/2.

With this thesis as a starting point, we hope to develop a new continuous-variables sep-
arability criterion, allowing us to detect the entanglement of a large set of non-Gaussian
states. This would be a really interesting result since as of today, the necessary and
sufficient criteria that allow us to detect an entangled state in an infinite-dimensional
Hilbert space only exist for Gaussian states. In parallel, the formulation of an entropic,
more robust, version of the M-P uncertainty relation seems to be a promising, yet very
challenging task.

60



Bibliography

[1] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik”, Zeitschrift fur Physik 43.3-4 (1927), 172–198.

[2] H. P. Robertson, “The uncertainty principle”, Phys. Rev. 34 (1929), 163–164.

[3] L. Maccone and A. K. Pati, “Stronger uncertainty relations for the sum of variances”,
Phys. Rev. 113.26 (2014), 260401.

[4] B. Chen and S. M. Fei, “Sum uncertainty relations for arbitrary N incompatible
observables”, Scientific Rep. 5.9 (2015), 14238.

[5] B. Chen et al., “Variance-based uncertainty relations for incompatible observables”,
Quantum Information Processing 15.9 (2016), 3909–3917.

[6] Q. C. Song and C. F. Qiao, “Stronger Schrödinger-like uncertainty relations”, Phys.
Let. A 380.37 (2016), 2925–2930.

[7] Q. C. Song et al., “A Stronger Multi-observable Uncertainty Relation”, Sci. Rep. 7.1
(2017), 44764.

[8] P. J. Coles et al., “Entropic uncertainty relations and their applications”, Rev. Mod.
Phys. 89.1 (2017), 015002.

[9] C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical
Journal 27.3 (1948), 379–423.

[10] A. Hertz and N. J. Cerf, “Continuous-variable entropic uncertainty relations”, J.
Phys. A: Mathematical and Theoretical 52.17 (2019), 173001.

[11] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique quantique, vol. 1, CNRS
Éditions, 2018.

[12] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique quantique, vol. 3, CNRS
Éditions, 2017.

[13] M. Fox, Quantum Optics : An Introduction, Oxford University Press, 2006.

[14] C. Weedbrook et al., “Gaussian Quantum Information”, Rev. Mod. Phys. 84.2 (2012),
621–669.

[15] G. Cariolaro, Quantum communications, Signals and Communication Technology,
Springer, 2015.

[16] B. L. Schumaker, “Quantum mechanical pure states with gaussian wave functions”,
Phys. Rep. 135.6 (1986), 317–408.

[17] E. Wigner, “On the Quantum Correction For Thermodynamic Equilibrium”, Phys.
Rev. 40 (1932), 749.

[18] R.L. Hudson, “When is the Wigner quasi-probability density non-negative”, Rep.
Math. Phys. 6.249 (1974), 249–252.

[19] D. F. Walls and G. J. Milburn, Quantum optics, Springer study ed., 1995.

61



[20] A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator
of nonclassicality”, J. Opt. B: Quantum Semiclass. 6.10 (2004), 396–404.

[21] R. Loudon, The Quantum Theory of Light, Oxford University Press, 2000.

[22] M. M. Nieto and D. R. Truax, “Holstein-Primakoff/Bogoliubov Transformations
and the Multiboson System”, Fortsch.Phys. 45.2 (1996), 145–156.

[23] A. I. Lvovsky, Squeezed Light, John Wiley & Sons, Ltd, 2015, chap. 5, pp. 121–163.

[24] A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?”, Phys. Rev. 47 (10 1935), 777–780.

[25] J.S. Bell, “On the Einstein Podolsky Rosen paradox”, Phys. 1.3 (1964), 195–200.

[26] S. L. Braunstein and P. van Loock, “Quantum information with continuous vari-
ables”, Rev. Mod. Phys. 77.2 (2005), 513–577.

[27] Su-Yong L. et al., “Quantum phase estimation using a multi-headed cat state”, J.
Opt. Soc. Am. B 32.6 (2015), 1186.

[28] C. Niculescu and L-E Persson, Convex functions and their applications: A contem-
porary approach, 1st ed., CMS Books in Mathematics, Springer, 2005.

[29] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley-Interscience,
2006.

[30] A. Peres, Quantum theory, concepts and methods, Kluwer, 2002.

[31] S. Kechrimparis and S. Weigert, “Heisenberg uncertainty relation for three canonical
observables”, Phys. Rev. A 90.6 (2014), 062118.

[32] S. Kechrimparis and S. Weigert, “Geometry of uncertainty relations for linear com-
binations of position and momentum”, J. Phys. A 51.2 (2018), 025303.

[33] H. de Guise et al., “State-independent uncertainty relations”, Phys. Rev. A 98.4
(2018), 042121.

[34] A. Hertz, “Exploring continuous-variable entropic uncertainty relations and separa-
bility criteria in quantum phases space”, PhD thesis, Université libre de Bruxelles,
Ecole polytechnique de Bruxelles – Physicien, 2018.

[35] E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen”, Zeitschrift fur
Physik 44.4-5 (1927), 326–352.

[36] M. Ozawa, “Universally valid reformulation of the Heisenberg uncertainty principle
on noise and disturbance in measurement”, Phys. Rev. A 67.4 (2003), 042105.

[37] P. Busch, P. Lahti, and R. F. Werner, “Proof of Heisenberg’s Error-Disturbance
Relation”, Phys. Rev. Let. 111.16 (2013).

[38] E. Schrödinger, “Zum Heisenbergschen unschärfeprinzip”, Sitzber. Preuss. Akad.
Wiss. 14 (1930), 296–303.

[39] W. Beckner, “Inequalities in Fourier analysis on”, Ann. Math. 102.1 (1975), 159–182.

[40] I. Białynicki-Birula and J. Mycielski, “Uncertainty relations for information entropy
in wave mechanics”, Comm. Math. Phys. 44.2 (1975), 129–132.

[41] A. Hertz, M. G. Jabbour, and N. J. Cerf, Entropy-power uncertainty relations :
towards a tight inequality for all Gaussian pure states, 2017.

[42] X. Guanlei, Xiaotong. W., and X. Xiaogang, “Generalized entropic uncertainty prin-
ciple on fractional Fourier transform”, Signal Processing 89.12 (2009), 2692–2697.

62



[43] A. Hertz, L. Vanbever, and N. J. Cerf, “Multidimensional entropic uncertainty rela-
tion based on a commutator matrix in position and momentum spaces”, Phys. Rev.
A 97.1 (2018).

[44] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Opti-
mization and Neural Computation Series), Athena Scientific, 1996.

[45] E. V. Shchukin andW. Vogel, “Nonclassical moments and their measurement”, Phys.
Rev. A 72.4 (2005).

[46] Shunlong L. and Yue Z., “Detecting nonclassicality of light via Lieb’s concavity”,
Phys. Let. A 383.26 (2019), 125836.

[47] L-M Duan et al., “Inseparability Criterion for Continuous Variable Systems”, Phys.
Rev. Let. 84.12 (2000), 2722–2725.

[48] R. Simon, “Peres-Horodecki Separability Criterion for Continuous Variable Sys-
tems”, Phys. Rev. Let. 84.12 (2000), 2726–2729.

63



Appendix A

Matlab code for the simulations

In this appendix, we present the Matlab code used to display the Wigner functions
from Chapter 1 and to compute the entropy powers for Fock states from Chapter 3. Note
that this code is sub-optimal but since it quickly disproved our postulated inequality, we
did not bother to improve it after noticing that the script was not efficiently written.

1 %This s c r i p t computes the sum of entropy power Nx and Np f o r
Fock s t a t e s

2

3 n=7;%Number o f photons
4

5 %Wigner func t i on o f a Fock s t a t e
6 Wigner = @(x , p) laguer reL (n , 2∗ ( x.^2+p .^2) ) .∗ exp(−x.^2−p .^2)

.∗((−1)^n/ p i ) ;
7

8 %Disp lays the Wigner func t i on o f a Fock State
9 %f s u r f (Wigner )

10

11 %Computes the Wigner marginal f unc t i on s
12 WignerX = @(wx) arrayfun (@(x ) i n t e g r a l (@(p)Wigner (x , p ) ,− i n f , i n f ) ,

wx) ;
13 WignerP = @(wp) arrayfun (@(p) i n t e g r a l (@(x )Wigner (x , p) ,− i n f , i n f ) ,

wp) ;
14

15 hXargs = @(wx) log (WignerX(wx) ) .∗WignerX(wx) ;
16 hPargs = @(wp) log (WignerP (wp) ) .∗WignerX(wp) ;
17

18 %Computes the d i f f e r e n t i a l e n t r op i e s
19 hX = − i n t e g r a l (@(wx) hXargs (wx) ,−5 ,5) ;
20 hP = − i n t e g r a l (@(wp) hXargs (wp) ,−5 ,5) ;
21

22 %Computes the entropy powers
23 Nx = (1/(2∗ pi ∗exp (1 ) ) )∗exp (2∗hX) ;
24 Np = (1/(2∗ pi ∗exp (1 ) ) )∗exp (2∗hP) ;
25 N = Nx+Np
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Appendix B

Addendum to Chapter 6

In this appendix, we give a proof of the trigonometric identities that we used in sec.
6.2, namely :

N∑
j=1

sin 2φj = 0 and
N∑
j=1

cos 2φj = 0 with φj =
2π(j − 1)

N
(B.1)

These identities can be viewed physically, as they express the fact that the resulting force
of a system of equi-distributed forces, with the same norm (such as displayed in Fig. B.1),
is equal to zero.

Figure B.1: System of 4 equi-distributed forces. The resulting force is zero.

Mathematically, we can derive (B.1) from the real and imaginary parts of the following
equation, where we used De Moivre’s theorem and the exponential sum formula :

N∑
j=1

(
cos
(

4π(j − 1)

N

)
+ i sin

(
4π(j − 1)

N

))
=

N−1∑
k=0

(
cos
(

4πk

N

)
+ i sin

(
4πk

N

))

=
N−1∑
k=0

(
e4πi/N

)k
=

1−
(
e4πi/N

)N
1− e4πi/N

= 0

(B.2)
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