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We introduce a weak form of the realignment separability criterion which is particularly suited to detect
continuous-variable entanglement and is physically implementable (it requires linear optics transformations and
homodyne detection). Moreover, we define a family of states, called Schmidt-symmetric states, for which the
weak realignment criterion reduces to the original formulation of the realignment criterion, making it even more
valuable as it is easily computable especially in higher dimensions. Then, we focus in particular on Gaussian
states and introduce a filtration procedure based on noiseless amplification or attenuation, which enhances the
entanglement detection sensitivity. In some specific examples, it does even better than the original realignment
criterion.
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I. INTRODUCTION

When it comes to mixed states, determining whether a state
is entangled or not is provably a hard decision problem [1,2].
Still, it has long been and it remains an active research topic
because entanglement is a key resource for quantum infor-
mation processing. Both for discrete- and continuous-variable
systems, various separability criteria—conditions that must
be satisfied by any separable state—have been derived.
Probably the best known criterion is the Peres-Horodecki
criterion [3,4], also called the positive partial transpose (PPT)
criterion. Introduced for discrete-variable systems, it states
that if a quantum state is separable, then its partial transpose
must remain physical (i.e., positive semidefinite). This PPT
condition is, in general, only a necessary condition for separa-
bility. It becomes sufficient only for systems of dimensions
2 × 2 and 2 × 3 [4]. The PPT criterion was generalized to
continuous variables (i.e., infinite-dimensional systems) by
Duan et al. [5] and Simon [6]. Interestingly, it is necessary
and sufficient for all 1 × n Gaussian states [7] and n × m
bisymmetric Gaussian states [8]. In all other cases, when a
state is entangled but its partial transpose remains positive
semidefinite, we call it a bound entangled state [1,9]. These
are entangled states from which no pure entangled state can
be distilled through local (quantum) operations and classical
communications (LOCC).

Many other separability criteria have been developed over
years (see, e.g., [10–14], and consult [1] for an older, but still
relevant, review). Among them, we focus in the present paper
on the realignment criterion [15,16]. This criterion is unre-
lated to the PPT criterion and thereby enables the detection
of some bound entangled states in both discrete-variable [16]

and continuous-variable cases [17]. Unfortunately, the re-
alignment criterion happens to be generally hard to compute,
especially for continuous-variable systems. To our knowl-
edge, it has only been computed for Gaussian states by Zhang
et al. [17] and yet, the difficulty increases with the number of
modes.

In this paper, we introduce a weaker form of the realign-
ment criterion which is much simpler to compute and comes
with a physical implementation in terms of linear optics and
homodyne detection; hence it is especially suited to detect
continuous-variable entanglement. It is, in general, less sen-
sitive to entanglement than the original realignment criterion
and cannot detect bound-entangled states, but it happens to be
equivalent to the original realignment criterion for the class
of Schmidt-symmetric states. Furthermore, we show that by
supplementing this criterion with a filtration method, it is
possible to greatly improve it and sometimes even surpass the
original realignment criterion while keeping the simplicity of
computation.

In Sec. II, we review the definition of the realignment
criterion, focusing especially on the realignment map R. We
link different formulations of this criterion and list its main
properties. In Sec. III, we introduce the weak realignment cri-
terion and show that for a class of states that we call Schmidt
symmetric, both the weak and original realignment criteria are
equivalent (while the former is much easier to compute than
the latter). In Sec. IV, we apply the weak realignment crite-
rion to continuous-variable states and give special attention to
Gaussian states. The idea is to compare to the work of Zhang
et al. [17], which relied on the original formulation of the
criterion. We notice that several entangled states remain un-
detected by the weak realignment criterion and, unfortunately,
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the latter cannot detect bound entanglement. As a solution,
we introduce in Sec. V a filtration procedure that enables a
better entanglement detection by bringing the state closer to
a Schmidt-symmetric state, hence increasing the sensitivity
of the entanglement witness. In Sec. VI, we provide some
specific examples for 1 × 1 and 2 × 2 Gaussian states. In
some cases, the filtration procedure supplementing the weak
realignment criterion enables a better entanglement detection
than the original realignment criterion. Finally, we give our
conclusions in Sec. VII.

II. REALIGNMENT CRITERION AND
REALIGNMENT MAP

It is well known that any bipartite pure state |ψ〉AB can
be decomposed according to the Schmidt decomposition
|ψ〉AB = ∑

i λi |iA〉|iB〉, where |iA〉 and |iB〉 form orthonormal
bases of subsystems A and B, and the λi’s are non-negative
real numbers satisfying

∑
i λ

2
i = 1 known as the Schmidt

coefficients [18]. The number of nonzero coefficients is called
the Schmidt rank and denoted as r. A pure state is entangled
if and only if r > 1. Interestingly, the entanglement classes
under LOCC transformations are uniquely determined by the
Schmidt rank [19].

An analogous Schmidt decomposition can also be defined
for mixed states [20]. Let ρ be a mixed quantum state of
a bipartite system AB; then it can be written in its operator
Schmidt decomposition as

ρ =
r∑

i=1

λi Ai ⊗ Bi, (1)

with the Schmidt coefficients λi being some non-negative
real numbers, the Schmidt rank r satisfying 1 � r �
min{dim A, dim B}, and with {Ai} and {Bi} forming orthonor-
mal bases1 of the operator spaces for subsystems A and B with
respect to the Hilbert-Schmidt inner product, i.e., Tr(A†

i A j ) =
Tr(B†

i B j ) = δi j . The Schmidt coefficients λi are unique for a
bipartite state ρ and reveal some of its characteristic features.
For example, the purity of ρ can be expressed as Tr ρ2 =∑r

i=1 λ2
i .

Similarly as for pure states, the operator Schmidt decompo-
sition can be employed as an entanglement criterion for mixed
bipartite states; this is called the computable cross-norm cri-
terion and is defined as follows.

Theorem 1 (Computable cross-norm criterion [15]). Let
ρ be a state with the operator Schmidt decomposition ρ =∑r

i=1 λiAi ⊗ Bi. If ρ is separable, then
∑r

i=1 λi � 1. Con-
versely, if

∑r
i=1 λi > 1, then ρ is entangled.

The proof is given in Appendix A for completeness.
There exists an alternative formulation of the computable

cross-norm criterion which, as we will see, turns out to be
more convenient when considering continuous-variable states.
This reformulation is done by defining a linear map R called

1If the operator is Hermitian (such as ρ), then the operators Ai and
Bi can be chosen Hermitian too. But the Schmidt decomposition is
not unique and there exist other possible Schmidt decompositions of
an Hermitian operator with non-Hermitian operators Ai and Bi.

a realignment map, whose action on the tensor product of
matrices A =∑i j ai j |i〉〈 j| and B =∑kl bkl |k〉〈l| is

R(A ⊗ B) =
∑
i jkl

ai jbkl |i〉| j〉〈k|〈l|. (2)

Since any bipartite state ρ can be decomposed into A ⊗ B
products according to Eq. (1), one can easily express its re-
alignment R(ρ) based on definition (2). Thus, the realignment
map simply interchanges the bra vector 〈 j| of the first sub-
system with the ket vector |k〉 of the second subsystem. Note
that the map R is basis dependent; namely, it depends on the
basis in which the matrix elements ai j and bkl are expressed.
When applying R to continuous-variable states in Secs. IV, V,
and VI, we will always assume that |i〉, | j〉, |k〉, and |l〉 are
Fock states, so that Eq. (2) must be understood in the Fock
basis.

Using the state-operator correspondence implied by the
Choi-Jamiołkowski isomorphism [21,22], we can identify ma-
trices with vectors living in the tensor-product ket space,
namely, |A〉=∑i j ai j |i〉| j〉 and |B〉=∑kl bkl |k〉|l〉. Their cor-
responding dual vectors are noted 〈A| =∑i j a∗

i j〈i|〈 j| and
〈B| =∑kl b∗

kl〈k|〈l|, living in the tensor-product bra space.
Hence, the above map can be reexpressed as

R( A ⊗ B) = |A〉〈B∗|, (3)

where complex conjugation is also applied in the preferred
basis. Using the fact that2

|A〉 =
∑

i j

ai j |i〉| j〉 = (A ⊗ 1)|�〉

and

〈B∗| =
∑

i j

bi j〈i|〈 j| = 〈�|(BT ⊗ 1), (4)

where |�〉 =∑i |i〉|i〉 is the (unnormalized3) maximally en-
tangled state and 1 =∑i |i〉〈i| is the identity matrix, one can
also rewrite the realignment map as

R(A ⊗ B) = (A ⊗ 1)|�〉〈�|(BT ⊗ 1)

= (A ⊗ 1)|�〉〈�|(1 ⊗ B), (5)

which will happen to be useful when considering the optical
realization of the separability criterion.

It is obvious that R(R(ρ)) = ρ, so that definition (3) can
also be restated as

R( |A〉〈B|) = A ⊗ B∗. (6)

Note the special cases

R(1 ⊗ 1) = |�〉〈�|,
R(|�〉〈�|) = 1 ⊗ 1, (7)

which are trivial consequences of |1〉 = |�〉 and �̂ = 1.

2(A ⊗ 1)|�〉 =∑i j ai j (|i〉〈 j| ⊗ 1)
∑

k |k〉|k〉 =∑i j ai j |i〉| j〉.
3This definition of |�〉 remains useful even for continuous-

variable (infinite-dimensional) systems, where it can be interpreted
as a (unnormalized) two-mode squeezed vacuum state with infinite
squeezing. The definition of R given by Eq. (5) remains thus valid
with |�〉 =∑∞

i=0 |ii〉, where |i〉 stand for Fock states.
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It will also be useful in the following to define the
dual realignment map R†, which is such that Tr(ρ1 R(ρ2)) =
Tr(R†(ρ1) ρ2). Definitions (3) and (5) translate into

R†(A ⊗ B) = |BT 〉〈A†|,
= (BT ⊗ 1)|�〉〈�|(A ⊗ 1),

= (1 ⊗ B)|�〉〈�|(A ⊗ 1). (8)

Coming back to the question of separability, let us now
state the following theorem.

Theorem 2 (Realignment criterion [16]). If the bipar-
tite state ρ is separable, then ‖ R(ρ) ‖tr� 1. Conversely, if
‖ R(ρ) ‖tr > 1, then ρ is entangled.

Proof. From Eq. (3), the realignment of a product state is
given by

R(ρA ⊗ ρB) = |ρA〉〈ρ∗
B|, (9)

and therefore

‖ R(ρA ⊗ ρB) ‖tr= Tr
√|ρA〉〈ρ∗

B|ρ∗
B〉〈ρA| � 1, (10)

where ‖ O ‖tr= Tr(
√
OO†) denotes the trace norm4 of an

operator O and the inequality is found using the Hilbert-
Schmidt inner product, 〈A|B〉 = Tr(A†B). The convexity of
the trace norm implies that ‖ R(ρ) ‖tr� 1, for any separable
state ρ =∑i piρ

A
i ⊗ ρB

i , with pi � 0 and
∑

i pi = 1. �
Theorem 2 is called the realignment criterion as the detec-

tion of entanglement exploits the map R. But it is interesting
to note that ‖ R(ρ) ‖tr coincides with the sum of the Schmidt
coefficients of ρ, so the realignment criterion is actually
equivalent to Theorem 1 [23,24]. Indeed, let ρ be a state
with the operator Schmidt decomposition ρ =∑r

i λi Ai ⊗ Bi.
Then, according to Eq. (3),

R(ρ) =
∑

i

λi R(Ai ⊗ Bi ) =
∑

i

λi |Ai〉〈B∗
i | (11)

and

‖ R(ρ) ‖tr = Tr

⎡
⎣√∑

i, j

λiλ j |Ai〉〈B∗
i |B∗

j 〉〈Aj |
⎤
⎦

= Tr

⎡
⎣√∑

i

λ2
i |Ai〉〈Ai|

⎤
⎦

= Tr

[∑
i

|λi||Ai〉〈Ai|
]

=
∑

i

λi (12)

since 〈Ai|Aj〉 = 〈Bi|Bj〉 = δi j . Theorem 2 is thus equivalent to
Theorem 1.

As a trivial example of Theorem 2, let us consider two
d-dimensional systems (with d � 2). The maximally mixed
state ρ = 1 ⊗ 1/d2 is mapped to R(ρ) = |�〉〈�|/d2 [see
Eq. (7)], so its trace norm is ‖ R(ρ) ‖tr= 1/d < 1 as ex-
pected since ρ is separable. Conversely, according to Eq. (7),

4The trace norm of O is equivalent to the sum of the singular values
of O, which are given by the square roots of the eigenvalues of OO†.
For an Hermitian operator, the trace norm is simply equal to the sum
of the absolute values of the eigenvalues.

the maximally entangled state ρ = |�〉〈�|/d is mapped to
R(ρ) = 1 ⊗ 1/d , so that ‖ R(ρ) ‖tr= d > 1 and the entan-
glement of ρ is well detected in this case.

Finally, it is worth adding that, by inspection, definition (2)
of the realignment map can be decomposed as

R(A ⊗ B) = ((A ⊗ BT ) F )T2 , (13)

where (·)T2 denotes a partial transposition on the second sub-
system (B), and F =∑i, j |i j〉〈 ji| = |�〉〈�|T2 is the exchange
operator [25]. From this, we obtain the following:

Remark 1. For any state ρ, the realignment map can be
defined as

R(ρ) = (ρT2 F )T2 = (ρF )T2 F. (14)

In other words, the map R boils down to the concatenation
of partial transposition on subsystem B, then applying the
exchange operator F to the right, followed by partial trans-
position on subsystem B again. Conversely, the roles of F and
(·)T2 can be exchanged. This alternative definition of R allows
us to express the trace norm as

‖ R(ρ) ‖tr =‖ (ρF )T2 F ‖tr =‖ (ρF )T2 ‖tr, (15)

where the last equality comes from the fact that, for any
operator A, we have

‖ AF ‖tr = Tr
√

AF (AF )† = Tr
√

AFF †A†

= Tr
√

AA† =‖ A ‖tr (16)

since FF † = FF = 1. From Eq. (15), it becomes obvious that
for the special case of states ρs belonging to the symmetric
subspace, i.e., states satisfying Fρs = ρsF = ρs, the realign-
ment criterion coincides with the PPT criterion [26]. Indeed,
‖ R(ρs) ‖tr=‖ ρT2

s ‖tr and ‖ ρT2
s ‖tr=

∑
i |λ′

i| > 1 implies that
at least one eigenvalue λ′

i of the partial-transposed state ρT2
s

is negative, since Tr(ρs) = Tr(ρT2
s ) =∑i λ

′
i = 1 (which is the

PPT criterion). Beyond the case of states in the symmetric
subspace, however, the realignment and PPT criteria are gen-
erally incomparable criteria.

Of course, the dual realignment map R† can also be defined
similarly as in Eq. (14), namely,

R†(ρ) = (FρT2 )T2 = F (Fρ)T2 . (17)

The difference with the (primal) realignment map R is that the
exchange operator F is applied to the left. To be complete,
let us mention that maps R and R† can also be defined using
partial transposition on the first subsystem denoted as (·)T1 ,
namely,

R(ρ) = (FρT1 )T1 = F (Fρ)T1 ,

R†(ρ) = (ρT1 F )T1 = (ρF )T1 F. (18)

III. WEAK REALIGNMENT CRITERION

Let us now introduce the weak realignment criterion,
which is in general not as strong as the original realignment
criterion but has the advantage of being easily computable
and physically implementable using standard optical compo-
nents. The weak realignment criterion applies to all states
but our main focus in this paper will be its application to
continuous-variable states (see Sec. IV). We will in particular
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provide some explicit calculations in the case of n × n mode
Gaussian states, in which case it boils down to computing a
simple quantity that only depends on the covariance matrix of
the state. As expected, however, the easiness of computation
comes with the price of a lower entanglement detection sen-
sitivity than the one of the original realignment criterion for
Gaussian states as calculated in [17]. As a way to overcome
this problem, we show below that, for a special type of states
that we call Schmidt symmetric, the weak form and original
form of the realignment criterion become equivalent. This
suggests the use of a filtration procedure for augmenting the
detection sensitivity. As explored in Sec. V, we may “sym-
metrize” the state by locally applying a noiseless amplifier or
attenuator (it does not affect the separability of the state, so
we may apply the weak realignment criterion on the filtered
state).

A. Formulation

It is well known that the trace norm of an operator is greater
than or equal to its trace (and we have equality if and only if
the operator is positive semidefinite). Using Eq. (14), we have
that for any state

‖ R(ρ) ‖tr � Tr R(ρ) = Tr(ρT2 F ) = Tr(ρ F T2 )

= Tr(ρ |�〉〈�|) = 〈�|ρ|�〉, (19)

where we have used the invariance of the trace under partial
transposition (·)T2 (first equality), the identity Tr(A BT2 ) =
Tr(AT2 B) for any bipartite operators A and B, and the definition
of F . Note that this result can also be obtained by noticing that

Tr(R(ρ)1 ⊗ 1) = Tr(ρ R†(1 ⊗ 1)) = Tr(ρ |�〉〈�|). (20)

We can thus state the following theorem:
Theorem 3 (Weak realignment criterion). For any bipartite

state ρ, the trace norm of the realigned state can be lower
bounded as

‖ R(ρ) ‖tr � Tr R(ρ) = 〈�|ρ|�〉. (21)

Hence, if ρ is separable, then 〈�|ρ|�〉 � 1. Conversely, if
〈�|ρ|�〉 > 1, then ρ is entangled.

In other words, the weak realignment criterion amounts
to computing the fidelity of state ρ with respect to |�〉. It is
immediate that its entanglement detection capability can only
be lower than that of the original realignment criterion, Theo-
rem 2. Furthermore, if we deal with bound-entangled states,
the weak realignment criterion cannot detect entanglement.
Indeed, we can link the weak realignment criterion with the
PPT criterion by expressing

‖ R(ρ)T2 ‖tr =‖ ρT2 F ‖tr=‖ ρT2 ‖tr, (22)

where we have used Eqs. (14) and (16), combined with the
inequality

‖ R(ρ)T2 ‖tr� Tr(R(ρ)T2 ) = Tr R(ρ). (23)

Thus,

‖ ρT2 ‖tr � Tr R(ρ), (24)

and we deduce that the weak realignment criterion is weaker
than the PPT criterion. If a state is bound entangled, we

have ‖ ρT2 ‖tr= 1 which then implies that Tr R(ρ) � 1, so its
entanglement cannot be detected with the weak realignment
criterion.

It is instructive to apply the weak realignment criterion on
each component of the operator Schmidt decomposition of ρ.
Using Eq. (5), we have

Tr R(A ⊗ B) = 〈�|A ⊗ B|�〉 = Tr(ABT ), (25)

which implies that if ρ =∑i λi Ai ⊗ Bi, then

Tr R(ρ) =
∑

i

λi Tr
(
AiB

T
i

) =
∑

i

λi 〈B∗
i |Ai〉. (26)

Remembering that ‖ R(ρ) ‖tr=
∑

i λi, it appears that we must
have Bi = A∗

i in order to reach a situation where Tr R(ρ) =
‖ R(ρ) ‖tr . This is analyzed now.

B. Schmidt-symmetric states

We now show that for Schmidt-symmetric states, the weak
and original forms of the realignment criterion become equiv-
alent (while the weak form is much simpler to compute).
Let us define Schmidt-symmetric states ρsch as the states that
admit an operator Schmidt decomposition with Bi = A∗

i , ∀i,
namely,

ρsch =
∑

i

λi Ai ⊗ A∗
i . (27)

These states satisfy Fρsch F = ρ∗
sch since applying F on both

sides is equivalent to exchanging the two subsystems and
since the Schmidt coefficients are real. Note that the converse
is not true as there exist states ρ that satisfy FρF = ρ∗ but are
not Schmidt symmetric, for example, the state ρ =∑i λi Ai ⊗
(−A∗

i ). For any state ρ that satisfies FρF = ρ∗, it is easy to
see that R(ρ) is Hermitian since5

R(ρ)† = ((ρF )T2 F )† = F (ρ∗F )T1

= F (Fρ)T1 = R(ρ), (28)

where we have used Eqs. (14) and (18). Thus, R(ρsch ) is
necessarily an Hermitian operator.

Actually, using the definition (3) of the realignment map
R, it appears that R(ρsch ) =∑i λi|Ai〉〈Ai| is positive semidefi-
nite, so that ‖ R(ρsch ) ‖tr= Tr R(ρsch ). Conversely, if the latter
equality is satisfied for a state ρ, it means that R(ρ) is positive
semidefinite so it can be written as R(ρ) =∑i λi|Ai〉〈Ai|,
which is nothing else but the realignment of a Schmidt-
symmetric state. We have thus proven the following theorem:

Theorem 4 (Schmidt-symmetric states). A bipartite state ρ

is Schmidt symmetric (i.e., it admits the operator Schmidt
decomposition ρ =∑i λi Ai ⊗ A∗

i ) if and only if

‖ R(ρ) ‖tr= Tr R(ρ). (29)

This entails the coincidence between the weak form of the
realignment criterion derived in Theorem 3 and the original
realignment criterion of Theorem 2 in the special case of
Schmidt-symmetric states.

5Be aware that R(ρ )† is distinct from the dual map R†(ρ ).
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Incidentally, we note that the (necessary) condition
FρF = ρ∗ for a state to be Schmidt symmetric resembles the
(necessary and sufficient) condition FρF = ρ for a state to
be symmetric under the exchange of the two systems. For
this reason, when building a filtration procedure in order to
bring the initial state closer to a Schmidt-symmetric state (see
Sec. V), we will “symmetrize” the state. More precisely, we
will exploit the fact that the condition FρF = ρ∗ implies that
Tr1 ρ = Tr2 ρ∗. In other words, Schmidt-symmetric states are
such that the reduced states of both subsystems are complex
conjugate of each other, namely, ρsch,2 = ρ∗

sch,1, which is also
a simple consequence of

ρsch,1 = Tr2(ρsch ) =
∑

i

λi Ai TrA∗
i ,

ρsch,2 = Tr1(ρsch ) =
∑

i

λi A∗
i TrAi. (30)

Hence, they have the same eigenspectrum since their eigenval-
ues are real, and in particular the same purity (but the converse
is not true),

Tr
(
ρ2

sch,1

) = Tr
(
ρ2

sch,2

)
. (31)

The filtration procedure that we apply in Sec. V follows
Eq. (31) in the sense that we will “symmetrize” the initial state
so that the two subsystems reach the same purity.

IV. WEAK REALIGNMENT CRITERION FOR
CONTINUOUS-VARIABLE STATES

A. Preliminaries and symplectic formalism

Now, we turn to the application of the weak realign-
ment criterion for continuous-variable states (i.e., living in an
infinite-dimensional Fock space). We start by briefly intro-
ducing the symplectic formalism employed for continuous-
variable states. More details can be found, for example,
in [27,28].

A continuous-variable system is represented by N modes,
each of them associated with a Hilbert space spanned by the
Fock basis and having its own mode operators ai and a†

i which
verify the commutation relation [ai, a†

i ] = 1. We define the
quadrature vector r = (x1, p1, x2, p2, . . . , xN , pN ), where

xi = 1√
2

(ai + a†
i ), pi = − 1√

2
(ai − a†

i ) ∀i = 1, . . . , N.

(32)
Each quantum state ρ can be described by a quasiprobabil-

ity distribution function, the Wigner function

W (x, p) = 1

(2π )N

∫
dye−ip·y〈x + y/2|ρ|x − y/2〉, (33)

which is normalized to one.
The first-order moments constitute the displacement vec-

tor, defined as 〈r〉 = Tr(rρ), while the second moments make
up the covariance matrix γ whose elements are given by

γi j = 1
2 〈{ri, r j}〉 − 〈ri〉〈r j〉, (34)

where {·, ·} represents the anticommutator.
A Gaussian state is fully characterized by its displacement

vector and covariance matrix and its Wigner function has a

Gaussian shape. Some relevant examples of Gaussian states
are the following:

(i) The coherent state |α〉 is a displaced vacuum state
(where α = 0), meaning that the covariance matrix is the one
of the vacuum γ|α〉 = γ|0〉 = 1

2

( 1 0
0 1

)
but the first moment

depends on the value of α.
(ii) The squeezed state |r〉: the uncertainty of one

quadrature is minimized by squeezing it according to the
squeezing parameter r; the covariance matrix is given by
γ|r〉 = 1

2

( e−2r 0
0 e2r

)
.

(iii) The thermal state ρth is a mixed state where the un-
certainties of each quadratures are equal, but not minimals; the
covariance matrix is given by γth = 1

2

(2〈n〉 + 1 0
0 2〈n〉 + 1

)
, where

〈n〉 is the mean photon number.
(iv) The two-mode squeezed vacuum state |TMSV〉 is a

two-mode state with covariance matrix

γTMSV = 1

2

⎛
⎜⎜⎜⎝

cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

⎞
⎟⎟⎟⎠.

(35)
If the squeezing r tends to infinity, one recovers the well-
known Einstein-Podolsky-Rosen (EPR) state.

A Gaussian unitary transformation is a unitary transfor-
mation that preserves the Gaussian character of a quantum
state. In terms of quadrature operators, a Gaussian unitary
transformation is described by the map

r → Sr + d, (36)

where d is a real vector of dimension 2N and S is a real 2N ×
2N matrix which is symplectic.

B. Examples of realigned states

It is instructive first to check the action of the realignment
map R on some of the well-known states of quantum optics:

(a) Fock states6:
R(|n1〉〈n2| ⊗ |n3〉〈n4|) = |n1〉〈n3| ⊗ |n2〉〈n4|.

(b) Position states7:
R(|x1〉〈x2| ⊗ |x3〉〈x4|) = |x1〉〈x3| ⊗ |x2〉〈x4|.

(c) Momentum states8:
R(|p1〉〈p2| ⊗ |p3〉〈p4|) = |p1〉〈−p3| ⊗ | − p2〉〈p4|.

(d) Coherent states:
R(|α〉〈β| ⊗ |γ 〉〈δ|) = |α〉〈γ ∗| ⊗ |β∗〉〈δ|. In particular,
R(|α〉〈α| ⊗ |α∗〉〈α∗|) = |α〉〈α| ⊗ |α∗〉〈α∗|, so that a pair
of phase-conjugate coherent states is invariant under R.

(e) Two-mode squeezed vacuum state:
Defining |TMSV〉 = (1 − τ 2)1/2∑

i τ i |i〉|i〉 with
0 � τ < 1 characterizing the squeezing, we obtain
R(|TMSV〉〈TMSV|) = 1+τ

1−τ
ρth ⊗ ρth where ρth = (1 − τ )

6Remember that the Fock basis {|n〉} is used as the preferred basis
with respect to which the realignment map R is defined.

7This can be proven using Eq. (5) and expressing |�〉 =∑n |n, n〉
in the position basis, namely, |�〉 = ∫ dx |x, x〉.

8This can be proven using Eq. (5) and expressing |�〉 =∑n |n, n〉
in the momentum basis: |�〉 = ∫ d p |p, −p〉.
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��
FIG. 1. Weak realignment criterion for a (two-mode) state ρ. The

trace of the realigned state R(ρ ) is obtained by computing the proba-
bility of measuring x1 = p2 = 0 on the output state after processing
ρ through a 50:50 beam splitter [see Eq. (38)].

∑
i τ i|i〉〈i| is a thermal state. Entanglement is detected in this

case since ‖ R(|TMSV〉〈TMSV|) ‖tr= 1+τ
1−τ

> 1 as soon as
τ > 0.

(f) Tensor product of thermal states:
R(ρth ⊗ ρth) = 1−τ

1+τ
|TMSV〉〈TMSV| so that we have

‖ R(ρth ⊗ ρth) ‖tr= 1−τ
1+τ

� 1, as expected for a separable
state.

C. Expression of Tr(R) for arbitrary states

Let us now show how the weak form of the realignment
criterion provides us with an implementable entanglement
witness for all continuous-variable states. According to
Eq. (21), in order to access Tr R(ρ) we need to project state
ρ onto |�〉, which can be thought of as an unnormalized
infinitely entangled two-mode vacuum squeezed state. As
proven in Appendix B, the latter can be reexpressed as

|�〉 = √
π U †

BS|0〉x1 |0〉p2 , (37)

that is, it can formally be obtained by applying (the reverse
of) a 50:50 beam splitter Gaussian unitary UBS on an input
state of the product form |0〉x1 |0〉p1 , where UBS|z〉x1 |z′〉x2 =
|(z − z′)/

√
2〉x1 |(z + z′)/

√
2〉x2 in the position eigenbasis and

|0〉x1 (|0〉p2 ) is the position (momentum) eigenstate with zero
eigenvalue. Therefore,

Tr R(ρ) = π 〈0|x1〈0|p2 UBS ρ U †
BS |0〉x1 |0〉p2 . (38)

Hence, implementing the weak realignment criterion amounts
to expressing the probability of projecting the state ρ ′ =
UBS ρ U †

BS onto |0〉x1 |0〉p2 where ρ ′ is the state obtained at
the output of a 50:50 beam splitter (see Fig. 1 for the two-
mode case). This yields an experimental way of constructing
an entanglement witness using standard optical components
since entanglement is detected simply by applying a Gaussian
measurement on the state [27,29].

Furthermore, this entanglement witness can be gen-
eralized to n × n modes with quadrature components
xA = (x1, . . . , xn), pB = (pn+1, . . . , p2n). We have9

|�n×n〉 = πn/2 U †
BS |0〉xA |0〉pB , (39)

with the shorthand notation |0〉xA ≡ |0, . . . , 0〉xA and |0〉pB ≡
|0, . . . , 0〉pB ; hence

Tr R(ρ) = πn 〈0|xA〈0|pB ρ ′ |0〉xA |0〉pB . (40)

9To be more precise, if the n first modes belong to Alice and the n
last modes belong to Bob, we apply n 50:50 beam splitters between
Alice’s ith mode and Bob’s ith mode, for i = 1, . . . , n.

FIG. 2. Construction of the restricted covariance matrix γw from
the covariance matrix γ ′, when n = 1 and n = 2. The red bullets
correspond to the entries of γ ′ that are copied in γw while the black
bullets are the entries that are dropped.

D. Expression of Tr(R) for Gaussian states

If the initial state ρ is an n × n Gaussian state, the state
ρ ′ = UBS ρ U †

BS will be Gaussian too (since the beam splitter
is a Gaussian unitary). Its Wigner function is thus given by

Wρ ′ (r) = 1

(2π )2n
√

det γ ′ e
− 1

2 r(γ ′ )−1rT
, (41)

where r = (x1, p1, x2, p2, . . . , x2n, p2n) and γ ′ is the covari-
ance matrix of ρ ′ obtained as

γ ′ = SγST with S = 1√
2

(
12n −12n

12n 12n

)
(42)

being the symplectic matrix representing the beam-splitting
transformation and γ being the covariance matrix of ρ. The
probability of projecting ρ ′ onto |0〉xA |0〉pB as of Eq. (40) is
thus easy to compute. Indeed, the probability distribution of
measuring xA on the n modes of the first system and pB on the
n modes of the second system is given by10

P(xA, pB) = 1

(2π )n
√

det γw

e− 1
2 (xA,pB )γ −1

w (xA,pB )
T

, (43)

where γw (“w” is for witness) is the restricted covariance
matrix obtained by removing the lines and columns of the
unmeasured quadratures of γ ′ (see Fig. 2 for examples with
n = 1 and 2). Thus 〈�|ρ|�〉 = πnP(0, 0) = 1

2n
√

det γw
. In Ap-

pendix C, we show how P(0, 0) can also be computed directly
in a two-mode case (n = 1).

We are now ready to state the following theorem:
Theorem 5 (Weak realignment criterion for Gaussian

states). For any n × n Gaussian state ρG, the trace norm of
the realigned state can be lower bounded as

‖ R(ρG) ‖tr � Tr R(ρG) = 1

2n
√

det γw

. (44)

10The probability distribution is Gaussian since we are dealing with
Gaussian states.
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Hence, if ρ is separable, then 1
2n

√
det γw

� 1. Conversely,

if
1

2n
√

det γw

> 1, then ρG is entangled. (45)

Incidentally, we note that condition (45) is equivalent
to det γw < 1/4n and can thus be viewed as checking the
nonphysicality of γw via the violation of the Schrödinger-
Robertson uncertainty relation. This is in some sense similar
to the PPT criterion, which is based on checking the nonphys-
icality of the partially transposed state.

Consider the special case of a two-mode Gaussian state
(n = 2). Its covariance matrix can always be transformed into
the normal form [5]

γ G =

⎛
⎜⎜⎜⎝

a 0 c 0

0 a 0 d

c 0 b 0

0 d 0 b

⎞
⎟⎟⎟⎠ (46)

by applying local Gaussian unitary operations,11 which are
combinations of squeezing transformations and rotations and
hence do not influence the separability of the state. Applying
Theorem 5, we get

Tr R(ρG) = 1√
(a + b − 2c)(a + b + 2d )

(47)

and the weak realignment criterion reads

1√
(a + b − 2c)(a + b + 2d )

> 1 ⇒ ρG is entangled.

In comparison, it was shown in [17] that for a covariance
matrix in the normal form, Eq. (46), the trace norm of the
realigned state is given by

‖ R(ρG) ‖tr= 1

2
√

(
√

ab − |c|)(√ab − |d|)
. (48)

Comparing Eqs. (47) and (48) illustrates the fact that the weak
realignment criterion is generally weaker than the original
form of the realignment criterion [there exist states such that
‖ R(ρG) ‖tr > 1 while Tr R(ρG) � 1].

As already mentioned, both criteria become equivalent if
the state is in a Schmidt-symmetric form. In this case, for a
general n × n Gaussian state ρG described by the covariance
matrix

γ G =
(

A C

CT B

)
, (49)

it implies that both reduced covariance matrices must be iden-
tical, namely, A = B. Indeed, ρG being Schmidt symmetric
implies that FρG F = (ρG)∗. Exchanging Alice and Bob’s
systems yields a Gaussian state FρGF of covariance matrix(B CT

C A

)
, while (ρG)∗ = (ρG)T is a Gaussian state that admits

11The covariance matrix of the TMSV state, Eq. (35), is an example
of the normal form.

the covariance matrix
(A CT

C B

)
. Identifying these two co-

variance matrices, we conclude that any Schmidt-symmetric
Gaussian state must have a covariance matrix of the form

γ G
sch =

(
A C

CT A

)
. (50)

In particular, both reduced covariance matrices have the same
determinant, i.e., det A = det B, which is expected since we
know from Eq. (31) that the two reduced states have the
same purity, Tr((ρG

1 )2) = 1
2n

√
det A

and Tr((ρG
2 )2) = 1

2n
√

det B
.

In Sec. V, we apply a filtration procedure that brings the
Gaussian state closer to a Schmidt-symmetric Gaussian state,
which will have the effect of bringing the covariance ma-
trix (49) closer to the form (50). More precisely, we will
consider a filtration that equalizes the determinants of the
reduced covariance matrices (hence, the two subsystems reach
the same purity). We say that a covariance matrix of the
form (49) has been symmetrized when det A = det B.

Note that the covariance matrix in form (50) is a necessary
but not sufficient condition for a Gaussian state to be Schmidt
symmetric. A necessary and sufficient condition must imply
additional constraints on matrix C. Let us show this for a
two-mode Gaussian state with covariance matrix in the normal
form

γ =

⎛
⎜⎜⎜⎝

a 0 c 0

0 a 0 d

c 0 a 0

0 d 0 a

⎞
⎟⎟⎟⎠, (51)

which is a special case of Eq. (50). Using Eq. (47), we obtain

Tr(R(ρ)) = 1

2
√

(a − c)(a + d )
, (52)

while Eq. (48) implies that

‖ R(ρ) ‖tr= 1

2
√

(a − |c|)(a − |d|) . (53)

Both formulas are thus equivalent only if c � 0 and d � 0,
which gives the additional constraint on C. Thus, the nec-
essary and sufficient condition for a two-mode state with
covariance matrix in normal form (46) to be Schmidt sym-
metric is that a = b, c � 0, and d � 0.

This last point can be illustrated by considering |�〉 =∑
n |n〉|n〉 = ∫ dx |x, x〉 = ∫ d p |p,−p〉, which can be viewed

(up to normalization) as the limit of a two-mode squeezed
vacuum state with infinite squeezing. It has c > 0 and d < 0
since the x’s are correlated and p’s are anticorrelated. It admits
an operator Schmidt decomposition |�〉〈�| =∑n,m |n〉〈m| ⊗
|n〉〈m| with all Schmidt coefficients being equal to one and
the associated operators An,m = Bn,m = |n〉〈m|; hence it is
Schmidt symmetric since it satisfies Bn,m = A∗

n,m. Now, let us
apply a phase shift of π on one of the modes, yielding |�′〉 =∑

n(−1)n|n〉|n〉 = ∫ dx |x,−x〉 = ∫ d p |p, p〉. Here, we have
c < 0 and d > 0 since the x’s are anticorrelated and p’s
are correlated, so it should not be Schmidt symmetric. Ac-
cordingly, it can be checked that |�′〉〈�′| does not admit
an operator Schmidt decomposition with Bn,m = A∗

n,m. We
may decompose it as |�′〉〈�′| =∑n,m An,m ⊗ Bn,m where all
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Schmidt coefficients are again equal to one and, for example,
An,m = Bn,m = in+m|n〉〈m| or An,m = (−1)n+mBn,m = |n〉〈m|,
but in all cases Bn,m �= A∗

n,m. This is an example of an (un-
normalized) state verifying FρF = ρ∗ but that is not Schmidt
symmetric. Since |�〉 and |�′〉 share the same Schmidt coef-
ficients, the trace norm of their realignments coincide and are
equal to the trace of the realignment of |�〉 only (in contrast,
the trace of the realignment of |�′〉 vanishes).

The link between |�〉 and |�′〉 suggests that a suitable
local phase shift operation performed on one of the modes
of a state can be useful to make the state closer to being
Schmidt symmetric, and hence to enhance the detection ca-
pability of the weak realignment criterion (an example of this
feature is shown in Sec. VI). Applying a local phase shift
operation is, however, not always sufficient to make the state
exactly Schmidt symmetric, as can be seen by considering
a covariance matrix of the form (46), where we impose that
c � 0 and d � 0. Indeed, as soon as a �= b, one can verify
that Tr(R(ρ)) < ‖ R(ρ) ‖tr as a consequence of the well-
known inequality between arithmetic and geometric means,√

ab � (a + b)/2, which is saturated if and only if a = b.

V. IMPROVEMENT OF THE WEAK REALIGNMENT
CRITERION VIA FILTRATION

According to Theorem 5, the trace norm of the realigned
state ‖ R(ρ) ‖tr is greater than (or equal to) Tr R(ρ), which
for n × n Gaussian states is a quantity that solely depends
on the determinant of the restricted covariance matrix γw.
For this reason, while it is easier to compute (especially in
higher dimension), the weak realignment criterion has gen-
erally a lower entanglement detection performance than the
realignment criterion (as applied in [17]). This suggests the
possibility of improving the criterion by transforming the
state via a suitable (invertible) operation prior to applying the
criterion.

Since the trace norm and trace of the realigned state are
equivalent for a Schmidt-symmetric state, the natural idea is
to find a procedure that ideally transforms the initial state
into a Schmidt-symmetric state without of course creating or
destroying entanglement. We focus here on n × n Gaussian
states and exploit the fact that any Schmidt-symmetric Gaus-
sian state admits a covariance matrix of the form (50); in
particular its reduced determinants are equal. Even if this is
not a sufficient condition for a state to be Schmidt symmetric,
we choose to symmetrize the initial state by equalizing the
reduced determinants of its covariance matrix in order to reach
a state that is closer to (ideally equal to) a Schmidt-symmetric
state. We then apply Theorem 5 on the resulting symmetrized
state in order to get an enhanced entanglement detection per-
formance.

An n × n Gaussian state ρ is fully characterized by its
displacement vector d and covariance matrix γ defined in
Eq. (49). Since first-order moments are irrelevant as far as
entanglement detection is concerned, we can restrict to states
with d = 0 with no loss of generality. To symmetrize the
state, we will exploit a filtering operation in the Fock basis as
follows. Suppose that the first subsystem has a smaller noise
variance or more precisely that det A < det B in Eq. (49),
meaning that the purity of the first subsystem is larger than

that of the second subsystem (the opposite case is treated
below). We process each mode of the first subsystem through
a (trace-decreasing) noiseless amplification map [30–32], that
is,

ρAB → ρ̃AB = c (t n̂/2 ⊗ 1)ρAB(t n̂/2 ⊗ 1), (54)

where c is a constant, n̂ is the total photon number in the
modes of the first subsystem, and t > 1 is the transmittance
or gain (

√
t is the corresponding amplitude gain). It can be

checked that this map effects an increase of the noise variance
of the first subsystem (it increases det A). Note that if the input
state ρAB is Gaussian, then the output state ρ̃AB remains Gaus-
sian [33]. Crucially, this map does not change the separability
of the state (the amount of entanglement might change, but no
entanglement can be created from scratch or fully destroyed).
Therefore, ρ̃AB should be closer to a Schmidt-symmetric state
and is a good candidate for applying Theorem 5.

To find the covariance matrix of the output state ρ̃AB, we
follow the evolution of the Husimi function defined as

Q(α) = 1

πn
〈α|ρ|α〉, (55)

where |α〉 is a vector of coherent states. For an n × n Gaussian
state ρAB, the Husimi function is given by

Q(α, β) = 1

π2n
√

det
(
γ + 1

2

)e− 1
2 rT �r, (56)

where α is associated to the first system and β to the second,
� = (γ + 1/2)−1, and

r =
√

2(Re(α1), Im(α1), . . . , Re(αn), Im(αn),

Re(β1), Im(β1), . . . , Re(βn), Im(βn))T (57)

with Re(·) and Im(·) representing the real and imaginary parts.
The noiseless amplification map enhances the amplitude of
a coherent state as |α〉 → e(t−1)|α|2/2|√t α〉. Therefore, the
Husimi function of the output state ρ̃AB is equal to (see [34]
for more details)

Q̃(α, β) ∝ 1

π2n
〈α, β|(t n̂/2 ⊗ 1)ρAB(t n̂/2 ⊗ 1)|α, β〉

= e(t−1)(|α1|2+···+|αn|2 )Q(
√

t α, β). (58)

Since the output state ρ̃AB is a Gaussian state, its Husimi
function is still of the form (56) with an output covariance
matrix γ̃ (and corresponding �̃). Comparing the exponent of
both expressions, we find that

�̃ = M�M − (M2 − 1),

γ̃ =
[

M
(
γ + 1

2

)−1

M − (M2 − 1)

]−1

− 1

2
, (59)

where

M =
(√

t 12n×2n 0

0 12n×2n

)
. (60)

The last point before applying the weak realignment criterion
on ρ̃AB is to find a suitable value for the transmittance t (note
that t must be greater than 1). A simple ansatz is to choose t so
that the filtered state ρ̃AB is a symmetrized Gaussian state; that
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FIG. 3. Circuit implementing the filtration on a two-mode Gaus-
sian state ρ: a noiseless attenuation map is applied on the first mode
of ρ (BS represents a beam splitter of transmittance t). The resulting
state ρsym is symmetrized if the value of t is well chosen.

is, the noise variances of both subsystems are equal (det A =
det B).

Now, if the first subsystem has a larger noise variance
(namely, det A > det B), we can simply exchange the roles
of A and B and apply the noiseless amplification map on
the modes of the second subsystem. Alternatively, we may
consider another filtering operation in the Fock basis by
processing each mode of the first subsystem through a (trace-
decreasing) noiseless attenuation map [33,35]. Formally, it is
defined exactly as the noiseless amplification map in Eq. (54)
but with a transmittance t < 1, so it leads to very similar
calculations. Physically, the noiseless attenuation map has the
advantage to admit an exact physical implementation (un-
like the noiseless amplification map), which provides us with
another method to compute the output covariance matrix γ̃

(and corresponding �̃). Indeed, processing the state of a mode
through a noiseless attenuation map is equivalent to process-
ing it through a beam splitter of transmittance t (with vacuum
on an ancillary mode) and then postselecting the output condi-
tionally on the vacuum on the ancillary mode (see Fig. 3). We
give the details of this alternative calculation for the two-mode
case in Appendix D.

We note that the enhancement of the weak realignment
criterion obtained via prior filtration can be viewed as the
consequence of using TrR(ρ) = Tr(ρ |�〉〈�|) but with a bet-
ter witness operator than |�〉〈�|. Let us define the filtration
map as ρ → F (ρ). For example, consider the noiseless at-
tenuation map F (ρ) ∝ (t n̂/2 ⊗ 1)ρ(t n̂/2 ⊗ 1) applied on a
1 × 1 state (with t < 1). The trace of the realigned state after
filtration can be expressed as

Tr(R(F (ρ))) = Tr(F (ρ) |�〉〈�|)
= Tr(ρ 

†
F (|�〉〈�|)), (61)

where 
†
F stands for the dual filtration map. In this example,

we note that 
†
F = F and F (|�〉〈�|)) is proportional to

the projector onto a two-mode squeezed vacuum state. In
other words, the enhancement in this example is obtained
by computing the fidelity of ρ with respect to

∑
n tn/2|n〉|n〉

instead of |�〉 =∑n |n〉|n〉.
In the next section, we apply this filtration procedure on

several examples of Gaussian states in order to show how the
weak realignment criterion assisted with filtration can indeed
improve entanglement detection.

��

FIG. 4. Example of a Gaussian state created from a two-mode
vacuum state processed through a two-mode squeezer (with squeez-
ing parameter r > 0) and a Gaussian additive-noise channel acting
on the first mode (with noise variance V ).

VI. APPLICATIONS

A. Two-mode squeezed vacuum state with Gaussian
additive noise

We first illustrate how the filtration procedure enables a
better entanglement detection on two-mode entangled Gaus-
sian states. In particular, we show that for specific examples,
computing the trace of the realigned state (after filtration) is
equivalent to computing its trace norm. Let us consider a two-
mode squeezed vacuum state whose first mode is processed
through a Gaussian additive-noise channel as shown in Fig. 4.
We denote V the variance of this added noise. It is known that
the entanglement of the two-mode squeezed state decreases
when we increase the noise variance, until V = 1 at which
point it becomes separable (if V � 1, the channel is entan-
glement breaking [36]). Our Gaussian state has a covariance
matrix

γ =

⎛
⎜⎜⎜⎜⎝

V + cosh 2r
2 0 sinh 2r

2 0

0 V + cosh 2r
2 0 − sinh 2r

2
sinh 2r

2 0 cosh 2r
2 0

0 − sinh 2r
2 0 cosh 2r

2

⎞
⎟⎟⎟⎟⎠, (62)

where r > 0 is the squeezing parameter. By applying Eq. (44)
where

γw =
(

1
2 (V + e−2r ) 0

0 1
2 (V + e−2r )

)
, (63)

we find Tr R(ρ) = 1/(V + e−2r ). According to Theorem 5,
entanglement is thus detected if V < 1 − e−2r . Clearly, for
a finite squeezing parameter r, there exist entangled states
with 1 − e−2r < V < 1 which are not detected. As a result,
the weak realignment criterion does not always detect entan-
glement in this example (it becomes perfect at the limit of
infinite squeezing, r → ∞).

In comparison, it was shown in [17] that for a matrix in the
normal form [Eq. (46)] the trace norm of the realignment is
given by Eq. (48). In our example, we obtain

‖ R(ρ) ‖tr= 1√
(cosh 2r + 2V ) cosh 2r − sinh 2r

(64)

so that entanglement is detected if V < tanh 2r. Here again,
the realignment criterion leaves some entangled states un-
detected (but it is more sensitive than the weak realignment
criterion since 1 − e−2r < tanh 2r, ∀r > 0).

Let us now symmetrize the state with the filtration pro-
cedure introduced in Sec. V; that is, we process the first
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mode (which has a larger noise variance) through a noise-
less attenuation map. By inspection, we find that the optimal

transmittance is t = tanh2 r and the resulting symmetrized
Gaussian state ρsym admits the covariance matrix12

γ sym = 1

8(V + cosh 2r)

(
(4V cosh 2r+ cosh 4r+3)1 (8 sinh2 r cosh2 r) σz

(8 sinh2 r cosh2 r) σz (4V cosh 2r+ cosh 4r+3)1

)
, (65)

where σz = (1 0
0 −1). We now apply Eq. (44) to ρsym, where

γ sym
w = 1

2

(
V cosh 2r+1
V +cosh 2r 0

0 V cosh 2r+1
V +cosh 2r

)
, (66)

which gives

Tr R(ρsym) = V + cosh 2r

1 + V cosh 2r
. (67)

Thus, entanglement is detected if TrR(ρsym) > 1 which is
equivalent to V < 1, for all r. Hence, all entangled states
of the form (62) are now detected. Note that Tr R(ρsym) =
‖ R(ρsym) ‖tr here according to Theorem 4. Indeed, the co-
variance matrix (65) is in the form (51) with c > 0 and d < 0,
so we have reached a Schmidt-symmetric state.

As a consequence, we have confirmed that the entan-
glement detection for Gaussian states is improved if one
symmetrizes the state before applying the weak realign-
ment criterion. In particular, in this specific example, the
weak realignment criterion is as strong as the original re-
alignment criterion with symmetrization since Tr R(ρsym) =
‖ R(ρsym) ‖tr and even stronger than the realignment criterion
without symmetrization based on ‖ R(ρ) ‖tr . Moreover, ap-
plying the symmetrization procedure and computing the trace
of the realigned state (via the determinant of the restricted
covariance matrix) are much easier than computing the trace
norm of the realigned state (as developed in [17]). In Fig. 5
(upper panel), we illustrate the fact that the trace and trace
norm of the realigned state can be increased by the filtration
procedure (the value without filtration is found when t = 1).
We notice that, although the optimal value of the transmittance
t = tanh2(r) allows for the detection of entanglement, there
are actually many other values of t that allow for such a
detection too. Moreover, it seems that the symmetrized state
t = tanh2(r) is not necessarily the best way of filtering the
state of this example as it does not give the highest possible
value of the trace of R(ρ).

As a second example, let us start with the same two-mode
squeezed vacuum state but add noise on the second mode

12Note that even if V = 0 (i.e., the state already has a symmetric
covariance matrix) we may still process one of its modes through
the noiseless attenuation map. It simply yields another (symmetric)
two-mode squeezed vacuum state with lower entanglement.

instead of the first. The covariance matrix reads

γ =

⎛
⎜⎜⎜⎜⎝

cosh 2r
2 0 sinh 2r

2 0

0 cosh 2r
2 0 − sinh 2r

2
sinh 2r

2 0 V + cosh 2r
2 0

0 − sinh 2r
2 0 V + cosh 2r

2

⎞
⎟⎟⎟⎟⎠. (68)

As before Tr R(ρ) = 1/(V + e−2r ) so the weak realignment
criterion alone does not detect all entangled states. To improve

�� R� � �� tr

Tr�R� ��

1.5 2.0 2.5 3.0
t

0.95

1.00

1.05

1.10

1.15

1.20

FIG. 5. Comparison of the trace Tr R(ρ ) and trace norm
‖ R(ρ ) ‖tr of the realigned state for a two-mode squeezed vac-
uum state processed through a Gaussian additive-noise channel (we
choose r = 0.2 and V = 0.4). (a) The noise is added on the first mode
and filtering consists in processing this mode via a noiseless attenu-
ation map. The red cross shows the point at t = tanh2(r) where the
covariance matrix has been symmetrized and Tr R(ρ ) =‖ R(ρ ) ‖tr .
(b) The noise is added on the second mode and filtering works by
processing the first mode via a noiseless amplification map. The val-
ues of the trace and the trace norm coincide when t = 1

tanh2 r
≈ 25.7.
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on this, we could of course apply the noiseless attenuation
map on the second mode, which would give the exact same
results. Alternatively, we may explore another filtration pro-
cedure, which consists in applying the noiseless amplification
map on the first mode. As can be seen in Fig. 5 (lower
panel), the values of the trace and trace norm increase with
t , and if t is chosen big enough, we detect entanglement. In
order to symmetrize the covariance matrix, we would need
a noiseless amplifier of transmittance t = 1

tanh2 r
, which is a

limiting case that would yield a two-mode squeezed vacuum
state with infinite squeezing. For this optimal value of t , we
have Tr R(ρsym ) = 1

V and thus entanglement is always de-
tected when V < 1. Hence, here again, the weak realignment
criterion assisted with filtration allows us to detect all entan-
gled states.

B. Random two-mode Gaussian states

Let us consider two other examples of random two-mode
Gaussian states with their covariance matrices written in the
normal form:

γ1 =

⎛
⎜⎜⎜⎝

1.46 0 0.83 0

0 1.46 0 −0.23

0.83 0 0.80 0

0 −0.23 0 0.80

⎞
⎟⎟⎟⎠,

γ2 =

⎛
⎜⎜⎜⎝

1.29 0 −0.76 0

0 1.29 0 0.44

−0.76 0 0.83 0

0 0.44 0 0.83

⎞
⎟⎟⎟⎠. (69)

These states are not PPT so they are entangled. These exam-
ples are interesting because in both cases ‖ R(ρ) ‖tr> 1 but
Tr R(ρ) < 1, so entanglement is detected by the realignment
criterion but not by its weak formulation. We thus need to
apply the filtration procedure in order to enhance the detec-
tion with the weak realignment criterion. In Fig. 6, we show
the evolution of Tr R(ρ) as a function of the transmittance
t of the noiseless attenuation map applied on the first mode
(t = 1 corresponds to the initial value when no filtration is
applied). The red cross indicates the exact point when the
covariance matrix has been symmetrized. In the first example
[see Fig. 6(a)], the filtration procedure works well and many
values of t allow us to detect entanglement. In particular,
the entanglement is detected at the optimal value of t (note
that the trace and trace norm do not exactly coincide there,
which witnesses the fact that the symmetrized state is not
exactly a Schmidt-symmetric state). In the second example
[see Fig. 6(b)], however, filtration alone is not sufficient and
entanglement is never detected by the weak realignment crite-
rion. Even if filtration is performed by applying a noiseless
amplifier map on the second mode, we observe the same
results. Nevertheless, entanglement can still be detected if we
apply a local rotation (a π phase shift on one of the two
modes which has the effect to flip the sign of the c and d
elements in the normal form of the covariance matrix) prior
to the filtration procedure, which makes the covariance ma-
trix look similar to the first example. This is shown by the
dashed green curve on Fig. 6(b). Furthermore, by applying

��
Tr�R� ��

�� R� � ��trTr�R� sym��

0.2 0.4 0.6 0.8 1.0
t

1.00

1.05

1.10

Tr�R� phase ��

Tr�R� ��
Tr�R� sym��

�� R� � ��tr

0.2 0.4 0.6 0.8 1.0
t

0.4

0.6

0.8

1.0

1.2

FIG. 6. Evolution of the trace Tr R(ρ ) of the realigned state as a
function of t for two-mode Gaussian states with covariance matrices
(a) γ1 and (b) γ2 after filtering (noiseless attenuation on the first
mode). Both examples are entangled states. The blue dashed line
represents ‖ R(ρ ) ‖tr before the filtration and the red cross shows
the value of Tr R(ρsym ) when the covariance matrix has been sym-
metrized. The green dashed curve shows the evolution of the trace
Tr R(ρphase ), where ρphase is the state obtained by applying a π phase
shift prior to the filtration.

an appropriate local squeezing on the second mode of the
state after the noiseless attenuator on the first mode, we may
always reach a Schmidt-symmetric state [provided c and d
have opposite signs in the covariance matrix (46) of the initial
state; otherwise the state is anyway separable]. This indicates
that applying a suitable local phase shift followed by a suitable
noiseless attenuator (or amplifier) and finally a suitable local
squeezer yields a filtration procedure that always allows the
detection of entanglement for a two-mode Gaussian state.

Note that we cannot plot the evolution of ‖ R(ρ) ‖tr as a
function of t in Fig. 6 (in contrast with Fig. 5) since the co-
variance matrix after filtration is not anymore in the form (46).
The blue dashed line represents its initial value before the
filtration is applied.

C. Examples of 2 × 2 NPT Gaussian states

Let us now move on to examples of 2 × 2 Gaussian states
(in which case the PPT criterion is not any more necessary and
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sufficient). We extend the example of Sec. VI A by considering that Alice and Bob share two instances of a two-mode squeezed
vacuum state with added noise. The covariance matrix is thus given by

γEPR=

⎛
⎜⎜⎜⎜⎝

(
V + cosh 2r

2

)
1 0 sinh 2r

2 σz 0

0
(
V + cosh 2r

2

)
1 0 sinh 2r

2 σz

sinh 2r
2 σz 0 cosh 2r

2 1 0

0 sinh 2r
2 σz 0 cosh 2r

2 1

⎞
⎟⎟⎟⎟⎠. (70)

This state is always detected by the PPT separability criterion. We can also add some rotations on Bob’s modes in order to get
another state whose covariance matrix is given by γ ′

EPR = R(θ, τ ) γEPR RT (θ, τ ) with

R(θ, τ ) =

⎛
⎜⎜⎜⎝
14×4 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 12×2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

14×4 0 0 0 0

0
√

τ 0 −√
1 − τ 0

0 0
√

τ 0 −√
1 − τ

0
√

1 − τ 0
√

τ 0

0 0
√

1 − τ 0
√

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (71)

This rotated state is always entangled and detected by the PPT
criterion. The entanglement detection effected by the weak
realignment criterion is, however, depending on the values of
θ and τ as follows:

(a) If θ = 0 and τ = 1 we have γ ′
EPR = γEPR and the cal-

culations are exactly the same as in Sec. VI A (but everything
is squared because we now have two states). It means in
particular that Tr R(ρEPR) = 1

(e−2r+V )2 is not always greater

than 1, but if we applied a suitable filtration with t = tanh2(r),
entanglement becomes always detected.

(b) If θ = π and regardless of the value of τ , we have
Tr R(ρ ′

EPR) = 1
1+V 2+2V cosh 2r which is always smaller than 1.

Entanglement is thus never detected. Note that in this particu-
lar case, the filtration does not improve the value of Tr R(ρ ′)
even if we try to add a rotation before the filtration. The key
point is that this state does not have EPR-like correlations.

(c) If θ = 0 and regardless of the value of τ , we have
Tr R(ρ ′

EPR) = 1
(cosh 2r−√

τ sinh 2r+V )2 . In some cases, entangle-
ment is detected without any filtration. In some other cases,

0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Tr R� �t��

FIG. 7. Evolution of the trace Tr R(ρ ′
EPR) of the realigned state

after filtration as a function of t for r = 1, V = 0.8, τ = 0.9, and
θ = 0. The entanglement is detected in the interval of t values such
that the trace exceeds 1.

entanglement is not straightforwardly detected, but the filtra-
tion helps in the detection. For example, if r = 1, V = 0.8,
and τ = 0.9, then Tr R(ρ ′

EPR) ≈ 0.8 < 1 and entanglement
is not detected as such. However, if we apply the filtration
procedure, we see in Fig. 7 (upper panel) that there are many
values of t that enable entanglement detection.

VII. CONCLUSIONS

We have introduced a weak formulation of the realignment
criterion based on the trace of the realigned state R(ρ), which
has the advantage of being much easier to compute than the
original formulation of the realignment criterion, especially
in higher dimensions. It has a simple physical implemen-
tation as computing Tr R(ρ) is equivalent to measuring the
|�〉 component of state ρ via linear optics and homodyne
measurements. Moreover, for states in the Schmidt-symmetric
form, both realignment criteria—the weak and the origi-
nal formulations—are equivalent. We focused especially on
Gaussian states and showed that applying a suitable filtration
procedure prior to applying the weak realignment criterion
often allows for a better entanglement detection. In particular,
we have explored a filtration based on noiseless amplification
or attenuation, which is an invertible operation that transforms
the state into a symmetrized form such that the entanglement
detection is enhanced (this procedure may even surpass the
original realignment criterion while it is simpler). We have
provided examples of the application of this procedure for
various 1 × 1 and 2 × 2 Gaussian states. These examples
illustrate the power of the method (it can be made to detect
all entangled 1 × 1 Gaussian states), even though we have
found cases where it leaves the entanglement of 2 × 2 states
undetected.

A question that we leave open in this work is whether the
weak realignment criterion assisted with suitable prior filtra-
tion can be stronger than the PPT criterion to the degree that
it can detect bound entangled states. The weak realignment
criterion is weaker than both the original realignment and PPT
criteria, which are two incomparable criteria (except for states
in the symmetric subspace, where they coincide). Hence, as
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such, it cannot detect bound entanglement. We have not been
able to find instances where adding filtration allowed us to
detect bound entangled states, although it should in principle
be possible to bring the state close enough to a Schmidt-
symmetric state so that bound entanglement is detected. Note,
however, that this can only be the case if the original realign-
ment criterion detects the entanglement of the state, that is, if
the Schmidt-symmetric state that is approached via filtration
is not within the symmetric subspace (otherwise, the weak
realignment criterion tends to the realignment criterion which
itself coincides with the PPT criterion, so no bound entangle-
ment can be detected). This puts severe constraints on where
to seek the detection of bound entanglement using the weak
realignment criterion assisted with filtration.

As a future work, it would also be interesting to explore
other possible filtration procedures in order to further improve
the entanglement detection in higher dimensions. Alterna-
tively, another interesting goal would be to find a physically
implementable protocol for the original realignment criterion
and not its weak form [that is, for evaluating the trace norm of
R(ρ) instead of its trace with optical components].
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APPENDIX A: PROOF OF THEOREM 1

We give here the proof of Theorem 1. Let us construct
an entanglement witness W , that is, an observable with a
positive expectation value on all separable states. Let us define
W = 1 −∑r

i Ai ⊗ Bi and let us check that Tr(ρsepW ) � 0
where ρsep = (|a〉 ⊗ |b〉)(〈a| ⊗ 〈b|) is a separable (product)
state. First we remark that

Tr(ρsepW ) = (〈a| ⊗ 〈b|)W (|a〉 ⊗ |b〉)

= 1 −
r∑
i

〈a|Ai|a〉〈b|Bi|b〉

� 1 −
√√√√ r∑

i

|〈a|Ai|a〉|2
√√√√ r∑

i

|〈b|Bi|b〉|2, (A1)

where we used the Cauchy-Schwarz inequality in the last
step. Now, since the {Ai} form a basis, we can write |a〉〈a| =∑

j α jA j where α j = 〈a|Ai|a〉, and similarly for |b〉〈b|. This
allows us to write

1 = ‖ |a〉〈a| ‖2= Tr(|a〉〈a|(|a〉〈a|)†) = Tr

(∑
i j

αiAiα
∗
j A

†
j

)

=
∑

i j

αiα
∗
j Tr(AiA

†
j ) =

∑
i

|αi|2 =
∑

i

|〈a|Ai|a〉|2 (A2)

and similarly
∑

i |〈b|Bi|b〉|2 = 1 so that Tr(ρsepW ) � 0. Thus,
W is indeed an entanglement witness as any separable state
is expressed as a convex mixture of states of the form ρsep.
Let us now check under which condition it allows for entan-
glement detection. In other words, what is the condition to
have Tr(ρW ) < 0? Consider a state ρ written in its operator
Schmidt decomposition. Then,

Tr(ρW ) = 1 − Tr

(
r∑
i j

λiAiA j ⊗ BiBj

)

= 1 −
r∑
i j

λiTr(AiAj )Tr(BiBj )

= 1 −
r∑
i

λi. (A3)

Entanglement is thus detected when
∑r

i λi > 1 which com-
pletes the proof.

APPENDIX B: FORMULATION OF THE |�〉 STATE

We prove here that the state |�〉 can be reexpressed as√
π U †

BS|0〉x1 |0〉p2 where UBS is the unitary of a 50:50 beam
splitter. By definition, it is expressed in the Fock basis as
|�〉 =∑n |n〉|n〉. Thus, if |x〉 and |y〉 are position states, we
have

〈x|〈y|�〉 =
∑

n

〈x|n〉〈y|n〉

=
∑

n

〈x|n〉〈n|y〉

= 〈x|y〉 = δ(x − y), (B1)

so that |�〉 can be written in the position basis as

|�〉 =
∫

dx dy δ(x − y)|x〉|y〉 =
∫

dx |x〉|x〉. (B2)

Since the action of the 50:50 beam splitter unitary UBS on the
position eigenstates is defined as

UBS|x〉|y〉 =
∣∣∣∣x − y√

2

〉∣∣∣∣x + y√
2

〉
, (B3)

we have

〈x|〈y|U †
BS|0〉x1 |0〉p2 =

〈
x − y√

2

∣∣∣∣
〈

x + y√
2

∣∣∣∣|0〉x1 |0〉p2

=
〈

x − y√
2

∣∣∣x = 0

〉〈
x + y√

2

∣∣∣p = 0

〉

= δ

(
x − y√

2

)
1√
2π

= δ(x − y)/
√

π, (B4)

where we have used the fact that 〈x|y〉 = δ(x − y) and 〈x|p〉 =
1√
2π

eipx. Comparing with Eq. (B1), this completes the proof

that |�〉 = √
π U †

BS|0〉x1 |0〉p2 .
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APPENDIX C: COMPUTATION OF EQ. (43)

We show how to directly compute Eq. (43) for a two-mode
state. We have to compute the following integral where we set
x1 = p2 = 0:

〈x = 0|〈p = 0|ρ ′|x = 0〉|p = 0〉

=
∫

dx2d p1Wρ ′ (0, p1, x2, 0)

= 1

(2π )2
√

det γ ′

∫
dx2d p1 e− 1

2 (0 p1 x2 0)(γ ′ )−1 (0 p1 x2 0)T

= 1

(2π )2
√

det γ ′

∫
dx2d p1 e

− 1
2 (x2 p1)�

(
x2

p1

)

= 1

(2π )2
√

det γ ′
2π√
det �

= 1

2π
√

det γ ′

√
det γ ′

det γw

= 1

2π
√

det γw

, (C1)

where � is a 2 × 2 matrix with elements given by �1,1 =
(γ ′)−1

3,3, �2,2 = (γ ′)−1
2,2, and �1,2 = �2,1 = (γ ′)−1

2,3.

APPENDIX D: PHYSICAL INTERPRETATION OF THE
SYMMETRIZATION PROCEDURE FOR

A GAUSSIAN STATE

We present here an alternative way of computing the co-
variance matrix of the output state of a noiseless attenuation
channel. To do so, we use the fact that the attenuation channel
can be represented by a beam splitter followed by a postselec-
tion on the vacuum (see Fig. 3).

To filter the state, we process the modes of the subsystem
with the higher variance (that is the higher value of the de-
terminant of the reduced covariance matrix A or B) through
a noiseless attenuation channel and then postselect the out-
put conditionally to measuring the vacuum on the ancillary
modes. Since it is a Gaussian channel, the output remains
Gaussian. Processing the state through this channel will have
for effect to lower the variance of the mode that traveled
through the channel. The output state is the symmetrized
Gaussian state ρsym. We chose the attenuator factor (that is
the transmittance t of the beam splitter) so that the variance of
both modes of ρsym are equal; that is, det A = det B. In terms
of covariance matrix, the procedure is as follows.

Let us have an n × n Gaussian state ρ with covariance
matrix (49) and let us assume det A � det B with no loss of
generality. We then add n vacuum state to the system. The
new covariance matrix thus reads

γ|0〉⊕n+ρ =
( 1

212n 0

0 γ

)
. (D1)

We now apply the transformation S ⊕ 1 where S is the beam
splitter transformation,

S ⊕ 1 =

⎛
⎜⎝

√
t12n −√

1 − t12n 0√
1 − t12n

√
t12n 0

0 0 12n

⎞
⎟⎠, (D2)

to the covariance matrix γ|0〉⊕n+ρ :

γS⊕1 = S ⊕ 1 γ|0〉⊕n+ρ S† ⊕ 1 =
(A CT

C B

)
. (D3)

Finally, we reduce the covariance matrix conditionally to mea-
suring the vacuum on the first mode; that is [37,38],

γ sym = B − C
(
A + 1

2
1

)−1

CT =
(A′ C ′T

C ′ B′

)
. (D4)

At this stage we obtained a new covariance matrix which
depends on t . If the filtration procedure is such that we want to
symmetrize the covariance matrix, we need to make sure that
the determinant of the covariance matrices of both subsystems
are equal (det A′ = det B′).

Explicit calculation for the two-mode case

Let us do the explicit calculations to obtain the sym-
metrized covariance matrix of a two-mode Gaussian state
initially expressed in its normal form [5],

γρ =

⎛
⎜⎜⎜⎝

a 0 c 0

0 a 0 d

c 0 b 0

0 d 0 b

⎞
⎟⎟⎟⎠. (D5)

Any covariance matrix of a two-mode state can be trans-
formed into this form by applying local linear unitary
operations which are combinations of squeezing transforma-
tions and rotations. These operations do not influence the
separability of the state, and are thus always allowed when
studying entanglement. Note that we assume a � b with no
loss of generality. We first add the vacuum state to the system.
The new covariance matrix reads

γ|0〉+ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 0 0 0 0 0

0 1/2 0 0 0 0

0 0 a 0 c 0

0 0 0 a 0 d

0 0 c 0 b 0

0 0 0 d 0 b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D6)

We then apply the transformation S ⊕ 1 to the covariance
matrix γ|0〉+ρ to obtain

γS⊕1 = S ⊕ 1 γ|0〉+ρ S† ⊕ 1 =
(A CT

C B

)
(D7)
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with

A =
(−ta + a + t

2 0

0 −ta + a + t
2

)
, B =

⎛
⎜⎜⎜⎜⎝

(
a − 1

2

)
t + 1

2 0 c
√

t 0

0
(
a − 1

2

)
t + 1

2 0 d
√

t

c
√

t 0 b 0

0 d
√

t 0 b

⎞
⎟⎟⎟⎟⎠,

C =

⎛
⎜⎜⎜⎜⎝

1
2 (1 − 2a)

√−(t − 1)t 0

0 1
2 (1 − 2a)

√−(t − 1)t

−c
√

1 − t 0

0 −d
√

1 − t

⎞
⎟⎟⎟⎟⎠. (D8)

Finally, we reduce the covariance matrix conditionally to measuring the vacuum on the first mode; that is,

γ sym = B − C
(
A + 1

2
1

)−1

CT =

⎛
⎜⎜⎜⎜⎜⎝

t−2a(t+1)−1
4a(t−1)−2(t+1) 0 2c

√
t

−2a(t−1)+t+1 0

0 t−2a(t+1)−1
4a(t−1)−2(t+1) 0 2d

√
t

−2a(t−1)+t+1

2c
√

t
−2a(t−1)+t+1 0 2(t−1)c2

−2a(t−1)+t+1 + b 0

0 2d
√

t
−2a(t−1)+t+1 0 2(t−1)d2

−2a(t−1)+t+1 + b

⎞
⎟⎟⎟⎟⎟⎠. (D9)

The covariance matrix will be symmetrized providing that the determinant of the covariance matrices of both subsystems are
equal (det A = det B), meaning(

t − 2a(t + 1) − 1

4a(t − 1) − 2(t + 1)

)2

=
(

2(t − 1)c2

−2a(t − 1) + t + 1
+ b

)(
2(t − 1)d2

−2a(t − 1) + t + 1
+ b

)
. (D10)

Solving this equation for t gives the transmissivity of the beam splitter necessary to obtain a Gaussian state with a symmetric
covariance matrix.
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