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We define the Wigner entropy of a quantum state as the differential Shannon entropy of the Wigner function
of the state. This quantity is properly defined only for states that possess a positive Wigner function, which we
name Wigner-positive states, but we argue that it is a proper measure of quantum uncertainty in phase space. It
is invariant under symplectic transformations (displacements, rotations, and squeezing) and we conjecture that
it is lower bounded by ln π + 1 within the convex set of Wigner-positive states. It reaches this lower bound for
Gaussian pure states, which are natural minimum-uncertainty states. This conjecture bears a resemblance with
the Wehrl-Lieb conjecture, and we prove it over the subset of passive states of the harmonic oscillator which
are of particular relevance in quantum thermodynamics. Along the way, we present a simple technique to build
a broad class of Wigner-positive states exploiting an optical beam splitter and reveal an unexpectedly simple
convex decomposition of extremal passive states. The Wigner entropy is anticipated to be a significant physical
quantity, for example, in quantum optics where it allows us to establish a Wigner entropy-power inequality. It
also opens a way towards stronger entropic uncertainty relations. Finally, we define the Wigner-Rényi entropy
of Wigner-positive states and conjecture an extended lower bound that is reached for Gaussian pure states.
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I. INTRODUCTION

The phase-space formulation of quantum mechanics pro-
vides a complete framework that echoes classical statistical
mechanics. Quantum states and quantum operators are de-
scribed within this formulation by continuous functions of the
pair of canonical variables x and p. These variables tradition-
ally refer to the position and momentum observables, but are
also isomorphic to the conjugate quadrature components of
a mode of the electromagnetic field (we use this quantum
optics nomenclature in the present paper). The conversion
from quantum operators to quantum phase-space distributions
is carried out via the Wigner-Weyl transform [1], which maps
any linear operator Â into a distribution A(x, p) as

A(x, p) = 1

π h̄

∫
exp (2ipy/h̄) 〈x − y| Â |x + y〉 dy, (1)

where h̄ denotes the Planck constant (we set h̄ = 1 in the
remainder of this paper). Accordingly, the Wigner function
of a quantum state is the Wigner-Weyl transform of its density
operator ρ̂, written as W (x, p). The Wigner function comes as
close to a probability distribution in phase space as allowed
by quantum mechanics. It indeed shares most properties
of a classical probability distribution. Notably, the marginal
distributions of W (x, p) coincide with the probability distribu-
tions for x and p, respectively ρx(x) = 〈x| ρ̂ |x〉 and ρp(p) =
〈p| ρ̂ |p〉, as it can easily be shown that

∫
W (x, p) d p = ρx(x)

and
∫

W (x, p) dx = ρp(p). Also, the expectation value of any
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operator Â in state ρ̂ is straightforwardly computed from its
Wigner function through the overlap formula [2]:

〈Â〉 = Tr[Â ρ̂] = 2π

∫∫
A(x, p)W (x, p) dx d p. (2)

However, it is well known that the Wigner function is not a
true probability distribution as it lacks positiveness [3]. For
example, all pure non-Gaussian states have a Wigner function
that admits negative regions as a consequence of the Hud-
son theorem [4]. This is the price to pay to the Heisenberg
uncertainty principle, which forbids the joint definition of
noncommuting variables x and p. Hence, several common
functionals of probability distributions, such as the Shannon
differential entropy, become in general ill defined if applied to
Wigner functions.

In contrast, there exists a well-known distribution in
quantum phase space that behaves as a genuine probabil-
ity distribution, namely, the Husimi Q function [2], defined
as Q(α) = 〈α| ρ̂ |α〉 /π . It corresponds to the probability to
measure state ρ̂ in a coherent state |α〉. Remember that a
coherent state |α〉 is an eigenstate of the annihilation operator
â = (x̂ + i p̂)/

√
2 with eigenvalue α. Splitting the complex

parameter α into two real parameters x and p such that α =
x + ip gives

Q(x, p) = 1

π
〈x + ip| ρ̂ |x + ip〉 . (3)

Despite lacking the nice properties of the Wigner function
such as the overlap formula (2), the Husimi function has the
advantage of being positive; hence it admits a properly defined
entropy. The Shannon differential entropy of the Husimi func-
tion is indeed known as the Wehrl entropy and is defined as
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FIG. 1. Reduced output state σ̂ of a balanced beam splitter (of
transmittance η = 1/2) when the input state is ρ̂, as described in
Eq. (7). The Wigner function of σ̂ coincides with the Husimi Q
function of ρ̂; hence it is positive. Consequently, the Wigner entropy
of σ̂ is equal to the Wehrl entropy of ρ̂.

h(Q) = − ∫∫
Q(x, p) ln Q(x, p) dx d p. This entropy is at the

core of the Wehrl conjecture [5], later proven by Lieb [6,7],
which states that the Wehrl entropy is lower bounded by
ln π + 1 and that the only minimizers of h(Q) are the coherent
states [8].

Interestingly, there is a link between the Husimi function
and Wigner function of a state, as can simply be under-
stood using the quantum optics language. To this purpose,
recall that the vacuum state |0〉 [or ground state of the har-
monic oscillator Ĥ = ( p̂2 + x̂2)/2 in natural units] admits
the Wigner function W0(x, p) = exp(−x2 − p2)/π . Since a
coherent state |α〉 is a displaced vacuum state, its Wigner func-
tion is then Wα (x, p) = W0(x′, p′), where x′ = x − √

2 Re(α)
and p′ = p − √

2 Im(α). Using this, the Husimi function can
be expressed from the overlap formula (2) as

Q(x, p) = 1

π
Tr[|x + ip〉〈x + ip| ρ̂]

= 2
∫∫

W0(x̃ −
√

2x, p̃ −
√

2p) W (x̃, p̃) dx̃ d p̃.

(4)

Thus, it appears that Q is a convolution between W and W0,
with a rescaling factor of

√
2. In the language of random vari-

ables (and provided W is non-negative), we could say that if
(x̃, p̃) is distributed according to W and (x0, p0) is distributed
according to W0, then (x, p) is distributed according to Q, with

x = (x̃ − x0)/
√

2 and p = ( p̃ − p0)/
√

2. (5)

This is a familiar relation in quantum optics, describing the
action of a beam splitter of transmittance η = 1/2 onto the
state ρ̂ and the vacuum state. Defining σ̂ as the reduced state
of the corresponding output of the beam splitter, as shown in
Fig. 1, we conclude that the Wigner function of σ̂ is precisely
the Husimi function of ρ̂, namely,

Wσ̂ (x, p) = Qρ̂ (x, p), (6)

where

σ̂ = Tr2
[
Û 1

2
(ρ̂ ⊗ |0〉 〈0|) Û †

1
2

]
. (7)

Here Û 1
2

denotes the beam-splitter unitary of transmittance
η = 1/2, while Tr2 denotes a reduced trace over one of the
modes, say, the second mode. From Eq. (6), it appears that the
entropy of the Wigner function of σ̂ is nothing else but the
Wehrl entropy of ρ̂ in this particular setup. A natural question

then arises: can we give an intrinsic meaning to the entropy of
a Wigner function independently of this particular setup?

In this paper, we will answer by the affirmative. First, let
us notice that the setup of Fig. 1 ensures that the output state
σ̂ always has a positive Wigner function (see Appendix B).
In general, we will denote the quantum states admitting a
positive Wigner function [i.e., states such that W (x, p) � 0,
∀x, p] as Wigner-positive states. For such states, it is possible
to compute the Shannon differential entropy of their Wigner
function. We make the leap and define the Wigner entropy of
any Wigner-positive state ρ̂ as

h(W ) = −
∫∫

W (x, p) ln W (x, p) dx d p, (8)

where

W (x, p) = 1

π

∫
exp(2ipy) 〈x − y| ρ̂ |x + y〉 dy (9)

is the Wigner function of ρ̂. We argue that, although it is
limited to Wigner-positive states, the Wigner entropy is a
natural measure in order to characterize quantum uncertainty
in phase space: it bears information about the uncertainty of
the marginal distributions of the x and p variables as well as
their correlations in phase space. In contrast with the Wehrl
entropy, it is not the classical entropy of the outcome of
a specific measurement, namely, a joint (x, p) measurement
(called heterodyne detection or eight-port homodyne detec-
tion in quantum optics). Of course, in the special case where
a Wigner-positive state can be prepared using the setup of
Fig. 1, its Wigner entropy can be viewed simply as the Wehrl
entropy of the corresponding input state, but the definition
goes further and the Wigner entropy remains relevant for
Wigner-positive states that cannot be built in this way.

The Wigner entropy h(W ) enjoys interesting properties.
First, unlike the Wehrl entropy h(Q), it is invariant un-
der symplectic transformations (displacement, rotation, and
squeezing) in phase space. Such transformations, which are
ubiquitous in quantum optics, correspond to the set of all
Gaussian unitaries in state space. We stress that a sensible
measure of phase-space uncertainty must remain invariant
under symplectic transformations since these are also area-
preserving transformations in phase space. In contrast, h(Q) is
greater for squeezed states than for coherent states. As it can
be understood from Fig. 1, this preference simply originates
from the fact that one input of the balanced beam splitter
is itself a coherent state. Second, the Wigner entropy h(W )
can be related to the entropy of the marginal distributions
h(ρx ) and h(ρp), but also encompasses the x-p correlations.
Shannon information theory establishes a relation between
the entropy of a joint distribution and its marginal entropies,
namely, h(x, p) = h(x) + h(p) − I , where I � 0 is the mutual
information [9]. Applied to the Wigner entropy, this gives the
inequality h(W ) � h(ρx ) + h(ρp). This means that a lower
bound on the Wigner entropy implies in turn a lower bound
on the sum of the marginal entropies.

In the light of these considerations, we introduce a con-
jecture on the Wigner entropy, which resembles the Wehrl
conjecture. As anticipated in [10], we conjecture that the
Wigner entropy of any Wigner-positive state ρ̂ satisfies

h(W ) � ln π + 1. (10)
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As we will show, this bound is reached by all Gaussian pure
states, which appears consistent with the Hudson theorem
[4]. It implies (but is stronger than) the entropic uncertainty
relation of Białynicki-Birula and Mycielski [11], namely,
h(ρx ) + h(ρp) � ln π + 1. Importantly, conjecture (10) also
implies the Wehrl conjecture since we have shown that the
Husimi function of any state ρ̂ is the Wigner function of some
Wigner-positive state σ̂ in a particular setup (see Fig. 1). How-
ever, the converse is not true as there exist Wigner-positive
states whose Wigner function cannot be written as the Husimi
function of a physical state (an example will be shown in
Sec. IV).

The paper is organized as follows. In Sec. II, we start by
recalling some basics of the symplectic formalism and then
define the Wigner entropy of a Wigner-positive state as a dis-
tinctive information-theoretical measure of its uncertainty in
phase space. In Sec. III, we discuss the characterization of the
set of Wigner-positive states and focus on the particular subset
of phase-invariant Wigner-positive states. Then, in Sec. IV,
we turn to the main conjecture and provide a proof for some
special case of phase-invariant Wigner-positive states, namely,
the passive states. Finally, we conclude in Sec. V and provide
an example application of the Wigner entropy, namely, the
Wigner entropy-power inequality. Further, in Appendix A,
we extend the Wigner entropy and define the Wigner-Rényi
entropy of Wigner-positive states. We also discuss a natural
extension of the conjectured lower bound. In Appendix B,
we present a quantum-optics-inspired method for generat-
ing a large variety of Wigner-positive states with a balanced
beam splitter, extending on Fig. 1. Appendix C is devoted
to the detailed analysis of the set of Wigner-positive states
when considering the Fock space restricted to two photons
as this provides a helpful illustration of our results. Finally,
Appendix D provides more details on the derivation of the
formula [Eq. (43)] at the heart of our proof.

II. WIGNER ENTROPY OF A STATE

In this paper, we restrict our considerations to a sin-
gle bosonic mode (one harmonic oscillator) for simplicity,
although the definition of the Wigner entropy and the corre-
sponding conjecture should extend to the multidimensional
case. Let us briefly review the symplectic formalism for one
bosonic mode. Let x̂ = (x̂, p̂)ᵀ be the vector of quadrature
operators (or position and momentum canonical operators)
satisfying [x̂ j, x̂k] = i � jk , with the matrix

� =
(

0 1
−1 0

)
(11)

being the symplectic form. The coherence vector (also called
the displacement vector) of a state ρ̂ is defined as

c = 〈x̂〉 := Tr(x̂ ρ̂ ), (12)

where 〈·〉 stands for the expectation value in state ρ̂, while the
covariance matrix � of state ρ̂ is defined as

� jk = 〈{x̂ j − 〈x̂ j〉, x̂k − 〈x̂k〉}〉, (13)

where {·, ·} stands for the anticommutator. The set of Gaussian
states contains those for which the Wigner function W (x, p)
is Gaussian; hence these states are completely characterized

by their first- and second-order moments c and �. The set
of Gaussian unitaries in state space is isomorphic to the set
of symplectic transformations in phase space. Formally, a
symplectic transformation is an affine map on the space of
quadrature operators which is defined by a symplectic matrix
S and a displacement vector d, namely,

x̂ → Sx̂ + d. (14)

The symplectic matrix S is a real matrix that must preserve
the symplectic form, that is, S�Sᵀ = �, which implies in
particular that det S = 1. The displacement vector d is an
arbitrary real vector. The first- and second-order moments of
a state ρ evolve under such a symplectic transformation as

c → Sc + d, � = S�Sᵀ. (15)

In the special case of Gaussian states, this completely charac-
terizes the evolution of the state under the Gaussian unitary.

The core of this paper is the definition of an information-
theoretical measure of uncertainty in phase space, which we
call the Wigner entropy h(W ), where h(·) denotes the Shan-
non differential entropy functional and W (x, p) is the Wigner
function of ρ̂ [see Eqs. (8) and (9)]. As already mentioned,
it only applies to Wigner-positive states since, otherwise, the
definition of the entropy entails the logarithm of a negative
number. We note it as a functional of W but, of course, it is
eventually a functional of the state ρ̂ since W itself depends
on ρ̂.

In contrast with the Shannon entropy of a discrete variable,
the Shannon differential entropy of a continuous variable does
not have an absolute meaning (it depends on the scale of the
variable) and it becomes negative if the probability distribu-
tion is highly peaked [9]. However, when applied to a Wigner
function, a natural scale is provided here by the area h̄ of a unit
cell in phase space. Hence, the Wigner entropy has a meaning
per se and it is legitimate to conjecture a lower bound, namely,
Eq. (10), when setting h̄ = 1. Further, it is natural to extend
on this and consider a lower bound on the differential Rényi
entropy of the Wigner function of any Wigner-positive state,
a quantity that we define as the Wigner-Rényi entropy (see
Appendix A).

The Wigner entropy h(W ) has the nice property to be
invariant under symplectic transformations. Consider the
symplectic transformation x̂ → x̂′ = Sx̂ + d and let us denote
as W and W ′ the Wigner function of the input and output
states, respectively. The change of variables corresponding to
this transformation gives

W ′(x′, p′) = W (x, p)

| det S| , (16)

which indeed implies that

h(W ′) = −
∫∫

W ′(x′, p′) ln W ′(x′, p′) dx′ d p′

= −
∫∫

W (x, p) ln

(
W (x, p)

| det S|
)

dx d p

= h(W ) + ln | det S|
= h(W ), (17)
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where we have used the fact that W is normalized and the fact
that S is a symplectic matrix (det S = 1).

Note that this invariance can also be understood as a sole
consequence of the fact that symplectic transformations con-
serve areas in phase space since det S = 1. Indeed, for any
functional F , we have∫∫

F (W ′(x′, p′)) dx′ d p′

=
∫∫

F

(
W (x, p)

| det S|
)

| det S| dx d p

=
∫∫

F (W (x, p)) dx d p. (18)

The special case of Gaussian states is very easy to deal
with. A straightforward calculation shows that the Wigner
entropy of a Gaussian state ρ̂ is given by

h(W ) = ln(2π
√

det �) + 1 = ln(π/μ) + 1, (19)

where μ = Trρ̂2 = 1/(2
√

det �) � 1 stands for the purity
of the state. All Gaussian states that are connected with
a symplectic transformation obviously conserve their purity
since det �′ = det(S�Sᵀ) = det �, which confirms that their
Wigner entropy is invariant. The lowest value of h(W ) among
Gaussian states is then reached for pure states (μ = 1) and is
given by ln π + 1, as expected. This is the value of the Wigner
entropy of all coherent states and squeezed states (regardless
the squeezing parameter, squeezing orientation, and coher-
ence vector). Accordingly, the Gaussian pure states would
be the minimum-Wigner-uncertainty states. The difficult task
remains, however, to prove that non-Gaussian Wigner-positive
states cannot violate this lower bound (see Sec. IV).

Provided this conjecture is valid, the Wigner function of
any Wigner-positive state can be classically simulated from
the Wigner function of the vacuum state (or any other Gaus-
sian pure state). More precisely, information theory tells us
that the difference 	 = h(W ) − ln π − 1 can be viewed as
the number of independent equiprobable random bits that are
needed, on average, to generate deterministically one random
(x, p) instance drawn from the Wigner function of state ρ

from one random (x, p) instance drawn from the Wigner
function of the vacuum state (or any Gaussian pure state).
Of course, this results holds at the asymptotic limit only,
that is, around N × 	 bits of extra randomness are needed
for converting N random instances of (x, p) ∼ W0 into N
random instances of (x, p) ∼ W by deterministic means when
N → ∞.

III. WIGNER-POSITIVE STATES

As explained in Sec. II, the Wigner entropy naturally
appears as an information-theoretic measure of uncertainty
in phase space, but is only properly defined for positive
Wigner functions. For this reason, we devote this section to
the quantum states with positive Wigner functions, which we
call Wigner-positive states. Note that Wigner positivity is a
particular case of η-positivity for η = 0 [12,13]. Quantum
Wigner-positive states of a single mode are described by a

FIG. 2. Schematic view of a convex set. The black and red points
form all together the boundary of the convex set, while the red
points are the extremal points on this boundary (note the existence
of isolated extremal points as well as of a continuum of extremal
points).

Wigner function W (x, p) that respects the condition

W (x, p) � 0 ∀x, p. (20)

Restricting to pure states, the set of Wigner-positive states is
well known: the Hudson theorem establishes that Gaussian
pure states are the only pure quantum states with a positive
Wigner function [4]. When it comes to mixed states, however,
the situation becomes more difficult since the mixing of states
enables one to build non-Gaussian Wigner-positive states. The
characterization of the set of Wigner-positive mixed states has
been attempted [13,14], but the resulting picture is somehow
complex. Just like writing a necessary and sufficient condition
for a Wigner function to correspond to a positive-semidefinite
density operator is a hard task, it appears cumbersome to
express a necessary and sufficient condition for a density
operator to be associated with a positive Wigner function.

On a more positive note, the set of Wigner-positive states
is convex since a mixture of Wigner-positive states is itself
Wigner positive. Taking advantage of this property, we may
focus on the extremal states of the convex set, as pictured
in Fig. 2. These are the states that cannot be obtained as a
mixture of other states of the set. Conversely, any state of the
set can be generated as a mixture of these extremal states. This
brings a simplification in the proof of the main conjecture,
namely, expressing a lower bound on the Wigner entropy of
an arbitrary Wigner-positive state (see Sec. IV). Indeed, the
Shannon entropy being concave, the entropy of a mixture is
lower bounded by the entropy of its components, that is,

h(p1W1 + p2W2) � p1 h(W1) + p2 h(W2), (21)

where p1 and p2 are positive reals such that p1 + p2 = 1.
Hence, it is sufficient to prove the lower bound on h(W ) for
the extremal Wigner-positive states in order to have a proof
over the full set.

A. Several classes of Wigner-positive states

To be more specific, we define several sets of Wigner-
positive quantum states, which will be useful in the rest of
this paper. As we will see, conjecture (10) is trivially verified
for some of them, while it remains hard to prove for others.

Q: Physical quantum states. It is the convex set of all
single-mode quantum states. Their density operator ρ̂ sat-
isfies the three physicality conditions: Hermiticity, positive
semidefiniteness, and unit trace. Of course, they can have
partly negative Wigner functions.
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FIG. 3. Beam-splitter state σ̂ obtained at the output of a balanced
beam splitter (of transmittance η = 1/2). If the input is an arbitrary
product state ρ̂A ⊗ ρ̂B, then the reduced state of the output σ̂ is
guaranteed to be Wigner positive. This generalizes Fig. 1, where
ρ̂B = |0〉〈0|. The set of beam-splitter states is denoted as B. The
convex hull of these states, denoted as Bc, is obtained by sending
any separable state (i.e., a mixture of product states) into a balanced
beam splitter and tracing over one of the output modes. The whole
set Bc is strictly included in the set of Wigner-positive states Q+.

Q+: Wigner-positive quantum states. It is the subset of
states in Q that have positive Wigner functions. It is a convex
set. All states within this set have a well-defined Wigner
entropy and are the subject of conjecture (10).

G: Gaussian states. It is the subset of states in Q+ that
have a Gaussian Wigner function. It does not form a convex
set since the mixture of Gaussian states does not need to be
Gaussian, so we refer to its convex hull as Gc.

C: Classical states. According to Glauber’s definition,
classical states are mixtures of coherent states. They are char-
acterized by a positive Glauber-Sudarshan P function. By
definition, C is a convex set and C ⊂ Gc since coherent states
are Gaussian states.

The extremal states of C and Gc are respectively coherent
states and Gaussian pure states. For these two sets, conjecture
(10) is trivially verified since the Wigner entropy of Gaus-
sian pure states is precisely ln π + 1 and since the entropy is
concave. Unfortunately, the convex closure of Gaussian states
Gc is yet but a small fraction of the set of Wigner-positive
states Q+. As an evidence of this, we construct a wider set of
Wigner-positive states by exploiting a technique relying on a
balanced beam splitter (hence, we name this set as B).

B: Beam-splitter states. These are the states σ̂ resulting
from the setup depicted in Fig. 3. More precisely, a beam-
splitter state σ̂ denotes the reduced output state of a beam
splitter with transmittance η = 1/2 fed by a tensor product
of two arbitrary states ρ̂A and ρ̂B,

σ̂ = Tr2[Û 1
2
(ρ̂A ⊗ ρ̂B) Û †

1
2

]. (22)

We show in Appendix B that state σ̂ always possesses a
positive Wigner function, regardless of ρ̂A and ρ̂B. The sole
condition is that the input state is a tensor product and the
beam splitter is balanced (η = 1/2).

It can be shown with a simple argument that the set of
Gaussian states G is a subset of B. Indeed, it is well known
that the product of two identical copies of a Gaussian state
γ̂ is invariant under the action of a beam splitter (assuming
the coherence vector vanishes [15]). We have the identity
Ûη(γ̂ ⊗ γ̂ )Û †

η = γ̂ ⊗ γ̂ , where γ̂ is any single-mode Gaus-
sian state and Ûη is the unitary of a beam splitter with
transmittance η. One can then easily reconstruct the set of

FIG. 4. Pictorial representation of the various sets considered
here. The full set of quantum states is denoted as Q, while the set
of Wigner-positive states is denoted as Q+. Then, Bc stands for the
convex hull of the set B of beam-splitter states, while Gc stands for
the convex hull of the set G of Gaussian states. Further, C stands
for the set of classical states. Within all these sets, we distinguish
the states that are phase invariant, which are characterized by a
probability vector p ∈ S. For states in Q+, the vector p ∈ S+, while
for states in Bc, the vector p ∈ Sb. To be rigorous, we note that it
is unknown whether the phase-invariant restriction of Bc might also
contain some states such that p /∈ Sb. We have rigorously proven this
is not the case for states up to two photons only (see below). Note
also that the areas of all the above sets should not be understood
quantitatively as they are arbitrary and only meant here to illustrate
the chain of inclusion.

Gaussian states with the above setup, so it follows that G ⊂ B.
Note that it is easy to build beam-splitter states as in Fig. 3
that are not Gaussian states; hence this is a strict inclusion
relation. The analog relation also applies to the respective
convex hull of these sets, namely, Gc ⊂ Bc. Unfortunately, the
set Bc does not coincide with Q+ as we will see that there exist
Wigner-positive states that do not belong to Bc (see, e.g., the
dark blue region in Fig. 6). In summary, we have the following
chain of strict inclusion relations:

Q ⊃ Q+ ⊃ Bc ⊃ Gc ⊃ C (23)

as pictured in Fig. 4.

B. Phase-invariant states in Q+

As it appears, the set Q+ of Wigner-positive states remains
hard to encompass and characterize efficiently. Therefore, in
order to make a concrete step towards the proof of conjecture
(10), we restrict our attention in this paper to a class of quan-
tum states known as phase-invariant states. Phase-invariant
states have a Wigner function that is invariant under rotation,
so they are fully characterized by their radial Wigner function.
Such states have the advantage of being easily characterized
in state space as they can be written as mixtures of Fock
states, which are eigenstates of the harmonic oscillator. The
wave function and the Wigner function of the nth Fock state
(starting at n = 0 for vacuum) are the following:

ψn(x) = π− 1
4 2− n

2 (n!)−
1
2 Hn(x) exp

(
−x2

2

)
, (24)

Wn(x, p) = 1

π
(−1)nLn(2x2 + 2p2) exp(−x2 − p2), (25)
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where Hn and Ln are respectively the nth Hermite and La-
guerre polynomials. A phase-invariant state is thus expressed
as the mixture

ρ̂ =
∞∑

k=0

pk |k〉 〈k| (26)

with |k〉 denoting the kth Fock state, so that it is fully de-
scribed by the probability vector p ∈ RN , with components
pk . In order to be an acceptable probability distribution,
p must satisfy the physicality conditions

pk � 0 ∀k,

∞∑
k=0

pk = 1. (27)

We call S the restriction of RN satisfying the physicality
conditions (27). Any vector p that belongs to S corresponds
to a unique phase-invariant state in Q.

Now, we turn to the phase-invariant states in Q+. In order
to check that the phase-invariant state that is characterized by
a vector p ∈ S is Wigner positive, we need to verify that the
corresponding mixture of Fock states has a positive Wigner
function everywhere in phase space. This is done by using
Eq. (25), so that the Wigner-positivity condition on p reads as

∞∑
k=0

pk (−1)k Lk (t ) � 0 ∀t � 0, (28)

where we define t = 2x2 + 2p2. Let us also define the usual
radial parameter r =

√
x2 + p2, so that each value of t corre-

sponds to a specific value of r through the relation t = 2r2.
When condition (28) is fulfilled for some t , the Wigner func-
tion is non-negative at r = √

t/2. We call S+ the restriction
of S satisfying the Wigner-positivity conditions (28), so that
any vector p in S+ is associated with a unique phase-invariant
Wigner-positive state in Q+.

The characterization of S+ can be operated as follows.
Each value of t in Eq. (28) gives the equation of a hyperplane
dividing S in two halves [p must be located on one side of the
hyperplane to guarantee that W (r) � 0 for the corresponding
r]. Two hyperplanes associated respectively to t and t + dt
intersect in a (lower-dimensional) hyperplane which is at the
boundary of the convex set S+. When t goes from 0 to ∞, the
collection of all these intersections forms a locus of points
which determines the curved boundary of S+. Mathemati-
cally, the condition that a point p ∈ S belongs to the curved
boundary of S+ is equivalent to the following condition:

∃t such that

{∑∞
k=0 pk (−1)k Lk (t ) = 0∑∞
k=0 pk (−1)k d

dt Lk (t ) = 0.
(29)

Note that since S+ is convex, all the points in its curved
boundary are extremal points. However, other isolated ex-
tremal points may exist, as illustrated in Fig. 2.

C. Phase-invariant beam-splitter states in B
The above considerations reflect the fact that characterizing

the set of phase-invariant Wigner-positive states (associated
with p ∈ S+) remains complex. For this reason, we consider
a subset of states that are built by using a balanced beam
splitter, following the same idea as for the construction of set

FIG. 5. Beam-splitter state σ̂ (m, n) obtained at the output of a
balanced beam splitter (of transmittance η = 1

2 ) that is fed with Fock
states of m and n photons. The states σ̂ (m, n) are Wigner-positive
phase-invariant states; hence they belong to the set S+.

B but injecting phase-invariant Fock states at the input. As
pictured in Fig. 5, we define the beam-splitter state σ̂ (m, n) as
the reduced output state of a balanced beam splitter fed by m
and n photons at its two inputs, that is,

σ̂ (m, n) = Tr2[Û 1
2
(|m〉 〈m| ⊗ |n〉 〈n|)Û †

1
2

]. (30)

Thus, any state σ̂ (m, n) is Wigner positive and phase invariant.
It is a mixture of Fock states with mixture coefficients given
in Appendix B. We denote as Sb the set of probability vectors
p corresponding to all mixtures of states σ̂ (m, n). It is clear
that Sb ⊂ S+ ⊂ S, as depicted in Fig. 4 and discussed below.

Interestingly, the Wigner function associated with any state
σ̂ (m, n) happens to have a minimum value that reaches pre-
cisely zero [except for σ̂ (0, 0), which is simply the vacuum
state]. In fact, it is shown in Appendix B that whenever m �= n,
the Wigner function of σ̂ (m, n) always cancels at the origin
in phase space. This suggests that the states σ̂ (m, n) are the
extremal states of the set of phase-invariant Wigner-positive
states (those associated with S+). However, as we will show
in the following example, the situation is more tricky as this
set also admits other extremal states that are not of the form
σ̂ (m, n). Hence, we will see that Sb ⊂ S+ is a strict inclusion
and there exist phase-invariant Wigner-positive states that can-
not be written as mixtures of beam-splitter states σ̂ (m, n).

D. Example: Restriction to two photons

Let us denote by Sn and Sn
+ the restriction of respectively

S and S+ that have components pk = 0 for k > n. As an
example, let us consider the set S2, which corresponds to
mixtures of Fock states up to n = 2, that is,

ρ̂ = (1 − p1 − p2) |0〉 〈0| + p1 |1〉 〈1| + p2 |2〉 〈2| (31)

with p1, p2 � 0 and p1 + p2 � 1. We are interested in the
Wigner-positive subset of S2, namely, S2

+. Restricting our-
selves to n = 2 makes it possible to represent S2

+ in a
two-dimensional plane with coordinates p1 and p2 (see
Fig. 6). The mathematical description of S2

+ was also given
in [13], but we analyze it here from a physical perspective,
through the prism of quantum optics. Since the beam splitter
conserves the total photon number, we know that only the
states σ̂ (m, n) such that m + n � 2 belong to S2

+. These states
are expressed as

σ̂a ≡ σ̂ (0, 0) = |0〉 〈0| ,
σ̂b ≡ σ̂ (1, 0) = 1

2 |0〉 〈0| + 1
2 |1〉 〈1| ,

σ̂c ≡ σ̂ (1, 1) = 1
2 |0〉 〈0| + 1

2 |2〉 〈2| ,
σ̂d ≡ σ̂ (2, 0) = 1

4 |0〉 〈0| + 1
2 |1〉 〈1| + 1

4 |2〉 〈2| , (32)
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FIG. 6. Two-dimensional representation of S2 (large white trian-
gle) and S2

+ (blue zone, including dark and light blue). The points
a, b, c, and d correspond to the beam-splitter states whose convex
closure yields S2

b, represented as the light blue zone. The dark blue
zone stands for the subset of phase-invariant Wigner-positive states
that cannot be expressed as mixtures of beam-splitter states. As dis-
cussed in Sec. IV, the triangle a-b-e encompasses the set of passive
states while the triangle a-b-d encompasses the states whose Wigner
function coincides with the Husimi Q function of a state.

and their corresponding Wigner functions are displayed in
Figs. 7 and 8. We observe that the minimum value of the
Wigner functions always reaches zero (except for the vac-
uum state σ̂a), which reflects that these are extremal states of
the set of Wigner-positive phase-invariant states (associated
with S2

+).
This is confirmed in Fig. 6, where the four beam-splitter

states are represented by points a, b, c, and d: they are indeed
extremal points of the convex set S2

+, which appears as the
blue zone (including light and dark blue). However, as we
will see, they are not the only extremal points of S2

+. The
complete characterization of S2

+ can be done by using the
Wigner-positivity conditions (28) and (29). The derivation is
done in Appendix C and leads to the following conditions on
p1 and p2:

p1 � 1
2

p2 � 1
4 + 1

4

√
1 − 4p2

1. (33)

Any state in the form (31) is Wigner positive if and only if its
components p1 and p2 satisfy conditions (33).

Several observations can be made from Fig. 6. First, state
σ̂a, which coincides with the vacuum state, is a trivial extremal
state of S2

+ even if its Wigner function does not reach zero. As
already mentioned, σ̂b, σ̂c, and σ̂d are other extremal states
of S2

+, as witnessed by the fact that their Wigner function
vanishes at some location in phase space. The convex set S2

+
has three facets. Two of them correspond to the physicality
conditions (27), i.e., p1 � 0 and p2 � 0. The third one cor-
responds to condition (28) where we have set t = 0, which

FIG. 7. Wigner functions of the four beam-splitter states σ̂a, σ̂b,
σ̂c, and σ̂d , denoted respectively as Wa(x, p), Wb(x, p), Wc(x, p),
and Wd (x, p). These four states are Wigner-positive phase-invariant
states, but, in addition, their Wigner functions touch precisely zero
(except for the vacuum state σ̂a) as is more evident from Fig. 8.
This fact reflects that these are extremal states of the set of Wigner-
positive phase-invariant states (associated with S2

+).

gives us p0 + p2 � 1/2 or equivalently p1 � 1/2. Note that
the points in these facets belong to the boundary of S2

+ but are
not extremal. This can be easily understood for the third facet
corresponding in Fig. 6 to the segment connecting σ̂b to σ̂d ,
which both admit a zero of their Wigner function at the same
location (i.e., the origin). Note also that, in general, the set S+

FIG. 8. Radial Wigner functions of the four phase-invariant
beam-splitter states σ̂a, σ̂b, σ̂c, and σ̂d , denoted respectively as Wa(r),
Wb(r), Wc(r), and Wd (r). As advertised, the minimum value of these
Wigner functions touches zero [except for the vacuum state σ̂a, for
which Wa(r) → 0 as r → ∞].
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FIG. 9. Expressing the positivity of the radial Wigner function
W (r) for increasing values of r corresponds to a continuum of
straight lines, which are all tangents of ellipse (35). As an illustra-
tion, we plot as dashed lines the tangents associated with W (r) = 0
for r = 0, r = 1/

√
2, r = 1, r = √

2, and r → ∞. For instance,
expressing W (0) � 0 implies p1 � 1/2, while expressing W (1) � 0
implies p2 � 1/2. For r > 1, the positivity condition becomes redun-
dant, and, at the limit r → ∞, it gives p2 � 0, which is equivalent to
the physicality condition.

always has a facet corresponding to∑
k even

pk = 1

2
, (34)

which expresses the positivity of the Wigner function at r = 0
(recall that t = 2r2). As pictured in Fig. 9, expressing the
positivity of the radial Wigner function for increasing values
of r yields a continuum of straight lines, whose locus of inter-
secting points forms an ellipse centered in (0, 1/4), namely,

(
p1

1/2

)2

+
(

p2 − 1/4

1/4

)2

= 1. (35)

The resulting constraints on p1 and p2 for all r’s are summa-
rized by Eq. (33).

Overall, Fig. 6 shows that the subspace S2
b, which is

spanned by the extremal states σ̂a, σ̂b, σ̂c, and σ̂d , covers a
large region of S2

+ (indicated in light blue) so any point in this
region can thus be generated by a convex mixture of them.
However, S2

+ also includes a small region (indicated in dark
blue) that is located under the ellipse defined by Eq. (35) and
above the straight line c-d . This region is thus outside the
polytope S2

b generated by the σ̂ states, which confirms that S2
+

also admits a continuum of extremal points along this ellipse.
Note finally that it is not a trivial observation to see that

S2
b coincides with the two-photon phase-invariant restriction

of Bc (i.e., the phase-invariant states with up to two photons
within the convex hull of beam-splitter states of B). Indeed,
S2

b is defined as the convex hull of beam-splitter states built
from (phase-invariant) Fock states in Fig. 5 with up to two
photons, that is, the convex hull of {σ̂a, σ̂b, σ̂c, σ̂d}. Since it is
possible to create beam-splitter states in the setup of Fig. 3
that are phase invariant starting from two input states that are

not phase invariant (e.g., two squeezed states with orthogo-
nal squeezing produce a thermal state), it might a priori be
possible to build states within the two-photon phase-invariant
restriction of Bc that do not belong to S2

b. However, a simple
argument convinces us otherwise. First, notice that we may
restrict to pure input states without loss of generality. Since the
output is a mixture with up to two photons, we must consider
input states that are either in the form

|ψ〉 = |0〉 ⊗ (a0 |0〉 + a1 |1〉 + a2 |2〉) (36)

or

|ψ〉 = (b0 |0〉 + b1 |1〉) ⊗ (c0 |0〉 + c1 |1〉). (37)

In case (36), the first input is the vacuum, which is phase
invariant, so that the output state is phase invariant only if
the second input state is also phase invariant. This is easy to
understand given that the output Wigner function is a (scaled)
convolution of the two input Wigner functions. In case (37),
a straightforward calculation shows us that the output state
is phase invariant only if at least one of the coefficients b0,
b1, c0, or c1 vanishes. This implies that one of the two input
states must be phase invariant, which in turns implies that the
other input must be phase invariant too in order to ensure the
phase invariance of the output. As a result, the two-photon
phase-invariant restriction of Bc coincides with the set S2

b (it
is unknown, however, whether this remains true for more than
two photons, that is, whether the phase-invariant restriction
of Bc corresponds to the set Sb in general). Since we have
found phase-invariant Wigner-positive states outside S2

b, this
confirms that Bc is strictly included in Q+, as advertised
earlier (see Fig. 4).

IV. CONJECTURED LOWER BOUND

The conjectured lower bound on the Wigner entropy reads

h(Wρ̂ ) � ln π + 1 ∀ρ̂ ∈ Q+. (38)

Note that an extended version for the Wigner-Rényi entropy
is also discussed in Appendix A. We wish to prove Eq. (38)
for all Wigner-positive states in Q+ but it appeared in Sec. III
that this set is hard to characterize. In this section, we will
expose the central result of our paper, namely, a proof of this
conjecture over a subset of phase-invariant Wigner-positive
states with thermodynamical relevance that are called passive
states. As a side result, we will exhibit an unexpectedly simple
relation between the extremal passive states and the beam-
splitter states σ̂ (m, n), which guides us to test the conjecture
over the much larger set Sb of phase-invariant Wigner-positive
states.

Before doing so, let us discuss the implication of the
conjecture in the restricted subspace of phase-invariant
Wigner-positive states associated with S2

+. First, as a conse-
quence of Eq. (6), we know that the Wigner functions of σ̂a,
σ̂b, and σ̂d coincide respectively with the Husimi Q functions
of |0〉, |1〉, and |2〉. Hence, the (proven) Wehrl conjecture
applied to |0〉, |1〉, and |2〉 implies that the Wigner entropy of
σ̂a, σ̂b, and σ̂d is indeed lower bounded by ln π + 1. Further,
this naturally extends to the subspace spanned by σ̂a, σ̂b, and
σ̂d , corresponding to the triangle a-b-d in Fig. 6. Thus, the
states that are located in the blue region but do not belong to
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this triangle are Wigner-positive states whose Wigner function
cannot be expressed as a physical Q function. This underlies
the fact that conjecture (10) is stronger than the Wehrl con-
jecture. In particular, let us prove that the Wigner function
of state σ̂c cannot be written as the Q function of a physical
state. Reasoning by contradiction, assume there exists an input
state ρ̂ in the setup of Fig. 1 such that the resulting output
state is σ̂c. First, since the transformation on ρ̂ is a (scaled)
convolution with a (Gaussian) rotation-invariant function, the
Wigner function of ρ̂ must necessarily be rotation invariant in
order to get the rotation-invariant Wigner function associated
with σ̂c. Thus, ρ̂ must be phase invariant, that is, a mixture of
Fock states. Second, since σ̂c does not contain more than two
photons, it is clear that ρ̂ can only be a mixture of |0〉, |1〉,
and |2〉. However, the output state corresponding to any such
mixture precisely belongs to the triangle a-b-d , which does
not contain c. Hence, there is no state ρ̂.

A. Passive states

Passive states are defined in quantum thermodynamics as
the states from which no work can be extracted through uni-
tary operations [16]. If ρ̂p is the density operator of a passive
state, then the following relation holds true for any unitary
operator Û :

Tr[ρ̂pĤ ] � Tr[Û ρ̂pÛ
†Ĥ ], (39)

where Ĥ is the Hamiltonian of the system. Passive states are
useless in the sense that it is not possible to decrease their
energy by applying a unitary (since a unitary conserves the
entropy, any work extraction should come with a decrease of
internal energy). It can be shown that passive states are de-
creasing mixtures of energy eigenstates, in the sense that if the
eigenstates are labeled with increasing energy, the associate
probabilities must be decreasing [17]. In the present paper, we
are considering eigenstates of the harmonic oscillator, which
are the Fock states. A passive state is then written as

ρ̂p =
∞∑

k=0

pk |k〉 〈k| with pk � pk+1. (40)

Among the set of passive states, extremal passive states are
defined as equiprobable mixtures of the low-energy eigen-
states up to some threshold. We refer to the nth extremal
passive state as ε̂n and to its Wigner function as En. They are
defined as follows:

ε̂n = 1

n + 1

n∑
k=0

|k〉 〈k| , En(x, p) = 1

n + 1

n∑
k=0

Wk (x, p).

(41)

The states ε̂n are called extremal [18] in the sense that any
passive state ρ̂p can be expressed as a unique convex mixture
of extremal passive states, namely,

ρ̂p =
∞∑

k=0

ek ε̂k, (42)

where pk and ek are probabilities that are linked through the
relation ek = (k + 1)(pk − pk+1).

In the special case of phase-invariant states within the re-
stricted space with up to two photons, the set of passive states
corresponds to the triangle a-b-e in Fig. 6, which belongs to
S2

+ as expected. Of course, a, b, and e correspond respectively
to the extremal passive states ε̂0, ε̂1, and ε̂2.

B. Proof of the conjecture for passive states

Let us prove the lower bound (38) for the subset of pas-
sive states ρ̂p. First, note that passive states are known to
be Wigner positive [19], a fact that will become clear from
Eq. (43). Thus, their Wigner entropy is well defined. Second,
notice that, as a consequence of the concavity of entropy, it
is sufficient to prove the conjecture for all extremal passive
states ε̂n.

The main tool that we will use to carry out our proof is
a formula that we have derived from an identity involving
Laguerre and Hermite polynomials [20], making a nontrivial
link between the Wigner functions and wave functions of the
first n Fock states. It reads as follows (to the best of our
knowledge, it has never appeared as such in the literature):

n∑
k=0

Wk (x, p) =
n∑

k=0

ψk (x)2 ψn−k (p)2, (43)

where Wk and ψk are respectively the Wigner function and
wave function of the kth Fock state as defined in Eqs. (24) and
(25). As a by-product, note that Eq. (43) immediately implies
that all extremal passive states ε̂n admit a positive Wigner
function; hence the Wigner function of an arbitrary passive
state is necessarily positive. More details on the derivation of
Eq. (43) can be found in Appendix D.

Let us denote the x and p probability densities of the
nth Fock state as ρn(x) = |ψn(x)|2 and ρn(p) = |ψn(p)|2.
Their corresponding Shannon differential entropy is de-
fined as h(ρk (x)) = − ∫

ρk (x) ln ρk (x) dx and h(ρk (p)) =
− ∫

ρk (p) ln ρk (p) d p. In the following, we refer to these
quantities as h(ρk ) ≡ h(ρk (x)) = h(ρk (p)). We are now ready
to lower-bound the Wigner entropy of the nth extremal passive
state ε̂n by using Eq. (43):

h(En) = h

(
1

n + 1

n∑
k=0

Wk (x, p)

)
= h

(
1

n + 1

n∑
k=0

ψk (x)2ψn−k (p)2

)
� 1

n + 1

n∑
k=0

h
(
ρk (x)ρn−k (p)

)

= 1

n + 1

n∑
k=0

(
h(ρk ) + h(ρn−k )

) = 2

n + 1

n∑
k=0

h(ρk ) � ln π + 1. (44)

The first inequality in Eq. (44) results from the concavity of the entropy. Then, we use the fact that the entropy of a product
distribution is the sum of the marginal entropies. Finally, we apply the entropic uncertainty relation of Białynicki-Birula and

042211-9



VAN HERSTRAETEN AND CERF PHYSICAL REVIEW A 104, 042211 (2021)

Mycielski [11] on Fock states, namely, 2 h(ρk ) � ln π + 1, ∀k. We have thus proven the conjecture for all extremal passive
states and this proof naturally extends to the whole set of passive states. �

Let us now prove that a slightly tighter lower bound can be derived for the Wigner entropy of passive states by exploiting
Eq. (42), namely, the fact that these states can be expressed as convex mixtures of extremal passive states ε̂n (in place of
decreasing mixtures of Fock states). We denote the Wigner function of the passive state ρ̂p as WP(x, p) and bound its Wigner
entropy as follows:

h(WP ) = h

( ∞∑
k=0

ek Ek (x, p)

)
�

∞∑
k=0

ek h
(
Ek (x, p)

) =
∞∑

k=0

(k + 1)(pk − pk+1) h
(
Ek (x, p)

)

�
∞∑

k=0

(k + 1)(pk − pk+1)
2

k + 1

k∑
j=0

h(ρ j ) =2
∞∑

k=0

k∑
j=0

(pk − pk+1) h(ρ j ) =2
∞∑
j=0

∞∑
k= j

(pk − pk+1) h(ρ j ) =2
∞∑
j=0

p j h(ρ j ).

(45)

�

The first inequality in Eq. (45) comes from the concavity
of entropy over the convex set of extremal states, while the
second inequality is obtained from Eq. (44). The final expres-
sion is a stronger lower bound on the Wigner entropy of any
passive state which reads as

h

( ∞∑
k=0

pk Wk

)
� 2

∞∑
k=0

pk h(ρk ) (46)

and is valid as soon as the probabilities pk are decreasing, that
is, pk � pk+1.

It is tempting to extrapolate that the bound (46) remains
valid beyond the set of passive states. We know indeed that
there exist phase-invariant Wigner-positive states that are not
passive states (in Fig. 6, these are the states within the blue
region that do not belong to the triangle a-b-e). As long as
the coefficients pk are such that the corresponding state is
Wigner positive, it has a well-defined Wigner entropy and we
may expect that the lower bound (46) applies. Unfortunately,
our numerical simulations have shown that relation (46) does
not hold in general for nonpassive (Wigner-positive) states.
Of course, we conjecture that relation (38) does hold for such
states and we have not found any counterexample.

C. Relation between the extremal passive states
and the beam-splitter states

Let us now highlight an interesting relation between ex-
tremal passive states ε̂n and the beam-splitter states σ̂ (m, n)
that we defined in Sec. III. To this purpose, we consider a
mixed quantum state of two modes (or harmonic oscillators)
which we denote as τ̂n. It is defined as an equal mixture of all
two-mode states with a total photon number (or energy) equal
to n, namely,

τ̂n = 1

n + 1

n∑
k=0

|k〉 〈k| ⊗ |n − k〉 〈n − k| . (47)

This state is maximally mixed over the set of states with total
energy n, so that it is invariant under any unitary transforma-
tion that preserves the total energy. In particular, it is invariant
under the action of a balanced beam splitter, which implies
the identity Û1/2 τ̂n Û †

1/2 = τ̂n. After partial tracing over the

second mode, we obtain

Tr2[τ̂n] = 1

n + 1

n∑
k=0

|k〉 〈k| , (48)

which is simply the extremal state ε̂n. Alternatively, exploiting
the invariance under Û1/2 and recalling the definition of the
beam-splitter states σ̂ (m, n), we have

Tr2[τ̂n] = 1

n + 1

n∑
k=0

σ̂ (k, n − k). (49)

This establishes an interesting link between the extremal pas-
sive states and the beam-splitter states, namely,

ε̂n = 1

n + 1

n∑
k=0

σ̂ (k, n − k). (50)

Expressed in terms of Wigner function, this translates as
n∑

k=0

Wk (x, p) =
n∑

k=0

S(k,n−k)(x, p), (51)

where S(m,n) denotes the Wigner function of σ̂ (m, n).
It is instructive to compare Eq. (51) with Eq. (43). Extremal

passive states ε̂n are defined as mixtures of Fock states [see
Eq. (40)], which possess each a nonpositive Wigner function
(except for the vacuum). This is at the heart of the difficulty
of proving the conjecture: we cannot give a meaning to the
Wigner entropy of a Fock state (except for the vacuum), so
the convex decomposition of a state into Fock states cannot
be used to bound its Wigner entropy. In this context, both
Eqs. (43) and (51) have the crucial interest to provide the
decomposition of the Wigner function of an extremal pas-
sive state into a sum of positive functions. However, with
Eq. (43), these positive functions do not correspond to phys-
ical Wigner functions. Numerical simulations indeed show
that in general ψk (x)2ψn−k (p)2 is not a physically accept-
able Wigner function (it is positive but does not correspond
to a positive-semidefinite density operator). On the contrary,
Eq. (51) exhibits the decomposition of an extremal passive
state into states σ̂ (m, n), which are Wigner-positive quantum
states as we have shown.

The set spanned by the states σ̂ (m, n) associated with Sb

is obviously bigger than the set of passive states and offers
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FIG. 10. Wigner entropy of the beam-splitter states σ̂ (m, n) as
computed numerically for m, n = 0, 1, . . . , 30. It appears that the
Wigner entropy increases monotonically for increasing values of m
and n.

a nice playground for testing our conjecture. Indeed, each
state σ̂ (m, n) is Wigner positive so it has a well-defined
Wigner entropy. Figure 10 displays the Wigner entropy of the
states σ̂ (m, n) as computed numerically up to m, n = 30. As
expected, the minimum Wigner entropy ln π + 1 is reached
for the vacuum state σ (0, 0) = |0〉 〈0|, so it follows that the
conjecture holds for whole set Sb due the concavity of the
entropy. Of course, this is based on numerical evidence since
we do not have an analytical proof that h(S(m,n) ) � ln π + 1.
Further, although the set Sb is much bigger than the set of
passive states, it still does not encompass the whole set of
phase-invariant Wigner-positive states S+, as evidenced by
Fig. 6.

V. CONCLUSION

We have promoted the Wigner entropy of a quantum state
as a distinct information-theoretical measure of its uncertainty
in phase space. Although it is, by definition, restricted to
Wigner-positive states, the fact that such states form a convex
set makes it a useful physical quantity. Since it is a concave
functional of the state, we naturally turn to its lower bound
over the convex set of Wigner-positive states. We conjecture
that this lower bound is ln π + 1, which is the value taken on
by the Wigner entropy of all Gaussian pure states. The latter
then play the role of minimum Wigner-uncertainty states.

This conjecture is consistent with the Hudson theorem,
whereby all Wigner-positive pure states must be Gaussian
states, thus states reaching the value ln π + 1. The conjec-
ture also implies a lower bound on the sum of the marginal
entropies of x and p; hence it results in a tightening of the
entropic uncertainty relation due to Bialynicki-Birula and My-
cielski that is very natural from the point of view of Shannon
information theory (the Wigner entropy accounts for x-p cor-
relations since it is the joint entropy of x and p). Of course,

it also implies the Heisenberg uncertainty relation formulated
in terms of variances of x and p. Furthermore, the conjecture
implies (but is stronger than) Wehrl conjecture, notoriously
proven by Lieb. It is supported by several elements. First,
we have provided in Sec. IV an analytical proof for a subset
of phase-invariant Wigner-positive states, namely, the passive
states. Second, this was complemented by a semianalytical
seminumerical proof for the larger set of phase-invariant states
associated with Sb. Third, we also carried out an extensive
numerical search for counterexamples in Q+ but could not
find any.

Given that the Wigner entropy is only properly defined for
Wigner-positive states, we have also been led to investigate
the structure of such states in Sec. III. We have put forward an
extensive technique to produce Wigner-positive states using a
balanced beam splitter. In particular, we have focused on the
beam-splitter states σ̂ (m, n) and have highlighted their con-
nection with the (smaller) set of passive states and (larger) set
of phase-invariant Wigner-positive states. We have also found
an unexpectedly simple relation between the states σ̂ (m, n)
and the extremal passive states.

The Wigner entropy enjoys various reasonable properties;
in particular it is invariant over all symplectic transformations
in phase space or equivalently all Gaussian unitaries in state
space. Its excess with respect to ln π + 1 is an asymptotic
measure of the number of random bits that are needed to
generate a sample of the Wigner function from the vacuum
state. More generally, since the Wigner entropy is the Shan-
non differential entropy of the Wigner function, viewed as
a genuine probability distribution, it inherits all its key fea-
tures. For example, we may easily extend to Wigner entropies
the celebrated entropy power inequality [9], which relates to
the entropy of the convolution of probability distributions.
Consider the setup of Fig. 3 where the input state is again
a product state ρ̂A ⊗ ρ̂B but the beam splitter now has an
arbitrary transmittance η, so that the output state reads

σ̂ = Tr2[Ûη(ρ̂A ⊗ ρ̂B)Û †
η ]. (52)

Let us restrict to the special case where both ρ̂A and ρ̂B are
Wigner-positive states, which of course implies that ρ̂A ⊗ ρ̂B

is Wigner positive as well as σ̂ (even if η �= 1/2). Thus,
ρ̂A, and ρ̂B, and σ̂ all have a well-defined Wigner entropy,
which we denote respectively as hA, hB, and hout. Since the
beam splitter effects the affine transformation xout = √

η xA +√
1 − η xB and pout = √

η pA + √
1 − η pB in phase space, we

may simply treat this as a convolution formula for probability
distributions. Hence, the entropy power inequality directly
applies to the Wigner entropy. Defining the Wigner entropy-
power [21] of the two input states as

NA = (2πe)−1ehA , NB = (2πe)−1ehB , (53)

and the Wigner entropy-power of the output state as

Nout = (2πe)−1ehout , (54)

we obtain the Wigner entropy-power inequality

Nout � η NA + (1 − η)NB. (55)

This is equivalent to a nontrivial lower bound on the Wigner
entropy of the output state σ̂ , namely, h(Wσ̂ ) � h(Wσ̂G ), where
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σ̂G denotes the Gaussian output state obtained if each input
state is replaced by the phase-invariant Gaussian state (i.e.,
thermal state) with the same Wigner entropy. This illustrates
the physical significance of the Wigner entropy.

Defining the Wigner entropy for Wigner-positive states
might also be a good starting point for investigating the states
that are not within Q+ and whose Wigner function admits
a negative region, hence indicating their nonclassicality and
potential computational advantage (we recall that Wigner-
positive states are efficiently simulatable classically [22]). Just
as the characterization of separable states helps understand
the advantage offered by entanglement and leads to a resource
theory of entanglement, we may envisage building a resource
theory of Wigner negativity based on Wigner entropies along
the lines of the resource theory of quantum non-Gaussianity
[23,24], going beyond witnesses of Wigner negativity [25].

Finally, a natural extension of the present work is to con-
sider more than a single harmonic oscillator (or bosonic mode)
as we expect that all properties of the Wigner entropy and es-
pecially conjecture (10) will generalize. Further, following the
lines of a recent work [26], we might investigate the detection
of entanglement in continuous-variable states by defining a
Wigner conditional entropy and Wigner mutual information.
Let us mention that this work is part of a broader project. The
key observation is that the Wigner function of Wigner-positive
states can be interpreted as a true probability distribution.
Hence, we can take advantage of this observation and adapt
all standard tools of probability theory (here, we have applied
Shannon information theory to define the Wigner entropy).
In this context, the theory of majorization [27] has proved to
be another powerful tool, and it notably allows to formulate a
generalization of Wehrl conjecture [7]. In a forthcoming paper
[28], we use the theory of majorization to state a stronger
conjecture on the uncertainty content of Wigner functions.
This enables us, for instance, to demonstrate analytically the
lower bound on h(W ) for all phase-invariant Wigner-positive
states in S2

+, including the dark blue region.
Note added. We have learned that our method for gener-

ating positive Wigner functions with a 50:50 beam splitter as
explained in Appendix B has recently also been described in
[29].
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APPENDIX A: WIGNER-RÉNYI ENTROPY

The Shannon differential entropy is an uncertainty measure
that belongs to a broader family, known as Rényi differential
entropies. Just as we defined the Wigner entropy of a Wigner-
positive state as the Shannon differential entropy of its Wigner
function, it is natural to define the Wigner-Rényi entropy of a

Wigner-positive state as

hα (W ) = 1

1 − α
ln

(∫∫
[W (x, p)]α dx d p

)
, (A1)

where α �= 1 is a real non-negative parameter.
Interestingly, some values of α are endowed with a spe-

cial meaning. Denoting as supp(W ) the part of the domain
of W where W > 0 and denoting as ν the Lebesgue mea-
sure, we have h0(W ) = ln(ν[supp(W )]) when the parameter
α = 0. This diverges when applied to any Wigner func-
tion W since the size of the support of W is infinite.
In the limit α → 1, hα tends to the Shannon differential
entropy, so that h1(W ) coincides with h(W ). The Rényi
entropy with parameter α = 2 is sometimes called the col-
lision entropy, and, applied to a Wigner function W , it is
related to the purity of the corresponding state. Denoting
the purity as μ = Tr[ρ̂2] = 2π

∫∫
[W (x, p)]2 dx d p, we have

the relation h2(W ) = ln(2π/μ). Finally, the case α → ∞
can be related to the maximum value of W as h∞(W ) =
− ln[maxx,p W (x, p)].

Note that, following the same reasoning as in Sec. II, we
observe that the Wigner-Rényi entropy is invariant under sym-
plectic transformations in phase space (i.e., Gaussian unitaries
in state space). The Wigner-Rényi entropy of the vacuum state
(or any pure Gaussian state) gives

hα (W0) = ln π + ln α

α − 1
. (A2)

Then, in the same spirit as conjecture (10), we conjecture
that the Wigner-Rényi entropy of any Wigner-positive state
is lower bounded by the value it takes for the vacuum:

hα (Wρ̂ ) � hα (W0) ∀ρ̂ ∈ Q+. (A3)

Of course, it coincides with conjecture (10) when α → 1. Let
us examine this Wigner-Rényi conjecture for other special
values of the parameter α, namely,

h2(W ) � ln 2π, (A4)

h∞(W ) � ln π. (A5)

For α = 2, the fact that the purity μ is upper bounded by 1
implies Eq. (A4). Also, the Wigner function of any state is
upper bounded by 1/π , which implies Eq. (A5) for α → ∞.
Furthermore, for α = 0, the Wigner-Rényi conjecture implies
that the support of any Wigner function is unbounded, which
is a well-known fact. These elements support the validity of
the Wigner-Rényi conjecture and especially conjecture (10)
when α → 1.

APPENDIX B: A BALANCED BEAM SPLITTER
PRODUCES WIGNER-POSITIVE STATES

In this Appendix, we show that when a balanced beam
splitter is fed by a two-mode separable input, then its reduced
single-mode output is Wigner positive. We consider the fol-
lowing setup:

σ̂ = TrB[Û 1
2
(ρ̂A ⊗ ρ̂B)Û †

1
2

], (B1)

where Ûη is the unitary operator of the beam splitter,

Ûη = exp(θ (â†b̂ − âb̂†)), (B2)
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such that η = cos2 θ and 0 � θ � π/2. We are going to show
that σ̂ is Wigner positive when η = 1/2:

Wσ̂ (x, p) � 0 ∀x, p. (B3)

Our proof has two parts. In the first part we show that the
action of a beam splitter in phase space corresponds to a con-
volution between the Wigner functions of the two inputs. In
the second part, we show that the convolution of two Wigner
functions corresponds in state space to the overlap between
two density operators, which is always a non-negative quan-
tity. Finally, we give some further observations regarding the
σ̂ (m, n) states which are built using that setup.

1. Convolution in phase space

The action of a beam splitter on the mode operators is
described by the following transformation:(

â′

b̂′

)
=

( √
η

√
1 − η

−√
η

√
η

)(
â
b̂

)
. (B4)

From this, we derive the expression of the old quadrature op-
erators x̂A, x̂B, p̂A, and p̂B as a function of the new quadrature
operators x̂′

A, x̂′
B, p̂′

A, and p̂′
B:

x̂A = √
η x̂′

A −
√

1 − η x̂′
B,

p̂A = √
η p̂′

A −
√

1 − η p̂′
B,

(B5)
x̂B =

√
1 − η x̂′

A + √
η x̂′

B,

p̂B =
√

1 − η p̂′
A + √

η p̂′
B.

The two-mode Wigner function of the output W ′ is then ob-
tained through the following relation:

W ′(x′
A, p′

A, x′
B, p′

B) = W (xA, pA, xB, pB)

= WA(xA, pA)WB(xB, pB), (B6)

where WA and WB are the Wigner functions of respectively
ρ̂A and ρ̂B. Computing the Wigner function of σ̂ is done by
integrating W ′(x′

A, p′
A, x′

B, p′
B) over the variables x′

B, p′
B:

Wσ̂ (x′
A, p′

A)

=
∫∫

dx′
Bd p′

B

× WA(
√

η x′
A −

√
1 − η x′

B,
√

η p′
A −

√
1 − η p′

B)

× WB(
√

1 − η x′
A + √

η x′
B,

√
1 − η p′

A + √
η p′

B).
(B7)

That expression finds a natural writing by introducing the new
variables x′′, p′′:

x′′ = η x′
A −

√
η(1 − η)x′

B,

p′′ = η p′
A −

√
η(1 − η)p′

B, (B8)

so that it reduces to

Wσ̂ (x′
A, p′

A) =
∫∫

dx′′d p′′ 1

η
WA

(
x′′
√

η
,

p′′
√

η

)

× 1

1 − η
WB

(
x′

A − x′′
√

1 − η
,

p′
A − x′′

√
1 − η

)
. (B9)

Equation (B9) shows that the action of a beam splitter on a
product input corresponds to a convolution between WA and
WB rescaled, respectively, by a factor

√
η and

√
1 − η. In the

case of a balanced beam splitter, the value of the parameter
η is 1/2, and the rescaling values are equal. Introducing the
new variables x̃ = √

2x′′ and p̃ = √
2p′′, we can then write

the previous expression as

Wσ̂ (x′
A, p′

A) = 2
∫∫

dx̃d p̃WA(x̃, p̃)

× WB(
√

2x′
A − x̃,

√
2p′

A − p̃). (B10)

2. State-space picture

Equation (B10) can be expressed in state-space formalism.
To that purpose, we recall the usual rotation and displacement
operators acting on mode b̂:

R̂(ϕ) = exp(−iϕb̂†b̂), D̂(α) = exp(αb̂† − α∗b̂). (B11)

Let us define ρ̂ ′
B as the result of a particular combination of R̂

and D̂ acting on ρ̂B:

ρ̂ ′
B = D̂(xα + ipα )R̂(π )ρ̂BR̂†(π )D̂†(xα + ipα ). (B12)

The Wigner function of ρ̂ ′
B can be expressed from the Wigner

function of ρ̂B as follows:

ρ̂B ←→ WB(x, p),

ρ̂ ′
B ←→ WB(

√
2xα − x,

√
2pα − p). (B13)

The last ingredient of our proof is the expression of the overlap
between two quantum states, which is always non-negative.
That quantity can be expressed equivalently in the formalism
of state space or phase space:

Tr[ρ̂1ρ̂2] = 2π

∫∫
dxd pW1(x, p)W2(x, p) � 0. (B14)

Combining Eqs. (B10), (B13), and (B14) gives us the expres-
sion of Wσ̂ as an overlap between two quantum states:

Wσ̂ (x′
A, p′

A) = 1

π
Tr[ρ̂Aρ̂ ′

B] � 0, (B15)

where the x′
A, p′

A dependence is hidden in ρ̂ ′
B. This concludes

our proof, and we have shown that σ̂ is Wigner positive.
The proof naturally expands from product inputs to separable
inputs since the mixing of Wigner-positive states remains
Wigner positive.

3. Beam-splitter σ̂(m, n) states

Beam-splitter σ̂ (m, n) states are defined in Sec. III and play
a particular role in this paper. We give here the expression
of their density operator decomposed onto the basis of Fock
states:

σ̂ (m, n) = (m!n!2m2n)−1
m+n∑
z=0

min(z,m)∑
i=max(0,z−n)

min(z,m)∑
j=max(0,z−n)

×
(

m

i

)(
n

z − i

)(
m

j

)(
n

z − j

)
(−1)i+ j z!

× (m + n − z)! |z〉 〈z| , (B16)

where |z〉 〈z| is a projector onto the zth Fock state.
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Taking advantage of Eqs. (B12) and (B15), we can easily
show that the Wigner function of σ̂ (m, n) (that we write S(m,n))
cancels at the origin when m �= n. Indeed, since Fock states
are invariant under rotation, it follows that

S(m,n)(0, 0) = 1

π
Tr[|m〉 〈m| |n〉 〈n|] = 1

π
δmn, (B17)

where δmn is the Kronecker delta.

APPENDIX C: WIGNER-POSITIVITY CONDITIONS FOR
PHASE-INVARIANT MIXTURES UP TO TWO PHOTONS

In this Appendix, we derive the conditions that apply to a
mixture of the first three Fock states (0, 1, and 2) such that it
has a non-negative Wigner function. We are considering any
state that can be written as

ρ̂ = (1 − p1 − p2) |0〉 〈0| + p1 |1〉 〈1| + p2 |2〉 〈2| , (C1)

where p1, p2 � 0 and p1 + p2 � 1. We first identify a condi-
tion on p1 and p2 that is equivalent to the Wigner positivity
of ρ̂. Then we compute the geometrical locus of points in
the (p1, p2) plane that ensures Wigner positivity, and extremal
Wigner positivity.

1. Equivalent condition of Wigner positivity

The Wigner function of a Fock state is radial and reads as

Wn(r) = 1

π
(−1)n exp(−r2)Ln(2r2), (C2)

where we use the non-negative radial parameter
r =

√
x2 + p2. We recall the three first Laguerre

polynomials:

L0(x) = 1, L1(x) = −x + 1, L2(x) = 1
2 x2 − 2x + 1.

(C3)

Using this, we can express the Wigner function of ρ̂ as

W (r) = 1

π
exp(−r2)(2p2r4 + (2p1 − 4p2)r2 + 1 − 2p1).

(C4)

We want to identify the set of possible values of p1, p2 such
that ρ̂ is Wigner positive. Introducing the parameter t = 2r2,
we can write an equivalent condition to W (r) � 0 ∀r � 0 as

1
2 p2t2 + (p1 − 2p2)t + 1 − 2p1 � 0 ∀t � 0. (C5)

2. Locus of Wigner positivity in the (p1, p2 ) plane

Equation (C5) is a second-order polynomial with a non-
negative coefficient associated to t2. We want to have
non-negative values for all t � 0. This is possible either if
its discriminant 	 is nonpositive (	 � 0), or if both its roots
correspond to t � 0.

Let us examine the latter possibility first. For a second-
order polynomial equation defined by at2 + bt + c = 0, the
sum of its roots is −b/a and their product is c/a. The two roots
are nonpositive if their sum is nonpositive and their product is
non-negative. Applied to Eq. (C5), this gives the following

FIG. 11. Geometrical locus of Wigner positivity within the
(p1, p2) plane, corresponding to the boundary of the dark blue region
S2

+ satisfying Eq. (C8). The boundary points and curve of S2
+ that

are extremal are shown in bold. The ellipse (A) corresponds to the
region where (p1, p2) is such that Eq. (C5) is never negative. The
semi-infinite triangular region (B) corresponds to values of (p1, p2)
such that Eq. (C5) becomes negative only for negative values of t .
The dashed lines forming a triangle define the physicality limits, that
is, p1, p2 � 0 and p1 + p2 � 1. The union of A and B that belongs to
the physicality triangle yields the dark blue region S2

+.

sufficient conditions:

p1 � 2p2
(C6)

p1 � 1
2 .

Condition (C6) describes a locus which is the intersection of
two half planes. We now check the discriminant condition.
The discriminant is equal to 	 = 4p2

2 − 2p2 + p2
1, so that the

condition 	 � 0 can be written as(
p1

1/2

)2

+
(

p2 − 1/4

1/4

)2

� 1. (C7)

Condition (C7) describes an ellipse. Note that the union of the
sets determined by conditions (C6) and (C7) alongside with
the physicality conditions can be summarized as

p1 � 1
2 (C8)

p2 � 1
4 + 1

4

√
1 − 4p2

1,

with the additional constraint that p1, p2 � 0. Figure 11 il-
lustrates the geometrical locus associated to the different
conditions.

3. Locus of extremal Wigner-positive states

Let us define P(t ) as the second-order polynomial de-
scribed in Eq. (C5). We refer to the first-order derivative of
P(t ) with respect to t as P′(t ):

P(t ) = 1
2 p2t2 + (p1 − 2p2)t + 1 − 2p1,

P′(t ) = p2t + p1 − 2p2. (C9)
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The locus of extremal Wigner-positive states is the set of
(p1, p2) such that

∃t � 0 such that

{
P(t ) = 0
P′(t ) = 0.

(C10)

The condition P′(t ) = 0 is satisfied at t = 2 − p1/p2. Inject-
ing that value of t in P(t ) = 0 gives us the following equation:

4p2
2 − 2p2 + p2

1 = 0, (C11)

with the additional constraint that 2p2 � p1, since t � 0. This
describes an arc of an ellipse, which we can parametrize as
follows:

p1 = 1
2

√
1 − a2

p2 = 1
4 (a + 1), (C12)

where the parameter a goes from 0 to 1. Injecting that
parametrization in Eq. (C4) yields the following expression:

Wa(r) = 1

π
exp(−r2)

1

2
(a + 1)

(
r2 − 1 +

√
1 − a

1 + a

)2

.

(C13)

Wa(r) is the radial Wigner function of the extremal Wigner-
positive states located on the arc of the ellipse appearing in
bold in Fig. 11.

APPENDIX D: CONVEX DECOMPOSITION OF
EXTREMAL PASSIVE STATES INTO POSITIVE

FUNCTIONS

The Wigner positivity of extremal passive states, and by
extension of the whole set of passive states, is often taken as a
known fact [19]. However, what is less known is that is in fact
only the weakening of a stronger mathematical relationship.
Indeed, going back to the origin of this result, we find the
following identity in [20]:

2nn!
n∑

k=0

(−1)kLk (2x2 + 2y2) =
n∑

k=0

(
n
k

)
[Hk (x)]2[Hn−k (y)]2,

(D1)

where Lk and Hk are respectively the kth Laguerre and Her-
mite polynomials. From Eq. (D1), it readily appears that the
left-hand side is non-negative since the right-hand side is
a sum of squared functions. This naturally implies that the
Wigner function En of extremal passive states ε̂n [see Eqs. (25)
and (41)] is non-negative.

However, it is possible to get an equality out of Eq. (D1).
Indeed, multiplying both sides by exp(−x2 − y2) and rear-
ranging the normalization factors, we can make appear the
Wigner function of Fock states [Eq. (25)] in the right-hand
side and the wave function of Fock states [Eq. (24)] in the
left-hand side. Formulated in these terms, Eq. (D1) becomes
then Eq. (43).
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