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Université libre de Bruxelles
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Abstract

This thesis is centered on a novel approach to quantum uncertainty based on applying the theory
of continuous majorization to quantum phase-space distributions. Majorization theory is a powerful
mathematical framework that is aimed at comparing distributions with respect to intrinsic disor-
der. It is particularly significant in the sense that establishing a majorization relation between two
distributions amounts to proving that every (Shur-concave) measure of disorder will categorize one
distribution as more ordered than the other. Although this is less known, the distributions here do
not need to be normalized nor positive for majorization theory to apply, so the latter even extends
beyond probability distributions. Further, a majorization relation can rigorously be defined for both
discrete and continuous distributions over a finite-size domain, as well as for (discrete and continuous)
distributions that are positive over an infinite-size domain.

The central thrust of this thesis is to characterize quantum uncertainty in phase space by applying the
tools of majorization theory to the Wigner function, which is the most common (quasi)distribution
that embodies a quantum state in phase space. Wigner functions are in general positive and negative,
putting them beyond the reach of most information-theoretical measures but perfect candidates for
the theory of majorization. We start our manuscript with a succinct overview of the basics of quan-
tum optics in phase space, which are a prerequisite for the characterization of disorder in phase space.
This gives us the occasion to present a secondary achievement of the thesis consisting in establishing
a resource theory for local Gaussian work extraction, which exploits the symplectic formalism within
quantum thermodynamics. In this context, work can be defined as the difference between the trace
and symplectic trace of the covariance matrix of the state, and it displays a number of interesting
properties. Back to our primary interest, our first contribution is to construct an extended formu-
lation of majorization with the applicability to Wigner functions as our main objective. It must be
stressed that when relaxing the positivity condition, majorization relations have not been addressed
in the literature for (discrete or continuous) distributions defined over an infinite-size domain. Here,
we write extended majorization relations that equally apply to discrete or continuous, positive or neg-
ative distributions defined over a finite-size or infinite-size domain. Then, applying these to Wigner
functions (which can be negative and have an infinite-size domain), our first finding is that all pure
states are either incomparable or equivalent as regards majorization. Hence, any pure state cannot be
objectively deemed more disordered than any other one in phase space, so that majorization appears
to be better suited to compare mixed states.

A large part of the thesis is then concerned with the convex set of quantum states that have a
positive Wigner function, seeking a better understanding of its structure. As a consequence of Hudson
theorem, this set only contains mixed states, with the notable exception of Gaussian pure states. We
highlight a large subset of Wigner-positive states that can be prepared using a balanced beam-splitter
and show that these states play a key role in the geometry of the Wigner-positive set as they are
extremal states. Restricting ourselves to Wigner-positive states, we formulate the conjecture that
the Gaussian pure states (most notably, the vacuum state) are the states of least disorder, which is
expressed via a fundamental majorization relation. This conjecture is supported by numerical simula-
tions and is analytically proven over the subset of phase-invariant states containing up to two photons.
It can be viewed as a precursor to all uncertainty relations in phase space.

Our next contribution pertains to the usage of information theory in quantum phase space. The
conjectured fundamental majorization relation for Wigner-positive states implies in turn an infinite
number of inequalities relating Schur-concave functionals, most notably the Rényi entropy and the
Shannon differential entropy of the Wigner function. We define the latter as the Wigner entropy of a
state, and conjecture that it is lower bounded by lnπ+ 1, namely the value it takes for Gaussian pure
states. We then prove that this bound holds over the thermodynamically-relevant set of passive states
in arbitrary dimension. The Wigner entropy is itself a lower bound on the sum of the entropies of the
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marginal distributions in phase space, which makes a clear connection with the entropic uncertainty
relations of Bia lynicki-Birula and Mycielski (which are implied by our conjecture). Interestingly, the
Wehrl-Lieb conjecture is also a consequence of our conjecture (while it does not imply it). Turning
back to uncertainty measures that could also be applicable to Wigner-negative states, we also inves-
tigate which Schur-concave functionals can be considered as relevant uncertainty measures in phase
space.

A last contribution of the thesis concerns (discrete) majorization in state space, which is the usual
way of applying majorization theory to quantum physics as described in the literature. Here, we focus
on Gaussian phase-invariant bosonic channels and demonstrate the existence of a majorization ladder
for Fock states at the input of the channel. This extends a prior analysis that was restricted to spe-
cial (quantum-limited) channels. We also find a simple relation to determine whether such channels
produce a Wigner-positive state for any input state, echoing the condition for entanglement-breaking
channels. We hope that these considerations may help resolving some of the pending questions re-
garding entropies in bosonic systems and channels.
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Introduction

What is disorder? When you think about it, the notion of disorder is harder to grasp than it seems at
first sight. Generally speaking, disorder is opposed to order. Something that is ordered is something
that is well arranged, when everything is in its place, with no room for uncertainty. In contrast,
disorder appears as soon as something is in a place where it was not expected to be, that is, as soon
as uncertainty enters into the picture. Hence, when we try to define disorder, we quickly come to
the theory of probabilities. Indeed, what could be more adequate than a probability distribution in
order to represent something that is uncertain? Disorder thus becomes a property of the probability
distribution underlying the system under study.

From a mathematical point of view, there exist a large variety of measures that can be used in
order to quantify disorder, as we are going to see throughout this thesis. All these measures generally
quantify a particular aspect of disorder, and the entropy is of course the paradigm of such a measure
of disorder. Equipped with a measure, it becomes possible, for example, to distinguish a narrow from
a wide distribution, or a peaked from a flattened distribution. Naturally, the wide distribution will be
considered as more disordered than the narrow distribution. Similarly, the flattened distribution will
be considered as more disordered than the peaked distribution. However, the comparison may be more
subtle than it seems, as illustrated on Figure 1. Let us consider the comparison between distributions
f1 and f2. In this example, distribution f1 is more peaked than distribution f2, but it has a wider
support. Then, what can we say then about their respective disorder? The answer depends on the
actual measure that is used, which itself depends on the context, but it so happens that f1 may be
more ordered than f2 according to some measures and more disordered than f2 according to other
measures. (The situation is easier for f3 which is more disordered than both f1 and f2.) From this
example, we learn that the measures of disorder have inherent limitations in that they cannot always
be used to compare disorder in an unambiguous way. In this thesis, we will see that there exits a
well-defined mathematical tool, called majorization theory, which allows us to go one step further and
approach the notion of disorder from a more global viewpoint than any simple measure can do.

The playground on which we will apply these notions of disorder is the phase space of coordinates
of a physical system. The phase space is an abstract space which originates from statistical physics. In
classical mechanics, it is the locus of all possible configurations of the system. There is one dimension
of phase space for the coordinate associated with each degree of freedom of the system, as well as
another dimension for the momentum that is canonically conjugate to each of these coordinates. For
example, the spatial coordinate and its conjugate momentum form the two-dimensional phase space

Figure 1: Qualitative examples of distributions. The distribution f1 appears to be more peaked than
f2, however it is also more widespread. Hence, it is difficult to decide which one is the more disordered
between f1 and f2. The case of f3 is easier to decide, as it appears to be more widespread and more
flattened than both f1 and f2.
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Figure 2: Illustration of the Wigner function of a quantum state. The function is defined over phase
space and takes in general both positive and negative values.

needed to describe a single particle in one dimension. The laws of motion are completely determined
if the set of all coordinates and momenta are known, so that a point in phase space follows a perfectly
determined trajectory. One then understands that phase space gives rise to a privileged formulation
of the evolution of the state of a system. In this context, the notion of disorder appears naturally
when considering physical systems that are not perfectly determined or controlled, but are defined
according to a probability distribution in phase space, as can for example be the case for a system at
finite temperature. The probability distribution will then evolve in phase space following a Liouville
equation, in accordance with the laws of motion.

Things get tougher when it comes to quantum mechanics. Indeed, in the quantum formalism, the
observable quantities associated with the coordinates and conjugate momenta become linear operators
in a Hilbert space. On top of this, pairs of conjugate operators do not commute, which implies that a
state can never have a well-determined coordinate and, at the same time, a well-determined associated
momentum. This observation implies that a perfectly determined state – a point in phase space, as one
could have classically – no longer exists in quantum mechanics. While in classical mechanics, disorder
as witnessed by a spreading in phase space necessarily originates from some statistical uncertainty,
quantum mechanics holds, in contrast, an intrinsic source of uncertainty. This raises the question of
whether the phase space formalism could be used in quantum mechanics. Representing the state of a
quantum system in phase space seems unsuitable at first sight. Indeed, how could it result from some
distribution of “point states” that are physically forbidden by quantum mechanics? This apparent
impossibility can however be overcome if we allow ourselves to consider distributions that can be
negative in some regions of phase space. This is the role played by the Wigner function in quantum
mechanics, which behaves just like a probability distribution in phase space except that it can be
partly negative as illustrated in Figure 2. This discussion, though superficial, clearly indicates that
studying disorder in quantum phase space will necessarily require special tools that go beyond the
standard framework of probability theory.

Let us now introduce the central mathematical theory that we will use throughout this thesis,
namely the theory of majorization. It is a very powerful tool, which is designed to compare distribu-
tions in terms of their disorder. It comes in two complementary facets, namely discrete majorization,
which deals with discrete probability distributions (probability vectors), and continuous majorization,
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which deals with continuous distributions (probability density functions). When a majorization rela-
tion is established between two distributions, it implies in turn an infinite number of inequalities on a
large class of functions, called Shur-concave functions, which can be viewed as measures of disorder.
One can then understand the majorization relation as the fact that one distribution is objectively
more disordered than the other, in the sense that every measure of disorder will compare the two
distributions in the same way. Another strength of majorization theory is that it goes beyond the
scope of probability distributions. Indeed, majorization enables comparing non-normalized distribu-
tions (in this case, one speaks of weak majorization) and even functions that can be both positive
and negative. The theory of continuous majorization appears therefore perfectly suitable to tackle the
characterization of disorder among Wigner functions, which is the central thrust of this thesis.

Majorization theory is also closely linked to information theory. Indeed, in information theory,
one is concerned with the disorder or uncertainty contained in a probability distribution, which can
alternatively be viewed as the information that must be transmitted in order to acquire one instance
of the associated random variable. This information content is generally measured with the Shannon
entropy, named after the seminal paper by Shannon which is often considered as the birth certificate of
information theory [60]. This particular measure, though it is not unique, enjoys numerous interesting
properties and is the most suitable tool to investigate the communication rates in channels. The link
with majorization theory is straightforward as the Shannon entropy is nothing else but one particularly
useful and predominant measure of disorder. Hence, a majorization relation between two probability
distributions simply determines which one has a larger Shannon entropy than the other.

Information theory has evolved, over the past quarter century, into a quantum form, which will
actually be our main concern in this thesis. This was triggered by the realization that information,
whatever it is, must necessarily be carried by a physical system, which in turn must obey the laws of
physics. In other words, information is physical [40]. Hence, the laws of quantum physics have brought
some brand new perspectives on the field of information theory, and, as such, quantum information
theory is now considered as a research field in its own right. Among the many outcomes of this field, let
us mention just a single one, namely quantum cryptography. More precisely, quantum key distribution
is a procedure which, unlike its classical analog, allows us to establish a secret communication channel
whose confidentiality relies on the laws of physics, without the need for any computational hypotheses.
This quantum advantage originates from the impossibility to measure a variable encoded in a quantum
state without disturbing its conjugate variable, which is reminiscent of the uncertainty principle. On a
more fundamental side, let us mention that quantum information theory is responsible for a regained
interest in uncertainty relations, in particular entropic uncertainty relations which allow us to formulate
the uncertainty principle in very general terms and will be touched upon in this thesis.

Quantum information theory has been developed in two related flavors, discrete or continuous.
We speak about discrete-variable quantum information when the considered states are described by a
quantum degree of freedom that takes discrete values. The paradigmatic objects of discrete-variable
quantum information are the qubits, which can be materialized, for example, by electrons with a spin
1/2 or atoms with two discrete energy levels. In contrast, we speak about continuous-variable quantum
information when considering quantum states defined over a continuous degree of freedom. This could
for example be a component of the electromagnetic field, in which case we speak of continuous-variables
bosonic quantum information. It is mostly this formalism that we will use throughout this thesis, as
it is in this context that the Wigner function takes all its meaning.

Majorization theory is known to play an essential role in quantum information theory. More
precisely, the discrete version of majorization theory has been very successfully used in the context
of entanglement transformations [49, 51], for the discrimination of entangled states [50, 30], and
to generalize quantum uncertainty relations [53, 57, 15]. In other words, the potential of discrete
majorization in quantum information theory is well established. Surprisingly enough, the continuous
version of majorization has remained unexplored to date in this field. Yet, as argued earlier, the
quantum phase space seems to lend itself very well to applying this tool, so the primary objective of
this thesis is to initiate the application of continuous majorization to quantum information theory.

The central objective that we pursue throughout this work is to shape the theory of majorization to
quantum phase space in order to derive useful applications. We conduct our research using the strategy
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Figure 3: This figure schematizes the research flow of this thesis. We aim to establish strong
majorization relations, which will in turn imply entropic relations that can be used in practice. We
divide our approach in two parts depending whether we consider Wigner-positive states or not. In
the case of Wigner-positive states, we already have the required mathematical background for our
work. We thus focus our attention on a continuous majorization conjecture, and on a conjecture
over their Wigner entropy. When dealing with partly negative Wigner functions, we have to build the
appropriate mathematical tools for our work. This leads us to an extended reformulation of continuous
majorization, and to the definition of Wigner-Rényi entropies.

that we describe hereafter and schematize in Figure 3. We aim to construct strong majorization
relations for Wigner functions, which will then in turn imply a wide amount of inequalities, and in
particular entropic relations. In order to do so, we proceed differently whether we consider quantum
states with non-negative Wigner functions or quantum states with partly negative WIgner functions.
In the case of Wigner-positive states, we have at our disposal the usual tools of probability theory, and
we focus on a continuous majorization conjecture. That conjecture implies then a conjectured lower-
bound on the Shannon differential entropy of their Wigner function, which we define as the Wigner
entropy. After dealing with Wigner-positive states, we turn our attention to quantum states with
partly negative Wigner functions. This leads us to present a reformulation of continuous majorization
which encompass the case of partly negative distributions defined over an infinite-size domain. Finally,
we study which entropic measures are relevant in the case of partly negative Wigner functions, which
leads us to define the Wigner-Rényi entropies.

This thesis is structured into 9 chapters. In Chapter 1, we quickly describe the path from classical
to quantum phase space. We first recall notions of statistical physics in order to illustrate the classical
meaning of a phase-space distribution and then introduce the Wigner function as the core mathematical
object in quantum phase space. We define it from a very general perspective going beyond quantum
optics, as it applies to any quantum system associated with a continuous degree of freedom. We
consider continuous-variable pure and mixed states, and introduce the Weyl transform to move from
density operators in a state-space view to Wigner functions in a phase-space view. We then go
over the properties that make the Wigner function an object that is comparable to a probability
distribution, as well as the properties that make it an intrinsically quantum object. Overall, Chapter
1 portrays the general landscape of this thesis, especially the Wigner function which plays a central
role. The landscape and goals being set, Chapters 2-4 cover the material upon which the thesis is
built (information theory, majorization theory, and quantum optics). The original results are then
reported in Chapters 5-9, followed by a general conclusion.

Chapter 2 is devoted to the characterization of probability distributions using the tools of in-
formation theory. We treat discrete and continuous probability distributions separately, and define
the Shannon entropy accordingly. We then focus on the Shannon differential entropy for continuous
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probability distributions, and give an overview of its main properties. After that, we pay a partic-
ular attention to Gaussian probability distributions, which leads us to introduce the entropy power
inequality. We then present a family of relevant information-theoretic measures, namely p-norms and
Rényi entropies. We conclude this chapter with some simple quantum mechanical applications of these
notions.

Once the probability distributions and uncertainty measures have been introduced, we address the
theory of majorization in Chapter 3. We provide a mathematical overview of majorization relations
for the different possible types of distributions considered. We do not limit ourselves to probability
distributions, but consider very general distributions that simply have to satisfy absolute convergence
conditions. Such distributions can thus be both positive and negative. We start by discussing discrete
and continuous majorization for distributions defined on a finite domain, while preparing the grounds
for distributions defined on an infinite domain. We then turn to discrete and continuous infinite-domain
distributions, and expose which majorization conditions can still be applied to such distributions. Note
that the reader who is familiar with the theory of majorization can be satisfied with a quick overview
of this chapter. Moreover, we will recall these tools in the context of Wigner functions at the beginning
of Chapter 6.

In Chapter 4, we introduce the physics background on which the thesis relies, namely quantum
optics. We define several families of quantum optical states, which are based on the quadrature basis,
the Fock basis, and the coherent basis. Then, we turn to linear optical transformations and define
them in terms of mode operators as well as Wigner functions. We present the common single-mode
transformations, followed by the two-mode transformations effected by a beam-splitter and two-mode
squeezer. The last part of this Chapter is devoted to the broad family of quantum states called
Gaussian states. This leads us to define the covariance matrix, which, together with the displacement
vector, fully characterizes any Gaussian state. We consider Gaussian pure and mixed states, in par-
ticular thermal states. At this point, we have defined the main mathematical and physical notions
that we will use throughout this work, so we move on to the outcomes of our thesis.

In Chapter 5, we address the long-standing problem of characterizing the set of quantum states
with a non-negative Wigner function. This problem is of particular interest to us here because Wigner-
positive states constitute states for which every classical uncertainty measure is well defined. We show
that, among the Wigner-positive states, a large subset of such states that can be constructed by using
a balanced beam-splitter. We then choose to focus our interest on phase-invariant quantum states
that contain up to two photons, and provide an in-depth analysis of the corresponding subset. This
allows us to draw conclusions about the structure of the Wigner-positive quantum set.

In Chapter 6, we tackle the primary objective of this thesis, namely the application of continuous
majorization in phase space. With continuous majorization extended to infinite-domain distributions,
we address the question of determining the state of least disorder in phase-space. First, we carry
out a reasoning implying that pure states are, in general, either incomparable or equivalent as far
as majorization is concerned. We then observe that the negative Wigner volume in phase space is
a Schur-convex measure, which can reach arbitrarily high values. This leads us to formulate a ma-
jorization conjecture restricted to the Wigner-positive set, stating that pure Gaussian states majorize
any Wigner-positive state. We present some numerical simulations supporting the conjecture, and
prove it over the subset of phase-invariant states containing up to two photons that was characterized
in Chapter 5. Finally, we conclude this Chapter by defining two special extensions of majorization,
namely radial-majorization and square-majorization.

In Chapter 7, we come back to the question of comparing states in terms of measures of disorder,
exploiting our findings on majorization in phase space as exposed in the previous Chapter. We first
determine which measures of disorder are consistent with Wigner functions that are partly negative.
In the case of Wigner-positive states, we define the Wigner entropy as the Shannon differential entropy
of their Wigner function. We establish its properties and conjecture a lower-bound which follows on
the majorization conjecture laid down in the previous Chapter. We then provide a in proof of this
lower-bound on the subset of passive states. Finally, we define Wigner-Rényi entropies and illustrate
their interest in the context of inequalities for beam-splitters and two-mode squeezers.

Then, Chapter 8 is devoted to the application of majorization theory for quantum bosonic channels.
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In particular, we consider Gaussian phase-insensitive channels, which are quite common in continuous-
variable quantum information and quantum optics. First, we show that for some particular values of
its parameters, such a channel always yields a Wigner-positive output. We then prove a continuous
majorization relation between the input and output Wigner functions for channels with a gain pa-
rameter greater than 1. Finally, our main contribution is to prove a ladder of (discrete) majorization
relations between the (infinite) vector of eigenvalues associated with the output for several possible
inputs. Namely, we show that the vector of eigenvalues associated with the output of the nth Fock
states majorizes the one associated with the output of the n + 1th Fock state. This very general
property of all Gaussian phase-insensitive channels gives us information on the entropy (or disorder)
that is produced by such channels.

Finally, Chapter 9 is devoted to a resource theory for Gaussian work extraction in a multipartite
setting in quantum thermodynamics. This result heavily relies on symplectic transformations in phase
space, so we first introduce the symplectic formalism which allows us to describe the evolution of the
covariance matrix through linear canonical transformations. We also present Williamson’s theorem
and the Bloch-Messiah decomposition. Then, we exploit these notions to approach the work that can
be extracted from a multipartite system by use of a local Gaussian unitary assisted with a global
energy-preserving Gaussian unitary (i.e., a linear interferometer). We show how to take advantage
of the symplectic formalism in order to develop a resource theory for the extractable work. Most
notably, the underlying resource is associated with a monotone that finds a very natural expression in
the symplectic formalism as the difference between the trace and symplectic trace of the covariance
matrix.
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Chapter 1

From classical to quantum phase-space

This first chapter is intended to sketch the basics of quantum mechanics used in this work and to
present the general guideline of this work. As explained in the introduction, our ambition is to focus
on the notion of disorder in quantum phase space. First, we will present the phase space from a
completely classical approach. In this way we will introduce the coordinates and the generalized
momenta associated to each degree of freedom of a classical system. This will lead us to present the
phase space as the privileged place to represent the evolution of a physical system.

Following this, we will move to quantum mechanics, and introduce states with continuous variables
defined according to degrees of freedom taking a continuum of values. We take here a general approach,
and do not specify the nature of these degrees of freedom. We introduce mixed states and the density
matrix formalism.

We will then introduce quantum phase space as the quantum counterpart of classical phase space.
In this context, we will define the Wigner functions that constitute the focus of our research. We will
present their properties as well as their quantum peculiarity.

1.1 Statistical mechanics perspective

In a classical vision of mechanics, the configuration of a physical system is fully described by a vector of
real numbers, each of which corresponding to the configuration of its elements. They can for example
corresponds to their position along some axis. Let us consider a physical system with N continuous
degrees of freedom defined over the real axis. All the information about the physical system is encoded
in its generalized coordinates x:

x = (x1, x2, ..., xN ) (1.1)

where each component xi corresponds for example to the position of one of its component along some
axis. Any vector x ∈ R corresponds to a precise configuration of the system.

Newtonian mechanics tells us that the movement of any body is governed by the relation F = ma.
As a consequence, it suffices to know the exact position and momentum of a particle at some time to
know it at any future and past time. If we know the vector of generalized velocities ẋ = (ẋ1, ẋ2, ..., ẋN ),
we can predict the evolution of the system for all time, where we use the notation ẋ = ∂x/∂t.

The equations of motion of the system can be formulated in an elegant way by introducing two
quantities. The Lagrangian L of the system is defined as the difference between the kinetic energy T
and potential energy V , so that we have L = T − V . The Hamiltonian H of the system is the total
energy of the system, defined as H = T + V . The generalized momentum are defined as pi = ∂L/∂ẋi,
which enables us to define the momentum vector p:

p = (p1, p2, ..., pN ) (1.2)

When considering a free particle of mass m, the generalized momentum is simply p = mẋ. Any vector
p ∈ R is an acceptable momentum vector. In general, the coordinates vector x and the momentum
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vector p define the evolution of the system at all time. This appears from the equations of motion of
Hamilton which links the respective evolution of x and p.

ẋi =
∂H

∂pi

ṗi = −∂H
∂xi

(1.3)

The laws of motion are fully characterized by these equations. The phase space is defined as the
set of possible configurations of (x,p). As it evolves, the system traces its path in the phase space.
If we know the initial position and momentum, we will know all the future and all the past of the
system. Any point in phase space is associated to a precise trajectory. We define the configuration
vector q as the concatenation of the coordinate vector x and the momentum vector p, and we write
q = (x,p).

In statistical mechanics, it is common that we don’t know exactly the state of the system, but rather
we know that it is in a macrostate that corresponds to different possible microstates. A microstate is
a precise value of x and p. A macrostate is characterized by a density function ρ(x,p). The density
functions is a true probability distribution over phase-space, as it is non-negative and normalized to
1, namely

ρ (x,p) ≥ 0

∫∫
ρ (x,p) dxdp = 1. (1.4)

The density function ρ describes a system that is in a statistical mixture. We have a statistical
uncertainty about the exact configuration of the state, so that we can only approximate it with a
probability distribution. Hence, one can recover the probability that the system is in a particular
subset of phase space by integrating the density function over that region. The resulting quantity
corresponds to the probability that the state is in that configuration. Let Q be a subset of phase-
space, then the probability that the macrostate is in that subset can be computed as:

Pr [q ∈ Q] =

∫
q∈Q

ρ(q)dq (1.5)

As a consequence, one can recover the probability distribution for the coordinates and momentum as
the integration over the other variables:

ρx(x) =

∫
ρ(x,p)dp, ρp(p) =

∫
ρ(x,p)dx. (1.6)

As such, the physical quantities associated with this system can be computed as their statistical
average over each microstate. LetA be a quantity that only depends on the coordinates and momentum
of the system. The mean value of any property A fo the state can then be evaluated as the mean of
the value it takes on any microstate q = (x,p), so that we have:

〈A〉 =

∫∫
A (x,p) ρ (x,p) dxdp. (1.7)

Finally, let us mention that the evolution of the density function is governed by Liouville’s theorem:

∂

∂t
ρ = ({H, ρ}) (1.8)

where ({•, •}) denotes the Poisson brackets. This equation implies that the volume of the density
function is conserved over time. It can be understood as the fact that each infinitesimal volume of
probability in the density function is following its own trajectory.
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1.2 Continuous-variable quantum states

The theory of quantum mechanics introduces operators to represent physically observable quantities.
In that manner, an operator x̂i is associated to each of theN degrees of freedom of the quantum system.
Conversely, each momentum is associated to a quantum operator p̂i. Each momentum operator p̂i is
canonically conjugated to its corresponding coordinate x̂i. We have the relation [x̂i, p̂j ] = i~δij . We
define the coordinate operator vector x̂ and momentum operator vector p̂ as follows:

x̂ = (x̂1, x̂2, ..., x̂N ), p̂ = (p̂1, p̂2, ..., p̂N ). (1.9)

1.2.1 Pure states

A continuous-variable pure state is then described by a complex wave-function ψ(x), which associates
to each coordinate a complex amplitude of probability. The wave-function ψ is normalized in the sense
that the integral of its squared modulus gives 1. In general, any normalized complex-valued function
that is continuously differentiable (of class C1) is a physically acceptable wave-function.

Similarly, a continuous-variable pure state possesses a momentum wave-function φ(p) that as-
sociate a complex amplitude of probability to each momentum. However, these two wave-function
cannot be chosen independently from each other. These two wave-functions are linked through a
Fourier transformation.

φ(p) =
1

(2π~)
N
2

∫
ψ(x) exp

(
− i
~

px

)
dx (1.10)

ψ(x) =
1

(2π~)
N
2

∫
φ(p) exp

(
i

~
xp

)
dp (1.11)

The probability distribution associated to each coordinate is then linked to the squared of the
absolute value of ψ(x), while the probability distribution associated to each momentum is linked to
the squared absolute value of φ(p):

ρx(x) = |ψ(x)|2, ρp(p) = |φ(p)|2. (1.12)

This is very different compared to the classical case. Indeed, in the classical case the probability
densities ρx and ρp are completely disconnected from each other. One could imagine a state with any
coordinate probability density ρx and any momentum probability density ρp. In quantum mechanics,
these two probability densities are intrinsically linked, as they arise from the same object. Indeed, the
coordinate wave-function and the momentum wave-function are two sides of a same coin, since they
are related by a Fourier transform.

The Fourier transformation originates from the fact that coordinate and momentum are canoni-
cally conjugate. Indeed, in quantum mechanics, two observables that do not commute cannot take
simultaneously a determined value.

Furthermore, there is an additional degree of freedom since the wave-function itself is a complex
object. The phase of the wave-function is not accessible in itself, as probability densities are evaluated
by taking the square modulus, but it plays a role in the Fourier transformation.

Here, both the position and momentum information are encoded in the same object, which is a
complex wave-function. We will use more generally the Dirac notation, where a quantum state is
represented by a vector |ψ〉. The vector |ψ〉 belongs to a infinite-dimensional Hilbert space H. The
coordinate wave-function and the momentum wave-function are then respectively the projection of
〈x|ψ〉 and 〈p|ψ〉. The states |x〉 and |p〉 designate a non-physical state with an infinitely focused
coordinate and momentum, respectively.

The expectation value of an operator Â over a pure state |ψ〉 is then written as

〈Â〉 = 〈ψ| Â |ψ〉 . (1.13)

It can be formulated in both coordinate and momentum representation, using the relation 〈x| p̂ |ψ〉 =
−i~(∂/∂x) 〈x|ψ〉 and 〈p| x̂ |ψ〉 = i~(∂/∂p) 〈p|ψ〉. Notice that ρx(x) = 〈ψ| x̂ |ψ〉 and ρp(p) = 〈ψ| p̂ |ψ〉.
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The evolution of a quantum state is governed by the Hamiltonian of the system, which is an
operator Ĥ. The Schrödinger equation define the time evolution of |ψ〉 as follows:

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 . (1.14)

1.2.2 Mixed states

The states we have presented until now are labeled as pure states, as they are defined by a unique
wave-function, which is according to quantum theory the utmost precise description we can have of a
quantum state. Sometimes there is a statistical uncertainty about the quantum state, which can be in
several pure states in a probabilistic fashion. Such states are called mixed states and are appropriately
described in the density matrix formalism. The density operator ρ̂ : H 7→ H is defined as follows:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (1.15)

where {|ψi〉} is a set of pure states, such that our system is in state |ψi〉 with probability pi. In
general, any quantum operator is a physically acceptable density operator if it satisfies three physicality
conditions. It should be normalized, hermitian and positive semi-definite:

Tr [ρ̂] = 1 (1.16)

ρ̂† = ρ̂ (1.17)

ρ̂ ≥ 0 (1.18)

Note that (1.18) can also be expressed as 〈ψ| ρ̂ |ψ〉 ≥ 0 ∀ |ψ〉. Equivalently, the density operator ρ̂ is
positive semi-definite if and only if Tr

[
ρ̂ψ̂
]
≥ 0 for any pure state ψ̂ = |ψ〉 〈ψ|. The three physicality

conditions can be reduced to conditions on the eigenvalues of ρ̂, which should sum up to 1, be real-
valued and non-negative. These three properties can be understood as the fact that ρ̂ derives from a
true probability distribution.

The expectation value of an observable Â over a quantum state ρ̂ can be computed as the weighted
average of the mean of Â over each pure states {|ψi〉}. This expression can be written in a simple
writing as follows:

〈Â〉ρ̂ = Tr
[
Âρ̂
]

(1.19)

In practice, we will sometimes simply write 〈Â〉 when the state over which we compute the expected
value is clear from the context.

The time evolution of a mixed states is governed by von Neumann equation, which reads as follows:

i~
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
, (1.20)

where the notation [•, •] denotes the commutator. This equation can directly be derived from (1.14).

1.3 Wigner functions in quantum phase-space

In classical physics, the existence of a phase-space probability distribution does not pose any concep-
tual problem since the particles have simulatenously well determined coordinates and momenta. In
that case indeed, it is nothing more than the joint probability distribution for each coordinate and
momentum, which contains the information about each parameter and their correlations. On the
quantum side this interpretation completely falls apart. Indeed, we know that observables that do not
commute cannot be simultaneously defined. The existence of a joint distribution appears then as a
non-sense. However, we are going to show that it is possible to construct an object with properties
that are surprisingly close to a joint probability distribution.

The Wigner function of a state with N continuous degrees of freedom is a 2N -dimensional function
W : R2N 7→ R. It can be equivalently defined from the coordinate basis or the momentum basis. The
Wigner function of a pure quantum state with coordinate wave-function ψ(x) and momentum wave-
function φ(p) is defined as follows:
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Definition 1.1 (Wigner function of a pure state). The Wigner function of a N -dimensional continuous-
variable quantum state with coordinate wave-function ψ(x) and momentum wave-function φ(p) is the
distribution W : R2N 7→ R defined as:

W (x,p) =
1

(2π~)N

∫
ψ∗
(
x +

y

2

)
ψ
(
x− y

2

)
exp

(
i

~
py

)
dy (1.21)

=
1

(2π~)N

∫
φ∗
(
p +

q

2

)
φ
(
p− q

2

)
exp

(
− i
~

xq

)
dq (1.22)

The Wigner function comes as close as quantum mechanics allows to a joint probability distribution
for the coordinates and momentum observables. To illustrate this, let us notice that the marginal of
the Wigner function corresponds to true probability distributions∫

W (x,p)dp = |ψ(x)|2,
∫
W (x,p)dx = |φ(p)|2. (1.23)

However, there are also intrinsic quantum features to the Wigner function, which make it a very
particular object. The most striking feature is that it is in general partly negative. The negativity
of the Wigner function, however, is in some sense limited. Indeed, the marginal should always result
in non-negative distribution, as these are true probability densities. Also, the negative regions cannot
exceed some extent in phase space. Typically they cannot exceed a region of area ~. This phenomenon
will appear clearer later with the following observation. The squared modulus of the scalar poduct of
two pure states is directly related to the integral over all phase space of the product of their Wigner
functions:

|〈ψ1|ψ2〉|2 = (2π)N
∫∫

W1(x,p)W2(x,p)dxdp (1.24)

As their exist quantum states with positive Wigner function which is concentrated over a region of
~ in phase space, it appears that a state which is negative over that region would violate Eq. (1.24).
The negativity of the Wigner function have to be localized.

Another very non-classical features is that the Wigner function is upper and lower-bounded. This
can be seen by applying the Cauchy-Riemann inequality on Eq. (1.22), which yields the inequality:

|W (x,p)| ≤ 1

(π~)N
. (1.25)

As a consequence, the Wigner function cannot be arbitrarily peaked. Completely determined distri-
bution such as it was possible to imagine classically are thus forbidden.

Figure 1.1 illustrates the observations that we have mentioned for a random pure state. We see that
the Wigner function has negative pockets with limited extend, and such that the marginal distributions
are non-negative.

Until now, we have limited our observations to pure states. In order to give a complete description
of quantum mechanics in phase-space, we need to define how are represented quantum operators in
phase-space. That step is taken thanks to the Weyl transfrom, which maps any quantum operator Â
to a phase-space distribution A(x,p).

Definition 1.2 (Weyl transform). The Weyl transform is the map Tw : HH 7→ CR2N
: Â 7→ A where

A(x,p) is defined as follows:

A(x,p) =
1

(2π~)N

∫ 〈
x− y

2

∣∣∣ Â ∣∣∣x +
y

2

〉
exp

(
i

~
py

)
dy (1.26)

=
1

(2π~)N

∫ 〈
p− q

2

∣∣∣ Â ∣∣∣p +
q

2

〉
exp

(
− i
~

xq

)
dq (1.27)

We will write the Weyl transformation operator as Tw and the inverse map as T −1
w .
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Figure 1.1: Wigner function of a random pure state. The Wigner function exhibits positive and
negative values. The blue parts correspond to positive areas while the red parts correspond to negative
areas. However, its marginals are always non-negative.

The Weyl transform has the useful property to translate the trace of a product of operators into
the integral of a product of phase-space distributions. That property is sometimes called the overlap
formula [42] and is the translation of Eq. (1.24). For any two operators Â1, Â2 with respective Weyl
transforms A1, A2 it reads as follows:

Tr
[
Â1Â2

]
= (2π)N

∫∫
A1(x,p)A2(x,p)dxdp (1.28)

The overlap formula captures the essence of what makes the Weyl transform so special. It translates
a trace product of operators into a phase-space product. The former is ubiquitous in the operators
formulation of quantum mechanics, while the latter recalls statistical physics.

The Wigner function of the pure state |ψ〉 is the Weyl transform of the projector |ψ〉 〈ψ|. By
linearity of the Weyl transform, we see that the Wigner function of a mixed states is the weighted
average of the Wigner functions of the pure states from which it is built. We can simply write
W =

∑
piWi, where {Wi} are the Wigner functions of the pure states {|ψi〉} which is the statistical

set associated to ρ̂ with respective probabilities {pi}. In a more direct way, one can simply find
the Wigner function of a mixed state by computing the Weyl transform of its density operator, as
W = Tw [ρ̂].

From that observation, it follows that the observation we had laid for pure states extend to mixed
states. In general, any distribution W (x,p) defined over phase-space is physically acceptable as a
quantum state if it satisfies the three following conditions:∫∫

W (x,p)dxdp = 1 (1.29)

W (x,p) ∈ R (1.30)∫∫
W (x,p)Wψ(x,p)dxdp ≥ 0 ∀ |ψ〉 (1.31)

Conditions (1.29), (1.30) and (1.31) are the analog of respectively (1.16), (1.17) and (1.18). Note that
in phase-space, it appears to be difficult to determine whether a distribution corresponds to a positive
semi-definite operator. Indeed, Condition (1.31) should be checked for any pure Wigner function Wψ,
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and the task is difficult in general as the Hilbert space is infinite dimensional. Let us compute the
expectation value of an operator Â over a state described by a Wigner function W . This can be done
directly from the overlap formula (1.28) and we find:

〈Â〉 = (2π)N
∫∫

A(x,p)W (x,p)dxdp (1.32)

That equation should be compared with Eq. (1.7). Both equation are almost identical, which explains
why the Wigner function is such a powerful tool. It gives a description of quantum states in a
formalism that uses the same tools as statistical mechanics, and provides as a consequence a powerful
and intuitive interpretation of quantum mechanics. However, this interpretation is done at the cost
of partly negative phase distributions.

Let us finally present the equation describing the time evolution of the Wigner function evolving
according to a given Hamilatonian.

∂

∂t
W = {{H,W}} (1.33)

where H = Tw

[
Ĥ
]

is the Weyl transform of the Hamiltonian and {{•, •}} denotes the Moyal brackets.

We will not dwell on the above expression. Moyal brackets rely on the Moyal product which is
cumbersome to use. We mention Equation (1.33) to show that a complete self-consistent formulation
of quantum mechanics in phase space exists. We will see that for usual Hamiltonians, the time
evolution of the Wigner function is easily described and corresponds to simple operations in phase
space.
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Chapter 2

Elements of information theory
with a touch of quantum

In the previous chapter we introduced the quantum distribution that is the Wigner function. As
we have seen, it has properties that make it intrinsically different from a probability distribution.
However, the Wigner function also shares some properties with the latter, and in fact plays a role in
quantum mechanics very similar to that of a probability distribution. It is for this reason that in this
chapter we are interested in probability distributions and their properties. In this context, information
theory is full of particularly powerful tools to measure the information content of distributions.

First, we will look at discrete and continuous random variables, and we will present how they are
represented from a mathematical point of view. In this way, we define the probability vectors and the
probability density distributions.

Then, we introduce the central tool in information theory that is Shannon entropy. We define the
Shannon discrete entropy of a probability vector and the Shannon differential entropy of a probability
density function. We then highlight several particularly useful properties of Shannon differential
entropy.

After that, we focus our interest on Gaussian distributions and highlight several of their properties.
This leads us to introduce the entropy power inequality. We then define some other information-
theoretical measures. Finally, we conclude this chapter by applying some of the notion we have
defined to quantum mechanics.

2.1 Random variables and probability distributions

Depending on the situation they describe, random variables can take different forms. A random
variable is said to be discrete if takes a discrete number of values. A discrete random variable X is
then completely described by its probability mass function pX , which associate to any outcome its
corresponding probability of occurrence. The probability mass function is defined as follows:

Definition 2.1 (Probability mass function). The probability mass function of a random variable X
is the function pX that associates to each outcome the corresponding probability of occurrence.

pX(xi) = Pr [X = xi] . (2.1)

The probability mass function is the appropriate tool to characterize discrete random variables.

When X is a discrete variable, pX is non-negative only for a discrete number of xi, namely the set
{xi} which is the set of possible outcome of the discrete variable X.

Some situations, however, are more appropriately described by a continuous random variable. The
outcome of such variables belongs to a continuous set. The probability mass function is then a poorly
efficient tool to describe them, as the probability to measure a precise occurrence is vanishingly small.
We will rather use the probability density function fX to describe them. It is defined as follows:
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Definition 2.2 (Probability density function). The probability density function of a random variable
X is the function fX that associate to each outcome the corresponding density of probability.

Pr [a ≤ X ≤ b] =

b∫
a

fX(x)dx (2.2)

The probability density function is the appropriate tool to characterize continuous random variables.

The probability mass function is an appropriate tool to characterize discrete random variable, while
the probability density function is more convenient for continuous random variable. Note however that
from an abstract mathematical point of view, one could associate a probability density function fX
with a discrete random variable X as:

x+∆∫
x

fX(y)dy ≈ pX(x) ≈ ∆ · fX(x) (2.3)

where ∆→ 0+ is a non-negative vanishingly small quantity. From that relation one understands that
these two distribution mutually define each other, and that only one of the two is relevant.

One can understand that a continuous random variable is intrinsically more disordered than a
discrete random variable. Indeed, the outcome of a discrete random variable belongs to a discrete set,
which means that we already have information about the outcome. However, a continuous random
variable belongs to a continuous set, which is a different type of infinity.

In practice, we will use vectors to represent discrete probability distributions, and functions to
represent continuous probability distributions. We introduce the probability mass vector as a vector-
ized version of the probability mass function. We define pX = (pX(x1), pX(x2), ...). We will see that
for discrete random variables, the probability mass vector pX encloses what we need to characterize
its information content. A vector x is an acceptable probability distribution if it is normalized and
non-negative. We will consider vectors of dimension N , which is possibly infinite.

Definition 2.3 (Probability vector). A probability vector is a vector p ∈ RN which satisfies the
normalization and non-negativity conditions:

N∑
i=1

pi = 1, and pi ≥ 0 ∀i. (2.4)

This generalizes to vectors p ∈ RN in which case the summation is carried until ∞.

Similarly, a function f is an acceptable probability density function if it is normalized and non-
negative. We will use probability distribution and probability density function as synonyms. Note
that we will sometimes be confronted to multidimensional probability distribution, so that to be more
general we will consider function of a n-dimensional vector r ∈ Rn. This is the case for example of a
vectorial continuous random variable X = (X1, X2, ..., Xn).

Definition 2.4 (Probability density function). A probability density function is a distribution f :
Rn 7→ R which satisfies the normalization and non-negativity conditions:∫

Rn

f(r)dr = 1, and f(r) ≥ 0 ∀r ∈ Rn. (2.5)

Note that to be even more general we can consider a function f defined over a subset A ⊆ Rn,
in which case the integration is performed over A and the non-negativity condition is checked for
all r ∈ A. In practice we will often simply refer to probability density distributions as probability
distributions.
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2.2 Shannon differential entropy and its properties

The standard information-theoretic tool to evaluate the information content of a probability distri-
bution is its Shannon entropy. It benefits indeed from interesting properties that we will explain in
this section. What is remarkable about Shannon entropy is that it only depends on the values taken
by the probability distributions. As such, it is invariant under a relabeling of the outcomes and only
depends on the probability vector or probability distributions associated to the random variable.

As we have seen, a random variable can behave very differently whether it is discrete or continuous.
For that reason, the definition of entropy that we use is different in each two cases, depending on the
mathematical tools that we are using.

Definition 2.5 (Shannon entropy of a probability vector). The Shannon (discrete) entropy of a
probability vector p is the quantity H(p) defined as:

H(p) = −
N∑
i=1

pi ln pi (2.6)

The Shannon discrete entropy of a discrete random variable X is H(X) = H(pX) where pX is the
probability vector associated to X. Sometimes the notation H(pX) is used, when pX is a probability
mass function that takes non-zero values only over a discrete domain. In that case we define H(pX)
to be equal to H(pX). The capital letter H is used when the discrete entropy is computed.

Definition 2.6 (Shannon entropy of a probability density distribution). The Shannon (differential)
entropy of a probability density distribution f is the quantity h(f) defined as:

h(f) = −
∫
f(r) ln f(r)dr (2.7)

The Shannon differential entropy of a continuous variable X is the entropy of its probability density
function, so that we have h(X) = h(fX).

Note that from an abstract mathematical point of view, it is possible to compute the continuous
entropy of a discrete variable, or conversely the discrete entropy of a continuous random variable.
From Eq. (2.3) and the two definitions of Shannon entropy that we have introduced, the following
relation can be derived:

h(X) = H(X) + ln (∆) (2.8)

where ∆ → 0+ is an infinitely small vanishing quantity which describes the discrete sampling of a
continuous function [16].

In this thesis, we are interested in systems that are described by continuous probability distribu-
tions. For that reason, we give a particular interest to Shannon differential entropy. In the following
subsections, we are going to highlight several if its useful properties.

2.2.1 Concavity of entropy

Definition 2.7 (Concave function). A function ϕ : A 7→ R is concave over A ⊆ R if and only if:

ϕ(p1x1 + p2x2) ≥ p1ϕ(x1) + p2ϕ(x2) ∀x1, x2 ∈ A (2.9)

where (p1, p2) is a probability vector. Conversely, ϕ is convex over A if and only if −ϕ is concave over
A.

A sufficient condition to “ϕ is concave over A” is that the second derivative of ϕ is negative over
A. Convex and concave functions have a particular interest when deriving inequalities. Indeed, they
are subject to the Jensen’s inequality [18]. Jensen’s inequality can be stated in various ways, such
as ϕ (E [X]) ≤ E [ϕ (X)]. In a measure-theoretic from we can write ϕ

(∫
gdµ

)
≤
∫
ϕ (g) dµ. When

associating dµ = f(r)dr, we find the version that we will use in this thesis.
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Figure 2.1: Graph of the function ϕ(x) = −x lnx for x ≥ 0. When x → 0+, ϕ(x) → 0+. When
x→∞, ϕ(x)→ −∞. It clearly appears that ϕ is concave on R+.

Definition 2.8 (Jensen’s inequality). Let ϕ : A 7→ R be concave over A ⊆ R. Let f : Rn 7→ R be a
proability density distribution. Let g : Rn 7→ A be any real-valued distribution. Then, the following
inequality holds:

ϕ

(∫
g(r) f(r) dr

)
≥
∫
ϕ
(
g(r)

)
f(r) dr (2.10)

The inequality is reversed when ϕ is convex.

Let us define the function ϕ(x) = −x lnx, which is the function that appears in the integrand of
Eq. (2.7). A simple graph shows us that ϕ is concave over R+, see Fig. 2.1. Let f1(r) and f2(r) be
two probability distributions, and let f(r) = p1f1(r) + p2f2(r), where (p1, p2) is a probability vector.

h(f) =

∫
ϕ (f(r)) dr (2.11)

=

∫
ϕ (p1f1(r) + p2f2(r)) dr (2.12)

≥
∫

(p1ϕ (f1(r)) + p2ϕ (f2(r))) dr (2.13)

= p1

∫
ϕ(f1(r))dr + p2

∫
ϕ(f2(r))dr (2.14)

= p1h(f1) + p2h(f2) (2.15)

This shows that the Shannon entropy of the function f is lower-bounded by a convex combination
of the entropies of f1 and f2 as h(f) ≥ p1h(f1) + p2h(f2). Note that this property is shared by any
functional of the form Φ(f) =

∫
ϕ(f(r)))dr where ϕ is a concave function. The property of concavity

can be extended to mixtures between probability distributions {fi} according to a probability vector
p as:

h

(∑
i

pifi

)
≥
∑
i

pih(fi). (2.16)

2.2.2 Entropy of a convolution

The convolution of probability distributions is an operation that arises naturally as the sum of random
independent variables leads to a convolution of their probability density functions. As an example, if
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we define the continuous random variable Z = X+Y, the probability density function of Z is obtained
as fZ = fX ∗ fY (provided that X and Y are independent).

Let the probability distribution f be defined as the convolution of f1 and f2, so that we have:

f(r) = (f1 ∗ f2) (r) (2.17)

=

∫
f1(r′)f2(r− r′)dr′ (2.18)

=

∫
f1(r− r′)f2(r′)dr′ (2.19)

Using the notation ϕ(x) = −x lnx and remembering that it is concave over R+, we can apply
Jensen’s inequality to lower-bound the entropy of f :

h(f) =

∫
ϕ (f(r)) dr (2.20)

=

∫
ϕ

(∫
f1(r′)f2(r− r′)dr′

)
dr (2.21)

≥
∫∫

ϕ
(
f1(r′)

)
f2(r− r′)dr′dr (2.22)

=

∫
ϕ(f1(s))ds (2.23)

= h(f1) (2.24)

We have used the fact that f̃2(r′) = f2(r − r′) is a probability density distribution. A similar de-
velopment exchanging the place of f1 and f2 gives the inequality h(f) ≥ h(f2). We can thus write
the inequality h(f) ≥ max (h(f1), h(f2)). In a random variables writing we can write h(X + Y) ≥
max (h(X), h(Y)).

2.2.3 Entropy of a rescaling

A rescaling transformation is a common operation for continous variables. It corresponds to changing
the precision with which we measure the outcome of the variable. We understand naturally that
increasing the precision of the measure will increase the entropy associated to the variable. In a
random variable notation, a rescaling transformation corresponds simply to multiplying the random
variable with a constant. For example, we can define the continuous random variable Z from the
continuous random variable X as Z = sX. Their probability density functions will then be related as
fZ = Ls [fX], where Ls is the rescaling operator defined as:

Ls [f ] (r) =
1

|s|n
f
(r

s

)
(2.25)

where the notation r/s means that each component ri is divided by s. Let us now interest ourselves
to the entropy of a rescaled probability distribution:

h (Ls [f ]) = −
∫

1

|s|n
f
(r

s

)
ln

(
1

|s|n
f
(r

s

))
dr (2.26)

= −
∫
f
(
r′
)

ln

(
1

|s|n
f
(
r′
))

dr′ (2.27)

=

∫
f
(
r′
)

ln (|s|n) dr′ −
∫
f
(
r′
)

ln
(
f(r′)

)
dr′ (2.28)

= h(f) + n ln |s| (2.29)

where we have used r′ = r/|s|, so that dr′ = dr/|s|n. We have thus the equality h (Ls [f ]) = h (f) +
n ln |s|. In a random variables writing we can write h(sX) = h(X) + n ln |s|. A major consequence of
that rescaling property is that Shannon differential entropy can become negative.

Note that here we have considered a uniform rescaling of all the components of X. In general,
when the random variable X obeys the linear transformation X 7→ AX, its entropy becomes h(X) 7→
h(X) + ln |det A|. Synthetically we can write h(AX) = h(X) + ln |det A|.
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2.2.4 Additivity of entropy

Entropy is said to be an additive quantity because when two isolated system are brought together,
their total entropy is the sum of the entropy of both subsystems. When it comes to probability
distributions, the action of bringing two independent system together comes down to a tensoring of
their probability distributions. Let f1 and f2 describe two separate systems, then the global system
is described by f which is defined as follows:

f(r1, r2) = f1(r1)f2(r2) (2.30)

The entropy of the probability distribution f is then computed as:

h(f) = −
∫∫

f1(r1)f2(r2) ln (f1(r1)f2(r2)) dr1dr2 (2.31)

= −
∫∫

f1(r1)f2(r2) (ln f1(r1) + ln f2(r2)) dr1dr2 (2.32)

= −
∫∫

f1(r1)f2(r2) ln f(r1)dr1dr2 −
∫∫

f1(r1)f2(r2) ln f2(r2)dr1dr2 (2.33)

= −
∫
f1(r1) ln f1(r1)dr1 −

∫
f2(r2) ln f2(r2)dr2 (2.34)

= h(f1) + h(f2) (2.35)

We have the equality h(f) = h(f1) + h(f2). In a random variables writing we write h(X ⊗ Y) =
h(X) + h(Y).

2.2.5 Subadditivity of entropy

We have seen that when bringing two system together, their entropies sum up. Now, we are going
to look at the case of a system which is split into two subsystem. Let f(r) be a probability density
function. The parameter r is the concatenation of two vectors r1 and r2, so that r = (r1, r2). We
define f1(r1) as the marginal probability density function of f(r1, r2) along r1, and similarly f2(r2) as
the marginal probability density function of f(r1, r2) along r2.

f1(r1) =

∫
f(r1, r2)dr2, f2(r2) =

∫
f(r1, r2)dr1. (2.36)

We are going to compare the entropy of f with the sum of the entropies of f1 and f2. We are
going to show that h(f) ≤ h(f1) + h(f2), or equivalently that h(f1) + h(f2) − h(f) ≥ 0 [16]. Let us
first develop h(f1) + h(f2) as follows:

h(f1) + h(f2) = −
∫
f1(r1) ln f1(r1)dr1 −

∫
f2(r2) ln f2(r2)dr2 (2.37)

= −
∫∫

f(r1, r2) ln f1(r1)dr1dr2 −
∫∫

f(r1, r2) ln f2(r2)dr1dr2 (2.38)

= −
∫∫

f(r1, r2) ln (f1(r1)f2(r2)) dr1dr2 (2.39)

Using this, we can now write the difference h(f1) + h(f2)− h(f) as:

h(f1) + h(f2)− h(f) = −
∫∫

f(r1, r2) ln (f1(r1)f2(r2)) dr +

∫∫
f(r1, r2) ln (f(r1, r2)) dr (2.40)

= −
∫∫

f(r1, r2) ln

(
f1(r1)f2(r2)

f(r1, r2)

)
dr1dr2 (2.41)

≥ − ln

(∫∫
f(r1, r2)

f1(r1)f2(r2)

f(r1, r2)
dr1dr2

)
(2.42)

= − ln

(∫
f1(r1)f2(r2)dr1dr2

)
= 0 (2.43)
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where the inequality comes from Jensen’s inequality on the convex function ϕ(x) = − lnx. We have
thus the inequality h(f) ≤ h(f1) + h(f2). The non-negative quantity f(f1) + h(f2) − h(f) is usually
called the mutual information between f1 and f2. It quantifies the shared information between the
two distributions. Note that when the distribution f is a tensor product of f1 and f2, the mutual
information is zero.

In a random variables writing, we usually write h(X,Y) ≤ h(X) +h(Y), and h(X,Y) denotes the
entropy of the joint distribution between X and Y. Note also that the property of subadditivity can
be used in chain, so that we find the inequality:

h(X1, X2, ..., Xk) ≤
k∑
i=1

h(Xi) (2.44)

2.3 From Gaussian distributions to the entropy power inequality

Gaussian distributions are ubiquitous in physics. They can serve as a first approximation of any
distribution. Also, they are very robust as many transformations preserve the Gaussian character of
a distribution. We devote a section of this chapter to Gaussian distributions because of their special
relation with entropy. As we are going to see, it is possible to exploit some of their properties to derive
stronger entropic inequalities.

2.3.1 First statistical moments

Before presenting Gaussian distribution, let us introduce first the tools required to characterize them.
The general shape of a distribution can be described in a first approximation by its statistical moments.
The first statistical moment corresponds to the mean or expectation value of the distribution. For
multi-dimensional random variables, it is a vector r̄ of components r̄i such that r̄ = (r̄1, r̄2, ..., r̄n). It
is defined as:

Definition 2.9 (Mean value). The mean value r̄ ∈ Rn of a probability distribution f : Rn 7→ R is its
first statistical moment and is computed as:

r̄ =

∫
r f(r) dr. (2.45)

The second statistical moment of a probability distribution is a matrix V ∈ Rn×n The covariance
matrix V is a n× n matrix.

Definition 2.10 (Covariance matrix). The covariance matrix V ∈ Rn×n of a probability distribution
f : Rn 7→ R is its second statistical moment and is computed as:

(V)ij =

∫
(ri − r̄i) (rj − r̄j) f(r) dr. (2.46)

=

∫
ri rj f(r) dr− r̄i r̄j . (2.47)

In general, any real symmetric positive-definite matrix is an acceptable covariance matrix: V ∈
Rn×n, Vᵀ = V and V > 0.

The mean r̄ and covariance matrix V are the two first statistical moment of a continuous distribu-
tion. In practice, they described roughly the shape of the distribution. Any probability distribution
can be associated to a mean value and a covariance matrix. Gaussian distribution are remarkable in
the sense that they are unequivocally defined only by these two first moments.

2.3.2 Gaussian distributions and their properties

Definition 2.11 (Gaussian distribution). The n-dimensional Gaussian distribution of mean value r̄
and covariance matrix V is the probability density distribution Gr̄,V : Rn 7→ R defined as follows:

Gr̄,V (r) =
1√

(2π)n det V
exp

(
−1

2
(r− r̄)ᵀ V−1 (r− r̄)

)
(2.48)
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In practice, we will sometimes simply refer to a Gaussian distribution as a Gaussian.

• Partial tracing a Gaussian gives a Gaussian

First of all, let us mention that partial tracing a Gaussian by integrating it over one of its variable
yields another Gaussian. Indeed, let us say we have a Gaussian defined by its first two statistical
moments r̄,V. If we partial trace that Gaussian over its ith variable, we will obtain another
Gaussian with first statistical moments r̄′,V′, so that r̄′ is r̄ with its ith component removed,
and V′ is V with its ith row and ith column removed.∫

Gr̄,V (r1, ..., ri, ..., rn) dri = Gr̄′,V′ (r1, ..., ri−1, ri+1, ..., rn) (2.49)

• Tensoring two Gaussians gives a Gaussian

Similarly, if we tensor two Gaussian distribution of respective first statistical moments r̄1,V1 and
r̄2,V2, we will obtain a new Gaussian with first statistical moments r̄,V defined as r̄ = (r̄1, r̄2)
and V = V1 ⊕V2.

Gr̄1,V1 (r1, ..., rn1) ·Gr̄2,V2 (rn1+1, ..., rn1+n2) = Gr̄,V (r1, ..., rn1+n2) (2.50)

• Convolving two Gaussians gives a Gaussian

The Gaussian distribution has the particularity that a convolution of Gaussian distributions is
also a Gaussian distribution. In general, convolving two probability distributions of respective
first statistical moments r̄1,V1 and r̄2,V2 results in a new probability distribution of first statis-
tical moments r̄,V such that r̄ = r̄1 + r̄2 and V = V1 +V2. In the case of Gaussian distributions
we have thus the relation:

Gr̄1,V1 ∗Gr̄2,V2 = Gr̄1+r̄2,V1+V2 (2.51)

• Gaussian maximize entropy for a given variance

The Gaussian distribution is the distribution that maximizes the entropy under a constrained
mean and constrained covariance matrix. Among the set of distributions with a given variance,
the Gaussian distribution is the distribution with the highest entropy. Equivalent saying :
among the set of distribution with a given entropy, the Gaussian is the distribution with the
lowest variance. Let fr̄,V be a distribution with mean value r̄ and covariance matrix V, and let
Gr̄,V be a Gaussian with same mean value and covariance matrix. Then the following holds:

h (fr̄,V) ≤ h (Gr̄,V) =
1

2
ln ((2πe)n det V) (2.52)

• Gaussians minimize entropy production

For fixed entropy, Gaussian distributions minimize the entropy of the convolution [55]. Let the
distribution f be the result of a convolution of two distributions, such that f = f1 ∗ f2. Let G1

and G2 be two Gaussian distributions with diagonal covariance matrices such that h(G1) = h(f1)
and h(G2) = h(f2). Let G be the Gaussian distribution resulting of the convolution of G1 and
G2 such that G = G1 ∗ G2. Then, we have the inequality h(G) ≤ h(f). We can also write
that as h(f1 ∗ f2) ≥ h(G1 ∗G2). This can also be formulated in a random variable writing. Let
Z = X + Y and ZG = XG + YG, such that h(X) = h(XG) and h(Y ) = h(YG). Then, we have
the inequality h(Z) ≥ h(ZG).

2.3.3 Entropy power inequality

In the previous section, we have shown that the entropy of a convolution of probability distributions can
be lower-bounded, see development (2.24). We are going to show that it is possible to take advantage
of the properties of Gaussian distribution to derive a stronger inequality. As an illustration, let us
consider a Gaussian distribution centered around the origin, such that r̄ = 0 and V = V I. This
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implies that V−1 = I/V and that det V = V n. We can compute the expression of GV as well as its
entropy:

GV (r) =
1

(
√

2πV )n
exp

(
−1

2

r2

V

)
, h (GV ) =

n

2
ln (2πeV ) . (2.53)

The entropy power N(f) of a distribution is the variance σ2 of the n-dimensional Gaussian with
the same entropy. It is a lowerbound on the variance of the distribution, since the Gaussian minimizes
the variance for a given entropy.

Definition 2.12 (Entropy power). The entropy power of a probability distribution f : Rn 7→ R is the
variance of a Gaussian with same entropy. It is equal to the quantity N(f):

N (f) =
1

2πe
exp

(
2

n
h(f)

)
(2.54)

The entropy power of a probability distribution can be used to formulate a lower-bound on the
determinant of the covariance matrix V of f as follows:

det V (f) ≥ (N (f))n . (2.55)

Let us consider two distributions f, g. To these two distributions we associate two Gaussian
distributions fG, gG with same respective entropy. We have h(f) = h(fG) and h(g) = h(gG). From
these relations it directly follows that N(f) = N(fG) and N(g) = N(gG).

N(f) +N(g) = N(fG) +N(gG) (2.56)

= V (fG) + V (gG) (2.57)

= V (fG ∗ gG) (2.58)

= N(fG ∗ gG) (2.59)

≤ N(f ∗ g) (2.60)

The inequality directly follows from the property that Gaussian distributions minimize entropy pro-
duction under convolution. The entropy power inequality is in fact nothing but a restatement of that
property. The entropy power inequality is a non-trivial lower-bound on the entropy of a convolution.
Let us now rework that inequation. We propose the following development:

N(f ∗ g) ≥ N(f) +N(g) (2.61)

⇔ exp

(
2

n
h(f ∗ g)

)
≥ exp

(
2

n
h(f)

)
+ exp

(
2

n
h(g)

)
(2.62)

⇔ 2

n
h(f ∗ g) ≥ ln

(
exp

(
2

n
h(f)

)
+ exp

(
2

n
h(g)

))
(2.63)

⇔ 2

n
h(f ∗ g) ≥ ln

(
p1

(
1

p1
exp

(
2

n
h(f)

))
+ p2

(
1

p2
exp

(
2

n
h(g)

)))
(2.64)

⇒ 2

n
h(f ∗ g) ≥ p1 ln

(
1

p1
exp

(
2

n
h(f)

))
+ p2 ln

(
1

p2
exp

(
2

n
h(g)

))
(2.65)

⇔ 2

n
h(f ∗ g) ≥ p1

2

n
h(f)− p1 ln p1 + p2

2

n
h(g)− p2 ln p2 (2.66)

⇔ h(f ∗ g) ≥ p1h(f) + p2h(g) +
n

2
(−p1 ln p1 − p2 ln p2) (2.67)

⇔ h(f ∗ g) ≥ p1h(f) + p2h(g) +
n

2
H(p) (2.68)

where the parameters p1, p2 are such that (p1, p2) is a probability vector. It is interesting to see that
the entropy power inequality can be restated directly as a lower-bound on h(f ∗ g) which depends on
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h(f), h(g) and an arbitrarily chosen probability vector. From that observation, we see that the entropy
power inequality is a refinement of the property that entropy increases under convolution. Indeed,
if we choose (p1, p2) to be (1, 0) or (0, 1), we find the inequality h(f ∗ g) ≥ h(f) or h(f ∗ g) ≥ h(g),
respectively.

To conclude this section, let us present the straightforward extension of these relations to several
convolutions:

N

(
k∗
i=1

fi

)
≥

k∑
i=1

N(fi) (2.69)

h

(
k∗
i=1

fi

)
≥

k∑
i=1

pih(fi) +
n

2
H(p) (2.70)

Finally, let us note how the entropy power of a distribution evolves under a rescaling transforma-
tion:

N (Ls [f ]) =
1

2πe
exp

(
2

n
h (Ls [f ])

)
(2.71)

=
1

2πe
exp

(
2

n
(h(f) + n ln |s|)

)
(2.72)

=
1

2πe
exp

(
2

n
h(f)

)
exp (2 ln |s|) (2.73)

= s2N(f) (2.74)

2.4 Other information-theoretical measures

In the previous sections, we have focused our interest on the central measure of information that is
Shannon entropy. Let us now presents some other measures.

2.4.1 p-norms

Let us introduce the p-norms.

Definition 2.13 (p-norm). The p-norm of a distribution f : Rn 7→ R is defined as:

‖f‖p =

(∫
|f(r)|pdr

) 1
p

(2.75)

Similarly, the p-norm of a vector x ∈ RN is defined as:

‖x‖p =

(
N∑
i=1

|xi|p
) 1

p

(2.76)

The summation is carried until infinity if x ∈ RN.

The case p = 0 and p = ∞ require some clarification. In the limit p → 0, the p-norm ‖f‖p tends
towards the size of the domain which has a non-zero value, so that we identify ‖f‖0 = ν ({r : f(r) 6= 0}),
where ν is the Lebesgue measure. In the limit p→∞, the p-norm ‖f‖p tends towards the maximum
absolute value of f , so that we identify ‖f‖∞ = max(|f(r)|).

One of the main interest of p-norms is that they enable to formulate many general inequalities.
Let us present some of them.
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Hölder’s inequality

Hölder’s inequality establish a relation between the p-norms of a product of function and the p-norms
of the respective functions [31]. It reads as follows:

‖fg‖1 ≤ ‖f‖p‖g‖q (2.77)

where p, q ≥ 1 and 1/p+ 1/q = 1. The inequality becomes an equality if and only if |f |p and |g|q are
linearly dependent. Note that in the case p = q = 2, Hölder’s inequality implies the famous Cauchy-
Schwarz inequality. Indeed, in that case we obtain ‖fg‖1 ≤ ‖f‖2‖g‖2, which is a stronger version of
Cauchy-Schwarz inequality because

∫
|f(r)||g(r)|dr ≥

∫
f(r)g(r)dr.

Young’s convolution inequality

Hölder’s inequality can be used to derive an ineqality for the convolution of two functions. This leads
to Young’s convolution inequality [68], which reads as follows:

‖f ∗ g‖r ≤ ‖f‖p‖g‖q (2.78)

where p, q, r ≥ 1 and 1/p+ 1/q = 1/r + 1.

Babenko-Beckner inequality

Babenko-Beckner inequality relates the p-norm of a function to the p-norm its Fourier transform [3, 5].
Let ψ : Rn 7→ C and φ : Rn 7→ C be related by a Fourier transformation, so that φ = F [ψ].

‖φ‖p ≤
(

2π

q

) n
2q
(

2π

p

) n
2q

‖ψ‖q (2.79)

where 1 < p ≤ 2, q ≥ 2 and 1/p+ 1/q = 1. Interestingly, in the case p = q = 2 the inequality becomes
an equality, which is Parseval’s identity ‖ψ‖2 = ‖φ‖2.

2.4.2 Rényi entropy

Let us now introduce a family of entropies that is built upon p-norms.

Definition 2.14 (Rényi entropy). The Rényi entropy of parameter α of a distribution f : Rn 7→ R is
defined as follows:

hα (f) =
α

1− α
ln (‖f‖α) (2.80)

=
1

1− α
ln

(∫
|f(r)|αdr

)
(2.81)

Similarly, the Rényi entropy of parameter α of a vector x ∈ RN is defined as follows:

Hα (x) =
α

1− α
ln (‖x‖α) (2.82)

=
1

1− α
ln

(
N∑
i=1

|xi|p
)

(2.83)

The summation is carried until infinity if x ∈ RN.

First, let us notice that Shannon entropy can be obtain as a limit case of Rényi entropy. In the
limit α→ 1, the definition of the Rényi entropy tends towards an indetermination. However, a simple
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development shows that it tends towards the Shannon entropy:

lim
α→1

hα(f) = lim
α→1

1

1− α
ln

(∫
(f(r))α dr

)
(2.84)

= lim
α→1

1
d

dα(1− α)

d

dα
ln

(∫
(f(r))α dr

)
(2.85)

= lim
α→1

−1
1∫

(f(r))α dr

d

dα

∫
(f(r))α dr (2.86)

= lim
α→1

− 1

(‖f‖α)α

∫
d

dα
(f(r))α dr (2.87)

= − 1

‖f‖1
lim
α→1

∫
(f(r))α ln (f(r)) dr (2.88)

= − 1

‖f‖1

∫
f(r) ln (f(r)) dr (2.89)

= h(f) (2.90)

Let us now observe how the rescaling operator Ls affects Rényi entropies. First, let us compute
its effect on p-norms.

‖Ls [f ] ‖p =

(∫ ∣∣∣∣ 1

|s|n
f
(r

s

)∣∣∣∣pdr

) 1
p

(2.91)

=

(∫
|s|−np

∣∣∣f (r

s

)∣∣∣pdr

) 1
p

(2.92)

=

(∫
|s|n(1−p)∣∣f (r′)∣∣pdr′

) 1
p

(2.93)

= |s|
n(1−p)

p

(∫ ∣∣f (r′)∣∣pdr′
) 1
p

(2.94)

= |s|
n(1−p)

p ‖f‖p (2.95)

From the above expression, we can readily find the effect of Ls on Rényi entropies as:

hα (Ls [f ]) = hα (f) + n ln |s| (2.96)

Interestingly, the rescaling operator has the same effect regardless of the parameter α. It is also similar
to the scaling on Shannon entropy, see (2.29).

2.5 Quantum applications

The different tools we have introduced in this chapter find application in the field of quantum infor-
mation. Indeed, the physicality conditions that apply on a density operator ρ̂ correspond to the fact
that its eigenvalues should correspond to a probability distribution. In the following, let us write as
λ the vector of eigenvalues of ρ̂, so that λ = (λ1, λ2, ...). As we said, λ is a probability vector.

Definition 2.15 (Purity). The purity of a quantum state is a measure of its statistical uncertainty.

µ(ρ̂) =

N∑
i=1

λ2
i (2.97)
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We can also write µ(ρ̂) = Tr
[
ρ̂2
]
. In general, the purity of a state is below 1, which corresponds

to a pure state, as 0 < µ ≤ 1. We have µ = ‖λ‖22.

Definition 2.16 (Von Neumann entropy). The von Neumann entropy of a quantum state described
by a density operator ρ̂ is the Shannon discrete entropy of the probability vector λ made from the
eigenvalues of ρ̂.

S(ρ̂) = H(λ) (2.98)

We can also write S(ρ̂) = −Tr [ρ̂ ln ρ̂]. The von Neumann entropy of a quantum state is always
non-negative, and reaches zero for pure states.

Let us now consider two canonically conjugated observable with continuous spectrum, x̂ and p̂.
A quantum state is associated to two probability distributions ρx(x) and ρp(p). Bialynicki-Birula
and Mycielski derived the following equation in [6]. The result is a consequence of Babenko-Beckner
inequality.

hα (ρx) + hβ (ρp) ≥ lnπ +
1

2

(
lnα

α− 1
+

lnβ

β − 1

)
(2.99)

where α and β are related through 1/α+1/β = 2. In the special of α = β = 1, the inequation becomes
particularly interesting in the sense that the same functional is evaluated on ρx and ρp. In that case,
we find the entropic uncertainty relation:

h(ρx) + h(ρp) ≥ lnπ + 1 (2.100)

It is instructive to note that this relation directly implies Heisenberg uncertainty relation. Indeed, an
equivalent formulation of (2.100) is the relation N(ρp)N(ρp) ≥ 1/4 [29]. Then, using the fact that
V (ρx) ≥ N(ρx) and V (ρp) ≥ V (ρp), we find the relation V (ρx)V (ρp) ≥ 1/4. Defining the standard
deviation of ρx and ρp as respectively σx and σp, we find:

σx · σp ≥
1

2
(2.101)
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Chapter 3

Theory of majorization

In this chapter, we set up the tools of the main mathematical theory that we plan to use in order to
study the disorder of Wigner functions. The theory of majorization is a very powerful formalism that
allows to compare distributions in terms of disorder. This has been studied in detail in [48] which will
be our reference throughout this chapter. A main interest of majorization for our purposes is that
it extends to distributions that do not necessarily correspond to probability distributions. Indeed,
we can use thoery of majorization to compare in terms of disorder distributions taking both positive
and negative values, and which are not normalized to the same value. The case of finite-domain
distributions, discrete and continuous, taking both positive and negative values has been covered in
reference [48], as well as the case of infinite-domain distributions, discrete and continuous, taking
only non-negative values. The case of infinite-domain distributions taking both positive and negative
values, which is precisely the case which we are interested in, has not been addressed yet.

The objective of this chapter is therefore to propose a formulation of majorization theory that is
compatible with Wigner functions, i.e. infinite-domain continuous distributions taking both positive
and negative values. To do this, we will proceed in stages. We will start by looking at distributions
defined on a finite size domain, first in the discrete case (Section 3.1), then in the continuous case
(Section 3.2). Note that throughout this chapter, we will always consider distributions that can take
both positive and negative values. As we announced, these two cases have already been covered in
[48], but we will approach them in order to extend the formalism to distributions defined over an
infinite domain.

Then, in Section 3.3, we will address the case of infinite dimension vectors taking both positive
and negative values. This will allow us to pinpoint discontinuities appearing as a result of their
infinite size domain. However, by defining the appropriate objects, we will manage to extend the
formalism developed in the previous sections to the infinite dimensional case. Finally, in Section 3.3,
we will extend our formulation to the case that interests us here, which is the case of infinite-domain
continuous distributions.

Note that this chapter dealing with a very mathematical subject is approached with the perspective
of a physics thesis. A thorough study of majorization is not our primary motivation in the present
work. The transition from the finite-domain case to the infinite-domain case is supported by arguments
of continuity and consistency between the two cases. We leave to a future work a fully rigorous
mathematical demonstration of the relations we formulate in the infinite-domain case. Let us note
that the relations we propose reduce, as it should, to the known case when we consider distributions
taking non-negative values.

3.1 Discrete majorization on a finite-size domain

In this first section, we limit our study to the case of finite-dimensional vectors which can have positive
and negative components. We don’t consider vectors that are normalized, but we consider vectors
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such that their absolute norm is finite:

x ∈ RN ,
N∑
i=1

|xi| <∞. (3.1)

Note that condition
∑N

i=1 |xi| < ∞ is obviously implied by condition x ∈ RN . We are going to
construct step by step the different tools that we will use in order to set up a discrete majorization
relation.

3.1.1 Level-equivalence

A central key in majorization is the notion of level-equivalence. Indeed, from the point of view of
majorization, two level-equivalent vectors are completely indistinguishable, as it will appear clearly
later. In the present case, it is easy to define what are two level-equivalent finite-dimensional vectors.
We say that x and y are level-equivalent if they have the same set of components:

x ≡ y ⇔ {xi} = {yi} (3.2)

Two level-equivalent vectors have the same components, but possibly in a different order. For that
reason, they are related by some permutation matrix Pi. Remember that a permutation matrix is a
matrix made only of 0 and 1, such that there is exactly one 1 by row and by column. The condition
x ≡ y is equivalent to the statement x = Piy. Applying a permutation matrix on any vector creates
another level-equivalent vector.

Pix = x(i) ≡ x (3.3)

We use the notation x(i) to express that the state is obtained from x through the permutation matrix
Pi. So that in our writing, x(i) is always level-equivalent to x.

Now that we have defined the notion of level-equivalence for finite-dimensional vectors, let us
introduce a tool that is specifically designed to enclose all the information about level-equivalence :
the level-function. The level-function of a distribution is a function which characterizes the values
taken by the distribution, irrespectively of their order. We define two different versions of the level-
function.

Definition 3.1 (Level-functions of a vector). The upper level-function m+
x (t) of a vector x associates

to any real value t the number of components of x that are greater or equal to t.

m+
x (t) = # ({i : xi ≥ t}) . (3.4)

Conversely, the lower level-function m−x (t) of a vector x associates to any real value t the number of
components of x that are lower or equal to t.

m−x (t) = # ({i : xi ≤ t}) . (3.5)

From their definitions, we can express the level-functions as:

m+
x (t) =

N∑
i=1

Θ(xi − t), m−x (t) =

N∑
i=1

Θ(t− xi). (3.6)

where Θ is the Heaviside step function, such that Θ(z) = 1 if z ≥ 0 and is zero otherwise. The
level-function is a precious tool as it enclose all the information about the set of components of a
vector. It memorizes what are the values taken, but doesn’t keep the information about the order of
the values.

As both level-functions contain the information about the number of components with value higher
or lower than t, we understand that the derivative of the level-functions is related to the number of
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components having a value equal to t. We define the upper level-density function µ+
x and lower level-

density function µ−x of a vector as the respective derivative of the upper and lower level-functions:

µ+
x (t) = − d

dt
m+

x (t), µ−x (t) =
d

dt
m−x (t). (3.7)

As it appears, in the case of finite-dimensional vectors that we are considering here, the upper and
lower level-density functions are equal, so that we define the level-density function µx as follows:

µx(t) = µ+
x (t) = µ−x (t) =

N∑
i=1

δ(xi − t). (3.8)

From the construction of the level-functions and level-density function, it appears that two vectors
are level-equivalent if and only if they have the same level-functions (or level-density functions). This
leads us to the following definition of level-equivalence for finite-dimensional vectors.

Definition 3.2 (Level-equivalence for finite-dimensional vectors). Let x,y ∈ RN . We say that x is
level-equivalent to y, written x ≡ y if and only if their upper level-functions are equal.

x ≡ y ⇔ m+
x (t) = m+

y (t) ∀t (3.9)

Obviously, two finite-dimensional vectors which have the same lower level-functions are also level-
equivalent, since the upper and lower level-functions are related to each other in the finite-dimensional
case. Later in this section, we will present other conditions which are equivalent to the condition of
level-equivalence.

3.1.2 Symmetric functions

As we may guess, level-equivalent vectors share many similar properties. We are going to introduce
this with the use of symmetric functions. Let us define the function Φ : RN 7→ R that takes a vector
as argument and that is constructed as follows:

Φ(x) =

N∑
i=1

ϕ(xi) (3.10)

where ϕ : R 7→ R is some function with no particular constraint. From its construction, it appears
that Φ takes the same value for vectors that are related through a permutation, since the summation
is performed indistinguishably over all indices. Using the level-density function, we can rewrite Φ as
follows:

Φ(x) =

∫
ϕ(t)µx(t)dt (3.11)

which appears clearly from Equation (3.8). In the above equation, µx(t)dt can be understood as the
number of components taking the value t, and ϕ(t) is the value taken by ϕ for these components.
We say that Φ is symmetric, because it is invariant under permutation of its argument. A symmetric
function takes the same value for all level-equivalent vectors.

Definition 3.3 (Symmetric function). The function Φ : RN 7→ R is said to be symmetric if and only
if it takes the same value for level-equivalent vectors.

x ≡ y ⇒ Φ(x) = Φ(y) (3.12)

Let us now go a step further and define two families of functions R 7→ R depending on a real
parameter t. We define γ+

t and γ−t as follows:

γ+
t (z) = [z − t]+ , γ−t (z) = [z − t]− . (3.13)
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where we use the notation [z]+ = max(z, 0) and [z]− = min(z, 0). In that notation, [z]+ = z when
z ≥ 0 and is zero otherwise, and [z]− = z when z ≤ 0 and is zero otherwise. From the two functions
γ+
t and γ−t we construct the two symmetric functions Φ+

t and Φ−t as follows:

Φ+
t (x) =

N∑
i=1

γ+
t (xi), Φ−t (x) =

N∑
i=1

γ−t (xi). (3.14)

These two functions are related to each other, as we can see from the following development:

Φ+
t (x) + Φ−t (x) =

N∑
i=1

[xi − t]+ +
N∑
i=1

[xi − t]− (3.15)

=
∑
xi≥t

(xi − t) +
∑
xi≤t

(xi − t) (3.16)

=
N∑
i=1

(xi − t) (3.17)

=
N∑
i=1

xi −Nt (3.18)

These two set of symmetric functions have a particular interest regarding level-functions. Indeed,
a short development shows us that we can relate them to the level-functions:

Φ+
t (x) =

N∑
i=1

γ+
t (xi) (3.19)

=

∫
γ+
t (u)µx(u)du (3.20)

=

∞∫
t

(u− t)µx(u)du (3.21)

= −
[
(u− t)m+

x (u)
]∞
t

+

∞∫
t

m+
x (u)du (3.22)

=

∞∫
t

m+
x (u)du (3.23)

where we have use integration by parts and the fact that m+
x (t) is zero when t > max(x). A similar

development yields:

Φ−t (x) =
N∑
i=1

γ−t (xi) (3.24)

=

∫
γ−t (u)µx(u)du (3.25)

=

t∫
−∞

(u− t)µx(u)du (3.26)

=
[
(u− t)m−x (u)

]t
−∞
−

t∫
−∞

m−x (u)du (3.27)

= −
t∫

−∞

m−x (u)du (3.28)
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As a consequence, this implies that if Φ+
t (x) = Φ+

t (y) for all t, then their level-functions are equal for
all t. The same observation applies to Φ−t . The condition of level-equivalence that we have introduced
at the beginning of this subsection can now be reformulated in other equivalent conditions. For any
two vectors x,y ∈ RN , the following statements are equivalent:

x ≡ y ⇔ m+
x (t) = m+

y (t) ∀t (3.29)

⇔ m−x (t) = m−y (t) ∀t (3.30)

⇔ µx(t) = µy(t) ∀t (3.31)

⇔
N∑
i=1

ϕ(xi) =
N∑
i=1

ϕ(yi) ∀ϕ (3.32)

⇔ Φ(x) = Φ(y) ∀Φ symmetric (3.33)

It is important to note that the implication x ≡ y ⇒ Φ(x) = Φ(y) ∀Φ symmetric is a direct conse-
quence of the definition of a symmetric function. The converse implication, namely Φ(x) = Φ(y) ∀Φ
symmetric ⇒ x ≡ y, follows from the existence of the symmetric functions Φ+

t and Φ−t , and from
their relation to the level-function.

3.1.3 Rearrangements and cumulative sums

Now that we have properly defined what are level-equivalent vectors, let us introduce rearrangements.
Rearrangements are very diverse. Essentially, the rearrangement of a vector is a vector with same
components, but ordered in a special order. By construction, a rearranged vector and the original
vector are level-equivalent, when dealing with finite-dimensional vectors.

In majorization, two rearrangements plays a prominent role : the decreasing rearrangement and
increasing rearrangement. As their names indicate, they correspond respectively to a vector whose
components are sorted by decreasing order, and increasing order. Let us consider a vector x ∈ RN .
Its decreasing rearrangement is written as x↓ and its increasing rearrangement is written as x↑. These
are defined as follows: (

x↓
)
i

= x↓i ,
(
x↑
)
i

= x↑i (3.34)

where x↓i (resp. x↑i ) is the ith highest (resp. lowest) component of x. Notice that the ith highest

component is also the (N + 1− i)th lowest component, so that we have x↓i = x↑N+1−i. By construction,

any finite-dimensional vector x is level-equivalent to its decreasing rearrangement x↓ and its increasing
rearrangement x↑, so that we have x↓ ≡ x↑ ≡ x.

Let us now highlight how the decreasing and increasing rearrangements are related to the level-
function. To that purpose, we make the assumption in what follows that x is a non-degenerate vector,
which means that there are no components that take the same value. It is then obvious that the
number of components having a value greater or equal to the kth highest component is precisely k.
Conversely, the number of components having a value lower or equal to the kth lowest component is
k. We can then write:

m+
x (x↓k) = #

(
{i : xi ≥ x↓k}

)
= k, m−x (x↑k) = #

(
{i : xi ≤ x↑k}

)
= k. (3.35)

Taking advantage of that observation, we introduce the inverse function of m+
x and m−x as respec-

tively M+
x and M−x , so that we have the following relations:(

m+
x

)−1
(k) = M+

x (k) = x↓k,
(
m−x
)−1

(k) = M−x (k) = x↑k. (3.36)

Note that more generally, the functions M+
x and M−x can be defined as follows:

M+
x (u) = max

(
{t : m+

x (t) ≥ u}
)
, M−x (u) = min

(
{t : m−x (t) ≥ u}

)
. (3.37)
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Let us now introduce the cumulative sums of a vector. As we are going to see, these function play
a central role when establishing a majorization relation.

Definition 3.4 (Cumulative sums). The cumulative sum Sk : RN 7→ R of a vector x ∈ RN is the sum
of the first k components of x:

Sk(x) =

k∑
i=1

xi. (3.38)

The decreasing cumulative sum S↓k : RN 7→ R of a vector x ∈ RN is the sum of the k highest components
of x:

S↓k(x) =

k∑
i=1

x↓i . (3.39)

The increasing cumulative sum S↑k : RN 7→ R of a vector x ∈ RN is the sum of the k lowest components
of x:

S↑k(x) =

k∑
i=1

x↑i . (3.40)

As it appears, the cumulative sum Sk is not a symmetric function, since the components that
are included vary under a permutation. On the contrary, the decreasing cumulative sum S↓k and

increasing cumulative sum S↑k are symmetric by construction. As it appears, S↓k(x) = Sk
(
x↓
)

and

S↑k(x) = Sk
(
x↑
)
. Summing the k highest components of x with its N −k lowest components comes to

summing all the components of x, so that we have the following relation: S↓k(x) + S↑N−k(x) = SN (x).

Since the decreasing cumulative sum S↓k is summing the k highest components of x it will always be

greater or equal to the sum of any k components of x. Conversely, the increasing cumulative sum S↑k
is always lower or equal to the sum of any k components of x. We have the relation S↑k(x) ≤ Sk(x) ≤
S↓k(x). Also, note that SN (x) = S↓N (x) = S↑N (x) =

∑N
i=1 xi.

3.1.4 Relations of majorization

A relation of majorization between two vectors is a strong statement that one of the two vectors is
more disordered than the other according to a large variety of disorder measures. Before introducing
the standard relation of majorization, we are going to introduce weak-majorization, which compares
vectors of possibly different norms. Then, we will come to the standard relation of majorization.
The reader should know that different relations of majorization we present here have been extensively
studied in the case of finite-dimensional vectors, possibly with negative values, in [48]. We choose
in this subsection to present a brief and straight to the point overview of the different definitions of
majorization.

Weak-majorization from below (sub-majorization)

A relation of weak-majorization can be established between two vectors of different norms. The
relation “x sub-majorizes y” can be understood as the fact that x is more ordered than y, and that
x has a larger norm than y. It is defined as follows:

Definition 3.5 (Sub-majorization for finite-dimensional vectors). The vector x ∈ RN weak-majorizes
from below (sub-majorizes) the vector y ∈ RN , written x �w y, is equivalent to any of these three

34



conditions

•
N∑
i=1

ϕ(xi) ≥
N∑
i=1

ϕ(yi) ∀ϕ convex increasing (3.41)

• Φ+
t (x) ≥ Φ+

t (y) ∀t ∈ R (3.42)

• S↓k(x) ≥ S↓k(y) ∀k ∈ {1, ..., N} (3.43)

And these three conditions are equivalent to each other.

Remember that Φ+
t (x) + Φ−t (x) = SN (x) − Nt and S↓k(x) + S↑N−k(x) = SN (x). Using this,

Conditions (3.42) and (3.43) can be written equivalently as:

Φ−t (x)− SN (x) ≤ Φ−t (y)− SN (y) ∀t ∈ R (3.44)

S↑k(x)− SN (x) ≤ S↑k(y)− SN (y) ∀k ∈ {1, ..., N} (3.45)

It is also possible to formulate an hybrid equivalent condition to (3.42) as:Φ+
t (x) ≥ Φ+

t (y) ∀t ≥ t0

Φ−t (x)− SN (x) ≤ Φ−t (y)− SN (y) ∀t ≤ t0
(3.46)

where t0 ∈ R. And similarly, we can formulate an hybrid equivalent condition to (3.43) as:S
↓
k(x) ≥ S↓k(y) ∀k ∈ {1, ..., k1}

S↑k(x)− SN (x) ≤ S↑k(y)− SN (y) ∀k ∈ {1, ..., k2}
(3.47)

such that k1, k2 ∈ N0 and k1 + k2 = N .

Weak-majorization from above (super-majorization)

The relation “x super-majorizes y” can be understood as the fact that x is more ordered than y, and
that x has a lower norm than y. It is defined as follows:

Definition 3.6 (Super-majorization for finite-dimensional vectors). The vector x ∈ RN weak-majorizes
from above (super-majorizes) the vector y ∈ RN , written x �w y, is equivalent to any of these three
conditions

•
N∑
i=1

ϕ(xi) ≥
N∑
i=1

ϕ(yi) ∀ϕ convex decreasing (3.48)

• Φ−t (x) ≤ Φ−t (y) ∀t ∈ R (3.49)

• S↑k(x) ≤ S↑k(y) ∀k ∈ {1, ..., N} (3.50)

And these three conditions are equivalent to each other.
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Similarly to the case of sub-majorization, we can rewrite conditions (3.49) and (3.50) as:

Φ+
t (x)− SN (x) ≥ Φ+

t (y)− SN (y) ∀t ∈ R (3.51)

S↓k(x)− SN (x) ≥ S↓k(y)− SN (y) ∀k ∈ {1, ..., N} (3.52)

We can also formlulate an hybrid equivalent condition to (3.49) as:Φ+
t (x)− SN (x) ≥ Φ+

t (y)− SN (y) ∀t ≥ t0

Φ−t (x) ≤ Φ−t (y) ∀t ≤ t0
(3.53)

where t0 ∈ R. We also give an hybrid equivalent condition to (3.50) as:S
↓
k(x)− SN (x) ≥ S↓k(y)− SN (y) ∀k ∈ {1, ..., k1}

S↑k(x) ≤ S↑k(y) ∀k ∈ {1, ..., k2}
(3.54)

such that k1, k2 ∈ N0 and k1 + k2 = N .

Majorization

We now come to standard majorization relations. The relation “x majorizes y” can be understood as
the fact that x is more ordered than y, and their norms are equal. It is defined as follows:

Definition 3.7 (Majorization for finite-dimensional vectors). The vector x ∈ RN majorizes the vector
y ∈ RN , written x � y, is equivalent to any of these conditions:

•
N∑
i=1

ϕ(xi) ≥
N∑
i=1

ϕ(yi) ∀ϕ convex (3.55)

• x �w y and
N∑
i=1

xi =
N∑
i=1

yi (3.56)

• x �w y and
N∑
i=1

xi =
N∑
i=1

yi (3.57)

And these three conditions are equivalent to each other.

As a consequence, a relation of majorization implies all the properties implied by a relation of
sub-majorization and a relation of super-majorization. Note also, that if x �w y and x �w y, then x
and y have the same normalization so that x � y. Let us conclude this section by formulating two
equivalent conditions for a majorization relation between two vectors. In the same manner as we did
for weak-majorization, we derive the following equivalent condition for majorization:

x � y ⇔


SN (x) = SN (y)

Φ+
t (x) ≥ Φ+

t (y) ∀t ≥ t0

Φ−t (x) ≤ Φ−t (y) ∀t ≤ t0

(3.58)
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where t0 ∈ R. Then, we proceed similarly and fives another equivalent condition as follows:

x � y ⇔


SN (x) = SN (y)

S↓k(x) ≥ S↓k(y) ∀k ∈ {1, ..., k1}

S↑k(x) ≤ S↑k(y) ∀k ∈ {1, ..., k2}

(3.59)

where k1, k2 ∈ N0 and k1 + k2 = N .
On the contrary to weak-majorization, a relation of majorization imposes that the two vectors are

normalized to the same value. Note that when x and y are normalized to the same value, the three
majorization are equivalent.

Now that we have properly defined a majorization relation, we can introduce a type of function
which play a particular role with respect to majorization. We define Schur-convex and Schur-concave
functions as follows:

Definition 3.8 (Schur-convex/concave function). The function Φ : Rn 7→ R is said to be Schur-convex
if and only if x � y implies Φ(x) ≥ Φ(y):

x � y ⇒ Φ(x) ≥ Φ(y) (3.60)

Conversely, Φ is said to be Schur-concave if −Φ is Schur-convex.

As it appears, Schur-convex and Scur-concave functions are intrinsically linked to majorization.
Let us note that the functions S↓k and Φ+

t are Schur-convex. Conversely, the functions S↑k and Φ−t are
Schur-concave. As a consequence, we can write the following equivalence:

x � y ⇔ Φ(x) ≥ Φ(y) ∀Φ Schur-convex (3.61)

Finally, let us conclude this section with some general considerations regarding majorization. Ma-
jorization is said to be a pre-order, because it lacks several properties to make it an order. First, a
relation of majorization is not anti-symmetric. Indeed, when both x � y and x ≺ y hold, this does
not imply that x = y, but simply implies that x ≡ y. Level-equivalent vectors do not need to be
equal. Secondly, it can happen that neither x � y or x ≺ y hold. In that case, x and y are said
to be incomparable, and we will write it as x 6 6≡y. The considerations we have just made are not
limited to the present section, and concern in general discrete and continuous majorization, for finite
and infinite-size domain.

3.2 Continuous majorization on a finite-size domain

We now turn our attention to continuous distributions. In a first time, we will consider distribution
that are defined over a finite domain. It should be noted that the definitions of majorization for
continuous distribution defined over a finite domain have been studied in detail in [48]. Mostly, each
property is the continuous analog of discrete majorization for finite-dimensional vectors. We consider
a domain A that is a subset of Rn with finite size.

f : A 7→ R, A ⊂ Rn, ν (A) <∞ (3.62)

where ν is the Lebesgue measure which measures the size of a set. For example, A could be the
interval [0, 1]. We consider continuous distributions that can take positive and negative values, and
which are not normalized to a precise value. We only impose that the integral of the distribution
converges absolutely over A, and that the distribution does not have infinite discontinuities:∫

A
|f(r)|dr <∞, |f(r)| <∞ ∀r (3.63)

Note that sometimes we will omit to write A under the integral. When no boundaries are specified
for the integration variable r, it means that the integral is carried over the whole domain A.
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3.2.1 Level-equivalence

The idea of level-equivalent functions follows the idea of level-equivalent vectors. In simple terms, we
say that two distributions are level-equivalent if they are related by a bijection over their domain. The
notion of level-equivalence finds an appropriate formulation through level-functions. Similarly to the
discrete case, we define two versions.

Definition 3.9 (Level-functions of a distribution). The upper level-function m+
f (t) of a distribution

f associate to any real value t the size of the domain of f that has an image greater or equal to t:

m+
f (t) = ν ({r : f(r) ≥ t}) (3.64)

Conversely, the lower level-function m−f (t) of a distribution f assocaite to any real value t the size of
the domain of f that has an image lower or equal to t:

m−f (t) = ν ({r : f(r) ≤ t}) (3.65)

From their definition, we understand that these level-functions are formally equal to the following
expression:

m+
f (t) =

∫
Θ (f(r)− t) dr, m−f (t) =

∫
Θ (t− f(r)) dr. (3.66)

We now introduce the upper and lower density-level function as the respective derivative of the
upper and lower level-functions.

µ+
f (t) = − d

dt
m+
f (t), µ−f (t) =

d

dt
m−f (t) (3.67)

In the present case of distribution defined over a finite support, these two level-density functions
are equal, and we will simply call them as µf (t). Indeed, it can be seen that

µf (t) = µ+
f (t) = µ−f (t) =

∫
δ (f(r)− t) dr (3.68)

We can now define the notion of level-equivalence for functions defined over a finite-size domain.

Definition 3.10 (Level-equivalence for finite-domain functions). Let f, g ∈ RA, where A is such that
ν(A) <∞. We say that f is level-equivalent to g, written f ≡ g if and only if their level-functions are
equal.

f ≡ g ⇔ m+
f (t) = m+

g (t) ∀t (3.69)

3.2.2 Symmetric functionals

A symmetric functional follows the same idea as what we explained for symmetric function in the case
of vectors. For example, let us build functional Φ : RA 7→ R in that particular manner:

Φ(f) =

∫
ϕ (f(r)) dr (3.70)

=

∫
ϕ(t)µf (t)dt (3.71)

As it appears, that functional is invariant for level-equivalent distributions since it only depends on
the level-density function of f . More generally, we define a symmetric functional as follows:

Definition 3.11 (Symmetric functional). The functional Φ : RA 7→ R is said to be symmetric if and
only if it takes the same value for level-equivalent distributions.

f ≡ g ⇒ Φ(f) = Φ(g) (3.72)

.
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Similarly as we did in the disrete case, we define Φ+
t and Φ−t :

Φ+
t (f) =

∫
A
γ+
t (f(r)) dr, Φ−t (f) =

∫
A
γ−t (f(r)) dr (3.73)

Notice that we use the same notation as in Equation 3.14, but no confusion is possible since they don’t
take the same type of arguments (vectors and functions). A similar derivation as (3.23) and (3.28)
yields:

Φ+
t (f) =

∞∫
t

m+
f (u)du, Φ−t (f) =

t∫
−∞

m−f (u)du (3.74)

Note that similarly to the discrete case, Φ+
t and Φ−t are related as:

Φ+
t (f) + Φ−t (f) =

∫
A
f(r)dr− ν (A) t (3.75)

Let f : A 7→ R and g : A 7→ R be two distributions defined over a finite domain A. Then, the
statement f is level-equivalent to g, written f ≡ g, is equivalent to any of these properties:

f ≡ g ⇔ m+
f (t) = m+

g (t) ∀t ∈ R (3.76)

⇔ m−f (t) = m−g (t) ∀t ∈ R (3.77)

⇔ µf (t) = µg(t) ∀t ∈ R (3.78)

⇔
∫
ϕ(f(r))dr =

∫
ϕ(g(r))dr ∀ϕ (3.79)

⇔ Φ(f) = Φ(g) ∀Φ symmetric (3.80)

3.2.3 Rearrangements and cumulative integrals

The decreasing rearrangement of a continuous function is easy to understand. It is more difficult
to describe in mathematical terms, but informally one can easily picture a function sorted from the
maximum to the minimum. To define it properly, we need to introduce a notion of distance, which
will be embodied by the norm of a vector. We will consider that a point is further than another one
if its distance from the origin is greater. Then, we define VA(s) as the volume of points of A that are
at a distance lower or equal to s from the origin.

VA(s) = ν ({r ∈ A : ‖r‖ ≤ s}) (3.81)

VA(s) is the volume of points in A that have a norm lower or equal to s.
Also, as previously, we define the inverse function of the level-function as:(

m+
f

)−1
= M+

f ,
(
m−f

)−1
= M−f , (3.82)

which can also be computed as

M+
f (u) = max

(
{t : m+

f (t) ≥ u}
)
, M−f (u) = min

(
{t : m−f (t) ≥ u}

)
. (3.83)

The decreasing rearrangement of a function f is obtained when sorting f by decreasing order,
so that highest values are the closest to the origin, and lowest values the furthest. Conversely, the
decreasing rearrangement of a function f is obtained when sorting f by increasing order, so that the
lowest values are the closest to the origin, and highest values the furthest. We define them as follows:
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Definition 3.12 (Rearrangements of a function). Let f be a continuous function defined over the
domain A. The decreasing rearrangement of f , written f↓, is a radial function which is monotonically
decreasing from the origin, which has the same upper level-function as the original function. It is
defined as:

f↓(r) = M+
f (VA(‖r‖)) , (3.84)

The increasing rearrangement of f , written f↑, is a radial function which is monotonically increasing
from the origin, which has the same lower level-function as the original function. It is defined as:

f↑(r) = M−f (VA(‖r‖)) , (3.85)

It sould be noted that f↓ and f↑ are defined on the same domain as f , namely A. We say that
a function is radial when the value it takes at some value r only depends on the norm ‖r‖. We say
that a function is radial decreasing if it is radial and decreases when moving away from the origin.
Conversely we say that a function is radial increasing if it is radial and increases when moving away
from the origin.

As it appears, for functions defined over a finite-size domain, the decreasing and increasing rear-
rangements are level-equivalent to the original distribution, and we write f ≡ f↓ ≡ f↑.

We define the cumulative integral Ss of a function f as the integration of f over a subset of
A determined continuously by the real parameter s: The cumulative integral plays the role of the
cumulative sum in a continuous setting. In a similar fashion, we define the decreasing cumulative
integral and increasing integral as the cumulative integral of respectively the increasing and decreasing
rearrangement of f .

Definition 3.13 (Cumulative integrals of a function). Let f : A 7→ R be a distribution. The cumulative
integral Ss : RA 7→ R of f is the integral of f over a subset of A centered around the origin with measure
s:

Ss(f) =

∫
r∈A

VA(‖r‖)≤s

f(r)dr, (3.86)

The decreasing cumulative integral S↓s : RA 7→ R of f is the cumulative integral of its decreasing
rearrangement f↓.

S↓s (f) =

∫
r∈A

VA(‖r‖)≤s

f↓(r)dr (3.87)

The increasing cumulative integral S↑s : RA 7→ R of f is the cumulative integral of its increasing
rearrangement f↑.

S↑s (f) =

∫
r∈A

VA(‖r‖)≤s

f↑(r)dr (3.88)

Obviously, we have that S↓s (f) = Ss(f
↓) and that S↑s (f) = Ss(f

↑). The increasing and decreasing

cumulative integrals are symmetric functionals. Note that we have the framing S↑s (f) ≤ Ss(f) ≤ S↓s (f).
Similarly to the discrete case, we can establish a relation between the decreasing and increasing
cumulative integrals, which reads as follows:

S↓s (f) + S↑ν(A)−s(f) =

∫
A
f(r)dr. (3.89)

When the parameter of the cumulative integral is equal to ν(A), the integration is carried over the

whole domain A, so that we have the equality Sν(A) = S↓ν(A) = S↑ν(A) =
∫
A f(r)dr.

3.2.4 Relations of majorization

With the formalism that we have introduced, the definitions of continuous majorization follow exactly
the same pattern as for discrete majorization.
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Weak-majorization from below (sub-majorization)

A relation of weak-majorization can be established between two functions of different normalization.
The relation “f sub-majorizes g” can be understood as the fact that f is more ordered than g, and
that f has a larger normalization than g. It is defined as follows:

Definition 3.14 (Sub-majorization for finite-domain distributions). The distribution f : A 7→ R
weak-majorizes from below (sub-majorizes) the distribution g : A 7→ R, written f �w g, is equivalent
to any of these three conditions

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(g(r))dr ∀ϕ convex increasing (3.90)

• Φ+
t (f) ≥ Φ+

t (g) ∀t ∈ R (3.91)

• S↓s (f) ≥ S↓s (g) ∀s : 0 ≤ s ≤ ν(A) (3.92)

And these three conditions are equivalent to each other. Remember that A is finite, so that ν(A) <∞.

Remember that Φ+
t (f) + Φ−t (f) = Sν(A)(f) + ν(A)t and that S↓s (f) + S↑ν(A)−s(f) = Sν(A)(f). It is

thus possible to formulate Conditions (3.91) and (3.91) as follows:

Φ−t (f)− Sν(A)(f) ≤ Φ−t (g)− Sν(A)(g) ∀t ∈ R (3.93)

S↑s (f)− Sν(A)(f) ≤ S↑s (g)− Sν(A)(g) ∀s : 0 ≤ s ≤ ν(A) (3.94)

Similarly to what we did for the discrete case, we present a hybrid equivalent condition to (3.91):Φ+
t (f) ≥ Φ+

t (g) ∀t ≥ t0

Φ−t (f)− Sν(A)(f) ≥ Φ−t (g)− Sν(A)(g) ∀t ≤ t0
(3.95)

where t0 ∈ R. We also give a hybrid equivalent condition to (3.91):S
↓
s (f) ≥ S↓s (g) ∀s : 0 ≤ s ≤ s1

S↑s (f)− Sν(A)(f) ≤ S↑s (g)− Sν(A)(g) ∀s : 0 ≤ s ≤ s2

(3.96)

such that s1, s2 ≥ 0 and s1 + s2 = ν(A).

Weak-majorization from above (super-majorization)

The relation “f super-majorizes g” can be understood as the fact that f is more ordered than g, and
that f has a lower normalization than g. It is defined as follows:

Definition 3.15 (Super-majorization for finite-domain distributions). The distribution f : A 7→ R
weak-majorizes from above (super-majorizes) the distribution g : A 7→ R, written f �w g, is equivalent
to any of these three conditions:

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(g(r))dr ∀ϕ convex decreasing (3.97)

• Φ−t (f) ≤ Φ−t (g) ∀t ∈ R (3.98)

• S↑s (f) ≤ S↑s (g) ∀s : 0 ≤ s ≤ ν(A) (3.99)

And these three conditions are equivalent to each other. Remember that A is finite, so that ν(A) <∞.
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Conditions (3.98) and (3.99) can be equivalently formulated as:

Φ+
t (f)− Sν(A)(f) ≥ Φ+

t (g)− Sν(A)(g) ∀t (3.100)

S↓s (f)− Sν(A)(f) ≥ S↓s (g)− Sν(A)(g) ∀s : 0 ≤ s ≤ ν(A) (3.101)

And similarly, we can obtain a hybrid condition equivalent to (3.98) as follows:Φ+
t (f)− Sν(A)(f) ≥ Φ+

t (g)− Sν(A)(g) ∀t ≥ t0

Φ−t (f) ≥ Φ−t (g) ∀t ≤ t0
(3.102)

where t0 ∈ R. And we find a hybrid equivalent condition to (3.99) as:S
↓
s (f) ≥ S↓s (g) ∀s : 0 ≤ s ≤ s1

S↑s (f)− Sν(A)(f) ≤ S↑s (g)− Sν(A)(g) ∀s : 0 ≤ s ≤ s2

(3.103)

where s1, s2 ≥ 0 and s1 + s2 = ν (A).

Majorization

We now come to standard majorization relations. The relation “f majorizes g” can be understood as
the fact that f is more ordered than g, and their norms are equal. It is defined as follows:

Definition 3.16 (Majorization for finite-domain distribution). The distribution f : A 7→ R majorizes
the distribution g : A 7→ R, written f � g, is equivalent to any of these conditions:

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(g(r))dr ∀ϕ convex (3.104)

• f �w g and

∫
A
f(r)dr =

∫
A
g(r)dr (3.105)

• f �w g and

∫
A
f(r)dr =

∫
A
g(r)dr (3.106)

And these three conditions are equivalent to each other. Remember that A is finite, so that ν(A) <∞.

As a consequence, a relation of majorization implies all the properties implied by a relation of
sub-majorization and a relation of super-majorization. Note also, that if f �w g and f �w g, then f
and g have the same normalization so that f � g.

As we have done for weak-majorization, it is possible to formulate hybrid conditions that use both
families of functionals Φ+

t and Φ−t :

f � g ⇔


Sν(A)(f) = Sν(A)(g)

Φ+
t (f) ≥ Φ+

t (g) ∀t ≥ t0

Φ−t (f) ≤ Φ−t (g) ∀t ≤ t0

(3.107)

where t0 ∈ R. It is also possible to formulate hybrid conditions that use both the decreasing cumulative
integral S↓s and S↑s :

f � g ⇔


Sν(A)(f) = Sν(A)(g)

S↓s (f) ≥ S↓s (g) ∀s : 0 ≤ s ≤ s1

S↑s (f) ≤ S↑s (g) ∀s : 0 ≤ s ≤ s2

(3.108)
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such that s1, s2 ≥ 0 and s1 + s2 = ν(A).
Similarly to the discrete case, we define Schur-convex and Schur-concave functionals as follows.

Definition 3.17 (Schur-convex/concave functional). The functional Φ : RA 7→ R is said to be Schur-
convex if and only if f � g implies Φ(f) ≥ Φ(g):

f � g ⇒ Φ(f) ≥ Φ(g) (3.109)

Conversely, Φ is said to be Schur-concave if −Φ is Schur-convex.

The functionals S↓s and Φ+
t are Schur-convex, while the functionals S↑s and Φ−t are Schur-concave.

As a consequence we have the following equivalence:

f � g ⇔ Φ(f) ≥ Φ(g) ∀Φ Schur-convex. (3.110)

Finally, let us recall that the considerations we laid at the end of the previous section still hold in
the present case. Continuous majorization is a pre-order. As a consequence, if both f � g and f ≺ g
hold, we have that f ≡ g (but not necessarily that f = g). When neither f � g or f ≺ g hold, we say
that f and g are incomparable, and we write it as f 6 6≡g.

3.3 Discrete majorization on an infinite-size domain

We are now considering discrete majorization for vector defined over an infinite support. In general,
we consider in the present section vectors of the form:

x ∈ RN,

∞∑
i=1

|xi| <∞. (3.111)

We consider vectors that can take negative values and that are not necessarily normalized to the same
value. However, we consider vectors whose absolute norm is finite. Because of the sum of the absolute
values of the components is finite, we need for convergence that:

lim
n→∞

xn = 0. (3.112)

3.3.1 Level-equivalence

Another consequence of this is that the vectors of our concerns have an infinite number of components
with value arbitrarily close to zero. This means that for any t < 0 there is an infinite number
of components with value greater than t, and that for any t > 0 there is an infinite number of
components with value smaller than t. This can be translated in terms of level-function. We define
the level-functions of an infinite-dimensional vector in the same manner as we did for finite-dimensional
vector, so that we also refer to Definition 3.1. As a concequence of the infinite number of components
with value arbitrarily close to zero, we observe the following:

m+
x (t) =∞ ∀t < 0, m−x (t) =∞ ∀t > 0. (3.113)

We see that the upper level-function m+
x (t) is then only properly defined for t > 0 and the lower

level-function m−x (t) for t < 0. This means that the upper level-function only contains the information
about the positive parts of x, and that the lower level-function only contains the information about
its negative parts. A consequence of that observation is that the upper level-function and the lower
level-function are not related to each other anymore. The infinite discontinuity in t = 0 makes them
decorrelated from each other. m+

x contains all the information about the positive components of x,
whereas m−x contains all the information about the negative components of x.

When it comes to the upper and lower level-density functions, µ+
x (t) is only defined for t > 0 and

µ−x (t) is only defined for t < 0. We define the level-density function µx of an infinite-dimensional
vector x ∈ RN as follows:

µx(t) =

µ
+
x (t) ∀t > 0

µ−x (t) ∀t < 0

(3.114)
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The level-density function encloses all the information about the values taken by the vector x. One
can see that µx =

∑
δ (xi − t). Note that µx(t) has an infinite singularity in t = 0, as a consequence

of what we have explained.
Checking whether two infinite-dimensional vectors are level-equivalent has te be done by comparing

both the upper level-function and lower level-function. It is not sufficient to compare only one of them,
as they separately incorporate the information about the positive or negative parts.

Definition 3.18 (Level-equivalence for infinite-dimensional vectors). Let x,y ∈ RN. We say that x is
level-equivalent to y, written x ≡ y if and only if their upper level-functions are equal and their lower
level-functions are equal.

x ≡ y ⇔


m+

x (t) = m+
y (t) ∀t > 0

m−x (t) = m−y (t) ∀t < 0

(3.115)

An interesting observation should be made here. Two vectors can be level-equivalent even if they
do not exactly have the same components. To understand this, let us consider the following example:

x =
(
2−1, 2−2, ..., 2−n, ...

)
y =

(
0, 2−1, 2−2, ..., 2−n, ...

)
(3.116)

One easily understand that x ≡ y, even if x has no component with zero value, while y has one. This
is possible because of the fact that x has a infinite number of components arbitrarily close to zero. For
that reason, x has virtually an infinite number of zero-valued components. Any infinite-dimensional
vector satisfying the condition of finite absolute norm can be considered to have an infinite batch of
components with value zero.

3.3.2 Symmetric functions

In the case of infinite-dimensional vectors, symmetric functions are defined similarly to Definition 3.3.
A function Φ is symmetric if and only if Φ(x) = Φ(y) as soon as x ≡ y. Let us now consider the
following example of symmetric function:

Φ(x) =
∞∑
i=1

ϕ(xi) =

∫
ϕ(t)µx(t)dt. (3.117)

Note that because of the infinite discontinuity of µx(t) in t = 0, the function Φ(x) does not always
converge towards a finite value. That observation has direct consequences on the functions Φ+

t and
Φ−t that we have previously defined. Indeed, it follows that they converge only over a subset of values
of t:

Φ+
t (x) =∞ ∀t < 0, Φ−t (x) =∞ ∀t > 0. (3.118)

Note that the upper and lower level-function can be retrieved from Φ+
t and Φ−t using relations

(3.23) and (3.23). For two infinite-dimensional vectors x,y ∈ RN, we can write the following equivalent
statements to a relation of level-equivalence:

x ≡ y ⇔


m+

x (t) = m+
y (t) ∀t > 0

m−x (t) = m−y (t) ∀t < 0

(3.119)

⇔ µx(t) = µy(t) ∀t ∈ R (3.120)

⇔
∞∑
i=1

ϕ(xi) =

∞∑
i=1

ϕ(yi) ∀ϕ (3.121)

⇔ Φ(x) = Φ(y) ∀Φ symmetric (3.122)
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3.3.3 Rearrangements and cumulative sums

The rearrangement of an infinite-dimensional vector presents subtleties that we do not face in the case
of a finite-dimensional vector. We say that the vector y is a rearrangement of the vector x if each
components of y comes from a component of x, and that each component of x is used at most one
time. Let y be a rearrangement of x. We define the function fy→x as the function which gets as input
an index of y, and gives as output the index of x from which the component is coming.

fy→x : N 7→ N : iy 7→ ix (3.123)

That function is such that xfy→x(i) = yi. The function fy→x is invertible and its inverse is f−1
y→x =

fx→y. In the case of finite-dimensional vectors, the function fy→x bijective. Indeed, each component
of y comes from one single component of x, and each component of x yields one single component of
y.

However, in the case of infinite-dimensional vector, the function fy→x is only injective. Indeed, it
is possible to construct a vector y such that each component of y comes from one single component
of x, but such that not all the components of x are used in y. As an example, let us imagine that y is
the vector made of all the even components of x. In that case, y is completely defined and contains
only components from x, however not all the components of x are included in y. This observation has
the surprising implication that a rearranged vector is not necessarily level-equivalent to the original
vector when we are considering infinite-dimensional vectors, as we will show in Figure 3.1.

The decreasing and increasing rearrangements are defined as previously. The vector x↓ (resp.
x↑) is a vector made of the components of x sorted by decreasing order (resp. increasing order).
Remember that x has an infinite number of components arbitrarily close to zero. That means that
when rearranged by decreasing order, the negative values of x will be arranged beyond infinity, and
thus be lost. The same happens with the negative values of x in its increasing rearrangement x↑. In
general, we have:

x↓ ≡ [x]+ x↑ ≡ [x]− (3.124)

where we denote the vector [x]+ as the vector x where the negative components have been replaced
by zero, and the vector [x]− as the vector x where the positive components have been replaced by
zero.

Let us illustrate this by taking a particular example of vector x. Let us define the vector x as
a vector made of components xn = −(−a)−n, where a > 1 is some real parameter. When n → ∞,
xn → 0 and the absolute sum of x converges towards a real value. Hereafter we build its decreasing
and increasing rearrangements, as well as its positive and negative parts:

x =
(
a−1,−a−2, a−3,−a−4, ...,−(−a)−n, ...

)
x↓ =

(
a−1, a−3, a−5, a−7, a−9, ..., a−2n+1, ...

)
x↑ =

(
−a−2,−a−4,−a−6,−a−8, ...,−a−2n, ...

)
[x]+ =

(
a−1, 0, a−3, 0, a−5, 0, ..., a−2n+1, 0, ...

)
[x]− =

(
0,−a−2, 0,−a−4, 0,−a−6, ..., 0,−a−2n, ...

)
(3.125)

Figure 3.1 illustrates that example for some particular value of a. The example illustrates the fact
that in general for infinite-dimensional vectors, x↓ 6≡ x neither x↑ 6≡ x. However, in general we have
the relation x↓ ≡ [x]+ and x↑ ≡ [x]−. These observations are consequences of the fact that x as an
infinite number of components arbitrarily close to zero.

We define the cumulative sums identically to the case of finite-dimensional vectors (see Definition
3.4), and we allow the parameter k to become infinity. It should be noted that they depends respec-
tively only on the positive components and negative components of the vector. For finite-dimensional
vector, we remember that S↓k(x) + S↑N−k(x) = SN (x), where SN (x) is simply the normalization of
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Figure 3.1: Example of infinite-dimensional vector with both positive and negative components built
in the manner of (3.125) with a = 3/2. We compute from left to right: the original vector x, its
decreasing rearrangement x↓, its increasing rearrangement x↑, its positive parts [x]+ and its negative
parts [x]−. Only the 20 first components of each vector are plotted, but each vector is infinite-
dimensional. The components quickly tends towards zero. From the illustration, it clearly appears
that x 6≡ x↓ and x 6≡ x↑. However, we see that x↓ ≡ [x]+ and x↑ ≡ [x]−.

x. For infinite-dimensional vectors, the decreasing and increasing cumulative sums are not related
anymore since N has to be taken to infinity. The information about the decreasing cumulative sum
does not give information about the increasing cumulative sum and vice versa. In light of these ob-
servations, we define the infinite cumulative sum S∞, the infinite decreasing cumulative sum S↓∞ and
the infinite increasing cumulative sum S↑∞ as follows:

S∞(x) =
∞∑
i=1

xi S↓∞(x) =
∑
xi>0

xi S↑∞(x) =
∑
xi<0

xi (3.126)

Intuitively, we see that S↓∞(x) + S↑∞(x) = S∞(x). That relation is to be compared with the finite-

dimensional case in which we have S↓N/2(x) +S↑N/2(x) = SN (x) (supposing N is even). Note also that

S↓∞(x) = S∞
(
[x]+

)
and S↑∞(x) = S∞

(
[x]−

)
.

We see that, in the case of infinite-dimensional vectors, the positive and negative parts interacts
separately. The different objects that we have defined are linked to each other as represented hereafter:

x↓ ↔ [x]+ ↔ m+
x (t) ↔ Φ+

t (x) ↔ S↓k(x)

x↑ ↔ [x]− ↔ m−x (t) ↔ Φ−t (x) ↔ S↑k(x)

3.3.4 Relations of majorization

Let us now build a version of discrete majorization which is compatible with infinite-dimensional vec-
tors taking both positive and negative values. In order to do so, we start from the hybrid formulations
we introduced in the finite-dimensional case, and we take the limite of N going towards infinity. This
will leads us to the following extended version of discrete majorization.

Weak-majorization from below (sub-majorization)

From the hybrid conditions (3.46) and (3.47) that we have derived earlier, we define sub-majorization
for infinite-dimensional vectors as follows:

Definition 3.19 (Sub-majorization for infinite-dimensional vectors). The vector x ∈ RN weak-majorizes
from below (sub-majorizes) the vector y ∈ RN, written x �w y, is equivalent to any of these three con-
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ditions:

•
∞∑
i=1

ϕ(xi) ≥
∞∑
i=1

ϕ(yi) ∀ϕ convex increasing (3.127)

•


Φ+
t (x) ≥ Φ+

t (y) ∀t ≥ 0

Φ−t (x)− S∞(x) ≤ Φ−t (y)− S∞(y) ∀t ≤ 0

(3.128)

•


S↓k(x) ≥ S↓k(y) ∀k ∈ N

S↑k(x)− S∞(x) ≤ S↑k(y)− S∞(y) ∀k ∈ N
(3.129)

And these three conditions are equivalent to each other.

Weak-majorization from above (super-majorization)

From the hybrid conditions (3.53) and (3.54) that we have derived earlier, we define super-majorization
for infinite-dimensional vectors as follows:

Definition 3.20 (Super-majorization for infinite-dimensional vectors). The vector x ∈ RN weak-
majorizes from above (super-majorizes) the vector y ∈ RN, written x �w y, is equivalent to any of
these three conditions:

•
∞∑
i=1

ϕ(xi) ≥
∞∑
i=1

ϕ(yi) ∀ϕ convex decreasing (3.130)

•


Φ+
t (x)− S∞(x) ≥ Φ+

t (y)− S∞(y) ∀t ≥ 0

Φ−t (x) ≤ Φ−t (y) ∀t ≤ 0

(3.131)

•


S↓k(x)− S∞(x) ≥ S↓k(y)− S∞(y) ∀k ∈ N

S↑k(x) ≤ S↑k(y) ∀k ∈ N
(3.132)

And these three conditions are equivalent to each other.

Majorization

We then come to regular majorization, and define it as previously.

Definition 3.21 (Majorization for infinite-dimensional vectors). The vector x ∈ RN majorizes the
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vector y ∈ RN, written x � y, is equivalent to any of these three conditions

•
∞∑
i=1

ϕ(xi) ≥
∞∑
i=1

ϕ(yi) ∀ϕ convex (3.133)

• x �w y and
∞∑
i=1

xi =
∞∑
i=1

yi (3.134)

• x �w y and
∞∑
i=1

xi =
∞∑
i=1

yi (3.135)

And these three conditions are equivalent to each other.

In practice, we will often use the following conditions to check whether two infinite-dimensional
vectors majorize each other. The following condition comes from (3.58):

x � y ⇔


S∞(x) = S∞(y)

Φ+
t (x) ≥ Φ+

t (y) ∀t ≥ 0

Φ−t (x) ≤ Φ−t (y) ∀t ≤ 0

(3.136)

The following condition comes from (3.59):

x � y ⇔



S∞(x) = S∞(y)

S↓k(x) ≥ S↓k(y) ∀k ∈ N

S↑k(x) ≤ S↑k(y) ∀k ∈ N

(3.137)

This concludes this section. Let us mention that the formulation of majorization that we have
developed in the present section applies to infinite-dimensional vectors, but it is also valid for finite-
dimensional vectors. As such, it constitutes a generalization of Section 3.1.

3.4 Continuous majorization on an infinite-size domain

This section is the continuous counterpart of the previous section. For this reason, we follow the
same reasoning as explained above. In this section, we consider continuous distribution defined over
a domain A of infinite measure.

f : A 7→ R A ⊆ Rn, ν(A) =∞ (3.138)

In practice, A could be for example Rn or R+. We will only consider functions that takes finite values
and such that the integration of their absolute value over A is finite.

|f(r)| <∞ ∀r,
∫
A
|f(r)|dr <∞ (3.139)

A direct consequence of these constraints is that the distribution needs to vanish at infinity.

lim
‖r‖→∞

f(r) = 0 (3.140)
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3.4.1 Level-equivalence

We understand that such a distribution has an infinite portion of its domain arbitrarily close to zero,
so that the upper and lower level-functions are only defined over one side of t = 0.

m+
f (t) =∞ ∀t < 0, m−f (t) =∞ ∀t > 0. (3.141)

We define the level-density function of f as follows:

µf (t) =


µ+
f (t) ∀t ≥ 0

µ−f (t) ∀t < 0

(3.142)

This way, the level-density function incorporates the information about the positive and negative
values taken by f . Note that there is always a discontinuity in t = 0, and we have µf (0) =∞.

Definition 3.22 (Level-equivalence for infinite-domain functions). Let f, g ∈ RA, where A is such
that ν(A) = ∞. We say that f is level-equivalent to g, written f ≡ g if and only if their upper
level-functions are equal and their lower level-functions are equal.

f ≡ g ⇔


m+
f (t) = m+

g (t) ∀t > 0

m−f (t) = m−g (t) ∀t < 0

(3.143)

3.4.2 Symmetric functionals

In the case of infinite-domain functions, symmetric functionals are defined similarly to Definition 3.11.
A functional Φ is symmetric if and only if Φ(f) = Φ(g) as soon as f ≡ g. Let us now consider the
following example of symmetric function:

Φ(f) =

∫
A
ϕ(f(r))dr =

∫
ϕ(t)µf (t)dt. (3.144)

Note that because of the infinite discontinuity of µf (t) in t = 0, the function Φ(x) does not always
converge towards a finite value. That observation has direct consequences on the functions Φ+

t and
Φ−t that we have previously defined. Indeed, it follows that they converge only over a subset of values
of t:

Φ+
t (f) =∞ ∀t < 0, Φ−t (f) =∞ ∀t > 0. (3.145)

Note that the upper and lower level-function can be retrieved from Φ+
t and Φ−t using relations

(3.23) and (3.23). For two infinite-domain functions f, g ∈ RA, we can write the following equivalent
statements to a relation of level-equivalence:

f ≡ g ⇔


m+
f (t) = m+

g (t) ∀t > 0

m−f (t) = m−g (t) ∀t < 0

(3.146)

⇔ µf (t) = µg(t) ∀t ∈ R (3.147)

⇔
∫
ϕ(f(r))dr =

∫
ϕ(g(r))dr ∀ϕ (3.148)

⇔ Φ(f) = Φ(g) ∀Φ symmetric (3.149)
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Figure 3.2: Example of infinite-domain distribution f : R 7→ R. The distribution f is defined over R
and takes both positive and negative values. We display from left to right: the original distribution
f , its positive parts [f ]+ and its negative parts [f ]−., its decreasing rearrangement f↓, its increasing
rearrangement f↑. From the illustration, it clearly appears that f 6≡ f↓ and f 6≡ f↑. However, we see
that f↓ ≡ [f ]+ and f↑ ≡ [f ]−.

3.4.3 Rearrangements and cumulative integrals

Let us mention here some useful volume function of infinite sets. As they will be used in the present
thesis, let us mention the volume function of Rn and R+.

VRn(s) =
π
n
2

Γ
(
n
2 + 1

)sn (3.150)

It can be seen that the volume function of Rn+ is simply obtained from the volume function of Rn as
VRn+(s) = VRn(s)/2n. The volume function of R+ is simply VR+(s) = s.

The cumulative integrals of a continuous distribution defined over an infinite domain are defined
identically to the finite-domain case (see Definition 3.13). When the parameter s is chosen to be

infinite, the cumulative integrals Ss(f), S↓s (f) and S↑s (f) become respectively:

S∞(f) =

∫
f(r)dr, S↓∞(f) =

∫
[f(r)]+ dr, S↑∞(f) =

∫
[f(r)]− dr. (3.151)

3.4.4 Relations of majorization

In a similar fashion as we did for infinite-dimensional vectors, we are going to build a version of
continuous majorization which is compatible with infinite-domain functions taking both positive and
negative values. In order to do so, we start from the hybrid formulations we introduced in the finite-
domain case (see Section 3.2). This will leads us to the following extended version of continuous
majorization.

Weak-majorization from below (sub-majorization)

From the hybrid conditions (3.95) and (3.96) that we have derived earlier, we define sub-majorization
for infinite-domain functions as follows:

Definition 3.23 (Sub-majorization for infinite-domain distributions). The distribution f : A 7→ R
weak-majorizes from below (sub-majorizes) the distribution g : A 7→ R, written f �w g, is equivalent
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to any of these three conditions:

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(f(r))dr ∀ϕ convex increasing (3.152)

•


Φ+
t (f) ≥ Φ+

t (g) ∀t ≥ 0

Φ−t (f)− S∞(f) ≤ Φ−t (g)− S∞(g) ∀t ≤ 0

(3.153)

•


S↓s (f) ≥ S↓s (f) ∀s ≥ 0

S↑s (f)− S∞(f) ≤ S↑s (g)− S∞(g) ∀s ≥ 0

(3.154)

And these three conditions are equivalent to each other.

Weak-majorization from above (super-majorization)

From the hybrid conditions (3.102) and (3.103) that we have derived earlier, we define super-majorization
for infinite-domain functions as follows:

Definition 3.24 (Super-majorization for infinite-domain distributions). The distribution f : A 7→ R
weak-majorizes from above (super-majorizes) the distribution g : A 7→ R, written f �w g, is equivalent
to any of these three conditions:

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(f(r))dr ∀ϕ convex decreasing (3.155)

•


Φ+
t (f)− S∞(f) ≥ Φ+

t (g)− S∞(g) ∀t ≥ 0

Φ−t (f) ≤ Φ−t (g) ∀t ≤ 0

(3.156)

•


S↓s (f)− S∞(f) ≥ S↓s (f)− S∞(g) ∀s ≥ 0

S↑s (f) ≤ S↑s (g) ∀s ≥ 0

(3.157)

And these three conditions are equivalent to each other.

Majorization

Definition 3.25 (Majorization for infinite-domain distributions). The distribution f : A 7→ R ma-
jorizes the distribution g : A 7→ R, written f � g, is equivalent to any of these three conditions

•
∫
A
ϕ(f(r))dr ≥

∫
A
ϕ(g(r))dr ∀ϕ convex (3.158)

• f �w g and

∫
A
f(r)dr =

∫
A
g(r)dr (3.159)

• f �w g and

∫
A
f(r)dr =

∫
A
g(r)dr (3.160)

And these three conditions are equivalent to each other.
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In practice, we will often use the following conditions to check whether two infinite-dimensional
vectors majorize each other. The following condition comes from (3.107):

f � g ⇔


S∞(f) = S∞(g)

Φ+
t (f) ≥ Φ+

t (g) ∀t ≥ 0

Φ−t (f) ≤ Φ−t (g) ∀t ≤ 0

(3.161)

The following condition comes from (3.108):

f � g ⇔


S∞(f) = S∞(g)

S↓s (f) ≥ S↓s (g) ∀s ≥ 0

S↑s (f) ≤ S↑s (g) ∀s ≥ 0

(3.162)

Let us mention that the formulation of majorization that we have developed in the present sec-
tion applies to infinite-domain functions, but it is also valid for finite-domain functions. As such, it
constitutes a generalization of Section 3.2.
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Chapter 4

Quantum optics in Wigner space

In Chapter 1 we have introduced the basics of quantum phase space in a very general setting. In
that context, we have introduced the Wigner function, which is a central tool in our thesis. In this
chapter, we will give a more precise physical framework to our considerations. In this sense, we are
going to look in detail at quantum optics with continuous variables, and focus on one or several modes
of the electromagnetic field. In a first step, we will define precisely the description of the physical
background on which we work. Then, we will introduce several quantum state bases. Following this,
we will present a number of optical transformations acting on quantum states, and we will explain
precisely how these act on the Wigner functions of the states. Finally, we will conclude this chapter
by introducing the broad family of Gaussian states.

4.1 Physical background

Here we follow mostly reference [45]. Quantum electrodynamics promote classical fields to quantum
operators. The usual potential vector becomes then a quantum vectorial operator Â = (Âx, Ây, Âz)

according to the correspondence rule. The electric field vectorial operator Ê and the magnetic field
vectorial operator B̂ can be derived from the potential vector as follows:

Ê = −∂Â

∂t
, B̂ =∇× Â. (4.1)

From Maxwell’s equations, it appears that the potential vector is solution of the wave equation:(
1

c2

∂2

∂t2
−∇2

)
Â = 0, (4.2)

where c denotes the speed of light in vacuum. It is then natural to develop the potential vector Â
onto the set of plane waves. We define the propagation vector k ∈ R3 which is related to an angular
pulsation ωk = ‖k‖ and two orthogonal directions of polarization ekλ labeled by λ ∈ {1, 2}, such that

the three vectors
{
~1k,~ek1,~ek2

}
form an oriented orthogonal basis. We consider a large box of volume

V . The potential vector operator at some point r and time t is then given as follows:

Â(r, t) =
∑
kλ

√
~

2ε0V ωk

(
âkλ exp (−iωkt+ ikr) + â†kλ exp (iωkt− ikr)

)
~ekλ, (4.3)

=
∑
kλ

√
1

ε0V ωk
(x̂kλ cos (ωkt− kr) + p̂kλ sin (ωkt− kr))~ekλ, (4.4)

where ε0 is the vacuum permittivity constant, related to the vacuum permeability µ0 and speed of
light c as ε0µ0c

2 = 1. The operator âkλ is the quantum mode operator associated to the mode of
propagation (k, λ). It is the quantum analog to the complex amplitude and is dimensionless. The
operator âkλ has complex eigenvalues and is thus not an observable. On the contrary, the quadratures
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operators x̂kλ and p̂kλ have a real spectrum and corresponds to observables. The mode operator and
quadrature operators are related to each other, as we are going to show. In what follows, we will label
the modes by a single index k, so that each value of k accounts for a different value of (k, λ).

x̂k =

√
~
2

(
âk + â†k

)
p̂k = −i

√
~
2

(
âk − â†k

)
(4.5)

âk =

√
1

2~
(x̂k + ip̂k) â†k =

√
1

2~
(x̂k − ip̂k) (4.6)

When considering the commutation inside a single mode of the elctromagnetic field (for k fixed), the
commutation relation are the following: The mode operator of one mode obey the bosonic commutation
relation

[
â, â†

]
= 1, and the quadrature operators obey the canonical commutation relation [x̂, p̂] = i~.

Two mode operators or quadratures operators associated to orthogonal modes commute together.
When considering a set of N orthogonal modes of electromagnetic waves, it is possible to express the
commutation relations in an simple formulation. To that purpose, we define the mode vector b̂ and
the quadrature vector q̂ as vectors of 2N operators defined as:

b̂ =
(
â1, â

†
1, â2, â

†
2..., âN , â

†
N

)ᵀ
, q̂ = (x̂1, p̂1, x̂2, p̂2, ..., x̂N , p̂N )ᵀ . (4.7)

Note that we also define the reduced mode operator â with N components as â = (â1, â2, ..., âN )ᵀ.
Note that in alternative convention, the quadrature vector q̂ is ordered in a different way. We now
introduce the symplectic form Ω as the 2N × 2N matrix defined as follows:

Ω =

N⊕
n=1

ω =

ω . . .

ω

 , ω =

(
0 1
−1 0

)
. (4.8)

Note that the inverse of the symplectic form is Ω−1 = Ωᵀ = −Ω. Then, the multimode bosonic

commutation relations read as
[
b̂i, b̂j

]
= Ωij and the multimode canonical commutation relations read

[q̂i, q̂j ] = i~Ωij .
The Hamiltonian of a quantum electromagnetic wave corresponds to the sum of the energy stored

in the electric field and the magnetic field. It can also be formulated from the mode operators and
the quadrature operators, as follows:

Ĥ =
1

2

∫
V

(
ε0Ê

2 +
1

µ0
B̂2

)
dr (4.9)

=
1

2

∑
k

ωk
(
x̂2
k + p̂2

k

)
(4.10)

=
∑
k

~ωk
(
â†kâk +

1

2

)
(4.11)

We will refer to the above Hamiltonian as the bosonic Hamiltonian. In the following of this thesis we
will in general omit the units. This corresponds to considering that we work in a system of units such
that ~ = 1. Also, we when dealing with multimode systems, we will only consider systems that have
the same pulsation ω, and we will choose units such that the value of ω = 1.

4.2 Essential optical pure states

Now that we have introduced the physical background, let us define some pure that are ubiquitous in
quantum optics. The states we present here constitute different bases of quantum states upon which
any state can be decomposed. We present single-mode states, but multi-mode states can be built
by tensoring single-mode state. To that purpose, we consider a single mode of harmonic oscillator
associated with a mode operator â and two quadrature operators x̂ and p̂.
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4.2.1 Quadrature basis

A quadrature state is an eigenstate of one of the two quadratures x̂ or p̂.

x̂ |x〉 = x |x〉 x ∈ R, p̂ |p〉 = p |p〉 p ∈ R. (4.12)

Quadrature states are not physical, as their wave-functions cannot be normalized. However, they are
interesting as they form the most natural continuous basis to work in phase space. Indeed, they form
a complete basis and are orthonormal:∫

|x〉 〈x| dx = 1̂ 〈x2|x1〉 = δ(x1 − x2) (4.13)∫
|p〉 〈p| dp = 1̂ 〈p2|p1〉 = δ(p1 − p2) (4.14)

It is possible to go from one to another as they are related by a Fourier transform. Indeed, we have the
relation 〈x|p〉 = exp (ixp/~) /

√
2π~. As any single-mode basis, the quadrature basis can be tensored

over several mode to construct a mulitmode basis. This leads us to define the vectorial quadrature
state as follows:

|x〉 =
N⊗
i=1

|xi〉 = |x1〉 ⊗ |x2〉 ⊗ ...⊗ |xN 〉 (4.15)

where x ∈ RN is such that x = (x1, ..., xN ).

4.2.2 Fock basis

The Fock basis plays a central role in quantum optics. Indeed, they are eigenstates of the Hamilto-
nian of the electromagnetic field. We introduce the photon-number operator as n̂ = â†â. From its
construction, one can see that n̂ is Hermitian. Moreover, it can be shown that its spectrum is discrete,
integer and non-negative. The eigenstates of the photon-number operator n̂ are called Fock states and
are associated to the letter n, represented as |n〉:

n̂ |n〉 = n |n〉 n ∈ N0 (4.16)

A Fock state expressed in the quadrature basis x̂ admits the wave-function ψn(x) = 〈x|n〉 and
Wigner function Wn(x, p):

ψn(x) =
(√
π2nn!

)− 1
2 Hn(x) exp

(
−x

2

2

)
(4.17)

Wn(x, p) =
(−1)n

π
Ln
(
2x2 + 2p2

)
exp

(
−x2 − p2

)
(4.18)

Notice that the Wigner function of Fock state is radial, so that we will sometimes refer to it as Wn(r).
Throughout this thesis, we will refer to these Wigner function as Wn. So that W0 is the Wigner
function of the Fock state with eigenvalue 0, W1 the Wigner function of the Fock state with eigenvalue
1, and so on. The Wigner function of the Fock state with eigenvalue 0 plays a prominent role in
quantum optics, and in quantum physics in general. Indeed, it is the ground state of the bosonic
Hamiltonian, which is usually called vacuum. The Wigner function of vacuum is W0 and reads as:

W0(x, p) =
1

π
exp

(
−x2 − p2

)
(4.19)

We plot in Figure 4.1 the Wigner function of the Fock states assocaited to n = 0, 1, 2, 3. In Figure
4.2 we plot the Wigner function of the Fock state associated to n = 10 together with its marginal
distributions.

The Fock states form a complete orthonormal basis, meaning that the following relation holds

∞∑
n=0

|n〉 〈n| = 1̂ 〈i|j〉 = δij , (4.20)
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Figure 4.1: Wigner functions of the Fock states assocociated to n = 0, 1, 2 and 3, from left to right.
The Wigner function of a Fock state is radial and only depends on the parameter r =

√
x2 + p2.

Observe that it is in general partly negative, except in the case n = 0. At (x, p) = (0, 0), the value of
the Wigner function of nth Fock state is equal to (−1)n/π.

Figure 4.2: Wigner function of the Fock state n = 10, together with its marginal distributions
ρx(x) =

∫
Wn(x, p)dp and ρp(p) =

∫
Wn(x, p)dx. Since Fock states are invariant by rotation, their

marginal distributions are identical for each quadrature. Observe that despite the fact that the Wigner
function is partly negative, the marginal distributions are non-negative, as expected.
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where δij is the Kronecker delta such that δij = 1 if i = j and is zero otherwise. The Fock basis is the
most natural discrete basis to work in state space. The fact that it is a discrete basis is very useful
in order to express a quantum state as a matrix. Indeed, it is then possible to write any single-mode
state ρ̂ as a matrix ρ such that

(ρ)ij = ρij = 〈i| ρ̂ |j〉 , ρ̂ =
∑
ij

ρij |i〉 〈j| . (4.21)

where the summation is performed over both indices i and j from 0 to ∞. We use a shorter notation
so that

∑
ij =

∑∞
i=0

∑∞
j=0. A direct consequence of that observation is that the Wigner function of

any quantum state can be expressed from the Wigner-Weyl transform of the element |i〉 〈j| in the
Wigner basis. Indeed, we have the following relation:

Wρ̂ =
∑
ij

ρijWij , Wij = Tw [|i〉 〈j|] . (4.22)

We understand then that the expression of the elements Wij , corresponding to the operators
|i〉 〈j| have a particular importance in order to switch from a matrix representation to a phase-space
representation. When i ≥ j, the expression of Wij can be found in [38] and is the following:

Wij(x, p) =
(−1)i

π

(√
2(x+ ip)

)i−j
L

(i−j)
j

(
2x2 + 2p2

)
exp

(
−x2 − p2

)
(i ≥ j) (4.23)

where we use the notation L
(α)
n to denote the generalized Laguerre polynomial. When i < j, the

expression of Wij can be found easily using the identity Wji = W ∗ij . It is then expressed as follows:

Wij(x, p) =
(−1)j

π

(√
2(x− ip)

)j−i
L

(j−i)
i

(
2x2 + 2p2

)
exp

(
−x2 − p2

)
(i ≤ j) (4.24)

Notice that the case i = j resumes to (4.18), as we expect.
We define a multimode Fock state from a vector n ∈ NN0 as follows:

|n〉 =
N⊗
i=1

|ni〉 (4.25)

where n = (n1, ..., nN ).

4.2.3 Coherent basis

Coherent states are eigenstates of the mode operator â.

â |α〉 = α |α〉 α ∈ C (4.26)

In practice, we will associates the complex parameter α to two real parameters xα and pα which are
such that α = (xα + ipα)/

√
2. These two parameters will be useful to express several relations in

a simpler and more intuitive form. Note the importance of the factor
√

2. The parameter α is the
eigenvalue of the coherent state |α〉 with respect to the operator â. The parameters xα and pα are
related to the phase space localization of the coherent state, as we are going to see. The wave-function
of a coherent state in the quadrature basis is ψα(x) = 〈x|α〉, defined as follows:

ψα(x) = π−
1
4 exp

(
1

2

(
α2 − |α|2

))
exp

(
−1

2

(
x−
√

2α
)2
)

(4.27)

= π−
1
4 exp

(
−1

2
(x− xα)2

)
exp

(
ipα

(
x− xα/2

))
(4.28)

The Wigner function of a coherent state is analog to the one of vacuum, as it is simply the Wigner
function W0 shifted in phase space according to the parameters (xα, pα). Indeed, the Wigner function
of a coherent state is Wα(x, p) = W0(x− xα, p− pα).
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Coherent states form an over-complete basis, which means that any state can be decomposed onto
the set of coherent state, even if two coherent states are never orthogonal. We have the following
relations:

1

π

∫∫
|α〉 〈α| d2α = 1̂, 〈β|α〉 = exp

(
−1

2

(
|α|2 + |β|2 − 2αβ∗

))
. (4.29)

Since coherent states form a complete basis, any quantum operator Â can be decomposed un-
equivocally onto the elements A(α, β) = 〈α| Â |β〉. Then, the Weyl transform of the operator Â can
be reconstructed by using the Weyl transform of |α〉 〈β|, which we denote as Wαβ = Tw [|α〉 〈β|]. The
expression of Wαβ can be computed as the following:

Wαβ(x, p) =
1

π
exp

(
−1

2

(
|α|2 + |β|2 − 2αβ∗

)
−
(
x− α+ β∗√

2

)2

−
(
p− α− β∗√

2i

)2
)
. (4.30)

Then, it is possible to express A(x, p) from the elements A(α, β) as follows:

A(x, p) =
1

π2

∫∫
A(α, β)Wαβ(x, p)d2αd2β. (4.31)

A multimode coherent state is defined by a vector of complex eigenvalues α ∈ CN , as follows:

|α〉 =

N⊗
i=1

|αi〉 (4.32)

where α = (α1, ..., αN ).
It should be noted that coherent states are part of a broader set of quantum states known as

Gaussian states. We will come to these states later in the present chapter.

4.3 Linear transformations

This section mostly follows references [52] and [66]. In quantum mechanics, the evolution of quantum
states over time is described by unitary operators. Such an evolution is always reversible, as unitary
operators verify the relation Û Û † = Û †Û = 1̂. As a quantum state evolves, the expectation values
it takes over observables change. There exist two different interpretation to that observation. Either
we consider that the unitary acts on the quantum state, either we consider that the unitary acts on
the observable. The former is the Schrödinger picture, the latter is the Heisenberg picture. We can
compare these two interpretation in the following table.

Schrödinger picture Heisenberg picture

ρ̂′ Û ρ̂Û † ρ̂

Â′ Â Û †ÂÛ

〈Â′〉ρ̂′ Tr
[
Âρ̂′
]

Tr
[
Â′ρ̂
]

The state ρ̂′ corresponds to state ρ̂ after the action of the unitary Û , and the observable Â′ corre-
sponds to observable Â after the action of the unitary Û . We see that even if ρ̂′ and Â′ are different
whether we are in the Schrödinger or Heisenberg picture, the expectation value 〈Â′〉ρ̂′ is equal in both
interpretations.
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In this section, we are going to present a set of quantum operators that are associated to linear
phase-space transformations. These transformation constitute the building blocks to work in quantum
optics. Note that the transformations that we are going to present do not always correspond to
physically implementable transformations. However, they are interesting as they appear in other
more complex physical transformations, as we are going to see. First let us define what we call a
linear transformation.

Definition 4.1 (Linear transformation). A linear mode transformation (or Bogoliubov transforma-
tion) is an affine transformation that maps the quadrature operators onto a linear combination of
themselves. It is associated to a quantum operator Û , an (invertible) matrix U ∈ R2N×2N and a
vector u ∈ R2N which act on the quadrature opertaor as:

Û †q̂Û = Uq̂ + u (4.33)

We also associate it with a phase-space transformation U acting on the Wigner function as follows:

U [W ] (q) =
1

|det U|
W
(
U−1 (q− u)

)
(4.34)

The quantum operators of linear transformations are often associated to Gaussian unitaries, which

are described by a unitary of the form exp
(
iĤ/~

)
where Ĥ is a second-order polynomial in the field

operators. However, as we are going to see, our definition encompasses also operators that are not
unitary.

A linear transformation respects the canonical commutation rules when the matrix U preserves
the symplectic form, so that UΩUᵀ = Ω, and in such case, U is said to be symplectic. The inverse
of a symplectic matrix can be computed as U−1 = −ΩUᵀΩ. The action of a linear transformation
over the mode operators is described by the Bogoliubov transformation Û âÛ † = Aâ + Bâ†+α where
A,B ∈ CN×N and α ∈ CN . Note that in order to ensure that the bosonic commutations relations
are preserved, we need the additional constraints that ABᵀ = BAᵀ and AA† = BB† + I. Let us also
specify that any choice of A,B,α defines unequivocally U and u and vice versa.

The point of view we have used until now is the Heisenberg picture. Within the Schrödinger
picture, the evolution applies to the quantum state, and thus to its Wigner function. The value taken
by the new Wigner function expressed in the new quadratures is related to the value of the old Wigner
function in the old quadratures. Moreover, there is a normalization factor of |det U| to ensure that
the Wigner function remains normalized, so that we have the relation W ′(q′) = W (q)/|det U|. When
working in phase space, we are going to associate to each linear transformation operator Û a phase
space transformation U , as presented in Equation (4.34).

4.3.1 Displacement

The displacement operator acting on mode â depends on the complex-valued parameter α. It is defined
as follows:

D̂α = exp
(
αâ† − α∗â

)
(4.35)

In Heisenberg picture, the displacement operator act on the mode operator as â → â + α. As its
name indicate, the displacement operator is an operator which has the effect of moving the Wigner
function over phase space. When it comes to the quadrature operators, they evolves as x̂→ x̂+

√
2 Reα

and p̂ → p̂ +
√

2 Imα. So that we can identify the symplectic matrix D = I2 and the displacement
vector dα = (

√
2 Reα,

√
2 Imα)ᵀ:

dα =

(√
2 Reα√
2 Imα

)
. (4.36)

In Schrödinger picture, the displacement operator can be associated to the phase-space transfor-
mation D defined as follows:

Dα [W ] (x, p) = W (x−
√

2 Reα, p−
√

2 Imα) (4.37)
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For convenience, we also define an alternative writing of the displacement operator. We use the
convention that when D is provided with a couple of reals rather than a complex number it acts as
follows:

D(xα,pα) [W ] (x, p) = W (x− xα, p− pα) (4.38)

In our convention, we have the relation D√2α = D(Reα,Imα), so that α and xα, pα are related as

α = (xα + ipα)/
√

2.
Note that the displacement operator is formally equal to D̂α = exp

(
i
√

2(Imαx̂− Reαp̂)
)
. This

can be expressed as D̂α = exp (iq̂ᵀωdα). That operator can be extended to a multimode operator as:

D̂α = exp (iq̂ᵀΩdα) (4.39)

This is sometimes called the Weyl operator in the literature. It simply corresponds to a displacement
over several modes.

4.3.2 Rotation

The rotation operator is a single mode operator acting on a quantum mode â. It depends on a real
parameter θ and is defined as:

R̂θ = exp
(
−iθâ†â

)
(4.40)

In Heisenberg picture, it acts on the mode operator as â→ exp(−iθ)â. Its action on the quadra-
tures are x̂→ cos θx̂+ sin θp̂ and p̂→ − sin θx̂+ cos θp̂. This leads us to define the symplectic matrix
Rθ as follows:

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
(4.41)

The matrix Rθ is a matrix that acts on the quadrature vector as q̂′ = Rθq̂ and should not be mistaken
with the unitary operator R̂θ. Notice that R−1

θ = Rᵀ
θ = R−θ. In the Schrödinger picture, the phase-

space transformation associated to the rotation operator is the transformation Rθ that we define as
follows:

Rθ [W ] (x, p) = W (x cos θ − p sin θ, x sin θ + p cos θ). (4.42)

In Heisenbeg picture, the operator R̂θ makes the axis (x, p) perform a rotation of angle θ. In
Schrödinger picture, the Wigner function is performing a rotation of angle −θ. We now detail a
few examples of rotations which are particularly common.

R0 [W ] (x, p) = W (x, p) (4.43)

Rπ
2

[W ] (x, p) = W (p,−x) (4.44)

Rπ [W ] (x, p) = W (−x,−p) (4.45)

R−π
2

[W ] (x, p) = W (−p, x) (4.46)

The rotation operator R̂θ plays a central role in quantum optics, as it corresponds to the evolution
operator. Indeed, the bosonic Hamiltonian is n̂ + 1/2 so that the unitary evolution is governed by

the operator exp
(
−iĤt

)
which is related to the rotation operator R̂θ. As a consequence, the Wigner

function of a bosonic light field in free evolution rotates and Fock states, which are the eigenstates of
Ĥ, are invariant under rotation.

4.3.3 Squeezing

The squeezing operator acting on mode â is defined as follows:

Ŝz = exp

(
1

2
(zâ†2 − z∗â2)

)
(4.47)
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where z is a complex parameter such that z = r exp(iϕ). The resulting action of Ŝz on mode â is
â→ â cosh r + â† exp(iϕ) sinh r. The symplectic matrix associated to the unitary operator Ŝz can be
expressed more easily introducing the matrix Zϕ:

Sz = cosh rI2 + sinh rZϕ, Zϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
. (4.48)

The parameter z is in general complex. Without loss of generality, we can restrict ourselves to the
case of a real squeezing parameter. Indeed, one can see that Ŝz = R̂†ϕ/2ŜrR̂ϕ/2. For that reason, we
define the symplectic matrix Sr:

Sr =

(
exp(r) 0

0 exp(−r)

)
(4.49)

The phase-space transformation associated to squeezing is the following transformation:

Sr [W ] (x, p) = W (exp(−r)x, exp(r)p) . (4.50)

The squeezing phase-space operator Sr squeezes the Wigner function in the p direction for positive
values of r, so that the Wigner function becomes stretched alongside the x-axis.

4.3.4 Conjugation

Let us now introduce a phase-space transformation that does not corresponds to a physically imple-
mentable operation [14]. We definte the conjugation operator as an operator that maps the mode
operator to its dagger, so that its action is â → â†. Notice that this operator does not conserve the
bosonic commutation relations, as the new commutator becomes

[
â′, â′†

]
=
[
â†, â

]
= −1. Its action

on the quadrature is to change to sign of p̂, so that we have x̂ → x̂ and p̂ → −p̂. It is associated to
the following matrix Π:

Π =

(
1 0
0 −1

)
(4.51)

Notice that Π = Z0. The conjugation phase-space transformation is Π is defined as follows:

Π [W ] (x, p) = W (x,−p) (4.52)

Despite being non physically implementable, the conjugation operator as the property to apply a
physically acceptable state onto another physically acceptable state. The conjugation operator will
be helpful in the following of this chapter.

4.3.5 Rescaling

We now introduce another non-physical operator, that we call the rescaling operator. In Chapter 2,
we introduced the rescaling operator Ls (see (2.25)). We define the same transformation for Wigner
function as the following:

Ls [W ] (x, p) =
1

s2
W
(x
s
,
p

s

)
(4.53)

The matrix acting on the quadrature can be identified as the following:

Ls =

(
s 0
0 s

)
= sI (4.54)

The action of the rescaling operator over the quadratures is x̂ → sx̂ and p̂ → sp̂. Its action over
the mode operator is â → sâ. Formally, we may identify a quantum operator L̂s =

√
s, so that

indeed L̂†sâL̂s = sâ. Note that L̂s does not respect the bosonic commutation relation, as we have[
â′, â′†

]
=
[
sâ, sâ†

]
= s2. Note also that L̂s is not unitary, as L̂†sL̂s = s.

Similarly to the conjugation operator, the rescaling operator is not physically realizable. However,
on the contrary to the conjugation, the rescaling operator does not apply in general a physical state
onto another physical state.
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4.3.6 Two-mode mixing

Two-mode mixing is performed by a beam-splitter acting on two modes, and we will use two-mode
mixing and beam-splitting as synonyms. For clarity, we will label the two modes as â and b̂ (rather

than â1 and â2). The mode b̂ should not be confused with the mode vector b̂ =
(
â, â†, b̂, b̂†

)
.

B̂ξ = exp
(
ξâ†b̂− ξ∗âb̂†

)
(4.55)

where ξ ∈ C is such that ξ = θ exp(iϕ) with θ, ϕ ∈ R. The beam-splitting operator B̂ξ acts on the
mode operators as follows: (

â′

b̂′

)
=

(
cos θ exp(iϕ) sin θ

− exp(−iϕ) sin θ cos θ

)(
â

b̂

)
(4.56)

Its action on the quadrature operators is then given by the following matrix:

Bξ =

(
cos θI2 sin θRϕ

− sin θRᵀ
ϕ cos θI2

)
, (4.57)

The matrix Bξ can be used to find the new quadrature operators using the relation q̂′ = Bξq̂. The

matrix Bξ acts on the quadratures vector q̂ and should not be mistaken with the unitary operator B̂ξ.
Note that the parameter ξ is in general complex. However, can restrict ourselves to the study

of a real valued ξ, because the added phase can be considered as the addition of a rotation over
some modes. For that reason, we will consider the two-mode squeezing operator Bθ where θ is a real
number. The matrix associated to it is the following:

Bθ =

(
cos θI2 sin θI2

− sin θI2 cos θI2

)
(4.58)

Note that in a shorter form we can write Bθ = Rθ ⊗ I2. Note the interesting property that B̂θ1B̂θ2 =
B̂θ1+θ2 .

Let us mention that a beam-splitter is sometimes defined by its transmittance parameter η, which
is related to the parameter θ by the relation η = cos2 θ. From that relation it obviously appears that
η is between 0 and 1.

Reduced output of a beam-splitter

Let us consider that the input state of a beam-splitter is a product state. It is characterized by a
Wigner function of the form W (x1, p1, x2, p2) = W1(x1, p1)W2(x2, p2). The output W ′(x1, p1, x2, p2)
is then computed as:

W ′(x1, p1, x2, p2) = W1(cos θx1 − sin θx2, cos θp1 − sin θp2)

× W2(sin θx1 + cos θx2, sin θp1 + cos θp2)
(4.59)

Tracing over mode 2 yields the single-mode output on mode 1:

W ′1(x1, p1) =

∫∫
W1(cos θx1 − sin θx2, cos θp1 − sin θp2)

W2(sin θx1 + cos θx2, sin θp1 + cos θp2) dx2dp2

(4.60)

Introducing the following change of variable, this gives:{
x′ = cos θ (cos θx1 − sin θx2)

p′ = cos θ (cos θp1 − sin θp2)

{
dx′ = − cos θ sin θdx2

dp′ = − cos θ sin θdp2

(4.61)

We can then rewrite the above equation as:

W ′1(x1, p1) =

∫∫
1

cos2 θ
W1

(
x′

cos θ
,
p′

cos θ

)
1

sin2 θ
W2

(
x1 − x′

sin θ
,
p1 − p′

sin θ

)
dx2dp2 (4.62)
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In our convention, the expression can be written in a compact way as:

W ′1 = Lcos θ [W1] ∗ Lsin θ [W2] (4.63)

The same development can be done for the other output.

W (x2, p2) =

∫∫
W1(cos θx1 − sin θx2, cos θp1 − sin θp2)

W2(sin θx1 + cos θx2, sin θp1 + cos θp2) dx1dp1

(4.64)

We introduce the following change of variables{
x′ = cos θ (sin θx1 + cos θx2)

p′ = cos θ (sin θp1 + cos θp2)

{
dx′ = cos θ sin θdx1

dp′ = cos θ sin θdp1

(4.65)

So that we can write

W (x2, p2) =

∫∫
1

sin2 θ
W1

(
x′ − x2

sin θ
,
p′ − p2

sin θ

)
1

cos2 θ
W2

(
x′

cos θ
,
p′

cos θ

)
dx1dp1 (4.66)

In our notations, this corresponds to the shorter writing W ′2 = Rπ ◦ Lsin θ [W1] ∗ Lcos θ [W2]. Note
that we use the notation R ◦ L [W ] = R [L [W ]]. We summarize the relations we have derived for the
beam-splitter in the following table.

ρ̂′ W ′ â′

mode 1 Tr2

[
B̂θ (ρ̂1 ⊗ ρ̂2) B̂†θ

]
Lcos θ [W1] ∗ Lsin θ [W2] cos θ â1 + sin θ â2

mode 2 Tr1

[
B̂θ (ρ̂1 ⊗ ρ̂2) B̂†θ

]
Rπ ◦ Lsin θ [W1] ∗ Lcos θ [W2] − sin θ â1 + cos θ â2

4.3.7 Two-mode squeezing

Two-mode squeezing is performed by a two-mode squeezer and corresponds to the following unitary:

Σ̂z = exp
(
zâ†b̂† − z∗âb̂

)
(4.67)

where z ∈ C is such that r exp(iϕ) with r, ϕ ∈ R. Its action on the mode operator â and b̂ is the
following:

â′ = â cosh r + b̂† exp(iϕ) sinh r (4.68)

b̂′ = b̂ cosh r + â† exp(−iϕ) sinh r (4.69)

From these relations, we can construct the two following symplectic matrices:

Σz =

(
cosh rI2 sinh rZϕ
sinh rZϕ cosh rI2

)
, Σr =

(
cosh rI2 sinh rZ0

sinh rZ0 cosh rI2

)
. (4.70)

The matrix Σr corresponds to Σz when z is real and equal to r ∈ R. The new quadrature operators
as then computed as q̂′ = Σzq̂.

Let us mention that a two-mode squeezer is sometimes defined by its gain g or parameter λ. They
are related to the squeezing r by the relation g = cosh2 r and λ = tanh2 r. Notice that the gain g is
always greater or equal to 1, and the parameter λ is between 0 and 1.
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Reduced output of a two-mode squeezer

Let us now consider that the input is a product state. We are going to compute the corresponding
output in a two-mode squeezer.

W ′(x1, p1, x2, p2) = W1(cosh rx1 − sinh rx2, cosh rp1 + sinh rp2)

× W2(− sinh rx1 + cosh rx2, sinh rp1 + cosh rp2).
(4.71)

Then, tracing over mode 2 gives the following:

W ′1(x1, p1) =

∫∫
W1(cosh rx1 − sinh rx2, cosh rp1 + sinh rp2)

W2(− sinh rx1 + cosh rx2, sinh rp1 + cosh rp2) dx2dp2.

(4.72)

With the change of variables{
x′ = cosh r (cosh rx1 − sinh rx2)

p′ = cosh r (cosh rp1 + sinh rp2)

{
dx′ = − cosh r sinh rdx2

dp′ = cosh r sinh rdp2

(4.73)

this leads us to the following equation

W ′1(x1, p1) =

∫∫
1

cosh2 r
W1

(
x′

cosh r
,

p′

cosh r

)
1

sinh2 r
W2

(
x1 − x′

sinh r
,
p′ − p1

sinh r

)
dx2dp2, (4.74)

which we can rewrite in a simple notation as W ′1 = Lcosh r[W1] ∗Π ◦ Lsinh r [W2]. We now come to the
second output W ′2:

W ′2(x2, p2) =

∫∫
W1(cosh rx1 − sinh rx2, cosh rp1 + sinh rp2)

W2(− sinh rx1 + cosh rx2, sinh rp1 + cosh rp2) dx1dp1.

(4.75)

We perform the following change of variables{
x′ = cosh r (− sinh rx1 + cosh rx2)

p′ = cosh r (sinh rp1 + cosh rp2)

{
dx′ = − cosh r sinh rdx1

dp′ = cosh r sinh rdp1

(4.76)

which leads us to the following relation

W ′2(x2, p2) =

∫∫
1

sinh2 r
W1

(
x2 − x′

sinh r
,
p′ − p2

sinh r

)
1

sinh2 r
W2

(
x′

cosh r
,

p′

cosh r

)
dx2dp2, (4.77)

that we can rewrite in a simple form as W ′2 = Π ◦ Lsinh r [W1] ∗ Lcosh r [W2]. We can now resume the
relations we have derived for the two-mode squeezer in the following table.

ρ̂′ W ′ â′

mode 1 Tr2

[
Σ̂r (ρ̂1 ⊗ ρ̂2) Σ̂†r

]
Lcosh r [W1] ∗Π ◦ Lsinh r [W2] cosh r â1 + sinh r â†2

mode 2 Tr1

[
Σ̂r (ρ̂1 ⊗ ρ̂2) Σ̂†r

]
Π ◦ Lsinh r [W1] ∗ Lcosh r [W2] sinh r â†1 + cosh r â2

Let us now resume our findings throughout the section. The following table presents the evolution
according to a linear transformation in the Heisenberg picture and the Schrödinger picture.
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Heisenberg picture Schrödinger picture

â→ exp(iϕ)â W → Rϕ [W ]

â→ sâ W → Ls [W ]

â→ â+ α W → Dα [W ]

â→ â† W → Π [W ]

â→ â+ b̂ W →WA ∗WB

4.4 Gaussian states

As their name indicates, Gaussian states are described by a Gaussian Wigner function. As such,
they are approriately described by their two first statistical moments. In this section, we are first
going to define the mean displacement and covariance matrix of a quantum state. We are going
to highlight their relevance and show how they define Gaussian states. We will also present how
symplectic transformations act on the covariance matrix of a quantum state.

4.4.1 Covariance matrix of a quantum state

At this point, it is interesting to define the covariance matrix of a quantum state. In what follows, we
consider a N -mode state ρ̂. We define the mean displacement of ρ̂ as:

q̄ = 〈q̂〉, (q̄)i = 〈q̂i〉. (4.78)

So that we write q̄i as the mean of the operator q̂i over state ρ̂. The vector q̄ ∈ R2N describes the first
statistical moment of the Wigner function of ρ̂. The information about the second statistical moments
of the Wigner function of ρ̂ is encoded in its covariance matrix V, that we defined as follows:

(V)ij = Vij =
1

2
〈{q̂i − 〈q̂i〉, q̂j − 〈q̂j〉}〉 (4.79)

=
1

2
〈{q̂i, q̂j}〉 − 〈q̂i〉〈q̂j〉 (4.80)

Any quantum state ρ̂ is associated to a mean displacement q̄ and covariance matrix V. Note that
to the contrary of Chapter 2, we are here considering distributions that can take negative values. As
such, they are not probability distributions.

When considering bosonic quantum systems, the covariance matrix is particularly relevant as it
is directly related to the energy of the state. Indeed, remember that the bosonic Hamiltonian of a
N -mode quantum state reads as follows (using ~ = ω = 1):

Ĥ =

N∑
k=1

(
n̂k +

1

2

)
=

1

2

N∑
k=1

x̂2
k + p̂2

k. (4.81)

Using that relation, we can express the energy of the quantum state ρ̂ as a function of its mean
displacement q̄ and covariance matrix V:

〈Ĥ〉 = Tr
[
Ĥρ̂
]

=
1

2

(
Tr V + ‖q̄‖2

)
. (4.82)

Note that this expression holds for any bosonic quantum state, Gaussian and non-Gaussian. In
addition to this, the covariance matrix measures in a certain way the extent in phase space, so that it
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can be related to the uncertainty principle. As a consequence, some instances of covariance matrix are
not allowed. In general, any N -mode quantum state ρ̂ is associated to covariance matrix V ∈ R2N×2N

which is symmetric (Vᵀ = V) and positive-definite (V > 0), and which respect the following condition:

V +
i

2
Ω ≥ 0. (4.83)

Condition (4.83) is a direct manifestation of the uncertainty principle. In the case of single-mode
states, (4.83) becomes the Schrödinger-Robertson uncertainty relation det V ≥ 1/4, which is a stronger
version of Heisenberg uncertainty relation since we have the relation σ2

x + σ2
p ≥ det V.

In the very case of Gaussian states, the mean displacement and the covariance matrix are sufficient
to describe the whole Wigner function, which then reads as follows:

Wγ̂(q) =
1

(2π)N
√

det V
exp

(
−1

2
(q− q̄)ᵀ V−1 (q− q̄)

)
. (4.84)

Let us finally mention that for any acceptable choice of covariance matrix V satisfying condition
(4.83), there exists a Gaussian state with such covariance matrix V. We are now going to see how it
is possible to build quantum states which such a function.

4.4.2 Pure Gaussian states

Earlier in this chapter, we have introduced the set of pure states known as coherent states. The set of
coherent state can be generated from vacuum with the displacement operator. As they are described
by a Gaussian Wigner function, coherent states belong to the family of Gaussian pure states. Any
single-mode Gaussian pure state can be generated from vacuum, together with the squeezing, rotation
and displacement operators. A single-mode Gaussian state with squeezing r, rotation angle ϕ and
displacement α is associated to the ket |γ(r, ϕ, α)〉 = D̂αR̂ϕŜr |0〉.

γ̂(r,ϕ,α) = D̂αR̂ϕŜr |0〉 〈0| Ŝ†rR̂†ϕD̂†α (4.85)

The wave-function of a single-mode Gaussian pure states depends on the parameters α ∈ C, ϕ ∈ [0, 2π)
and r ∈ R+. Its wave-function can be computed as the following [26]:

ψ(x) = 〈x| D̂αR̂ϕŜr |0〉 = (2π (cosh(2r)− cos(2ϕ) sinh(2r)))−
1
4

× exp

(
−(x− xα)2

2

cosh r + exp(2iϕ) sinh r

cosh r − exp(2iϕ) sinh r

)
× exp(ipα (x− xα/2))

(4.86)

where we have used the parameters xα, pα ∈ R such that α = (xα + ipα)/
√

2. Multi-mode Gaussian
pure states are built by tensoring Gaussian pure states and applying any combination of beam-splitter
and two-mode squeezer over the resulting state.

The mean displacement of a Gaussian pure state is q = (xα, pα) =
√

2 (Reα, Imα). As an
illustration, the covariance matrix of a Gaussian pure states is [26]:

V(r,ϕ) =
1

2

(
cosh(2r)− 2 cos(2ϕ) sinh(2r) − sin(2ϕ) sinh 2r

− sin(2ϕ) sinh(2r) cosh(2r) + 2 cos(2ϕ) sinh(2r)

)
(4.87)

One should notice that the determinant of the covariance matrix is always equal to det V = 1/4. The
covariance matrix of vacuum is V0 = I2/2. It is the same for any coherent state. The determinant of
a multi-mode pure Gaussian state is det V = 2−2N .

4.4.3 From thermal states to mixed Gaussian states

The set of quantum states with Gaussian Wigner functions is broader than the sole set of Gaussian pure
states. Indeed, when considering mixed states, it is possible to construct Gaussian Wigner functions.
A thermal state (or Gibbs state) is a statistical mixture that is in a thermal equilibrium. As such,
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it can be related to the Hamiltonian as τ̂ ∝ exp
(
−Ĥ/(kBT )

)
, where kB is the Boltzman constant

and T is the temperature. A thermal state is a Gibbs state [42]. In a quantum optics context, we
introduce the parameter β as the inverse temperature, such that β = ~ω/(kBT ). A quantum optical
thermal state can then be developed onto the basis of Fock states as:

τ̂ = (1− y)
∞∑
n=0

yn |n〉 〈n| (4.88)

where y ∈ [0, 1) is the thermal parameter and is related to the inverse temperature as y = exp(−β).
A thermal state is equivalently described by its mean number of photons n̄ = y/(1 − y). It has an
energy equal to n̄ + 1/2. The purity of a thermal state is µ = (2n̄ + 1)−1. It has a von Neumann
entropy equal to:

S(τ̂) = (n̄+ 1) ln(n̄+ 1)− n̄ ln n̄ = g(n̄) (4.89)

where we define the function g(n̄) as the von Neumann entropy of a thermal state with mean number
of photon n̄. A thermal state maximizes the von Neumann entropy for a given energy. Conversely, it
minimizes the energy for a given von Neumann entropy. A thermal state is unequivocally defined by
its inverse temperature β, its thermal parameter y, its mean number of photon n̄ or its von Neumann
entropy. In the present thesis, we will use the mean number of photon n̄ and the thermal parameter
y to characterize a thermal state. The Wigner function of a thermal state can be computed to be a
Gaussian distribution, radial and centered around the origin, with variance V = n̄+ 1/2:

Wτ̂ (x, p) =
1

π (2n̄+ 1)
exp

(
−x

2 + p2

2n̄+ 1

)
(4.90)

It is a Gaussian distribution of zero mean displacement and with covariance V = (n̄ + 1/2)I2 =
(2n̄+ 1)V0. A thermal state can be understood as a vacuum that is displaced according to a normal
distributed noise. Moreover, its Wigner function also corresponds to a rescaled vacuum. The Wigner
function Wτ̂ of a thermal state τ̂ can be expressed as a function of vacuum as follows:

Wτ̂ = W0 ∗Gn̄ = L√2n̄+1 [W0] , (4.91)

where n̄ is the mean number of photons of τ̂ an Gn̄ is a Gaussian distribution of mean displacement
(0, 0) and covariance matrix n̄I2.

From a thermal state, we may now construct any single-mode mixed Gaussian state in the same
manner as Equation 4.85, as follows:

γ̂(n̄,r,ϕ,α) = D̂αR̂ϕŜr τ̂n̄ Ŝ
†
rR̂
†
ϕD̂
†
α (4.92)

The covariance matrix of state γ̂(n̄,r,ϕ,α) can be computed as V(n̄,r,ϕ) = (2n̄+ 1)V(r,ϕ).

4.4.4 Symplectic transformations

Previously in this chapter, we introduced a type of transformations that we called linear transforma-
tions (see Definition 4.34). Among these, we find in particular the set of transformations associated
with Gaussian unitaries. Such a unitary operatorÛ is associated to a symplectic matrix U which
describes the evolution of the quadrature operators q̂ according to the transformation. As a conse-
quence, the symplectic matrix U contains all the information needed in order to compute new mean
displacement and new covariance matrix resulting from the transformation. For any quantum state
that evolving according to ρ̂ −→ Û ρ̂Û †, its mean displacement and covariance matrix evolve according
to:

q̄ −→ Uq̄, V −→ UVUᵀ. (4.93)

It should be noted that the above relations hold in particular for Gaussian states, but also in gen-
eral to any quantum state. We call symplectic formalsim the framework in which we only consider
the evolution of the mean displacement and covariance matrix of the quantum state. This tool ap-
pears particularly powerful because of the simplicity of the tools involved (a simple matrix product).
Moreover it applies without distinction to Gaussian states and non-Gaussian states, even though for
non-Gaussian states it does not provide a complete description of the state.
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Chapter 5

Wigner-positivity

In this chapter, we are interested in a certain set of quantum states which have the particularity of being
described by a Wigner function taking only non-negative values. We label this property as Wigner-
positivity. This set is of particular interest to us in this work, because the states belonging to it all
have the property that the usual measures used in probability theory are well defined. Let us also note
that states with non-negative Wigner functions have the property of being classically simulatable, and
therefore cannot give rise to a quantum advantage for computational tasks [47]. Determining precisely
the set of states with a non-negative Wigner function is therefore also of interest in order to better
understand which other states have a quantum advantage that can be exploited.

We begin this chapter with general considerations where we draw a parallel between the positive-
semidefiniteness condition in state space and the Wigner-positivity condition in phase space. We then
show that the set of states with non-negative Wigner functions forms a convex set. After that, we
illustrate several ways to build Wigner-positive states, and present in particular a general setup using
a balanced beam-splitter to build such states. In the last section of this chapter, we focus on the set
of phase-invariant states to draw further conclusions. In particular, we analytically determine the set
of Wigner-positive phase-invariant states containing at most two photons.

The content of this chapter has been published in the paper entitled Quantum Wigner entropy
[64].

5.1 Introduction and preliminaries

5.1.1 Positive-definiteness versus Wigner-positivity

In Chapter 1, we have learned that any operator Â can be represented in phase-space by a complex
distribution A(x, p). The mapping is embodied by the Weyl transform Tw and it inverse T −1

w , which

are such that A(x, p) = Tw

[
Â
]

and Â = T −1
w [A(x, p)]. There is a one-to-one correspondence between

quantum operators and complex phase-space distributions. Let us now restrict ourselves to Hermitian
operators. From the definition of the Weyl transform, it is clear that such operators correspond to
real-valued phase-space distributions. Similarly, there is a one-to-one correspondence between these
two sets.

Â : H 7→ H, Â† = Â ←→ A(x, p) : R2 7→ R (5.1)

In other words, any Hermitian quantum operator Â corresponds to a unique real-valued phase-space
distribution A(x, p). Quantum states are such operators and correspond therefore to real-valued phase-
space distributions, namely Wigner functions. However, there exist many real-valued phase-space
distributions that are not acceptable Wigner functions. This is not only because of the normalization
condition, which can be easily corrected. Indeed, many of such distributions do not correspond to
positive semi-definite operators, and thus do not satisfy the physicality conditions.

It is in general a difficult task to determine whether a real-valued phase-space distribution A(x, p)
corresponds to a positive semi-definite operator. Proving that it is not positive semi-definite is easier,
as we only need to provide a single physically acceptable Wigner function W which is such that∫∫

W (x, p)A(x, p)dxdp < 0 (see positive semi-definiteness condition (1.31)). To prove that it is positive
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semi-definite, we would need to check that for all possible Wigner functions the result of the integral
is non-negative. By proceeding in a more clever manner, we could limit ourselves to a complete basis,
such as the Fock basis. Expressing the distribution A(x, p) into the basis of Fock operators described
by the distributions Wij(x, p) (see (4.23)), we could reconstruct a matrix and then verify that it is
positive semi-definite. However, the Fock basis is infinite, and we would still require an infinite number
of verifications.

Interestingly, one can consider the dual task of this problem as determining whether a given positive
semi-definite Hermitian operator Â is associated with a Weyl transform A(x, p) taking non-negative
values. Indeed, let us notice the apparent symmetry between these two problems:

• Given some A(x, p), is the corresponding Â ≥ 0 ? (5.2)

• Given some Â, is the corresponding A(x, p) ≥ 0 ? (5.3)

It appears that problem (5.3) is as difficult to check as (5.2). Indeed, whereas we only need one single
instance of (x, p) such that A(x, p) < 0 in order to prove that A is partly negative, the condition
A(x, p) has to be checked over all phase-space to ensure that A(x, p) ≥ 0 for all x, p. When we are
studying a phase-space distribution normalized to 1, problem (5.2) reduces to checking the physicality
of the phase space distribution, i.e. checking that A(x, p) is a physically acceptable Wigner function.
Conversely, if we are provided with a normalized positive semi-definite operator Â (which is then a
density operator ρ̂), problem (5.3) reduces to checking whether the density operator Â = ρ̂ has a
non-negative Wigner function. Throughout this chapter, we will be interested in the set of quantum
states possessing that particular property, namely the states with non-negative Wigner functions. We
define this property as follows:

Definition 5.1 (Wigner-positivity). A quantum state is said to be Wigner-positive if and only if it is
described by a Wigner function that takes non-negative values everywhere in phase space, namely:

W (x,p) ≥ 0 ∀x,p (5.4)

Conversely, we define Wigner-negative states as states which are not Wigner-positive. Wigner-
negative states are such that there exists at least one phase-space coordinate (x,p) such thatW (x,p) <
0.

5.1.2 The Wigner-positive set is a convex set

As we have explained, determining the set of Wigner-positive states seems to be a difficult task. In
this chapter, we take advantage of a simple observation to address the problem, which is that the set
of Wigner-positive states forms a convex set. Let us start by defining this concept precisely before
going into details.

Definition 5.2 (Convex quantum set). The quantum set A is convex if and only if any mixture of
states of A belongs to A:

∀ρ̂1, ρ̂2 ∈ A : p1ρ̂1 + p2ρ̂2 ∈ A (5.5)

where (p1, p2) is a probability vector.

A first set of states possessing this property of convexity that we can define is the set of all single-
mode quantum states. We denote as Q the set of all single-mode density operators satisfying the three
physicality conditions, i.e. normalization (1.16), Hermiticity (1.17) and positive semi-definiteness
(1.18). This set is obviously convex from the fact that mixing physically acceptable quantum states
yields another physically acceptable quantum state. Then, we define Q+ as the restriction of Q which
is Wigner-positive, so that Q+ is the set of all single-mode Wigner-positive quantum states. The set
Q+ is also convex, since mixing non-negative Wigner functions gives another non-negative Wigner
function. The set of Wigner-negative states is then Q \ Q+, which is not a convex set. Indeed, it is
possible two mix two Wigner-negative states into a Wigner-positive state.
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Figure 5.1: Schematic view of a convex set. The red points are extremal points of the set. Notice
that some extremal points are isolated, while others form a continuum of points. Red points together
with black points form the boundary of the convex set.

When considering convex sets, it is common to look at the minimum subset of states allowing us
to generate the whole set by mixing them. Such states are called extremal states, and we define them
hereafter:

Definition 5.3 (Extremal quantum state). The quantum state ρ̂ ∈ A is extremal with respect to A if
and only if ρ̂ cannot be obtained from a mixture of elements of A \ {ρ̂}

@ρ̂1, ρ̂2 ∈ A \ {ρ̂} : ρ̂ = p1ρ̂1 + p2ρ̂2 (5.6)

where (p1, p2) is a probability vector.

In what follows, we will use the notation Extr (A) to denote the set of extremal states of A. Figure
5.1 illustrates a convex set and its extremal points. In the same spirit, we define the convex hull of a
quantum set as follows:

Definition 5.4 (Convex hull of a quantum set). The convex hull of the quantum set A is the smallest
convex set that contains A.

An important property arising from that definition is that any compact convex set is equal to the
convex hull of its extremal states. In practice, we will use the closure of the convex hull, which we
will note as Conv(A). Note that the notation Conv(A) does not refer to the convex hull of A, but to
the closure of the convex hull of A. This detail is important, especially when we consider mixtures
composed of an infinite number of quantum states. Since Conv(A) is a closed set, it ensures that any
mixture of states of A converges towards a state of Conv(A).

Now that we have introduced these different notions, let us focus on the case of Q. The extremal
states of Q are obviously the pure quantum states, since any mixed quantum state can be expressed
as a convex mixture of quantum pure states, and since a pure state cannot be expressed as a mixture.
We will denote the set of single-mode pure states as Q∗, which obey the relations Extr (Q) = Q∗ and
Conv (Q∗) = Q.

Let us now turn our attention to the set of extremal states of Q+. A natural candidate would
be the set of pure states that are Wigner-positive, which we write as Q∗+. Indeed, each state of Q∗+
belongs to Q+ as it is Wigner-positive, but it is also necessarily an extremal state of Q+ because pure
states are extremal to the quantum set Q ⊃ Q+. However, things are more complicated as we will
see. At this point, it seems important to us to introduce Hudson’s theorem, which allows to define
precisely the set Q∗+.

Definition 5.5 (Hudson theorem). A pure state is Wigner-positive if and only if it is a Gaussian
pure state [34]. Equivalently, the set of Wigner-positive pure states Q∗+ is equal to the set of Gaussian
pure states G∗:

Q∗+ = G∗. (5.7)
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We denote the set of single-mode Gaussian pure states as G∗ and its convex hull as G. The
situation would then be very easily described if we had Q+ = G, that is, if the extremal states of Q+

were solely the pure Wigner-positive states, i.e. Extr (Q+) = G∗. However, the problem appears more
complicated since there are mixed Wigner-positive states that cannot be constructed from Gaussian
states. The convex hull of Gaussian pure states G = Conv (G∗) thus only encompass a fraction of the
set of Wigner-positve states Q+. Let us mention that the characterization of Wigner-positive mixed
states has been attempted [46, 10], but the resulting picture is somehow complex.

5.2 Building Wigner-positive states

In this section, we will present several ways to construct Wigner-positive states. We restrict most of
our considerations to single-mode states, but they can in general be easily extended to multi-mode
states.

5.2.1 Classical states and Gaussian states

In Chapter 4, we introduced coherent states as pure quantum states corresponding to a displaced
vacuum. We will denote the set of coherent states as C∗ and to its convex hull as C = Conv (C∗),
which is usually called the set of classical states. Note that C∗ ⊂ G∗, as coherent states are a Gaussian
states with no squeezing. Any mixture of coherent states is naturally a Wigner-positive state. In
this context, the Glauber-Sudarshan P-function has a particular interest in order to described convex
mixture of coherent states. indeed, the P -function is defined as follows:

ρ̂ =

∫
P (α) |α〉 〈α|d2α, (5.8)

so that for convex mixture of coherent states, P (α) simply corresponds to a probability distribution
describing the mixture. Note that the P-function is defined for any quantum state (including states
that do not belong to C) . However, for states that are in Q \ C, the P-function does not correspond
to a probability distribution [17, 28].

Remember now that the Wigner function of a coherent state is the Wigner function of a displaced
vacuum. As a consequence, the Wigner function of a classical state can be expressed as a convolution
between the P-distribution and W0. To do so, we define the function P (x, p) = P (x+ ip) where x and
p are real parameters. We can then write:

W (x, p) =

∫∫
P (x′, p′)W0(x−

√
2x′, p−

√
2p′)dx′dp′ (5.9)

=

∫∫
1

2
P

(
x′′√

2
,
p′′√

2

)
W0(x− x′′, p− p′′)dx′′dp′′ (5.10)

=

∫∫
L√2 [P ] (x′′, p′′)W0(x− x′′, p− p′′)dx′′dp′′ (5.11)

=
(
L√2 [P ] ∗W0

)
(x, p) (5.12)

So that in a shorter writing, we can simply identify W = L√2 [P ] ∗W0. Note that we can easily go a
step further by allowing squeezed states in our mixture. In general, any mixture of Gaussian states
can be expressed as follows:

ρ̂ =

∫
K(r, ϕ, α) γ̂(r,ϕ,α) drdϕd2α, (5.13)

where K(r, ϕ, α) is a probability distribution which contains all the information about the mixture of
Gaussian states. Any state constructed as (5.13) belongs to the convex hull of Gaussian states, that
we note G.

The two techniques we have presented here to build Wigner-positive states are trivial, since they
simply consist in mixing pure Gaussian states which already have a non-negative Wigner function,
according to Hudson theorem. Equation (5.13) actually enables us to construct any state which
belongs to G. In the following of this chapter we are going to present other techniques to build Wigner
positive states which goes beyond the scope of G.
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Figure 5.2: The state σ̂ is the reduced output of a balanced beam-splitter of transmittance η = 1/2
fed by the input state ρ̂, as described in Equation (5.22). In that particular setup, the Wigner function
of σ̂ coincides with the Husimi function of ρ̂, so that Wσ̂(x, p) = Qρ̂(x, p). As a consequence, any state
σ̂ built in this manner from any state ρ̂ is Wigner-positive.

5.2.2 Husimi Q-function

In quantum optics, there exists a well-known distribution in quantum phase space that behaves as a
genuine probability distribution, namely the Husimi Q-function [42]. It corresponds to the probability
to measure state ρ̂ in a coherent state |α〉, and is defined as follows:

Q(α) =
1

π
〈α| ρ̂ |α〉 (5.14)

By a simple argument, we are going to show that the Husimi Q-distribution is also a physically
acceptable Wigner function. We are going to show that the Husimi Q-distiribution Q(x, p) of quantum
state ρ̂ is equal to the Wigner function W (x, p) of another state σ̂, in a particular setup. To that
purpose, we define the distribution Q(x, p) = Q(x+ ip) where x and p are two real parameters.

Q(x, p) =
1

π
〈x+ ip| ρ̂ |x+ ip〉 (5.15)

=
1

π
Tr [ρ̂ |x+ ip〉 〈x+ ip|] (5.16)

=
1

π
2π

∫∫
W (x′, p′)W0(x′ −

√
2x, p′ −

√
2p)dx′dp′ (5.17)

= 2

∫∫
W (x′, p′)W0(

√
2x− x′,

√
2p− p′)dx′dp′ (5.18)

= 2 (W ∗W0) (
√

2x,
√

2p) (5.19)

= L 1√
2

[W ∗W0] (x, p) (5.20)

=

(
L 1√

2
[W ] ∗ L 1√

2
[W0]

)
(x, p) (5.21)

So that we can formally identify Q = L1/
√

2 [W ] ∗ L1/
√

2 [W0]. This equation is familiar to us
as we have introduced a similar pattern in Chapter 4. Indeed, it describes the action of a balanced
beam-splitter acting on W and W0. Let us define the state σ̂ as follows:

σ̂ = Tr2

[
B̂π

4
(ρ̂⊗ |0〉 〈0|) B̂†π

4

]
. (5.22)

In that particular setup, which is pictured in Figure 5.2, we can identify the Husimi Q-function of
the state ρ̂ with the Wigner function of the state σ̂, so that we can write Wσ̂(x, p) = Qρ̂(x, p). As a
consequence, it so happens that the state σ̂ is Wigner-positive and that any state built in the manner
described above is Wigner-positive. Any Husimi Q-function is thus an acceptable non-negative Wigner
function.

At this point we should make an observation about the convolution of two Wigner functions.

73



Figure 5.3: A beam-splitter of transmittance η = 1/2 is fed on the first input mode by ρ̂A and on
the second input mode by ρ̂B, so that ρ̂A ⊗ ρ̂B is a two-mode product state. After the action of the
beam-splitter, the second output mode is discarded (traced out), and we are left on the first output
mode with the single-mode state σ̂. Any state σ̂ constructed as depicted is Wigner-positive, i.e. it
has a non-negative Wigner function. Note that we could have equivalently discarded the first output
mode in place of the second output mode. By doing so, we would have obtained on the second output
mode another state σ̂′, which would also be Wigner-positive. This setup generalizes Figure 5.2.

Indeed, let us make the following development:

(W1 ∗W2) (x, p) =

∫∫
W1(x′, p′)W2(x− x′, p− p′)dx′dp′ (5.23)

=

∫∫
W1(x′, p′)Rπ [W2] (x′ − x, p′ − x)dx′dp′ (5.24)

=

∫∫
W1(x′, p′)D(x,p) ◦ Rπ [W2] (x′, p′)dx′dp′ (5.25)

=
1

2π
Tr
[
ρ̂1D̂(x,p)R̂πρ̂2R̂

†
πD̂
†
(x,p)

]
(5.26)

For each value of (x, p), the convolution of two Wigner functions can be linked to the overlap of
two quantum states, which is always a non-negative quantity. As a consequence, the convolution of
two Wigner function is always non-negative. Another interesting consequence arise from the fact that
the overlap of two quantum states is lower or equal to 1, which means in turn that the convolution
of two Wigner function is upper bounded by 1/(2π). The lower-bound is simply zero. We find the
following inequality:

0 ≤ (WA ∗WB) (x, p) ≤ 1

2π
. (5.27)

5.2.3 Beam-splitter states

In this subsection, we take advantage of relation (5.27) to present a generalization of the setup pre-
sented in Figure 5.2. Indeed, following the same development that we followed previously, we construct
the state σ̂ for two states ρ̂A and ρ̂B as follows:

σ̂ = Tr2

[
B̂π

4
(ρ̂A ⊗ ρ̂B) B̂†π

4

]
. (5.28)

We call any state which can be written as such a beam-plitter state. See Figure 5.3 for an illustration.
The Wigner function of σ̂ can be obtained from the Wigner functions of ρ̂A and ρ̂B, which we note
respectively as WA and WB, as the following:

Wσ̂ = L 1√
2

[WA ∗WB] . (5.29)

Thus, according to (5.27), we conclude that the resulting state σ̂ is Wigner-positive. Note that the
partial in (5.28) can equivalently be performed over mode 1. The two single-mode reduced outputs of
the balanced beam-splitter are Wigner-positive. Let us mention that the observation that a balanced
beam-splitter produces Wigner-positive states has also been highlighted in reference [4].
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Figure 5.4: The setup described here is built from two successive balanced beam-splitters. The first
beam-splitter is associated to the parameter θ1 = −π/4 (so that its transmittance is η1 = 1/2) and to
the unitary operator B̂θ1 . The second beam-splitter is associated to the parameter θ2 = π/4 (so that
its transmittance is η2 = 1/2) and to the unitary operator B̂θ2 . The successive application of the two
beam-splitters corresponds to the unitary B̂θ2B̂θ1 = 1̂, since θ1 + θ2 = 0. As a consequence, the input
of the first beam-splitter is identical to the output of the second beam-splitter. We choose the input
of the first beam-splitter to be a two-mode product state ρ̂A ⊗ ρ̂B. Between the two beam-splitters,
we have the two-mode state ρ̂′, which is in general not a product state. As soon as at least one of the
two states ρ̂A or ρ̂B is Wigner-negative, the two-mode state ρ̂′ is necessarily entangled since its output
through a balanced beam-splitter is a Wigner-negative state. This naturally follows from the fact than
any separable state yields a Wigner-positive state through the action of a balanced beam-splitter.
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Figure 5.5: Optical implementation of a setup realizing multimode Wigner-positive states. The setup
uses N beam-splitters with respective transmittance ηi. When the transmittance parameters ηi are
all chosen to be equal to 1/2, the N -mode output σ̂ is Wigner-positive for any choice of ρ̂A and ρB.

Note that in Equation (5.28), we can replace ρ̂A ⊗ ρ̂B whith any two-mode separable state and
the output will still be Wigner-positive, since a mixture of Wigner-positive states remains Wigner-
positive. An interesting consequence of that fact is that a balanced beam-splitter coupled with a
Wigner-negative state always yields and entangled state. That observation is described in detail in
Figure 5.4. Let us note that in this context it is appropriate to mention reference [27] which makes
the link between entanglement and optical nonclassicality.

Let us now interest ourselves to a particular subset of beam-splitter states, which are built from
pure states. We define the set B∗ as the set of states which can be expressed as follows:

σ̂ = Tr2

[
B̂π

4

(
|ψA〉 〈ψA| ⊗ |ψB〉 〈ψB|

)
B̂†π

4

]
. (5.30)

Note that until now we have been used to associate the superscript ”∗” with sets of pure states (such
as Q∗, Q∗+ or G∗). The set B∗, however, contains states which are in general not pure, but we still
use the superscript ”∗” to stress that it is built from pure states. Notice that the convex hull of B∗
encompass any state of the form (5.28), and even beyond as it also contains the set of beam-splitter
states built from separable states. We define the set of beam-splitter states B as the convex hull of
B∗, so that B = Conv (B∗).

By a simple reasoning, we are going to show that the set B∗ contains the set G∗. To that purpose,
let us consider any pure Gaussian state γ̂ ∈ G∗. From the symplectic formalism introduced in Chapter
9, it can easily be shown that (when the displacement vector of γ̂ is zero):

γ̂ = Tr2

[
B̂θ (γ̂ ⊗ γ̂) B̂†θ

]
, (5.31)

so that γ̂ ∈ B∗. In the case of a non-zero displacement vector, it is still possible to obtain γ̂ with the
appropritate choice of D̂α. As a consequence, it appears that G∗ ⊂ B∗ which also implies G ⊂ B.

Let us mention that beam-splitter states extends naturally to multimode states. The setup is
pictured in Figure 5.5. The multimode state σ̂ is built from the two multimode states ρ̂A and ρ̂B as
follows:

σ̂ = Tr(N+1)···2N

( N⊗
k=1

B̂π
4

)
(ρ̂A ⊗ ρ̂B)

(
N⊗
k=1

B̂π
4

)† (5.32)

where each beam-splitter is coupling the mode i to the mode N + i with i = 1, ..., N . It can then be
shown that the Wigner function of σ̂ is a convolution of the Wigner functions of ρ̂A and ρ̂A:

Wσ̂ = L 1√
2

[WA ∗WB] (5.33)
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Figure 5.6: Pictorial representation of the various sets considered here. The full set of quantum states
is denoted as Q, while the set of Wigner-positive states is denoted as Q+. Then, B stands for the
set of beam-splitter states, while G stands for the convex hull of Gaussian states. Further, C stands
for the set of classical states. Within all these sets, we distinguish their phase-invariant restriction,
which we label with the subscript ”�” (or ”⊕” in the case of Q+). Any state in Q� is associated to
a probability vector of S and any state in Q⊕ is associated to a probability vector in S+.

The convolution yields a Wigner-positive states, as we have the following relation:

(WA ∗WB) (x,p) =
1

(2π)N
Tr

ρ̂A( N⊗
k=1

D̂(xk,pk)R̂π

)
ρ̂B

(
N⊗
k=1

D̂(xk,pk)R̂π

)† (5.34)

5.3 Focus on single-mode phase-invariant states

The methods we have presented so far allow us to construct positive Wigner quantum states of very
different shapes. In this section, in order to make further progress in the characterization of the
Wigner-positive set, we will restrict ourselves to single-mode quantum states with a phase-invariance
symmetry. Such states possess a Wigner function with a radial symmetry, and are thus fully described
by a radial function W (r). We define the set Q� as the set of single-mode phase-invariant states:

Q� = {ρ̂ ∈ Q : R̂θρ̂R̂
†
θ = ρ̂ ∀θ}. (5.35)

In accordance with the notation that we have introduced, we define Q∗� as the set of pure phase-
invariant states, so that Q∗� = {|n〉 〈n|} is the set of Fock states. We define Q⊕ as the set of Wigner-
positive phase-invariant states, which is the set in which we are interested in now. Notice finally that
the set of pure Wigner-positive and phase-invariant states Q∗⊕ contains only vacuum. In general, when
it comes to quantum sets, we associate the symbol ”�” with phase-invariance and the symbol ”⊕” with
both Wigner-positivity and phase-invariance. Conversely we define the corresponding sets of Wigner
functions with the same symbols. In that manner, we define W� = Tw [Q�] and W⊕ = Tw [Q⊕].

Remember that any state in Q� can be expressed as a mixture of Fock states. As such, a phase-
invariant state ρ̂ is described by a probability vector p ∈ RN.

ρ̂ =
∞∑
n=0

pn |n〉 〈n| (5.36)
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The physicality conditions correspond to the non-negativity and normalization of p:

pn ≥ 0 ∀n,
∞∑
n=0

pn = 1. (5.37)

We call S the restriction of RN satisfying the physicality conditions. Any vector p that belongs to S
corresponds to a unique phase invariant state in Q� with Wigner function in W�. Then, in order
to determine whether ρ̂ is Wigner-positive, we must check if its Wigner function is non-negative
everywhere. The Wigner-positivity condition translates in a condition on p as follows:

W (r) ≥ 0 ∀r ≥ 0 (5.38)

⇔
∞∑
n=0

pnWn(r) ≥ 0 ∀r ≥ 0 (5.39)

⇔
∞∑
n=0

pn(−1)nLn(2r2) exp
(
−r2

)
≥ 0 ∀r ≥ 0 (5.40)

⇔
∞∑
n=0

pn(−1)nLn(t) ≥ 0 ∀t ≥ 0 (5.41)

In the above development, we have introduced the parameter t = 2r2. Any phase-invariant state
whose coefficients satisfy Equation (5.41) is Wigner-positive. We call the restriction of S satisfying
the Wigner-positivity condition S+. Obviously, we have S+ ⊂ S. Each value of t ≥ 0 injected in the
Wigner-positivity condition (5.41) gives the equation of a hyperplane dividing S in two halves, as p
must be located on one side of the hyperplane to guarantee that W (r) ≥ 0 for the corresponding r.
Two hyperplane associated respectively to t and t + dt intersect in a lower-dimensional hyperplane
which is at the boundary of the convex set S+. Mathematically, the condition that a point p ∈ S
belongs to the curved boundary of S+ is equivalent to the following condition:

∃t ≥ 0 :



∞∑
k=0

pk(−1)kLk(t) = 0

∞∑
k=0

pk(−1)k
d

dt
Lk(t) = 0

(5.42)

Interestingly, a state satisfying the above condition is simply a state whose Wigner function has a
local minimum which coincides with a zero. Note that since S+ is convex, all the points in its curved
boundary are extremal points. However, other isolated extremal points will be shown to exist, as
illustrated schematically in Figure 5.1.

5.3.1 Passive states

In the context of phase-invariant Wigner-positive states, we find it appropriate to introduce the set
of passive states [41, 32]. Passive states are quantum states whose energy can only increase under
the action of a unitary. As such, they cannot produce any useful work, which is why they are called
passive. They are defined with respect to a given Hamiltonian Ĥ, and a passive state with density
operator ρ̂p has the following property:

Tr
[
Ĥρ̂p

]
≤ Tr

[
ĤÛ ρ̂pÛ

†
]

∀Û . (5.43)

It can be shown that passive states corresponds in general to decreasing mixtures of eigenstates
of Ĥ, in the sense that the probability coefficients should decrease considering increasing eigenvalues.
This is consistent with the fact that unitaries preserve the eigenspectrum of a density operator, so
that the optimal way to reduce the energy of the state is to give more probability to lower energy
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states. In quantum optics, we are considering the bosonic Hamiltonian Ĥ = n̂+ 1/2, so that passive
states will be decreasing mixtures of Fock states:

∞∑
n=0

pn |n〉 〈n| with pn ≥ pn+1 (5.44)

It is interesting to define the set of extremal passive states, which correspond to equal mixture of the
first Fock states. Extremal passive states are very useful because, as their name indicate, any passive
state can be expressed as a convex mixture of extremal passive states. We refer to the density operator
of the nth extremal passive state as ε̂n and to its Wigner functin as En(x, p), which are defined as
follows:

ε̂n =
1

n+ 1

n∑
k=0

|k〉 〈k| , En(x, p) =
1

n+ 1

n∑
k=0

Wk(x, p). (5.45)

What justifies our interest in passive states in this chapter is that, in addition to being phase-
invariant, they can be shown to possess a non-negative Wigner function. Indeed, starting from a
formula linking Hermite polynomials to Laguerre polynomials [62], we can make the following deriva-
tion:

2nn!
n∑
k=0

(−1)kLk
(
2x2 + 2y2

)
=

n∑
k=0

(
n
k

)
Hk(x)2Hn−k(y)2

⇔ 2nn!
1

π

n∑
k=0

(−1)kLk
(
2x2 + 2y2

)
exp
(
−x2 − y2

)
=

1

π

n∑
k=0

n!

k!(n− k)!
Hk(x)2 exp

(
−x2

)
Hn−k(y)2 exp

(
−y2

)
⇔ 1

π

n∑
k=0

(−1)kLk
(
2x2 + 2y2

)
exp
(
−x2 − y2

)
=

n∑
k=0

(
1√
π2kk!

Hk(x)2 exp
(
−x2

))( 1√
π2n−k(n− k)!

Hn−k(y)2 exp
(
−y2

))

(5.46)

So that we can finally identify the following relation:

n∑
k=0

Wk(x, p) =
n∑
k=0

ψk(x)2ψn−k(p)
2 (5.47)

where Wk and ψk respectively designate the Wigner function and wave-function of the kth Fock state.
From Equation (5.47), it appears that extremal states ε̂n are Wigner-positive, so that the whole set
of passive states is Wigner-positive, and we have {ε̂n} ⊂ Q⊕.

5.3.2 Fock beam-splitter states

In the previous section, we have introduced the so-called beam-splitter states. Since in this section
we are focusing on phase-invariant states, we are going to construct a set of phase-invariant Wigner-
positive states by using a balanced beam-splitter. To do so, we are going to feed the beam-splitter
with Fock states. For symmetry reasons, the output associated to such a set up is necessarily phase-
invariant. Moreover, when the transmittance parameter of the beam-splitter is chosen to η = 1/2, the
output is also Wigner-positive. With this in mind, we define the states σ̂(m,n) as follows:

σ̂(m,n) = Tr2

[
B̂π

4
(|m〉 〈m| ⊗ |n〉 〈n|) B̂†π

4

]
. (5.48)

These states, which we call Fock beam-splitter states, are obtained when feeding a balanced beam-
splitter with respectively m and n photons. The expression of the state σ̂(m,n) can be decomposed

79



as follows:

σ̂(m,n) =
1

m!n!2m2n

m+n∑
z=0

min(z,m)∑
i=max(0,z−n)

min(z,m)∑
j=max(0,z−n)(

m
i

)(
n

z − i

)(
m
j

)(
n

z − j

)
(−1)i+jz!(m+ n− z)! |z〉 〈z| .

(5.49)

Observe that σ̂(m,n) = σ̂(n,m). Notice that since Equation (5.48) is a particular case of Equation
(5.30), these Fock beam-splitter states belong to the set B∗. Moreover, since they are also phase-
invariant, they belong to the phase-invariant restriction of B∗ that we label as B∗�. The convex hull
of Fock beam-splitter states can be understood as the set of beam-splitter states that can be built
from phase-invariant inputs. In the folllowing, we will define Sb as the set of probability vectors which
correspond to a mixture of Fock beam-splitter states. Obviously, we have Sb ⊆ S+ since mixtures of
Fock beam-splitter states are both Wigner-positive and phase-invariant, and we will see later that the
inclusion is actually strict.

Note that it is not clear that any state of B� corresponds to a probability vector of Sb. Indeed,
since it is possible to create beam-splitter states in the setup of Figure 5.3 starting from two input
states that are not phase invariant (e.g., two squeezed states with orthogonal squeezing produce a
thermal state), it might a priori be possible to build states within B� that do not belong to Sb.
Therefore we cannot at the moment state an equivalence between the set B� and the set Sb, but we
will however see later that they coincide when restricting ourselves to states containing up to two
photons.

Let us now interest ourselves to the Wigner functions of these states σ̂(m,n). We define S(m,n)

as the Wigner function of σ̂(m,n). Their Wigner function can be constructed as the mixture of Fock
states with the coefficients of Equation (5.49). Also, we know that we can obtain them as the rescaled
convolution of the Wigner functions Fock states:

S(m,n) = L 1√
2

[Wm ∗Wn] (5.50)

where Wm and Wn are respectivey the Wigner function of the mth and nth Fock state. As we will see
later, these states generally correspond to extremal points of the set of Wigner-positive states, because
their function generally has a zero. To illustrate this, let us now look at the value taken by S(m,n) at
(x, p) = (0, 0).

S(m,n)(0, 0) = 2 [Wm ∗Wn] (0, 0) (5.51)

= 2
1

2π
Tr
[
|m〉 〈m| D̂0R̂π |n〉 〈n| R̂πD̂0

]
(5.52)

=
1

π
Tr [|m〉 〈m|n〉 〈n|] (5.53)

=
1

π
δmn (5.54)

where we have used the fact that Fock states are invariant under rotation and form an orthogonal
basis. The Wigner function S(m,n) are plotted for several values of m,n in Figure 5.7.

Relation with extremal passive states

We are now going to highlight an interesting relation between extremal passive states ε̂n and beam-
splitter states σ̂(m,n). To that purpose, we define the two-mode state τ̂(n) as an equal mixture of all
the two-mode states with a total number of n photons (τ̂(n) is not a thermal state). It can be written
as follows:

τ̂(n) =
1

n+ 1

n∑
k=0

|k〉 〈k| ⊗ |n− k〉 〈n− k| . (5.55)
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Figure 5.7: Radial functions of some states σ̂(m,n). As it appears, their Wigner function always
cancels at least once (except for vacuum, which corresponds to σ̂(0, 0)).

By construction τ̂(n) is a two-mode state with total energy that is fixed. It is maximally mixed over
the set of two-mode quantum state with total number of photons n. For that reason, it is invariant
under the action of any energy-preserving unitary. Hence, the action of an energy-preserving unitary
will keep the state τ̂(n) as a mixture of states with total number of photons n. Moreover, because
unitary operators preserve the spectrum of eigenvalues, it will remain maximally mixed state over
that subset. Applying these considerations to the particular case of a beam-splitter described by the
unitary B̂θ, we have the following equality:

τ̂n =
1

n+ 1

n∑
k=0

|k〉 〈k| ⊗ |n− k〉 〈n− k| (5.56)

=
1

n+ 1

n∑
k=0

B̂θ (|k〉 〈k| ⊗ |n− k〉 〈n− k|) B̂†θ (5.57)

where the equality holds for any value of the parameter θ. Now, let us choose θ = π/4 so that it
corresponds to a balanced beam-splitter. After partial tracing the state over its second mode, we
obtain the following relation:

Tr2 [τ̂n] =
1

n+ 1

n∑
k=0

|k〉 〈k| = 1

n+ 1

n∑
k=0

σ̂(k, n− k). (5.58)

That relation makes a link between the extremal passive state ε̂n and the beam-splitter states σ̂(m,n).
It expresses that extremal passive states can be obtained as a convex mixture of beam-splitter states
σ̂(m,n). As a consequence, it implies the set of passive states is strictly included in the set of Fock
beam-splitter states defined as the convex closure of σ̂(m,n). We can translate the above relation in
terms of Wigner functions, which gives:

n∑
k=0

Wk(x, p) =

n∑
k=0

S(k,n−k)(x, p) (5.59)

Equation (5.59) should be compared with Equation (5.47). Indeed, both relations gives a decomposi-
tion of the Wigner function of extremal passive states into a sum of non-negative functions. However,
with Equation (5.47), the decomposition is carried out over functions which do not correspond to
physically acceptable Wigner functions. Indeed, our numerical simulations have revealed that the
function ψk(x)2ψn−k(p)

2 does not correspond in general to a positive semi-definite operator. We then
understand the advantage of Equation (5.59) which provides a decomposition of the Wigner function of
an extremal passive state into a set of non-negative functions that correspond to physically acceptable
Wigner functions.
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5.3.3 Restriction up to two photons

Coming up with a precise description of the set of Q⊕ appears to be difficult, even if that set is
significantly easier to describe than the whole set Q+. In this subsection, we are going to restrict
ourselves to a subset of Q�, which is the restriction of mixtures of Fock states up to two photons. To
that purpose, let us denote by Sn and Sn+ the restriction of respectively S and S+ that have components
pk = 0 for k > n. Obviously, it appears that Sn+ ⊂ Sn. Any probability vector of S2 is associated to a
quantum state of Q� through the following relation:

ρ̂ = (1− p1 − p2) |0〉 〈0|+ p1 |1〉 〈1|+ p2 |2〉 〈2| (5.60)

The Wigner function of ρ̂ can then be expressed as the corresponding mixture of Wigner function
of Fock states. Let us recall the first Laguerre polynomials : L0(x) = 1, L1(x) = −x + 1 and
L2(x) = (x2 − 4x+ 2)/2. Using this, we find the Wigner function of ρ̂ as the following:

W (r) =
1

π
exp
(
−r2

) (
2p2r

4 + (2p1 − 4p2) r2 + 1− 2p1

)
. (5.61)

We can formulate the Wigner-positivity conditions using Equation (5.41). The state ρ̂ is Wigner-
positive if p1, p2 satisfy the following condition:

1

2
p2t

2 + (p1 − 2p2)t+ 1− 2p1 ≥ 0 ∀t ≥ 0 (5.62)

We are now going to use this condition to characterize the set S2
+. First, we will determine what are

the point of S2 which correspond to Wigner-positive states, which will give us the set S2
+. Then, will

use Equation (5.42) to determine its extremal states.

Locus of Wigner-positivity

Eq. (5.62) is the equation of a parabola with a non-negative coefficient associated to t2. We want
that parabola to have non-negative values for t ≥ 0. This is possible either if its discriminant ∆ is
non-positive (∆ ≤ 0), or if both its roots corresponds to t ≤ 0. Let us examine the latter possibility
first. If we have a parabola defined by at2 + bt+ c = 0, the sum of its roots is −b/a and their product
is c/a. The two roots are non-positive if their sum is non-positive and their product is non-negative.
Applied to Eq. (5.62), this gives the following sufficient conditions:

p1 ≥ 2p2

p1 ≤
1

2

(5.63)

Condition (5.63) describes a locus which is the intersection of two half-planes. We define the region of
the plane (p1, p2) satisfying that condition as region B. We now come to the discriminant condition.
The discriminant is equal to ∆ = 4p2

2 − 2p2 + p2
1, so that the condition ∆ ≤ 0 can be written as:(

p1

1/2

)2

+

(
p2 − 1/4

1/4

)2

≤ 1. (5.64)

Condition (5.64) describes an ellipse. We define the region of the plane (p1, p2) satisfying that condition
as region A. Note that the union of the sets determined by conditions (5.63) and (5.64) alongside with
the physicality conditions can be summarized as:

p1 ≤
1

2
,

p2 ≤
1

4
+

1

4

√
1− 4p2

1,

(5.65)

with the additional constraint that p1, p2 ≥ 0. Figure 5.8 illustrates the geometrical locus associated
to the different conditions.

As we have explained previously, each value of t in Equation (5.62) gives the equation of a line
which divides S2 in two half-planes. The situation is illustrated in Figure 5.9, where we have drawn
these lines for several values of r (remember that t = 2r2).
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Figure 5.8: Geometrical locus of Wigner-positivity within the (p1, p2) plane, corresponding to the
boundary of the dark blue region S2

+ satisfying Eq. (5.65). The boundary points and curve of S2
+ that

are extremal are shown in bold. The ellipse (A) corresponds to the region where (p1, p2) is such that
(5.62) is never negative. The semi-infinite triangular region (B) corresponds to values of (p1, p2) such
that (5.62) becomes negative only for negative values of t. The dashed lines forming a triangle define
the physicality limits, that is p1, p2 ≥ 0 and p1 + p2 ≤ 1. The union of (A) and (B) that belongs to
the physicality triangle yields the dark blue region S2

+.

Figure 5.9: Expressing the positivity of the radial Wigner function W (r) for increasing values of r
corresponds to a continuum of straight lines, which are all tangents of ellipse (5.64). As an illustration,
we plot as dashed lines the tangents associated with W (r) = 0 for r = 0, r = 1/

√
2, r = 1, r =

√
2,

and r →∞. For instance, expressing W (0) ≥ 0 implies p1 ≤ 1/2, while expressing W (1) ≥ 0 implies
p2 ≤ 1/2. For r > 1, the positivity condition becomes redundant, and, at the limit r → ∞, it gives
p2 ≥ 0, which is equivalent to the physicality condition.
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Locus of extremal Wigner-positivity

The set of extremal Wigner-positive states in S2
+ can easily be identified from Figure 5.8 (where they

appear in bold). Let us compare it with the set of states satisfying condition (5.42). Let us define
P (t) as the polynomial of the parabola described in Eq. (5.62). We refer to the first order derivative
of P (t) with respect to t as P ′(t).

P (t) =
1

2
p2t

2 + (p1 − 2p2)t+ 1− 2p1

P ′(t) = p2t+ p1 − 2p2

(5.66)

We are looking for the set of points (p1, p2) such that there exists one value of t ≥ 0 which satisfies
both P (t) = 0 and P ′(t) = 0. The condition P ′(t) = 0 is satisfied at t = 2 − p1/p2. Injecting that
value of t in P (t) = 0 gives us the following equation 4p2

2 − 2p2 + p2
1 = 0, which corresponds to (5.64)

with a strict equality. Remember that we have the additional constraint that 2p2 ≥ p1, since t ≥ 0.
This describes an arc of ellipse, that we can parameterize as follows:

p1 =
1

2

√
1− a2

p2 =
1

4
(a+ 1)

(5.67)

where the parameter a goes from 0 to 1. Injecting that parametrization in (5.61) yields the following
expression:

Wa(r) =
1

π
exp

(
−r2

) 1

2
(a+ 1)

(
r2 − 1 +

√
1− a
1 + a

)2

. (5.68)

Wa(r) is the radial Wigner function of the extremal Wigner-positive states located on the arc of ellipse.
As it appears, the condition 5.42 does not yields all the extremal states of S2

+, but only the extremal
states which belong to the curved boundary of S2

+.

5.3.4 Discussion of the set S2
+

We have now properly determined the limits of the set S2
+ inside the set S2. Let us observe how the

beam-splitter states σ̂(m,n) are located with respect to S2
+. We know that only the states σ̂(m,n)

such that m + n ≤ 2 will have at most 2 photons. For that reason, we can limit ourselves to look at
the 4 different beam-splitter states that we define hereafter:

σ̂a := σ̂(0, 0) = |0〉 〈0| (5.69)

σ̂b := σ̂(1, 0) =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| (5.70)

σ̂c := σ̂(1, 1) =
1

2
|0〉 〈0|+ 1

2
|2〉 〈2| (5.71)

σ̂d := σ̂(2, 0) =
1

4
|0〉 〈0|+ 1

2
|1〉 〈1|+ 1

4
|2〉 〈2| (5.72)

Notice that σ̂a is vacuum, and also corresponds to the extremal passive state ε̂0. The state σ̂b corre-
sponds to the extremal state ε̂1. The second extremal state is equal to ε̂2 = (|0〉 〈0|+ |1〉 〈1|+ |2〉 〈2|)/3
and can be obtained as (σ̂c + 2σ̂d)/3. We label ε̂2 by the letter e in Figure 5.10, where we place the
4 beam-splitter states and the extremal state ε̂2. Each of these beam-splitter states corresponds to a
precise point in S2

+. We define the convex hull of these points as the set S2
b, which corresponds to all

the states which can be obtained as a convex mixture from {σ̂a, σ̂b, σ̂c, σ̂d}.
Note that it is not a trivial observation to see that S2

b coincides with the two-photon restriction
of B� (i.e., the phase-invariant states with up to two photons within the convex hull of beam-splitter

84



Figure 5.10: Graphic representation of the set S2
+ in S2. The outer triangle determines the region

of physicality such that p1, p2 ≥ 0 and p1 + p2 ≤ 1, so that each point in the triangle corresponds
to a quantum state in the restriction of Q� with at most 2 photons. Each point in the blue region
corresponds to a quantum state in the restriction of Q⊕ with at most 2 photons. The light-blue region
corresponds to the set Sb, i.e. the convex hull of Fock beam-splitter states. The dark-blue region
corresponds to phase-invariant Wigner-positive states that cannot be expressed as a convex mixture
of Fock beam-splitter states. The inner dashed triangle a-b-e encompasses the set of passive states
while the trianlge a-b-d encompasses the states whose Wigner function coincides with the Husimi
Q-function of a state.
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states of B). Since it is possible to create beam-splitter states in the setup of Fig. 5.3 that are phase-
invariant starting from two input states that are not phase-invariant (e.g., two squeezed states with
orthogonal squeezing produce a thermal state), it might a priori be possible to build states within
the two-photon restriction of B� that do not belong to S2

b. However, a simple argument convinces us
otherwise. First, notice that we may restrict to pure input states without loss of generality. Since the
output is a mixture with up to 2 photons, we must consider input states that are either in the form

|ψ〉 = |0〉 ⊗ (a0 |0〉+ a1 |1〉+ a2 |2〉) , (5.73)

or
|ψ〉 = (b0 |0〉+ b1 |1〉)⊗ (c0 |0〉+ c1 |1〉) . (5.74)

In case (5.73), the first input is the vacuum, which is phase-invariant, so that the output state is
phase-invariant only if the second input state is also phase-invariant. This is easy to understand given
that the output Wigner function is a (scaled) convolution of the two input Wigner functions. In case
(5.74), a straightforward calculation shows us that the output states is phase-invariant only if at least
one of the coefficients b0, b1, c0, or c1 vanishes. This implies that one of the two input states must
be phase-invariant, which in turns implies that the other input must be phase-invariant too in order
to ensure the phase-invariance of the output. As a result, the two-photon restriction of B� coincides
with the set S2

b (it is unknown, however, whether this remains true for more than two photons, that
is, whether B� corresponds to the set Sb in general). Since we have found phase-invariant Wigner-
positive states outside S2

b, this confirms that B is stricly included in Q+, as advertised earlier (see Fig.
5.6).

Several observations can be made from Figure 5.10. First, state σ̂a, which coincides with the
vacuum state, is a trivial extremal state of S2

+ even if its Wigner function does not reach zero. As
already mentioned, σ̂b, σ̂c, and σ̂d are other extremal states of S2

+, as witnessed by the fact that
their Wigner function vanishes at some location in phase space. The convex set S2

+ has three facets.
Two of them correspond to the physicality conditions (5.37), i.e. p1 ≥ 0 and p2 ≥ 0. The third one
corresponds to condition (5.41) where we have set t = 0, which gives us p0 + p2 ≥ 1/2 or equivalently
p1 ≤ 1/2. Note that the points in this third facet belong to the boundary of S2

+ but are not extremal.
This can be easily understood as the segment in Fig. 5.10 connects σ̂b and σ̂d, which both admit a
zero of their Wigner function at the same location (i.e., the origin). Note also that, in general, the set
S+ always has a facet corresponding to ∑

k even

pk =
1

2
. (5.75)

which expresses the positivity of the Wigner function at r = 0 (recall that t = 2r2). As pictured in
Fig. 5.9, expressing the positivity of the radial Wigner function for increasing values of r yields a
continuum of straight lines, whose locus of intersecting points forms an ellipse centered in (0, 1/4),
namely (

p1

1/2

)2

+

(
p2 − 1/4

1/4

)2

= 1 . (5.76)

Overall, Figure 5.10 shows that the subspace S2
b, which is spanned by the extremal states σ̂a, σ̂b,

σ̂c, and σ̂d, covers indeed a large region of S2
+ (indicated in light blue) so any point in this region can

thus be generated by a convex mixture of them. However, S2
+ also includes a small region (indicated

in dark blue) that is located under the ellipse defined by Eq. (5.76) and above the straight line c-d.
This region is thus outside the polytope S2

b generated by the σ̂ states, which confirms that S2
+ also

admits a continuum of extremal points along this ellipse.
Finally, let us conclude this chapter by studying Figure 5.10 from the point of view of entanglement.

Indeed, in Figure 5.4 we have highlighted how Wigner-negative states always produce entanglement
with a balanced-beam splitter. A converse observation is that entanglement is required in order to
produce Wigner-negative states with a balanced beam-splitter. With this in mind, let us now imagine
that we have a balanced beam-splitter at our disposal and that we want to recreate the states of Figure
5.10. The white region inside the outer triangle corresponds to Wigner-negative states, which require
thus an entangled input in order to be built. The light-blue region, which corresponds to the set Sb,
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is associated with Wigner-positive states that can be constructed from separable inputs. In contrast,
the dark-blue region corresponds to Wigner-positive states that cannot be built from separable inputs.
Quantum states in that region have thus the rather surprising property that they require entanglement
to be produced, even if their Wigner function is non-negative.
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Chapter 6

Continuous majorization in quantum
phase space

In this chapter, we focus on the central announced objective of this thesis, namely the application of the
mathematical tool that is continuous majorization onto the Wigner functions which embody quantum
states in phase space. As we have seen in Chapter 1, Wigner functions are distributions that go
beyond the scope of probability distributions, due to their negativity originating from their quantum
behavior. As such, the disorder of Wigner functions cannot be characterized only by a classical
probabilistic approach. For this reason, we have in Chapter 3 focused our interest on the powerful
theory of majorization, and we have shaped it for distributions taking both positive and negative
values and defined over an infinite support. Chapters 1 and 3 therefore form the backgroundfor the
current chapter. Note also that to some extent we will give a particular attention to non-negative
Wigner functions. We will therefore also use several results derived in Chapter 5.

This chapter is structured in 4 sections. In the first section, we will properly define all the ideas
of majorization in the framework of Wigner functions. We will develop the notions of level-functions,
level-equivalence and rearrangements when the objects we consider are Wigner functions. This will
allow us to write the conditions for a majorization relation between two Wigner functions.

Then, in the next section, we will ask ourselves the question of the existence of a state of least
disorder in phase space. We will see in the rest of our reasoning that such a state cannot in all
generality exist. However, restricting ourselves to Wigner-positive states, we will see that Gaussian
states are very natural candidates to minimize the uncertainty over that subset. We will conclude the
section by formulating a majorization conjecture applying to all Wigner-positive states.

Then, in the next section we will present a major result of our work, namely a proof of the
majorization conjecture introduced in the previous section for a subset of Wigner-positive states. The
set on which we will prove the conjecture is the set of phase-invariant states containing up to two
photons, which is a set that we studied in detail in Chapter 5. The construction of our proof relies on
several majorization lemmas that we prove separately.

Finally, we will conclude this chapter with a more prospective section, in which we will define
slightly adapted versions of regular majorization. We will first define what we call radial-majorization,
which is anticipated to play a role in quantum thermodynamics as it can, among other things, be related
to a difference of energy between the two states involved. We will then define square-majorization,
which applies only to pure states, and which will allow us to formulate an extended majorization
conjecture.

To avoid any possible confusion, let us stress out that in the present chapter we only deal with
continuous majorization between Wigner functions. At no time in this chapter is there any reference
to a discrete majorization relation (except for Fock-majorization in the last section). When we say
that a quantum state majorizes another one, we mean that their Wigner functions are related by a
continuous majorization relation.

The content of this chapter corresponds to the paper entitled Continuous majorization in quantum
phase space [65].
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6.1 Definitions and preliminaries

In this section, we apply the notion introduced in Chapter 3 to distributions represented by Wigner
functions of quantum states. To that purpose, we recall the mathematical objects introduced in the
context of majorization and particularize them to Wigner functions. Wigner functions are infinite-
domain continuous distributions. As such, they enter the scope of majorization that we have introduced
in Chapter 3 in the particular case of continuous distributions defined over an infinite domain. In this
chapter, we will consider single-mode Wigner functions. However, the definition and results can easily
be generalized to multi-mode Wigner functions.

6.1.1 Level-equivalence in phase-space

The level-function of a Wigner function is the function which, in the prism of majorization, contains all
the information we need to know. Wigner function are normalized distributions defined over an infinite
domain. They take in general both positive and negative values. We define the upper level-function
and lower level-function of a Wigner function according to Definition 3.9.

m+
W (t) = ν ({(x, p) : W (x, p) ≥ t}) , m−W (t) = ν ({(x, p) : W (x, p) ≤ t}) . (6.1)

As we remember from Chapter 1, the Wigner function is upper and lower bounded. This implies
that its level-function takes the value zero outside of these bounds. Therefore, the upper level-function
m+
W (t) will be zero for all t ≥ 1/π, while the lower-level function m−W (t) will be zero for all t ≤ −1/π.

Moreover, in the limit t→ 0, both the upper and lower level-functions tends towards infinity. it follows
from the normalization condition that applies on the Wigner function that it has an infinite domain
with value arbitrarily close to zero. The domain of interest of the upper and lower level-functions will
then be respectively (0, 1/π] and [−1/π, 0). We define

µW (t) =


− d

dt
m+
W (t) t > 0

d

dt
m−W (t) t < 0

(6.2)

so that level-density function has an infinite singularity in t = 0, so that when t → 0 we have
µW (t) → ∞. The domain of interest of level-density function µW (t) is [−1/π, 1/π] \ {0}. The level-
density function µW can be used to compute any integral of the following form:

∫∫
ϕ (W (x, p)) dxdp =

1
π∫

− 1
π

ϕ(t)µW (t)dt (6.3)

where the infinite singularity of the level-density function µW implies that the integration converges
only if ϕ(0) = 0. Two Wigner functions are level-equivalent when their upper and lower level-functions
are equal, or equivalently when their level-density function are equal. In that case, we write WA ≡WB.

6.1.2 Rearrangements of a Wigner function

In order to define the rearrangements of a Wigner function, we use some notions defined in Chapter
3. Namely, we use the volume function VA(s) of a set A (see (3.81)), as well as the functions M+

W and
M−W which are the respective inverse of the upper and lower level-functions (see (3.83)). Single-mode
Wigner functions are defined over R2, which is of infinite measure. The volume function of the set
R2 is VR2(s) = πs2. The knowledge of the upper and lower level-functions of W enables us to build
the functions M+

W and M−W which are the respective inverse of m+
W and m−W and can be obtained

as M+
W (u) = max

(
{t : m+

W (t) ≥ u}
)

and M−W (u) = min
(
{t : m−W (t) ≥ u}

)
. The decreasing and

increasing rearrangements of W are then build. Wigner functions have in general two rearrangements.
The decreasing rearrangements W ↓ and the increasing rearrangement W ↑, which are defined as follows:

W ↓(x, p) = M+
W (π(x2 + p2)), W ↑(x, p) = M−W (π(x2 + p2)). (6.4)
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Figure 6.1: Example of decreasing and increasing rearrangements of a partly negative Wigner func-
tion. W2(x, p) is the Wigner function of the Fock state n = 2. The decreasing rearrangement W ↓2 (x, p)
is radial and decreasing. It is always non-negative, and normalized to some value greater than 1. The
increasing rearrangement W ↑2 (x, p) is radial and increasing. It is always non-positive.

Since the decreasing and increasing rearrangements are radial functions that only depend on the
distance r from the origin, we will simply refer to them as W ↓(r) = M+

W (πr2) and W ↑(r) = M−W (πr2).
Let us now introduce the positive volume and negative volume as the following functionals:

Vol+ (W ) =

∫∫
[W (x, p)]+ dxdp, Vol− (W ) = −

∫∫
[W (x, p)]− dxdp. (6.5)

The positive volume Vol+(W ) corresponds to the volume of the positive parts of W , and the negative
volume Vol−(W ) corresponds to the volume of the negative parts of W . They are both non-negative
quantities. Notice that because of the normalization of W , we have Vol+(V )−Vol−(W ) = 1.

The decreasing rearrangement W ↓ takes its maximum value at (x, p) = (0, 0) and is then radially
decreasing. It reaches 0 towards infinity. The norm of the decreasing rearrangement is equal to
Vol+(W ) which is in general greater than zero. Conversely, the increasing rearrangement W ↑ takes its
minimum value at (x, p) = (0, 0) and is then radially increasing and reaches 0 towards infinity. The
norm of the increasing rearrangement is equal to −Vol(W ), which is negative. As we have explained in
Chapter 3, W ↓ ≡ [W ]+ and W ↑ ≡ [W ]−, that is the decreasing rearrangement of W is level-equivalent
to the positive parts of W , and the increasing rearrangement of W is level-equivalent to the negative
parts of W . Figure 6.1 illustrate the decreasing and increasing rearrangements of a partly negative
Wigner-function.

Let us now address the particular case of Wigner-positive states. Since the Wigner function of
a Wigner-positive never takes negative values, its increasing rearrangement is zero everywhere: for
Wigner-positive states, we have the relation W ↑(x, p) = 0. Their decreasing rearrangement, however,
is level-equivalent ot the original Wigner function and we have:

∀W ∈ W+ : W ↓ ≡W. (6.6)

At this point it is interesting to ask us whether the decreasing rearrangement of a Wigner-positive
state corresponds in general to a physically acceptable Wigner function. The question has been
addressed in a previous work [63], and we came to the conclusion than it is in general not the case.
Obviously, there are cases where the decreasing rearrangement indeed corresponds to a physical Wigner
function. Indeed, if we consider thermal states for example, we see that their Wigner function is
non-negative and radial decreasing, which implies that the Wigner-function is equal to its decreasing
rearrangement. We have also found many examples of non-negative Wigner functions whose decreasing
rearrangement is a distribution with abrupt variations of derivative (see [63] for more details).

Cumulative integrals

In Chapter 3, we have defined the cumulative integral of a distribution as the integration of the
distribution over a ball with definite volume centered around the origin (see Definition 3.13). The
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cumulative integral depends on a real parameter which defines the size of the ball. For convenience, the
parameter we have used in Chapter 3 is the n-dimensional volume of the ball, as it was more suitable
to the formulation of majorization. In the present chapter, however, we are going to use a parameter
which corresponds to the radius of the ball. This will not affect the rest of our considerations and
will facilitate the expression of our developments. We define the decreasing cumulative integral and
increasing cumulative integral of W as follows:

S↓s (W ) =

s∫
0

W ↓(r)2πrdr, S↑s (W ) =

s∫
0

W ↑(r)2πrdr. (6.7)

6.1.3 Majorization relations between Wigner functions

The definition of majorization directly follows from Chapter 3. Notice that by construction, Wigner
functions are normalized. As a consequence, the statement WA � WB is equivalent to any of the
following conditions:∫∫

ϕ (WA(x, p)) dxdp ≥
∫∫

ϕ (WB(x, p)) dxdp ∀ϕ convex (6.8)

Φ+
t (WA) ≥ Φ−t (WB) ∀t ∈

[
0, 1

π

]
Φ−t (WA) ≤ Φ−t (WB) ∀t ∈

[
− 1
π , 0
] (6.9)


S↓s (WA) ≥ S↓s (WB) ∀s ≥ 0

S↑s (WA) ≤ S↑s (WB) ∀s ≥ 0

(6.10)

Remember that Φ+
t and Φ−t are the functions defined in Chapter 3, which are respectively built

from the convex function γ+
t and concave function γ−t (see (3.13) and (3.73)).

Let us now interest ourselves to the particular case of Wigner-positive states. Indeed, in that case,
the majorization condition can be simplified. The increasing rearrangement of a non-negative Wigner
function is identically zero, so that we have S↑s (W ) = 0 for all W ∈ W+. In general, for WA,WB ∈ W+,
the statement WA �WB is equivalent to the following conditions:

Φ+
t (WA) ≥ Φ+

t (WB) ∀t ∈
[
0,

1

π

]
(6.11)

S↓s (WA) ≥ S↓s (s)(WB) ∀s ≥ 0 (6.12)

6.1.4 Symplectic invariance

Let us see how the level-functions of the Wigner function evolve under the linear phase space trans-
formations that we have described in Chapter 4. Let us first consider a symplectic transfromation
described by the matrix U. Its upper level-function can be derived as:

m+
W ′(t) =

∫
Θ
(
W ′(r′)− t

)
dr′ (6.13)

=

∫
Θ

(
W (r)

|det U|
− t
)
|det U|dr (6.14)

=

∫
Θ (W (r)− t) dr (6.15)

= m+
W (t) (6.16)

where we have used the property the symplectic matrices have a determinant with absolute value equal
to 1. A very similar development yields that the lower level-functionm−W also remains unchanged under
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symplectic transformations. This concludes that Wigner functions are level-equivalent to their result
from the transformations Rθ, Dα and Sr. This result also extends to the conjugation transformation
Π as the determinant of Π is equal to −1, so that its absolute value is 1.

Rθ [W ] ≡W, Dα [W ] ≡W, Sz [W ] ≡W, Π [W ] ≡W. (6.17)

6.2 Towards a state of least disorder in phase space

As we have explained, a majorization relation allows us to compare two distributions, in this case
Wigner functions, in terms of disorder. It is thus a natural question to ask us whether there exists a
Wigner function Wsup that majorizes every other Wigner function, and another Wigner function Winf

that is majorized by every other functions.

∃? Wsup ∈ W : ∀W ∈ W, W ≺Wsup (6.18)

∃? Winf ∈ W : ∀W ∈ W, W �Winf (6.19)

Let us examine proposition (6.19) first. Suppose there exists a state Winf ∈ W which is majorized
by every other Wigner function of W. Using any of the symplectic transformations of (6.17), we can
construct a different state W ′inf such that W ′inf ≡Winf . Then, we can construct a new state Wnew as a
convex combination of Winf and W ′inf , so that Wnew = (Winf +W ′inf) /2. At this point, we would like
to highlight an important property that we will use later in this chapter. Let W �WA and W �WB,
then any convex combination of WA and WB is majorized by W :{

W �WA

W �WB
⇒ W � p1WA + p2WB (6.20)

where (p1, p2) is a probability vector. That property is easily shown by exploting Jensen’s inequality
for convex and concave functions in relation (6.9). As a consequence of property (6.20), we see
that Wnew ≺ Winf , which shows that a state Winf cannot exist. Note however that the proof is not
complete, as it could happen that Wnew ≡Winf . Nevertheless, it seems reasonable to argue that with
an appropriate choice of symplectic transformation, it is always possible to build a state W ′inf such
that Wnew = (Winf +W ′inf) /2 6≡Winf .

Let us now come to proposition (6.18). Does there exist a Wigner function W that majorizes
every other Wigner function ? The question seems natural, as Wigner functions are subject to the
uncertainty principle. As a consequence, Wigner functions must contain some disorder because of
their quantum nature.

We will see that there is in fact no unique state minimizing disorder from the point of view
of majorization. This conclusion will follow from the observation that pure states are in general
incomparable. We will then see that by restricting ourselves to Wigner-positive states it is possible to
formulate a minimal disorder conjecture.

6.2.1 Pure states are in general incomparable

Pure states are states without any statistical uncertainty. For that reason, they appear as the most
natural candidates to minimize disorder in phase space. Indeed, remember that purity corresponds in
phase-space to a Schur-convex function:

µ(W ) = 2π

∫∫
(W (x, p))2 dxdp. (6.21)

As a consequence, the purity should be maximized for a state of least disorder, and it should then be
equal to 1.
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Building Schur-convex functionals

In this subsection, we make a small digression to present a general way to build Schur-convex func-
tionals. We know that the set of function S↓s and S↑s are respectively Schur-convex and Schur-concave.
As a consequence, any convex combination of S↓s is also Schur-convex, and any convex combination
of S↑s is Schur-concave. Let us imagine a distribution k(s) : R+ 7→ R+ which is always non-negative.
Since a sum of Schur-convex functional is Schur-convex, it appears that the following functional Φ(W )
is Schur-convex:

Φ(W ) =

∞∫
0

dsk(s)S↓s (W ) (6.22)

=

∞∫
0

dsk(s)

s∫
0

2πrdrW ↓(r) (6.23)

=

∞∫
0

ds

∞∫
0

2πrdr Θ (s− r) k(s)W ↓(r) (6.24)

=

∞∫
0

2πrdr W ↓(r)

∞∫
0

ds Θ (s− r) k(s) (6.25)

=

∞∫
0

2πrdrW ↓(r)

∞∫
r

k(s)ds (6.26)

=

∞∫
0

2πrdr W ↓(r)k̃(r) (6.27)

Remember that the only assumption we have made on k is that it is always non-negative. As a
consequence, the only assumption that we have to make on k̃ is that it is non-negative and non-
increasing. What we have shown here is that the functional of the form Φ(W ) =

∫
W ↓(r)ϕ(r)2πrdr

is Schur-convex provided that ϕ : R+ 7→ R is non-negative and non-increasing. Conversely, a similar
development yields the conclusion any functional of the form Φ(W ) =

∫
W ↑(r)ϕ(r)2πrdr is Schur-

convex provided that ϕ : R+ 7→ R− is non-positive and non-increasing. As a consequence, any
functional Φ built as follows is Schur-convex:

Φ(W ) =

∫
W ↓(r)ϕ1(r)2πrdr +

∫
W ↑(r)ϕ2(r)2πrdr (6.28)

under the condition that ϕ1 : R+ 7→ R+ is non-negative non-increasing and ϕ2 = R+ 7→ R− is
non-positive non-decreasing. Remember now that the decreasing rearrangement of a distribution is
itself described by a non-increasing distribution, while the increasing rearrangement is described by a
non-decreasing distribution.

Schur-convex functional associated to a pure state

We are now going to use the previous observation to define a Schur-convex function associated to any
pure state. Let W ∈ W∗ be the Wigner function of a pure state. We define the associated function
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ΦW : RR2 7→ R as follows:

ΦW (A) = 2π

∫ (
W ↓(r)A↓(r)2πrdr +W ↑(r)A↑(r)2πrdr

)
(6.29)

= 2π

(∫∫
W ↓(x, p)A↓(x, p)dxdp+

∫∫
W ↑(x, p)A↑(x, p)dxdp

)
(6.30)

= 2π

 ∫
R2

W ↓(q)A↓(q)dq +

∫
R2

W ↑(q)A↑(q)dq

 (6.31)

= 2π

 ∫
R2

(
W ↓A↓

)
(q)dq +

∫
R2

(
W ↑A↑

)
(q)dq

 (6.32)

= 2π

∫
R2⊕R2

(
W ↓A↓ ⊕W ↑A↑

)
(q)dq (6.33)

= 2π

∫
R2⊕R2

(
W ↓ ⊕W ↑

)(
A↓ ⊕A↑

)
(q)dq (6.34)

We introduce the notation W l = W ↓ ⊕W ↑, and the scalar product:

〈WA,WB〉 = 2π

∫∫
WA(x, p)WB(x, p)dxdp. (6.35)

We can then simply write ΦW (WA) =
〈
W ↓,W ↓A

〉
+
〈
W ↑,W ↑A

〉
=
〈
W l,W

l
A

〉
. Notice that the function

ΦW benefits of interesting properties:

• Linear

The functional ΦW is linear for non-negative scalars:

ΦW (k ·WA) = k · ΦW (WA) ∀k ∈ R+ (6.36)

where k ∈ R+.

• Schur-convex

This is a direct consequence of the construction of ΦW (WA). We have the relation:

WA �WB ⇒ ΦW (WA) ≥ ΦW (WB) (6.37)

• Definite positive

From its construction, the functional ΦW (A) cannot take negative values. Moreover, it is zero
only if the distribution A is zero everywhere:

ΦW (A) ≥ 0, ΦW (A) = 0 ⇔ A = 0 (6.38)

• Definite upper-bounded

It directly follows from Cauchy-Schwarz inequality that it is upper-bounded. Indeed, we can

write
〈
Al, Bl

〉2 ≤
〈
Al, Al

〉 〈
Bl, Bl

〉
. Moreover, we have the inquality

〈
W l,W l

〉
= 〈W,W 〉 =

µ(W ). From that, we can conclude that ΦW (A) ≤ 1. Also, Cauchy-Schwarz inequality is
saturated only for proportional distributions, which means that ΦW takes the value 1 only for
Wigner-functions level-equivalent to W .

ΦW (WA) ≤ 1, ΦW (WA) = 1 ⇔ WA ≡W (6.39)

95



Figure 6.2: The blue curve represents the negative volume of Fock states Vol− (Wn) as a function of n.
The red dashed curve corresponds to the function 0.4

√
n, which appears to be a good approximation

of Vol− (Wn). Note that this graph can be found almost identically in reference [39].

A direct consequence of the existence of the Schur-convex function ΦW for any pure state W ∈ W∗
is that pure states are in general incomparable. Indeed, let WA,WB ∈ W∗. Then the Schur-convex
functions ΦWA

(WA) = 1 ≥ ΦWA
(WB) and ΦWB

(WB) = 1 ≥ ΦWB
(WA). For WA to majorizes WB, it

must that any Schur-convex function takes a greater or equal value on WA than on WB. The only
possiblity to do so is that ΦWB

(WA) = 1, in which case it must that WA ≡WB. As a consequence, the
Wigner function of any two single-mode pure states are either incomparable either level-equivalent.

∀WA,WB ∈ W∗ : WA ≡WB or WA 6 6≡WB (6.40)

where we use the notation WA 6 6≡WB to say that WA and WB are incomparable.

6.2.2 The negative volume of Wigner functions is unbounded

In this subsection, we present an interesting observation over the maximum negative volume that
Wigner functions can exhibit. As it can be seen, the negative volume Vol− corresponds to the func-
tional −Φ−t for t = 0, so that it is a Schur-convex functional. As such, it should take greater values
for a states of low disorder.

It appears that the negative volume is unbounded and can take arbitrarily large values. For
example, let us consider the set of Fock states. Figure 6.2 plots the negative volume of Fock states.
We observe that it is strictly increasing as a function of n, and that it is unbounded:

lim
n→∞

Vol− (Wn) =∞ (6.41)

The fact that the negative volume is unbounded can be understood as another proof that there
exists no state Wsup of least disorder in phase space. It is impossible to find a Wigner function that
majorizes every other functions, since it will always possible to find a Wigner function with a greater
negative volume. It is thus vain to look for a Wigner function which majorizes every other Wigner
functions. However, the problem becomes interesting if we restrict ourselves to Wigner functions whose
negative volume is bounded. It is in this perspective that we introduce the following conjecture.
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Figure 6.3: Two-dimensional representation (white triangle) of quantum states of the form (6.44).
The blue region included in the triangle corresponds to the Wigner-positive states. The points a, b, c,
and d are associated with the Wigner functions Wa, Wb, Wc, and Wd, while the points in the segment
of an ellipse connecting c and d have a Wigner function Vt where t takes any value between 0 and 1.

6.2.3 Disorder conjecture over the Wigner-positive set

The set of non-negative Wigner functions W+ appear as an appropriate subset to lay a least disorder
conjecture. Indeed, the negative volume of Wigner-positive states is bounded as it is zero. Pure
states then appear as the natural candidates to minimize the disorder. As a consequence of Hudson’s
theorem, W∗+ only contains Gaussian pure states and actually contains all of them. Remarkably, the
Wigner functions of all Gaussian pure states are level-equivalent since they are all related by symplectic
transformations in phase space. Indeed, we have the relation:

∀WA,WB ∈ W∗+ : WA ≡WB (6.42)

Hence, all Gaussian pure states have a Wigner function that is level-equivalent to W0, making them
all equivalent to W0 from the point of view of majorization, namely W0 ≡ W for all W ∈ W∗+. With
this in mind, we state the following conjecture:

Conjecture 6.1 (Continuous majorization for Wigner-positive states). The Wigner function of a
Wigner-positive state is majorized by the Wigner function of vacuum.

W ≺W0 ∀W ∈ W+ (6.43)

This expresses that, in the sense of majorization theory, the most fundamental (Wigner-positive)
state is the vacuum state, i.e., the ground state of the Hamiltonian of the harmonic oscillator. Note
that Conjecture 6.1 goes beyond the scope of quantum optical states and applies to the phase space
associated with any canonical pair (x, p). Furthermore, it is unrelated to the Hamiltonian of the
system : the (positive) Wigner function of any state of the system must always be majorized by the
Wigner function of a pure Gaussian state.

6.3 Restricted proof of the conjecture

In this section, we make a first step towards solving conjecture (6.1) by considering a particular subset
of quantum states, namely phase-invariant states that are restricted to two photons at most,

ρ̂ = (1− p1 − p2) |0〉 〈0|+ p1 |1〉 〈1|+ p2 |2〉 〈2| , (6.44)
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where p1, p2 ≥ 0 and p1 + p2 ≤ 1. These states form a convex set given by the area whose outer
boundaries are the p1-axis, the p2-axis and the line satisfying p1 + p2 = 1 as pictured on Fig. 6.3. We
will prove Conjecture 6.1 for the subset of Wigner-positive states of the form (6.44), denoted as W2

+,
which corresponds to the blue area in Figure 6.3. That set has previously been studied in Chapter 5.
It is obvious to see that W2

+ forms a convex set as well since any convex mixture of Wigner-positive
states is Wigner-positive, but the boundary of this set is nonetheless non trivial, see Figure 6.3. At
the same time, this set is simple enough to enable a fully analytical proof of Conjecture 6.1.

As shown in Chapter 5, the boundary of the set W2
+ comprises the extremal states ρ̂a, ρ̂b, ρ̂c

and ρ̂d, represented by the corresponding letters in Figure 6.3, as well as the segment of an ellipse
connecting ρ̂c to ρ̂d. Thus, any state in W2

+ can be written as a convex mixture of these extremal
states. Note that ρ̂a = |0〉 〈0|, which lies at the origin in Figure 6.3, is simply the vacuum state which
will be proven to majorize every other state. The expressions of the Wigner functions of the first four
extremal states (as a function of the parameter r) read as follows (see Chapter 5):

Wa(r) = W0(r) =
1

π
exp

(
−r2

)
,

Wb(r) =
1

π
exp

(
−r2

)
r2,

Wc(r) =
1

π
exp

(
−r2

) (
r2 − 1

)2
,

Wd(r) =
1

π
exp

(
−r2

) 1

2
r4.

(6.45)

In addition to these, there is a continuum of extremal states located on the segment of an ellipse
connecting point c to point d in Figure 6.3. Using a parameter t ∈ [0, 1], the Wigner function of these
states can be parametrized as follows (see Chapter 5):

Vt(r) =
t+ 1

2π
exp

(
−r2

)(
r2 − 1 +

√
1− t
1 + t

)2

. (6.46)

Note that for t = 0, Vt coincides with Wd, while for t = 1, it coincides with Wc.
We are now going to prove that Conjecture 6.1 holds for all states contained in the convex set

W2
+. To do so, it is sufficient to prove that the Wigner functions of all the extremal states are

majorized by the Wigner function of the vacuum W0. As a consequence of Equation (6.20), this
will indeed automatically imply that the same majorization relation holds for all convex mixtures
of extremal states, hence for all states in W2

+. In order to prove our result, we begin by showing
that a majorization relation on radial functions in Rn (here, we only need n = 2) is equivalent to a
majorization relation on specific functions defined on the non-negative real line. This is the content
the following lemma, which we prove in Appendix A.

Lemma 1. If f and g are two n-dimensional radial distributions defined on Rn such that f(r) =
fR (‖r‖) and g(r) = gR (‖r‖) with fR and gR defined on R+, then f � g is equivalent to f̃ � g̃, where
f̃ and g̃ are 1-dimensional distributions defined on R+ as f̃(x) = fR ( n

√
x) and g̃(x) = gR ( n

√
x).

Lemma 1 implies that a majorization relation between any two Wigner functions picked from W0,
Wb, Wc, Wd and Vt is equivalent to a majorization relation between the corresponding 1-dimensional
functions picked from f0, fb, fc, fd and gt, which are defined on R+ as

f0(x) = exp (−x) ,

fb(x) = exp (−x)x,

fc(x) = exp (−x) (x− 1)2 ,

fd(x) = exp (−x)
1

2
x2,

(6.47)

and

gt(x) = exp (−x)
1

2
(t+ 1)

(
x− 1 +

√
1− t
1 + t

)2

. (6.48)
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Thus, we need to prove now that f0 majorizes fb, fc, fd, and gt. Our proof relies on the following
lemma, which we prove in Appendix A for completeness, as we could not find it in the literature.

Lemma 2. Consider two probability distributions f and g defined on the same domain A. If there
exists a collection of level-equivalent distributions f (α) on A depending on the parameter α with f (α) ≡
f for all α such that

g (r) =

∫
k(α) f (α) (r) dα, ∀ r ∈ A, (6.49)

where k is a probability density distribution, then f � g.

Lemma 2 enables us to prove that f � g, provided that we can build g as some convex mixture of
distributions that are level-equivalent to f .

Case of fb and fd

Let us first prove that f0 majorizes fb and fd. In order to make use of Lemma 2, we are going to
build an appropriate collection of level-equivalent functions to f0. One simple way to generate level-
equivalent functions is simply by shifting the original function to the right. Starting from f0, we define

the functions f
(α)
0 labelled by the non-negative shift parameter α as

f
(α)
0 (x) = exp(−x+ α) Θ(x− α), (6.50)

where Θ(z) represents the Heaviside step function. We obviously have that f
(α)
0 ≡ f0 for all α ≥ 0.

Now, define the probability densities kb(α) = exp(−α) and kd(α) = α exp(−α), with α ∈ R+. It is
trivial to verify that kb(d)(α) ≥ 0 for all α ∈ R+ and

∫
kb(d)(α) dα = 1. Furthermore, it can easily be

shown that

fb(d)(x) =

+∞∫
0

kb(d)(α) f
(α)
0 (x) dα. (6.51)

Lemma 2 then directly implies that f0 � fb and f0 � fd.

Case of fc and gt

The same method is not directly applicable to prove that f0 majorizes fc and gt because the latter
functions are non-zero at the origin. The trick, however, is to exploit the fact that fc looks like a
rescaled version of fd in the domain [1,∞). We can then “split” fc into two parts and prove the
majorization relation separately for each part. This is possible as a consequence of the following
lemma, which we prove in Appendix A.

Lemma 3. Consider four functions f1, f2, g1, and g2 defined on the same domain A and such that
f1 and f2 do not both take non-zero values in the same element of A, and similarly g1 and g2 do not
both take non-zero values in the same element of A. If the functions satisfy f1 � g1 and f2 � g2, then
(f1 + f2) � (g1 + g2).

In light of Lemma 3, define the two functions f−c and f+
c on R+ as

f−c (x) =

{
fc(x), for 0 ≤ x ≤ 1,

0, else,
(6.52)

and

f+
c (x) =

{
0, for 0 ≤ x ≤ 1,

fc(x), else.
(6.53)

Obviously, we have f−c + f+
c = fc. In order to prove that f0 � fc by using Lemma 3, we also need to

“split” f0 into two parts f−0 and f+
0 such that f−0 + f+

0 = f0. Moreover, in order to be able to apply
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Figure 6.4: Illustration of the “split” of f0 (top) and fc (bottom) into two parts. The hashed parts
are f−0 and f−c , while the dotted parts are f+

0 and f+
c . The two hashed areas are equal, while the two

dotted areas are equal. This allows us to treat f−0 � f−c and f+
0 � f+

c separately, in order to conclude
finally that f0 � fc.

majorization on each part, f−0 must have the same normalization as f−c , and similarly for f+
0 and f+

c .
Define x∗ = 1− ln 2, and note that

1∫
0

fc(x)dx =

x∗∫
0

f0(x)dx,

∞∫
1

fc(x)dx =

∞∫
x∗

f0(x)dx.

(6.54)

With this in mind, the functions f−0 and f+
0 on R+ are

f−0 (x) =

{
f0(x), for 0 ≤ x ≤ x∗,
0, else,

(6.55)

and

f+
0 (x) =

{
0, for 0 ≤ x ≤ x∗,
f0(x), else.

(6.56)

It follows from (6.54) that f−c and f−0 have the same normalization (and similarly for f+
c and f+

0 ).
The distributions f−0 , f+

0 , f−c , and f+
c are represented in Fig. 6.4.

The last step now is to prove that f−0 � f−c as well as f+
0 � f+

c . Starting with the latter relation,
we define the two functions f̃+

0 and f̃+
c on R+ by respectively shifting to the left f+

0 by an amount x∗

and f+
c by 1, namely

f̃+
0 (x) = f+

0 (x+ 1− ln 2) = 2 exp(−1) exp(−x), (6.57)

and
f̃+
c (x) = f+

c (x+ 1) = exp(−1) exp(−x)x2. (6.58)

Note that f̃+
0 (x) and f̃+

c (x) are proportional to f0(x) and fd(x), respectively, with the same propor-
tionality factor of 2 exp(−1). Since we have already shown that f0 � fd, it follows that f̃+

0 � f̃+
c ,

which is equivalent to f+
0 � f+

c since f̃+
0 ≡ f

+
0 and f̃+

c ≡ f+
c .

In order to prove that f−0 � f−c , we note that f−0 and f−c are both monotonically decreasing
functions, so they coincide with their decreasing rearrangements, namely f−0 = (f−0 )↓ and f−c = (f−c )↓.
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Therefore, their cumulative integrals are simply given by

Ss(f
−
0 ) =

s∫
0

f−0 (x) dx and Ss(f
−
c ) =

s∫
0

f−c (x) dx. (6.59)

In order to prove the majorization relation, we will now show that Ss(f
−
0 ) ≥ Ss(f

−
c ) for all s ∈ R+.

Since f−0 and f−c are both monotonically decreasing functions, since f−0 (x) = 0 for all x > x∗, and
since x∗ < 1, it is sufficient to show that f−0 (x) ≥ f−c (x) for all x ∈ [0, x∗]. Indeed, the ratio
fc(x)/f0(x) = (x− 1)2 ≤ 1 for x ∈ [0, x∗]. Since f−0 and f−c are non-negative distributions normalized
to the same value, we get f−0 � f−c . From Lemma 3, we conclude that f0 � fc.

Finally, the same “splitting” technique can be used to prove that f0 � gt for all values of t ∈ [0, 1],
which of course includes f0 � fd and f0 � fc as limiting cases for t = 0 and 1, respectively. We
point the interested reader to Appendix B for such a proof. In summary, we have thus shown that all
functions (i.e., fb, fc, fd and gt for all t ∈ [0, 1]) are majorized by f0.

Using Lemma 1, this translates into the fact that the Wigner functions of all extremal states (i.e.,
Wb, Wc, Wd, and Vt for all t ∈ [0, 1]) are majorized by W0. Hence, any convex mixture of these
extremal Wigner functions is also majorized by W0 as a consequence of Eq. (6.20). This concludes
the proof of Conjecture (6.1) for all Wigner-positive states in W2

+.

6.4 Alternative continuous majorizations

Let us conclude this chapter by defining two adapted versions of continuous majorization. These
are slightly different to the definition of a regular majorization relation. We first present radial-
majorization, and show its particular connection with energy. Then we present square-majorization,
which enables us to formulate a conjecture over the set of pure states.

6.4.1 Radial-majorization

Any single-mode Wigner function W (x, p) can be equivalently expressed in a polar coordinate system
W (r, θ), such that r =

√
x2 + p2 and θ = arctan(p/x). The cumulative integral Ss of a Wigner

function can then be expressed as follows:

Ss(W ) =

∫∫
‖(x,p)‖≤s

W (x, p)dxdp =

s∫
0

dr

2π∫
0

dθ W (r, θ) (6.60)

We say that the Wigner function WA radial-majorizes the Wigner function WB, written WA �r WB

if and only if the following condition holds:

Ss(WA) ≥ Ss(WB) ∀s ≥ 0. (6.61)

Radial-majorization can be understood as the continuous analog of Fock-majorization [37]. Indeed,
Fock-majorization corresponds to an adapted version of discrete majorization between two density
operators, where the eigenvalues are sorted by inceasing energy, rather than decreasing order. Indeed,
rememebr that the radius r =

√
x2 + p2 can be related to the energy of the state as Ĥ =

(
x̂2 + p̂2

)
/2

for bosonic systems. With radial-majorization, we use the cumulative integral which perform the
integration starting with the lowest values of r, and thus by increasing energy.

Let us now consider that WA �r WB. As a consequence, we have the relation Ss(WA) ≥ Ss(WB)
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for all s ≥ 0. If we now introduce a non-negative function k(s), we can write the following implication:

∞∫
0

dsk(s)Ss(WA) ≥
∞∫

0

dsk(s)Ss(WB) (6.62)

⇔
∞∫

0

dsk(s)

s∫
0

rdr

2π∫
0

dθWA(r, θ) ≥
∞∫

0

dsk(s)

s∫
0

rdr

2π∫
0

dθWB(r, θ) (6.63)

⇔
∞∫

0

dsk(s)

∞∫
0

rdr

2π∫
0

dθΘ(s− r)WA(r, θ) ≥
∞∫

0

dsk(s)

∞∫
0

rdr

2π∫
0

dθΘ(s− r)WB(r, θ) (6.64)

⇔
∞∫

0

rdr

∞∫
0

dsk(s)Θ(s− r)
2π∫
0

dθWA(r, θ) ≥
∞∫

0

rdr

∞∫
0

dsk(s)Θ(s− r)
2π∫
0

dθWB(r, θ) (6.65)

⇔
∞∫

0

rdr

∞∫
r

dsk(s)

︸ ︷︷ ︸
k̃(r)

2π∫
0

dθWA(r, θ) ≥
∞∫

0

rdr

∞∫
r

dsk(s)

︸ ︷︷ ︸
k̃(r)

2π∫
0

dθWB(r, θ) (6.66)

⇔
∞∫

0

rdr

2π∫
0

dθk̃(r)WA(r, θ) ≥
∞∫

0

rdr

2π∫
0

dθk̃(r)WB(r, θ) (6.67)

Remember that the only condition we have laid on k(s) is that it should be non-negative. For that
reason, the only condition that applies on k̃(r) =

∫∞
r k(r)dr is that it is non-negative and non-

increasing. Note also that the non-negativity of k̃(r) can be relaxed, since adding or subtracting a
constant on both sides of the inequality gives an equivalent inequality. One last thing to note is that
if choosing k̃(r) to be Θ(s − r), the condition yields the inequality Ss(WA) ≥ Ss(WB). We can thus
write the following equivalence:

WA �r WB ⇔
∞∫

0

2π∫
0

WA(r, θ)ϕ(r)dθrdr ≥
∞∫

0

2π∫
0

WB(r, θ)ϕ(r)dθrdr ∀ϕ non-increasing

(6.68)

⇔
∞∫

0

2π∫
0

WA(r, θ)ϕ(r)dθrdr ≤
∞∫

0

2π∫
0

WB(r, θ)ϕ(r)dθrdr ∀ϕ non-decreasing

(6.69)

Remember now that the bosonic Hamiltonian is Ĥ = (x̂2+p̂2)/2. It is associated to the distribution

Tw

[
Ĥ
]

= H(x, p) = (x2 +p2)/2 = r2/2 where we use the parameter r =
√
x2 + p2. As a consequence,

we can write:
WA �r WB ⇒ 〈Ĥ〉A ≤ 〈Ĥ〉B (6.70)

Radial-majorization is expected to play an important role in quantum thermodynamics with continu-
ous variables. Let us mention that we have good reasons to believe that a relation of radial-majorization
between two quantum states is preserved when the states evolves through Gaussian phase-insensitive
channels (which we will introduce in Chapter 8). This way is still under research for the moment.
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6.4.2 Square-majorization

The next alternative version of majorization that we present is square-majorization. In this different
version, we consider the square of the Wigner function rather than the Wigner function itself, which
allows us to consider only non-negative distributions. The origin of this idea is that, for states of same
purity, the squared Wigner functions are normalized to the same value. Hence, square-majorization
is a perfect tool to compare states with same purity. Let WA,WB ∈ W∗ be the Wigner functions of
two pure states. We say that WA square-majorizes WB if the following holds:

WA �s WB ⇔ (WA)2 � (WB)2 (6.71)

⇔
∫∫

ϕ
(
WA(x, p)2

)
dxdp ≥

∫∫
ϕ
(
WB(x, p)2

)
dxdp ∀ϕ convex (6.72)

Square-majorization has the advantage of providing a way to compare pure states. Indeed, we have
seen earlier that pure state were in general incomparable as regards regular majorization. This is not
true anymore with square-majorization. Indeed, our numerical simulations have shown for example
the existence of a square-majorization chain for Fock states:

Wn �s Wn+1 (6.73)

where Wn is the Wigner function of the nth Fock state. This is consistent with the fact that Fock
states are increasingly widespread throughout phase-space for increasing values of n. In addition to
this chain of square-majorization for Fock states, we have also found numerical evidence that the
Wigner function of vacuum square-majorizes the Wigner function of any pure state. This leads us to
state the following conjecture:

Conjecture 6.2 (Square-majorization for pure states). The Wigner function of any pure state is
square-majorized by the Wigner function of a pure Gaussian state.

W ≺s W0 ∀W ∈ W∗ (6.74)

Note that, similarly to regular majorization, pure Gaussian states are equivalent regarding square-
majorization. We will show some numerical evidence supporting this conjecture in the next chapter.
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Chapter 7

Measuring phase-space uncertainty

In the previous chapter, we laid the foundation for continuous majorization in phase space. As we
know, a majorization relation is a very strong statement as it implies in turn an infinite number of
inequalities over the broad class of Schur-convex and -concave functions. Majorization theory, however
has its limits, since in some cases it cannot decide between two distributions, in which case they are said
to be incomparable. In addition to that, a majorization relation never allows to quantify disorder, it is
only a comparison between two distributions. It is well known that in physics in general, quantifying
a quantity is an essential step in order to be able to establish equations that can be used in practice.
This is the context for this chapter, and we will now turn to particular measures of disorder and study
their properties.

First, we will focus on Schur-concave measures that are compatible with Wigner-negative states.
We will indeed notice that some measures are adapted to measure the uncertainty of non-negative
distributions, but become inadequate when we consider instead distributions taking both positive and
negative values. We will consider in that section p-norms and Rényi entropies.

Then, we will devote a section of this chapter to the definition of a quantity which appears very
naturally in the framework of Wigner-positive states, namely the Shannon differential entropy. We
define that quantity as the Wigner entropy of a Wigner-positive state. This section will therefore
echo Chapter 5, and we will identify the properties of the Wigner entropy that make it a remarkable
physical quantity and worthy of particular interest. We will also present a conjecture on a very natural
lower bound for the Wigner entropy. Then, we will present an important result of our work, namely
an analytical proof that this lower bound is satisfied for the large set of Wigner-positive passive states.
The main part of this chapter has been published in the paper entitled Quantum Wigner entropy [64].

Then, in the next section, we will extend our considerations by defining the Wigner-Renyi entropy.
We will use these measures to illustrate the validity of the conjectures introduced in Chapter 6. To do
so, we will numerically and randomly simulate quantum states and measure their respective Wigner-
Rényi entropy.

7.1 Building a measure of uncertainty in phase space

The measures of disorder that interest us in this work are the measures compatible with the theory
of majorization. These measure are therefore the Schur-convex or Schur-concave functionals. Such
functionals can be symmetric, so that their value shouldn’t change under transformation that keep
the level-function unchanged. A simple way to construct a symmetric functional over phase-space is
to integrate a function ϕ : R 7→ R over the whole domain of the Wigner function. With this in mind,
we introduce the functions ϕp and functional Φp as follows:

Φp(W ) =

∫∫
ϕp(W (x, p))dxdp, where ϕp(x) = |x|p. (7.1)

Let us observe the graph of the function ϕ(x) = |x|p. When p ≥ 1, the function is convex over
R. When 0 ≤ p < 1, the function is concave over R+ and R−, but not over R. This is illustrated
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Figure 7.1: Graphs of the functions ϕp(x) = |x|p for different values of p. As it appears, ϕp is convex
on R for p ≥ 1. For 0 ≤ p < 1, it is concave on R− and R+, but not on R.

on Figure 7.1. As a consequence, the functional Φp behaves differently whether considering Wigner-
positive states and Wigner-negative states. For Wigner-positives states, Φp is convex for p ≥ 1 and
concave for p ≤ 1. For Wigner-negative states, Φp is convex for p ≥ 1, but it is not concave (neither
convex) for 0 ≤ p < 1. The functions Φp can somehow be understood as the building blocks of the
p-norms and the Rényi entropies. Indeed, both functionals can be expressed as follows:

‖W‖p = (Φp(W ))
1
p , hα(W ) =

1

1− α
ln (Φα(W )) . (7.2)

It is a straightforward observation to notice the following. A non-decreasing function of a Schur-
convex function (resp. Schur-concave) gives a Shur-convex function (resp. Schur-concave). Conversely,
a non-increasing function of a Schur-convex function (resp. Schur-concave) gives a Schur-concave
function (resp. Schur-convex). Also, a convex non-decreasing function of a convex function is convex,
and a concave non-decreasing function of a concave function is concave. These observations are
summarized in the following table.

Φ :W 7→ R ϕ : R 7→ R ϕ ◦ Φ :W 7→ R

Convex Convex non-decreasing Convex

Convex Concave non-increasing Concave

Concave Concave non-decreasing Concave

Concave Convex non-increasing Convex

Schur-convex Non-decreasing Schur-convex

Schur-convex Non-increasing Schur-concave

Schur-concave Non-decreasing Schur-concave

Schur-concave Non-increasing Schur-convex

Now, observe that the function ϕ(x) = x
1
p is concave increasing over R+ for p ≥ 1, and convex

increasing over R+ for p ≤ 1. The function ϕ(x) = ln(x)/(1 − α) is convex decreasing for α > 1 and
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concave increasing for 0 ≤ α < 1. From that, we can conclude that for p ≥ 1, the p-norm is a concave
increasing function of a convex function, which gives a Schur-convex function. For 0 ≤ p < 1, the
p-norm is a convex increasing function of a concave function, which gives a Schur-concave function.
For α > 1, the Rényi entropy is a convex decreasing function of a convex function, which gives a
Schur-concave function. For 0 ≤ α < 1, the Rény entropy is a concave increasing function of a concave
function, which gives a concave function. Note that the case α = 1 requires some clarification. For
Wigner-positive states, we know that it corresponds to the Shannon differential entropy of the Wigner
function (see Chapter 2):

lim
α→1

hα(W ) = h(W ). (7.3)

Let us look at the limit for Wigner-negative states.

lim
α→1

hα(W ) = lim
α→1

α

1− α
ln (‖W‖α) (7.4)

= lim
α→1

α

1− α
ln (1 + 2Vol−(W )) (7.5)

= ln (1 + 2Vol−(W )) lim
α→1

α

1− α
(7.6)

= ±∞ (7.7)

where we have used the fact that ‖W‖1 = Vol+(W ) + Vol−(W ) = 1 + 2Vol−(W ), which is greater
than 1 for Wigner-negative states. For a Wigner-negative state described by a Wigner funciton W ,
the in the limit α→ 1−, the Rényi entropy hα(W ) tends towards +∞. In the limit α→ 1+, the Rényi
entropy hα(W ) tends towards −∞. We now summarize our observations in the following table.

Functional Parameter W ∈ W+ W ∈ W

Φp(W )
p ≥ 1 Convex Convex

0 ≤ p < 1 Concave ×

‖W‖p
p ≥ 1 Schur-convex Schur-convex

0 ≤ p < 1 Schur-concave ×

hα(W )
α > 1 Schur-concave Schur-concave

0 ≤ α ≤ 1 Concave ×

Remember that every functional that we consider here is symmetric. As a consequence, any of the
above mentioned functional that is convex (resp. concave) is also Schur-convex (resp. Schur-concave).
However, the functionals labeled as Schur-convex (or Schur-concave) in the above table are not convex
(neither concave).

We can understand that the p-norm for p = 0 is not concave when considering Wigner-negative
states by a simple example. Remember that for p = 0, ‖W‖0 simply corresponds to the size of the
support of W .. Consider now a function W with a non-zero support. Then the function −W has the
same support. However, the size of the support of (W + (−W )) /2 is equal to zero, which is lower
than the sum of the support of W and −W .

We have now properly identified several functionals compatible with a measure of disorder depend-
ing whether we were considering Wigner-positive or Wigner-negative states. Among these functionals,
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there is the Shannon differential entropy, that we have studied in Chapter 2. As it appears, the
measure converges to a useful value only for Wigner-positive states. For Wigner-negative states, the
measure diverges, towards −∞ (when α → 1+) or +∞ (when α → 1−). This makes that quantity
unusable for Wigner-negative states. However, because of its properties, we are going to devote a
section of the present chapter to the Shannon entropy of Wigner-positive states.

7.2 Wigner entropy of Wigner-positive states

Earlier in Chapter 5, we have introduced the Husimi Q-function of a state ρ̂ as the probability to
measure ρ̂ in a coherent state |α〉. As such, it corresponds to a true probability distribution, hence
it has a properly defined entropy. The Shannon differential entropy of the Husimi function is indeed
known as the Wehrl entropy and is defined as h(Q) = −

∫∫
Q(x, p) lnQ(x, p)dxdp. This entropy is

at the core of the Wehrl conjecture [67], later proven by Lieb [43, 44], which states that the Wehrl
entropy is lower-bounded by lnπ + 1 and that the only minimizers of h(Q) are the coherent states.

Interestingly, we shown in Chapter 5 that the Wigner function can in some particular setups be
considered as the Husimi Q-function of a quantum state (see Figure 5.2). It indeed appears that the
Wehrl entropy of quantum state ρ̂ can in general be understood as the entropy of the Wigner function
of another state σ̂, where ρ̂ and σ̂ are related by the setup described in Figure 5.2. A natural question
then arises : can we give an intrinsic meaning to the entropy of a Wigner function independently of
this particular setup? In this chapter, we will answer by the affirmative. We define the Wigner-entropy
of a Wigner-positive state and state several of its properties hereafter.

7.2.1 Definition and properties

Definition 7.1 (Wigner entropy). The Wigner entropy of a Wigner-positive state is the Shannon
differential entropy of its Wigner function:

h(W ) = −
∫∫

W (x,p) lnW (x,p)dxdp (7.8)

Let us now highlight several of its properties which make it an interesting physical quantity.

• Positivity

The Wigner entropy of Wigner-positive states is always positive. This can easily be deduced
from the fact that the Wigner function of Wigner-positive states takes values between 0 and
1/π. Indeed, the value of the function ϕ(z) = −z ln z is greater than zero for z between 0
and 1. Note that the positivity of the Wigner entropy relies on a quantum property of phase
space distributions, which ensures that they are not too peaked. Indeed, classically, it would be
possible to make up a distribution with a negative differential entropy.

• Symplectic invariance

It is invariant under symplectic transformations (displacement, rotation, and squeezing) in phase
space. Indeed, consider the symplectic transformation q̂ 7→ q̂′ = Uq̂ + u and let us denote as
W and W ′ the Wigner function of the input and output states, respectively. The change of
variables corresponding to this transformation gives W ′(x′, p′) = W (x, p)/|det U|, which indeed
implies that

h(W ′) = −
∫∫

W ′(x′, p′) lnW ′(x′, p′) dx′ dp′

= −
∫∫

W (x, p) ln

(
W (x, p)

|det U|

)
dx dp

= h(W ) + ln |det S|
= h(W ) (7.9)

108



Note that this invariance can also be understood as a sole consequence of the fact that symplectic
transformations conserve areas in phase space since det S = 1. Indeed, for any functional F , we
have ∫∫

F
(
W ′(x′, p′)

)
dx′ dp′

=

∫∫
F

(
W (x, p)

| det S|

)
|det S|dx dp

=

∫∫
F
(
W (x, p)

)
dx dp (7.10)

In contrast, h(Q) is greater for squeezed states than for coherent states. As it can be understood
from Fig. 5.2, this preference simply originates from the fact that one input of the balanced
beam-splitter is itself a coherent state.

• Additivity

As we have seen in Chapter 2, the entropy of a a tensor product of two probability distributions
is equal to the sum of the entropy of each probability distribution. In terms of Wigner-entropy,
this means that when constructing a mutlimode state ρ̂ from two Wigner-positive states ρ̂1 and
ρ̂2, so that ρ̂ = ρ̂1 ⊗ ρ̂2, we have the relation h(W ) = h(W1) + h(W2). The Wigner entropy of ρ̂
is simply the sum of the Wigner entropies of ρ̂1 and ρ̂2.

• Subadditivity

An important property of Shannon entropy is that the entropy of a joint probability distribution
is always lower than the sum of the entropies of the marginal distributions. We have proven
that property earlier in Chapter 2. As a consequence, the Wigner entropy h(W ) can be related
to the entropy of the marginal distributions h (ρx) and h (ρp), but also encompasses the x-p
correlations. Shannon information theory establishes a relation between the entropy of a joint
distribution and its marginal entropies, namely h(x, p) = h(x) + h(p) − I, where I ≥ 0 is the
mutual information [16]. Applied to the Wigner entropy, this gives the inequality:

h(W ) ≤ h (ρx) + h (ρp) . (7.11)

This means that a lower bound on the Wigner entropy implies in turn a lower bound on the sum
of the marginal entropies. More generally, this can be used to express that the Wigner entropy
of a multi-mode quantum system is lower or equal to the sum of the Wigner entropy of each
subsystems taken separately:

h(W ) ≤ h(W1) + h(W2), (7.12)

where W is the Wigner function of a Wigner-positive two-mode state ρ̂, while W1 and W2 are
respectively the Wigner functions of Tr2 [ρ̂] and Tr1 [ρ̂].

• Concavity

Finally, let us recall that entropy is a concave functional. This implies that mixing Wigner-
positive states can only result in an increase of their Wigner-entropy, which mathematically
translates as follows:

h
(∑

piWi

)
≥
∑

pih (Wi) (7.13)

where Wi are non-negative Wigner functions.

7.2.2 Wigner-entropy power inequality

Since the Wigner entropy is the Shannon differential entropy of the Wigner function, viewed as a
genuine probability distribution, it inherits all its key features. For example, we may easily extend
to Wigner entropies the celebrated entropy power inequality [16], which relates to the entropy of the
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convolution of probability distributions. With this in mind, we define the Wigner-entropy power of a
Wigner-positive state has the entropy power of its Wigner function W :

N(W ) =
1

2πe
exp(h(W )) (7.14)

Consider now an arbitrary transformation between two optical modes, which can be expressed in
the general expression:

W ′ = La [WA] ∗ Lb [WB] (7.15)

where W ′ is the Wigner function of the state ρ̂′, which is built from the states ρ̂A and ρ̂B respectively
described by the Wigner functions WA and WB. Relation (7.15) can for example represent the action
of a beam-splitter of transmittance η if we choose a =

√
η and b =

√
1− η.

Let us restrict to the special case where both ρ̂A and ρ̂B are Wigner-positive states, which of
course implies that ρ̂′ is Wigner-positive as well. Thus, ρ̂A, and ρ̂B, and ρ̂′ all have a well-defined
Wigner entropy, which we denote respectively as h(WA), h(WB), and h(W ′). Hence, the entropy
power inequality directly applies to the Wigner entropy. Defining the Wigner entropy-power of the
two input states ρ̂A and ρ̂B respectively as N(WA) and N(WB), and the Wigner entropy-power of the
output ρ̂′ as N(W ′), we obtain the Wigner-entropy power inequality :

N(W ′) ≥ a2N(WA) + b2N(WB). (7.16)

This is equivalent to a nontrivial lower bound on the Wigner entropy of the output state ρ̂′, namely
h(W ′) ≥ h(Wτ̂ ), where τ̂ denotes the Gaussian output state obtained if each input state is replaced
by the phase-invariant Gaussian state (thermal state) with the same Wigner entropy. This illustrates
the physical significance of the Wigner entropy.

As we have explained, relation (7.15) can represent a beam-splitter for the adapted choice of a and
b. For a beam-splitter of transmittance η, we have the following Wigner-entropy power inequality:

N(W ′) ≥ ηN(WA) + (1− η)N(WB). (7.17)

Moreover, relation (7.15) can also be used to derive a Wigner-entropy power inequality in a two-mode
squeezer. Indeed, the action of a two-mode squeezer corresponds to (7.15) except that we should add
the action of a conjugation operator Π. However, the conjugation operator is a transformation which
does not change the Wigner-entropy of a state, and therefore neither its Wigner-entropy power. The
Wigner-entropy power in a two-mode squeezer of gain g reads as follows:

N(W ′) ≥ gN(WA) + (g − 1)N(WB) (7.18)

Note that these relations only hold for Wigner-positive states.

7.2.3 Conjectured lower-bound

In the light of these considerations, we introduce a conjecture on the Wigner entropy, which resembles
the Wehrl conjecture. As anticipated in [29], we conjecture the following statement.

Conjecture 7.1 (Wigner entropy). The Wigner entropy of a single-mode Wigner-positive quantum
state is lower-bounded by lnπ + 1:

h(W ) ≥ lnπ + 1 ∀W ∈ W+ (7.19)

It implies (but is stronger than) the entropic uncertainty relation of Bia lynicki-Birula and Mycielski
[7], namely h (ρx) + h (ρp) ≥ lnπ + 1. Indeed, this follows from the property of subadditivity that we
have highlighted previously. Importantly, Conjecture 7.1 also implies the Wehrl conjecture since we
have shown that the Husimi function of any state ρ̂ is the Wigner function of some Wigner-positive state
σ̂ in a particular setup, see Fig. 5.2. However, the converse is not true as there exist Wigner-positive
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states whose Wigner function cannot be written as the Husimi function of a physical state. Note that
the conjecture extends straightforwardly to Wigner-positive multimode state as h(W ) ≥ N(lnπ + 1)
where N is the number of modes. Notice also that Conjecture 7.1 is a direct consequence of Conjecture
6.1, since Shannon differential entropy is Schur-concave over the set of non-negative Wigner functions.
We can summarize the chain of implications as follows:

W ≺W0 ⇒ h(W ) ≥ lnπ + 1 ⇒


h(Q) ≥ lnπ + 1

h(ρx) + h(ρp) ≥ lnπ + 1

(7.20)

The special case of Gaussian states is very easy to deal with. A straightforward calculation shows
that the Wigner entropy of a Gaussian state ρ̂ is given by

h(W ) = ln
(

2π
√

det V
)

+ 1 = ln(π/µ) + 1 (7.21)

where µ = Tr
[
ρ̂2
]

= 1/(2
√

det V) ≤ 1 stands for the purity of the state. All Gaussian states
that are connected with a symplectic transformation obviously conserve their purity since det V′ =
det(UVUᵀ) = det V, which confirms that their Wigner entropy is invariant. The lowest value of h(W )
among Gaussian states is then reached for pure states (µ = 1) and is given by lnπ+ 1, which appears
consistent with the Hudson theorem [34]. This is the value of the Wigner entropy of all coherent
states and squeezed states (regardless the squeezing parameter, squeezing orientation, and coherence
vector). Accordingly, the Gaussian pure states would be the minimum-Wigner-uncertainty states.

Note that a direct consequence of Equation (7.21) together with the property of concavity of
Wigner entorpy is that the conjecture is satisfied over the whole convex hull of Gaussian states, i.e. G.
Indeed, any state of G is built as a convex mixture of quantum states with Wigner entropy satisfying
the lower-bound. The difficult task remains, however, to prove that non-Gaussian Wigner-positive
states that do not belong to the convex hull of Gaussian states cannot violate this lower bound.

Provided this conjecture is valid, the Wigner function of any Wigner-positive state can be clas-
sically simulated from the Wigner function of the vacuum state (or any other Gaussian pure state).
More precisely, information theory tells us that the difference ∆ = h(W )− lnπ − 1 can be viewed as
the number of independent equiprobable random bits that are needed, on average, to generate deter-
ministically one random (x, p) instance drawn from the Wigner function of state ρ̂ from one random
(x, p) instance drawn from the Wigner function of the vacuum state (or any Gaussian pure state). Of
course, this results holds at the asymptotic limit only, that is, around N ×∆ bits of extra randomness
are needed for converting N random instances of (x, p) ∼W0 into N random instances of (x, p) ∼W
by deterministic means when N →∞.

7.2.4 Proof of the lower-bound over the set of passive states

Let us prove Conjecture 7.1 for the subset of passive states ρ̂p. As we have seen in Chapter 5, passive
states indeed possess non-negative Wigner functions, so that their Wigner entropy is well defined.
Also, notice that, as a consequence of the concavity of entropy, it is sufficient to prove the Wigner
conjecture for extremal passive states ε̂n.

The main tool that we will use to carry out our proof is the formula (5.47) which makiesa nontrivial
link between the Wigner functions and wave functions of the first n Fock states. Let us denote
the x and p probability densities of the nth Fock state as ρn(x) = |ψn(x)|2 and ρn(p) = |ψn(p)|2.
Their corresponding Shannon differential entropy is defined as h (ρk(x)) = −

∫
ρk(x) ln ρk(x) dx and

h (ρk(p)) = −
∫
ρk(p) ln ρk(p) dp. In the following, we refer to these quantities as h (ρk) ≡ h (ρk(x)) =

h (ρk(p)). We are now ready to lower bound the Wigner entropy of the nth extremal passive state ε̂n
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by using Eq. (5.47):

h (En) = h

(
1

n+ 1

n∑
k=0

Wk(x, p)

)

= h

(
1

n+ 1

n∑
k=0

ψk(x)2ψn−k(p)
2

)

≥ 1

n+ 1

n∑
k=0

h
(
ρk(x)ρn−k(p)

)
=

1

n+ 1

n∑
k=0

(
h (ρk) + h (ρn−k)

)
=

2

n+ 1

n∑
k=0

h (ρk)

≥ lnπ + 1

(7.22)

The first inequality in (7.22) results from the concavity of the entropy. Then, we use the fact that the
entropy of a product distribution is the sum of the marginal entropies. Finally, we apply the entropic
uncertainty relation of Bia lynicki-Birula and Mycielski [7] on Fock states, namely 2h (ρk) ≥ lnπ + 1,
∀k. We have thus proven the conjecture for all extremal passive states and this proof naturally extends
to the whole set of passive states.

Let us now prove that a slightly tighter lower bound can be derived for the Wigner entropy of
passive states. To that purpose, we exploit the fact that passive states can be expressed as a convex
mixture of extremal passive states ε̂n (in place of decreasing mixtures of Fock states). Indeed, any
passive state can equivalently be expressed as:

ρ̂p =
∞∑
k=0

pk |k〉 〈k| =
∞∑
k=0

ekε̂k (7.23)

where pk are probabilities such that pk ≥ pk+1 and the coefficients ek are related to pk as ek =
(k + 1)(pk − pk+1). We denote the Wigner function of the passive state ρ̂p as WP (x, p) and bound its
Wigner entropy as follows:

h (WP ) = h

(
+∞∑
k=0

ek Ek(x, p)

)

≥
∞∑
k=0

ek h
(
Ek(x, p)

)
=
∞∑
k=0

(k + 1) (pk − pk+1)h
(
Ek(x, p)

)
≥
∞∑
k=0

(k + 1) (pk − pk+1)
2

k + 1

k∑
j=0

h (ρj)

= 2

∞∑
k=0

k∑
j=0

(pk − pk+1)h (ρj)

= 2
∞∑
j=0

∞∑
k=j

(pk − pk+1)h (ρj)

= 2

∞∑
j=0

pj h (ρj)

(7.24)
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The first inequality in (7.24) comes from the concavity of entropy over the convex set of extremal
states, while the second inequality is obtained from Eq. (7.22). The final expression is a stronger
lower bound on the Wigner entropy of any passive state which reads as

h

( ∞∑
k=0

pkWk

)
≥ 2

∞∑
k=0

pk h (ρk) . (7.25)

and is valid as soon as the probabilities pk are decreasing, that is, pk ≥ pk+1.
It is tempting to extrapolate that the bound (7.25) remains valid beyond the set of passive states.

We know indeed that there exist phase-invariant Wigner-positive states that are not passive states (in
Figure 5.10, these are the states within the blue region, which do not belong to the triangle a-b-e). As
long as the coefficients pk are such that the corresponding state is Wigner-positive, it has a well-defined
Wigner entropy and we may infer that the lower bound (7.25) applies. Unfortunately, our numerical
simulations have shown that relation (7.25) does not hold in general for non-passive (Wigner-positive)
states. Of course, we maintain that Conjecture 7.1 does hold for such states and we have not found
any counterexample.

7.3 Wigner-Rényi entropies

As we know, the Shannon differential entropy is an uncertainty measure that belongs to a broader
family, known as Rényi differential entropies. Moreover, as we explained in the first section, the Renyi
entropies have the particularity that they can be defined for negative distributions. With this in
mind, we define the Rényi-Wigner entropy of a (Wigner-positive or Wigner-negative) quantum state
as follows:

Definition 7.2 (Wigner-Rényi entropy). The Wigner-Rényi entropy a quantum state is the Rényi
entropy of its Wigner function:

hα(W ) =
1

1− α
ln

(∫∫
|W (x,p)|αdxdp

)
(7.26)

where α ∈ R+ \ {1}.

Interestingly, some values of α are endowed with a special meaning. Denoting as supp(W ) the
part of the domain of W (x, p) where W (x, p) 6= 0 and denoting as ν the Lebesgue measure, we have:

h0(W ) = ln(ν[supp(W )]) (7.27)

This diverges when applied to any Wigner function W since the size of the support of W is infinite.
In the limit α→ 1, hα tends to the Shannon differential entropy, so that h1(W ) coincides with h(W )
for Wigner-positive states.

lim
α→1

hα(W ) = h(W ) ∀W ∈ W+ (7.28)

However the limit α → 1 diverges for Wigner-negative states as we have seen in the first section.
The Rényi entropy with parameter α = 2 is sometimes called the collision entropy, and, applied to a
Wigner function W , it is related to the purity of the corresponding state through the relation:

h2(W ) = ln

(
2π

µ

)
(7.29)

Finally, the case α→∞ can be related to the maximum value of W as

h∞(W ) = − ln

(
max
x,p
|W (x, p)|

)
. (7.30)

Note that, following the same reasoning as (7.10), we observe that the Wigner-Rényi entropy is
invariant under symplectic transformations in phase space (i.e., Gaussian unitaries in state space).
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It is interesting to note that it is possible to exploit Young’s convolution inequality introduced in
Chapter 2 in order to derive a relation between the Rényi-Wigner entropy of the input and output of a
beam-splitter or two-mode squeezer. Let us consider a general transformation defined as (7.15), where
the parameter a and b can be chosen appropriately to represent either a beam-spllitter or a two-mode
squeezer. The state ρ̂′ is obtained from the states ρ̂A and ρ̂B, and Equation (7.15) describes how
their respective Wigner functions W ′, WA and WB are related to each other. We can apply Young’s
convolution inequality to (7.15) to get an inequality in terms of p-norms:

‖W ′‖r ≤ ‖La [WA] ‖p · ‖Lb [WB] ‖q (7.31)

= |a|2
1−p
p |b|2

1−q
q ‖WA‖p · ‖WB‖q (7.32)

where p, q, r ≥ 1 are related through the relation 1/p + 1/q = 1/r + 1. Then, we can use the above
expression to translate it in terms of Wigner-Rényi entropies, so that we find:

r − 1

r
hr(W

′) ≥ p− 1

p

(
hp(WA) + ln a2

)
+
q − 1

q

(
hq(WB) + ln b2

)
. (7.33)

We can particularize that relation to the case of a beam-splitter with transmittance η, in which
case we obtain the following inequality:

r − 1

r
hr(W

′) ≥ p− 1

p
(hp(WA) + ln η) +

q − 1

q
(hq(WB) + ln(1− η)) . (7.34)

In the case of a two-mode squeezer of gain g, we obtain the following inequality:

r − 1

r
hr(W

′) ≥ p− 1

p
(hp(WA) + ln g) +

q − 1

q
(hq(WB) + ln(g − 1)) . (7.35)

7.3.1 Conjectured lower-bound for Wigner-positive states

In the same spirit as Conjecture 7.1, we lay a lower-bound over the value taken by the Wigner-Rényi
entropy of a Wigner-positive state. Namely, we state that the Wigner-Rényi entropy of any Wigner-
positive state is greater or equal to the value it takes for a pure Gaussian state. For the vacuum state
(or any pure Gaussian state), the Wigner-Rényi entropy gives

hα(W0) = lnπ +
lnα

α− 1
. (7.36)

Using this, we lay the following conjecture.

Conjecture 7.2 (Wigner-Rényi entropy of Wigner-positive states). The Wigner-Rényi entropy of
any Wigner-positive state is lower bounded by the value it takes for a pure Gaussian state:

hα (W ) ≥ lnπ +
lnα

α− 1
∀W ∈ W+ (7.37)

Of course, Conjecture 7.2 coincides with Conjecture 7.1 when α → 1. Notice also that it is a
straightforward implication of Conjecture 6.1, since Rényi entropies are Schur-concave ∀α ≥ 0 over
the set of non-negative Wigner functions. Let us examine this Wigner-Rényi conjecture for other
special values of the parameter α, namely

h2(W ) ≥ ln 2π, (7.38)

h∞(W ) ≥ lnπ. (7.39)

For α = 2, the fact that the purity µ is upper bounded by 1 implies Eq. (7.38). Also, the Wigner
function of any sate is upper bounded by 1/π, which implies Eq. (7.39) for α→∞. Furthermore, for
α = 0, the Wigner-Rényi conjecture implies that the support of any Wigner function is unbounded,
which is a well-know fact. These elements support the validity of the Wigner-Rényi conjecture and
especially conjecture 7.1 when α→ 1.

We plot on Figure 7.2 the Wigner-Rényi entropies of several Wigner-positive states for different
values of α. As it appears from the figure, it is always greater than the value it takes for vacuum.
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Figure 7.2: We plot here the Wigner-Rényi entropies hα(W ) of several Wigner-positive states as a
function of α. Each blue line corresponds to a (mixed) Wigner-positive state with Wigner function
W ∈ W+. The red line corresponds to vacuum (or any pure Gaussian state), and can be computed
analytically from Equation 7.36. As conjectured in Conjecture 7.2, each blue line lies above the red
line. Note that in the limit α→ 0+, the Wigner-Rényi entropy tends towards +∞.

7.3.2 Conjectured lower-bound for Wigner-negative states

At the end of Chapter 3, we have introduce an alternative version of majorization that we called
square-majorization. Along the way, we formulated Conjecture 6.2, which states than vacuum (or any
pure Gaussian state) square-majorizes the Wigner function of any pure state.

W0 �s W ⇔
∫∫

ϕ
(

(W0(x, p))2
)

dxdp ≥
∫∫

ϕ
(

(W (x, p))2
)

dxdp ∀ϕ convex (7.40)

Let us now particularize that to the convex function ϕm(x) = |x|m where m ≥ 1. Conjecture 6.2 thus
implies an inequality in terms of the function ϕm. We can write the following development:∫∫

ϕm

(
(W0(x, p))2

)
dxdp ≥

∫∫
ϕm

(
(W (x, p))2

)
dxdp (7.41)

⇔
∫∫

(|W0(x, p)|)2m dxdp ≥
∫∫

(|W (x, p)|)2m dxdp (7.42)

⇔ ln

(∫∫
(|W0(x, p)|)2m dxdp

)
≥ ln

(∫∫
(|W0(x, p)|)2m dxdp

)
(7.43)

⇔ 1

1− 2m
ln

(∫∫
(|W0(x, p)|)2m dxdp

)
≤ 1

1− 2m
ln

(∫∫
(|W (x, p)|)2m dxdp

)
(7.44)

⇔ h2m (W0) ≤ h2m (W ) (7.45)

Remember now that in order for ϕm to be convex, we have chosen m ≥ 1. As a consequence, we see
that Conjecture 6.2 implies the following inequality in terms of Wigner-Rényi entropies:

W0 �s W ⇒ hα(W0) ≤ hα(W ) ∀α ≥ 2 (7.46)

This leads us to state the following Wigner-Rényi conjecture applying to pure states.

Conjecture 7.3 (Lower-bound on the Wigner-Rényi entropy of a pure state). For α ≥ 2, the Wigner-
Rényi entropy of a pure state is lower-bounded by the Wigner-Rényi entropy of a pure Gaussian state.

hα(W ) ≥ hα(W0) ∀α ≥ 2, ∀W ∈ W∗ (7.47)

115



Figure 7.3: We plot here the Wigner-Rényi entropies hα(W ) of several pure states as a function of
α. Each blue line corresponds to a non-Gaussian pure state with Wigner function W ∈ W∗. The
red line corresponds to vacuum (or any pure Gaussian state), and can be computed analytically from
Equation 7.36. At α = 2, all the lines meet since we are only considering pure states, which are such
that h2(W ) = ln(2π). As conjectured in Conjecture 7.3, each blue line lies above the red line for
α > 2. Moreover, we observe that for 1 < α < 2, the situation is reversed and each blue line lies below
the red line. Note that we have restriced the plot to values of α larger than 1 since the Wigner-Rényi
entropy is Schur-concave over the set W only when α > 1. For any non-Gaussian pure state (which is
thus Wigner-negative), the Wigner-Rényi entropy tends towards −∞ in the limit α→ 1+.

We plot on Figure 7.3 the Wigner-Rényi entropy of several pure states, and compare them with
vacuum. The conjecture appears to be satisfied for all α ≥ 2. It is interesting to note that in the
case α = 2, the Wigner-Rényi entropy of any pure states gives ln 2π, so that in that precise case the
inequality of Conjecture 7.3 becomes an equality (and it is obviously proven).

We can also highlight an interesting observation from Figure 7.3. Indeed, in the case 1 < α < 2,
it appears that the inequality of Conjecture 7.3 is reversed. This does not contradict the conjecture
as Conjecture 7.3 is limited to the case α ≥ 2. We see thus that for 1 < α < 2, Gaussian pure states
maximize the Wigner-Rényi entropy among pure states, whereas they minimize the Wigner-Rényi
entropy for α ≥ 2. That observation can be understood as a manifestation of the fact that pure states
are in general incomparable. Indeed, as we have said in the first section of this chapter, Wigner-Rényi
entropies are consistent Schur-concave measures over the whole setW for any α > 1. Figure 7.3 reveals
that vacuum is incomparable to any non-Gaussian pure state, since the its Wigner-Rényi entropy is
lower for α ≥ 2, but greater for 1 < α < 2.

Finally, let us conclude this chapter by a comparison of the Wigner-Rényi entropies of Fock states,
which is pictured in Figure 7.4. Remember than at the end of Chapter 3, we conjectured a chain of
square-majorization between Fock states, namely:

W0 �s W1 �s W2 �s · · · �s Wn �s Wn+1 (7.48)

where Wn is the Wigner function of the nth Fock state. Following the same development carried earlier
in this subsection, that square-majorization chain implies the following inequality:

hα(W0) ≤ hα(W1) ≤ · · · ≤ hα(Wn) ≤ hα(Wn+1) ∀α ≥ 2. (7.49)

That observation is confirmed by Figure 7.4, but the figure also reveals that the inequality in terms
of Wigner-Rényi entropies is reversed when 1 < α < 2, in which case we observe:

hα(W0) ≥ hα(W1) ≥ · · · ≥ hα(Wn) ≥ hα(Wn+1) ∀α : 1 < α < 2. (7.50)
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Figure 7.4: We plot here the Wigner-Rényi entropies hα(W ) for the first Fock states as a function
of α. We restrict ourselves to Fock states from n = 0 to n = 5. We observe that for α > 2, we
have the relation hα(Wn) ≤ hα(Wn+1). For α such that 1 < α < 2, we observe the reverse inequality
and find hα(Wn) ≥ hα(Wn+1). Since all lines cross each other, we can conclude that Fock states are
incomparable with respect to each other.

Once again, this support the fact that pure states are in general incomparable. Indeed, Equations
(7.49) and (7.50) illustrate that Fock states are all incomparable with respect to each other, since
Wigner-Rényi are Schur-concave over the set W∗ for all α > 1.
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Chapter 8

Majorization relations in bosonic
channels

in phase space and in state space

The use we have made of the theory of majorization so far was to introduce general conjectures
that applies indistinctly to large sets of quantum states. Indeed, in Chapter 6, we have introduced
Conjecture 6.1 that applies to the whole set of Wigner-positive states, and Conjecture 6.2 that applies
to the whole set of pure states. In this chapter, we will make a different use of majorization. Rather
than being interested in a majorization relation between a precisely chosen state on one side and a
whole set of states on the other side, we will establish pairs of states linked by a majorization relation,
where the second state is obtained from the first by a particular transformation.

As a matter of fact, we are going to compare quantum states with their output through particular
quantum channels. In quantum mechanics, a channel is generaly described by a global unitary acting
on an input system and its environment, followed by a partial trace to discard the environment. The
situation is described as follows:

M (ρ̂) = TrE

[
Û (ρ̂⊗ ρ̂E) Û †

]
, (8.1)

where the quantum channelM acts on the quantum states ρ̂ as a global unitary Û over the system ρ̂
together with its environment ρ̂E , which is then discarded by a partial trace. In that context, Gaussian
channels are channels that have the particularity of being described by a Gaussian environment and
a Gaussian unitary. As a consequence, these channels associate a Gaussian output to any Gaussian
input. It is to these channels that we turn in this chapter, and more particularly to Gaussian channels
which are phase-invariant and that act on single-mode inputs.

In the first section of this chapter we will lay the theoretical foundations for describing Gaussian
channels in simple terms. We will see that Gaussian single-mode phase-insensitive channels are in
all generality defined by two real parameters. We will then also present how these channels can be
implemented in an optical setup, making a link with Chapter 4. Following this, we will in the next
section study how the Wigner function of a quantum state evolves in such a channel. This will lead
us to observe that in some cases the output associated to the channel is always Wigner-positive for all
input. We will also highlight a continuous majorization relation occurring in a two-mode squeezer.

In the last section of this chapter, we will take a step back from the phase-space perspective
that we have used through this thesis. We will change our point of view to the state space picture
and will consider the discrete distributions embodied by the probability vectors of eigenvalues of
density operators. At that point, we will no longer use continuous majorization, but rather discrete
majorization. Building on a previous work that revealed unexpected recurrence relations in Gaussian
unitaries [35, 36], we will prove a discrete majorization chain for the outputs associated with Fock
states in Gaussian bosonic channels. This work is an extension of a result previously highlighted in
[20, 21]. This last section is the subject of a paper in preparation entitled Majorization ladder in
Gaussian bosonic channels.
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8.1 Single-mode phase-insensitive Gaussian bosonic channels

We have seen in Chapter 4 that simple optical transformations were often associated to convolution
between Wigner functions. As a consequence, it appears that a spectral decomposition of Wigner
functions can provide a simple formalism to deal with these operations. It is in this objective that we
introduce hereafter the Fourier transform of a Wigner function:

W̃ (u, v) = F [W ] (u, v) =
1

2π

∫∫
W (x, p) exp (−iux− ivp) dxdp, (8.2)

W (x, p) = F−1
[
W̃
]

(x, p) =
1

2π

∫∫
W̃ (u, v) exp (ixu+ ipv) dudv. (8.3)

We associate the operator F to the Fourier transformation, and the operator F−1 as the inverse
transformation. Surprisingly, the Fourier transform of the Wigner function W̃ is not often used in

the literature. Instead, we mostly find the characteristic function χ(z), defined as χ(z) = Tr
[
ρ̂D̂z

]
.

The characteristic function is actually the Fourier transform of the Wigner function with a slight
adjustment. Indeed, a small derivation gives us the following relationship:

χ(x+ ip) = 2πW̃

(
− p√

2
,
x√
2

)
(8.4)

where x, p ∈ R. The characteristic function χ can somehow be understood as a symplectic Fourier
transform, since it also applies the symplectic form ω over the vector (x, p)ᵀ.

At this point it is interesting to make two different observations. First, it is easily shown how the
rescaling operator Ls acts with respect to the Fourier transformation:

F [Ls [W ]] =
1

s2
L 1
s

[F [W ]] . (8.5)

Then, as we will deal with Gaussian states, and more particularly with thermal states, it is impor-
tant for our further developments to compute the Fourier transform of thermal states. The Fourier
transform of the Wigner function of vacuum W0 can be found as the following:

F [W0] (u, v) =
1

2π
exp

(
−1

4
(u2 + v2)

)
. (8.6)

Notice that (8.6) can be equivalently stated as F [W0] = L√2 [W0]. Now, remember from Chapter 4
that we have the relation Wτ̂ = L√2n̄+1 [W0] (see (4.91)). As a consequence, the Fourier transform of
any thermal state can be easily computed from (8.5) and (8.6).

After this small theoretical development, we are ready to present in proper terms Gaussian phase-
insensitive channels. Hereafter, we follow mostly reference [23]. A single-mode Gaussian phase-
insensitive is defined from a gain/loss parameter κ ∈ R and a noise parameter µ ∈ R+. Let us mention
that κ and µ should satisfy the relation µ ≥ |κ− 1| in order to be a physically realizable channel.
In the case where the previous inequality is saturated, the quantum channel is said to be quantum-
limited. These channels are divided in two categories: covariant channels for κ ≥ 0 and contravariant
channels for κ < 0. Let us now consider a single-mode quantum state ρ̂ with characteristic function
ξ(z) and Wigner function W (x, p). We consider that the state ρ̂ evolves as follows:

ρ̂ → M(µ)
κ (ρ̂) , (8.7)

where M(µ)
κ is a quantum channels with gain/loss parameter κ and noise parameter µ. The action of

M(µ)
κ over ρ̂ is generally described from the characteristic function of ρ̂. Using the tools previously

introduced in this section, we will then be able to translate that action onto W̃ , and then onto W . In
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Figure 8.1: Illustration of phase-invariant single-mode Gaussian quantum channels. The hatched
region corresponds to a forbidden region for physical channels (µ ≥ |κ− 1|). For κ < 0, each channel

can be implemented as a conjugated amplifier Ã(n̄)
g , and the bold line corresponds to the quantum-

limited conjugated amplifier Ag. For 0 ≤ κ < 1, each channel can be implemented as a lossy channel

E(n̄)
η , and the bold line corresponds to the pure-loss channel Eη. For κ > 1, each channel can be

implemented as an amplifier A(n̄)
g and the bold line corresponds to the quantum-limited amplifier Ag.

For κ = 1, the channel corresponds to an added noise channel Nµ.

the covariant case (κ ≥ 0), we obtain the following:

χ(z) −→ χ(
√
κz) exp

(
−µ |z|

2

2

)
(8.8)

W̃ (u, v) −→ W̃
(√
κu,
√
κv
)

exp

(
−µu

2 + v2

4

)
(8.9)

W (x, p) −→ L√κ [W ] ∗ L√µ [W0] (8.10)

Then, in the contravariant case (κ < 0), we obtain the following:

χ(z) −→ χ(−
√
|κ|z∗) exp

(
−µ |z|

2

2

)
(8.11)

W̃ (u, v) −→ W̃
(√
|κ|u,−

√
|κ|v

)
exp

(
−µu

2 + v2

4

)
(8.12)

W (x, p) −→ Π ◦ L√|κ| [W ] ∗ L√µ [W0] (8.13)

Notice that the concatenation of two Gaussian channels is a Gaussian channel, and find the fol-
lowing rule:

M(µ2)
κ2 ◦M

(µ1)
κ1 =M(µ1κ2+µ2)

κ1κ2 . (8.14)

As it appears from the above relation, such channels are not commutative.
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8.1.1 Optical implementation

Let us now turn our interest towards a physical implementation of these channels, in the framework
of quantum optics. We start by building an optical channel with a beam-splitter and a thermal state
as follows:

E(n̄)
η (ρ̂) = Tr2

[
B̂θ (ρ̂⊗ τ̂n̄) B̂†θ

]
(8.15)

where θ ∈ [0, π/2] is chosen such that cos2 θ = η. Remember that the operator B̂θ is defined at (4.55).
Then, we can compute its effect on the Wigner function of ρ̂ as follows:

E(n̄)
η [W ] = L√η [W ] ∗ L√1−η [Wτ̂ ] (8.16)

= L√η [W ] ∗ L√1−η

[
L√2n̄+1 [W0]

]
(8.17)

= L√η [W ] ∗ L√1−η ◦ L√2n̄+1 [W0] (8.18)

= L√η [W ] ∗ L√
(1−η)(2n̄+1)

[W0] (8.19)

so that we can identify E(n̄)
η =M(µ)

κ where κ = η and µ = (1 − η)(2n̄ + 1). The channel is quantum
limited when n̄ = 0 so that µ = 1− η, and in that case we denote it as Eη. We now construct a similar
channel with a two-mode squeezer rather than a beam-splitter:

A(n̄)
g (ρ̂) = Tr2

[
Σ̂r (ρ̂⊗ τ̂n̄) Σ̂†r

]
(8.20)

where r is chosen such that g = cosh2 r. Remember that the operator Σ̂r is defined at (4.67). The
resulting Wigner function can be computed as the following:

A(n̄)
g [W ] = L√g [W ] ∗ L√g−1 [Wτ̂ ] (8.21)

= L√g [W ] ∗ L√g−1

[
L√2n̄+1 [W0]

]
(8.22)

= L√g [W ] ∗ L√g−1 ◦ L√2n̄+1 [W0] (8.23)

= L√g [W ] ∗ L√
(g−1)(2n̄+1)

[W0] (8.24)

so that we can identify A(n̄)
g =M(µ)

κ where κ = g and µ = (g − 1)(2n̄ + 1). The channel is quantum
limited when n̄ = 0 so that µ = g − 1, and in that case we denote it as Ag. A contravariant version
of that channel can be built if we partial trace over the first mode rather than the second one:

Ã(n̄)
g (ρ̂) = Tr1

[
Σ̂r (ρ̂⊗ τ̂n̄) Σ̂†r

]
(8.25)

where r is chosen such that g = cosh2 r. The Wigner function of the output can then be found as
follows:

Ã(n̄)
g [W ] = Π ◦ L√g−1 [W ] ∗ L√g [Wτ̂ ] (8.26)

= Π ◦ L√g−1 [W ] ∗ L√g
[
L√2n̄+1 [W0]

]
(8.27)

= Π ◦ L√g−1 [W ] ∗ L√g ◦ L√2n̄+1 [W0] (8.28)

= Π ◦ L√g−1 [W ] ∗ L√
g(2n̄+1)

[W0] (8.29)
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So that we can identify Ã(n̄)
g = M(µ)

κ where κ = 1 − g and µ = g(2n̄ + 1). The channel is quantum
limited when n̄ = 0 so that µ = g, and in that case we simply denote the channel as Ãg.

Finally, let us notice that the optical channels that we have introduced until now do not provide us
with the case κ = 1 and µ > 1. Such a channel adds a Gaussian noise to the Wigner function, and we

define the additive noise channel Nµ asM(µ)
κ for κ = 1 and µ > 0. We are going to show that it can be

constructed from the successive application of two optical channels that we have introduce earlier. Let
us consider a quantum channel built from a quantum-limited lossy channel Eη and a quantum-limited
amplifier channel Ag:

Ag ◦ Eη [W ] = Ag
[
L√η [W ] ∗ L√1−η [W0]

]
(8.30)

= L√g
[
L√η [W ] ∗ L√1−η [W0]

]
∗ L√g−1 [W0] (8.31)

= L√g ◦ L√η [W ] ∗ L√g ◦ L√1−η [W0] ∗ L√g−1 [W0] (8.32)

= L√gη [W ] ∗ L√
g(1−η)

[W0] ∗ L√g−1 [W0] (8.33)

= L√gη [W ] ∗ L√
g(1−η)+g−1

[W0] (8.34)

Then, if we set gη = 1, the equation becomes more simply Ag ◦ E1/g [W ] = W ∗ L√
2(g−1)

[W0]. We

can thus identify Nµ = Ag ◦ E1/g with µ = 2(g − 1). The different channels are plotted in Figure 8.1.

8.2 Continuous majorization relations

At this point, we have introduced Gaussian single-mode phase-insensitive channels and we have defined
them with the appropriate tools to work in phase space. In this section, we present two different
observations. First, we show a simple condition for which such a channel always yields a Wigner-
positive output. Then, we show that for special value of the gain/loss parameter g, the output of the
channel is always majorized by its inuput. We also extend that property to two-mode squeezers.

8.2.1 Wigner-positiving channel

Gaussian distributions have the interesting property that the convolution of two Gaussian distributions
gives another Gaussian distributions, as we have highlighted in Chapter 2. We are going to exploit

that property in order to provide a different development of the quantum channel M(µ)
κ . Let us first

consider the covariant case, in which we can write:

M(µ)
κ [W ] = L√κ [W ] ∗ L√µ [W0] (8.35)

= L√κ [W ] ∗ L√κ [W0] ∗ L√µ−κ [W0] (8.36)

= L√κ [W ∗W0] ∗ L√µ−κ [W0] (8.37)

Note that the above development only holds if µ ≥ κ. Remember now that the convolution of two
Wigner functions is always non-negative, as we know from Chapter 5. From that property and the
fact that the Wigner function W0 is itself non-negative, it follows that the output described in (8.37) is

non-negative. As a consequence, any covariant channel M(µ)
κ such that µ ≥ κ always gives a Wigner-

positive output. Note that for quantum-limited channels, this corresponds to a pure-loss channel Eη
with transmittance η ≤ 1/2.

Now, we turn to the contravariant case, so that we consider κ < 0. A very similar develoment
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Figure 8.2: The dark-blue region corresponds to channels for which there exist outputs which are
both Wigner-negative and entangled (with respect to another system entangled with the input). The
light-blue region corresponds to channels for which every output is Wigner-positive, but there exist
outputs which are entangled. The grey region corresponds to channels for which every output is
Wigner-positive and separable.

gives:

M(µ)
κ [W ] = Π ◦ L√|κ| [W ] ∗ L√µ [W0] (8.38)

= Π ◦ L√|κ| [W ] ∗ L√|κ| [W0] ∗ L√
µ−|κ| [W0] (8.39)

= L√|κ| [Π [W ]] ∗ L√|κ| [W0] ∗ L√
µ−|κ| [W0] (8.40)

= L√|κ| [Π [W ] ∗W0] ∗ L√
µ−|κ| [W0] (8.41)

The above development only holds if µ ≥ |κ|. Note that this condition is always satisfied for con-
travariant channels, as can be seen from the physicality condition µ ≥ |κ− 1|. In that case, we can
also conclude that the output is Wigner-positive from the same argument stated previously. Summa-

rizing together the covariant and contravariant case, we can say that the channel M(µ)
κ always yields

a Wigner-positive output if µ ≥ |κ|. We will qualify such a channel as Wigner-positiving.
It is instructive to compare the condition we have just derived with another condition that we

are going to present. It is known that for values of κ and µ such that µ ≥ |κ| + 1, the action of the

two-mode channel M(µ)
κ ⊗ I (where I operates the identity) over any two-mode state always yields a

separable state [23]. Such a channel M(µ)
κ is said to be entanglement-breaking.

We plot on Figure 8.2 the different regions in the plane (κ, µ) associated to the conditions we
have mention above. It is interesting to notice that whereas there exists channels which are Wigner-
positiving and not entanglement-breaking, any entanglement-breaking channel is necessarily Wigner-
positiving.
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8.2.2 Continuous majorization relations in a two-mode squeezer

Let us now focus to continuous majorization relations as such. To that purpose, let us start by
presenting a simple development about the rescaling operator Ls. In particular, let us see how the
cumulative integrals of a Wigner function evolve under the action of a rescaling transformation:

S↓a (Ls [W ]) =

a∫
0

Ls [W ]↓ (r)2πrdr (8.42)

=

a∫
0

Ls
[
W ↓
]

(r)2πrdr (8.43)

=

a∫
0

1

s2
W ↓

(r
s

)
2πrdr (8.44)

=

|s|a∫
0

W ↓
(
r′
)

2πr′dr′ (8.45)

= S↓|s|a(W ) (8.46)

A very similar development yields the relation S↑a (Ls [W ]) = S↑|s|a(W ). Remember now that S↓a(W )
and S↑a(W ) are respectively increasing and decreasing for increasing values of a. This enables to
formulate the following majorization relations : Ls [W ] � W when |s| ≤ 1, and Ls [W ] ≺ W when
|s| ≥ 1 (which is the case for a two-mode squeezer). Notice that this holds for both Wigner-positive
and Wigner-negative states. In addition to this, we find as a direct implication of Lemma 2, convolving
a Wigner-function W with a non-negative distribution gives a new function W ′ which is majorized by
W . Put together, these two observations allow us to write:

M(µ)
κ [W ] ≺W ∀κ : |κ| ≥ 1 (8.47)

where we have used the relation M(µ)
κ [W ] = L√κ [W ] ∗ L√µ [W0] (with an extra Π for contravariant

channels), together with the non-negativity of W0. This is valid both for Wigner-positive and Wigner-
negative states. It is possible to go one step further and generalize that result to any two-mode
squeezer fed by a Wigner-positive state on one mode. Indeed, let us consider a two-mode squeezer
fed by a state ρ̂ with Wigner function W , and with another Wigner-positive state ρ̂+ with Wigner
function W+, as illustrated in Figure 8.3. The two outputs reads as

W ′1 = L√g [W ] ∗Π ◦ L√g−1 [W+]

W ′2 = Π ◦ L√g−1 [W ] ∗ L√g [W+]

(8.48)

Using the same arguments we have used previously, we can find that W � W ′1 for any value of the
gain g (which is always greater than 1). Moreover, when the gain is greater than two so that g ≥ 2,
we also have W �W ′2.

Let us conclude by observing that this continuous majorization relations linking the input and
output of a two-mode squeezer can not be extended to a beam-splitter fed by a Wigner-positive state.
Indeed, in the case of the two-mode squeezer, we were successful because the rescaling operation and
the convolution with a Wigner-positive state are both contributing to disordering the input Wigner
function. In the case of the beam-splitter, however, the rescaling operation contributes to decrease the
disorder of the input Wigner function, while the convolution with a Wigner-positive state increases
its disorder. It is therefore not possible to derive a continuous majorization relation in that case.

8.3 Discrete majorization ladder in state space

As announced, we will adopt in this section a vision in state space, contrary to what we have been
used to do until now. More precisely, we are interested in the density operators corresponding to the
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Figure 8.3: A two-mode squeezer of gain g is fed on mode 1 by a state with Wigner function W
and on mode 2 by a Wigner-positive state with Wigner function W+. The first output is W ′1 and
the second output is W ′2, as defined in (8.48). For any value of the gain g ≥ 1, we have the relation
W �W ′1. For any value of the gain g ≥ 2, we have the relation W �W ′2. Notice it is only required that
W+ is non-negative. The Wigner functions W , W ′1, W ′2 can be partly negative, and the majorization
relations still hold.

outputs of Gaussian channels which are fed by Fock states. The present work echoes reference [20, 21],
in which a discrete majorization relation between the output of Fock states through a pure-loss channel
Eη or a quantum-limited amplifier Ag is highlighted. The result reads as follows:

Eη (|n〉 〈n|) � Eη (|n+ 1〉 〈n+ 1|) , (8.49)

Ag (|n〉 〈n|) � Ag (|n+ 1〉 〈n+ 1|) , (8.50)

where the majorization relation has to be understood as follows: the vector of eigenvalues of Eη(|n〉 〈n|)
majorizes the vetor of eigenvalues of Eη(|n+ 1〉 〈n+ 1|) (and similalry for the channel Ag). The proof
of the result is based on the derivation of a column-stochastic matrix linking the components of the
two outputs. Indeed, a sufficient condition for the majorization relation x � y where x,y ∈ RN is the
existence of a column-stochastic matrix D ∈ RN×N such that y = Dx [21]. Note that the matrix D is
said to be column-stochastic if and only if each element is non-negative (Dij ≥ 0), each column sums
up to 1 (

∑
iDij = 1) and each rows sums up to less or equal to 1 (

∑
j Dij ≤ 1).

In the rest of this section, we will present an extension of result (8.50) to the channels A(n̄)
g and

E(n̄)
η . It is an extension sbeyond the quantum-limited case. The proof of the result is based on

the decomposition of A(n̄)
g and E(n̄)

η as Gaussian unitaries coupled with thermal states. Then, we
succeed in the derivation of a column-stochastic matrix for the two different channels. This was made
possible thanks to the use of recurrence relations applying to the Gaussian unitaries present in these
transformations [35, 36].

In order to come to this result, we will first define the notion of transition probabilies in the general
case of a unitary fed by Fock states. We will then define the generating function of the sequence
determined by these transition probabilities. After that, we will particularize our development to the
Gaussian unitaries we are interested in, namely the beam-splitter and the two-mode squeezer. The
next step is to introduce the recurrence relations acting on these unitaries, which will allow us to build
the column-stochastic matrix and conclude our proof.

8.3.1 Transition probabilities in Fock space

As we explained in Chapter 4, the set of Fock states forms a complete orthogonormal basis, so that any
two-mode unitary operator Û can be completely described by the transition amplitudes 〈n,m| Û |i, j〉,
where we use the notation |i, j〉 = |i〉⊗ |j〉 where |i〉 and |j〉 are respectively the ith and jth Fock state.

We then define the transition probability U
(i,j)
n,m as:

U (i,j)
n,m =

∣∣∣〈n,m| Û |i, j〉∣∣∣2 (8.51)

= Tr
[
Û (|i〉 〈i| ⊗ |j〉 〈j|) Û † (|n〉 〈n| ⊗ |m〉 〈m|)

]
(8.52)

The channels that we are studying discard the second output of the unitary. Therefore, we will give
a particular interest to the reduced transition probability U

(i,j)
n , which corresponds to the probability
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Figure 8.4: The state σ̂i(y) is obtained as described in (8.56). In the particular case where Û is
chosen to be the unitary of the beam-splitter or the two-mode squeezer, the state σ̂i(y) corresponds

to respectively E(n̄)
η (|i〉 〈i|) or A(n̄)

g (|i〉 〈i|) where n̄ = y/(1− y).

to measure n photons at the first output, whatever the second output. It is defined as follows:

U (i,j)
n =

∞∑
m=0

U (i,j)
n,m (8.53)

= Tr
[
Û (|i〉 〈i| ⊗ |j〉 〈j|) Û †

(
|n〉 〈n| ⊗ 1̂

)]
(8.54)

In this chapter, we are interested in channels that can be described as a Gaussian unitary coupled
with a thermal environment. Recall that a thermal τ̂y state is a mixture of Fock states determined by
a thermal parameter y (or equivalently by its mean number of photons n̄), as defined in Chapter 4.
We now define the reduced thermal transition probability T

(i)
n as the probability to measure n photons

at the output of a unitary fed by i photons and a thermal state of parameter y:

T (i)
n (y) = Tr

[
Û (|i〉 〈i| ⊗ τ̂y) Û †

(
|n〉 〈n| ⊗ 1̂

) ]
(8.55)

Finally, let us define a particular output which is built from the thermal transition probabilities.
This enables us to define a particular set of states that we will write σ̂i(y):

σ̂i(y) = Tr2

[
Û (|i〉 〈i| ⊗ τ̂y) Û †

]
(8.56)

=

∞∑
n=0

T (i)
n (y) |n〉 〈n| (8.57)

For the sake of brevity we will sometimes simply denote that state as σ̂i. Figure 8.4 represents how to
construct the state. When Û is chosen to the unitary of the beam-splitter or the two-mode squeezer,

the states σ̂i corresponds respectively to the states E(n̄)
η (|i〉 〈i|) and A(n̄)

g (|i〉 〈i|).

8.3.2 Generating function

The generating function of a sequence {cn} with n ∈ N0 is defined as:

g(x) =
∞∑
n=0

cnx
n (8.58)

The generating function g(x) encapsulates all the information of the sequence {cn} since the value
each element of the sequence can be computed as the nth evaluated in x = 0:

cn =
1

n!

dn

dxn
g(x)

∣∣∣∣
x=0

(8.59)

The generating function naturally generalizes to multi-indices sequences. If we have a N -indices
sequence {cn1,...,nN } with ni ∈ N0 ∀i, the generating function of that sequence is the multi-parameters
function g(x1, ..., xN ):

g(x1, ..., xN ) =

∞∑
n1=0

xn1
1 · · ·

∞∑
nN=0

xnNN cn1,...,nN (8.60)
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Similarly to the 1-parameter case, the multi-parameters generating function encapsulates all the in-
formation of the multi-indices sequence.

cn1,...,nN =

N∏
i=1

1

ni!

∂ni

∂xnii
g(x1, ..., xN )

∣∣∣∣
x1,...,xN=0

(8.61)

We then naturally define the generating function of transition probabilities as:

f(x, y, z, w) =

∞∑
i=0

xi
∞∑
j=0

yj
∞∑
n=0

zn
∞∑
m=0

wm U (i,j)
n,m (8.62)

where we have associated the parameters x, y, z, w respectively to the indices i, j, n,m. We define the
reduced generating function as the generating function of the reduced transition probabilities, which
is easily derived from the generating function:

f(x, y, z) =
∞∑
i=0

xi
∞∑
j=0

yj
∞∑
n=0

zn U (i,j)
n (8.63)

=
∞∑
i=0

xi
∞∑
j=0

yj
∞∑
n=0

zn
∞∑
m=0

U (i,j)
n,m (8.64)

= f(x, y, z, 1) (8.65)

Note that we use the same writing for the generating function and the reduced generating function
since they are unequivocally distinguished by their number of arguments. Let us now focus our
attention on the generating function of thermal transition probabilities, that we define as:

hy(x, z) =

∞∑
i=0

xi
∞∑
n=0

zn T (i)
n (y). (8.66)

By a simple development, it is possible to link the reduced generating function to the thermal gener-
ating function.

hy(x, z) =

∞∑
i=0

xi
∞∑
n=0

zn T (i)
n (y)

=
∞∑
i=0

xi
∞∑
n=0

zn Tr
[
Û (|i〉 〈i| ⊗ τ̂y) Û †

(
|n〉 〈n| ⊗ 1̂

)]

=
∞∑
i=0

xi
∞∑
n=0

zn Tr

[
Û

|i〉 〈i| ⊗ (1− y)
∞∑
j=0

yj |j〉 〈j|

 Û †
(
|n〉 〈n| ⊗ 1̂

) ]

= (1− y)

∞∑
i=0

xi
∞∑
j=0

yj
∞∑
n=0

zn Tr
[
Û (|i〉 〈i| ⊗ |j〉 〈j|) Û †

(
|n〉 〈n| ⊗ 1̂

)]

= (1− y)
∞∑
i=0

xi
∞∑
j=0

yj
∞∑
n=0

zn U (i,j)
n

= (1− y)f(x, y, z)

(8.67)

We have now properly defined the generating function f(x, y, z, w), the reduced generating function
f(x, y, z) and the thermal generating function hy(x, z). Their relation can be summarized as follows:

f(x, y, z, 1) = f(x, y, z) =
1

1− y
hy(x, z) (8.68)
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8.3.3 Application to Gaussian unitaries

Let us now illustrate our previous findings by considering the two Gaussian unitaries we are interested
in.

Beam-splitter

In Chapter 4, we introduced the unitary of the beam-splitter as B̂θ where θ is a real parameter. In
what follows, we will refer to that unitary by the notation B̂η where η is the transmittance of the
beam-splitter and is related to θ as η = cos2 θ. The beam-splitter transition probabilities are then
defined as: (

UBS
η

)(i,j)
n,m

=
∣∣∣〈n,m| B̂η |i, j〉∣∣∣2 (8.69)

Note that the beam-splitter conserve the total photon number, so that these transitions probabilities
are non-zero only if n+m = i+j. The generating function of the beam-splitter transition probabilities
is derived in [35, 36]:

fBS
η (x, y, z, w) =

1

1− η(xz + yw)− (1− η)(xw + yz) + xyzw
(8.70)

fBS
η (x, y, z) =

1

1− η(xz + y)− (1− η)(x+ yz) + xyz
(8.71)

hBS
y (x, z) =

1− y
1− η(xz + y)− (1− η)(x+ yz) + xyz

(8.72)

Two-mode squeezer

Let us now turn our attention to the two-mode squeezer. We have introduced its unitary in Chapter
4 as Σ̂r where r is a real parameter. In what follows, we will use the parameter λ = tanh2 r to define
the two-mode squeezer, and we will denote its unitary as Σ̂λ. Note that the parameter λ is related
to the gain g as λ = (g − 1)/g. We then define the transition probabilites of a two-mode squeezer as
follows: (

UTMS
λ

)(i,j)
n,m

=
∣∣∣〈n,m| Σ̂λ |i, j〉

∣∣∣2. (8.73)

The two-mode squeezer has the property to conserve the photon-difference between each mode, so
that the transition probabilities are non-zero only if n −m = i − j. The generating function of the
two-mode squeezer is derived in [35, 36]:

fTMS
λ (x, y, z, w) =

1− λ
1− λ(xy + zw)− (1− λ)(xz + yw) + xyzw

(8.74)

fTMS
λ (x, y, z) =

1− λ
1− λ(xy + z)− (1− λ)(xz + y) + xyz

(8.75)

hTMS
y (x, z) =

(1− λ)(1− y)

1− λ(xy + z)− (1− λ)(xz + y) + xyz
(8.76)

Notice the interesting link between fλ and fη:

fTMS
λ (x, y, z, w) = (1− λ)fBS

1−λ(x,w, z, y) (8.77)

That relation is at the origin of a partial-time reversal symmetry, recently exploited in [13]. We now
have introduced all the theory we need to proceed to the proof of our main result.
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8.3.4 From recurrence relations to a column-stochastic matrix

Remember that we want to prove the two following relations:

A(n̄)
g (|i〉 〈i|) � A(n̄)

g (|i+ 1〉 〈i+ 1|) (8.78)

E(n̄)
η (|i〉 〈i|) � E(n̄)

η (|i+ 1〉 〈i+ 1|) (8.79)

In the light of the previous subsection, that statement can be formulated equivalently as σ̂i � σ̂i+1

and should be proven for all y (which is related to n̄ as n̄ = y/(1 − y)). Remember that σ̂i is a
Fock-diagonal state, so that its eigenvalues are simply its diagonal components in the Fock basis. For
that reason, we define the infinite-dimensional vector t(i) as follows:

t(i) =
(
T

(i)
0 , T

(i)
1 , T

(i)
2 , ...

)ᵀ
, (8.80)

where we omit to write the y dependence for clarity. The vector t(i) is a vector made of the eigenvalues
of σ̂(i). To show our result, we are going to show that there exist a column-stochastic matrix D such
that:

t(i+1) = D t(i) (8.81)

In general, the matrix D can depend on multiple parameters, such as the parameters of the channel
(y, η or λ), but also on the index i.

Our proof is constructed in two parts. First, we are going to derive a recurrence relation from
the generating function of the thermal transition probabilities. That recurrence relation links the
components of t(i+1) to the components of t(i). Then, we are going to build a matrix linking t(i+1) to
t(i). We will finally verify that the matrix is column-stochastic.

Recurrence relation

One of the powerful uses of the generating function is that it can be used to derive recurrence relations
straightforwardly. This has been initiated in the context of quantum optics by Jabbour in [35, 36]. To

illustrate this, let us consider the thermal transition probabilities T
(i)
n and their generating function

h(x, z). The parameters x, z are respectively associated to the indices i, n. If the generating function
is multiplied by some parameter x or z, the sequence will be shifted along the associated index:

h(x, z) ←→ T (i)
n

x h(x, z) ←→ T (i−1)
n

z h(x, z) ←→ T
(i)
n−1

xz h(x, z) ←→ T
(i−1)
n−1

(8.82)

Note that we use the convention that transition probabilities are zero for negative indices, so that

T
(i)
n = 0 as soon as n < 0 or i < 0. We are going to use this corresponding rules to derive recurrence

relations for the thermal transition probabilities. Firstly for the beam-splitter, and then for the two-
mode squeezer.

Beam-splitter

Starting from the expression of hBS
y (x, z), we obtain the following relation:

(1− ηy) h(x, z) + (η − 1)x h(x, z) + y(η − 1)z h(x, z) + (y − η)xz h(x, z) = 1− y, (8.83)

where we simply note hBS
y (x, z) as h(x, z) for readability. We can rewrite that expression as:

h(x, z) =
1− η
1− ηy

x h(x, z) +
y(1− η)

1− ηy
z h(x, z) +

η − y
1− ηy

xz h(x, z) +
1− y
1− ηy

. (8.84)
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Identifying the sequence to their generating function in the latter relation gives us the following
recurrence relation:

T (i)
n =

1− η
1− ηy

T (i−1)
n +

y(1− η)

1− ηy
T

(i)
n−1 +

η − y
1− ηy

T
(i−1)
n−1 +

1− y
1− ηy

δ(i)
n (8.85)

where δ
(i)
n is the Kronecker delta, which is equal to 1 if i = n = 0 and is zero otherwise. The generating

function of δ
(i)
n is precisely 1.

Two-mode squeezer

We proceed in a similar fashion for the two-mode squeezer. Starting from the expression of hTMS
y (x, z),

we derive the following relation:

(1− y + λy) h(x, z)− λyx h(x, z)− λz h(x, z) + (λ+ y − 1)xz h(x, z) = (1− y)(1− λ) (8.86)

where we note hTMS
y (x, z) as h(x, z) for readability, while it is of course a different function than in

Eq. (8.83). That expression is then rewritten as:

h(x, z) =
λy

1− y + λy
x h(x, z) +

λ

1− y + λy
z h(x, z)

1− y − λ
1− y + λy

xz h(x, z) +
(1− y)(1− λ)

1− y + λy
(8.87)

which then yields the recurrence relation:

T (i)
n =

λy

1− y + λy
T (i−1)
n +

λ

1− y + λy
T

(i)
n−1 +

1− y − λ
1− y + λy

T
(i−1)
n−1 +

(1− y)(1− λ)

1− y + λy
δ(i)
n . (8.88)

We have derived recurrence relations in the case for the beam-splitter and in the case of the
two-mode squeezer. We will see that both cases can be treated similarly.

8.3.5 Column-stochastic matrix

It is interesting to note that the recurrence relation of the beam-splitter and the two-mode squeezer
have the same form, only the coefficients vary. Indeed, both Eqs. (8.85) and (8.88) can be written as:

T (i)
n = αT (i−1)

n + βT
(i)
n−1 + γT

(i−1)
n−1 + χδ(i)

n , (8.89)

where the coefficient α, β, γ, χ are different whether we consider a beam-splitter or a two-mode
squeezer. Interestingly, these coefficient do not depend on n nor i.

The term δ
(i)
n is only non-zero when n = i = 0. When n = i = 0, that term is actually the only

non-zero term in the RHS of Eq. (8.89), and χ gives the value of T
(0)
0 = χ which is the probability to

measure zero photon at the output when no photon is sent at the input. As soon as i ≥ 1, that term
disappears and we are left with:

T (i)
n = αT (i−1)

n + βT
(i)
n−1 + γT

(i−1)
n−1 . (8.90)

Our goal is to express the components of t(i+1) from the components of t(i) (or equivalently the
components of t(i) from the components of t(i−1)). This means that we are looking for a relation that

expresses T
(i)
n only from T

(i−1)
n′ where n′ can take different values but we should only have terms in

(i − 1). We are thus going to reuse the recurrence relation on the term T
(i)
n−1. Proceeding iteratively
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gives:

T (i)
n = αT (i−1)

n + γT
(i−1)
n−1 + βT

(i)
n−1

= αT (i−1)
n + γT

(i−1)
n−1 + β

(
αT

(i−1)
n−1 + γT

(i−1)
n−2 + βT

(i)
n−2

)

= αT (i−1)
n + (γ + βα)T

(i−1)
n−1 + βγT

(i−1)
n−2 + β2T

(i)
n−2

= αT (i−1)
n + (γ + βα)T

(i−1)
n−1 + βγT

(i−1)
n−2 + β2

(
αT

(i−1)
n−2 + γT

(i−1)
n−3 + βT

(i)
n−3

)

= αT (i−1)
n + (γ + βα)T

(i−1)
n−1 + β(γ + βα)T

(i−1)
n−2 + β2γT

(i−1)
n−3 + β3T

(i)
n−3

= · · ·

(8.91)

Summed up, this comes up to:

T (i)
n = αT (i−1)

n + ν

n∑
k=1

βk−1T
(i−1)
n−k , (8.92)

where we have defined the parameter ν = γ + βα. That relation links each component of the vector
t(i) to components of the vector t(i−1), which is precisely what we wanted. We can now construct the
following matrix (after shifting i to i+ 1):

T
(i+1)
0

T
(i+1)
1

T
(i+1)
2

T
(i+1)
3

T
(i+1)
4

T
(i+1)
5

...


︸ ︷︷ ︸

t(i+1)

=



α 0 0 0 0 0 · · ·

ν α 0 0 0 0 · · ·

νβ ν α 0 0 0 · · ·

νβ2 νβ ν α 0 0 · · ·

νβ3 νβ2 νβ ν α 0 · · ·

νβ4 νβ3 νβ2 νβ ν α · · ·

...
...

...
...

...
...

. . .


︸ ︷︷ ︸

D



T
(i)
0

T
(i)
1

T
(i)
2

T
(i)
3

T
(i)
4

T
(i)
5

...


︸ ︷︷ ︸

t(i)

(8.93)

Now that we have built the matrix D, we need to show that it is indeed column-stochastic. Such
a matrix only has non-negative entries and its columns sum up to 1. The non-negativity conditions
are the following three conditions:

α ≥ 0, ν ≥ 0, β ≥ 0. (8.94)

These conditions have to be verified separately for the beam-splitter and for the two-mode squeezer.
The calculations are straightforward given that 0 ≤ y, η, λ ≤ 1. Checking that each column sums up
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to 1 comes to the following condition:

α+ ν

∞∑
k=0

βk = 1

⇔ α+ (γ + βα)
1

1− β
= 1

⇔ (1− β)α+ γ + βα = 1− β

⇔ α− βα+ γ + βα = 1− β

⇔ α+ β + γ = 1

(8.95)

That relation can be verified directly by looking at Eqs. (8.85) and (8.88). From (8.94) it is also
obvious that the sum of each row is lower or equal to 1.

8.3.6 Extension to mixtures of Fock states

That relation is proven through the construction of a column-stochastic matrix D which links the two
outputs t(i) and t(i+1). What is very remarkable about the matrix D is that it does not depend on i.
It is only a function of y (noise of the environment) and η (transmittance of the beam-splitter) or λ
(parameter of the two-mode squeezer). This implies the following relation:

t(i) = Dt(i−1) = D2t(i−2) = Dkt(i−k) = Dit(0) (8.96)

where k can be chosen from 0 to i.
Let us now notice that any power of column-stochastic Dn is itself column-stochastic. The same

fact can be noticed for mixtures of column-stochastic matrix. Indeed, it is easily shown that if D1

and D2 are column-stochastic, then p1D1 + p2D2 is column-stochastic for any p1, p2 ≥ 0 such that
p1 + p2 = 1.

We can take advantage of these observations to derive a more general majorization ladder involving
mixtures of Fock states. To that purpose, we define a couple of states ρ̂k and ρ̂k−1 defined as mixtures of
Fock states with photon-number greater or equal to respectively k and k−1 according to a probability
distribution {pn}:

ρ̂k =

∞∑
n=0

pn |k + n〉 〈k + n| , (8.97)

ρ̂k−1 =
∞∑
n=0

pn |k − 1 + n〉 〈k − 1 + n| . (8.98)

In what follows, we use the symbol M to represent either of the two channels A(n̄)
g or E(n̄)

η . When ρ̂k
is sent through M, its output M (ρ̂k) is another mixture of Fock states which can be characterized

by a vector q(k), such that M (ρ̂k) =
∑

n q
(k)
n |n〉 〈n|. Since ρ̂k is a mixture of Fock states, the vector

q(k) is the corresponding mixture of the vectors t(i):

q(k) =
∞∑
n=0

pnt
(k+n) (8.99)

=

∞∑
n=0

pnD
nt(k) (8.100)

Since a mixture of column-stochastic matrices is column-stochastic, this implies that q(k) ≺ t(k), which
in turn implies the following relation:

M (ρ̂k) ≺M (|k〉 〈k|) . (8.101)
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Now, let us consider the two states ρ̂k and ρ̂k−1 introduced in Eqs. (8.97) and (8.98), where we
choose k ≥ 1. Let q(k) and q(k−1) be the vectors associated to the outputs of respectively ρ̂k and ρ̂k−1

through the channel M. We make the following simple development:

q(k) =

∞∑
n=0

pnt
(k+n) (8.102)

=
∞∑
n=0

pnDt(k−1+n) (8.103)

= Dq(k−1) (8.104)

This directly shows that q(k) ≺ q(k−1), which in turns implies the following:

M (ρ̂k) ≺M (ρ̂k−1) . (8.105)
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Chapter 9

Resource theory of local Gaussian work
extraction

In this last chapter, we take a step back from the main thread of our thesis, and focus on the study
of multipartite quantum systems from a thermodynamic point of view. We remain in the context of
quantum optics, with a particular attention to Gaussian states, and therefore we will use many notions
introduced in Chapter 4. The content of this chapter has been published in the paper entitled Quantum
thermodynamics in a multipartite setting: A resource theory of local Gaussian work extraction for
multimode bosonic systems [61]. This chapter is not meant to be exhaustive since we leave out some
mathematical derivations that the interested reader will find in Reference [61]. Here, we try to convey
the general idea of the paper as well as the main results that have been reached.

Thermodynamics is a macroscopic theory applicable in the limit where the number of particles
and volume tend to infinity [12]. However, with our increasing ability to control or manipulate small
systems and the realization of molecular motors [56, 33, 25] and nanomachines [58, 22, 2, 59, 19], the
scope of applicability of thermodynamics is starting to stretch beyond the macroscopic region. One of
the main goals of the thermodynamics of small systems—quantum thermodynamics—is the extraction
of work by means of cyclic Hamiltonian transformations of a quantum state. Evidently, it is of great
importance to know which states do not allow for any work extraction under unitary transformations.
Such states are known as passive states [54, 41], and we will give more details about them in Chapter
5. A central result in quantum thermodynamics is that the only completely passive states are the
thermal states, which we have introduced in Chapter 4.

A resource theory of thermodynamics can be developed to systematically describe work extraction
from a quantum system and, in general, the allowed state transformations are those where the system
interacts via an energy-preserving unitary together with an ancilla chosen to be in a thermal Gibbs
state (with an arbitrary Hamiltonian) at some fixed temperature [32, 9, 8, 24]. In this resource-
theoretic treatment of quantum thermodynamics, the thermal Gibbs state of the system at the same
temperature as that of the ancilla is the only free state [32, 9, 8]. Although considering arbitrary
Hamiltonians and arbitrary energy-preserving unitaries is satisfying in the context of establishing a
general framework for quantum thermodynamics, it may also be interesting to focus on states and
unitaries of higher practical relevance. For bosonic systems, for example, restricting to Gaussian
states and Gaussian operations has proven to be very fruitful, particularly in the field of quantum
information theory with continuous variables [66, 52, 1]. Similarly, exploring quantum thermodynamics
with Gaussian bosonic systems is a promising avenue [11], which we investigate here.

In this chapter, we explore a multipartite quantum thermodynamical scenario as illustrated in
Figure 9.1, where each party can extract work locally by applying a local unitary and this process
is being assisted with a global energy-preserving unitary (hence, allowing no global work extraction
as such). This is not a trivial extension of work extraction for a single party because there exist
situations where an energy-preserving coupling allows the parties to extract work locally even though
their local (reduced) states are initially passive, as we are going to see later in this chapter. Given
the definition of passive states, a natural choice may be to consider them (instead of Gibbs states) as
free states in a resource theory for extractable work. However, considering passive states as free states
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Figure 9.1: Illustration of the setup for our resource theory of local Gaussian work extraction.
We consider a multimode state ρ̂ which with we can interact globally through the passive Gaussian
unitary ÛPG. We then proceed to extract energy locally from each mode through single-mode Gaussian
unitaries ÛG

i .

defies a plausible criterion for any reasonable resource theory, namely that if a state ρ̂ is free, then
ρ̂⊗n should also be free for any integer n. For this reason, we rather take thermal states as building
blocks of our free states for each party, which allows us to develop a multipartite resource theory for
local extractable work within this restriction.

This will thus be our starting point in order to build a resource theory for local work extraction
under Gaussian unitaries. In the following of this chapter, we will first set up the tools of the symplectic
formalism, which will constitute the mathematical backgound of our further developments. After that,
we will move on to the rigourous definition of our set of free states and set of free operations. Then,
in the last section, we will highlight two different monotones to quantify the resourceful states. As
we will show, these two monotones have very different properties, and one of them will lead us to the
definition to an extended set of free states.

9.1 Symplectic formalism

In Chapter 4, we have introduced two important objects that are the mean displacement q̄ and
covariance matrix V of a quantum state. The definition of these two objects is not restricted to the
framework of Gaussian states, since they are defined in all generality for any quantum state. In that
context, we have shown that the evolution of q̄ and V under a symplectic transformation was easily
described through the symplectic matrix U associated to the symplectic transformation, as follows:

q̄→ Uq̄, V→ UVUᵀ. (9.1)

In what follows, we will present several powerful tools associated with the symplectic formalism,
namely the Williamson theorem which reduces any covariance matrix to a standardized form, and the
Bloch Messiah decomposition which applies to any sympletic matrix.

9.1.1 Williamson theorem

Let us now introduce a theorem which plays a central role within the symplectic formalism. The
Williamson theorem states that any covariance matrix V can be brought to its Williamson form Vs

with the appropriate symplectic transformation. We use the notation Vs to denote the Williamson
form of the covariance matrix V and will define it a bit later in this subsection. Williamson theorem
thus states that for any covariance matrix V there exists a symplectic matrix Us such that:

Vs = UsVUᵀ
s . (9.2)
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Let us now properly define the Williamson form of a covariance matrix V, that we denote as Vs:

Vs =

N⊕
k=1

νkI2. (9.3)

The Williamson form of a covariance matrix is diagonal, and its diagonal is composed of a sequence of
eigenvalues following one another in pairs. The eigenvalues νk are called the symplectic eigenvalues of
V, and differ in general from the eigenvalues of V. They can alternatively be obtained as the absolute
values of the complex eigenvalues of the matrix iΩV. It is interesting to note that condition (4.83)
implies that all the symplectic eigenvalues νk are greater or equal to 1/2, so that we can write the
relation Vs ≥ (1/2)I2N .

It should be noted that the set of symplectic eigenvalues {νk} is invariant under symplectic transfor-
mation, so that the matrix V and the matrix UVUᵀ have the same eigenvalues when U is symplectic.
Let us also define the symplectic trace of a covariance matrix which corresponds to the sum of its
symplectic eigenvalues:

Str [V] = 2

N∑
i=1

νk. (9.4)

As a consequence to what we have explained, the symplectic trace is invariant under symplectic
transformations. Also, we obviously have the equality Str [V] = Tr [Vs]. Moreover, the symplectic
trace is in general a lower-bound on the trace, so that for any covariance matrix V we have the relation
Str [V] ≤ Tr [V].

In the case of Gaussian states, the Williamson form corresponds to the covariance matrix of a
product of thermal states. It is then possible to associate each symplectic eigenvalue with a mean
number of photons as ν = n̄+ 1/2. Also, since the von Neumann entropy is additive under tensoring,
we can compute the von Neumann entropy of the product of thermal states γ̂ as:

S(γ̂) =

N∑
k=1

g(n̄k) (9.5)

where the function g(n̄) gives the von Neumann entropy of a thermal state with mean number of photon
n̄ and is defined in (4.89). Also, since von Neumann entropy is invariant under unitary operations,
(9.5) can be computed for any Gaussian state γ̂ (not necessarily a product of thermal states). Note
that in a similar fashion, the purity of a multimode Gaussian state can be computed as

µ(γ̂) =
N∏
k=1

1

2νk
(9.6)

where γ̂ is any Gaussian state with symplectic eigenvalues {νk}.

9.1.2 Bloch-Messiah decomposition

In that context, the Bloch-Messiah decomposition is particularly useful as it provides a decomposition
of any symplectic matrix with orthogonal matrices and squeezing matrices. An orthogonal matrix
is a matrix O such that OOᵀ = OᵀO = I, and is associated to a passive transformation. Indeed,
orthogonal matrices preserve the spectrum of eigenvalues, so that the matrix V and OVOᵀ of the
same set of eigenvalues {λk} when O is orthogonal. As a consequence, the trace is invariant under
orthogonal operation and we have the relation Tr [OVOᵀ] = Tr [V] (which translates into the fact
the energy is conserved). Using notation from Chapter 4, orthogonal matrices can be obtained by
combining rotations matrices Rθ and beam-splitter matrices Bθ (which can be understood as a rotation
between different modes).

The Bloch-Messiah decomposition of a symplectic matrix U reads as follows:

U = O1

(
N⊕
k=1

Srk

)
O2, (9.7)
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Figure 9.2: Illustration of the setup to build our set of free states. A global passive Gaussian unitary
ÛPG is applied onto a tensor product of thermal states τ̂i, possibly with different temperatures.

where O1, O2 are two orthogonal matrices and Sr is a single-mode squeezing matrix as defined
in Chapter 4. The Bloch-Messiah provides us with a systematic decomposition of any symplectic
transformation. As we are going to see, it will play a central role in the following of this chapter.

9.2 Free states ans free operations

A general resource theory comprises two basic elements: the set of free states and the set of free
operations. Based on these two elements, the resource states can be identified and the amount of the
resource is then quantified with the help of resource monotones which satisfy certain bona fide criteria.
In the present section we define the set of free states and the set of free operations. We will turn to
the definition of monotones in the next section.

9.2.1 Free states

The free states that we want to define should be such that no energy could be extracted from them
through the device pictured in Figure 9.1. As discussed in the introduction, our starting point for the
set of free state will be to consider products of thermal states, possibly with different temperatures.
In addition to this, remember that we are allowed to interact with the system through a global passive
unitary. That operation shouldn’t create any resource. With this in mind, we define our set of free
states as If :

If =

{
ÛPG

(
N⊗
i=1

τ̂i

)
ÛPG†

}
, (9.8)

where ÛPG is a N -mode passive Gaussian unitary and each thermal state τ̂i may have different
temperatures. Figure 9.2 illustrates how to build such states.

The presence of a global passive unitary is not insignificant. Let us illustrate this by the following
example. The output of a two-mode squeezer fed by a two-mode vacuum reads as follows:

Σ̂r |0, 0〉 =
1

cosh r

∞∑
n=0

(tanh r)n |n, n〉 . (9.9)

A two-mode squeezed vaccum is a pure state which locally looks like a thermal state. Indeed, if we
partial trace it over one mode, we obtain a thermal state of parameter y = tanh2 r, which is a passive
state. From that observation, we see that no energy can be extracted locally from a two-mode squeezed

138



vacuum. Now, if we apply a beam-splitter with parameter θ = π/4, we obtain the following state:

B̂π
4
Σ̂r |0, 0〉 = Ŝr |0〉 ⊗ Ŝ−r |0〉 , (9.10)

which is actually a tensor product of two squeezed states with orthogonal squeezing. In that situation,
it is possible to extract energy locally, since a squeezed state can be unsqueezed with a Gaussian
unitary in order to produce a vacuum state, with lower energy. We understand here that the global
unitary plays a decisive role, even if as a passive unitary it does not allow to extract energy. By
allowing ourselves to act with a global unitary on the multipartite state, we allow ourselves to extract
energy from states for which it seemed, at first glance, impossible to do so.

Now, notice that since our free states are Gaussian, it is sufficient to consider their covariance
matrices. It is shown in [61] that the covariance matrices of free states take the following form:

Vf = O

(
N⊕
i=1

νiI2

)
Oᵀ =


a11I2 a12R12 · · · a1NR1N

a12R
ᵀ
12 a22I2 · · · a2NR2N

...
...

. . .
...

a1NRᵀ
1N a2NRᵀ

2N · · · aNNI2

 (9.11)

where aij are some coefficients and Rij are rotation matrices. Free states are Gaussian and are locally
thermal. In the following, we will denote the set of all covariance matrices associated to some free
state as Vf . An important observation that can be made about this set is that it is a convex set.
Indeed, for any V1,V2 ∈ Vf , it can be shown that p1V1 + p2V2 ∈ Vf where (p1, p2) is a probability
vector.

9.2.2 Free operations

Now that we have defined our set of free states If , let us define our set of free operation Λf . Free
operations are operations which shouldn’t create any resource. As a consequence, when a free states
undergoes a free operation, the resulting state should remain a free state. In what follows, we are
going to present the free operations that we consider, and we will verify that they are consistent with
our set of free states If .

Linear interferometer

The first free operation we consider is the action of a global passive Gaussian unitary ÛPG, also called
linear interferometer. From the construction of the set of our free states, it is straightforward to see
that such a unitary applies a free state on a free state. We prove that a linear interferometer acting
on a free state produce another free state in Figure 9.3.

Tensoring of free states

Then, the second free operation we consider is the tensoring of free states. This operation seems
natural to consider as free, since it simply means that it is not possible to create a resource by
gathering states that do not contain any. And indeed, it can easily be shown that tensoring free states
does not produce a resourceful state, as we illustrate in Figure 9.4.

Partial tracing

The last free operation we consider is partial tracing. Again, this is a natural operation, since it means
that a multipartite system that does not contain resource cannot give rise to a resourceful subsystem.
We can show that partial tracing a free state gives a free state by making two observations. First,
partial tracing a Gaussian state yields a Gaussian state, so that we know that the state remain
Gaussian after partial tracing. Then, by looking at the form of the covariance matrices of free state
(see (9.11)), we can deduce that the resulting covariance matrix will be associated to the one of a free
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Figure 9.3: Illustration of a linear interferometer acting on a free state, read from top to bottom.
We can consider the composition of the two global passive Gaussian unitaries ÛPG

1 and ÛPG
2 as a new

global passive unitary ÛPG = ÛPG
1 ÛPG

2 .

Figure 9.4: Illustration of the tensoring of free states, read from top to bottom. By decomposing
each free state as a linear interferometer acting on a product of thermal states, we show that the
state obtained by tensoring can itself be considered a product of thermal states on which acts a linear
interferometer ÛPG

1 ⊗ ÛPG
2 .
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state. Indeed, the partial tracing of a (N + 1)-mode free states over its last mode gives the following
covariance matrix:

a11I2 a12R12 · · · a1NR1N a1,N+1R1,N+1

a12R
ᵀ
12 a22I2 · · · a2NR2N a2,N+1R2,N+1

...
...

. . .
...

...
a1NRᵀ

1N a2NRᵀ
2N · · · aNNI2 aN,N+1RN,N+1

a1,N+1R
ᵀ
1,N+1 a2,N+1R

ᵀ
2,N+1 · · · aN,N+1R

ᵀ
N,N+1 aN+1,N+1I2


. (9.12)

9.3 Monotones

Now that our set of free state If and set of free operations Λf are propertly defined, let us turn our
attention to defining monotones. A monotone must be consistent with the set of free states so that it
takes the value zero for free states. It should also be consistent with free operations so that the value
of a monotone monotonically decreases when any state evolves under the action of a monotone. In
what follows, we propose two different monotones, which have different properties as we are going to
see. The first one is based on the relative entropy of two quantum states, and we call it the relative
entropy of local activity. The second has a more intuitive interpretation since it simply corresponds
to the maximum work that can be extracted from Figure 9.1, and we call it the locally extractable
work.

9.3.1 Relative entropy of local activity

When defining monotones in a resource theory, it is common to use a contractive distance. Such a
distance is a measure between two states which can only decrease when a completely positive map
acts on both system. In other words, the distance D is contractive if for any completely positive map
φ acting on the states ρ̂ and σ̂ we have the following relation:

D(φ(ρ̂)‖φ(σ̂)) ≤ D(ρ̂‖σ̂). (9.13)

In this context, it is particularly interesting to use the relative entropy. The relative entropy between
a state ρ̂ and a state σ̂ is denoted as S(ρ̂‖σ̂) and is defined as S(ρ̂‖σ̂) = Tr [ρ̂(ln ρ̂− ln σ̂)]. It is a
contractive distance, so that it satisfies Equation (9.13). We define the relative entropy of local activity
of a state ρ̂ as the relative entropy between ρ̂ and the closest free state. It is defined as follows:

Al(ρ̂) = min
σ̂∈If

S(ρ̂‖σ̂) (9.14)

Let us now show that thanks to the fact that relative entropy is a contractive distance, the relative
entropy of local activity can only decrease under a free operation. To that purpose, we consider a
state ρ̂. Let σ̂f ∈ If be the closest free state with respect to ρ̂, i.e. the free state which minimizes the
relative entropy with respect to ρ̂ over the set of free states. We can then write:

Al(ρ̂) = min
σ̂∈If

S (ρ̂‖σ̂) (9.15)

= S (ρ̂‖σ̂f ) (9.16)

≥ S (φf (ρ̂)‖φf (σ̂f )) (9.17)

= S
(
φf (ρ̂)‖σ̂′f

)
(9.18)

≥ min
σ̂∈If

S (φf (ρ̂)‖σ̂) (9.19)

= Al(φf (ρ̂)) (9.20)
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We have used the fact that a free operation φf applies a free state σ̂f onto another free state, so that
φf (σ̂f ) = σ̂′f is also a free state.

The relative entropy of local activity is thus a consistent monotone with our set of free states. It
takes the value zero for any free state, and some positive value for any state which do note belong to
the set If . As a consequence, the relative entropy of local activity is non-zero for any non-Gaussian
state, since our free states are Gaussian. We should note that this property has a slight inconvenient.
Indeed, it implies that a mixture of free states yields in general a state with a non-zero relative entropy
of local activity. This can be understood from the simple fact that a mixture of Gaussian states is
in general non-Gaussian. Of course, this does not contradict our resource theory since we have not
considered the mixing of free states as a free operation.

Let us now highlight an interesting property of the relative entropy of local activity which is derived
in [61]. When considering a multimode state ρ̂AB and its two reduced subsytems ρ̂A and ρ̂B (which
are possibly multimode too), the following relation holds:

Al(ρ̂AB) ≤ Al(ρ̂A) +Al(ρ̂B) + S(ρ̂AB‖ρ̂A ⊗ ρ̂B). (9.21)

This relation can be understood as a relaxed form of subbaditivity. Note that this is a rather surprising
property, since we would have expected the inequality to be in the other direction. Indeed, in general,
we expect that a global state contains at least as much resource as the sum of the resource contained
in each of its subsystems. However, that relation is not a strict relation of subbaditivty because of
the extra term, and there is thus no contradiction. We will see that the other monotone that we will
introduce in the following of this section has properties which are more intuitive than the relative
entropy of local activity.

Finally, let us mention that in the particular case of single-mode states, the relative entropy of
local activity can be computed explicitly. Indeed, in that context, the free states are thermal states
and we find the following relation:

Al(ρ̂) = g(n̄)− S(ρ̂), (9.22)

where n̄ is the mean number of photon of ρ̂, and g(n̄) is the von Neumann entropy of a thermal state
with mean number of photon n̄ (as defined in 4.89). Since thermal states maximize the von Neumann
entropy at a given energy, it is clear from relation (9.22) that Al(ρ̂) is non-negative and is zero only
in the case of thermal states, as expected.

9.3.2 Locally extractable work

Let us now define a monotone from a different approach. As we know, energy is a quantity that is
conserved. Therefore, it is natural that the work extracted from our system cannot grow through the
free operations that we have defined. In order to determine what is the maximum energy that can be
extracted from a state ρ̂, we need to determine what is the lowest energy state that can be constructed
from ρ̂ according to our setup pictured in Figure 9.1.

Now, remember that the energy of a system is only a function of its covariance matrix V and its
displacement vector q̄, as it appears from Equation (4.82). The first thing to do in order to reduce
the energy of a state is therefore to bring its mean displacement vector q̄ onto zero. This can be done
with the help of the displacement operator D̂α, which is local and Gaussian and thus allowed by our
setup. Also, since all the operations that we may perform are symplectic, the spectrum of symplectic
eigenvalues of the covariance matrix is conserved. From what we have explained in Section 9.1, we
know that for a given set of symplectic eigenvalues associated to a covariance matrix V, it is the
Williamson form Vs that will minimize the trace of the covariance matrix.

We show with the help of Figure 9.5 that it is possible thanks to our setup to bring any state to
this state of least energy that we have presented. This allows us to define the following monotone,
which we call the locally extractable work and which we denote by Wl:

Wl(ρ̂) =
1

2
q̄2 +

1

2
Tr [V]− 1

2
Str [V] . (9.23)

The monotone Wl has an intuitive interpretation as it corresponds to the maximum extractable
work with the use of our setup. It is interesting to note that it only depends on the mean displacement

142



Figure 9.5: This scheme presents the optimal way to extract energy using the setup described in
Figure 9.1. We start from a quantum state ρ̂ with mean displacement q̄ and covariance matrix V. We
then apply a displacement operator D̂αi on every mode in order to bring the mean displacement onto
zero. Then, taking advantage of the Bloch-Messiah decomposition, we bring the covariance matrix V
onto its Williamson form Vs with the help of a global Gaussian passive unitary ÛPG

1 , followed by a
set of single-mode squeezer Ŝri and followed by another global Gaussian unitary ÛPG

2 . The state we
obtain at the end has a mean displacement 0 and a covariance matrix Vs. The difference of energy
between the input state and the output state corresponds to the locally extractable work Wl(ρ̂).

q̄ and covariance matrix V of the state. As a consequence, it takes the value zero for our set of free
state If , but also for any state which has the same mean displacement and covariance matrix as a free
state. This leads us to define an extended set Iw which is the set of states, possibly non-Gaussian,
that have the covariance matrix of a free state and a zero mean displacement:

Iw = {ρ̂ : q̄ρ̂ = 0,Vρ̂ ∈ Vf} . (9.24)

From its definition, it is straightforward to see that the set Iw contains the set If . Moreover, since
the set of free covariance matrices Vf is convex, it directly follows that Iw is also convex. The set Iw
provides then a natural convex extension of our set of free states. We plot in Figure 9.6 a representation
of If and Iw.

Finally, let us mention two properties of the locally extractable work Wl which makes it a montone
more convenient than the relative entropy of local activity Al. First, it can be shown that Wl is
convex, and we have the following relation:

Wl

(∑
piρ̂i

)
≤
∑

piWl(ρ̂i). (9.25)

This can be understood as the fact that extracting energy from a mixture result in less energy than if
we had extracted the energy from each state separately. A second interesting property of the locally
extractable work is that it is superadditive. If we consider a multimode state ρ̂AB with its two possibly
multimode subsystems ρ̂A and ρ̂B, the following relation holds:

Wl(ρ̂AB) ≥Wl(ρ̂A) +Wl(ρ̂B) (9.26)

Notice the strinking difference between property (9.26) and property (9.21). The property of super-
additivity is consistent with the example of the two-mode squeezed vacuum that we have provided
earlier (see (9.9)). Indeed, since a two-mode squeezed vacuum is locally thermal, each subsytem has a
zero locally extractable work. However, if we have access to the whole system, it is possible to extract
a certain amount of energy.
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Figure 9.6: Representation of the sets If and Iw. The set Q is the set of all possible quantum states,
which have in general a non-negative relative entropy of local activity and a non-negative locally
extractable work. The set Iw is a convex set, which contains states such that the locally extractable
work is zero. States in Iw are not necessarily Gaussian and can have a non-negative relative entropy
of local activity. Finally, the set If is our set of free states and is included in Iw. Every state in If is
Gaussian and has a zero relative entropy of local activity and a zero locally extractable work. Note
that any state in Iw has the same covariance matrix as some state in If .
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Conclusion

The initial ambition of this work is to confront the mathematical theory of majorization to quantum
distributions as embodied by Wigner functions. Addressing the notion of disorder in phase space is
not a novelty in itself. Such an approach has for instance already been carried out based on the Husimi
Q-distribution and has led to the Wehrl conjecture and its generalized form, which is in fact nothing
else but a majorization relation. The reason why the Wigner function has not yet been subject to a
characterization of its disorder is certainly that it is not a genuine probability distribution in itself.
At first sight, it seems impossible to apply the usual tools of probability theory to a distribution that
may be partly negative. And indeed, several obstacles needed to be overcome in order to accomplish
this goal.

First, majorization theory was not appropriately defined for continuous distributions taking both
positive and negative values on a domain of infinite size. We have circumvented this problem by
proposing in Chapter 3 a formulation of majorization that can be extended to arbitrary distributions
defined over an infinite domain. With this improved tool, we were ready to tackle the characterization
of disorder in phase space.

Second, the set of Wigner functions that constitute de facto a true probability distribution is
not well understood. The corresponding states, which are Wigner-positive, are of particular interest
in our work because they are precisely the states for which all the usual measures of disorder are
well defined. The Wigner-positive set lacks a comprehensive and clean characterization as this task
seems difficult to accomplish [10, 46]. In Chapter 5, we have presented an overview of the Wigner-
positive set and highlighted a general technique to build a large set of Wigner-positive states using a
balanced beam-splitter. The beam-splitter states are expected to play a crucial role in the structure
of the Wigner-positive set as they coincide with some if its extremal states. However, things are
more complicated and we have also shown the existence of extremal Wigner-positive that cannot be
constructed within the beam-splitter setup.

Having addressed these two obstacles and partially resolved them, we have considered the central
question of finding the state of least disorder in phase space in Chapter 6. A first calculation led us
to the observation that pure states are in general incomparable (or then simply equivalent) in terms
of majorization. This result seems consistent with our intuition of a pure state, which minimizes the
statistical uncertainty. It therefore seems natural that a pure state cannot be objectively deemed more
disordered than another. We then formulated a majorization conjecture restricted to the set of Wigner-
positive states. This conjecture, which can be viewed as an extension of Hudson’s theorem, states
that Gaussian pure states are the states with least disorder among the set of Wigner-positive states.
We then partially proved this conjecture in a special case, restricting to the subset of phase-invariant
Wigner-positive states containing up to 2 photons.

Then, in Chapter 7, we have first been investigating disorder measures that are consistent with the
set of positive and negative Wigner functions. It appeared to us that Rényi entropies of parameter
α > 1 are possible candidates since for α ≤ 1 they are not Schur-concave anymore over the set of
Wigner-negative states. Then, we have focused on the set of Wigner-positive states and have defined
the Shannon differential entropy of a Wigner-positive state as its Wigner entropy, and have highlighted
several of its properties. We have in particular conjectured a lower bound, which is somehow analogous
to (but stronger that) the Wehrl conjecture, and have proven it for the set of passive states.

Finally, in Chapter 8, we have started to expand our findings to quantum Gaussian phase-
insensitive bosonic channels. These channels, which are ubiquitous in quantum information, are
completely characterized by a gain/loss parameter κ and a noise parameter µ. Such channels can in
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general be constructed with a beam-splitter or two-mode squeezer coupled with a thermal state. We
have shown the existence of a continuous majorization relation between the input and output Wigner
functions in channels characterized by a gain parameter κ such |κ| ≥ 1. This property actually ex-
tends to any two-mode squeezer coupled with a Wigner-positive state. We have also shown that the
output of a Gaussian phase-insensitive channel is always Wigner-positive under the simple condition
that µ ≥ |κ|, which echoes the condition for entanglement-breaking that is µ ≥ |κ| + 1. We then
studied a discrete majorization chain for Fock states in these bosonic channels, and showed that the
vector of eigenvalues associated to the output of the nth Fock state majorizes the vector of eigenvalues
associated to the output of the (n+ 1)th Fock state. This is a non-trivial generalization of a result for
quantum-limited bosonic channels.

Let us also mention some additional work that we carried in the present thesis. In Chapter 9, we
have taken advantage of the symplectic formalism to develop a resource theory applicable to bosonic
systems. In this context, we have defined the free states as the states from which no work could be
extracted locally, assisted by a Gaussian global unitary. We have then defined the free operations
consistently with the free states. We have highlighted a monotone which was expressed in simple
terms as the difference between the trace and the symplectic trace, and which can be associated to
the locally extractable work.

This summarizes the main advances we have achieved throughout this thesis. However, several
of the research directions discussed here remain partly open. First, let us mention the role of beam-
splitter states within the set of Wigner-positive states. As we have seen in Chapter 5, the convex
hull of beam-splitter states seems to constitute a major portion of the Wigner-positive set. Hence, a
further investigation of the Wigner-positive states that cannot be expressed as a convex mixture of
beam-splitter states could give precious insights into the full set of Wigner-positive states. We already
know that these states correspond precisely to the states requiring an entangled state if produced
with the beam-splitter setup, so the link between Wigner-negativity and entanglement deserves to be
studied in detail.

Regarding continuous majorization, we have focused on our central conjecture over the Wigner-
positive set. This conjecture expresses that Gaussian pure states majorize any Wigner-positive state,
and is non-trivial from the fact that Wigner-positive states go beyond the convex hull of Gaussian
states. We can in fact associate to any pure state |ψ〉 a set of states whose Wigner function are
majorized by the one of |ψ〉. That set is non-trivial as it is presumably larger than the convex mixtures
of symplectic transformations applied on |ψ〉. Another promising direction to be able to express that
any give pure state is more disordered that Gaussian pure states relies on square majorization.

With respect to Wigner entropy, an obvious future direction of research is the extension of this
quantity to Wigner-negative states. Indeed, we know that the current definition of entropy does not
converge to a usable value for such states. Let us simply list the properties that we expect from such a
pseudo Wigner entropy, which we label as h̃(W ) in the following. First, h̃(W ) should of course reduce
to the usual Wigner-entropy for Wigner-positive states. Second, it should be a Schur-concave quantity
such that W1 �W2 implies h̃(W1) ≤ h̃(W2), even when W1 and W2 are not Wigner-positive. Finally,
an important property of h̃(W ) relates to the subaditivity of entropy: it should be the case that h̃(W )
constitute a lower-bound on the sum of the marginal entropies, so that h̃(W ) ≤ h(ρx) + h(ρp).

Finally, we would like to present a last open problem. So far, our most general technique to build
Wigner-positive states is the use of a balanced beam-splitter. Starting from any quantum state, we
have with this technique a way to construct a Wigner-positive quantum state. To do this, we need to
mix the initial state |ψ1〉 together with another quantum state |ψ2〉 at the beam splitter. A natural
question is thus to ask what is the state |ψ2〉 which minimizes the Wigner entropy of the output state
for a given state |ψ1〉. The situation is illustrated on Figure 9.7. When |ψ1〉 is a pure Gaussian states,
|ψ2〉 can easily be chosen to the same Gaussian pure states, so that the output is also a pure Gaussian
states and its Wigner entropy is lnπ + 1, which is our conjectured lowest possible Wigner entropy.
However, when considering non-Gaussian states as input, the situation becomes more complex.
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Figure 9.7: Given a pure state |ψ1〉, what is the other state |ψ2〉 that minimizes the Wigner entropy
of the output h(Wσ̂)? The question can somehow be understood as a generalization of the entropy
power inequality, since the Wigner functions of |ψ1〉 and |ψ2〉 are in general partly negative. The
Wigner function of σ̂, however, is always non-negative and possesses a well-defined Shannon differential
entropy. If |ψ1〉 is Gaussian, the choice corresponds simply to the same Gaussian state |ψ2〉 = |ψ1〉,
so that the Wigner entropy of the output is lnπ + 1 and reaches our conjectured lower-bound. When
|ψ1〉 is not Gaussian, the question becomes more difficult to answer. A reasonable guess is to choose
|ψ2〉 to be the Gaussian pure state with covariance matrix proportional to the one of |ψ1〉.





Appendix A

Proofs of majorization lemmas

A.1 Proof of lemma 1

Remember that lemma 1 reads as follows:
If f and g are two n-dimensional radial distributions defined on Rn such that f(r) = fR (‖r‖) and
g(r) = gR (‖r‖) with fR and gR defined on R+, then f � g is equivalent to f̃ � g̃, where f̃ and g̃ are
1-dimensional distributions defined on R+ as f̃(x) = fR ( n

√
x) and g̃(x) = gR ( n

√
x).

Using polar coordinates, we have that f � g is equivalent to the following conditions:

∞∫
0

fR(r)rn−1dr =

∞∫
0

gR(r)rn−1dr

∫ ∞
0

[fR(r)− t]+ rn−1 dr ≥
∫ ∞

0
[gR(r)− t]+ rn−1 dr ∀t ≥ 0

∫ ∞
0

[fR(r)− t]− rn−1 dr ≤
∫ ∞

0
[gR(r)− t]− rn−1 dr ∀t ≤ 0

(A.1)

Introducing the simple change of variables x = rn, we rewrite the above conditions as

∞∫
0

fR( n
√
x)dx =

∞∫
0

gR( n
√
x)dx

∫ ∞
0

[
fR

(
n
√
x
)
− t
]+

dx ≥
∫ ∞

0

[
gR

(
n
√
x
)
− t
]+

dx ∀t ≥ 0

∫ ∞
0

[
fR

(
n
√
x
)
− t
]−

dx ≥
∫ ∞

0

[
gR

(
n
√
x
)
− t
]−

dx ∀t ≤ 0

(A.2)

Defining f̃(x) = fR ( n
√
x) and g̃(x) = gR ( n

√
x), it follows that f̃ � g̃ is equivalent to f � g.

A.2 Proof of lemma 2

Remember that lemma 2 reads as follows:
Consider two probability distributions f and g defined on the same domain A. If there exists a
collection of level-equivalent distributions f (α) on A depending on the parameter α with f (α) ≡ f for
all α such that

g (r) =

∫
k(α) f (α) (r) dα, ∀ r ∈ A, (A.3)
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where k is a probability density distribution, then f � g.

First, notice that since f (α) ≡ f , it follows that they have the same normalization. As a conse-
quence, we can show that g and f have the same normalization:∫

g(r)dr =

∫
dr

∫
dαk(α)f (α)(r) (A.4)

=

∫
dαk(α)

∫
f (α)(r)dr (A.5)

=

∫
f(r)dr (A.6)

Since the function γt(z) = [z − t]+ is convex, we can exploit Jensen’s inequality to get

γt (g (r)) = γt

(∫ ∞
0

k(α) f (α) (r) dα

)
≤
∫ ∞

0
k(α) γt

(
f (α) (r)

)
dα.

(A.7)

Integrating both terms over the domain A then leads to∫
A
γt (g (r)) dr ≤

∫ ∞
0

k(α)

∫
A
γt

(
f (α) (r)

)
dr dα. (A.8)

Since f and f (α) are level-equivalent, we have that∫
γt

(
f (α) (r)

)
dr =

∫
γt (f (r)) dr. (A.9)

The integral over k(α) reduces to 1 since it is a probability distribution. Writing γt explicitly, we end
up with ∫

[f(r)− t]+ dr ≥
∫

[g(r)− t]+ dr (A.10)

which can equivalently be written as Φ+
t (f) ≥ Φ+

t (g).
As similar development using the concavity of γ−t yields that Φ−t (f) ≤ Φ−t (g). We can thus write

∫
f(r)dr =

∫
g(r)dr

Φ+
t (f) ≥ Φ+

t (g) ∀t ≥ 0

Φ−t (f) ≤ Φ−t (g) ∀t ≤ 0

(A.11)

which is equivalent to f � g.

A.3 Proof of lemma 3

Remember that lemma 3 reads as follows:
Consider four functions f1, f2, g1, and g2 defined on the same domain A and such that f1 and f2 do not
both take non-zero values in the same element of A, and similarly g1 and g2 do not both take non-zero
values in the same element of A. If the functions satisfy f1 � g1 and f2 � g2, then (f1 +f2) � (g1 +g2).
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Notice first that since f1 � g1, f1 and g1 are normalized to the same value. Also, since f2 � g2, f2

and g2 are normalized to the same value. As a consequence, we can write:∫
(f1 + f2)(r)dr =

∫
(f1(r) + f2(r)) dr (A.12)

=

∫
f1(r)dr +

∫
f2(r)dr (A.13)

=

∫
g1(r)dr +

∫
g2(r)dr (A.14)

=

∫
(g1(r + g2(r))) dr (A.15)

=

∫
(g1 + g2)(r)dr (A.16)

From the fact that for each r, either f1(r) or f2(r) is equal to zero, it follows that :

∀t ≥ 0 : [f1(r)− t]+ + [f2(r)− t]+ = [f1(r) + f2(r)− t]+ , (A.17)

∀t ≤ 0 : [f1(r)− t]− + [f2(r)− t]− = [f1(r) + f2(r)− t]− . (A.18)

The same applies to g1 and g2. Let f = f1 + f2 and g = g1 + g2. For all t ≥ 0, we have:∫
[f(r)− t]+ dr =

∫
[f1(r) + f2(r)− t]+ dr

=

∫
[f1(r)− t]+ dr +

∫
[f2(r)− t]+ dr

≥
∫

[g1(r)− t]+ dr +

∫
[g2(r)− t]+ dr

=

∫
[g1(r) + g2(r)− t]+ dr

=

∫
[g(r)− t]+ dr,

(A.19)

where the inequality follows from f1 � g1 and f2 � g2. Similarly, we can write for all t ≤ 0:∫
[f(r)− t]− dr =

∫
[f1(r) + f2(r)− t]− dr

=

∫
[f1(r)− t]− dr +

∫
[f2(r)− t]− dr

≤
∫

[g1(r)− t]− dr +

∫
[g2(r)− t]− dr

=

∫
[g1(r) + g2(r)− t]− dr

=

∫
[g(r)− t]− dr,

(A.20)

where the inequality follows from f1 � g1 and f2 � g2. In conclusion, we thus have shown that:

∫
(f1 + f2)(r)dr =

∫
(g1 + g2)(r)dr

Φ+
t (f1 + f2) ≥ Φ+

t (g1 + g2) ∀t ≥ 0

Φ−t (f1 + f2) ≤ Φ−t (g1 + g2) ∀t ≤ 0

(A.21)

which is equivalent to (f1 + f2) � (g1 + g2).
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Appendix B

Proof of the majorization relation for
the states located on the ellipse

In this appendix, we prove that the Wigner functions of the extremal Wigner-positive states located
on the ellipse represented in Fig. 6.3 are majorized by the Wigner function of the vacuum state, by
showing that f0 � gt for all t such that 0 ≤ t ≤ 1. Note that the proof is very similar to the proof of
f0 � fc. The function gt(x) defined in Eq. (6.48) has one zero at x = at, where

at = 1−
√

1− t
1 + t

. (B.1)

We “split” gt in two different functions g−t and g+
t from either sides of at:

g−t (x) =

{
gt(x), for 0 ≤ x ≤ at,
0, else,

(B.2)

g+
t (x) =

{
0, for 0 ≤ x ≤ at,
gt(x), else.

(B.3)

If we shift g+
t from at towards the origin, we have a distribution that is proportional to exp(−x)x2/2,

which we know is majorized by f0(x) = exp(−x) from our previous result. The idea now is to split f0

in two different functions with the same normalization as g−t and g+
t . Define bt as

bt = 1− ln(1 + t)−
√

1− t
1 + t

. (B.4)

It satisfies

at∫
0

gt(x)dx =

bt∫
0

f0(x)dx,

∞∫
at

gt(x)dx =

∞∫
bt

f0(x)dx.

(B.5)

We now “split” f0 from either side of x = bt, and define f−0 and f+
0 as:

f−0 (x) =

{
f0(x), for 0 ≤ x ≤ bt,
0, else,

(B.6)

f+
0 (x) =

{
0, for 0 ≤ x ≤ bt,
f0(x), else.

(B.7)
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We are now going to prove that f−0 � g−t and f+
0 � g+

t . Let us shift g+
t and f+

0 towards the origin
respectively from at and bt. We end up with the functions:

g̃+
t (x) = g+

t (x+ at)

= (t+ 1) exp

(√
1− t
1 + t

− 1

)
exp(−x)

1

2
x2,

(B.8)

and
f̃+

0 (x) = f+
0 (x+ bt)

= (t+ 1) exp

(√
1− t
1 + t

− 1

)
exp(−x).

(B.9)

f̃+
0 (x) and g̃+

t (x) are respectively proportional to exp(−x) and exp(−x)x2/2, with the same propor-
tionality factor. Since we have already shown that exp(−x) � exp(−x)x2/2, it follows that f̃+

0 � g̃
+
t .

Since f̃+
0 and g̃+

t are level-equivalent to respectively f+
0 and g+

t , we then have f+
0 � g

+
t .

We now turn to f−0 � g−t . They are both monotonically decreasing, making them decreasing
rearrangements. Therefore their cumulative integrals are given by:

Ss(f
−
0 ) =

s∫
0

f−0 (x)dx and Ss(g
−
t ) =

s∫
0

g−t (x)dx. (B.10)

We will now show that Ss(f
−
0 ) ≥ Ss(g

−
t ) for all s ∈ R+. Since f−0 and g−t are both monotonically

decreasing and f−0 (x) = 0 for all x > bt coupled with the fact that bt < at, it is sufficient to show
that f−0 (x) ≥ g−t (x) for all x ∈ [0, bt]. To prove this, note that the ratio gt(x)/f0(x) is less than 1 for
x ∈ [0, bt]:

gt(x)

f0(x)
=
t+ 1

2

(
x− 1 +

√
1− t
1 + t

)2

≤ 1 for 0 ≤ x ≤ bt, (B.11)

which follows from the fact that x ≤ bt ≤ 1 and 0 ≤ t ≤ 1. Since f−0 and g−t are non-negative and
normalized to the same value, we conclude that f−0 � g−t . From Lemma 3, we finally end up with
f0 � gt.

153





Bibliography

[1] Gerardo Adesso, Sammy Ragy, and Antony R Lee. Continuous variable quantum information:
Gaussian states and beyond. Open Systems & Information Dynamics, 21(01n02):1440001, 2014.

[2] Robert Alicki. The quantum open system as a model of the heat engine. Journal of Physics A:
Mathematical and General, 12(5):L103, 1979.

[3] Konstantin Ivanovich Babenko. An inequality in the theory of Fourier integrals. Izvestiya Rossi-
iskoi Akademii Nauk. Seriya Matematicheskaya, 25(4):531–542, 1961.

[4] Simon Becker, Nilanjana Datta, Ludovico Lami, and Cambyse Rouzé. Convergence rates for the
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