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Distinguishing quantum states that admit a classical counterpart from those that exhibit nonclassicality has
long been a central issue in quantum optics. Finding an implementable criterion certifying optical nonclassicality
(i.e., the incompatibility with a statistical mixture of coherent states) is of major importance as it often is a
prerequisite to quantum information processes. A hierarchy of conditions for detecting whether a quantum state
exhibits optical nonclassicality can be written based on matrices of moments of the optical field [E. V. Shchukin
and W. Vogel, Phys. Rev. A 72, 043808 (2005)]. Here, we design optical nonclassicality observables that act
on several replicas of a quantum state and whose expectation value coincides with the determinant of these
matrices, hence providing witnesses of optical nonclassicality that overcome the need for state tomography.
These multicopy observables are used to construct a family of physically implementable schemes involving
linear optical operations and photon number detectors.
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I. INTRODUCTION

Determining whether a quantum optical state admits non-
classical properties or not is a ubiquitous question in the
theory of quantum optics as well as in the development of
quantum technologies. Numerous proposals for identifying
quantum states displaying nonclassicality have been discussed
in the literature, see, e.g., Refs. [1–7] or see Ref. [8] for a
review. We focus here on a possible definition of optical non-
classicality as introduced by Glauber and Sudarshan [9–11],
starting from the assertion that classical states are those that
are expressible as convex mixtures of coherent states. Accord-
ingly, when the Glauber-Sudarshan P function of a state is
incompatible with a true probability distribution (i.e., when it
admits negative values in phase space or is not well behaved
in the sense that it cannot be expressed as a regular function),
the state is said to be optically nonclassical. A straightforward
operational meaning of optical nonclassicality is that it is a
necessary condition in order to produce entanglement with a
beam splitter [12]. More generally, being able to identify and
characterize such nonclassical optical states is essential since
nonclassical features are often taken as resources for quantum
information tasks [13,14] such as quantum computation [15],
distributed quantum computing [16], quantum networks [17],
quantum boson sampling [18], quantum metrology [19,20], or
quantum communication [21].

Various implementation methods have been proposed
for identifying nonclassical states, exploiting measurements
ranging from single-photon detection [22,23] to continuous-
variable measurements such as homodyne detection [24] or
heterodyne detection [25]. In this paper, we introduce a tech-
nique that uses multiple replicas (i.e., identical copies) of
a quantum state in order to construct a nonclassicality ob-
servable. The relevance of multicopy observables in quantum
optics has recently been explored in the context of uncertainty
relations [26]. It relies on the observation that polynomial

functions of the elements of a density matrix can be expressed
by defining an observable acting on several replicas of the
state, avoiding the need for quantum tomography [27]. In
the present paper, we consider the nonclassicality criteria
resulting from the matrix of moments of the optical field as
introduced in Refs. [24,28]. In the simplest cases at hand,
the multicopy observables enable an original implementation
of nonclassicality witnesses through linear interferometry and
photon number detectors.

This paper is constructed as follows. In Sec. II, we review
the concept of optical nonclassicality and the link with
the matrix of moments of the optical field. In Sec. III, we
benchmark the performances of the nonclassicality criteria
derived from the determinant of these matrices [24,28]. We
consider a variety of states that are known to be nonclassical
(Fock states, squeezed states, cat states, squeezed thermal
states) in order to identify which criteria do detect them.
This is useful to guide our search for designing multicopy
nonclassicality observables, as carried out in Sec. IV. There,
we focus on the most interesting criteria based on a few
selected principal minors of the matrix of moments as
identified in Sec. III and provide a physical implementation
whenever possible. Finally, in Sec. V, we give our conclusions
and discuss further perspectives.

II. OPTICAL NONCLASSICALITY OF QUANTUM STATES

Any density operator ρ̂ representing the quantum state of
a single oscillator (bosonic) mode can be represented in a
diagonal form in the coherent state basis |α〉, namely,

ρ̂ =
∫

P(α)|α〉〈α|d2α, (1)

where P(α) is the Glauber-Sudarshan P function. Note that
P(α) completely defines state ρ̂ and is normalized since
Tr(ρ̂) = 1. A state ρ̂ is said to be classical if its associated P
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function behaves as a probability distribution P(α) = Pcl (α),
hence it is non-negative. Any convex mixture of coherent
states |α〉 is thus classical by definition. Conversely, a quan-
tum state ρ̂ is considered to be nonclassical if it cannot be
written as a mixture of coherent states, i.e., if P(α) �= Pcl (α).
Simple examples of nonclassical states include Fock states
or squeezed states, whose P functions are not regular (their
expressions involve derivatives of Dirac δ functions).

The expectation value of any normally ordered operator
function : ĝ(â, â†) : of the annihilation â and creation â† oper-
ators can be expressed using the P function as

〈 : ĝ(â, â†) : 〉 =
∫

d2α P(α) g(α, α∗). (2)

In this expression, the vertical pair of dots stands for normal
ordering, which means that all creation operators must be
placed on the left of annihilation operators. Hence, if the P
function P(α) admits negative values, then Eq. (2) can become
negative for some well-chosen function ĝ(â, â†), witnessing
the nonclassicality of state ρ̂. This suggests a close connection
between the expectation value of normally ordered functions
and the nonclassical character of the P function: as observed
in Ref. [28], any normally ordered Hermitian operator of
the form : f̂ † f̂ : can be used to detect nonclassicality. The
expectation value of : f̂ † f̂ : can indeed be written in terms
of the P function as

〈 : f̂ † f̂ : 〉 =
∫

d2α P(α) | f (α)|2, (3)

which is always positive for any f (α) provided P(α) is a
classical probability distribution Pcl (α). Hence, a witness of
nonclassicality of the considered state ρ̂ is provided by the
existence of negative expectation values for some suitably
chosen operator function f̂ , that is,

∃ f̂ s.t. 〈: f̂ † f̂ :〉 < 0. (4)

Furthermore, as shown in Ref. [28], these nonclassicality
criteria can be reformulated in terms of an infinite countable
set of inequalities, which involve the principal minors of an
infinite-dimensional matrix of moments. The infinite set of
inequalities completely characterizes the nonclassicality of
the quantum state under study. As shown in Ref. [24], these
criteria can be constructed for three different sets of operators
(â, â†), (x̂φ, p̂φ ) and (x̂φ, n̂), but we only consider the set
(â, â†) in the present paper. In this case, one exploits the fact
that any operator f̂ can be expressed as a (normally ordered)
Taylor series

f̂ (â, â†) =
∞∑

k=0

∞∑
l=0

ckl â†k âl . (5)

Hence, a necessary criterion for classicality can be reformu-
lated as

〈 : f̂ † f̂ : 〉 =
∞∑

k,m=0

∞∑
l,n=0

c∗
mnckl 〈â†(k+n) âl+m〉 � 0, (6)

for any coefficients ci j’s. By using Silvester’s criterion, this
can be reexpressed as the positivity of the determinant of the
matrix of moments DN , defined as

DN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 〈â〉 〈â†〉 〈â2〉 〈â†â〉 〈â†2〉 ...

〈â†〉 〈â†â〉 〈â†2〉 〈â†â2〉 〈â†2â〉 〈â†3〉 ...

〈â〉 〈â2〉 〈â†â〉 〈â3〉 〈â†â2〉 〈â†2â〉 ...

〈â†2〉 〈â†2â〉 〈â†3〉 〈â†2â2〉 〈â†3â〉 〈â†4〉 ...

〈â†â〉 〈â†â2〉 〈â†2â〉 〈â†â3〉 〈â†2â2〉 〈â†3â〉 ...

〈â2〉 〈â3〉 〈â†â2〉 〈â4〉 〈â†â3〉 〈â†2â2〉 ...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

which contains all normally ordered moments of â and â†

up to order N . The matrix of moments DN can be defined
for any dimension N × N (its block structure is discussed in
Appendix A) and its determinant will be written d1···N =
det(DN ) in the rest of this paper, where the index of d means
that all rows and columns of DN are kept in the range from
1 to N . Remarkably, as a consequence of Bochner’s theorem,
the classicality criteria become necessary and sufficient when
the determinants are positive for all orders [24], that is, ρ̂ is
classical if and only if

d1...N � 0, ∀N. (8)

The determinants d1...N are the so-called dominant principal
minors of matrix DN , i.e., the determinants of the matrices
constructed by taking all rows and columns in the upper-left
corner of the matrix. Hence, the negativity of any single
determinant d1...N of order N is a sufficient condition for
nonclassicality.

Note that one can construct various matrices of moments
having similar properties and nonclassicality detection power.
In what follows, we will focus on the principal minors of
the matrix of moments DN , which are built by selecting
some rows and corresponding columns and then taking the
determinant of the resulting matrix. For example, if rows
and columns i, j, and k are selected, the associated principal
minor is written di jk . Interestingly, any principal minor such
as di jk provides a sufficient criterion for nonclassicality: if
di jk < 0, then the state ρ̂ is nonclassical. Some examples of
principal minors that are not dominant are d14, d15, d124, d134,
and d145, while examples of dominant principal minors are
d12, d123, d1234, and d1235 (note that we adopt a slightly re-
laxed definition of dominant principal minors1). Each of these

1From the block structure of the matrix of moments DN as de-
scribed in Appendix A, we slightly adapt the definition of a dominant
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minors might have a distinct physical interpretation and
hence, detect different types of nonclassical states (see
Ref. [8] for a review of nonclassicality criteria).

In Sec. III, we will study all the principal minors of the
matrix of moment DN of dimension 5 × 5, which is helpful to
determine which of them are good candidates for constructing
a multicopy observable (as will then be addressed in Sec. IV).
Before coming to this, it is relevant to list the important
properties of the matrix of moments DN and its determinants
(more details and proofs are given in Appendix A):

(1) The matrix of moment DN is Hermitian. Hence, its
determinant as well as all its principal minors are real valued.

(2) All principal minors of matrix DN vanish for coherent
states |α〉. This property is consistent with the fact that the
coherent states are on the boundary of the convex set of
classical states. Any statistical mixture of coherent states is
classical and can only give a higher value of all principal
minors. Conversely, a slight deviation from a coherent state
to a nonclassical state may induce some principal minor to
have a negative value.

(3) All principal minors of matrix DN are invariant under
rotations in phase space. Hence, all corresponding nonclas-
sicality criteria are invariant under rotations in phase space.
This property is consistent with the fact that nonclassicality is
a feature that is unaffected by such rotations. This simplifies
the calculations since all phase terms can be given arbitrary
values and will typically be set to zero.

(4) All dominant principal minors of matrix DN are in-
variant under displacements in phase space. This property is
consistent with the fact that nonclassicality is unaffected by
such displacements. Hence, we can simplify our calculations
by considering states that are centered in phase space. Note
that, unfortunately, the nondominant principal minors do not
enjoy this invariance property. In Sec. IV A 5, we will consider
the effect of displacements on some nondominant principal
minors and illustrate how it affects the detection capability of
the corresponding criteria.

III. NONCLASSICALITY CRITERIA BASED
ON THE MATRIX OF MOMENTS

Let us benchmark the performance of the nonclassicality
criteria derived from the principal submatrices of the matrix
of moments DN (up to N = 5) in terms of their ability to
detect various nonclassical states. We express the correspond-
ing principal minors for common classes of nonclassical pure
states, such as Fock states, squeezed states, or cat states (note
that all these states are centered in phase space). All values are
listed in Table I, where negative values imply the actual de-
tection of nonclassicality (see entries with gray background).
We then study the performance of the criteria when applied
to Gaussian (pure or mixed) states and determine that d123 is
a necessary and sufficient nonclassicality criterion for these
states. Overall, our observations lead us to focus on d15, d23,

principal minor: it is associated with the upper left submatrix but
assuming the order of rows and columns is irrelevant within a given
block. For example, d1235 is understood as a dominant principal
minor although the 4th row and column are omitted.

d123, and d1235 when constructing multicopy nonclassicality
observables in Sec. IV.

A. Nonclassical pure states

1. Fock states

Fock states |n〉 (except the vacuum state |0〉) are common
nonclassical states, which can be detected by criteria such as
d15, d125, d135, d145, or d1235, as can be seen in Table I. In
a nutshell, the Fock states are only detected when an odd
number of off-diagonal entries of the type 〈â†kâk〉 appear in
the principal submatrix of the matrix of moments DN . This
explains why Fock states are only detected in Table I for
criteria that involve the fifth row or column since the first
nonzero off-diagonal element of D5 is (D5)1,5 = (D5)5,1. For
completeness, we list all nonzero moments (entries of matrix
D5) in Table II.

2. Squeezed states

Squeezed states are nonclassical quantum states, which
can be used, for instance, to enhance the sensitivity of the
LIGO experiment [29,30]. In order to check which principal
minors detect them as nonclassical states, we need to evaluate
the entries of the matrix of moments D5. First, we observe
that all moments 〈â†kâl〉 of odd order k + l vanish since
squeezed states can be decomposed into even Fock states [31],
that is,

|Sr〉 = 1√
cosh r

∞∑
k=0

(−eiφ tanh r)k

√
2k!

2kk!
|2k〉, (9)

where r is the squeezing factor and φ is the squeezing angle.
The nonvanishing low-order moments are listed in Table II
(as a consequence of the rotation invariance, we may assume
φ = 0 without loss of generality). These expressions allow
us to easily calculate the different determinants of principal
submatrices from the matrix of moments D5 for squeezed
states (see Table I). The nonclassicality of squeezed states is
detected, for example, by d23, d123, d234, d235, or d1235.

3. Cat states

Another archetype of nonclassical states consists of the
even and odd optical cat states, written |c+〉 and |c−〉, respec-
tively. They are defined as superpositions of coherent states of
opposite phases |β〉 and | − β〉, namely

|cβ
±〉 = 1√

N±
(|β〉 ± | − β〉), (10)

where β is a complex amplitude and N+ and N− are
normalization constants defined as N± =

√
2(1 ± e−2|β|2 ).

Remember that even cat states and odd cat states are or-
thogonal to each other, i.e., 〈cα

±|cβ
∓〉 = 0, while applying the

annihilation operator to an odd cat state results in a state
proportional to an even cat state and vice versa:

â |cβ
±〉 = β

√
N∓
N±

|cβ
∓〉. (11)

Therefore, the only nonzero entries in the matrix of moments
DN are those of form 〈â†kâl〉 where k + l is even, as shown in
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TABLE I. Principal minors of the matrix of moments (7) up to dimension N = 5 evaluated for different classes of nonclassical (centered)
pure states, namely Fock states |n〉, squeezed states |Sr〉 of squeezing parameter r, and even or odd cat states |cβ

±〉 of complex amplitude β.
A light gray background corresponds to states that are detected as nonclassical since the determinant is always negative, while a dark gray
background corresponds to states that are only detected as nonclassical above a certain threshold value of the squeezing parameter r. The
smallest minor that detects Fock states (and odd cat states) is d15, while the smallest minor that detects squeezed states (and even cat states)
is d23. The minor d123 is equal to d23 for centered states, but, in addition, is invariant under displacements (not visible in the table). The minor
d1235 yields the strongest criterion in this table since it detects Fock, squeezed, and (even and odd) cat states. It is worth mentioning that the
minors d24 = d26 = d34 = d36 and d25 = d35 are positive (implying no detection of nonclassicality) for all states for which the moments of odd
total order in â and â† are zero.

Dimension Principal minor Fock states Squeezed states Odd cat states Even cat states

2 d12 = d13 n sinh2(r) |β|2 N+
N− |β|2 N−

N+
2 d14 = d16 n(n − 1) 2 sinh4(r) 0 0

2 d15 −n cosh(2r) sinh2(r) |β|4(1 − N2+
N2−

) |β|4(1 − N2−
N2+

)
2 d23 n2 − sinh2(r) |β|4( N2+

N2−
− 1

) |β|4( N2−
N2+

− 1
)

2 d24 = d26 = d34 = d36 n2(n − 1) sinh4(r)(cosh2(r) + 2 sinh2(r)) |β|6 N+
N− |β|6 N−

N+
2 d25 = d35 n2(n − 1) sinh4(r)(cosh2(r) + 2 sinh2(r)) |β|6 N+

N− |β|6 N−
N+

2 d45 = d56 n2(n − 1)2 1
2 (5 − 3 cosh(2r)) sinh4(r) |β|8(1 − N2+

N2−

) |β|8(1 − N2−
N2+

)
2 d46 n2(n − 1)2 −2(1 + 3 cosh(2r)) sinh4(r) 0 0

3 d123 n2 − sinh2(r) |β|4( N2+
N2−

− 1
) |β|4( N2−

N2+
− 1

)
3 d124 = d126 = d134 = d136 n2(n − 1) 2 sinh6(r) 0 0

3 d125 = d135 −n2 sinh4(r) cosh(2r) |β|6 N+
N−

(
1 − N2+

N2−

) |β|6 N−
N+

(
1 − N2−

N2+

)
3 d145 = d156 −n2(n − 1) −2 sinh6(r) 0 0

3 d146 n2(n − 1)2 −4 cosh(2r) sinh4(r) 0 0

3 d234 = d236 n3(n − 1) 1
2 (1 − 3 cosh(2r)) sinh(r)4 |β|8( N2+

N2−
− 1

) |β|8( N2−
N2+

− 1
)

3 d235 n3(n − 1) − sinh(r)4(cosh(r)2 + 2 sinh(r)2) |β|8( N2+
N2−

− 1
) |β|8( N2−

N2+
− 1

)
3 d245 = d256 = d345 = d356 n3(n − 1)2 1

2 (5 − 3 cosh(2r)) sinh6(r) |β|10 N+
N−

(
1 − N2+

N2−

) |β|10 N−
N+

(
1 − N2−

N2+

)
3 d246 = d346 n3(n − 1)2 −2(1 + 3 cosh(2r)) sinh6(r) 0 0

3 d456 n3(n − 1)3 −8 sinh6(r) 0 0

4 d1234 n3(n − 1) −2 sinh6(r) 0 0

4 d1235 −n3 − cosh(2r) sinh4(r) −|β|8( N2+
N2−

− 1
)2 −|β|8( N2−

N2+
− 1

)2

4 d1456 −n3(n − 1)2 −4 sinh6(r) 0 0

5 d12345 −n4(n − 1) 2 sinh8(r) 0 0

TABLE II. Nonzero moments (entries of the matrix D5) evaluated for different classes of nonclassical (centered) states, namely Fock states
|n〉, squeezed states |Sr〉 of squeezing parameter r, even or odd cat states |cβ

±〉 of complex amplitude β, and Gaussian mixed states (for these,
we may consider with no loss of generality a thermal state of mean photon number n that is squeezed with a squeezing parameter r). All these
moments are used to evaluate the nonclassicality criteria based on the minors of the matrix of moments (7) as shown in Tables I and III.

Moment Fock Squeezed Cat Gaussian

〈â†â〉 n sinh2(r) |β|2 N∓
N±

(
n + 1

2

)
cosh(2r) − 1

2

〈â2〉 = 〈â†2〉∗ 0 − sinh(r) cosh(r) β2 −(
n + 1

2

)
sinh(2r)

〈â†2â2〉 n(n − 1) sinh2(r)[cosh2(r) + 2 sinh2(r)] |β|4 1
2

(
n + 1

2

)2
[3 cosh(4r) + 1] − 2

(
n + 1

2

)
cosh(2r) + 1

2

〈â†â3〉 = 〈â†3â〉∗ 0 −3 sinh3(r) cosh(r) β2|β|2 N∓
N± − 3

2

(
n + 1

2

)2
sinh(4r) + 3

2

(
n + 1

2

)
sinh(2r)

〈â4〉 = 〈â†4〉∗ 0 3 sinh2(r) cosh2(r) β4 3
2

(
n + 1

2

)2
[cosh(4r) − 1]
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Table II up to k + l = 4. This allows us to calculate the differ-
ent determinants of principal submatrices from the matrix of
moments D5 for even and odd cat states (see Table I).

4. Observations

From Table I, we can make the following observations
(limited to the matrix of moments up to dimension 5):

(1) Increasing the dimension of the matrix of moments
does not necessarily lead to a stronger criterion. For example,
d12345 does not detect more states than d1234 while being of
higher order.

(2) Some criteria seem to be complementary in the sense
that if a state is detected by one criterion, it will not be
detected by the complementary criterion and vice versa. This
is, for instance, the case of d15 (detecting Fock states but not
squeezed states) and d23 (detecting squeezed states but not
Fock states). Furthermore, it is often the case that a criterion
detecting Fock states such as d15 also detects odd cat states
(similarly, a criterion detecting squeezed states such as d23

often detects even cat states).
(3) The strongest criterion seems to be based on d1235

since it is the lowest-order determinant that detects the non-
classicality of Fock states, squeezed, and (even and odd) cat
states.

These observations motivate the rest of this paper, in which
we will mostly focus on the multicopy observables for deter-
minants d15, d23, d123, and d1235.

B. Nonclassical mixed states

The nonclassicality of mixed states has been studied, for
example, in Refs. [32,33]. We consider here the simplest case
of Gaussian mixed states, for which the limit of nonclassi-
cality is well known: a state is nonclassical if the smallest
quadrature variance is smaller than the vacuum noise variance
[32]. The relevant Gaussian mixed states here are the squeezed
thermal states, since a displacement does not affect nonclas-
sicality. It is also sufficient to consider squeezing of the x
quadrature since all considered criteria are invariant under
rotations. The covariance matrix of these states is written as

γ G =
(

n + 1

2

)(
e−2r 0

0 e2r

)
, (12)

where n is the mean photon number of the thermal state that
is squeezed and r is the squeezing parameter.

In order to calculate the principal minors of interest (d15,
d23, d123, and d1235), we take advantage of the fact that, for
Gaussian states, the moments of order higher than two can be
expressed as a function of the first- and second-order moments
only. Given that squeezed thermal states are centered states, all
elements of the matrix of moments DN can thus be expressed
from the covariance matrix γ G. For example, the fourth-order
moment 〈â†2â2〉 can be calculated from the Wigner function
W (x, p) of the state ρ̂ by using the overlap formula

〈Â〉 = Tr(Âρ̂) =
∫

dx d pW (x, p) Ā(x, p), (13)

where Ā(x, p) is the Weyl transform of Â. The latter can be
obtained by exploiting the commutation relation [â, â†] = 1

TABLE III. Principal minors of the matrix of moments D5 eval-
uated for centered Gaussian states (i.e., squeezed thermal states).

Squeezed thermal states

d15
1
4 [1 − 2(1 + 2n) cosh(2r) + (1 + 2n)2 cosh(4r)]

d123 = d23
1
2 + n + n2 − 1

2 (1 + 2n) cosh(2r)
d1235 d15d23

in such a way as to write Â = â†2â2 in terms of symmetrically
ordered operators only, namely,

Â = S(â†2â2) − 2 S(â†â) + 1
2 , (14)

where S(·) denotes symmetric ordering and

S(â†2â2) = 1
6 (â†2â2 + â†ââ†â + â†â2â† + ââ†ââ†

+ ââ†2â + â2â†2),

S(â†â) = 1
2 (â†â + ââ†).

(15)

Hence, Â can be reexpressed in terms of the x̂ and p̂ quadrature
operators as

Â = 1
12 (x̂2 p̂2 + p̂2x̂2 + x̂ p̂x̂ p̂ + x̂ p̂2x̂ + p̂x̂2 p̂ + p̂x̂ p̂x̂)

+ 1
4 (x̂4 + p̂4) − (x̂2 + p̂2) + 1

2 . (16)

The Weyl transform of this expression yields

Ā(x, p) = 1
2 x2 p2 + 1

4 (x4 + p4) − (x2 + p2) + 1
2 , (17)

so that the mean value of Â can be written as

〈Â〉 = 1
2 〈x2 p2〉 + 1

4

(〈x4〉 + 〈p4〉) − (〈x2〉 + 〈p2〉) + 1
2 . (18)

For a Gaussian distribution, we have

〈x4〉 = 3 �x4 = 3
(
n + 1

2

)2
e−4r,

〈x2 p2〉 = �x2�p2 = (
n + 1

2

)2
,

〈p4〉 = 3 �p4 = 3
(
n + 1

2

)2
e4r, (19)

so that we get the expression of 〈â†2â2〉 that is displayed
in Table II for Gaussian states. By using the same method
to calculate the other nonzero moments (also displayed in
Table II), we finally obtain the corresponding values of the
principal minors shown in Table III.

We see that d15 is always positive for any values of param-
eters n and r, so it does not yield a criterion. In contrast, d23

is interesting as it can be negative for some values of n and r.
Of course, when the mean number of thermal photons n = 0,
we recover the result for squeezed states and d23 = − sinh2(r)
is negative for all values of the squeezing parameter r > 0.
However, when n > 0, the determinant becomes positive be-
low some threshold value of r. From Ref. [32], we know that a
necessary and sufficient condition for a squeezed thermal state
with covariance matrix γ G to be nonclassical is(

n + 1
2

)
e−2r < 1

2 . (20)
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It is easy to check that this precisely corresponds to the
condition d23 < 0, so the criterion based on the sign of d23

is necessary and sufficient for squeezed thermal states. Note
that d23 is not invariant under displacements, so that this cri-
terion looses its power when applied to an arbitrary Gaussian
state (i.e., a displaced squeezed thermal state). However, the
determinant d123 can be used instead since it is invariant un-
der displacements and coincides with d23 for centered states.
Thus, d123 < 0 provides a necessary and sufficient nonclassi-
cality criterion for Gaussian states.

Note finally that for the special case of centered Gaussian
states (squeezed thermal states), d1235 is equal to the product
of d15 and d23 since all entries of odd order in the annihilation
and creation operators in the matrix of moments D5 vanish.
Since d15 is always positive for Gaussian states, d1235 has
thus the same detection power as d23. Furthermore, since it
is invariant under displacements, d1235 has the same detection
power as d123 for arbitrary Gaussian states. Yet, going beyond
Gaussian states, we have seen that d1235 actually surpasses
d123 in the sense that it also detects (displaced) Fock states.

This is also true for non-Gaussian mixed states. For exam-
ple, we may consider a restricted class of non-Gaussian mixed
states that are nonclassical as a result of photon addition or
subtraction from a Gaussian state. Such states are viewed
as essential for quantum computing, see, e.g., Refs. [34,35].
Interestingly, all the moments appearing in the matrix of
moments DN for these states can be deduced from the mo-
ments of the corresponding Gaussian states as displayed in
Table II. Hence, we can easily derive the principal minors
for photon-added and photon-subtracted Gaussian states. It is
worth noticing that even the simpler criterion based on d15 can
detect photon-subtracted Gaussian states for small values of n
and r, while it is useless in the case of Gaussian states.

IV. MULTICOPY NONCLASSICALITY OBSERVABLES

Potential implementations of nonclassicality criteria based
on the matrix of moments DN have been considered in
Ref. [24], but the idea was to experimentally evaluate each
individual entry of the matrix before calculating its deter-
minant. Instead, in the present work, we look for an optical
implementation that makes it possible to directly access the
value of the determinant by measuring the expectation value
of some nonclassicality observable. Since the principal mi-
nors discussed in Sec. III (especially d15, d23, d123, and d1235)
are polynomial functions of the matrix elements of ρ̂, we
turn to multicopy observables as defined in Ref. [27]. This
method appears to be well adapted here since the nonclassi-
cality criteria involve determinants (a similar technique has
been successfully applied for accessing determinants of other
matrices of moments connected to uncertainty relations, see
Ref. [26]).

We start by detailing the design of two-copy observables
for accessing the determinants d12 and d14, used as examples
to introduce the method, followed by d23 and d15. Then, we
increase the number of copies and consider the three-copy
nonclassicality observable for d123 and four-copy nonclas-
sicality observable for d1235. We also discuss the optical
implementation of these observables whenever possible.

A. Two-copy observables

1. Instructive examples: d12 and d14

The determinant d12, which is expressed as

d12 =
∣∣∣∣ 1 〈â〉
〈â†〉 〈â†â〉

∣∣∣∣ = 〈â†â〉 − 〈â〉〈â†〉, (21)

is useless for nonclassicality detection in the sense that it is
positive for all (classical or nonclassical) states. Indeed, d12 is
simply the thermal (or chaotic) photon number, i.e., the total
photon number minus the coherent photon number. Since d12

is invariant under displacements, centering the state on the
origin in phase space simply results in d12 = 〈â†â〉 � 0.

Nevertheless, it is instructive to illustrate the multicopy
observable technique with this simple example, where we
need two copies of the original state ρ̂. We consider a 2 × 2
operator matrix mimicking the matrix of moments D2 except
that we remove all expectation values. Then, we associate the
first row of this operator matrix with the first copy (mode 1)
and the second row with the second copy (mode 2). In a last
step, we average over all permutations σ ∈ S2 on the mode
indices in order to ensure the Hermiticity of the resulting
multicopy observable, that is,

B̂12 = 1

|S2|
∑
σ∈S2

∣∣∣∣ 1 âσ (1)

â†
σ (2) â†

σ (2)âσ (2)

∣∣∣∣,
= 1

2
(â†

2â2 + â†
1â1 − â1â†

2 − â2â†
1),

(22)

where |S2| = 2! is the order of the symmetric group S2. The
value of the determinant d12 is obtained by measuring the
expectation value of this observable on two copies of the same
state ρ̂, namely 〈〈B̂12〉〉 ≡ Tr[(ρ̂ ⊗ ρ̂ ) B̂12]. Indeed, we have

〈〈B̂12〉〉 = 1
2 〈〈 â†

2â2 + â†
1â1 − â1â†

2 − â2â†
1 〉〉,

= 1
2 (〈â†

2â2〉 + 〈â†
1â1〉 − 〈â1〉〈â†

2〉 − 〈â2〉〈â†
1〉),

= 〈â†â〉 − 〈â〉〈â†〉 = d12, (23)

where 〈·〉 ≡ Tr[ρ̂ ·].
Finally, we look for an optical implementation of ob-

servable B̂12 by means of linear optics and photon-number
resolving detectors. Although it is not immediately obvious
from Eq. (22), we can exploit the Jordan-Schwinger represen-
tation of angular momenta in terms of bosonic annihilation
and creation operators (see Appendix B). The three compo-
nents of the angular momentum L̂ can be expressed as

L̂x = 1

2
(â†

2â1 + â†
1â2), (24)

L̂y = i

2
(â†

2â1 − â†
1â2), (25)

L̂z = 1

2
(â†

1â1 − â†
2â2), (26)

and they all commute with the operator

L̂0 = 1
2 (â†

1â1 + â†
2â2), (27)

with L̂2
x + L̂2

y + L̂2
z = L̂0(L̂0 + 1) being the Casimir operator.

Hence, we can express B̂12 as the difference between L̂0 (i.e.,
half the total photon number) and the x component of the
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FIG. 1. Implementation of the measurement of d12. We first ap-
ply a 50:50 beam splitter and then use a photon-number resolving
detector on the second mode (i.e., the mode where the coherent fields
of the two identical input states interfere destructively), yielding n′

2.

angular momentum operator, namely,

B̂12 = L̂0 − L̂x. (28)

Since the application of any linear optics (passive) trans-
formation does not change the total photon number, L̂0 is
unaffected by such a transformation. In contrast, L̂x can be
turned by an appropriate linear optics transformation into L̂z,
which corresponds to the difference of the photon numbers
between the two modes. Indeed, following Ref. [26], we apply
a 50:50 beam splitter, which transforms the mode operators
according to

â′
1 = â1 + â2√

2
, â′

2 = â1 − â2√
2

, (29)

so that L̂x transforms into L̂′
z = 1

2 (â′†
1 â′

1 − â′†
2 â′

2), where the
primes refer to mode operators after the beam splitter. Hence,
the operator B̂12 is transformed into

B̂12 = L̂0 − L̂′
z = 1

2 (n̂′
1 + n̂′

2 − n̂′
1 + n̂′

2) = n̂′
2, (30)

where n̂′
1 = â′†

1 â′
1 and n̂′

2 = â′†
2 â′

2.
This implies that measuring the mean photon number in the

second mode after the beam splitter transformation of Fig. 1
gives the value of the determinant

d12 = 〈〈B̂12〉〉 = 〈n̂′
2〉. (31)

Obviously, we have d12 � 0, so that d12 does not yield a useful
criterion to detect nonclassical states. It is trivial to understand
from Eq. (29) that this scheme gives access to the thermal (or
chaotic) photon number since the coherent component of the
two identical input states is concentrated on the first output
mode â′

1, while the mean field vanishes in the second output
mode â′

2. The latter is then only populated by the thermal
photons.

Before moving to principal minors that are actually useful
to detect nonclassicality, let us briefly consider the next case
in Table I, namely,

d14 =
∣∣∣∣ 1 〈â2〉
〈â†2〉 〈â†2â2〉

∣∣∣∣ = 〈â†2â2〉 − 〈â2〉〈â†2〉. (32)

By building the corresponding two-copy observable, it is
straightforward to check that d14 � 0 so it is useless for non-

classicality detection. Indeed, we have

B̂14 = 1

|S2|
∑
σ∈S2

∣∣∣∣∣
1 â2

σ (1)

â†2
σ (2) â†2

σ (2)â
2
σ (2)

∣∣∣∣∣,
= 1

2

(
â†2

2 â2
2 + â†2

1 â2
1 − â2

1â†2
2 − â2

2â†2
1

)
. (33)

In analogy with B̂12, this two-copy observable can be reex-
pressed in terms of angular momentum operators, namely,

B̂14 = 2
(
L̂2

0 − L̂2
x

)
. (34)

As before, we may transform L̂x into L̂′
z by using a 50:50 beam

splitter as described in Eq. (29), which gives

B̂14 = 2
(
L̂2

0 − L̂′2
z

) = 2 n̂′
1n̂′

2. (35)

Thus, this determinant can be accessed by applying a 50:50
beam splitter on two identical copies as in Fig. 1 but then
measuring the mean value of the product of the photon
numbers, that is,

d14 = 〈〈B̂14〉〉 = 2 〈n̂′
1n̂′

2〉 � 0. (36)

In the following, we apply the same technique to de-
terminants that enable the detection of nonclassicality. The
calculations follow exactly the same path: we assign a mode
to each row of the operator matrix and then symmetrize it as in
Eq. (22) or (33). Finally, whenever possible, we find a linear
optics transformation such that the observable can be mea-
sured by means of photon-number resolving detectors. Since
the difficulty of this procedure increases with the number of
copies, we limit our search to principal submatrices of D5 up
to dimension 4 × 4.

2. Detection of squeezed states: d23

As shown in Table I, the two most interesting principal
submatrices of dimension 2 × 2 for detecting nonclassical
states are d15 and d23. We start with d23, expressed as

d23 =
∣∣∣∣〈â

†â〉 〈â†2〉
〈â2〉 〈â†â〉

∣∣∣∣ = 〈â†â〉2 − 〈â2〉〈â†2〉. (37)

The criterion derived from d23 detects squeezed states and
even cat states (it does not detect Fock states and odd cat
states). Note that d23 is not invariant under displacements
(as we shall see, this invariance can be enforced by con-
sidering d123 instead). Following the procedure described in
Sec. IV A 1, we obtain the multicopy observable

B̂23 = 1

|S2|
∑
σ∈S2

∣∣∣∣∣
â†

σ (1)âσ (1) â†2
σ (1)

â2
σ (2) â†

σ (2)âσ (2)

∣∣∣∣∣,
= â†

1â1â†
2â2 − 1

2

(
â†2

1 â2
2 + â†2

2 â2
1

)
. (38)

Similarly as for B̂12 or B̂14, we can express B̂23 in terms of
angular momentum operators, namely,

B̂23 = 2 L̂2
y − L̂0. (39)

It must be noted that Eq. (39) can also be reexpressed more
concisely as a normally ordered operator, namely,

B̂23 = 2 : L̂2
y :, (40)
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FIG. 2. Implementation of the measurement of d23. We first ap-
ply a phase shift of phase π/2 on the second mode, followed by a
50:50 beam splitter. Then, the value of d23 is accessed by measuring
the number of photons in both output modes and computing Eq. (43).

where the normal ordering symbol must be understood term
by term, that is, we must expand L̂2

y in powers of â and â† and
then normally order each term separately.

Using Eq. (39), we may design a linear interferometer in
order to measure B̂23 with photon-number resolving detec-
tors. We consider the same interferometer as considered in
Ref. [26], which is composed of a π/2 phase shifter on the
second mode followed by a 50:50 beam splitter as shown
in Fig. 2. Under the π/2 local phase shift, the second mode
operator transforms according to

â′
2 = −i â2, (41)

while the 50:50 beam splitter transformation is described in
Eq. (29). The operator L̂0 is again invariant under these opera-
tions, but L̂y transforms into L̂′

x following the phase shifter on
the second mode and then transforms into L̂′

z after the 50:50
beam splitter. Hence, after applying the interferometer shown
in Fig. 2, the nonclassicality observable takes the form

B̂23 = 2 : L̂′2
z :,

= 2 L̂′2
z − L̂0,

= 1
2 (n̂′

1 − n̂′
2)2 − 1

2 (n̂′
1 + n̂′

2),

(42)

and its expectation value yields

d23 = 〈〈B̂23〉〉,
= 1

2 〈(n̂′
1 − n̂′

2)2 − (n̂′
1 + n̂′

2)〉. (43)

As a consequence, the principal minor d23 can be evaluated
simply by accessing the joint photon-number statistics on the
two output modes â′

1 and â′
2.

It is instructive to understand how the nonclassicality of
a squeezed state is detected by Eq. (43). Two copies of
a squeezed state are transformed through the interferome-
ter of Fig. 2 as follows. The phase shift rotates the second
squeezed states by π/2, and the 50:50 beam splitter pro-
duces (from the two orthogonal squeezed states) a two-mode
squeezed vacuum state, (cosh r)−1 ∑∞

n=0(tanh r)n|n, n〉. This
state exhibits a perfect photon-number correlation. Hence, the
squared photon-number difference in Eq. (43) vanishes while
the second term, which is proportional to the sum of photon
numbers, comes with a negative sign. Thus, squeezed states
are detected as nonclassical with d23 < 0 as soon as r > 0.

Note that Eq. (43) can also be reformulated as

d23 = 1
2 (Q′

1〈n̂′
1〉 + Q′

2〈n̂′
2〉 + 〈n̂′

1〉2 + 〈n̂′
2〉2 − 2〈n̂′

1n̂′
2〉),

(44)

where Q′
1 and Q′

2 denote the Mandel Q parameters of the
output states occupying modes â′

1 and â′
2. The Q parameter

is defined as

Q = (�n̂)2 − 〈n̂〉
〈n̂〉 , (45)

and measures the deviation from “Poissonianity” of the state
(it vanishes for a coherent state, associated with a Poisson
distribution). If the input state is a product of two identical
coherent states, it is transformed under the interferometer of
Fig. 2 into a product of two coherent states, hence Q′

1 = Q′
2 =

0. Further, 〈n̂′
1〉2 = 〈n̂′

2〉2 = 〈n̂′
1n̂′

2〉 since the two output coher-
ent states are independent and have equal squared amplitudes.
This confirms that d23 = 0 for coherent states.

3. Detection of Fock states: d15

The criterion based on d15 is complementary to the one
based on d23 as it detects Fock states and odd cat states (it does
not detect squeezed states and even cat states). It is defined as

d15 =
∣∣∣∣ 1 〈â†â〉
〈â†â〉 〈â†2â2〉

∣∣∣∣ = 〈â†2â2〉 − 〈â†â〉2, (46)

and is not invariant under displacements (just as d23). It can be
rewritten as

d15 = 〈n̂2〉 − 〈n̂〉2 − 〈n̂〉 = (�n̂)2 − 〈n̂〉, (47)

and can thus be reexpressed in terms of the Mandel Q param-
eter of the input state as

d15 = Q 〈n̂〉, (48)

so that the nonclassicality criterion based on d15 is simply a
witness of the sub-Poissonian statistics (Q < 0) of the state.
Obviously, we have d15 = 0 for coherent states while d15 > 0
for (classical) thermal states, as expected.

The procedure described in Sec. IV A 1 yields the follow-
ing two-copy nonclassicality observable

B̂15 = 1
2 (n̂1 − n̂2)2 − 1

2 (n̂1 + n̂2), (49)

whose expectation value is written as

d15 = 1
2 〈(n̂1 − n̂2)2 − (n̂1 + n̂2)〉. (50)

Interestingly, d15 involves the same observable as the one used
to measure d23 [see Eq. (43)] except that we do not need the
prior interferometer. This similarity will be exploited in the
next section. It also implies that d15 can be expressed in terms
of Mandel Q parameters of the input states, namely,

d15 = 1
2 (Q1〈n̂1〉 + Q2〈n̂2〉 + (〈n̂1〉 − 〈n̂2〉)2), (51)

which resembles Eq. (44) where we have used 〈n̂1n̂2〉 =
〈n̂1〉 〈n̂2〉 since the inputs are in a product state. Of course,
for two identical inputs, this reduces to Eq. (48).

4. Interpolation between d15 and d23

As we observe in Table I, the criteria d15 and d23 taken
together detect the four considered kinds of pure states. Given
the similarity between Eqs. (43) and (50), it is tempting to
construct a common multicopy observable that interpolates
between d15 and d23. It is based on a linear optical interferom-
eter composed of a phase shifter of phase φ and a beam splitter
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FIG. 3. Extended circuit that interpolates between the measure-
ment of d15 and d23. We need a phase shifter of phase φ followed by
a beam splitter of transmittance τ , and then we measure the photon
number on both output modes in order to access the expectation value
of the observable of Eq. (52).

of transmittance τ (see Fig. 3), followed by the measurement
of the observable

B̂15,23 = 1
2 (n̂′

1 − n̂′
2)2 − 1

2 (n̂′
1 + n̂′

2), (52)

where the primes refer to output modes. By applying the inter-
ferometer of Fig. 3 backwards on Eq. (52), we may reexpress
it as a function of the input mode operators, namely

B̂15,23 = 1

2
: [(â†

2â1 e−iφ + â†
1â2 eiφ ) 2

√
(1 − τ )τ

+ (â†
1â1 − â†

2â2) (−1 + 2τ )]2 : . (53)

This observable clearly interpolates between B̂15 (τ = 1) and
B̂23 (φ = π/2 and τ = 1/2). Since Eq. (53) is the square
of a Hermitian operator, B̂15,23 can be written under the
form : f̂ † f̂ : and is indeed a valid observable for witnessing
nonclassicality.

We start by setting the phase shift to φ = π/2 as it does not
play any role in B̂15 and study the detection of the different
types of nonclassical states as a function of the transmittance
τ (with 1/2 � τ � 1), see Fig. 4. It appears that Fock states
|n〉 with n � 1 may only be detected when the transmittance
is above a threshold value τ ∗ = (2 + √

2)/4 ≈ 0.8536, while
squeezed states with r > 0 may only be detected for values
of the transmittance lower than this threshold τ ∗. The value
of τ ∗ is such that the coefficients of the two operator terms

FIG. 4. Detection limit on the parameter (n or r) characterizing
the input state for several values of the transmittance τ (the phase is
set to φ = π/2). The red area corresponds to the values of n where
Fock states are detected (all of them are detected for τ = 1, reducing
to d15), while the green region corresponds to the values of r where
squeezed states are detected (all of them are detected for τ = 1/2,
reducing to d23). Unfortunately, at the threshold value τ ∗ ≈ 0.8536,
all Fock states and squeezed states are left undetected.

TABLE IV. Effect of the displacement D̂(α) on the determinant
d15. The table shows the difference between the determinant when
the state is displaced and when it is centered (so that �α < 0 implies
an enhanced detection capability).

State �α = dα
15 − d15

Fock �α = 2n|α|2
Squeezed �α = 2 sinh (r)|α|2[cosh (r) cos (2θα − ψ ) + sinh (r)]
Odd cat �α = 2|α|2|β|2( cos (2θα − 2θβ ) + N+

N−

)
Even cat �α = 2|α|2|β|2( N−

N+ − cos (2θα − 2θβ )
)

in Eq. (53) are equal. Moreover, it is possible to show that
the odd cat states may only be detected when τ > τ ∗ while
the even cat states may only be detected when τ < τ ∗. This
means that there is no value of the transmittance enabling the
detection of the four classes of nonclassical states considered
in Table I. Unfortunately, changing the value of the phase
shift φ does not change the situation, so we cannot find a
single two-copy observable that detects all four classes of
nonclassical states.

Note that the criteria based on d15 and d23 can be viewed as
complementary: if one of them detects a nonclassical state,
i.e., its value is negative, then the other one is necessarily
positive for that state (of course, they can be both positive as,
for example, for classical states). Indeed, we have

d23 + d15 = d14 � 0, (54)

where the inequality comes from Eq. (36). Hence, the
witnesses d15 and d23 cannot both simultaneously detect non-
classicality for a given state, as illustrated for a superposition
of three Fock states in Appendix C.

5. Effect of a displacement on d15 and d23

In general, we expect that the nonclassical character of
a quantum state will be harder to detect when the state is
moved away from the origin in phase space. As we shall
see, this is often (but not always) the case. We can calculate
the difference �α between the determinant (d15 or d23) when
the state is displaced by D̂(α) with α = |α|eiθα and the same
determinant when the state is centered. The differences �α in
the case of d15 are presented in Table IV for the considered
states.

For Fock states as well as odd cat states, the effect of
a displacement on d15 is given by an extra positive factor
�α > 0, so that displacements always deteriorate the detec-
tion. For squeezed states as well as even cat states, the result of
a displacement on d15 is that it can either enhance (�α < 0) or
deteriorate (�α > 0) the detection of nonclassicality. Indeed,
the sign of �α depends on the difference between the angle of
squeezing ψ (or the angle of the cat state θβ) and the angle of
the displacement θα .

B. Three-copy observable

As we have observed in Sec. IV A 5, the two-mode criteria
d23 and d15 are not invariant under displacements. This comes
with the fact that some nonclassical states become undetected
if they are displaced in phase space. In order to overcome this

043705-9



ARNHEM, GRIFFET, AND CERF PHYSICAL REVIEW A 106, 043705 (2022)

effect of displacements, we build an observable involving a
third replica of the input state following a similar reasoning
as in Ref. [26]. We focus on the three-copy observable B̂123,
which can be obtained by extending the procedure described
in Sec. IV A 1. From the explicit form of the principal minor

d123 =

∣∣∣∣∣∣∣
1 〈â〉 〈â†〉

〈â†〉 〈â†â〉 〈â†2〉
〈â〉 〈â2〉 〈â†â〉

∣∣∣∣∣∣∣,
= 〈â†â〉2 − 〈â†2〉〈â2〉 − 2〈â†〉〈â〉〈â†â〉

+ 〈â†2〉〈â〉2 + 〈â†〉2〈â2〉, (55)

we get the corresponding nonclassicality observable

B̂123 = 1

|S3|
∑
σ∈S3

∣∣∣∣∣∣∣∣
1 âσ (1) â†

σ (1)

â†
σ (2) â†

σ (2)âσ (2) â†2
σ (2)

âσ (3) â2
σ (3) â†

σ (3)âσ (3)

∣∣∣∣∣∣∣∣
,

= 1

3
(â†

2â2â†
3â3 + â†

1â1â†
3â3 + â†

1â1â†
2â2)

− 1

6

(
â†2

2 â2
3 + â2

2â†2
3 + â†2

1 â2
3 + â2

1â†2
3 + â†2

1 â2
2

+ â2
1â†2

2

) − 1

3
(â†

1â1â†
2â3 + â†

1â1â2â†
3 + â1â†

2â2â†
3

+ â†
1â†

2â2â3 + â1â†
2â†

3â3 + â†
1â2â†

3â3)

+ 1

3

(
â†2

1 â2â3 + â1â†2
2 â3 + â1â2â†2

3

)
+ 1

3

(
â2

1â†
2â†

3 + â†
1â2

2â†
3 + â†

1â†
2â2

3

)
, (56)

where |S3| = 3!. It is straightforward to check that the mean
value of this observable (56) over three identical copies gives
〈〈B̂123〉〉 = d123.

Similarly to B̂23, the nonclassicality observable B̂123 can be
written in a much more compact form in terms of a normally
ordered expression

B̂123 = 2
3 :

(
L̂12

y + L̂23
y + L̂31

y

)2
:, (57)

where L̂kl
y = i

2 (â†
l âk − â†

k âl ). Here, the superscript of the an-
gular momentum component L̂y stands for the two modes that
are involved in the definition (25). The observable B̂123 can
be accessed by first applying a linear optics transformation
corresponding to the first two beam splitters in Fig. 5, which
effects the rotation

â′
1 = 1√

3
(â1 + â2 + â3),

â′
2 = 1√

2
(â1 − â2),

â′
3 = 1√

6
(â1 + â2 − 2â3),

(58)

FIG. 5. Three-mode circuit for accessing the nonclassicality wit-
ness d123. We recognize the circuit for measuring d23 applied on
modes 2 and 3, preceded by two beam splitters of transmittance 1/2
and 2/3 corresponding to the transformation of Eq. (58). The role of
these two beam splitters is to concentrate the coherent field of the
three replicas into mode 1, which is left unmeasured.

on the mode operators. Interestingly, this induces the same
rotation of the angular momentum y components,

L̂23′
y = 1√

3

(
L̂23

y + L̂31
y + L̂12

y

)
,

L̂31′
y = 1√

2

(
L̂23

y − L̂31
y

)
,

L̂12′
y = 1√

6

(
L̂23

y + L̂31
y − 2L̂12

y

)
.

(59)

In other words, the two vectors (â1, â2, â3)T and
(L̂23

y , L̂31
y , L̂12

y )T undergo the exact same orthogonal
transformation. Note that, in contrast, the vectors
(L̂23

x , L̂31
x , L̂12

x )T and (L̂23
z , L̂31

z , L̂12
z )T undergo different

linear transformations, which are mixing their components.
By using Eq. (59), we can reexpress Eq. (57) in terms of
output angular momentum variables as

B̂123 = 2 :
(
L̂23′

y

)2
:, (60)

which resembles Eq. (40) except that it acts on modes 2 and
3. Hence, in analogy with what we did for B̂23, we can access
B̂123 with a subsequent linear optical transformation applied
onto modes 2 and 3, corresponding to the phase shifter and last
beam splitter in Fig. 5. This converts the angular momentum
y component associated with modes 2 and 3 into the corre-
sponding z component, so we have

B̂123 = 2 :
(
L̂23′′

z

)2
:,

= 2
(
L̂23′′

z

)2 − L̂23
0 ,

(61)

where the double primes refer to the output of the full cir-
cuit of Fig. 5. Here L̂kl

z = 1
2 (â†

k âk − â†
l âl ) and L̂kl

0 = 1
2 (â†

k âk +
â†

l âl ). Thus, after applying this circuit, the observable B̂123

transforms into

B̂123 = 1
2 (n̂′′

2 − n̂′′
3 )2 − 1

2 (n̂′′
2 + n̂′′

3 ), (62)

which is analogous to Eq. (42). Its expectation value yields

d123 = 〈〈B̂123〉〉,
= 1

2 〈(n̂′′
2 − n̂′′

3 )2 − (n̂′′
2 + n̂′′

3 )〉. (63)

The intuition behind this circuit follows from Ref. [26]. With
the first two beam splitters in Fig. 5, we apply a transformation
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FIG. 6. Comparison of the values of d123 and d23 for a superpo-
sition of |0〉 and |1〉 Fock states. While d23 never detects any such
superposition as nonclassical, d123 detects them up to b = 0.7. More-
over, d15 always detects these superposition states as nonclassical.

that concentrates the coherent component of the three iden-
tical input states in the first mode, which is traced out. The
second and third modes thus have a vanishing mean field, so
we can apply the same scheme as for measuring B̂23 but on
these two modes, which leads to B̂123. Up to a mode relabel-
ing, the operator in Eq. (62) is indeed the same as the one
used for evaluating d23, see Eq. (43). Notably, the circuit for
evaluating d123 as shown in Fig. 5 is the same circuit as the one
used in Ref. [26] in order to measure an uncertainty observ-
able; the key difference is that the observable (n̂′′

2 − n̂′′
3 )2/4

must be measured instead at the output of the circuit in order
to evaluate the uncertainty.

It must be noted that the circuit of Fig. 5 is not unique.
Another option to access B̂123 is to apply the circuit of a
three-dimensional discrete Fourier transform on the three in-

put modes. This circuit is actually equivalent to the circuit of
Fig. 5 up to ±π/6 phase shifters on modes 2 and 3, which do
not play a role since we measure photon numbers. Hence, this
leads to the same observable.

We stress that in addition of being the displacement-
invariant version of d23, the criterion based on d123 is also
superior in that it is able to detect states that are different
from displaced states detected by d23. A simple example is
the superposition of the two Fock states |0〉 and |1〉 as given
in Appendix C, see Eq. (C1) with c = 0. The values of d23

and d123 are plotted in Fig. 6. We see that while d23 never
detects any superposition of the first two Fock states, d123

detects such superpositions up to b = 0.7. Note that d15 is
always negative, which confirms that these superpositions are
always nonclassical.

C. Four-copy observable

By adding a fourth replica of the input state, it is possible
to further improve the detection capability of nonclassical-
ity observables. The most interesting nonclassicality criterion
derived from a 4 × 4 matrix is d1235 since it detects the non-
classicality of all squeezed, Fock, and even or odd cat states
(see Table I). It is written as

d1235 =

∣∣∣∣∣∣∣∣
1 〈â〉 〈â†〉 〈â†â〉

〈â†〉 〈â†â〉 〈â†2〉 〈â†2â〉
〈â〉 〈â2〉 〈â†â〉 〈â†â2〉

〈â†â〉 〈â†â2〉 〈â†2â〉 〈â†2â2〉

∣∣∣∣∣∣∣∣
. (64)

As before, its associated four-copy observable B̂1235 can be
obtained by assigning a different mode to each row and aver-
aging over all |S4| = 4! permutations, namely

B̂1235 = 1

|S4|
∑
σ∈S4

∣∣∣∣∣∣∣∣∣∣∣

1 âσ (1) â†
σ (1) â†

σ (1)âσ (1)

â†
σ (2) â†

σ (2)âσ (2) â†2
σ (2) â†2

σ (2)âσ (2)

âσ (3) â2
σ (3) â†

σ (3)âσ (3) â†
σ (3)â

2
σ (3)

â†
σ (4)âσ (4) â†

σ (4)â
2
σ (4) â†2

σ (4)âσ (4) â†2
σ (4)â

2
σ (4)

∣∣∣∣∣∣∣∣∣∣∣
. (65)

This expression of B̂1235 is lengthy but we know that calculating its mean value 〈〈B̂1235〉〉 yields d1235. Since it is a Hermitian
operator, B̂1235 may be rewritten as B̂1235 =: f̂ †

1235 f̂1235 :, where f̂1235 is Hermitian too and is defined as

f̂1235 = −i

2
√

6
(â†

1â1â†
2â3 − â†

1â†
2â2â3 − â†

1â1â2â†
3 + â1â†

2â2â†
3 + â†

1â2â†
3â3 − â1â†

2â†
3â3 − â†

1â1â†
2â4

+ â†
1â†

2â2â4 + â†
1â1â†

3â4 − â†
2â2â†

3â4 − â†
1â†

3â3â4 + â†
2â†

3â3â4 + â†
1â1â2â†

4 − â1â†
2â2â†

4 − â†
1â1â3â†

4 + â†
2â2â3â†

4

+ â1â†
3â3â†

4 − â2â†
3â3â†

4 − â†
1â2â†

4â4 + â1â†
2â†

4â4 + â†
1â3â†

4â4 − â†
2â3â†

4â4 − â1â†
3â†

4â4 + â2â†
3â†

4â4),

= 2√
6

(
L̂12

z L̂34
y + L̂13

z L̂42
y + L̂14

z L̂23
y + L̂12

y L̂34
z + L̂13

y L̂42
z + L̂14

y L̂23
z

)
,

= 1√
6

∑
σ∈P4

L̂σ (1)σ (2)
z L̂σ (3)σ (4)

y , (66)

where P4 is the group of even permutations. The expression of
f̂1235 can be further simplified if we apply some linear optics
transformation on the four modes. In analogy with the three-
mode observable, we apply an orthogonal transformation

on the mode operators that has the property of concentrating
the coherent component of the four identical input states onto
the first mode. By choosing the tensor product of two two-
dimensional discrete Fourier transforms (realized with 50:50
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beam splitters),

â′
1 = 1

2 (â1 + â2 + â3 + â4),

â′
2 = 1

2 (â1 − â2 + â3 − â4),

â′
3 = 1

2 (â1 + â2 − â3 − â4),

â′
4 = 1

2 (â1 − â2 − â3 + â4),

(67)

we obtain the simpler expression

f̂1235 = −
√

2

3

(
L̂23′

x L̂23′
y + L̂34′

x L̂34′
y + L̂42′

x L̂42′
y

)
, (68)

which only depends on modes 2, 3, and 4 as expected
since B̂1235 is invariant under displacements. Thus, f̂1235 is
simply proportional to the scalar product between vectors
(L̂23′

x , L̂34′
x , L̂42′

x )T and (L̂23′
y , L̂34′

y , L̂42′
y )T . However, we have

not found a way to further simplify this expression and bring it
to an experimental scheme. The problem is that f̂1235 is made
of products of noncommuting operators L̂kl

x and L̂kl
y , which,

in addition, do not transform similarly when the mode op-
erators undergo an orthogonal transformation. Unfortunately,
applying local phase shifts and beam splitters does not help
in reducing to an expression involving L̂kl

z and L̂kl
0 only, as we

were able to do for all previous multicopy observables.
Note that the issue does not seem to be related to the fact

that we consider a four-copy observable. Indeed, while it is
useless for nonclassicality detection, the principal minor d25

can be expressed as the expectation value of the two-copy
observable

B̂25 = :(L̂0 − L̂x )
(
L̂2

0 − L̂2
z

)
:, (69)

which also cannot be accessed using only linear optics and
photon-number measurements.

Let us stress that the criterion based on d1235 is in gen-
eral stronger than those based on d23 and d15. In the special
case of centered states, that is 〈â〉 = 〈â†〉 = 0, we show in
Appendix D that d1235 can be negative even if d15 and d23 are
both positive. However, if we further assume that 〈â†2â〉 =
〈â†â2〉 = 0, then we simply have

d1235 = d15d23, (70)

in which case a separate implementation of the d15 and d23

circuits becomes sufficient to obtain the value of d1235 and
there is no need for a four-copy observable. This is the case
for Fock, squeezed, and cat states.

V. CONCLUSION AND PERSPECTIVES

In summary, we have analyzed a family of nonclassicality
criteria based on the matrix of moments of the optical field and
(restricting ourselves to dimension N = 5) have benchmarked
their ability to detect nonclassical states, such as Fock states,
squeezed states, and cat states. We have then developed a
multicopy technique that allowed us to access these criteria
by considering several identical replicas of the state and mea-
suring the expectation value of some appropriate observables.
For two- and three-copy nonclassicality observables, we have
found a physical implementation that relies on linear optics
and photodetectors with single-photon resolution. The main
advantage of this multicopy technique is that it overcomes the

need for full state tomography in order to detect nonclassi-
cality. Furthermore, higher-order moments of the considered
state can be accessed by measuring only lower-order moments
such as the photon number on several replicas. The price to
pay is of course the need to ensure interferometric stability on
the replicas over which a joint observable is measured.

Specifically, we have found that the criteria based on d23

and d15 are detecting well-known nonclassical features such as
squeezing (for d23) and sub-Poissonian photon-number statis-
tics (for d15). These criteria can be accessed with a simple
linear optics circuit applied on two replicas of the state, fol-
lowed by photon-number measurement. Then, we have found
a stronger criterion based on d123, which is invariant under
displacements but keeps the same detection performance as
d23. This criterion can be associated with a three-copy non-
classicality observable B̂123, which can again be accessed with
interferometry and photon-number measurements. Further, it
also leads to a necessary and sufficient condition for the de-
tection of nonclassicality in the entire set of Gaussian (pure
and mixed) states.

Finally, we have identified the criterion based on d1235 as
the most remarkable of all criteria built from the minors of the
matrix of moments of dimension N = 5. It detects all states
that are detected by d15 and d123 but also many more states
that cannot be detected by either of them. He have found a
simple expression for its associated four-copy nonclassicality
observable B̂1235, but have unfortunately not been able to find
a corresponding physical implementation in terms of a lin-
ear interferometer and photon-number detectors. Finding an
implementation (involving probably a more complex circuit
or higher-order measurements) is left as a challenging open
problem. The difficulty arises because of the much higher
order in mode operators of the observable B̂1235. Since we
deal with three modes in Eq. (68) rather than two modes as
in Eq. (60), a possible approach could be to exploit the adjoint
representation formed by 3 × 3 matrices instead of the fun-
damental representation of SU(2) (i.e., the set of 2 × 2 Pauli
matrices), written in terms of mode operators. Even though
d1235 only gives a sufficient (not necessary) condition for non-
classicality, it is expected to detect a wide range of nonclassi-
cal states, so that finding a feasible optical implementation of
d1235 would be highly valuable. Of course, in order to avoid
false positives, one would have to assess the robustness of this
nonclassicality condition against slightly different replicas,
which will necessarily be the case in practice.

Another promising direction that is left for further work
would be to extend our technique for detecting the non-
classicality of multimode optical states. We should be able
to develop multicopy multimode observables, where each
replica is made of several modes. Overall, this could result
in an experimentally friendly procedure to certify optical
nonclassicality.
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FIG. 7. Block structure of the matrix of moments. The blocks of
the same color are composed of entries having the same total power
in â and â†.

Union under project ShoQC within ERA-NET Cofund in
Quantum Technologies (QuantERA) program.

APPENDIX A: MATRIX OF MOMENTS DN

1. Block structure of DN

The matrix of moments DN is defined in Eq. (7). By in-
spection, we see that the entry mi, j of row i and column j
results from the (expectation value of the) product of the first
entries in the same row and same column taken in normal
order, namely,

mi, j = 〈m̂i, j〉 = 〈: m̂i,1 m̂1, j :〉 = 〈: m̂†
1,i m̂1, j :〉, (A1)

where the entries of the first row are defined as

m̂1, j = â†l ân−l . (A2)

In this expression, the index j is decomposed into two indices
n and l via

j = n(n + 1)

2
+ l + 1, (A3)

which can be understood from the block structure of the
matrix DN as illustrated in Fig. 7. The index n stands for the
block index and goes from 0 to infinity (when N → ∞). It
corresponds to the total order in â and â† of the block, while l
goes from 0 to n corresponds to the order in â† (the order in â
being of course n − l) within the nth block.

2. Basic properties of DN

a. Hermiticity. This is easily seen from Eq. (A1) since
mi, j = 〈: m̂†

1,i m̂1, j :〉 = 〈: (m̂†
1, j m̂1,i )† :〉 = m∗

j,i.
b. Invariance under rotations. The invariance of d1···N =

det(DN ) under rotations is easy to prove. Indeed, applying a
rotation transforms the operator â into eiθ â and â† into e−iθ â†.
Since each term in the development of the determinant of DN

always involves the same power in â and â†, the factors eiθ

and e−iθ cancel each other out. Hence, the observable is not
affected by phase shifts and the criterion is invariant under
rotations. For example, we have

dθ
123 =

∣∣∣∣∣∣
1 〈âe−iθ 〉 〈â†eiθ 〉

〈â†eiθ 〉 〈â†eiθ âe−iθ 〉 〈â†2e2iθ 〉
〈âe−iθ 〉 〈â2e−2iθ 〉 〈â†eiθ âe−iθ 〉

∣∣∣∣∣∣,
= 〈â†â〉2 − 〈â†2〉〈â2〉 − 2〈â†〉〈â〉〈â†â〉

+ 〈â†2〉〈â〉2 + 〈â†〉2〈â2〉,
= d123, (A4)

where the superscript θ means that the state has been rotated
by an angle θ . In view of the form of DN , it is clear that this
rotation invariance also holds for all principal minors (and not
just dominant principal minors).

c. Invariance under displacements. The invariance un-
der displacements of the dominant principal minors d1···N =
det(DN ) of the matrix of moments can be understood from
the simple example of d123. It exploits a property of the
determinant, namely, that adding to a column (or row) a
linear combination of any other columns (or rows) does not
change the value of the determinant. By using this property
recursively to d123, we show that it is equal to dα

123 where
the superscript α means that the state has been transformed
by the displacement operator D̂(α) = exp (αâ† − α∗â), which
transforms the operator â into â + α and â† into â† + α∗.

d123 =
∣∣∣∣∣∣

1 〈â〉 〈â†〉
〈â†〉 〈â†â〉 〈â†2〉
〈â〉 〈â2〉 〈â†â〉

∣∣∣∣∣∣,

=
∣∣∣∣∣∣

1 〈â〉 + α 〈â†〉 + α∗

〈â†〉 〈â†â〉 + α〈â†〉 〈â†2〉 + α∗〈â†〉
〈â〉 〈â2〉 + α〈â〉 〈â†â〉 + α∗〈â〉

∣∣∣∣∣∣,

=
∣∣∣∣∣∣

1 〈â〉 + α 〈â†〉 + α∗

〈â†〉 + α∗ 〈â†â〉 + α〈â†〉 + α∗(〈â〉 + α) 〈â†2〉 + α∗〈â†〉 + α∗(〈â†〉 + α∗)
〈â〉 + α 〈â2〉 + α〈â〉 + α(〈â〉 + α) 〈â†â〉 + α∗〈â〉 + α(〈â†〉 + α∗)

∣∣∣∣∣∣,

=
∣∣∣∣∣∣

1 〈â + α〉 〈â† + α∗〉
〈â† + α∗〉 〈(â† + α∗)(â + α)〉 〈(â† + α∗)2〉
〈â + α〉 〈(â + α)2〉 〈(â† + α∗)(â + α)〉

∣∣∣∣∣∣,
= dα

123. (A5)
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This proof holds for any dominant principal minors dN but
not for the other principal minors of the matrix of moments
DN . Remember that we adopt a slightly relaxed definition of
dominant principal minors, which means that we must exhaust
all rows and columns of a block before moving to the next
block but the order of rows and columns is irrelevant within a
given block.

d. Zero determinant for coherent states. Coherent states
|α〉 are extremal classical states. Indeed, any classical state can
be written as a classical mixture of coherent states. Coherent
states are of course not detected by all nonclassicality criteria
since they are classical, but they come with a vanishing value
for all principal minors (dominant or not) of the matrix of
moment, which is consistent with extremality. Indeed, using
â|α〉 = α|α〉 and 〈α|â† = 〈α|α∗, the matrix of moments can
be written as

D|α〉
123 =

⎛
⎝ 1 α α∗

α∗ α∗α α∗2

α α2 α∗α

⎞
⎠. (A6)

One may see that D|α〉
123 is a rank-one matrix since it can be

written as the outer product ᾱ ⊗ ᾱ†, where ᾱ = (1, α, α∗)†.
Hence, its determinant d |α〉

123 is equal to 0. In view of the form
of the matrix of moments, this argument holds for all principal
minors (of order strictly greater than one), which are therefore
equal to 0 for coherent states. This shows the special role
played by coherent states in the sense that they saturate all
inequalities in Eq. (8).

APPENDIX B: JORDAN-SCHWINGER REPRESENTATION
AND LINEAR OPTICS

The Jordan-Schwinger representation of the SU(2) algebra
connects the angular momentum operators with the bosonic
mode operators of two modes â1 and â2 as follows:

L̂ j = 1
2 Â†σ j Â, (B1)

where Â = (â1 â2)T and σ j are the three Pauli matrices with
j = x, y, z. The fourth associated operator is denoted as

L̂0 = 1
2 Â†σ0Â, (B2)

where σ0 = 1 is the 2 × 2 identity matrix, and it is linked to
the Casimir operator L̂2

x + L̂2
y + L̂2

z = L̂0(L̂0 + 1). We get a
representation of angular momenta as we recover the usual
commutation relations [L̂ j, L̂k] = i ε j,k,l L̂l with ε j,k,l being
the Levi-Civita symbol, as well as [L̂ j, L̂0] = 0, ∀ j.

Let us derive the effect of linear optics transformations
on the angular momentum operators. When applying a beam
splitter of transmittance τ , the angular momentum operators
transform as

L̂0 → L̂0,

L̂x → (1 − 2τ ) L̂x + 2
√

τ (1 − τ ) L̂z,

L̂y → −L̂y,

L̂z → (2τ − 1) L̂z + 2
√

τ (1 − τ ) L̂x.

(B3)

FIG. 8. Comparison of the values of d15 and d23 for a ternary
superposition of |0〉, |1〉, and |2〉 Fock states (with b = 0.1). The
criteria d15 and d23 are complementary in the sense that they do not
simultaneously detect nonclassicality.

When applying a phase shifter of phase φ on the second mode,
the angular momentum operators transforms as

L̂0 → L̂0,

L̂x → cos(φ) L̂x − sin(φ) L̂y,

L̂y → cos(φ) L̂y + sin(φ) L̂x,

L̂z → L̂z.

(B4)

These expressions are useful in order to find optical schemes
for measuring the multicopy observables of interest. For ex-
ample, we see that L̂y transforms into L̂x under a phase shift of
π/2, while L̂x transforms into L̂z and vice versa under a 50:50
beam splitter transformation. This allows us to reexpress the
multicopy observables of interest in such a way that they only
depend on L̂0 and L̂z operators (hence they are accessible via
photon number measurement).

APPENDIX C: COMPLEMENTARITY OF d15 AND d23

As observed in Table I and Fig. 4, it appears that d15 and
d23 play complementary roles in the detection of nonclassical
states. Indeed, the nonclassical pure states that we have stud-
ied are never detected simultaneously by d15 and d23, which is
a consequence of Eq. (54). In order to illustrate this fact, we
study an arbitrary superposition of Fock states |0〉, |1〉, and |2〉
with real amplitudes a, b, and c, namely,

|ψ012〉 = a|0〉 + b|1〉 + c|2〉, (C1)

where a2 + b2 + c2 = 1.
First, by setting c = 0 in Eq. (C1), i.e., for a superposition

of |0〉 and |1〉 Fock states, we see that the determinant d23 is
always positive since 〈â†2〉 = 〈â2〉 = 0, so the nonclassicality
is not detected. In contrast, d15 is always negative for all super-
positions of |0〉 and |1〉 (this is expected since d15 detects the
nonclassicality of |1〉). The values of d23 and d15 are plotted
in Fig. 6. Second, by setting b = 0.1 in Eq. (C1), the situation
is a bit more complicated but it confirms the complementarity
of d23 and d15, as shown in Fig. 8.
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APPENDIX D: ANALYSIS OF d1235

The criterion based on d1235 is the strongest that we have
found when considering the matrix of moments D5. Although
we have not found a multicopy optical scheme for accessing it,
it is possible to simplify the problem by restricting to certain
class of states. We consider here the case of centered states,
which imposes some restrictions on the matrix of moment,
namely, that 〈â〉 = 〈â†〉 = 0. In this case, the determinant
d1235 can be written as

d1235 =

∣∣∣∣∣∣∣∣∣∣

1 0 0 〈â†â〉
0 〈â†â〉 〈â†2〉 〈â†2â〉
0 〈â2〉 〈â†â〉 〈â†â2〉

〈â†â〉 〈â†â2〉 〈â†2â〉 〈â†2â2〉

∣∣∣∣∣∣∣∣∣∣
, (D1)

which, by using the method of cofactors, simplifies to

d1235 = d235 − 〈â†â〉2d23. (D2)

We may factorize the determinant d235 by using the following
property of determinants of block matrices. If A and D are
square matrices and if A−1 exists, then

det

(
A B
C D

)
= det(A) det(D − CA−1B). (D3)

Hence, assuming the extra constraint that D23 is invertible, we
get

d235 = d23

(
〈â†2â2〉 − (〈â†â2〉 〈â†2â〉)D−1

23

(〈â†2â〉
〈â†â2〉

))
.

(D4)

By plugging Eq. (D4) into Eq. (D2), we rewrite d1235 in a
factorized form as

d1235 = d23

(
d15 − (〈â†â2〉 〈â†2â〉)D−1

23

(〈â†2â〉
〈â†â2〉

))
. (D5)

In particular, under the assumption that D23 is positive definite
(and hence d23 > 0) and that d15 < 0, then d1235 < 0 and
nonclassicality can be detected for sure. Moreover, we see that
d1235 is stronger than d23 and d15 since even if d15 is positive
but smaller than the second term in the right-hand side of
Eq. (D5), then d1235 will detect the state as nonclassical.

An alternate decomposition of d1235 can be obtained by
exchanging the role of d15 and d23, which results in

d1235 = d23 det

(
D15 − 1

d23

(
0 0
0 x

))
,

= d23 d15 − x.

(D6)

with x = 2〈â†â〉〈â†2â〉〈â†â2〉 − 〈â†2〉〈â†â2〉2 − 〈â2〉〈â†2â〉2.
In this case again, we see that d1235 is stronger than d15 and
d23 as it can be negative even if d15 and d23 are both positive.
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