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ABSTRACT

We show the existence of a majorization ladder in bosonic Gaussian channels, that is, we prove that the channel output resulting from the
nth energy eigenstate (Fock state) majorizes the channel output resulting from the ðnþ 1Þth energy eigenstate (Fock state). This reflects a
remarkable link between the energy at the input of the channel and a disorder relation at its output as captured by majorization theory. This
result was previously known in the special cases of a pure-loss channel and quantum-limited amplifier, and we achieve here its non-trivial
generalization to any single-mode phase-covariant (or -contravariant) bosonic Gaussian channel. The key to our proof is the explicit con-
struction of a column-stochastic matrix that relates the outputs of the channel for any two subsequent Fock states at its input. This is made
possible by exploiting a recently found recurrence relation on multiphoton transition probabilities for Gaussian unitaries [Jabbour and Cerf,
Phys. Rev. Res. 3, 043065 (2021)]. Possible generalizations and implications of these results are then discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0129704

I. INTRODUCTION

When setting up a communication system through any channel,
it is natural to aim for the fastest and most reliable protocol that is
allowed by the intrinsic physical properties of the channel. In that
respect, the ultimate description of a channel is provided by quantum
mechanics, while the optimal communication rate can be predicted by
using the tools of information theory.1 The combination of these two
theories makes it possible to equip any quantum channel with a classi-
cal capacity, which gives a limit on the number of classical bits of
information that can faithfully be conveyed per use of the channel.
The single-use classical capacity of a quantum channel m is obtained
by maximizing the Holevo information, namely,2,3

CðmÞ ¼ max
fpi ;q̂ ig

S m

X
i

piq̂i

� �� �
�
X
i

pi S mðq̂iÞð Þ
� �

; (1)

where Sðq̂Þ denotes the von Neumann entropy of the density operator
q̂ and fpi; q̂ig characterizes an ensemble of symbol states q̂i with
associated probabilities pi. In the process of evaluating CðmÞ, a crucial
step is often to determine the input states that minimize the output
entropy of the channel [i.e., the second term of the right-hand side of
Eq. (1)] as these states can be chosen as symbol states in order to

construct an efficient communication protocol, which may attain
CðmÞ in some cases.

In this paper, we focus on optical communication channels, e.g.,
optical fibers or free-space links, which are often adequately described
by the model of bosonic Gaussian channels. The classical capacity of
these channels was thoroughly investigated in Refs. 4 and 5, but the
expression for CðmÞ was pending on the knowledge of the mini-
mum-output-entropy states. In the common case of single-mode
phase-insensitive bosonic Gaussian channels (denoted simply as BGCs
in what follows), it was conjectured very early on that coherent states
minimize the output entropy.6 Yet, it took ten years to find proof of
this conjecture, which was needed to ascertain the conjectured expres-
sion of the capacity of BGCs.7 This result was shortly followed by an
even stronger statement, namely that the outputs resulting from coher-
ent states majorize every other output.8 A majorization relation is
arguably the most fundamental way to express that a quantum state
is more statistically disordered than another one. Recall that a state q̂
is said to majorize a state r̂ (written q̂ � r̂) if and only if its vector of
eigenvalues obeys the corresponding majorization relation

p � q()
Xn
k¼0

p#k �
Xn
k¼0

q#k; 8n; (2)
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where p (respectively, q) is the vector of eigenvalues of q̂ (respectively,
r̂) and p#k (respectively, q

#
k) is the kth highest component of p (respec-

tively, q). The relation q̂ � r̂ implies, in turn, inequalities over the
broad set of Schur-convex (-concave) functions, notably it implies that
Sðq̂Þ � Sðr̂Þ as a consequence of the Schur-concavity of the von
Neumann entropy S.

The importance of majorization relations in the context of BGCs
was first suggested in Ref. 9. This motivated an early attempt at proving
the minimum output entropy conjecture,10 which established that the
vacuum is the minimizer state over the restricted set of phase-invariant
inputs (but lacking an argument that it is sufficient to consider phase-
invariant minimizer states). Interestingly, this incomplete proof in
Ref. 10 also yielded the following side-result: the quantum-limited
amplifier (denoted as ag , where g is the gain) exhibits a majorization
relation at the output for successive Fock states at its input, that is,
agðjiihijÞ �agðjiþ 1ihiþ 1jÞ; 8i 2N. A very similar result was
later proven for the pure-loss channel (denoted as eg, with g being the
transmittance), that is,egðjiihijÞ � egðjiþ 1ihiþ 1jÞ; 8i 2N.11

In practice, however, the pure-loss channel and quantum-limited
amplifier represent only but a tiny fraction of the set of BGCs as they
describe an ideal noiseless situation. The presence of added noise can
be taken into account by setting the environment of the Stinespring
dilation of the channel to be a thermal state of mean photon-number
N (rather than a pure vacuum state), in which case channels ag and
eg are denoted, respectively, as aN

g and e
N
g . Supplemented with the

classical additive noise channelnn, they span the entire set of covari-
ant BGCs, while the contravariant BGCs are generated by the conju-
gated amplifier ~a

N
g . We refer to Ref. 7 for the detailed definitions of

the above-mentioned channels, which are also summarized in Fig. 1. It
then comes as a natural question whether the output of Fock state jii
majorizes the output of the subsequent Fock state jiþ 1i in any BGC.
Namely, does the relation

mðjiihijÞ �mðjiþ 1ihiþ 1jÞ; 8i 2N (3)

hold, wherem stands for any of the channels eN
g ; a

N
g ; nn, or ~a

N
g ?

We answer this question by the positive in the present paper. In the
following, we will say that a quantum channelm obeys amajorization
ladder when it satisfies Eq. (3), so that

mðj0ih0jÞ �mðj1ih1jÞ �mðj2ih2jÞ � � � � (4)

as a result of the transitivity of majorization. We then say that the vac-
uum state j0i is located at the bottom of the ladder.

Having in mind that any (covariant) BGC is equivalent to the
concatenation of a quantum-limited amplifier and a pure-loss channel,
it might at first sight seem an easy task to show that all (covariant)
BGCs obey a majorization ladder (since both ag and eg do).
However, let us observe that the majorization ladder translates an
energy relation at the input (Fock states are energy eigenstates) into a
disorder relation at the output. Proving the majorization ladder for the
whole set of BGCs can then not be done via a simple concatenation
argument. Moreover, let us also stress that a majorization relation
between two states is a strong statement (involving an infinite set of
inequalities for states of a bosonic mode), and two states can, in gen-
eral, be incomparable (in which case there is no majorization relation
in either direction). This makes the extension of the majorization lad-
der to all BGCs as presented here a strong and non-trivial result.

Our paper is structured as follows. In Sec. II, we lay the general
sketch of our proof, which relies on the construction of a column-
stochastic matrix linking the eigenvalues of the output states associated
with subsequent Fock states for any BGC. The matrix is built by
exploiting a recently found recurrence relation on the transition prob-
abilities for Gaussian unitaries.12 In Sec. III, we use the generating
function as a mathematical tool in order to derive a recurrence relation

FIG. 1. Optical BGCs are achievable with a beam-splitter, a two-mode squeezer, or a concatenation of both. Recall that a beam-splitter of transmittance g ¼ cos2h is described

by the unitary Ûg ¼ exp ðhðâ†b̂ � âb̂
†ÞÞ, while a two-mode squeezer of gain g ¼ cosh2r is described by the unitary Û g ¼ exp ðrðâ†b̂† � âb̂ÞÞ. The lossy channel eN

g is
implemented with a beam-splitter acting on the input state q̂ coupled with a thermal environmental state ŝN of mean photon-number N; then the second output is discarded.

Similarly, the amplifieraN
g (respectively, conjugated amplifier ~a

N
g ) is implemented as a two-mode squeezer acting on q̂ � ŝN and discarding the second output (respectively,

first output). Finally, the classical added noise channel nn (with n being the number of added thermal photons) is implemented as the concatenation of a pure-loss channel
e1=ðnþ1Þ followed by a quantum-limited amplifier anþ1. The lossy channel and amplifier are said to be phase-covariant and are, respectively, associated with a gain/loss
parameter g and g, while the conjugated amplifier is said to be phase-contravariant and is associated with a gain/loss parameter 1� g. The classical added noise is associ-
ated with a gain/loss parameter 1.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 011401 (2023); doi: 10.1116/5.0129704 5, 011401-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/aqs


satisfied by the output states of any BGC. We then construct in Sec. IV
the column-stochastic matrix which proves our main result. We con-
clude in Sec. V with some observations and further perspectives.

II. SKETCH OF THE PROOF

The first step of our proof is to use the fact that BGCs can be
expressed via their Stinespring dilation as

mðq̂Þ ¼ Tr2 Û G q̂ � ŝy
� �

Û
†
G

h i
; (5)

where ŝy ¼ ð1� yÞ
P1

k¼0 y
kjkihkj is a thermal state of mean photon-

number N ¼ y=ð1� yÞ, with 0 � y < 1. Here, the Gaussian unitary

Û G is either Û g (for channel e
N
g ) or Û g (for channels a

N
g and ~a

N
g ),

see Fig. 1. Note that in the case of the conjugated amplifier ~a
N
g , the

partial trace is performed over mode 1. Although the additive noise
channelnn cannot be expressed in the form of (5), it can be taken as
a limiting case of a lossy channel eN

g (with g! 1 and N !1), or

equivalently of an amplifier channel aN
g (with g ! 1 and N !1).

These limits are made precise in Sec. III.
Let us define r̂ðiÞ as the output of the ith Fock state in the channel

m defined in (5), so that r̂ðiÞ ¼mðjiihijÞ, see Fig. 2. Since we con-
sider a phase-covariant or phase-contravariant channel m, we can
always express r̂ðiÞ as a mixture of Fock states,

r̂ðiÞ ¼
X1
n¼0

TðiÞn jnihnj; (6)

where TðiÞn is nothing but the transition probability to measure n pho-
tons at the output of m when i photons have been sent at its input.
Our objective is, thus, to prove the majorization ladder,

r̂ðiÞ � r̂ðiþ1Þ; 8i 2N: (7)

At this point, we may define the vector tðiÞ as the vector with compo-
nents ðtðiÞÞn ¼ TðiÞn , so that tðiÞ is the vector of eigenvalues of r̂ðiÞ. The
majorization ladder (7) is then equivalent to tðiÞ � tðiþ1Þ.

A notable feature of majorization theory is that the relation
p � q is equivalent to the existence of a column-stochastic matrix D
(Dij � 0;

P
i Dij ¼ 1;

P
j Dij � 1) such that q ¼ Dp.10,13 Note the

subtlety that although the columns sum to 1 (hence, the term column-
stochastic), the sum of each row must be � 1 for infinite-dimensional
vectors tðiÞ (for finite-dimensional vectors, the rows must sum to 1,

just as the columns, and the matrix associated with majorization is
called doubly stochastic).

In what follows, we are going to construct such a column-
stochastic matrix D by computing the generating function of the tran-

sition probabilities TðiÞn , which will enable us to derive a recurrence

relation obeyed by TðiÞn . Using this recurrence relation recursively, we
will construct a matrix linking the components of tðiþ1Þ to the compo-
nents of tðiÞ and show that this matrix is column-stochastic, conclud-
ing the proof.

III. GENERATING FUNCTION OF TRANSITION
PROBABILITIES

The generating function of a sequence fcng with n 2N is a
function that encapsulates all information about the sequence and is
defined as

f ðzÞ ¼
X1
n¼0

cn z
n: (8)

The sequence fcng can be retrieved from f(z) by using cn
¼ ð1=n!Þðdnf =dznÞjz¼0. The generating function obeys the shifting
property, namely, multiplying it by the variable z corresponds to a
right shift of the sequence: if f ðzÞ $ fcng, then z f ðzÞ $ fcn�1g, with
the convention that cn ¼ 0 for n< 0. Along with the shifting property,
we will also use the fact that a constant generating function is associ-
ated with an empty sequence where only c0 is non-zero, that is,
f ðzÞ ¼ 1$ fdng.

Let us define the transition probabilities of the Gaussian unitary
Û G in the Fock basis as

U ði;jÞn;m ¼ jhn;mjÛ Gji; jij2; (9)

with i; j; n;m 2N, see Fig. 3. The generating function associated with

the sequence fU ði;jÞn;mg, namely,

f ðx; y; z;wÞ ¼
X1
i¼0

xi
X1
j¼0

yj
X1
n¼0

zn
X1
m¼0

wm Uði;jÞn;m (10)

has a closed analytical expression when Û G is chosen to be the unitary
of a beam-splitter or two-mode squeezer, see Ref. 12. It should be
noted here that multi-index sequences are simply associated with mul-
tivariate generating functions, with one variable associated with each
index. Now, the generating function of the sequence fTðiÞn g, namely,

FIG. 2. Stinespring dilation of a single-mode phase-covariant Gaussian channel m.
Here, the input state (Fock state jii) is coupled via the unitary ÛG to a thermal state
ŝy , resulting in the output state r̂ðiÞ when tracing over the environment. The unitary
ÛG can be chosen to be the unitary Ûg of a beam-splitter of transmittance g, or Û g
for a two-mode squeezer of gain g.

FIG. 3. Transition probability Uði;jÞn;m for the Gaussian unitary ÛG and transition proba-
bility T ðiÞn for the bosonic Gaussian channelm.
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hðx; zÞ ¼
X1
i¼0

xi
X1
n¼0

zn TðiÞn ; (11)

can be obtained from the generating function of fU ði;jÞn;mg as follows:

hðx; zÞ ¼
X1
i¼0

xi
X1
n¼0

zn

� Tr Û G jiihij � ŝy
� �

Û
†
G jnihnj � 1̂
� �h i

¼ ð1� yÞ
X1
i¼0

xi
X1
j¼0

yj
X1
n¼0

zn
X1
m¼0

1m

� Tr Û G jiihij � jjihjjð ÞÛ †
G jnihnj � jmihmjð Þ

h i
¼ ð1� yÞ

X1
i¼0

xi
X1
j¼0

yj
X1
n¼0

zn
X1
m¼0

1m U ði;jÞn;m

¼ ð1� yÞ f ðx; y; z; 1Þ: (12)

In principle, the transition probabilities TðiÞn as pictured in Fig. 3 can,
thus, be retrieved from h(x, z). Expression (12) holds for both the noisy
loss channel eN

g and noisy amplifier a
N
g provided f ðx; y; z; 1Þ is

replaced by its appropriate expression as found in Ref. 12. In the case

of the conjugated amplifier ~a
N
g , the partial trace is done over the first

mode, so that the generating function is hðx; zÞ ¼ ð1� yÞ f ðx; y; 1; zÞ.
For the classical additive noise channelnn, the generating function is
obtained as a limiting case of the one for e

N
g with g! 1� and

N !1, or equivalently of aN
g with g ! 1þ and N !1. The limit

is carried out by setting, respectively, ð1� gÞN ¼ n or
ðg � 1ÞN ¼ n. Remarkably, the expression of h(x, z) has a similar

structure for the four channels eN
g ; a

N
g ; nn, and ~a

N
g , and reads as

hðx; zÞ ¼ v
1� a x � b z � c xz

; (13)

where the parameters a, b, c, and v are defined in Table I. Note that
these parameters are constrained as a result of the trace-preservation
condition of the channel, namely,

X1
n¼0

TðiÞn ¼ 1; 8i; (14)

which translates into

hðx; 1Þ ¼ ð1� xÞ�1; 8x: (15)

It is easy to check that Eq. (15) implies the conditions

aþ bþ c ¼ 1; bþ v ¼ 1; (16)

so BGCs only depend on two independent parameters.

IV. FROM A RECURRENCE RELATION
TO A COLUMN-STOCHASTIC MATRIX

Equation (13) may be re-expressed as

hðx; zÞ ¼ a x hðx; zÞ þ b z hðx; zÞ þ c xz hðx; zÞ þ v; (17)

which can be converted into the following recurrence relation on the
transition probabilities,

TðiÞn ¼ aTði�1Þn þ bTðiÞn�1 þ cTði�1Þn�1 þ v dðiÞn ; (18)

where we have used the shifting property, namely,

hðx; zÞ $ TðiÞn
� 	

;

x hðx; zÞ $ Tði�1Þn

� 	
;

z hðx; zÞ $ TðiÞn�1

n o
;

xz hðx; zÞ $ Tði�1Þn�1

n o
:

(19)

Remember that the parameters a, b, c, and v depend on the consid-
ered channel and are given in Table I.

By definition, dðiÞn is non-zero if and only if i ¼ n ¼ 0, so that v
¼ Tð0Þ0 is the probability to measure zero photon at the output for a
vacuum input. For any other component TðiÞn , we have either i> 0 or
n> 0, so that we can omit the last term of the right-hand side of
Eq. (18). Our goal now is to link the components of vector tðiÞ to those
of vector tði�1Þ, so that in the right-hand side of Eq. (18), we should
have terms with index i � 1 only [and get rid of the term in TðiÞn�1]. In
order to do so, we recursively apply the recurrence relation as follows:

TðiÞn ¼ aTði�1Þn þ cTði�1Þn�1 þ bTðiÞn�1


 �
¼ aTði�1Þn þ cTði�1Þn�1 þ b aTði�1Þn�1 þ cTði�1Þn�2 þ bTðiÞn�2


 �
¼ aTði�1Þn þ ðcþ baÞTði�1Þn�1 þ b cTði�1Þn�2 þ bTðiÞn�2


 �
¼ aTði�1Þn þ ðcþ baÞTði�1Þn�1 þ bcTði�1Þn�2

þ b2 aTði�1Þn�2 þ cTði�1Þn�3 þ bTðiÞn�3


 �
¼ aTði�1Þn þ ðcþ baÞTði�1Þn�1 þ bðcþ baÞTði�1Þn�2

þ b2 cTði�1Þn�3 þ bTðiÞn�3


 �
¼ � � �: (20)

By induction, this results into the closed expression,

TðiÞn ¼ aTði�1Þn þ �
Xn
k¼1

bk�1 Tði�1Þn�k ; (21)

TABLE I. Value of the parameters a, b, c, and v for the four families of BGCs [see
Eqs. (13) and (18)]. Here, g stands for the transmittance and g for the gain, while y
is related to the mean photon-number N of the environmental thermal state as
y ¼ N=ðN þ 1Þ. The classical additive noise channel is defined as
nn ¼anþ1

	
e1=ðnþ1Þ, where n is the number of added thermal photons.

a b c v

e
N
g

1� g
1� gy

yð1� gÞ
1� gy

g� y
1� gy

1� y
1� gy

a
N
g

yðg � 1Þ
g � y

g � 1
g � y

1� gy
g � y

1� y
g � y

nn
n

nþ 1
n

nþ 1
1� n
nþ 1

1
nþ 1

~a
N
g

gy � y þ 1
g

g þ y � 1
g

�y 1� y
g
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where we have defined the parameter � ¼ cþ ba. This links each
component of vector tðiÞ to the components of vector tði�1Þ, as we
wanted. In matrix terms, we, thus, have

TðiÞ0

TðiÞ1

TðiÞ2

TðiÞ3

TðiÞ4

..

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

|fflfflfflfflffl{zfflfflfflfflffl}
tðiÞ

¼

a 0 0 0 0 � � �
� a 0 0 0 � � �
�b � a 0 0 � � �
�b2 �b � a 0 � � �
�b3 �b2 �b � a � � �

..

. ..
. ..

. ..
. ..

. . .
.

0
BBBBBBBBBB@

1
CCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

Tði�1Þ0

Tði�1Þ1

Tði�1Þ2

Tði�1Þ3

Tði�1Þ4

..

.

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
tði�1Þ

; (22)

with the entries of matrixD being given by

Dkl ¼ a dðk� lÞ þ � bk�l�1 Hðk� l � 1Þ; (23)

where dðzÞ ¼ 1 if z¼ 0 and is zero otherwise, and HðzÞ ¼ 1 if z � 0
and is zero otherwise. The last step of our proof is to check that D is
indeed column-stochastic (this has to be done separately for the four
channels). Given the values of Table I, it is straightforward to show
that a � 0; b � 0, and � � 0, so all entries of D are non-negative.
Notice also that the sum of each column can be easily computed (since
b < 1) as

aþ �
X1
k¼0

bk ¼ aþ c
1� b

; (24)

which is equal to 1 as a result of Eq. (16). The key point is to notice,
from the structure of matrix D, that its rows are simply truncated col-
umns (with the remaining entries being pasted with zeros), which
implies that the sum of each row is less than or equal to 1. From this,
we conclude that D is column-stochastic in our relation
tðiÞ ¼ D tði�1Þ, which completes the proof of Eq. (7).

It should be noted that the column-stochastic matrix linking two
vectors satisfying a majorization relation is, in general, not unique.
Remarkably, the elements of the matrix D that we have found in
Eq. (23) do not depend on the index i. Hence, the matrix D is only a
function of the considered channel, which implies the simple relation

tðiÞ ¼ Dk tði�kÞ ¼ Di tð0Þ; (25)

where k can be chosen from 0 to i. Note that any power of a column-
stochastic matrix remains column-stochastic, so that Eq. (25) directly
implies the majorization relations,

mðjiihijÞ �mðji� kihi� kjÞ �mðj0ih0jÞ; (26)

where 0 � k � i, which can also be understood as a consequence of
the transitivity of majorization.

V. DISCUSSION AND PERSPECTIVES

We have shown that all (phase-covariant or phase-contravariant)
BGCs satisfy an intrinsic ladder of majorization relations (4), which
connects the energy eigenstates at the input of the channel to the dis-
order of its output. Specifically, any two Fock states jii and jji result
into output states that satisfy the majorization relation,

mðjiihijÞ �mðjjihjjÞ if i � j: (27)

A major consequence of Eq. (27) is that we can relate the output von
Neumann entropy produced by any two Fock states in any BGC as
follows:

S mðjiihijÞð Þ � S mðjjihjjÞð Þ if i � j; (28)

which also implies a monotonous entropy chain

S mðj0ih0jÞð Þ � S mðj1ih1jÞð Þ � S mðj2ih2jÞð Þ � � � � : (29)

This can of course also be extended to all Schur-concave functions,
including all R�enyi entropies.

It is tempting to try generalizing the majorization ladder (4) and
assume a direct connection between the input energy and output dis-
order. Namely, one could expect that if q̂ and r̂ are any two states
such that the energy of q̂ is lower than the energy of r̂, then the corre-
sponding outputs satisfy the majorization relation mðq̂Þ �mðr̂Þ. It
is easy, however, to find a counterexample. More subtly, we may want
to replace the energy comparison at the input with a so-called Fock
majorization relation as defined in Ref. 14. Fock majorization (denoted
as �F) corresponds to “unordered” majorization in Fock basis and is
such that q̂�F r̂ if the energy of q̂ is lower than the energy of r̂
(the converse does not hold). It is trivial to see that jiihij �F jjihjj if
i � j. A natural extension of the majorization ladder could then be
that if q̂ and r̂ are any two states that satisfy q̂�F r̂, then
mðq̂Þ �mðr̂Þ. Unfortunately, this statement can be proven wrong
too. Instead, what we know is that the Fock-majorization relation is
preserved across any BGC,14 that is, q̂�F r̂ implies mðq̂Þ�F mðr̂Þ,
where the output states must be compared using Fock majorization
too. According to Ref. 14, this Fock–majorization preservation is
equivalent to the existence of a Fock-majorization ladder, namely,

mðjiihijÞ �F mðjjihjjÞ if i � j; (30)

which also appears as a straightforward consequence of the structure
of the matrix D (it is lower-triangular). It, thus, seems that the majori-
zation ladder (4) that we have found in this paper is the strongest
result that can be obtained along this line.

At the heart of this majorization ladder, we have found a closed
expression for the column-stochastic matrix D for the entire set of
BGCs, which provides a recurrence relation on the transition probabili-
ties TðiÞn . It should be stressed that the derivation of D is far from obvi-
ous because it requires the evaluation of non-Gaussian matrix elements
of Gaussian unitaries in the Fock basis. This is where the generating
function comes into play because it enables expressing these matrix ele-
ments by using the Gaussian toolbox only.12 Actually, the trick is not to
access these matrix elements individually, but to exploit the recurrence
equation that they obey (as implied by the generating function) in order
to prove the majorization ladder (4). The latter is expected to yield a
valuable ingredient for understanding new properties of BGCs. Below,
we exhibit properties that can either be deduced from the majorization
ladder or that can be conjectured based on numerical evidence.

(1) Consider two input states q̂ and r̂, which are statistical mix-
tures of Fock states such that r̂ is shifted by k steps with respect
to q̂, namely,
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q̂ ¼
X1
i¼0

cijiihij; r̂ ¼
X1
i¼0

cijiþ kihiþ kj; (31)

with fcig being a probability distribution and k � 0. Since q̂ and
r̂ are mixtures, it seems difficult at first sight to conclude on a
majorization relation at the output,

mðq̂Þ �mðr̂Þ; (32)

even though each individual term of the two mixtures satisfies
mðjiihijÞ �mðjiþ kihiþ kjÞ. Indeed, majorization relations
are not conserved under convex mixing: starting from two sets of
vectors fxig and fyig such that xi � yi; 8i, it is not true to infer
that

P
icixi �

P
iciyi for any probability distributions fcig.

However, using Eq. (25) and defining p and q such that mðq̂Þ
¼
P

npnjnihnj and mðr̂Þ ¼
P

nqnjnihnj, it is easily shown that
q ¼ Dkp, from which we confirm Eq. (32). Again, the simplifica-
tion arises from the observation that D does not depend on the
index of the Fock state it is applied to (as well as the fact that any
power of a column-stochastic matrix is also column-stochastic).

(2) Now, consider the same state r̂ as in Eq. (31) but let us com-
pare its associated output mðr̂Þ ¼

P
nqnjnihnj with the output

mðjkihkjÞ ¼
P

nT
ðkÞ
n jnihnj associated with the kth Fock state.

A simple calculation shows that

q ¼
X1
i¼0

cit
ðiþkÞ ¼

X1
i¼0

ciD
i

 !
tðkÞ; (33)

where we have used Eq. (25). Notice that any convex mixture of
column-stochastic matrices is itself column-stochastic, which
implies that tðkÞ � q or, equivalently, that

mðjkihkjÞ �mðr̂Þ: (34)

In other words, the output associated with a mixture of Fock
states is majorized by the output that is associated with the low-
est Fock state contained in the mixture, which is a distinct result
from Eq. (32).

Beyond properties (1) and (2), let us mention another
majorization ladder that we expect to hold in BGCs although it
is only supported by numerical evidence. The majorization lad-
der (4) can be viewed as a path from state j0i to state jki such
that the corresponding output states monotonically majorize
pairwise along the path. This can be viewed as a refinement of
the majorization relation of Ref. 8, which implies that any state
(thus in particular jki) results in an output that is majorized by
the output resulting from the vacuum state j0i, that is,
mðj0ih0jÞ �mðjkihkjÞ. Instead, the majorization ladder (4)
involves all the intermediate Fock states between j0i and jki.
One may expect the existence of a similar path but replacing
the vacuum state with a passive state at the bottom of the lad-
der. Consider a sequence of isospectral states, that is, mixed
states having the same vector of eigenvalues (among them, the
passive state is the one that has the lowest energy). It was shown
in Ref. 15 that, for all BGCs, any state q̂ produces an output
that is majorized by the output resulting from the passive state
q̂# that is isospectral with q̂. It is tempting to look for a path of
isospectral states at the input resulting in a majorization ladder at
the output, just as in Eq. (4). We do not know how to do this in
general, but have numerically observed the following special case:

(3) Consider a mixture of Fock states of the form

q̂n0;n1;n2;… ¼
1
N

n0j0ih0j þ n1j1ih1j þ n2j2ih2j þ � � �ð Þ; (35)

restricting to the special case where the numbers ni’s can only take
two values, 0 or 1, and N ¼

P
ini is the number of nonvanishing

components. Starting, for example, from state q̂101001, we can
define a path that ends with the corresponding passive state
q̂111000 and along which the output states monotonically majorize
pairwise. This path is valid provided that the following (conjec-
tured) property holds: if we keep the components of the lowest
Fock states unchanged up to some level and then permute the
upper components so to minimize the energy, the corresponding
output states satisfy a majorization relation. This is better
explained with an example, namely,

mðq̂…j011Þ �mðq̂…j110Þ; (36)

where the “core” binary sequence denoted as … is arbitrary, while
the sequence 011 is compared with its passive counterpart 110
(where all one’s have been brought to the left). By applying this
conjectured property recursively starting for example from state
q̂101001, one gets

mðq̂1010j10Þ �mðq̂1010j01Þ;
mðq̂101j100Þ �mðq̂101j010Þ;
mðq̂1j11000Þ �mðq̂1j01100Þ;

(37)

where the vertical bars separate the core from the rest of the
sequence. This yields the majorization ladder

mðq̂111000Þ �mðq̂101100Þ �mðq̂101010Þ �mðq̂101001Þ; (38)

which holds for all BGCs conditionally on conjecture (36). We
have numerically verified this conjecture, but have not been able
to prove it analytically. Furthermore, we should note that it is not
valid any more if the components ni’s take other values than 0 or
1. Yet, Eq. (38) provides a neat construction for a path of input
states of increasing energy producing output states of increasing
disorder as measured by majorization theory.

Finally, we should note that all the results of this work are
restricted to phase-insensitive Gaussian channels, where the environ-
ment is taken to be a thermal state. However, in the case of phase-
sensitive Gaussian channels that are built with a squeezed thermal
state in the environment, we should observe a similar majorization
ladder with squeezed Fock states at the input (with the same squeezing
parameter as the environment). Another interesting extension of the
current work could be to investigate the existence of a majorization
ladder (or majorization lattice) for multimode bosonic Gaussian chan-
nels that are gauge-covariant (i.e., covariant with respect to orthogonal
rotations in phase space). We anticipate that this majorization-based
approach holds the promise of shedding new light on the fundamental
properties of quantum optical communication channels.
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