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Boson bunching is not maximized by 
indistinguishable particles

Benoit Seron    1, Leonardo Novo    1,2 & Nicolas J. Cerf1 

Boson bunching is among the most remarkable features of quantum physics. 
A celebrated example in optics is the Hong–Ou–Mandel effect, where the 
bunching of two photons arises from a destructive quantum interference 
between the trajectories where they both either cross a beamsplitter or are 
reflected. This effect takes its roots in the indistinguishability of identical 
photons. Hence, it is generally admitted—and experimentally verified—that 
bunching vanishes as soon as photons can be distinguished, for example, 
when they occupy distinct time bins or have different polarizations. Here we 
disprove this alleged straightforward link between indistinguishability and 
bunching by exploiting a recent finding in the theory of matrix permanents. 
We exhibit a family of optical circuits such that the bunching of photons 
into two modes can be substantially boosted by making them partially 
distinguishable via an appropriate polarization pattern. This boosting 
effect is already visible in a seven-photon interferometric process, making 
the observation of this phenomenon within reach of current photonic 
technology. This unexpected behaviour questions our understanding 
of multiparticle interference in the grey zone between indistinguishable 
bosons and classical particles.

In quantum physics, it is common knowledge that a gain of informa-
tion results in the extinction of quantum interference. In the iconic 
double-slit experiment, the interference fringes originate from the 
absence of which-path information1–3. As emphasized, for instance, by 
Feynman4, the fringes necessarily disappear as soon as the experiment 
allows us to learn that the particles have taken one or the other path. In 
quantum optics, photon bunching is another distinctive feature that 
follows from quantum interference. Specifically, the indistinguish-
ability of photons makes it such that one cannot know which photon 
has followed a given trajectory in a linear interferometer (Fig. 1). The 
Hong–Ou–Mandel (HOM) effect5, for example, arises from the fact that 
one cannot distinguish the trajectory where two photons have crossed 
a 50:50 beamsplitter from the trajectory where they have both been 
reflected. The net result is a tendency of indistinguishable photons to 
occupy the same mode—that is, to bunch—as a consequence of this lack 
of information. In accordance with Feynman’s rule of thumb, quantum 
interference effects become less pronounced as soon as the photons 

become distinguishable, for example, if they occupy distinct tempo-
ral or polarization modes so that one gains information about their 
individual trajectories6. As a consequence, the HOM dip disappears 
for two photons with orthogonal polarization because their distinct 
trajectories can then be fully traced back. Hence, even in more general 
scenarios involving multiple independently prepared photons and 
larger interferometers, it is commonly admitted that bunching effects 
are maximum for fully indistinguishable photons and gradually decline 
when photons are made increasingly distinguishable7–9.

In this Article, we find a quantum interferometric scenario that 
goes against this intuition and contradicts the very idea that distin-
guishability undermines photon bunching. We consider the prob-
ability of multimode bunching, that is, the probability that all photons 
entering a linear interferometer end up in a certain subset of the output 
modes. In accordance with a longstanding mathematical conjecture 
on matrix permanents due to Bapat and Sunder10, this bunching prob-
ability must indeed be maximum if the input state consists of fully 
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consider a further simplification of the statement of Conjecture 1 and 
assume that photons are prepared independently of each other, that 
is, they are uncorrelated, and that there is only one photon in each of 
the first n modes. Moreover, we may also assume that the state of each 
photon is pure. This setting, depicted in Fig. 1, is enough to demonstrate 
that Conjecture 1 is false. We refer to ref. 8 for a mathematical treatment 
of bunching probabilities in more general scenarios.

The state of each photon is not only described by the spatial mode 
it occupies but also by other degrees of freedom, such as its polariza-
tion and its spectral distribution, which we will refer to as internal 
degrees of freedom. Partial distinguishability can then be modelled by 
considering that the internal state of the photon entering mode j is 
described by an (internal) wavefunction ||ϕj⟩. Let us denote the creation 
operator associated to this state as ̂a†j,ϕj. We make the common assump-
tion that the interferometer acts only on spatial modes, leaving the 
internal states of the photons invariant13–15. More precisely, the inter-
ferometer is described by an operator ̂U  that acts as

̂U ̂a†j,ϕj
̂U
†
= ∑

k
Uj,k ̂a†k,ϕj

, ∀j. (1)

Following refs. 13,14, it can be shown that the probabilities of the dif-
ferent outcomes of the linear interferometric process not only depend 
on the unitary U but also on the distinguishability matrix, defined as

Si,j = ⟨ϕi|ϕj⟩. (2)

This is an n × n Gram matrix constructed from all possible overlaps of 
the internal wavefunctions of the input photons. In particular, S =  if 
all photons are fully distinguishable, while S = 𝔼𝔼  (with 𝔼𝔼i, j = 1  for all 
i, j) in the case where they are fully indistinguishable. Intermediate 
situations between these two extreme cases are called partial distin-
guishability. Note that the internal wavefunction of each photon may 
be multiplied by a phase ||ϕj⟩ → eiθj ||ϕj⟩, which does not affect event 
probabilities. Hence, there is an equivalence class of distinguishability 
matrices S for each physical situation as Si,j ≡ ei(θj−θi)Si,j , so that we 
represent each equivalence class with a single matrix.

To compute the probability that all n photons are found in a subset 
𝒦𝒦  of the output modes, which we refer to as the multimode bunching 
probability Pn(S), it is useful to define the matrix

Ha,b = ∑
k∈𝒦𝒦

U∗
k,a Uk,b, (3)

where a, b ∈ {1, …, n}. For a fixed interferometer U and subset 𝒦𝒦 , the 
multimode bunching probability is a function of the distinguishability 
matrix S and can be expressed as

Pn(S) = perm (H⊙ ST) (4)

that is, the permanent of the Hadamard (or elementwise) product 
(H⊙ ST)i,j ≡ Hi,jSj,i  (ref. 8 and Methods). It is important to remark that 
H, S, and H ⊙ ST are all positive semidefinite matrices, which ensures 
their permanent is positive16. Moreover, note that for indistinguishable 
photons, P(bos)n = perm (H) . Hence, Conjecture 1, when restricted to 
the setting that we consider (Fig. 1), takes the following mathematical 
form:

perm (H⊙ ST)
?
≤ perm (H), (5)

with the equality holding if S corresponds to indistinguishable pho-
tons. The reasons to presume that this conjecture might be an actual 
physical law governing multiparticle interferences are manifold 
and, in what follows, we detail several evidences supporting this 
hypothesis.

indistinguishable photons8. However, inspired by a counter-example 
to this conjecture recently discovered by Drury11, we have found that 
multimode bunching may, against all odds, be enhanced if photons 
are partially distinguishable. For this, we not only convert Drury’s 
counter-example into a linear interferometric experiment, but also 
find a natural generalization, leading to a family of physical set-ups 
where partial distinguishability enhances multimode bunching. 
Incidentally, on the mathematical side, this finding even implies new 
counter-examples to the Bapat–Sunder conjecture.

More specifically, we construct a family of interferometers such 
that a higher two-mode bunching probability is attained if the photons 
are prepared in a well-chosen polarization state (making them partially 
distinguishable) rather than in the same state (in which case they would 
all be indistinguishable). In other words, gaining partial information 
about the photons paradoxically results in a higher probability for them 
to coalesce on two output modes, contradicting common knowledge. 
We give an interpretation of the physical process behind this counterin-
tuitive effect and prove that, in our set-up, the enhancement ratio of the 
two-mode bunching probability actually grows (at least linearly) with 
the system size. In the simplest case, an enhancement of 7% is already 
visible for seven photons in seven modes with a specific polarization 
pattern, which makes the observation of this remarkable phenomenon 
within reach of today’s photonic technology.

Multimode boson bunching
Consider a general interferometric experiment in which n bosons 
are sent through a linear interferometer of m modes, described by 
the m × m unitary matrix U. Although our discussion is valid for any 
bosonic particle, we focus on photons here, because, in practice, con-
trolled linear interferometric experiments are easier to carry out in 
photonics. In ref. 8, Shchesnovich provides compelling evidence for 
the following conjecture.

Conjecture 1 (generalized bunching). Consider any input state  
of n classically correlated photons. For any linear interferometer and 
any nontrivial subset 𝒦𝒦  of output modes, the probability that all  
photons are found in 𝒦𝒦  is maximal if the photons are perfectly 
indistinguishable.

Note that the considered class of input states must exclude entan-
gled photons, so that it keeps a closer resemblance to the original HOM 
setting (indeed, a related conjecture with entangled input states was 
proven to be false in ref. 12). In fact, it is enough for our purposes to 
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Fig. 1 | Interferometric set-up. Single photons are sent through the first n input 
modes of an m-mode linear interferometer U, which can always be decomposed 
into a network of two-mode couplers44. Each photon at input j carries internal 
degrees of freedom (polarization, arrival time, and so on) described by an 
(internal) wavefunction ||ϕj⟩. Not perfectly overlapping wavefunctions (measured 
via the Gram matrix S) give rise to partial distinguishability among the photons, 
reducing the degree of quantum interference and bosonic effects such as 
bunching (Conjecture 1). We focus in particular on the probability that all n 
photons bunch into a subset 𝒦𝒦  (corresponding to the green detectors) of the 
output modes, while the red detectors in 𝒦𝒦  do not click. This is a natural 
extension of the HOM experiment for more than two modes.
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Single-mode bunching
If the subset 𝒦𝒦  is a single output mode, then the conjecture holds. In 
this case, if we choose 𝒦𝒦 = 𝒦1}, the single-mode bunching probability 
is given by

Pn(S) =
n
∏
j=1

|U1,j|2 perm (S) = P(dist)n perm (S), (6)

where P(dist)n = Pn( ) corresponds to the single-mode bunching prob-
ability when the photons are fully distinguishable. Then, Pn(S) is indeed 
maximum for fully indistinguishable photons, because the maximum 
value of perm(S) is attained when S = 𝔼𝔼, with perm (𝔼𝔼) = n!. This is also 
a reason why perm(S) can be seen as a measure of indistinguishability 
of the input photons13,17. Note that the celebrated HOM effect can be 
simply recovered from equation (6): for a two-mode 50:50 beamsplit-
ter, the maximum probability of bunching in a single output mode is 
attained for fully indistinguishable photons and given by 1/4 × 2! = 1/2.

In addition, even if we take |𝒦𝒦| 𝒦 1  but restrict to compare fully 
indistinguishable with fully distinguishable photons, it appears that 
the multimode bunching probability satisfies Pn(𝔼𝔼) 𝔼 Pn( ) (ref. 8), 
further suggesting that any partial distinguishability is bound to 
decrease bunching effects.

Fermion antibunching
Another physical motivation for Conjecture 1 is the fact that an analo-
gous statement on fermion antibunching can be proved. Indeed, an 
input state of n fully indistinguishable fermions minimizes the prob-
ability that all of the n fermions are bunched in any subset 𝒦𝒦  of the 
output modes. This can be shown using a famous result by Schur8,18. In 
the setting we consider, the fermionic multimode bunching probabil-
ity obeys

P(ferm)n (S) = det (H⊙ ST) 𝔼 detH, (7)

which follows from the Oppenheim inequality for determinants19 stat-
ing that for any two positive semidefinite matrices A and B we have

det (A⊙ B) 𝔼 detA detB. (8)

Bapat–Sunder conjecture
In 1985, Bapat and Sunder questioned whether an analogue to the 
Oppenheim inequality holds for permanents10. They conjectured the 
following.

Conjecture 2 (Bapat–Sunder). For any two positive semidefinite n × n 
matrices A = (aij) and B = (bij), we have

perm (A⊙ B) ≤ perm (A)
n
∏
i=1

bii.

It is easy to see that if this statement was valid, it would imply 
equation (5), thus confirming the validity of Conjecture 1 in the specific 
setting of Fig. 1 (ref. 8).

Counter-example (Drury). The Bapat–Sunder conjecture was recently 
disproved by Drury, who found a seven-dimensional counter-example11. 
It consists in a positive semidefinite matrix A of dimension 7, whose 
diagonals are aii = 1, which is such that

perm (A⊙ AT)
perm (A) = 1, 237

1, 152 ≈ 1.07, (9)

thus implying a violation of Conjecture 2. Instead of presenting the 
matrix A, it will be useful to consider its Cholesky decomposition, which 

can always be found for any positive semidefinite matrix20. Thus, we 
write A = M†M, with

M = 1
√2

(
√2 0 1 1 1 1 1

0 √2 1 ω1 ω2 ω3 ω4
) (10)

where ω = exp(2iπ/5)  is the fifth root of unity. As we shall see, the 
existence of this counter-example implies that there are 7×7 matri-
ces H and S for which equation (5) is false, hence contradicting  
Conjecture 1.

Consequently, in spite of the compelling evidences listed above 
suggesting that multimode bunching should be maximum for indis-
tinguishable bosons, Drury’s counter-example allows us to predict 
the existence of boosted boson bunching with partially distinguish-
able bosons. Before turning to the optical realization and physical 
mechanism behind this counterintuitive phenomenon, we stress that 
brute-force numerical trials really seem to support the (now proven 
wrong) Conjecture 1 and Conjecture 2. In particular, we generated 107 
samples of dimension n = 7 and of rank r = 2 with the following physi-
cally inspired procedure: a unitary U is sampled randomly according 
to the Haar measure and used to compute the matrix H. The matrix S is 
constructed by taking random normalized vectors in a space of dimen-
sion r. We did not encounter a single counter-example, which suggests 
that Conjecture 1 holds in practically all cases, even when restricting to 
a dimension and rank where we know that a counter-example actually 
exists. Numerical trials of Conjecture 2 with two random Gram matrices 
also gave similar results. These observations are corroborated by the 
numerical searches reported in refs. 8,12 and thus make the finding of 
enhanced boson bunching via partial distinguishability even more sur-
prising. Arguably, the violation of the extended Conjecture 1 for some 
entangled input photon states observed in ref. 12 could be viewed as 
an instance of enhanced boson bunching, but these counter-examples 
do not break any common assumption on multiphoton interference 
and it is unclear whether such states can be prepared experimentally 
using linear interferometry and currently available photon sources.

Optical realization of boosted bunching
As we now prove, Drury’s counter-example entails the existence of a 
physical experiment that violates the generalized bunching conjecture. 
In Fig. 2a, we present a possible optical set-up realizing this violation 
and involving seven-photon interferometry. Details on how to construct 
the internal states of the photons ||φj⟩ and the unitary matrix U to obtain 
the desired H and S matrices are explained in Methods. In a nutshell, 
states ||φj⟩ can be read from the columns of matrix M in equation (10), 
while U is chosen to contain a rescaled version of M as a submatrix.

The resulting set-up is surprisingly simple: the seven-mode inter-
ferometer U is constructed with a five-mode discrete Fourier transform 
(DFT) supplemented with two additional beamsplitters (with the same 
transmittance η = 2/7). As S is of rank 2, the internal states live in a 
two-dimensional Hilbert space, so it is most natural to use photon 
polarization, which can easily be manipulated via waveplates (other 
encodings would also be possible, such as time-bin encoding).

A single photon is sent in each of the seven input modes with an 
appropriately chosen polarization state, making the seven photons 
partially distinguishable. The polarization pattern is shown in Fig. 2b 
and can be viewed as a five-star polarization state denoted by a star, ⋆ 
(for the five photons entering the DFT), supplemented with a horizon-
tally polarized and a vertically polarized state. The probability of 
detecting all seven photons in the output bin (modes 0′ and 1′) is then 
given by P(⋆)7 ≈ 7.5 × 10−3. By comparison, for fully indistinguishable 
photons (all with the same polarization), this probability is only 
P(bos)7 ≈ 7 × 10−3 . This simple experimental set-up thus exhibits a 
bunching violation greater than 7%, in accordance with equation (9). 
The photon-number distribution in modes 0′ and 1′ is depicted in  
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Fig. 3 for different scenarios (fully indistinguishable, partially distin-
guishable and fully distinguishable photons).

The outstanding recent progress in boson sampling experiments 
indicates that the experimental observation of such a boosted bunch-
ing due to partial distinguishability should be possible with present-day 
technology21–26. For example, five-photon coincidence rates in the hun-
dreds of hertz range have already been demonstrated in optical circuits 

of a much bigger size than the one represented in Fig. 2 (ref. 24). More-
over, optical implementations of the DFT of dimensions 6 and 8 have 
already been reported27,28. The required photon-number resolution 
(up to seven photons) could be achieved with single-photon-resolving 
detectors by first multiplexing the output modes 0′ and 1′ into several 
spatial or temporal modes29,30. In fact, very recently, a photon-number 
resolution of up to a hundred photons was achieved31. As a further 
feasibility argument, we note that the experimental scheme realizing 
boosted bunching is stable under small perturbations to the matrix 
elements of the unitary U as well as to the distinguishability matrix S 
(Fig. 4). This is easy to understand intuitively as the permanent is a sum 
of products of matrix elements, and thus smooth and well behaved 
under Taylor expansion (for a formal proof, see ‘Resilience to pertur-
bations’ in Supplementary Information). A fully realistic treatment of 
how perturbations affect the bunching violation would depend on the 
particular details of the physical implementation of the scheme and is 
out of the scope of the current work.

Physical mechanism and asymptotically large 
violations
The interferometer shown in Fig. 2 arguably provides only a small rela-
tive violation of the generalized bunching conjecture, as seen from 
equation (9). It is natural to ask whether larger relative violations can 
be obtained and what would be the corresponding physical set-up. 
Moreover, from a physics perspective, it is important to pinpoint the 
underlying mechanism that explains the violation, at least in some 
particular setting. We answer these questions and find a way to general-
ize the seven-mode circuit into an n-mode circuit, as described in the 
caption of Fig. 2. For this family of circuits, we show that the ratio of 
the bunching probabilities, which we refer to simply as the bunching 
violation ratio Rn, obeys the bound

Rn =
P(⋆)n

P(bos)n

𝔼 n
8 + 1

32
(n − 2)2

n − 1 , (11)

for any n ≥ 4. Hence, partial distinguishability can lead to an asymp-
totically larger multimode bunching probability with respect to fully 
indistinguishable bosons. Incidentally, this family of circuits also yields 
some previously unreported family of H and S matrices that violate the 
Bapat–Sunder conjecture. Although a detailed derivation of this bound 
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Fig. 2 | Boosted two-mode bunching. a, Seven-mode interferometer violating 
the generalized bunching conjecture for an appropriate input polarization 
pattern (depicted in b). Here seven photons are sent into the seven input modes, 
and the probability of detecting them all in the two output modes indicated  
with green detectors exceeds its value for indistinguishable photons (all with  
the same polarization). We assume the action of the interferometer is 
polarization-independent; see equation (1). This set-up can be generalized to  
n modes as follows. Defining q = n − 2, we first send q photons in a q-mode DFT 

interferometer Ujk =
1
√q

ωjk  with polarization states ||φj⟩ =
1
√2
(|H⟩ + ωj |V⟩),  

where j, k = 0, …, q − 1 and ω = exp (2iπ/q). The upper two output modes 

(labelled 0 and 1) of the DFT are then sent to two beam splitters of equal 

transmittance η = 2/n, achieving interference respectively with a vertically 
polarized photon (in mode 0′) and horizontally polarized photon (in mode 1′). We 
measure the bunching of all n photons in the subset 𝒦𝒦  corresponding to the 
output modes 0′ and 1′ indicated with green detectors; thus all red detectors do 
not click. For n ≥ 7, we observe a boosted two-mode bunching probability by 
comparison with indistinguishable photons. b, Bloch-sphere representation of 
the input polarization pattern for n = 7. The polarization states of the five input 
photons of the DFT (indicated as black arrows) are equally spaced along the 
equator of the Bloch sphere. We call this special state a five-star polarization state 
(or q-star polarization state for general q) and denote it by a star. The two extra 
photons (indicated as red arrows) have antipodal—horizontal and vertical—
polarization states.
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Fig. 3 | Photon-number distribution at the output of the circuit achieving 
boosted two-mode bunching. The probability distributions in output mode  
0′ of the seven-mode circuit of Fig. 2 are plotted for three different scenarios. 
They are normalized; that is, the probabilities are conditioned on events where all 
seven photons end up in modes 0′ and 1′ (two-mode bunching events). Due to the 
symmetry of the circuit, the probability of event (j, 7 − j) is the same as event 
(7 − j, j). For fully indistinguishable bosons (red points), most events are 
interferometrically suppressed, originating from the fact that the output of the 
five-mode DFT is a NOON state; see equation (12). The only surviving events are 
(1, 6) and (6, 1). Using partially distinguishable bosons (blue points) erases these 
destructive interferences and, as proven in this work, enhances the overall 
two-mode bunching probability. This also leads to a qualitatively very different 
photon-number distribution, which has a Bell-like shape. Interestingly, fully 
distinguishable particles (green points) lead to a photon-number distribution of 
similar Bell-like shape but a considerably smaller two-mode bunching 
probability. The two-mode bunching probabilities in the three cases are 
P(bos)7 ≈ 7× 10−3, P(⋆)7 ≈ 7.5× 10−3 and P(dist.)7 ≈ 1.5× 10−4, respectively.
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is given in Methods, we present here the main arguments by comparing 
the physical mechanism of bunching for fully indistinguishable and 
partially distinguishable photons.

Fully indistinguishable photons
The first step of the argument is to note that the only possibility for all 
of the n photons to be observed in the subset 𝒦𝒦  (output modes 0′ and 
1′) is if there are q = n − 2 photons in the first two output modes of the 
DFT interferometer of dimension q and vacuum on the rest (we assume 
q ≥ 2). The corresponding conditional (subnormalized) state of these 
two output modes is given by the NOON state32

||ψ
(bos)
out ⟩ = 1

qq/2

q−1
∏
j=0

( ̂a†0 + ωj ̂a†1 ) |0⟩

= 1
qq/2 (( ̂a†0)

q
+ (−1)q( ̂a†1 )

q
) |0⟩ ,

(12)

where ω = exp (2iπ/q)  is the qth root of unity. The probability of hav-
ing q photons in these two modes is simply given by the square norm 
of this state, namely 2q!/qq. The next part of the circuit realizes the 
interference between modes 0 and 0′ via beamsplitter ̂U

0,0′
BS , as well as 

between modes 1 and 1′ via beamsplitter ̂U
1, 1′
BS . The action of these 

beamsplitters on state ̂a†0′ ̂a†1′ ||ψ
(bos)
out ⟩  followed by postselection on 

vacuum in both output modes 0 and 1 is analysed in Methods. 
The resulting probability is governed by the bunching mechanism 
sketched in the upper part of Fig. 5, where η denotes the transmittance 
of the two beamsplitters. The first term of state (equation (12)) describ-
ing q photons in mode 0 undergoes bunching with the extra photon in 
mode 0′ with probability (q + 1) η(1 − η)q, while the extra photon in mode 

1′ is simply transmitted with probability η. The second term of state 
(equation (12)) behaves similarly. Consequently, the multimode bunch-
ing probability (in output modes 0′ and 1′) is given by

P(bos)n = 2(q + 1)!
qq η2(1 − η)q (13)

Partially distinguishable photons
We consider the q-star polarization pattern

||ψ
(⋆)
in ⟩ = 1

2q/2
q−1
∏
j=0

( ̂a†h,j + ωj ̂a†v,j) |0⟩ (14)

as the input state sent to the DFT interferometer. Here ̂a†h, j  ( ̂a†v, j) are 
creation operators of a photon in spatial mode j and horizontal (verti-
cal) polarization. This state is a generalization of the five-star polariza-
tion pattern shown in Fig. 2b. To understand why multimode bunching 
is boosted with this special input state, it is convenient to define the 
spatio-polarization modes

̂c†± =
̂a†h,1 ± ̂a†v,0
√2

. (15)

Similarly as for indistinguishable photons, we compute the conditional 
output state of the DFT interferometer that contains q photons in the 
first two output modes (and vacuum for the rest) for the input state 
(equation (14)), namely

||ψ
(⋆)
out⟩ =

1
qq/2

q−1
∏
j=0

(
̂a†h,0
√2

+ ωj ̂c†+ + ω2j
̂a†v,1
√2

) |0⟩. (16)

This polarization two-mode state is the counterpart of the NOON state 
(equation (12)). It comprises many terms, most importantly the one 
containing q photons in mode ̂c†+, namely

||ψ
(⋆)
out⟩ =

(−1)q−1

qq/2
( ̂c†+)

q
|0⟩ + …. (17)

In what follows, we show that this term alone is enough to prove 
that the bunching violation ratio in equation (11) grows at least linearly 
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Fig. 4 | Perturbation effects on boosted two-mode bunching. The bunching 
violation ratio Rn (vertical axis) is plotted for the seven-mode circuit of Fig. 2. 
Blue symbols are associated with perturbations of the internal wavefunctions 
defined in the caption of Fig. 2 (for n = 7) by a random amount drawn from a 
Gaussian distribution with zero mean and standard deviation ϵ (horizontal axis). 
For each ϵ value, 104 samples are taken. We observe violations of Conjecture 1  
(on average) up to ϵmax ≈ 0.135, which corresponds to the components of the 
internal wavefunctions being perturbed by ϵmax/(1+ ϵ2max) ≈ 13.3%. The vertical 
bars represent the standard deviation for each ϵ value. Green symbols are 
associated with perturbations of the matrix elements Uij of the seven-mode 
interferometer. The same random Gaussian perturbations are added to the 
columns of matrix U, which are then Gram-orthonormalized. In this case, the 
matrix elements can be perturbed by ϵmax ≈ 0.039 to still exhibit a violation (on 
average). The optical scheme is thus resilient to perturbations both to the 
internal states of the photons and to the interferometer, making a good case for 
its experimental feasibility.

|1�a

P = (q + 1)η(1 – η)q

|0�

|q + 1�

|q + 2�

|0�

|q� η

|2�

|q� η

P = (q + 2)η2 (1 – η)q2

b

Fig. 5 | Mechanism at the origin of boosted bunching. a, For indistinguishable 
photons, the extra photon in mode ̂a†0′ (or ̂a†1′) bunches with q photons in mode 
̂a†0 (or ̂a†1 ) coming from the NOON state (equation (12)). b, For partially 

distinguishable photons, the largest term contributing to the bunching 
probability (equation (21)) comes from the double-bunching of two photons in 
the delocalized mode ̂c′†+  (equation (19)) with q photons in the delocalized mode 
̂c†+ (equation (15)). The asymptotics of the bunching violation ratio Rn as shown in 

equation (11) originates from the probabilities indicated on the right of the 
processes depicted here.
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(see Methods for a more detailed derivation). The other components 
of state (equation (17)) are orthogonal to the state (c†+)

q
|0⟩ and thus 

can only contribute with additional positive terms to the bunching 
probability. The probability to have q photons (regardless of their 
polarization) in the first two output modes of the DFT interferometer 
is thus lower bounded by q!/qq. The subsequent part of the interferom-
eter is fed with the state

̂a†h,1′ ̂a†v,0′ ||ψ
(⋆)
out⟩ =

( ̂c′†+ )
2
− ( ̂c′†− )

2

2
||ψ

(⋆)
out⟩, (18)

where we have described the two extra photons with antipodal polari-
zation (H and V) using the spatio-polarization modes

̂c′†± =
̂a†h,1′ ± ̂a†v,0′
√2

, (19)

defined in analogy with equation (15). Thus, the leading term of the 
final output state of the interferometer is

(−1)q−1

2qq/2
̂V (( ̂c′†+ )

2
− ( ̂c′†− )

2
) ( ̂c†+)

q
|0⟩ + …, (20)

where we have defined ̂V = ̂U
0,0′
BS ̂U

1, 1′
BS  as the operator describing the 

joint operation of the two beamsplitters in both polarization (Methods). 
Using the fact that the beamsplitters have the same transmittance η, 
it appears that ̂V  also acts as a beamsplitter of transmittance η that 
couples modes ̂c†+ and ̂c′†+ . Note that it also couples ̂c†− and ̂c′†−  but we 
disregard the corresponding term here as its contribution is much 
smaller and we seek a lower bound on the probability (Methods). We 
thus have interference between q photons in mode ̂c†+ (occurring with 
probability q!/qq) and two photons in mode ̂c′†+  (occurring with prob-
ability 1/2). Hence, the resulting probability of obtaining n = q + 2 pho-
tons in output mode ̂c′†+  (which leads to the detection of n photons in 
the output bin 𝒦𝒦 = 𝒦0′, 1′}) is governed by the double-bunching mech-
anism sketched in the lower part of Fig. 5, associated with probability 
(q+2
2
)η2(1 − η)q . As a result, we obtain the following bound on the 

two-mode bunching probability in the case of partially distinguishable 
photons:

P(⋆)n 𝔼 (q + 2)!
4qq η2(1 − η)q. (21)

This probability is asymptotically larger than its counterpart for fully 
indistinguishable photons (equation (13)). Using equations (13) and 
(21), we indeed obtain a lower bound on the bunching violation ratio

Rn =
P(⋆)n

P(bos)n

𝔼 q + 2
8 = n

8 , (22)

which confirms the dominant term in equation (11) and shows that 
it grows at least linearly with n. A more detailed calculation given in 
Methods leads to the second term in equation (11). As seen in Fig. 6, 
this bound seems to describe well enough the behaviour of Rn up to 
n = 30. In the special case where n = 7, we may compute exactly all terms 
in equation (17), which gives R7 = 1,237/1,152, in perfect agreement with 
equation (9). Note also that equation (11) shows no dependence on the 
transmittance η. However, the absolute probability of bunching events 
can be maximized by maximizing the term η2(1 − η)q over η, which yields 
η = 2/n, as mentioned in the caption of Fig. 2.

Discussion and outlook
The complex behaviour of interferometric experiments with multiple 
partially distinguishable photons has been explored in several theoreti-
cal and experimental works33–41, revealing that many-body interference 
does not reduce to a simple dichotomy between distinguishable and 
indistinguishable photons. This is evident, for example, from the fact 
that certain outcome probabilities do not behave monotonically as one 
makes photons more distinguishable33,34. However, the scheme of Fig. 2 
is the first explicit set-up showing that boson bunching can be boosted 
by partial distinguishability to the point where it actually beats ideal 
(fully indistinguishable) bosons. This disproves the common belief 
that bunching effects are necessarily maximized in this ideal scenario.

It is intriguing to observe that the state of partially distinguishable 
photons we have found to exhibit boosted bunching is, in a sense, far 
from the state of fully indistinguishable photons. This can be seen by 
computing the relative contribution of the fully (permutation-) sym-
metric component of the internal wavefunction17 |Φ⟩ = |ϕ1⟩ |ϕ2⟩… |ϕn⟩
:

d(S) = ⟨Φ| ̂𝒮𝒮n|Φ⟩ =
perm (S)

n! , (23)

where ̂𝒮𝒮n = (1/n!)∑σ∈Sn
̂Pσ  is the symmetrizer in n dimensions. This 

measure is 1 for fully indistinguishable photons (S = 𝔼𝔼) and 1/n! for 
fully distinguishable ones (S = ). For the simplest case of seven pho-
tons, we have that

d( ) = 1
7! ≈ 1.98 × 10

−4

d(S(⋆)) = 45
7! ≈ 8.93 × 10

−3 ≪ 1
(24)

where S(⋆) is the Gram matrix of the partially distinguishable polariza-
tion state shown in Fig. 2. This state is thus somehow closer to fully 
distinguishable photons. It is also natural to ask whether there may 
exist states violating the generalized bunching conjecture already in 
the vicinity of a fully indistinguishable state. We show in the ‘Stability 
around the bosonic case’ section in Supplementary Information that 
first-order perturbations aroundS = 𝔼𝔼 leave the multimode bunching 
probability constant, which suggests that it is a local extremum. How-
ever, the question remains open whether this probability may still 
increase near S = 𝔼𝔼 if second-order terms are taken into account, which 
is an interesting possibility to investigate.

4

3

2

R n

1

5 10 15 20

n
25

Fig. 6 | Bunching violation ratio Rn as a function of n. The value of the bunching 
violation ratio Rn is plotted (blue) for the family of optical schemes shown in 
Fig. 2, with the horizontal dashed line indicating the threshold Rn = 1. For n ≥ 7, it 
appears that partially distinguishable particles outperform indistinguishable 
bosons as witnessed by Rn > 1. The lower bound given by equation (11) is also 
shown (orange).
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Furthermore, it must be noted that we have modelled distinguisha-
ble photons with a two-dimensional internal degree of freedom, namely 
polarization. In contrast, in the fully distinguishable setting, each 
photon occupies a different internal state, forming an orthonormal 
basis of an n-dimensional space. Is it possible to find counter-examples 
where the internal states live in a larger space, going beyond small 
perturbations around our counter-examples? This could model real-
istic situations with photons occupying partly overlapping time bins, 
possibly leading to even higher bunching violation ratios. We leave this 
question for future work.

On a final note, we stress that our findings corroborate the deep 
connection between bosonic interferences in quantum physics on the 
one hand, and the algebra of matrix permanents on the other hand. 
The transposition of Drury’s matrix counter-example into a quan-
tum interferometric experiment has inspired us to find a new family 
of n-dimensional matrices that not only violate the Bapat–Sunder 
conjecture but also exhibit a relative violation increasing with n. We 
anticipate that other mathematical conjectures on permanents may 
be addressed by exploiting this fruitful interplay with physics-inspired 
mechanisms such as those shown in Fig. 5. This may even help solve 
other questions on the Bapat–Sunder conjecture42. For example, the 
smallest known counter-example is a 7 × 7 matrix, so it would be inter-
esting to find a simpler counter-example if it exists, or show that this is 
not possible. Another open question in matrix theory is whether there 
is a counter-example involving a real matrix of dimension smaller than 
16 (ref. 43), which may be resolved by considering interferometry within 
real quantum mechanics.

Overall, we hope that this work will open new paths to explore the 
connection between distinguishability and boson bunching, leading 
not only to a better understanding of multiparticle quantum interfer-
ence but perhaps also to novel applications of partially distinguishable 
photons to quantum technology.
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Methods
Bunching probability
In this section we summarize the main steps needed to derive equa-
tion (4). Following the colloquial conventions of ref. 45, we consider  
n photons sent through an (m, m) linear interferometer described  
by a unitary matrix U. We limit ourselves to at most one photon per 
input mode. Without loss of generality, we consider that the photons 
occupy the first n input modes. We denote the vector of occupation 
numbers of the output modes as s = (si) where 0 ≤ si ≤ n is the number 
of photons in output mode i. Naturally ∑si = n. We define the mode 
assignment list d = d(s) = ⊕m

i=1⊕
si
k=1(i). For example, if s = (2, 0, 1) then 

d = (1, 1, 3).
Consider the probability P(d) that the photons give an output  

configuration s with a mode assignment list d = d(s). Tichy shows 
that this probability can be expanded as a multi-dimensional tensor 
permanent13

P(d) = 1
μ(s) ∑

σ,ρ∈Sn

n
∏
j=1

(Uσj ,dj U∗
ρj ,dj

Sρj ,σj) (25)

with μ(s) = ∏m
i=1 si! and S being the distinguishability matrix.

Let us now compute the probability Pn(S) that all n photons bunch 
into a subset 𝒦𝒦  of the output modes, for a set interferometer and a 
Gram matrix S, following a derivation of Shchesnovich8. Without loss 
of generality, consider that the subset 𝒦𝒦  is the first K = |𝒦𝒦| output 
modes. The bunching probability is the sum over all event probabilities 
P(d) with si = 0 for all i > K:

Pn(S) =
1
n!

K
∑
d1=1

…
K
∑
dn=1

∑
σ,ρ∈Sn

n
∏
j=1

(Uσj ,dj U∗
ρj ,dj

Sρj ,σj). (26)

Now, calling

Ha,b =
K
∑
k=1

U∗
k,aUk,b, (27)

we can rewrite

Pn(S) = ∑
σ′∈Sn

n
∏
j=1

(Hj,σ′j S
T
j,σ′j
) = perm (H⊙ ST), (28)

where the last quantity is the permanent of the Hadamard (or element-
wise) product (H⊙ ST)ij ≡ HijSji. Note that, for indistinguishable parti-
cles, Sij = 1, ∀ i, j, so that Pn(𝔼𝔼) = perm(H).

Physical realization of violating matrices
It is possible to show that any counter-example to the Bapat–Sunder 
conjecture can be used to construct a physical interferometer U and a 
set of internal states of the photons 𝒦|ϕi⟩} that provide a counter-example 
to the generalized bunching conjecture. We assume, without loss of 
generality46, a simplified form of the Bapat–Sunder conjecture, where 
A and B are Gram matrices and so aii = bii = 1, ∀ i ∈ {1, …, n}. In this case, 
Conjecture 2 takes the form perm (A⊙ B) ≤ perm (A). As the distinguish-
ability matrix S is a Gram matrix, we can choose ST = B. The set of quan-
tum states realizing any given distinguishability matrix can be obtained 
from its Cholesky decomposition:

B = M′†M′. (29)

The matrix M′ is of size r′ × n, where r′ is the rank of B. The n internal 
photon states 𝒦|ϕi⟩} that realize this Gram matrix can be read out from 
the columns of M′. Thus, the rank of B determines the dimension of the 
Hilbert space spanned by the states 𝒦|ϕi⟩}. For the physical realization 
of Drury’s counter-example we chose M' = M*, with M given in  
equation (10), hence S = A = M†M. This implies that the internal states 

of the photons live in a two-dimensional space, where each state is 
obtained from each column of M.

In addition, it is always possible to construct an interferometer U 
such that H = αA, where α is a positive rescaling factor such that α ≤ 1. 
Note that this rescaling is not important when it comes to showing a 
violation of the generalized bunching conjecture because if 
perm (A⊙ B) 𝒦 perm (A), then perm (αA⊙ B) 𝒦 perm (αA). We can write 
the Cholesky decomposition of αA as

Ha,b = α
r
∑
k=1

M†
a,k Mk,b =

r
∑
k=1

(√αM∗
k,a) (√αMk,b) , (30)

where r is the rank of A. By comparing with the definition of the matrix 
H in equation (3) or equation (27), it is possible to see that we obtain 
H = αA if we appropriately incorporate the matrix √αM  as a submatrix 
of U, for example, in the upper part. This choice determines that the 
subset 𝒦𝒦  is given by the first r output modes. Note also that it is always 
possible to incorporate an arbitrary complex matrix, up to renormali-
zation, into a bigger unitary matrix, using arguments similar to lemma 
29 of ref. 47.

In the case discussed in the main text, the aim is to construct an 
interferometer U that contains a rescaled version of the 2 × 7 matrix 
√αM , where M is given in equation (10). Here the procedure to con-
struct U is simplified by the fact that the rows of M are already orthogo-
nal vectors. Hence, we can choose α = 2/7 to normalize these rows and 
find five other orthonormal vectors to construct a 7 × 7 unitary matrix. 
The unitary built from the circuit presented in Fig. 2 gives one pos-
sibility to construct such a unitary, which was chosen for its 
simplicity.

Bound on the bunching violation ratio
In this section we give the detailed derivation leading to the bound on 
the bunching violation ratio of equation (11). This also allows for a better 
physical understanding of the reason behind the enhanced bunching 
using partially distinguishable photons.

We consider the circuit described in the caption Fig. 2, which is 
a generalization of the seven-mode optical circuit depicted in this 
figure to a circuit of n modes. The circuit is composed of a DFT circuit 
of size q = n − 2 applied to input modes {0, 1, …, q − 1} followed by two 
beamsplitters of equal transmittance applied between modes 0′ and 
0 as well as between modes 1′ and 1.

Our quantity of interest is the probability of observing all the n 
photons in output modes 0′ and 1′. Let us first compute this quantity 
when the input photons are fully indistinguishable. The quantum state 
at the output of the DFT is given by

̂UDFT |ψin⟩ = ̂UDFT
q−1
∏
j=0

̂a†j |0⟩ (31)

= 1
qq/2

q−1
∏
j=0

(
q−1
∑
k=0

ωjk ̂a†k) |0⟩, (32)

where 𝜔 = exp(2𝑖π/𝑞). The only possibility for all of the n photons to 
be observed in modes 0′ or 1′ at the output of the full circuit is if at the 
output of the DFT interferometer there are q = n − 2 photons in modes 
0 or 1 and vacuum elsewhere. Hence, we only consider the subnormal-
ized component of the wave function in these output modes, given by

||ψ
(bos)
out ⟩ = 1

qq/2

q−1
∏
j=0

( ̂a†0 + ωj ̂a†1 ) |0⟩. (33)

To expand this expression, one can think of ̂a†0  and ̂a†1  as complex  
numbers because these two operators commute. In this sense, follow-
ing ref. 32, we can consider that each term ̂a†0 + ωj ̂a†1  is an eigenvalue  
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of the circulant matrix of dimension q given by circ( ̂a†0, ̂a†1 , 0, … , 0) . 
Hence, the previous equation can be rewritten as

||ψ
(bos)
out ⟩ = 1

qq/2
det(circ ( ̂a†0, ̂a†1 ,0,… ,0)) |0⟩ (34)

= 1
qq/2 (( ̂a†0)

q
+ (−1)q( ̂a†1 )

q
) |0⟩, (35)

which is a NOON state. The subsequent part of the interferometer 
couples this state with the ancillary modes 0′ and 1′, each containing  
a single photon. We denote these beamsplitters by ̂U

0,0′
BS  and ̂U

1, 1′
BS   

and their transmittance by η. We use the following convention for  
the unitary representing the action of the beamsplitter:

UBS =
⎛
⎜⎜
⎝

√η √1 − η

−√1 − η √η
⎞
⎟⎟
⎠
. (36)

The joint application of ̂U
0,0′
BS  and ̂U

1, 1′
BS  results in the state

̂U
0,0′
BS ̂U

1, 1′
BS ̂a†0′ ̂a†1′ ||ψ

(bos)
out ⟩ (37)

= 1
qq/2 (

̂U
0,0′
BS ( ̂a†0)

q
̂a†0′ ̂U

1, 1′
BS ̂a†1′ + (−1)q ̂U

1, 1′
BS ( ̂a†1 )

q
̂a†1′ ̂U

0,0′
BS ̂a†0′ ) |0⟩. (38)

The postselection on the component where all photons occupy output 
modes {0′, 1′} yields

||ψ
(bos)
post ⟩ =

(1 − η)q/2η
qq/2 (( ̂a†0′ )

q+1
̂a†1′ + (−1)q( ̂a†1′ )

q+1
̂a†0′ ) |0⟩. (39)

Finally, the bunching probability in modes 0′ and 1′ is given by

P(bos)n = ⟨ψ(bos)
post

|| ψ
(bos)
post ⟩ =

2(q + 1)!
qq (1 − η)qη2. (40)

Consider now the analogous calculation for the specially chosen 
state of partially distinguishable photons, described in the caption  
of Fig. 2. In this case, as discussed in the main text, the counterpart  
of the NOON state obtained in equation (35) is given by

||ψ
(⋆)
out⟩ =

1
qq/2

q−1
∏
j=0

(
̂a†h,0
√2

+ ωj ̂c†+ + ω2j
̂a†v,1
√2

) |0⟩. (41)

After the DFT interferometer, one ancillary photon is introduced in 
mode 0′ with vertical polarization and another one in mode 1′ with 
horizontal polarization. At this point, the state of the system is given by

̂a†h,1′ ̂a†v,0′ ||ψ
(⋆)
out⟩ =

( ̂c′†+ )
2
− ( ̂c′†− )

2

2
||ψ

(⋆)
out⟩, (42)

with ̂c′†±  defined in equation (19). To analyse the action of the subsequent 
part of the interferometer, it is useful to define the joint action of the 
beamsplitter operators ̂U

0,0′
BS  and ̂U

1, 1′
BS  as

̂V = ̂U
0,0′
BS ̂U

1,1′
BS . (43)

Using the fact that both beamsplitters have equal transmittance, it can 
be seen that the action of ̂V  on the delocalized modes ̂c†± and ̂c′†±  is  
given by

̂V ̂c′†± ̂V
†
= √η ̂c′†± + √1 − η ̂c†±, (44)

̂V ̂c†± ̂V
†
= √η ̂c†± − √1 − η ̂c′†± . (45)

We will see that the interference between mode ̂c†+, which is occupied 
in state ||ψ

(⋆)
out⟩, and mode ̂c′†+ , which is occupied in the ancillary photon 

state, leads to bosonic bunching effects that are responsible for the 
largest asymptotic contributions to the bunching probability in modes 
{0′, 1′}. In contrast, the other modes occupied in state ||ψ

(⋆)
out⟩, that is, ̂a†h,0 

and ̂a†v, 1, do not undergo any enhanced bunching effects as they do not 
couple either to ̂c′†+  or to ̂c′†−. For completeness, we also write the action 
of ̂V  on these modes as

̂V ̂a†h,0 ̂V
†
= √η ̂a†h,0 +√1 − η ̂a†h,0′ , (46)

̂V ̂a†v,1 ̂V
†
= √η ̂a†v,1 +√1 − η ̂a†v,1′ . (47)

We are now ready to analyse the action of ̂V  on the state given in equa-
tion (42), with the aim of computing a bound for the bunching probabil-
ity. For the aforementioned reasons, it will be useful to expand state 
||ψ

(⋆)
out⟩ as a superposition of states with different occupation numbers 

in mode ̂c†+. To do so, it is useful to define

̂B
†
j =

1
√2

(ω−j ̂a†h,0 + ωj ̂a†v,1). (48)

With this definition, we can write

||ψ
(⋆)
out⟩ =

(−1)q−1

qq/2

q−1
∏
j=0

( ̂c†+ + ̂B
†
j ) |0⟩. (49)

Because all operators involved in this expression commute with each 
other, we can expand it as if ̂c†+ and ̂B

†
j  were complex numbers. Precisely, 

we have the following expansion:

q−1
∏
j=0

( ̂c†+ + ̂B
†
j ) =

q
∑
k=0

( ̂c†+)
q−k

̂ek( ̂B
†
0, … , ̂B

†
q−1), (50)

where we have defined

̂e0( ̂B
†
0, … , ̂B

†
q−1) = 1, (51)

̂ek( ̂B
†
0, … , ̂B

†
q−1) = ∑

0≤j1<…<jk≤q−1

̂B
†
j1 … ̂B

†
jk . (52)

To simplify the notation we denote ̂ek( ̂B
†
0, … , ̂B

†
q−1)  simply as ̂ek .  

Newton’s identities give us the following recursion relation

k ̂ek =
k
∑
i=1

(−1)i−1 ̂ek−i ̂pi, (53)

where ̂pk  is the kth power sum:

̂pk =
q−1
∑
j=0

( ̂B
†
j )

k
. (54)

These sums take a simple form for any k ≥ 1, with

̂pk =
⎧⎪
⎨⎪
⎩

0, for kodd,

q
2k/2 (

k

k/2
) ( ̂a†h,0 ̂a†v,1)

k/2
, for k even.

(55)

Using this expression for ̂pk together with equation (53), it can be seen 
that all the terms with odd k in the expansion given in equation (50)  
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are suppressed. Moreover, these equations provide a simple way  
to calculate the first few terms of the expansion in equation (50)  
and obtain

||ψ
(⋆)
out⟩ =

(−1)q−1

qq/2 (( ̂c†+)
q
− q
2 (

̂c†+)
q−2

̂a†h,0 ̂a†v,1 +…) |0⟩. (56)

The other terms of the expansion are orthogonal to the first two terms 
and can only contribute with additional positive terms to the bunching 
probability. In fact, these two terms are enough to obtain the lower 
bound for the bunching violation ratio presented in the main text 
(equation (11)). After the action of interferometer ̂V  it can be shown 
that component of the wave function containing all the n photons in 
modes 0′ and 1′ is given by

||ψ
(⋆)
post⟩ =

(1 − η)q/2η
2qq/2

(−1)q−1 (( ̂c′†+ )
q+2

− q
2 (

̂c′†+ )
q
̂a†h,0′ ̂a†v,1′ + …) |0⟩ . (57)

The omitted terms in the previous equation are orthogonal to the 
first two terms. Hence, we obtain the following lower bound for the 
bunching probability:

P(⋆)n = ⟨ψ(⋆)
post

|| ψ
(⋆)
post⟩ 𝔼

(1 − η)qη2
4qq ((q + 2)! + q2

4 q!). (58)

Finally, we can use equations (58) and (40) to obtain

Rn =
P(⋆)n

P(bos)n

𝔼 q + 2
8 + 1

32
q2

q + 1 (59)

𝔼 n
8 + 1

32
(n − 2)2

n − 1 , (60)

demonstrating the bound on the bunching violation ratio given in 
equation (11). This bound exceeds one with seven photons or more, 
implying enhanced bunching.
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