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Boson bunchingis among the most remarkable features of quantum physics.
A celebrated example in optics is the Hong-Ou-Mandel effect, where the
bunching of two photons arises from a destructive quantum interference
between the trajectories where they both either cross abeamsplitter or are
reflected. This effect takes its roots in the indistinguishability of identical
photons. Hence, it is generally admitted—and experimentally verified—that
bunching vanishes as soon as photons can be distinguished, for example,
when they occupy distinct time bins or have different polarizations. Here we
disprove this alleged straightforward link between indistinguishability and
bunching by exploiting arecent finding in the theory of matrix permanents.

We exhibit a family of optical circuits such that the bunching of photons
into two modes can be substantially boosted by making them partially
distinguishable via an appropriate polarization pattern. This boosting
effectis already visible in a seven-photon interferometric process, making
the observation of this phenomenon within reach of current photonic
technology. This unexpected behaviour questions our understanding

of multiparticle interference in the grey zone between indistinguishable
bosons and classical particles.

In quantum physics, it is common knowledge that a gain of informa-
tion results in the extinction of quantum interference. In the iconic
double-slit experiment, the interference fringes originate from the
absence of which-path information'. Asemphasized, for instance, by
Feynman®, the fringes necessarily disappear as soon as the experiment
allowsustolearnthatthe particles have taken one or the other path.In
quantum optics, photon bunching is another distinctive feature that
follows from quantum interference. Specifically, the indistinguish-
ability of photons makes it such that one cannot know which photon
has followed a given trajectory in a linear interferometer (Fig. 1). The
Hong-Ou-Mandel (HOM) effect’, for example, arises fromthe fact that
one cannot distinguish the trajectory where two photons have crossed
a50:50 beamsplitter from the trajectory where they have both been
reflected. The netresultis atendency of indistinguishable photons to
occupy the same mode—that s, to bunch—as a consequence of this lack
ofinformation. Inaccordance with Feynman’s rule of thumb, quantum
interference effects become less pronounced as soon as the photons

become distinguishable, for example, if they occupy distinct tempo-
ral or polarization modes so that one gains information about their
individual trajectories®. As a consequence, the HOM dip disappears
for two photons with orthogonal polarization because their distinct
trajectories canthenbe fully traced back. Hence, evenin more general
scenarios involving multiple independently prepared photons and
larger interferometers, itiscommonly admitted that bunching effects
are maximum for fully indistinguishable photons and gradually decline
when photons are made increasingly distinguishable”’.

In this Article, we find a quantum interferometric scenario that
goes against this intuition and contradicts the very idea that distin-
guishability undermines photon bunching. We consider the prob-
ability of multimode bunching, that is, the probability that all photons
enteringalinearinterferometer end upinacertain subset of the output
modes. In accordance with a longstanding mathematical conjecture
onmatrix permanents due to Bapat and Sunder?, this bunching prob-
ability must indeed be maximum if the input state consists of fully
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Fig.1|Interferometric set-up. Single photons are sent through the first n input
modes of an m-mode linear interferometer U, which can always be decomposed
into a network of two-mode couplers*‘. Each photon atinput; carries internal
degrees of freedom (polarization, arrival time, and so on) described by an
(internal) wavefunction ;). Not perfectly overlapping wavefunctions (measured
via the Gram matrix S) give rise to partial distinguishability among the photons,
reducing the degree of quantum interference and bosonic effects such as
bunching (Conjecture1). We focus in particular on the probability that all n
photons bunchinto asubset K (corresponding to the green detectors) of the
output modes, while the red detectors in % do not click. Thisis anatural
extension of the HOM experiment for more than two modes.

indistinguishable photons®. However, inspired by a counter-example
to this conjecture recently discovered by Drury", we have found that
multimode bunching may, against all odds, be enhanced if photons
are partially distinguishable. For this, we not only convert Drury’s
counter-example into a linear interferometric experiment, but also
find a natural generalization, leading to a family of physical set-ups
where partial distinguishability enhances multimode bunching.
Incidentally, on the mathematical side, this finding even implies new
counter-examples to the Bapat-Sunder conjecture.

More specifically, we construct a family of interferometers such
thata higher two-mode bunching probability is attainedif the photons
are prepared in awell-chosen polarization state (making them partially
distinguishable) rather thanin the same state (in which case they would
all be indistinguishable). In other words, gaining partial information
about the photons paradoxically resultsina higher probability for them
to coalesce ontwo output modes, contradicting common knowledge.
Wegive aninterpretation of the physical process behind this counterin-
tuitive effect and prove that, in our set-up, the enhancement ratio of the
two-mode bunching probability actually grows (at least linearly) with
the system size. In the simplest case, an enhancement of 7% is already
visible for seven photons in seven modes with a specific polarization
pattern, which makes the observation of this remarkable phenomenon
within reach of today’s photonic technology.

Multimode boson bunching

Consider a general interferometric experiment in which n bosons
are sent through a linear interferometer of m modes, described by
the m x m unitary matrix U. Although our discussion is valid for any
bosonic particle, we focus on photons here, because, in practice, con-
trolled linear interferometric experiments are easier to carry out in
photonics. In ref. 8, Shchesnovich provides compelling evidence for
the following conjecture.

Conjecture 1 (generalized bunching). Consider any input state
of nclassically correlated photons. For any linear interferometer and
any nontrivial subset X of output modes, the probability that all
photons are found in X is maximal if the photons are perfectly
indistinguishable.

Note that the considered class of input states must exclude entan-
gled photons, sothatit keeps a closer resemblance to the original HOM
setting (indeed, a related conjecture with entangled input states was
proven to be false in ref. 12). In fact, it is enough for our purposes to

consider afurther simplification of the statement of Conjecture 1and
assume that photons are prepared independently of each other, that
is, they are uncorrelated, and that there is only one photon in each of
the first n modes. Moreover, we may also assume that the state of each
photonis pure. This setting, depicted in Fig.1, isenough to demonstrate
that Conjecture lis false. We refer toref. 8 foramathematical treatment
of bunching probabilities in more general scenarios.

Thesstate of each photonis not only described by the spatial mode
it occupies but also by other degrees of freedom, such as its polariza-
tion and its spectral distribution, which we will refer to as internal
degrees of freedom. Partial distinguishability can then be modelled by
considering that the internal state of the photon entering mode is
described by an (internal) wavefunction|g;). Let us denote the creation
operator associated to thisstateas d; o We make the common assump-
tion that the interferometer acts only on spatial modes, leaving the
internal states of the photons invariant”. More precisely, the inter-
ferometer is described by an operator U thatacts as

a4t o St .
Uaj,q?j U = Zk: Uik Ay g, vj. )

Following refs. 13,14, it can be shown that the probabilities of the dif-
ferent outcomes of the linear interferometric process not only depend
onthe unitary Ubutalso on the distinguishability matrix, defined as

Sij = (@ilp)). (2

Thisis ann x n Gram matrix constructed from all possible overlaps of
theinternalwavefunctions of theinput photons. In particular, § = 1if
all photons are fully distinguishable, while S = E (with E; ; = 1 for all
i,j) inthe case where they are fully indistinguishable. Intermediate
situations between these two extreme cases are called partial distin-
guishability. Note that the internal wavefunction of each photon may
be multiplied by a phase |¢;) — et |@;), which does not affect event
probabilities. Hence, thereis an equivalence class of distinguishability
matrices S for each physical situation as S;; = /%=, ;, so that we
represent each equivalence class with a single matrix.

To compute the probability that allnphotonsare found inasubset
X of the output modes, which we refer to as the multimode bunching
probability P,(S), it is useful to define the matrix

Hap = 2, Ug , Ukps 3
kex

where a, b €{], ..., n}. For a fixed interferometer U and subset X, the
multimode bunching probability is afunction of the distinguishability
matrix S and can be expressed as

Py(S) =perm (HOS") 4)

that is, the permanent of the Hadamard (or elementwise) product
Ho ST),.,/. = H;;S;; (ref. 8 and Methods). Itisimportant to remark that
H,S,and H @ S" are all positive semidefinite matrices, which ensures
their permanent s positive'®. Moreover, note that for indistinguishable
photons, Pﬁb"s) = perm (H).Hence, Conjecture 1, when restricted to
the setting that we consider (Fig. 1), takes the following mathematical
form:

perm(H® ST) ; perm (H), (5)

with the equality holding if S corresponds to indistinguishable pho-
tons. Thereasons to presume that this conjecture might be an actual
physical law governing multiparticle interferences are manifold
and, in what follows, we detail several evidences supporting this
hypothesis.
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Single-mode bunching
Ifthe subset X is a single output mode, then the conjecture holds. In
this case, if we choose % = {1}, the single-mode bunching probability
isgiven by
n .
Pa(S) = [T 1Uy 2 perm (5) = Py perm (S), 6)
j=1

where szdm) = P,(1) corresponds to the single-mode bunching prob-
ability when the photons are fully distinguishable. Then, P,(S) isindeed
maximum for fully indistinguishable photons, because the maximum
value of perm(S) isattained when S = E, with perm (E) = n!. Thisisalso
areason why perm(S) can be seen as ameasure of indistinguishability
of the input photons™". Note that the celebrated HOM effect can be
simply recovered from equation (6): for atwo-mode 50:50 beamsplit-
ter, the maximum probability of bunching in a single output mode is
attained for fully indistinguishable photons and given by 1/4 x 2! =1/2.

In addition, even if we take |X| > 1 but restrict to compare fully
indistinguishable with fully distinguishable photons, it appears that
the multimode bunching probability satisfies P,(E) > P,(1) (ref. 8),
further suggesting that any partial distinguishability is bound to
decrease bunching effects.

Fermion antibunching

Another physical motivation for Conjecturelis the fact thatananalo-
gous statement on fermion antibunching can be proved. Indeed, an
input state of n fully indistinguishable fermions minimizes the prob-
ability that all of the n fermions are bunched in any subset X of the
output modes. This canbe shown using a famous result by Schur®’%.In
the setting we consider, the fermionic multimode bunching probabil-
ity obeys

PIe™ () = det (HO ST) > detH, @)

which follows from the Oppenheiminequality for determinants® stat-
ing that for any two positive semidefinite matrices A and Bwe have

det (A ©® B) > detA detB. (8)

Bapat-Sunder conjecture

In 1985, Bapat and Sunder questioned whether an analogue to the
Oppenheiminequality holds for permanents™. They conjectured the
following.

Conjecture 2 (Bapat-Sunder). For any two positive semidefinite n x n
matrices A = (a;) and B= (b;), we have

n

perm(A © B) < perm(A4) [ | by
i1

It is easy to see that if this statement was valid, it would imply
equation (5), thus confirming the validity of Conjecturelin the specific
setting of Fig. 1 (ref. 8).

Counter-example (Drury). The Bapat-Sunder conjecture was recently
disproved by Drury, who found a seven-dimensional counter-example™.
It consists in a positive semidefinite matrix A of dimension 7, whose
diagonals are a; =1, whichis such that

perm(A©A") 1,237

permA) - Lisz ~ 107 ©)

thus implying a violation of Conjecture 2. Instead of presenting the
matrix A4, it will be useful to consider its Cholesky decomposition, which

can always be found for any positive semidefinite matrix®°. Thus, we
write A=M'M, with

(10)

V2

0 V21! 0 w®

1(\/5011111)

where w = exp(2int/5) is the fifth root of unity. As we shall see, the
existence of this counter-example implies that there are 7x7 matri-
ces Hand S for which equation (5) is false, hence contradicting
Conjecture 1.

Consequently, in spite of the compelling evidences listed above
suggesting that multimode bunching should be maximum for indis-
tinguishable bosons, Drury’s counter-example allows us to predict
the existence of boosted boson bunching with partially distinguish-
able bosons. Before turning to the optical realization and physical
mechanism behind this counterintuitive phenomenon, we stress that
brute-force numerical trials really seem to support the (now proven
wrong) Conjecture1and Conjecture 2. In particular, we generated 107
samples of dimension n=7 and of rank r = 2 with the following physi-
cally inspired procedure: a unitary Uis sampled randomly according
tothe Haar measure and used to compute the matrix H. The matrix Sis
constructed by taking random normalized vectorsin aspace of dimen-
sionr.We did notencounter asingle counter-example, which suggests
that Conjecturelholdsin practically all cases, even whenrestricting to
adimension and rank where we know that a counter-example actually
exists. Numerical trials of Conjecture 2 with two random Gram matrices
also gave similar results. These observations are corroborated by the
numerical searches reported inrefs. 8,12 and thus make the finding of
enhancedboson bunching via partial distinguishability even more sur-
prising. Arguably, the violation of the extended Conjecture1for some
entangled input photon states observed in ref. 12 could be viewed as
aninstance of enhanced boson bunching, but these counter-examples
do not break any common assumption on multiphoton interference
and it is unclear whether such states can be prepared experimentally
using linear interferometry and currently available photon sources.

Optical realization of boosted bunching
As we now prove, Drury’s counter-example entails the existence of a
physical experiment that violates the generalized bunching conjecture.
In Fig. 2a, we present a possible optical set-up realizing this violation
andinvolving seven-photoninterferometry. Details on how to construct
theinternal states of the photons|¢;)and the unitary matrix Uto obtain
the desired H and S matrices are explained in Methods. In a nutshell,
states |@;) can be read from the columns of matrix M in equation (10),
while Uis chosen to contain arescaled version of M as a submatrix.
Theresulting set-up is surprisingly simple: the seven-mode inter-
ferometer Uis constructed with a five-mode discrete Fourier transform
(DFT) supplemented with two additional beamsplitters (with the same
transmittance n =2/7). As S is of rank 2, the internal states live in a
two-dimensional Hilbert space, so it is most natural to use photon
polarization, which can easily be manipulated via waveplates (other
encodings would also be possible, such as time-bin encoding).
Asingle photon is sent in each of the seven input modes with an
appropriately chosen polarization state, making the seven photons
partially distinguishable. The polarization pattern is shown in Fig. 2b
and canbe viewed as afive-star polarization state denoted by a star, x
(for the five photons entering the DFT), supplemented with a horizon-
tally polarized and a vertically polarized state. The probability of
detecting all seven photons in the output bin (modes 0’and1’) is then
given by Pg*) ~75%107°. By comparison, for fully indistinguishable
photons (all with the same polarization), this probability is only
P§b°s) ~ 7 x 10>. This simple experimental set-up thus exhibits a
bunching violation greater than 7%, in accordance with equation (9).
The photon-number distribution in modes 0’ and 1’ is depicted in
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Fig. 2| Boosted two-mode bunching. a, Seven-mode interferometer violating
the generalized bunching conjecture for an appropriate input polarization
pattern (depicted inb). Here seven photons are sent into the seven input modes,
and the probability of detecting them allin the two output modesindicated
with green detectors exceeds its value for indistinguishable photons (all with
the same polarization). We assume the action of the interferometer is
polarization-independent; see equation (1). This set-up can be generalized to
nmodes as follows. Defining g = n - 2, we first send g photons in ag-mode DFT

interferometer Uy = \/iﬁw’k with polarization states |¢;) = %(|H} + @ |V)),

wherej, k=0, ...,g—-1and @ = exp (2im/q). The upper two output modes

(labelled 0 and 1) of the DFT are then sent to two beam splitters of equal

transmittance n =2/n, achieving interference respectively with a vertically
polarized photon (in mode 0’) and horizontally polarized photon (inmode1’). We
measure the bunching of all n photons in the subset X corresponding to the
output modes 0’ and 1’ indicated with green detectors; thus all red detectors do
not click. For n > 7, we observe aboosted two-mode bunching probability by
comparison with indistinguishable photons. b, Bloch-sphere representation of
the input polarization pattern for n =7. The polarization states of the five input
photons of the DFT (indicated as black arrows) are equally spaced along the
equator of the Bloch sphere. We call this special state a five-star polarization state
(or g-star polarization state for general g) and denote it by a star. The two extra
photons (indicated as red arrows) have antipodal—horizontal and vertical—
polarization states.
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Fig.3|Photon-number distribution at the output of the circuit achieving
boosted two-mode bunching. The probability distributions in output mode
0’ of the seven-mode circuit of Fig. 2 are plotted for three different scenarios.
They are normalized; that is, the probabilities are conditioned on events where all
seven photons end up in modes 0’ and 1’ (two-mode bunching events). Due to the
symmetry of the circuit, the probability of event (j, 7 —j) is the same as event
(7 —j,j). For fully indistinguishable bosons (red points), most events are
interferometrically suppressed, originating from the fact that the output of the
five-mode DFT is aNOON state; see equation (12). The only surviving events are
(1, 6) and (6, 1). Using partially distinguishable bosons (blue points) erases these
destructive interferences and, as proven in this work, enhances the overall
two-mode bunching probability. This also leads to a qualitatively very different
photon-number distribution, which has a Bell-like shape. Interestingly, fully
distinguishable particles (green points) lead to a photon-number distribution of
similar Bell-like shape but a considerably smaller two-mode bunching
probability. The two-mode bunching probabilities in the three cases are
Pgb"s) ~7%x107°, Pg*) ~7.5x10and Pgdi“') ~1.5x%107* respectively.

Fig. 3 for different scenarios (fully indistinguishable, partially distin-
guishable and fully distinguishable photons).

The outstanding recent progressin boson sampling experiments
indicates that the experimental observation of such aboosted bunch-
ing due to partial distinguishability should be possible with present-day
technology” . For example, five-photon coincidence rates in the hun-
dreds of hertzrange have already been demonstrated in optical circuits

ofamuchbigger size than the onerepresented in Fig. 2 (ref.24). More-
over, opticalimplementations of the DFT of dimensions 6 and 8 have
already been reported”*, The required photon-number resolution
(uptosevenphotons) could be achieved with single-photon-resolving
detectors by first multiplexing the output modes 0’and1’into several
spatial or temporal modes**. In fact, very recently, a photon-number
resolution of up to a hundred photons was achieved®. As a further
feasibility argument, we note that the experimental scheme realizing
boosted bunching is stable under small perturbations to the matrix
elements of the unitary U as well as to the distinguishability matrix S
(Fig.4). Thisis easy tounderstand intuitively as the permanentisasum
of products of matrix elements, and thus smooth and well behaved
under Taylor expansion (for a formal proof, see ‘Resilience to pertur-
bations’in Supplementary Information). A fully realistic treatment of
how perturbations affect the bunching violation would depend on the
particular details of the physicalimplementation of the scheme and is
out of the scope of the current work.

Physical mechanism and asymptotically large
violations

Theinterferometer showninFig.2 arguably provides only asmallrela-
tive violation of the generalized bunching conjecture, as seen from
equation (9). It is natural to ask whether larger relative violations can
be obtained and what would be the corresponding physical set-up.
Moreover, from a physics perspective, it isimportant to pinpoint the
underlying mechanism that explains the violation, at leastin some
particular setting. We answer these questions and find away to general-
ize the seven-mode circuit into an n-mode circuit, as described in the
caption of Fig. 2. For this family of circuits, we show that the ratio of
the bunching probabilities, which we refer to simply as the bunching
violationratio R,, obeys the bound

PP

B 1 (n-2)
~ plbos) 32
n

32 n-1"

R, > S+ 1n

®| S

for any n > 4. Hence, partial distinguishability can lead to an asymp-
totically larger multimode bunching probability with respect to fully
indistinguishable bosons. Incidentally, this family of circuits also yields
some previously unreported family of Hand Smatrices that violate the
Bapat-Sunder conjecture. Although a detailed derivation of thisbound
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Fig. 4 | Perturbation effects on boosted two-mode bunching. The bunching
violation ratio R, (vertical axis) is plotted for the seven-mode circuit of Fig. 2.
Blue symbols are associated with perturbations of the internal wavefunctions
defined in the caption of Fig. 2 (for n=7) by arandom amount drawn froma
Gaussian distribution with zero mean and standard deviation € (horizontal axis).
For each e value, 10* samples are taken. We observe violations of Conjecture 1
(onaverage) up to €,,,, = 0.135, which corresponds to the components of the
internal wavefunctions being perturbed by €may/(1 + €2,,,) ~ 13.3%. The vertical
barsrepresent the standard deviation for each € value. Green symbols are
associated with perturbations of the matrix elements U; of the seven-mode
interferometer. The same random Gaussian perturbations are added to the
columns of matrix U, which are then Gram-orthonormalized. In this case, the
matrix elements can be perturbed by €,,,, = 0.039 to still exhibit a violation (on
average). The optical scheme s thus resilient to perturbations both to the
internal states of the photons and to the interferometer, making a good case for
its experimental feasibility.

isgivenin Methods, we present here the main arguments by comparing
the physical mechanism of bunching for fully indistinguishable and
partially distinguishable photons.

Fully indistinguishable photons

Thefirst step of the argument is to note that the only possibility for all
ofthe nphotonstobe observedinthe subset X (output modes 0’ and
1) isifthere are g=n -2 photons in the first two output modes of the
DFTinterferometer of dimension g and vacuumon the rest (we assume
g =2).The corresponding conditional (subnormalized) state of these
two output modes is given by the NOON state*

i) = Lz T (d +oal)i0)
j=0 (12)
= (@) + '@ o,

where w = exp (2in/q) is the gth root of unity. The probability of hav-
ing g photons in these two modes is simply given by the square norm
of this state, namely 2q!/g?. The next part of the cxrcu:t reallzes the
interference between modes O and 0’ via beamsplltter UBS ,aswellas
between modes 1and 1’ via beamsplitter UBS The action of these

(bos)

beamsplitters on state do,al, |t/)0ut

> followed by postselection on

vacuum in both output modes 0 and 1 is analysed in Methods.
The resulting probability is governed by the bunching mechanism
sketchedinthe upper partof Fig. 5, where n denotes the transmittance
ofthe two beamsplitters. The first term of state (equation (12)) describ-
ing g photonsin mode O undergoes bunching with the extra photonin
mode 0’ with probability (g + 1) n(1 - n)?, while the extra photonin mode

am |0)
P=(@+Nn@-m
I n lg+1
b ) )
P=("3 (-0
I n lg +2)

Fig.5|Mechanism at the origin of’ boosted bunchmg a, Forindistinguishable
photons the extraphotoninmode a ,(or al,) bunches with g photonsinmode
(or aI) coming from the NOON state (equation (12)). b, For partially
dlstlngmshable photons, the largest term contributing to the bunching
probability (equation (21)) comes from the double-bunching of two photonsin
the delocalized mode 4:’T (equation (19)) with g photons in the delocalized mode
c+ (equation (15)). The asymptotics of the bunching violation ratio R, as shownin
equation (11) originates from the probabilities indicated on the right of the

processes depicted here.

1’is simply transmitted with probability . The second term of state
(equation (12)) behaves similarly. Consequently, the multimode bunch-
ing probability (in output modes 0’ and 1') is given by

2Aq+ D!

P = = wa-n' (13)
Partially distinguishable photons
We consider the g-star polarization pattern
wy_ LT @ d’)o 14)
Iwm>—z—1jo( +@ d,;)[0) (

asthe input state sent to the DFT interferometer. Here d:,,j (dz’j) are
creation operators of aphotoninspatial modejand horizontal (verti-
cal) polarization. This state is ageneralization of the five-star polariza-
tion patternshownin Fig.2b. To understand why multimode bunching
is boosted with this special input state, it is convenient to define the
spatio-polarization modes

~T ~T
a1+ dyo

V2

(15)

(2}

T
L=

Similarly as for indistinguishable photons, we compute the conditional
outputstate of the DFT interferometer that contains g photonsin the
first two output modes (and vacuum for the rest) for the input state
(equation (14)), namely

F o
% 1 9L(ad, a,
‘¢0:t> qq/l H(E +(0’ +a)2! ﬁ) |0> (16)

This polarization two-mode state is the counterpart of the NOON state
(equation (12)). It comprises many terms, most importantly the one
containing g photonsin mode cfr namely

a7

0) = ¢ )

In what follows, we show that this term alone is enough to prove
that the bunchingviolationratioinequation (11) grows at least linearly
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n

Fig. 6 | Bunching violation ratio R, as a function of n. The value of the bunching
violationratio R, is plotted (blue) for the family of optical schemes shownin

Fig. 2, with the horizontal dashed line indicating the thresholdR,=1.Forn>7, it
appears that partially distinguishable particles outperformindistinguishable
bosons as witnessed by R, > 1. The lower bound given by equation (11) is also
shown (orange).

(see Methods for amore detailed derivation). The other components
of state (equation (17)) are orthogonal to the state (c+) |0) and thus
can only contribute with additional positive terms to the bunching
probability. The probability to have g photons (regardless of their
polarization) in the first two output modes of the DFT interferometer
isthus lower bounded by g!/g?. The subsequent part of the interferom-
eteris fed with the state

4t
dpy 4o

W) = M w2)

where we have described the two extra photons with antipodal polari-
zation (H and V) using the spatio-polarization modes

(18)

AT ~F

i Ay Edyg

=
V2

, (19)

defined in analogy with equation (15). Thus, the leading term of the
final output state of the interferometer is

(="

2qq/2

V((é’f ) -t )2) @ 10y + ... (20)

where we have defined V = US;O U:;sl as the operator describing the
jointoperation of the two beamsplitters in both polarization (Methods).
Using the fact that the beamsplitters have the same transmittance r,
itappears thatV also acts as abeamsplitter oftransmittance nthat
couples modes cJr and c’T Note that it also couples ¢f and ¢f but we
disregard the correspondmg term here as its contribution is much
smaller and we seek alower bound on the probability (Methods). We
thus haveinterference between g photonsinmode éi (occurring with
probability g!/g?) and two photons in mode c': (occurring with prob-
ability1/2). Hence, the resulting probability of obtaining n = g + 2 pho-
tons in output mode ¢ ", (which leads to the detection of n photons in
theoutputbin X = {0’, 1'})isgoverned by the double-bunching mech-
anism sketched in the lower part of Fig. 5, associated with probability
(‘“2)!72(1 n)? . As a result, we obtain the following bound on the
two- mode bunching probability in the case of partially distinguishable
photons:

* (g+2)!

R @1

1 -ny.
This probability is asymptotically larger than its counterpart for fully
indistinguishable photons (equation (13)). Using equations (13) and
(21), we indeed obtain a lower bound on the bunching violation ratio

R o P L a+2 _n
"_Pszbos)_ s ~ 8

(22)

which confirms the dominant term in equation (11) and shows that
it grows at least linearly with n. A more detailed calculation given in
Methods leads to the second term in equation (11). As seen in Fig. 6,
this bound seems to describe well enough the behaviour of R, up to
n=30.Inthe special case where n =7, we may compute exactly all terms
inequation (17), whichgives R, =1,237/1,152, in perfect agreement with
equation (9). Note also that equation (11) shows no dependence on the
transmittance . However, the absolute probability of bunching events
can be maximized by maximizing the term (1 - n)? over n, whichyyields
n=2/n,as mentioned in the caption of Fig. 2.

Discussion and outlook
The complexbehaviour ofinterferometric experiments with multiple
partially distinguishable photons has been explored in several theoreti-
cal and experimental works**, revealing that many-body interference
does not reduce to a simple dichotomy between distinguishable and
indistinguishable photons. This is evident, for example, from the fact
that certain outcome probabilities do not behave monotonically as one
makes photons more distinguishable®**. However, the scheme of Fig. 2
is thefirst explicit set-up showing that boson bunching canbe boosted
by partial distinguishability to the point where it actually beats ideal
(fully indistinguishable) bosons. This disproves the common belief
thatbunching effects are necessarily maximizedin thisideal scenario.
Itisintriguing to observe that the state of partially distinguishable
photons we have found to exhibit boosted bunching is, in a sense, far
from the state of fully indistinguishable photons. This can be seen by
computing the relative contribution of the fully (permutation-) sym-

metric component of theinternal wavefunction |®) = ;) |@5) ... |@,)
_ perm(S) (S)
d(S) = (®|8,|P) = pr (23)

where §, = (1/n!) des" P, is the symmetrizer in n dimensions. This
measure is 1 for fully indistinguishable photons (S = E) and 1/n! for
fully distinguishable ones (S = 1). For the simplest case of seven pho-
tons, we have that

d(1) = = ~198x107*

N

(24)
d(s™) = 47— ~893x107 <1

where ™ is the Gram matrix of the partially distinguishable polariza-
tion state shown in Fig. 2. This state is thus somehow closer to fully
distinguishable photons. It is also natural to ask whether there may
exist states violating the generalized bunching conjecture already in
the vicinity of a fully indistinguishable state. We show in the ‘Stability
around the bosonic case’ section in Supplementary Information that
first-order perturbationsaroundS = Eleave the multimode bunching
probability constant, which suggests that itis alocal extremum. How-
ever, the question remains open whether this probability may still
increasenear S = Eif second-order terms are taken into account, which
isaninteresting possibility to investigate.
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Furthermore, it mustbe noted that we have modelled distinguisha-
ble photons withatwo-dimensionalinternal degree of freedom, namely
polarization. In contrast, in the fully distinguishable setting, each
photon occupies a different internal state, forming an orthonormal
basis of an n-dimensional space. Is it possible to find counter-examples
where the internal states live in a larger space, going beyond small
perturbations around our counter-examples? This could model real-
istic situations with photons occupying partly overlapping time bins,
possibly leading to even higher bunching violation ratios. We leave this
question for future work.

On afinal note, we stress that our findings corroborate the deep
connectionbetweenbosonicinterferencesin quantum physics onthe
one hand, and the algebra of matrix permanents on the other hand.
The transposition of Drury’s matrix counter-example into a quan-
tum interferometric experiment has inspired us to find a new family
of n-dimensional matrices that not only violate the Bapat-Sunder
conjecture but also exhibit a relative violation increasing with n. We
anticipate that other mathematical conjectures on permanents may
be addressed by exploiting this fruitful interplay with physics-inspired
mechanisms such as those shown in Fig. 5. This may even help solve
other questions on the Bapat-Sunder conjecture*. For example, the
smallest known counter-exampleisa7 x 7 matrix, soit would be inter-
esting to find asimpler counter-exampleifit exists, or show that thisis
not possible. Another open questionin matrix theoryiswhether there
isacounter-exampleinvolving a real matrix of dimensionsmaller than
16 (ref. 43), which may be resolved by considering interferometry within
real quantum mechanics.

Overall, we hope that this work will open new paths to explore the
connection between distinguishability and boson bunching, leading
notonlytoabetter understanding of multiparticle quantuminterfer-
ence but perhaps also to novel applications of partially distinguishable
photons to quantum technology.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Bunching probability

In this section we summarize the main steps needed to derive equa-
tion (4). Following the colloquial conventions of ref. 45, we consider
n photons sent through an (m, m) linear interferometer described
by a unitary matrix U. We limit ourselves to at most one photon per
input mode. Without loss of generality, we consider that the photons
occupy the first n input modes. We denote the vector of occupation
numbers of the output modes as s = (s;) where O < s;< nis the number
of photons in output mode i. Naturally Y s;= n. We define the mode
assignment list d = d(s) = ®%,®;_, (). For example, if s = (2,0, 1) then
d=(Q1,1,3).

Consider the probability P(d) that the photons give an output
configuration s with a mode assignment list d = d(s). Tichy shows
that this probability can be expanded as a multi-dimensional tensor
permanent”

P(d) = (25)

" /JZSIH( 4 Uy 1)

with pu(s) = [T, s;'and Sbeing the distinguishability matrix.

Let us now compute the probability P,(S) that all n photons bunch
into a subset %k of the output modes, for a set interferometer and a
Gram matrix S, following a derivation of Shchesnovich®. Without loss
of generality, consider that the subset X is the first K = || output
modes. The bunching probability is the sum over all event probabilities
P(d) withs;=0foralli>K:

1 K K n
Pa(S) =75 20+ 2 H("/;pd /M) (26)
d=1 d,=1 o,peS, j=1
Now, calling
K
Hap = D, U; JUkps @7
k=1
wecanrewrite
n
Pu®= 3 T1(Hig Sl ) = perm(H oS, (28)
at)

o'eS, j=1

where the last quantity is the permanent of the Hadamard (or element-
wise) product (H © ST); = H;S;;. Note that, for indistinguishable parti-
cles,S;=1,V1i,j,sothat P,(E) = perm(H).

Physical realization of violating matrices
Itis possible to show that any counter-example to the Bapat-Sunder
conjecture can be used to construct a physical interferometer Uand a
setofinternal states of the photons {|¢;)} that provide a counter-example
to the generalized bunching conjecture. We assume, without loss of
generality*®, asimplified form of the Bapat-Sunder conjecture, where
Aand Bare Grammatricesandsoa;=b;=1,Vie{l, ..., n}.Inthis case,
Conjecture 2 takes the form perm (4 © B) < perm (A). As the distinguish-
ability matrix Sis a Gram matrix, we can choose S' = B. The set of quan-
tumstatesrealizing any given distinguishability matrix canbe obtained
fromits Cholesky decomposition:
B=M™M. (29)
The matrix M’ is of size r’ x n, where r’ is the rank of B. The n internal
photon states {|@;)} that realize this Gram matrix can be read out from
the columns of M. Thus, therank of Bdetermines the dimension of the
Hilbert space spanned by the states {|¢;)}. For the physical realization
of Drury’s counter-example we chose M’ = M*, with M given in
equation (10), hence S =A = M'M. This implies that the internal states

of the photons live in a two-dimensional space, where each state is
obtained from each column of M.

Inaddition, itis always possible to construct aninterferometer U
such that H=aA, where a is a positive rescaling factor such that a < 1.
Note that this rescaling is not important when it comes to showing a
violation of the generalized bunching conjecture because if
perm (A ® B) > perm(A), then perm (a4 © B) > perm (aA). We can write
the Cholesky decomposition of aA as

r

r
Hap = a ), M My =) (Va
k=1

k=1

(30)

M;?,a) (ﬁ Mk~b) ’

whereristhe rank of A. By comparing with the definition of the matrix
Hin equation (3) or equation (27), it is possible to see that we obtain
H=aAifweappropriately incorporate the matrix y/aM as asubmatrix
of U, for example, in the upper part. This choice determines that the
subset x is given by the first routput modes. Note also that itis always
possibletoincorporate anarbitrary complex matrix, up torenormali-
zation, into abigger unitary matrix, using arguments similar tolemma
29 of ref. 47.

Inthe case discussed in the main text, the aimis to construct an
interferometer U that contains a rescaled version of the 2 x 7 matrix
vaM, where M is given in equation (10). Here the procedure to con-
struct Uis simplified by the fact that the rows of Mare already orthogo-
nalvectors. Hence, we can choose a = 2/7 to normalize these rows and
find five other orthonormal vectors to construct a7 x 7 unitary matrix.
The unitary built from the circuit presented in Fig. 2 gives one pos-
sibility to construct such a unitary, which was chosen for its
simplicity.

Bound on the bunching violation ratio

Inthis section we give the detailed derivation leading to the bound on
thebunchingviolationratio of equation (11). This also allows for abetter
physical understanding of the reason behind the enhanced bunching
using partially distinguishable photons.

We consider the circuit described in the caption Fig. 2, which is
a generalization of the seven-mode optical circuit depicted in this
figure to a circuit of n modes. The circuitis composed of a DFT circuit
of size g=n—-2applied toinput modes {0, 1, ..., g — 1} followed by two
beamsplitters of equal transmittance applied between modes 0’ and
Oaswellasbetweenmodes1’and1.

Our quantity of interest is the probability of observing all the n
photons in output modes 0’ and 1'. Let us first compute this quantity
whentheinput photons are fully indistinguishable. The quantum state
atthe output of the DFT is given by

q-1
Ut [¢in) = Uper [ 4 10)

(31
Jj=0
qg-1 [(q-1

where o = exp(2i1t/q). The only possibility for all of the n photons to
be observedinmodes 0’ or 1" at the output of the full circuit isif at the
outputofthe DFT interferometer thereare g =n -2 photonsinmodes
O orlandvacuumelsewhere.Hence, we only consider the subnormal-
ized component of the wave function in these output modes, given by

¥on) = qi il(ao +d})[0). (33)

To expand this expression, one can think of @}, and ] as complex
numbers because these two operators commute. Inthis sense, follow-
ing ref. 32, we can consider that each term dg + widf is an eigenvalue
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of the circulant matrix of dimension g given by cnrc(ao, al, 0,..,0).
Hence, the previous equation can be rewritten as
(bosy)\ _ 1 PSS N
W) = oz det(eire (@, ;.0.....0))|0) 34)
R B PAN g, \7
- 5 (@' + @) o), (35)

which is a NOON state. The subsequent part of the interferometer
couples this state with the ancillary modes 0’ and 1’, each containing
a single photon. We denote these beamsplitters by US’SO’ and UIBSI
and their transmittance by n. We use the following convention for
the unitary representing the action of the beamsplitter:

Vi N1-n
Ups = (36)
BS _ (_1_’] \/ﬁ
.. . . ~0,0 LT .
Thejointapplication of Ugs and Ugs resultsinthe state
~0,0" 1,1’
Uss Uss dgdj, o) 37)
qq/z (UBS (ao) aor UBS al, +(— 1) UBS (al) al/ UBS aol)|0> (38)

The postselection onthe component where all photons occupy output
modes {0’, '} yields

0S. (1 - )q/Z K q+1 R
’wsz)st)> = —qgﬂ 1 ((ag,) al, +(— l)q(aI,) af,,) |0). (39)
Finally, the bunching probability in modes 0’ and 1’ is given by
0S 0S 0S, 2 1
PO = (95| goed) = (qq—ﬂ( - 40)

Consider now the analogous calculation for the specially chosen
state of partially distinguishable photons, described in the caption
of Fig. 2. In this case, as discussed in the main text, the counterpart
ofthe NOON state obtained in equation (35) is given by

q AT
) = i, q( ¥ fﬁ) 10). 1)

After the DFT interferometer, one ancillary photon is introduced in
mode 0" with vertical polarization and another one in mode 1’ with
horizontal polarization. At this point, the state of the system is given by

IS (%)
ah 1 au 0’ |(pout -

)= @ -’ @)

T i) “2)
with ¢ definedinequation (19). To analyse the action of the subsequent
part of the mterferometer |t is useful to define the joint action of the
beamsplitter operators Uy "and Uke as

~ ~0,0" 11"
V=Ugs Ugs.

(43)
Usingthe factthatboth beamsplittershaveequaltransmittance itcan
be seen that the action of V on the delocalized modes ¢} and ¢lis
givenby

VeV =ymel +i=nel,

(44)

Vet v @5)

=ynél —vi=nef.

We will see that the interference between mode ¢, which is occupied
in state [¢(1)), and mode ¢/, which is occupied in the ancillary photon
state, leads to bosonic bunching effects that are responsible for the
largest asymptotic contributions to the bunching probability in modes
{0, 1’} In contrast, the other modes occupiedin state|¢f]:z>,that|s dr o
and a,, »donotundergo any enhanced bunching effects as they do not
coupleeitherto ¢} orto ¢f. For completeness, we also write the action
of Vonthese modes as

R AF N o
Vay V' =ndy,+VI-ndy,. (46)

- ~F + A

va, V' =\nd), +Vi-nad,. 47
We are now ready to analyse the action of V on the state given in equa-
tion (42), with the aim of computing abound for the bunching probabil-
ity. For the aforementioned reasons, it will be useful to expand state
|¢pm> as a superposition of states with different occupation numbers

inmode ¢;. To do so, it is useful to define

At 1 i At : ot
B = — (w7 dy, + & dy,). (48)
\/E 5 >
With this definition, we can write
(GO Y
Vo) = oo q( £)10) 49)
j=

Because all operators involved in tlgis expression commute with each
other, we canexpand itasif ¢} and B; were complex numbers. Precisely,
we have the following expansion:

-

£

o q-k R
(¢l +8)= Z @) &Bo, ..., Byy), (50)
Jj=0 k=0
where we have defined
JPN AT
éo(Bo, ... Bg) =1, (51
JPPN 5t N N
é(Bo, ..., By_y) = > B .8, (52)

0<ji<...<jk<q-1

To simplify the notation we denote ék(BZ,, .‘.,BTH) simply as ¢;.
Newton’s identities give us the following recursion relation

k .
kée=3 (-1 é;p;. (53)
i=1
where p, is the kth power sum:
q-1 K k
b= B) (54)
j=0
These sums take asimple form forany k > 1, with
0, forkodd,
N (55)

Py = k K
qu/z <k/2) (‘1,,,0 11,,,1) , forkeven.

Using this expression for p, together withequation (53), itcanbeseen
that all the terms with odd k in the expansion given in equation (50)
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are suppressed. Moreover, these equations provide a simple way
to calculate the first few terms of the expansion in equation (50)
and obtain

)10

The other terms of the expansion are orthogonal to the first two terms
and canonly contribute with additional positive terms to thebunching
probability. In fact, these two terms are enough to obtain the lower
bound for the bunching violation ratio presented in the main text
(equation (11)). After the action of interferometer V it can be shown
that component of the wave function containing all the n photons in
modes 0’and 1’ is given by

w) = E0° ((ci>"——(c+> “dodly+

qq/Z (56)

a-n"n

o
4.
2477 (C )ahO’ vl’

lWion) = (1o ((c"’I - ) 0). (57)

The omitted terms in the previous equation are orthogonal to the
first two terms. Hence, we obtain the following lower bound for the
bunching probability:

PO = (| w) = Ao

post post 4q9

2
((q +2)! + q—q!). (58)

Finally, we can use equations (58) and (40) to obtain

PP g+2 1 ¢
= >4 = 59
"SRy T8 T3ag+l 59
n 1 (n—2)2
*8%% n-1 (©0)

demonstrating the bound on the bunching violation ratio given in
equation (11). This bound exceeds one with seven photons or more,
implying enhanced bunching.

Data availability

The datasupporting the study and figures are available upon request.
We acknowledge A. Franzen’s ComponentLibrary for use in making
thefigures.

Code availability

The project relies on the packages PERMANENTS.JL (https://github.
com/benoitseron/Permanents.jl) and BOSONSAMPLING.JL (https://
github.com/benoitseron/BosonSampling.jl)*¢. The source code used
for generating the figures and the data of this paper is available on
GitHub and the data from OSF (https://osf.io/ex63z/).

References

45. Tichy, M. C., Tiersch, M., de Melo, F., Mintert, F. & Buchleitner, A.
Zero-transmission law for multiport beam splitters. Phys. Rev. Lett.
104, 220405 (2010).

46. Zhang, F. Notes on Hadamard products of matrices. Linear
Multilinear Algebra 25, 237-242 (1989).

47. Aaronson, S. & Arkhipov, A. The computational complexity of
linear optics. In Proc. Forty-Third Annual ACM Symposium on
Theory of Computing 333-342 (ACM, 2011).

48. Seron, B. & Restivo, A. BosonSampling.jl: a Julia package for
quantum multi-photon interferometry. Preprint at https://arxiv.
org/abs/2212.09537 (2022).

Acknowledgements

We thank S. Drury for useful correspondence, as well as F. Flamini and
V. Shchesnovich for valuable discussions. B.S. is a Research Fellow
and L.N. was a Postdoctoral Researcher of the Fonds de la Recherche
Scientifique - FNRS (Belgium). N.J.C. acknowledges support from the
Fonds de la Recherche Scientifique - FNRS (Belgium) under grant

no. T.0224.18 and by the European Union under project ShoQC within
ERA-NET Cofund in Quantum Technologies (QuantERA) programme.
L.N. also acknowledges funding from FCT-Fundagé&o para a Ciéncia

e a Tecnologia (Portugal) via project no. CEECINST/00062/2018.

This project has also received funding from the European Union’s
Horizon 2020 research and innovation programme under Marie
Sktodowska-Curie grant agreement no. 956071.

Author contributions

All authors developed the original concepts, derived the formulae,
discussed the results and wrote the paper. B.S. implemented the
numerical simulations.

Competinginterests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41566-023-01213-0.

Correspondence and requests for materials should be addressed
to Nicolas J. Cerf.

Peer review information Nature Photonics thanks Lorenzo Marrucci
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nhature.com/reprints.

Nature Photonics


http://www.nature.com/naturephotonics
https://github.com/benoitseron/Permanents.jl
https://github.com/benoitseron/Permanents.jl
https://github.com/benoitseron/BosonSampling.jl
https://github.com/benoitseron/BosonSampling.jl
https://osf.io/ex63z/
https://arxiv.org/abs/2212.09537
https://arxiv.org/abs/2212.09537
https://doi.org/10.1038/s41566-023-01213-0
http://www.nature.com/reprints

	Boson bunching is not maximized by indistinguishable particles

	Multimode boson bunching

	Single-mode bunching

	Fermion antibunching

	Bapat–Sunder conjecture


	Optical realization of boosted bunching

	Physical mechanism and asymptotically large violations

	Fully indistinguishable photons

	Partially distinguishable photons


	Discussion and outlook

	Online content

	Fig. 1 Interferometric set-up.
	Fig. 2 Boosted two-mode bunching.
	Fig. 3 Photon-number distribution at the output of the circuit achieving boosted two-mode bunching.
	Fig. 4 Perturbation effects on boosted two-mode bunching.
	Fig. 5 Mechanism at the origin of boosted bunching.
	Fig. 6 Bunching violation ratio Rn as a function of n.




