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We explore the role of majorization theory
in quantum phase space. To this purpose,
we restrict ourselves to quantum states
with positive Wigner functions and show
that the continuous version of majorization
theory provides an elegant and very natu-
ral approach to exploring the information-
theoretic properties of Wigner functions in
phase space. After identifying all Gaus-
sian pure states as equivalent in the precise
sense of continuous majorization, which
can be understood in light of Hudson’s the-
orem, we conjecture a fundamental ma-
jorization relation: any positive Wigner
function is majorized by the Wigner func-
tion of a Gaussian pure state (especially,
the bosonic vacuum state or ground state
of the harmonic oscillator). As a conse-
quence, any Schur-concave function of the
Wigner function is lower bounded by the
value it takes for the vacuum state. This
implies in turn that the Wigner entropy
is lower bounded by its value for the vac-
uum state, while the converse is notably
not true. Our main result is then to prove
this fundamental majorization relation for
a relevant subset of Wigner-positive quan-
tum states which are mixtures of the three
lowest eigenstates of the harmonic oscilla-
tor. Beyond that, the conjecture is also
supported by numerical evidence. We con-
clude by discussing some implications of
this conjecture in the context of entropic
uncertainty relations in phase space.
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1 Introduction

Majorization is an elegant and powerful algebraic
theory that provides a means for comparing prob-
ability distributions in terms of disorder or ran-
domness [1, 2]. It has been extensively employed
during the last century in various fields such as
mathematics [3], economics [4], or information
theory [5] where it can be used to derive inequal-
ities for a variety of information-theoretic quan-
tities such as entropies, see e.g. [6, 7] for recent
works. Although its deep connections with uni-
tary matrices had long been understood [8], it
is only more recently that majorization relations
have been found to arise in quantum physics [9].
As such, it finds application in the study of entan-
glement transformations [9, 10], in the discrimi-
nation of (distillable) entangled states [11, 12], in
the derivation of quantum uncertainty relations
[13–15], or via so-called thermo-majorization in
the context of quantum thermodynamics [16], to
cite a few. In the last years, majorization theory
has also proven especially useful in the framework
of bosonic quantum systems, which are our in-
terest here, serving as an instrumental tool for
the investigation of entropic inequalities that are
paramount in the computation of the optimal
communication rates of quantum communication
systems [17–21].

While majorization theory can be applied to
both discrete and continuous probability distri-
butions, the overwhelming majority of its appli-
cations in the existing literature concerns the for-
mer. In particular, while discrete majorization
(the branch of the theory of majorization dealing
with discrete probability distributions) has been
the subject of numerous works in quantum in-
formation theory, notably including those deal-
ing with bosonic quantum systems, continuous
majorization (the branch concerned with contin-
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uous probability densities) has never been ap-
plied in this context. Nevertheless, the phase-
space formulation of quantum mechanics, which
leads to a characterization of quantum states in
terms of continuous distributions [22], hints at the
great potential of continuous majorization in such
a framework. This is especially highlighted by
the strong connection between majorization and
entropies (both classical and quantum) coupled
with the great interest directed towards continu-
ous entropic uncertainty relations in recent years
[23, 24].

In the present paper, we argue and demon-
strate that the theory of continuous majoriza-
tion is highly relevant in the context of quan-
tum physics. It provides a perfect solution in
order to compare quantum phase-space distri-
butions in terms of intrinsic disorder. It then
also provides a natural means to address entropic
properties in phase space, hence suggesting a
fresh new perspective to entropic uncertainty re-
lations. Consider a quantum system character-
ized by the usual pair of canonically-conjugate
continuous variables x and p. A pure state of
the system is described by the complex wave
functions ψ(x) or ϕ(p), which are related by a
Fourier transform. The operators x̂ and p̂ as-
sociated with the observables x and p obey the
canonical commutation relation [x̂, p̂] = i~. The
observables x and p may designate the position
and momentum variables, or also for instance two
canonically-conjugate quadratures of the electro-
magnetic field (we will adopt this quantum optics
language in the rest of this paper although our
results and conclusions hold true in general for
any canonical pair). The phase-space represen-
tation of a pure state is embodied by its Wigner
function, which is a two-dimensional continuous
function defined as [22]

W (x, p) = 1
π~

∫
e2ipy/~ψ∗ (x+ y)ψ (x− y) dy.

(1)
The Wigner function can in many ways be
thought of as a joint probability distribution of
the variables x and p. For instance, the proba-
bility densities of x and p, respectively ρx(x) =
|ψ(x)|2 and ρp(p) = |ϕ(p)|2, can be retrieved
from the marginal distributions of the Wigner
function as ρx(x) =

∫
W (x, p) dp and ρp(p) =∫

W (x, p) dx. However, the non-commutativity
of operators x̂ and p̂ has deep implications re-

garding the existence of such a joint distribution
as quantum mechanics forbids simultaneously fix-
ing the values of two non-commuting variables.
In the phase-space description of quantum states,
this translates into the fact that Wigner functions
may take negative values in general, making them
so-called quasi-probability distributions.

The necessary existence of negative Wigner
functions in quantum mechanics can also be justi-
fied with a simple argument relying on the overlap
formula, which reads [22]

|〈ψ1|ψ2〉|2 = 2π
∫∫

W1(x, p)W2(x, p) dx dp, (2)

where W1 and W2 are the Wigner functions as-
sociated respectively with ψ1 and ψ2. Having in
mind that there exist pure states with Wigner
functions positive everywhere, namely Gaussian
states (i.e., states whose Wigner function is a
Gaussian distribution [25]), it follows that any
pure state that is orthogonal to a Gaussian pure
state must have a Wigner function that takes neg-
ative values. In what follows, we will qualify a
state with a positive Wigner function as Wigner-
positive and refer to the corresponding property
as Wigner-positivity [26]. Note that Wigner-
positivity is a particular case of η-positivity for
η = 0 [27, 28]. We will restrict our analysis
in this paper to Wigner-positive states and ex-
plore whether majorization theory can be applied
to their Wigner functions. In fact, the set of
pure Wigner-positive states is well understood:
Hudson’s theorem [29, 30] establishes that a pure
state is Wigner-positive if and only if it is a Gaus-
sian pure state. Furthermore, all Gaussian pure
states happen to be related to each other through
Gaussian unitaries in state space, which are asso-
ciated with symplectic transformations in phase
space [25]. For a single mode, these affine trans-
formations are simply combinations of displace-
ments, rotations and squeezings of the Wigner
function. Crucially for what follows, these sym-
plectic transformations have the property that
they preserve areas in phase space.

The concept of area in phase space can be re-
lated to the notion of level-function [2], which
happens to be at the core of the theory of contin-
uous majorization. For a given (positive) Wigner
function W (x, p), the level-function associates to
a value t the area of the region in phase space
that has W (x, p) greater than t. In what fol-
lows, any two (positive) Wigner functions that
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have the same level-functions will be called level-
equivalent. Area-preserving transformations are
transformations that keep the level-function un-
changed, hence the Wigner functions of all Gaus-
sian pure states are level-equivalent. This leads
to the following property, which can be viewed as
a corollary of Hudson’s theorem:

Any pure Wigner-positive state has a
Wigner function that is level-equivalent
to that of a Gaussian pure state.

Note that all level-equivalent functions to the
Wigner function of a Gaussian pure state do not
necessarily describe a physical Wigner function
(that is, corresponding to a positive semidefinite
density operator); but if it is physical, then we
know that it corresponds to a Wigner-positive
pure state according to Hudson’s theorem.

This begs the question whether the above ap-
proach building on level-functions can be gener-
alized to mixed quantum states. A mixed state
ρ̂ =

∑
pi |ψi〉 〈ψi| is a statistical mixture of pure

states and its Wigner function W =
∑
piWi is

the corresponding mixture of their Wigner func-
tions. It is straightforward to see that there exist
non-Gaussian mixed states characterized by pos-
itive Wigner functions, a simple way to construct
such a state being to form a non-Gaussian mix-
ture of Gaussian pure states. A natural question
is then whether one can characterize the full set
of Wigner-positive mixed states. Such a problem
happens to be difficult and remains only very par-
tially solved today [28, 31–33], in the sense that
no satisfying extension of Hudson’s theorem to
mixed states has been stated in the literature.

In the present work, we apply the theory of
majorization to positive Wigner functions in or-
der to tackle the aforementioned problem. While
we do not provide a complete description of the
full set of Wigner-positive states, we offer a way
to compare such states in terms of continuous
majorization. Continuous majorization general-
izes the concept of level-equivalent functions by
allowing one to compare functions that are not
level-equivalent. Intuitively, for two functions f
and g, the relation f majorizes g (in the contin-
uous sense) means that f is more narrow (i.e.,
more ordered) than g, while two functions that
are level-equivalent majorize each others. This
leads us to conjecture the following generalized
statement:

Any mixed Wigner-positive state has a
Wigner function majorized by that of a
Gaussian pure state.

While the above statement may seem natural as
one would expect a mixed state to be more disor-
dered than a pure state, it is important to stress
that the notion of disorder in the statement refers
to distributions in phase space. It cannot be
related in any simple way to disorder in state
space, which concerns density operators. As a
consequence, proving this conjecture is far from
straightforward.

The objective of this paper is to develop the
theory of continuous majorization in the frame-
work of quantum physics and then prove the
above statement for some carefully chosen pos-
itive Wigner functions. In Section 2, we begin
by introducing the theory of continuous majoriza-
tion, as this is not a standard topic for physicists.
This then provides us with the proper mathe-
matical tools to apply continuous majorization to
quantum phase space in Section 3, before giving
a proof of our conjecture restricted to a subset
of Wigner-positive states. Finally, we discuss our
results in connection with the notion of Wigner
entropy [26] and apply them in the context of en-
tropic uncertainty relations in Section 4.

2 Continuous majorization
We are now going to lay out the basics of ma-
jorization theory in the context of continuous
probability distributions, giving rigorous defini-
tions for the concepts mentioned in the intro-
duction. We consider n-dimensional continuous
non-negative and integrable distributions on Rn
or R+, depending on the situation. The distribu-
tion f : A → R+, where A can be Rn (for any
positive integer n) or R+, is a genuine probability
distribution if

f (r) ≥ 0 ∀r ∈ A,
∫
A
f(r) dr = 1. (3)

Hereafter, we omit the bounds in integrals as
long as the integration is performed on the whole
domain A, as in the normalization identity in
Eq. (3). Note that the distributions are normal-
ized to 1 but the definitions and properties we
show in what follows still hold if the normaliza-
tion constant is different (provided it is the same
for all functions we consider). Furthermore, while
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Figure 1: Illustration of the level-function of a two-
dimensional distribution. The distribution f(x, y) is
defined over the plane (x, y). The value of the level-
function mf (t) is the area of the domain (in red) such
that f(x, y) ≥ t.

we consider functions f defined on an infinite do-
main A for our purposes here, in which case they
have to be non-negative everywhere, note that
majorization can also be applied to partially neg-
ative functions if they are defined on a finite do-
main [2].

As we mentioned in the introduction, a core
element of the theory of majorization is the level-
function, which we now rigorously define.

Definition 1. The level-function mf : R+ → R+
of a distribution f : A → R+ is the function

mf (t) = ν ({r ∈ A : f(r) ≥ t}) , (4)

where ν stands for the Lebesgue measure.

Basically, the level-function mf is the size of the
subdomain of f that contains elements whose cor-
responding image under f is higher than t. Fig-
ure 1 provides an example of the level-function
of a two-dimensional distribution. As we are
going to show, all information needed to com-
pare two distributions using a majorization re-
lation (from here onwards, we write majoriza-
tion for continuous majorization) is enclosed in
their level-functions. When f and g are level-
equivalent, meaning they have the same level-
functions mf (t) = mg(t) for all t, we use the no-
tation f ≡ g. While level-equivalent distributions
can have very different shapes, they nonetheless
are comparable in various ways. In order to see
this, consider any function ϕ defined on R+ and

obeying some general conditions (see [34]), which
can be turned into a functional φ acting on the
probability distribution f as

φ(f) =
∫
ϕ (f(r)) dr. (5)

Since the integral is carried out over the whole
domain, φ is invariant when parts of the domain
are “swapped". It then only depends on the “size”
of the domain associated to each value taken by
the distribution f . This is precisely the infor-
mation carried by the level-function, which sim-
ply corresponds for each value of t to the choice
ϕ(x) = Θ(x− t) with Θ being the Heaviside step
function, so that φ is the same for two level-
equivalent distributions, that is, φ(f) = φ(g) if
f ≡ g. Note that for the choice of the function
ϕ(x) = −x ln x, we get the functional

φ(f) = −
∫
f(r) ln f(r) dr, (6)

which is nothing else but Shannon’s differential
entropy of the probability distribution f . There-
fore, two level-equivalent distributions have the
same Shannon entropy; they are comparable in
their randomness content.

For a given level-function mf , one can build an
infinite number of level-equivalent distributions
whose level-functions are given by mf . Among
the set of distributions sharing the same level-
function, the so-called decreasing rearrangement
plays a prominent role in majorization theory. It
is defined as follows [2].

Definition 2. The decreasing rearrangement f↓
of a function f defined on a domain A is the
unique function defined on the same domain A
that is radial-decreasing and level-equivalent to f .

An n-dimensional distribution f is radial if it can
be written as a function that only depends on the
norm of its argument, i.e., f(r) = fR(‖r‖), with
fR : R+ → R+. Furthermore, the function f is
said to be radial decreasing if fR(r1) ≥ fR(r2)
when r1 < r2. Note here that the term decreas-
ing is used instead of non-increasing when refer-
ring to such rearrangements in the literature. The
decreasing rearrangement f↓ of a distribution f
takes its maximum value at the origin and de-
creases monotonically as it gets farther from it.
It is easy to understand that it only depends on
the level-function mf of f . Moreover, f↓ is the
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same for any distribution that is level-equivalent
to f , as it is unique. Examples of decreasing re-
arrangements are pictured in the lower part of
Fig. 2.

We are now in position to define the majoriza-
tion relation between two distributions.

Definition 3 (Continuous majorization [35, 36]).
Let f and g be two probability distributions de-
fined on the same domain A. The distribution
f majorizes the distribution g, written f � g, if
and only if∫
‖r‖≤s

f↓(r) dr ≥
∫

‖r‖≤s

g↓(r) dr ∀ s ≥ 0,

(7)
with equality when s tends to infinity.

The equality when s tends to infinity imposes
that f and g be normalized to the same value.
When the inequalities in Eq. (7) are reversed, we
say that f is majorized by g, written f ≺ g. If
both f � g and f ≺ g hold, then f and g are
level-equivalent and the inequalities in Eq. (7)
become equalities. If neither f � g nor f ≺ g
holds, we say that f and g are incomparable.

It is useful in practice to define the objects
appearing on both sides of the inequalities in
Eq. (7), mainly for ease of notations. The cumu-
lative integral of a distribution f is the function
Sf : R+ → R+ defined as

Sf (s) =
∫

‖r‖≤s

f↓(r) dr. (8)

It can be understood as the highest value that can
be obtained by integrating any level-equivalent
function to f over a ball of radius s. Equivalently,
it is the highest value of the integral of f over
any part of the domain (possibly made of non-
contiguous regions) that has a volume equal to
that of a ball of radius s. The majorization rela-
tion f � g then holds if and only if Sf (s) ≥ Sg(s)
for all s ≥ 0, with equality when s tends to infin-
ity.

Since Definition 3 refers to the decreasing re-
arrangements f↓ and g↓, which are defined based
on the level-functions mf and mg, it is clear that
the majorization relation f � g solely depends
on the level-functions of f and g. Unlike in the
discrete case, the decreasing rearrangement of a
function is often hard to compute, which makes
Definition 3 difficult to use. There are, however,

Figure 2: Schematic of the decreasing rearrangement.
In the first row, f1 and f2 are two examples of one-
dimensional probability distributions respectively defined
on R and R+. They both have the same level-functions
mf1 and mf2 , which are pictured in the second row.
They, however, have different decreasing rearrangements
f↓1 and f↓2 , as shown on the last row. The red segments
represent the domain that corresponds to a given value
of t and therefore have the same length in the different
plots. Note that for a distribution defined on R+ such
as f2, the decreasing rearrangement f↓2 is simply the
inverse function of the level-function mf2 .

equivalent statements that are less cumbersome.
We introduce two such statements hereafter as
Propositions 1 and 2. We point the interested
reader to References [2, 34] for proofs and details
of these propositions.

Proposition 1. Let f and g be two probability
distributions defined on the same domain A. We
have that f � g if and only if∫ [

f(r)− t
]
+dr ≥

∫ [
g(r)− t

]
+dr ∀ t ≥ 0,

(9)
with equality when t = 0.

The notation [ · ]+ is such that [z]+ = z if z ≥ 0
and [z]+ = 0 otherwise. Note that the function
x 7→ [x− t ]+ acting on f(r) and g(r) in Eq. (9)
can be viewed as a special case of the function

Accepted in Quantum 2023-04-10, click title to verify. Published under CC-BY 4.0. 5



ϕ(x) used in Eq. (5). Hence, Proposition 1 is
again solely characterized by the level-functions
of f and g.

Proposition 1 is useful to prove a property that
we will later need, namely that if f � g1 and
f � g2, then f majorizes any convex combination
of g1 and g2, i.e.,{

f � g1

f � g2
⇒ f � λg1 + (1− λ)g2, (10)

with 0 ≤ λ ≤ 1. Using the fact that the function
γt(z) = [z − t]+ is convex in z for all t ≥ 0 and

using Jensen’s inequality, we have γt
(
λ g1(r) +

(1 − λ) g2(r)
)
≤ λ γt(g1(r)) + (1 − λ) γt(g2(r)).

Equation (10) then follows from integrating this
inequality over r and using Proposition 1.

Proposition 2. Consider two probability distri-
butions f and g defined on the same domain A.
We have that f � g if and only if∫

ϕ (f(r)) dr ≥
∫
ϕ (g(r)) dr (11)

holds for all continuous convex functions ϕ :
R+ → R with ϕ(0) = 0, for which the integrals
exist on both sides (see [2], p. 607).

Proposition 2 is particularly useful as Eq. (11)
implies inequalities on quantities that are func-
tionals of f and g written in the form of Eq. (5).
Thus, for any such functional φ, the majorization
relation f � g implies that φ(f) ≥ φ(g). One
such functional is (up to a sign) the Shannon’s
differential entropy, Eq. (6), which is tradition-
ally denoted h(f). As a consequence, if f � g,
then h(f) ≤ h(g), which is consistent with the
idea that f is more ordered than g, so it has a
lower entropy.

As a matter of fact, the inequalities (11) hold
for an even more general set of functionals beyond
the special form (5), namely the so-called Schur-
convex functions (we call them functions here,
instead of functionals). This is actually the def-
inition of the set of Schur-convex functions [37],
which have been defined for discrete probability
distributions through a discrete majorization re-
lation but can be equivalently defined in the con-
tinuous case as follows [2]:

Definition 4 (Schur-convex functions). A real-
valued function φ defined on the set of probability

distributions on A is called Schur-convex if, for
any pair of probability distributions f and g de-
fined on A, we have

f � g ⇒ φ(f) ≥ φ(g). (12)

The function φ is said to be Schur-concave if the
opposite inequality holds.

It is easy to see that Schur-convex functions take
the same value for level-equivalent distributions.
Furthermore, any real-valued function φ defined
on the set of probability distributions on A that
is convex and takes the same values for level-
equivalent distributions in A is necessarily Schur-
convex [38]. For instance, any functional φ of the
form of (5) is Schur-convex, provided that ϕ is
convex. The opposite, however, is not necessarily
true. This is illustrated, for instance, with the
Rényi entropy [39],

hα (f) = 1
1− α ln

(∫
f (r)α dr

)
, (13)

where the parameter α can be chosen such that
0 < α < 1 or α > 1. Indeed, Rényi entropies
can be proven to be concave only for α ∈ [0, 1),
while they are always Schur-concave [40]. In
the limit where α → 1, the Rényi entropy re-
duces to Shannon’s differential entropy, that is,
hα→1 (f) = h(f). Regardless of the value of α,
the Rényi entropies can thus always be associated
to some measure of disorder, in the sense that if
f � g, then hα(f) ≤ hα(g), as a consequence
of the Schur-concavity of hα. More generally,
all Schur-concave functions φ can be understood
in view of Definition 4 as generalized measures
of disorder that are consistent with majorization
theory: if f is more ordered than g as expressed
by f � g, then it has a lower measure of disorder
φ(f) ≤ φ(g).

To be complete, we mention another character-
ization of continuous majorization that is based
on semidoubly stochastic operators, in analogy
with the characterization of discrete majorization
between infinite probability vectors in terms of
semidoubly stochastic matrices

Proposition 3. Let f and g be two probability
distributions defined over the same domain A.
Let f and g be related via

g(r) =
∫
B(r, s) f(s) ds, (14)
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where B : A × A 7→ R is the kernel of some
semidoubly stochastic operator, i.e., B(r, s) ≥ 0,
∀r, s,

∫
B(r, s) dr = 1, ∀s, and

∫
B(r, s) ds ≤ 1,

∀r. Then f � g.

In contrast with Propositions 1 and 2, Propo-
sition 3 only provides a sufficient condition for
majorization. Note that if the probability distri-
butions were defined over a finite-size domain A,
condition (14) has then been proven to be nec-
essary as well [41]. However, to our knowledge,
there is no proof of the equivalence between the
existence of a semidoubly stochastic operator and
a majorization relation for distributions defined
over an infinite-size continuous domain (although
it is plausible that it holds when the domain is
Rn). This is a current topic of research in math-
ematics, see Refs. [42, 43].

In order to prove our main result in Sec. 3, we
will actually use another sufficient condition for
majorization (see Lemma 2), which gives a very
clear interpretation of the meaning of f � g .

3 Phase-space majorization
We are now in position to apply majorization the-
ory in quantum phase space and formulate our
main conjecture in proper mathematical terms.
We consider a single-mode bosonic system mod-
elled by a quantum harmonic oscillator, e.g., a
mode of the electromagnetic field. For the sake
of simplicity, we take the convention ~ = 1, so
the observables x̂ and p̂ obey the commutation
relation [x̂, p̂] = i. By defining the annihilation
operator â = (x̂ + ip̂)/

√
2, the creation opera-

tor â† = (x̂ − ip̂)/
√

2, and the number operator
n̂ = â†â, the Hamiltonian of the system takes the
simple form Ĥ = n̂+ 1/2. Its eigenstates are the
Fock states, denoted as |n〉 for n = 0, 1, · · · , and
associated with the wave functions [22]

ψn(x) = π−
1
4 2−

n
2 (n!)−

1
2 Hn(x) exp

(
−x

2

2

)
,

(15)

where Hn are Hermite polynomials. Any state ρ
of the harmonic oscillator can be associated with
its Wigner function [22]

W (x, p) = 1
π

∫
e2ipy〈x− y|ρ|x+ y〉dy, (16)

which reduces to Eq. (1) if ρ denotes a pure state.
In particular, the Fock states |n〉 are associated

with the Wigner functions [22]

Wn(x, p) = (−1)n

π
Ln
(
2x2 + 2p2

)
exp

(
−x2 − p2

)
,

(17)

where Ln are Laguerre polynomials. Note that
Wn(x, p) exhibit a rotational symmetry, making
Fock states phase-invariant. In fact, any phase-
invariant state can be expressed as a mixture of
Fock states. As we shall see, the Fock state asso-
ciated with n = 0 (i.e., the vacuum state) plays
a key role with regard to majorization. It admits
the Wigner function

W0(x, p) = 1
π

exp
(
−x2 − p2

)
, (18)

which we write in short asW0(r) = exp
(
−r2) /π,

using the non-negative parameter r such that
r2 = x2 + p2 [note the slight abuse of notation
as W0 is used both as a function of r and (x, p)
hereafter]. According to Hudson’s theorem, it is
the only pure state admitting a positive Wigner
function (up to symplectic transformations).

Frow now on, let us restrict to Wigner-positive
states and denote the set of Wigner functions
that are positive everywhere as W+. Clearly, all
Wigner functions in W+ are genuine probability
distributions, so that a question that arises nat-
urally is whether the majorization relation intro-
duced in Section 2 has a meaning when applied
to (positive) Wigner functions. A first clue that
this may be the case follows from the Wigner en-
tropy [26] of a quantum Wigner-positive state,
which is the Shannon differential entropy of the
Wigner function associated with the state, de-
noted as h(W ). In Ref. [26], it is conjectured
(and proved in some special cases) that

h(W ) ≥ h(W0) ∀W ∈ W+. (19)

Since h(W ) can be understood as a special case
of a functional φ of the Wigner function W , as
in Eqs. (5) and (6), it is striking to conjecture
that Eq. (19) is a consequence of a fundamental
majorization relation, following the lines of Eq.
(12). This is what we do now.

Majorization conjecture
Let us denote as Wpure

+ the set of pure Wigner-
positive states, which is a subset ofW+. As a con-
sequence of Hudson’s theorem, Wpure

+ only con-
tains Gaussian pure states and actually contains
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all of them. Remarkably, the Wigner functions
of all Gaussian pure states are level-equivalent
since they are all related by symplectic trans-
formations in phase space. Indeed, a symplec-
tic transformation is an affine linear map on the
vector r = (x, p)T , namely r 7→ r′ ≡ S r + d
where S is a symplectic matrix and d is a dis-
placement vector, see [25] for mode details. By
denoting the Wigner function before and after the
symplectic transformations as W (r) and W ′(r′),
respectively, we have W ′(r′) = W (r)/|detS|. By
doing the change of variables, the level-functions
corresponding to W and W ′ can then be shown
to coincide as

mW ′(t) =
∫

Θ
(
W ′(r′)− t

)
dr′

=
∫

Θ
(
W (r)/|detS| − t

)
| detS| dr

=
∫

Θ
(
W (r)− t

)
dr

= mW (t) (20)

where we have used the fact that detS = 1 for a
symplectic transformation.

Hence, all Gaussian pure states have a Wigner
function that is level-equivalent to W0, making
them all equivalent to W0 from the point of view
of majorization, namely

W0 ≡W, ∀W ∈ Wpure
+ . (21)

With this in mind, our main conjecture can be
restated as follows:

W0 �W, ∀W ∈ W+. (22)

This expresses that, in the sense of majorization
theory, the most fundamental (Wigner-positive)
state is the vacuum state, i.e., the ground state of
the Hamiltonian of the harmonic oscillator. Note
that conjecture (22) goes beyond the scope of
quantum optical states and applies to the phase
space associated with any canonical pair (x, p).
Furthermore, it is unrelated to the Hamiltonian
of the system : the (positive) Wigner function
of any state of the system must always be ma-
jorized by function (18). As discussed in Sec. 4,
function (18) can therefore be associated with the
lowest-uncertainty state, even if it entails the low-
est energy for the harmonic oscillator only.

Restricted proof
In this Section, we make a first step towards solv-
ing conjecture (22) by considering a particular

Figure 3: Two-dimensional representation (white trian-
gle) of quantum states of the form (23). The blue re-
gion included in the triangle corresponds to the Wigner-
positive states. The points a, b, c, and d are associated
with the Wigner functions Wa, Wb, Wc, and Wd, while
the points in the segment of an ellipse connecting c and
d have a Wigner function Vt where t takes any value
between 0 and 1. Taken from [26].

subset of Wigner-positive states, namely phase-
invariant states that are restricted to two photons
at most,

ρ = (1− p1 − p2) |0〉 〈0|+ p1 |1〉 〈1|+ p2 |2〉 〈2| ,
(23)

where p1, p2 ≥ 0 and p1 + p2 ≤ 1. These
states form a convex set given by the area whose
outer boundaries are the p1-axis, the p2-axis and
the line satisfying p1 + p2 = 1 as pictured on
Fig. 3. We will prove conjecture (22) for the set
of Wigner-positive states of the form (23), de-
noted as Wrestr

+ , which has previously been stud-
ied in [26, 28]. It is obvious to see that Wrestr

+
forms a convex set as well since any convex mix-
ture of Wigner-positive states is Wigner-positive,
but the boundary of this set is nonetheless non
trivial, see Fig. 3. At the same time, this set is
simple enough to enable a fully analytical proof
of the conjecture (22).

As shown in [26], the boundary of the setWrestr
+

comprises the extremal states ρa, ρb, ρc and ρd,
represented by the corresponding letters in Fig.
3, as well as the segment of an ellipse connecting
ρc to ρd. Thus, any state in Wrestr

+ can be writ-
ten as a convex mixture of these extremal states.
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Note that ρa = |0〉 〈0|, which lies at the origin
in Fig. 3, is simply the vacuum state which will
be proven to majorize every other state. The ex-
pressions of the Wigner functions of the first four
extremal states (as a function of the parameter
r) read as follows [26]:

Wa(r) = W0(r) = 1
π

exp
(
−r2

)
,

Wb(r) = 1
π

exp
(
−r2

)
r2,

Wc(r) = 1
π

exp
(
−r2

) (
r2 − 1

)2
,

Wd(r) = 1
π

exp
(
−r2

) 1
2r

4.

(24)

In addition to these, there is a continuum of ex-
tremal states located on the segment of an ellipse
connecting point c to point d in Fig. 3. Using a
parameter t ∈ [0, 1], the Wigner function of these
states can be parametrized as follows [26]:

Vt(r) = t+ 1
2π exp

(
−r2

)(
r2 − 1 +

√
1− t
1 + t

)2

.

(25)
Note that for t = 0, Vt coincides with Wd, while
for t = 1, it coincides with Wc.

We are now going to prove that Eq. (22) holds
for all states contained in the convex set Wrestr

+ .
To do so, it is sufficient to prove that the Wigner
functions of all the extremal states are majorized
by the Wigner function of the vacuum W0. As
a consequence of Eq. (10), this will indeed au-
tomatically imply that the same majorization re-
lation holds for all convex mixtures of extremal
states, hence for all states in Wrestr

+ . In order to
prove our result, we begin by showing that a ma-
jorization relation on radial functions in Rn (here,
we only need n = 2) is equivalent to a majoriza-
tion relation on specific functions defined on the
non-negative real line. This is the content the fol-
lowing lemma, which we prove in Appendix A.1.

Lemma 1. If f and g are two n-dimensional ra-
dial distributions defined on Rn such that f(r) =
fR (‖r‖) and g(r) = gR (‖r‖) with fR and gR
defined on R+, then f � g is equivalent to
f̃ � g̃, where f̃ and g̃ are one-dimensional dis-
tributions defined on R+ as f̃(x) = fR ( n

√
x) and

g̃(x) = gR ( n
√
x).

Lemma 1 implies that a majorization relation
between any two Wigner functions picked from
W0, Wb, Wc, Wd and Vt is equivalent to a

majorization relation between the corresponding
one-dimensional functions picked from f0, fb, fc,
fd, and gt, which are defined on R+ as

f0(x) = exp (−x) ,
fb(x) = exp (−x)x,
fc(x) = exp (−x) (x− 1)2 ,

fd(x) = exp (−x) 1
2x

2,

(26)

and

gt(x) = exp (−x) 1
2(t+ 1)

(
x− 1 +

√
1− t
1 + t

)2

.

(27)
Thus, we need to prove now that f0 majorizes

fb, fc, fd, and gt. Our proof relies on the fol-
lowing lemma, which we prove in Appendix A.2
for completeness, as we could not find it in the
literature.

Lemma 2. Consider two probability distribu-
tions f and g defined on the same domain A.
If there exists a collection of level-equivalent dis-
tributions f (α) on A depending on the parameter
α ∈ Ω with f (α) ≡ f for all α such that

g (r) =
∫

Ω
f (α) (r) dk(α), ∀ r ∈ A, (28)

where k : Ω 7→ R+ is a probability measure on Ω,
then f � g.

Lemma 2 enables us to prove that f � g provided
that we can build g as some convex mixture of
distributions that are level-equivalent to f . Note
that it is very similar in its spirit to the character-
ization of discrete majorization in terms of con-
vex mixtures of permutations [2]. However, while
the latter gives a necessary and sufficient condi-
tion, Lemma 2 only provides a sufficient condition
for majorization. Although it is unknown, to our
knowledge, whether it could be promoted to an
equivalence (similarly to Proposition 3), a suffi-
cient condition is all we need to prove the results
of our paper.

Case of fb and fd

Let us first prove that f0 majorizes fb and fd.
In order to make use of Lemma 2, we are go-
ing to build an appropriate collection of level-
equivalent functions to f0. One simple way to
generate level-equivalent functions is simply by
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shifting the original function to the right. Start-
ing from f0, we define the functions f (α)

0 labelled
by the non-negative shift parameter α as

f
(α)
0 (x) = exp(−x+ α) Θ(x− α), (29)

where Θ(z) represents the Heaviside step func-
tion. We obviously have that f (α)

0 ≡ f0 for all
α ≥ 0. Now, define the probability densities
kb(α) = exp(−α) and kd(α) = α exp(−α), with
α ∈ R+. It is trivial to verify that kb(d)(α) ≥ 0 for
all α ∈ R+ and

∫
kb(d)(α) dα = 1. Furthermore,

it can easily be shown that

fb(d)(x) =
+∞∫
0

kb(d)(α) f (α)
0 (x) dα. (30)

Lemma 2 then directly implies that f0 � fb and
f0 � fd, where we have used the probability mea-
sure kb(d) over Ω = R+.

Case of fc and gt

The same method is not directly applicable to
prove that f0 majorizes fc and gt because the
latter functions are non-zero at the origin. The
trick, however, is to exploit the fact that fc looks
like a rescaled version of fd in the domain [1,∞).
We can then “split" fc into two parts and prove
the majorization relation separately for each part.
This is possible as a consequence of the following
lemma, which we prove in Appendix A.3.

Lemma 3. Consider four functions f1, f2, g1,
and g2 defined on the same domain A and such
that f1 and f2 do not both take non-zero values
in the same element of A, and similarly g1 and
g2 do not both take non-zero values in the same
element of A. If the functions satisfy f1 � g1
and f2 � g2, then (f1 + f2) � (g1 + g2).

In light of Lemma 3, define the two functions f−c
and f+

c on R+ as

f−c (x) =
{
fc(x), for 0 ≤ x ≤ 1,
0, else,

(31)

and

f+
c (x) =

{
0, for 0 ≤ x ≤ 1,
fc(x), else.

(32)

Obviously, we have f−c + f+
c = fc. In order to

prove that f0 � fc by using Lemma 3, we also

Figure 4: Illustration of the “split” of f0 (top) and fc
(bottom) into two parts. The hashed parts are f−0 and
f−c , while the dotted parts are f+

0 and f+
c . The two

hashed areas are equal, and the two dotted areas are
equal. This allows us to treat f−0 � f−c and f+

0 � f+
c

separately, in order to conclude finally that f0 � fc.

need to “split" f0 into two parts f−0 and f+
0 such

that f−0 +f+
0 = f0. Moreover, in order to be able

to apply majorization on each part, f−0 must have
the same normalization as f−c , and similarly for
f+

0 and f+
c . Define x∗ = 1− ln 2, and note that

1∫
0

fc(x)dx =
x∗∫
0

f0(x)dx,

∞∫
1

fc(x)dx =
∞∫
x∗

f0(x)dx.

(33)

With this in mind, the functions f−0 and f+
0 on

R+ are

f−0 (x) =
{
f0(x), for 0 ≤ x ≤ x∗,
0, else,

(34)

and

f+
0 (x) =

{
0, for 0 ≤ x ≤ x∗,
f0(x), else.

(35)

It follows from (33) that f−c and f−0 have the same
normalization (and similarly for f+

c and f+
0 ). The

distributions f−0 , f+
0 , f−c , and f+

c are represented
in Fig. 4.

The last step now is to prove that f−0 � f−c
as well as f+

0 � f+
c . Starting with the latter
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relation, we define the two functions f̃+
0 and f̃+

c

on R+ by respectively shifting to the left f+
0 by

an amount x∗ and f+
c by 1, namely

f̃+
0 (x) = f+

0 (x+ 1− ln 2) = 2 exp(−1) exp(−x),
(36)

and

f̃+
c (x) = f+

c (x+ 1) = exp(−1) exp(−x)x2.
(37)

Note that f̃+
0 (x) and f̃+

c (x) are proportional to
f0(x) and fd(x), respectively, with the same pro-
portionality factor of 2 exp(−1). Since we have
already shown that f0 � fd, it follows that
f̃+

0 � f̃+
c , which is equivalent to f+

0 � f+
c since

f̃+
0 ≡ f

+
0 and f̃+

c ≡ f+
c .

In order to prove that f−0 � f−c , we note that
f−0 and f−c are both monotonically decreasing
functions, so they coincide with their decreas-
ing rearrangements, namely f−0 = (f−0 )↓ and
f−c = (f−c )↓. Therefore, their cumulative inte-
grals are simply given by

Sf−0
(s) =

s∫
0

f−0 (x) dx and Sf−c (s) =
s∫

0

f−c (x) dx.

(38)
In order to prove the majorization relation, we
will now show that Sf−0 (s) ≥ Sf−c (s) for all s ∈
R+. Since f−0 and f−c are both monotonically
decreasing functions, since f−0 (x) = 0 for all x >
x∗, and since x∗ < 1, it is sufficient to show that
f−0 (x) ≥ f−c (x) for all x ∈ [0, x∗]. Indeed, the
ratio fc(x)/f0(x) = (x − 1)2 ≤ 1 for x ∈ [0, x∗].
Using Definition 3 of a majorization relation, we
get f−0 � f−c . From Lemma 3, we conclude that
f0 � fc.

Finally, the same “splitting" technique can be
used to prove that f0 � gt for all values of
t ∈ [0, 1], which of course includes f0 � fd and
f0 � fc as limiting cases for t = 0 and 1, re-
spectively. We point the interested reader to Ap-
pendix B for such a proof. In summary, we have
thus shown that all functions (i.e., fb, fc, fd and
gt for all t ∈ [0, 1]) are majorized by f0. Using
Lemma 1, this translates into the fact that the
Wigner functions of all extremal states (i.e., Wb,
Wc, Wd, and Vt for all t ∈ [0, 1]) are majorized
by W0. Hence, any convex mixture of these ex-
tremal Wigner functions is also majorized by W0
as a consequence of Eq. (10). This concludes the
proof of Eq. (22) for all Wigner-positive states in
Wrestr

+ .

4 Discussion and conclusion

In the present work, we have shown that contin-
uous majorization theory proves to be an elegant
and powerful tool for exploring the information-
theoretic properties of Wigner functions repre-
senting quantum states in phase space. While it
only applies to states admitting a positive Wigner
function, continuous majorization should never-
theless pave the way to the proof of various en-
tropic inequalities of interest in quantum physics.
This is so because, as explained in Sec. 2, a con-
tinuous majorization relation implies an infinite
set of entropic inequalities for the Wigner func-
tions involved.

For instance, an interesting application con-
cerns the entropic uncertainty relation due to
Białynicki-Birula and Mycielski [44], which can
be viewed as the entropic counterpart of the
Heisenberg uncertainty relation σxσp ≥ 1/2,
where σx and σp denote the standard deviation
of the x-distribution ρx and p-distribution ρp of
a quantum state. The entropic uncertainty rela-
tion reads h (ρx) + h (ρp) ≥ ln π + 1, where the
right-hand side is simply the Shannon (differen-
tial) entropy of the Wigner function of the vac-
uum, which is also equal to the sum of the en-
tropies of its marginals. This inequality is, how-
ever, not fully satisfying as it is not saturated
for all Gaussian pure states [23]. For Wigner-
positive states, the bound on the Wigner entropy
h(W ) ≥ h(W0) = ln π + 1 has been conjectured
– and proven in some cases – in [26]. Since
h(W ) = h (ρx) + h (ρp)− I(W ), where I(W ) ≥ 0
is the mutual information between x and p, this
bound on the Wigner entropy yields a stronger
entropic uncertainty relation in the presence of x-
p correlations. Remarkably, our conjecture (22)
that W0 � W for all Wigner-positive states in
W+ then immediately implies this strong bound
on the Wigner entropy 1. It actually also implies
similar bounds on all Rényi entropies hα(W ) as
well as on all concave functionals φ(W ) as de-

1The bound h(W ) ≥ h(W0) was proven in [26] for a
subset of Wigner-positive states that are called passive
states, which are especially relevant in quantum thermo-
dynamics. In the restricted case of states with two pho-
tons at most, this corresponds to some triangle included
in the blue region of Fig. 3, see [26] for more details. In
contrast, we have proven here that W0 � W which imme-
diately implies h(W ) ≥ h(W0) for all states in the blue
region.

Accepted in Quantum 2023-04-10, click title to verify. Published under CC-BY 4.0. 11



Figure 5: Cumulative integral SW as a function of the
area parameter a = πs2 for positive Wigner functions
W . The red curve represents the cumulative integral for
W0, while each blue curve represents the cumulative in-
tegral for a random Wigner-positive state. In total, 1000
random instances of Wigner-positive states are uniformly
sampled over the set of mixed states containing up to
2 photons (more details on the numerics are given in
Appendix C). The red curve lies above all blue curves,
confirming conjecture (22).

fined in Eq. (5). This clearly illustrates how ma-
jorization theory can serve as an efficient tool to-
wards the strengthening of entropic uncertainty
relations.

In this paper, we have proven the fundamen-
tal majorization relation W0 � W restricted to
states in the set Wrestr

+ of phase-invariant states
with two photons at most. We believe the same
techniques laid out here could be exploited to
prove our majorization relation for all states in
W+. We choose, however, to leave this investi-
gation for future work but we provide numerical
evidences supporting our conjecture. In Figure
5, we plot the cumulative integral of the Wigner
function W0 and compare it with the cumula-
tive integrals of the Wigner functions W of some
randomly chosen (hence, non-Gaussian) Wigner-
positive states. We see that SW0(s) ≥ SW (s) for
all s ≥ 0, which confirms thatW0 �W in view of
Definition 3. In Figure 6, we show that the Rényi
entropy hα of the Wigner function W0 is smaller,
for several values of the parameter α, than its
value for the same Wigner functions W . This is
again consistent with W0 � W in view of Def-
inition 4 and the fact that hα is Schur-concave.
The interested reader can find the details on our

numerical method in Appendix C.

Interestingly, our conjecture (22) bears some
resemblance with the so-called generalized
Wehrl’s conjecture [45]. It has indeed been
proven by Lieb and Solovej [46, 47] that any con-
cave function of the Husimi Q-function of a state
is lower bounded by the same function applied to
the Husimi Q-function of the vacuum state (or
any coherent state). This is actually equivalent
to stating that the Husimi function of the vacuum
majorizes the Husimi function of any other state.
Intriguingly, this is not proved in [47] with contin-
uous majorization, but using discrete majoriza-
tion for finite-dimensional spin-coherent states
followed by some limiting argument. Following
the same line of thought as in [26], our conjec-
ture (22) actually implies the generalized Wehrl’s
conjecture (since any Husimi function is also the
Wigner function of another physical state) but
the converse is not true as it is easy to produce
positive Wigner functions that do not coincide
with the Husimi function of a physical state.

Beyond proving our majorization relation (22),
the next step would of course be to extend it to all
Wigner-positive states in arbitrary dimensions.
We conjecture that any N -mode Wigner-positive
state has a Wigner function that is majorized
by that of any N -mode pure Gaussian state. A
more challenging direction of research would then
be to account for partly negative Wigner func-
tions. One way of doing so could be to ap-
ply a majorization relation to a carefully chosen
non-negative distribution that characterizes any
Wigner function. Another way could be to ex-
tend the notion of majorization to partly negative
functions defined on Rn (this is known to be pos-
sible for functions defined on a finite domain [2]),
which would imply proper inequalities involving
the entropies of the marginal of any Wigner func-
tion. However, we do not expect a straightfor-
ward extension of our majorization conjecture to
exist for Wigner-negative states. Indeed, con-
sider the negative volume of a Wigner function
defined as Vol−(W ) = −

∫∫
[W (x, p)]− dx dp. It

is easily seen that the function ϕ(x) = − [x]− =
−min(x, 0) is convex, so that Vol−(·) is Schur-
convex. As a consequence, we understand that
any Wigner function with non-zero negative vol-
ume cannot be majorized by a Wigner function
with zero negative volume, such as the one of a
Gaussian pure state. Overall, we anticipate that
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Figure 6: Rényi entropy hα(W ) for positive Wigner func-
tionsW as a function of the parameter α. The red points
represent the Rényi entropy ofW0, while the blue points
represent the Rényi entropy of random positive Wigner
functions. In total, 1000 random instances of positive
Wigner functions are uniformly sampled over the set of
mixed states containing up to 2 photons (more details on
the numerics are given in Appendix C). Since the Rényi
entropy hα is Schur-concave for all α ∈ R+, Eq. (22)
implies that hα(W ) ≥ hα(W0) for all positive Wigner
functions W , as can be verified in this figure.

the application of continuous majorization the-
ory to Wigner functions will prove very fruitful
for elucidating the properties of quantum states
in phase space.
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A Proofs of some majorization lemmas
A.1 Proof of Lemma 1
Using polar coordinates, we have that f � g is
equivalent to the following condition:∫ ∞

0
[fR(r)− t]+ r

n−1 dr ≥
∫ ∞

0
[gR(r)− t]+ r

n−1 dr.
(39)

Introducing the change of variables x = rn, we
rewrite the above inequality as∫ ∞

0

[
fR
(

n
√
x
)
− t
]
+ dx ≥

∫ ∞
0

[
gR
(

n
√
x
)
− t
]
+ dx.
(40)

Defining f̃(x) = fR ( n
√
x) and g̃(x) = gR ( n

√
x), it

follows that f̃ � g̃ is equivalent to f � g.

A.2 Proof of Lemma 2
Since the function γt(z) = [z − t]+ is convex, we
can exploit Jensen’s inequality to get

γt (g (r)) = γt

(∫
Ω
f (α) (r) dk(α)

)
≤
∫

Ω
γt
(
f (α) (r)

)
dk(α).

(41)

Integrating both terms over the domain A then
leads to∫
A
γt (g (r)) dr ≤

∫
Ω

∫
A
γt
(
f (α) (r)

)
dr dk(α).

(42)

Since f and f (α) are level-equivalent, we have
that ∫

γt
(
f (α) (r)

)
dr =

∫
γt (f (r)) dr. (43)

The integral over k(α) reduces to 1 since it is a
probability measure. Writing γt explicitly, we end
up with∫

[f(r)− t]+ dr ≥
∫

[g(r)− t]+ dr, (44)

which proves the Lemma.

A.3 Proof of Lemma 3
From the fact that for each r, either f1(r) or f2(r)
is equal to zero, it follows that :

[f1(r)− t]++[f2(r)− t]+ = [f1(r) + f2(r)− t]+ ,
(45)
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since t ≥ 0. The same applies to g1 and g2. Let
f = f1 + f2 and g = g1 + g2. We have:∫

[f(r)− t]+ dr

=
∫

[f1(r) + f2(r)− t]+ dr

=
∫

[f1(r)− t]+ dr +
∫

[f2(r)− t]+ dr

≥
∫

[g1(r)− t]+ dr +
∫

[g2(r)− t]+ dr

=
∫

[g1(r) + g2(r)− t]+ dr

=
∫

[g(r)− t]+ dr,

(46)

where the inequality follows from f1 � g1 and
f2 � g2.

B Proof of the majorization relation
for the states located on the ellipse
In this Appendix, we prove that the Wigner func-
tions of the extremal Wigner-positive states lo-
cated on the ellipse represented in Fig. 3 are
majorized by the Wigner function of the vacuum
state, by showing that f0 � gt for all t such that
0 ≤ t ≤ 1. Note that the proof is very similar to
the proof of f0 � fc. The function gt(x) defined
in Eq. (27) has one zero at x = at, where

at = 1−
√

1− t
1 + t

. (47)

We “split" gt in two different functions g−t and g+
t

from either sides of at:

g−t (x) =
{
gt(x), for 0 ≤ x ≤ at,
0, else,

(48)

g+
t (x) =

{
0, for 0 ≤ x ≤ at,
gt(x), else.

(49)

If we shift g+
t from at towards the origin,

we have a distribution that is proportional to
exp(−x)x2/2, which we know is majorized by
f0(x) = exp(−x) from our previous result. The
idea now is to split f0 in two different functions
with the same normalization as g−t and g+

t . De-
fine bt as

bt = 1− ln(1 + t)−
√

1− t
1 + t

. (50)

It satisfies

at∫
0

gt(x)dx =
bt∫

0

f0(x)dx,

∞∫
at

gt(x)dx =
∞∫
bt

f0(x)dx.

(51)

We now “split" f0 from either side of x = bt, and
define f−0 and f+

0 as:

f−0 (x) =
{
f0(x), for 0 ≤ x ≤ bt,
0, else,

(52)

f+
0 (x) =

{
0, for 0 ≤ x ≤ bt,
f0(x), else.

(53)

We are now going to prove that f−0 � g−t and
f+

0 � g+
t . Let us shift g+

t and f+
0 towards the

origin respectively from at and bt. We end up
with the functions:

g̃+
t (x) = g+

t (x+ at)

= (t+ 1) exp
(√

1− t
1 + t

− 1
)

exp(−x)1
2x

2,

(54)
and

f̃+
0 (x) = f+

0 (x+ bt)

= (t+ 1) exp
(√

1− t
1 + t

− 1
)

exp(−x).

(55)
f̃+

0 (x) and g̃+
t (x) are respectively proportional to

exp(−x) and exp(−x)x2/2, with the same pro-
portionality factor. Since we have already shown
that exp(−x) � exp(−x)x2/2, it follows that
f̃+

0 � g̃
+
t . Since f̃

+
0 and g̃+

t are level-equivalent to
respectively f+

0 and g+
t , we then have f+

0 � g
+
t .

We now turn to f−0 � g−t . They are both
monotonically decreasing, making them decreas-
ing rearrangements. Therefore their cumulative
integrals are given by:

Sf−0
(s) =

s∫
0

f−0 (x)dx and Sg−t
(s) =

s∫
0

g−t (x)dx.

(56)
We will now show that Sf−0 (s) ≥ Sg−t

(s) for all
s ∈ R+. Since f−0 and g−t are both monotonically
decreasing and f−0 (x) = 0 for all x > bt coupled
with the fact that bt < at, it is sufficient to show
that f−0 (x) ≥ g−t (x) for all x ∈ [0, bt]. To prove

Accepted in Quantum 2023-04-10, click title to verify. Published under CC-BY 4.0. 14



this, note that the ratio gt(x)/f0(x) is less than
1 for x ∈ [0, bt]:

gt(x)
f0(x) = t+ 1

2

(
x− 1 +

√
1− t
1 + t

)2

≤ 1, (57)

which follows from the fact that x ≤ bt ≤ 1 and
0 ≤ t ≤ 1. Using Definition 3 of a majoriza-
tion relation, we conclude that f−0 � g−t . From
Lemma 3, we finally end up with f0 � gt.

C Numerical exploration of the ma-
jorization conjecture
In this Appendix, we present our numerical re-
sults supporting conjecture (22), namely that
the Wigner function of the vacuum majorizes
any non-negative Wigner function. We begin by
describing how we uniformly sample the set of
Wigner-positive states in a truncated Fock basis.
We then give some details on how we numeri-
cally check a majorization relation between two
Wigner functions. Finally, we exhibit additional
plots illustrating the validity of the conjecture.

C.1 Truncated Fock basis

The basis of Fock states can be used to decom-
pose any quantum state described by a density
operator ρ̂:

ρ̂ =
∞∑
k=0

∞∑
l=0

ρkl |k〉 〈l| , (58)

where {|k〉}k∈N0 represents the Fock basis. Since
the matrix ρ represents a physical quantum state,
it is a trace-one, Hermitian, and positive semi-
definite matrix. One can compute the Weyl
transform of every operator |k〉〈l|, which we de-
note as Wkl, as follows:

Wkl(x, p) = 1
π

∫
exp (2ipy)ψ∗k (x+ y)ψl (x− y) dy.

(59)
Using the explicit form of the wave functions ψk
of Fock states, Eq. (59) takes the following closed
form [48]:

Wkl(x, p) = (−1)k

π

(√
2(x+ ip)

)k−l
× L(k−l)

l (2x2 + 2p2) exp(−x2 − p2),
(60)

where L(α)
n is the generalized Laguerre polyno-

mial. Note that we have assumed k ≥ l in the
above expression. The case k < l is easily de-
duced from the relation Wlk = W ∗kl.

From this, we can express the Wigner function
of a quantum state described by a density opera-
tor ρ̂ as

W (x, p) =
∞∑
k=0

∞∑
l=0

ρklWkl(x, p). (61)

Note that Wkl takes in general complex values.
However, sinceWlk = W ∗kl, the total Wigner func-
tion is real-valued. In conclusion, it is straight-
forward to go from any density matrix ρkl in the
Fock basis to its corresponding Wigner function
W by using (61) and (60).

In our simulations, we consider mixtures of su-
perpositions of Fock states up to a given photon
number N , which are described by density op-
erators in a M -dimensional Hilbert space (with
M = N + 1). In order to uniformly sam-
ple the set of density operators, we follow the
method described in [49]. We first draw a uni-
tary matrix U ∈ CM×M with matrix elements uij ,
from which we extract a non-negative normal-
ized vector of eigenvalues λ = (λ1, λ2, ..., λM ) =(
|u11|2, |u12|2, ..., |u1M |2

)
. We then draw another

unitary matrix V ∈ CM×M that we apply to the
diagonal matrix defined by λ:

ρ = V

λ1
. . .

λM

V †. (62)

Both unitary matrices U and V are randomly
drawn according to the Haar measure.

C.2 Discretization
To perform our numerical simulations, we dis-
cretize the functions Wkl over a square grid. We
set the size of the grid as −L/2 ≤ x ≤ L/2 and
−L/2 ≤ p ≤ L/2, and we discretize the x and p
axes over nL points that are regularly spaced from
−L/2 to L/2. The parameter L should be cho-
sen in accordance with N (the highest Fock state)
such that

∫∫
L2 Wn(x, p) ≈ 1. Then, nL should be

chosen such that nL � L. In our simulations,
we have generally chosen N = 10, L = 12 and
nL = 1000.

Once we have computed the Wigner function
W associated with a random quantum state, we
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Figure 7: Logarithmic plot of PN as a function of N ,
where PN is the probability to get a Wigner-positive
state when uniformly sampling the set of density opera-
tors containing up to N photons. For each value of N ,
we estimate PN from a set of 105 random states.

check whether it is positive. If it is the case, the
next step is to compare the cumulative integral
of W to the one of vacuum. The cumulative inte-
gral of W can be approximated in the following
manner. We first convert the nL × nL matrix W
in a 1× n2

L vector v. We then sort the vector by
decreasing order which gives us v↓, and compute
its cumulative sum S:

(S)i =
(

L

nL − 1

)2 i∑
k=1

v↓k. (63)

The constant L2/(nL − 1)2 accounts for normal-
ization and corresponds to the surface element
associated with a point of the square grid (both
ends of the length-L segment are included). Sim-
ilarly to v, S is a 1 × n2

L vector. Note that the
cumulative sum S is not simply the discretization
of the cumulative integral SW (s) as defined in (8).
In the cumulative integral SW (s), the value of the
parameter s defines an area equal to πs2, whereas
the ith component of the cumulative sum S corre-
sponds to an area of i×L2/(nL− 1)2. Therefore,
S and SW are related as:

(S)i ≈ SW

√ i

π

L

nL − 1

 . (64)

Finally, checking numerically that a positive
Wigner function W1 majorizes another positive
Wigner functionW2 amounts to checking that the
difference of their respective cumulative sums is
positive :

W1 �W2 ⇔ (S1 − S2)i ≥ 0 ∀i. (65)

Figure 8: Cumulative integral SW (a) of random Wigner-
positive states generated according to (62) for N ∈
{0, ..., 10}. For each value of N , the cumulative in-
tegrals of 5 random Wigner-positive states are plotted.
Colors are associated to N as follows: red to N = 0,
blue to N = 1, orange to N = 2, green to N = 3,
purple to N = 4, brown to N = 5, pink to N = 6,
gray to N = 7, olive to N = 8, cyan to N = 9, black
to N = 10. We observe that cumulative integrals are
in general smaller for high N than for small N . Also,
notice that every state satisfies the conjecture since the
cumulative integral of vacuum (N = 0, red line) is the
highest curve.

For simplicity, we introduce the area parameter
a = πs2 and make the slight abuse of notation to
designate by SW (a) the function SW (s =

√
a/π).

C.3 Further numerical evidences

Let us first make an observation on the fraction
of Wigner-positive states among the set of quan-
tum states. We call PN the probability to get
a Wigner-positive state when randomly sampling
the set of density operators containing up to N
photons (we use a similar idea to what is done
in [49]). As one can see in Figure 7, the probabil-
ity PN decreases exponentially as a function ofN .
Consequently, it becomes increasingly difficult to
randomly generate Wigner-positive states as we
expand the size N of the Fock space. For this rea-
son, we have limited our numerical exploration to
N = 10. Figure 8 then illustrates the validity of
the conjecture for random Wigner-positive states
drawn according to the previously described tech-
nique up to N = 10.
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At this point, it is interesting to mention
another technique to generate random Wigner-
positive states in a deterministic fashion, i.e.,
with probability 1 that the random state is
Wigner-positive. In [26], we highlighted a par-
ticular set of Wigner-positive states built with a
balanced beam-splitter. Let us consider a state σ̂
built from two single-mode states ρ̂A and ρ̂B as
follows:

σ̂ = TrB
[
Û1/2

(
ρ̂A ⊗ ρ̂B

)
Û †1/2

]
, (66)

where Û1/2 is the two-mode unitary correspond-
ing to a beam-splitter of transmissivity 1/2. Such
a state σ̂ is Wigner-positive for any choice of ρ̂A
and ρ̂B (see [26]). We can thus use Eq. (66) with
random ρ̂A and ρ̂B to generate random states
that will be Wigner-positive with certainty. It
should be noted, however, that this technique
does not span the entire Wigner-positive set since
there exist Wigner-positive states that cannot be
expressed in the form of (66), see [26].

In (66), notice that if ρ̂A and ρ̂B are mixed
states, σ̂ can be decomposed as a mixture of
beam-splitter states built from pure states. To
test our conjecture over the set of beam-splitter
states, it is thus sufficient to limit our study to
ρ̂A, ρ̂B being pure states (see majorization prop-
erty (10)). Let us consider pure states |ψi〉 which
are finite superpositions of the first Fock states:

|ψi〉 =
Ni∑
k=0

c
(i)
k |k〉 (67)

where i ∈ {A,B}. With |ψA〉 and |ψB〉 contain-
ing respectively up to NA and NB photons, the
state σ̂ belongs to the span of Fock states up
to N = NA + NB. We have tested the conjec-
ture for various choices of (NA, NB) such that
NA + NB ≤ 10, and have found that each in-
stance satisfies the conjecture. This is illustrated
in Figure 9.
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