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Abstract

Following recent applications of the so-called multicopy method in the context of quantum optics,
relations between bosonic modes and spin systems have proven to be instrumental to analyze
uncertainty relations. Here, we derive several second-order uncertainty relations and establish a
general mapping between the number basis of bosonic modes and the eigenbasis of spin operators.
More precisely, in the first part of this dissertation, we apply the Jordan-Schwinger map in order to
convert simple inequalities on spin (or more general) operators into non-trivial inequalities for the
quadratures of multimode bosonic systems. In the second part, we employ Lie algebra theory to
set up an algorithm decomposing the Fock space of multimode systems in irreducible submodules
of su(2); it enables us to deduce the eigenbases of spin operators and highlight the desired relation
between bosonic modes and spin systems. We exemplify our algorithm for the non-trivial 3-mode
system and show that eigenstates of other spin operators could be deduced by applying unitary
operators expressed in terms of Wigner d-matrices.

Keywords: quantum optics, uncertainty relations, Jordan-Schwinger map, bosonic modes, spin
operators, spin basis, multicopy method.
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1. Introduction

The uncertainty relations introduced in 1927 by Heisenberg [1] highlight the existence of an inherent
tradeoff on the precision of the results when measuring particular pairs of physical quantities
in quantum systems, such as the position and momentum of a particle. It is a big divergence
between classical and quantum theories, as, in classical theories, there are no theoretical limits
on the precision one can obtain from a measurement and the knowledge of a physical property
should not affect the measurement of another one. In contrast, in quantum theories, there is
a limit on the precision of some measurements, and there are observable pairs for which the
knowledge of one gives a lower bound on the accessible knowledge on the other. This principle was
formalized by Kennard with inequalities using the variance of the measured distribution [2], while
Beckner [3], Bialynicki-Birula, and Mycielski [4] used entropies instead. Even if there is still an
epistemological debate about whether uncertainty is an intrinsic property of particles or of their
measurements, this feature of quantum theories provides fundamental insights into the limits of
measurement precision and bounds on physically allowed operations. For instance, in quantum
cryptography, it helps deduce the presence of an eavesdropper [5, 6] and in quantum information it
helps witness entanglement [7–9]. Although extensive research on uncertainty relations has already
been performed since the inception of quantum mechanics, there remain unexplored aspects and
potential extensions of these relations that warrant further investigation.
In particular, an entropic uncertainty relation for continuous-variable systems which is saturated
for all Gaussian pure states remains a conjecture and the derivation of stronger inequalities for
multimode systems is still an open research problem. In 2019, A. Hertz, O. Oreshkov and N. Cerf
showed that the Schrödinger-Robertson inequality (the strongest quadratic inequality for one-mode
systems) could be derived from trivial inequalities obeyed by a multimode operator defined via the
Jordan-Schwinger map and applied to several copies of the state of interest [10].
Chapter 3 generalizes the results of A. Hertz et al. by considering trivial inequalities on more general
operators created via the Jordan-Schwinger map and applying them to general bosonic multimode
systems. This multicopy approach yields new uncertainty relations for multimode systems. Yet,
limitations are met due to the lack of knowledge about the eigenstructure of operators generated
by the Jordan-Schwinger map. For instance, we are not able to deduce the saturating states for
these new uncertainty relations nor to investigate the entropy of these operators. Therefore, we
choose to investigate these eigenstructures in Chapter 4. This research extends the already known
relation between the number basis and the spin eigenbasis of operators created through the Jordan-
Schwinger map for two-mode states to general n-mode states, and provides several generalizations.
This result can hopefully contribute not only to computing the entropy of the uncertainty operators,
but also to addressing questions related to witnessing entanglement, nonclassicality, or nonlocality,
as it echoes questions raised by several papers at QuIC (Center for Quantum Information and
Communication).
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2. Quantum mechanics and algebras

2.1 Hilbert spaces in quantum theories

This section focuses on the mathematical foundations of quantum mechanics. Quantum theory
describes the states of a system by vectors (and further endomorphisms) lying in a Hilbert space
H. We extensively use the properties of this mathematical structure and its relationships with
other structures, in particular Lie algebras. First, we define the notion of groups, particularize it
into abelian groups, vector spaces, and end with Hilbert spaces. Subsequently, we explore several
mathematical tools used in this thesis. The notations, conventions and definitions employed are
those from [11–14].

2.1.1 Groups, vector spaces to Hilbert spaces

A Group G is a set1 of entities gα, the group elements, with a composition law (for short, we can
multiply them together)[14]. The composition law is described as

◦ : G×G→ G : (gα, gβ) → gα ◦ gβ. (2.1)

This law must obey several postulates:

• Internality:
∀gα, gβ ∈ G, gγ = gα ◦ gβ ⇒ gγ ∈ G, (2.2)

• Associativity:
∀gα, gβ, gγ ∈ G, (gα ◦ gβ) ◦ gγ = gα ◦ (gβ ◦ gγ) , (2.3)

• Existence of the identity I:

∃I ∈ G,∀g ∈ G : I ◦ g = g ◦ I = g, (2.4)

• Existence of the inverse:
∀g ∈ G,∃h : h ◦ g = g ◦ h = I, (2.5)

where g−1 ≡ h denotes the inverse of g.

The notation for the group formed by the set G associated with the law ◦ is written G, ◦.
Numerous mathematical structures are derived from groups, which can be discrete or continuous,
with a finite or infinite (countable or not) number of elements, bounded, or not, and many others.
Group theory is an important and large field of mathematics, but we will restrict ourseleves to
describing the following two particular kinds the abelian and Lie groups, and then give examples
of these groups in physics.

Abelian groups are groups with a commutative composition relation, i.e:

∀gα, gβ ∈ G, gα ◦ gβ = gβ ◦ gα. (2.6)

Thus, these are also known as commutative groups.
1We could delve deeper and first focus on the notion of sets, but we assume the reader to be familiar with this

topic.

2



A Lie group is a continuous and finite dimensional group such thatG corresponds to a differentiable
manifold2. Both composition and inversion need to be differentiable everywhere (we will say that
the group is smooth).
There are many groups in physics: all vector spaces (cf. Section 2.1.1) are groups, symmetry trans-
formations are described by groups (SO(3) for rotations of vectors in space or R3 for translations,
both of which are Lie groups)[14]. Special relativity is the study of the Poincaré group (composition
of the Lorentz group SO(3, 1) for rotations and boosts, with the translation group), and general
relativity is the study of the general group of diffeomorphisms (reversible changes of coordinates
on manifolds, differentiable, and whose inverse is also differentiable) [15, 16]. The standard model
describes particles based on the group SU(3)× SU(2)× U(1) [14]. Many mathematical tools form
groups, for instance, on functions: the Fourier transform, the parity, the inverse Fourier transform,
together with an identity transformation are a four elements group, which can be extended to the
fractional Fourier transform to make a continuous group. Similarly, the differential operators of
the functions form a group and can be extended to fractional differentiation[17].

Vector spaces are particular abelian groups. A vector space is defined over a particular field F3

For notations, we will use the Dirac notation, where the elements of the vector space V , the vectors,
are called kets and represented by the symbol |v⟩. In quantum mechanics, the system states are
described by vectors (or more complex objects, as presented in Section 2.1.5), which motivates our
interest in vector spaces. The composition law for vector spaces is called an addition law, written
+, such that the fundamental abelian group behind the vector space is V,+.
Finally, the identity of the addition law is called the null vector written 0⃗.4
The second law is a multiplication by a field element

· : F × V → V : (λ, |ψ⟩) → λ · |ψ⟩ = λ |ψ⟩ . (2.7)

This relationship follows five postulates:

• Internality in V :
∀λ ∈ F ,∀ |ψ⟩ ∈ V : λ |ψ⟩ ∈ V, (2.8)

• Mixed associativity:

∀λ, µ ∈ F ,∀ |ψ⟩ ∈ V : λ(µ |ψ⟩) = (λµ) |ψ⟩ , (2.9)

• Mixed distributivity:

∀λ, µ ∈ F ,∀ |ψ⟩ ∈ V : (λ+ µ) |ψ⟩ = (λ |ψ⟩) + (µ |ψ⟩). (2.10)

This property combined with the existence (and unicity) of 0⃗ implies

∀λ ∈ F : λ0⃗ = 0⃗, (2.11)

• Vectorial distributivity:

∀λ ∈ F ,∀ |ψ⟩ , |ϕ⟩ ∈ V : λ(|ψ⟩+ |ϕ⟩) = (λ |ψ⟩) + (λ |ϕ⟩), (2.12)
2Once again we will spare the reader the definition of manifolds.
3We will not delve very far into the definition of fields, but to summarize it, it is a set of elements with two

binary laws: addition and multiplication. An additive and multiplicative inverse exists. The laws of associativity,
commutativity and distributivity are the same as for the rationals or the reals.

Moreover, the field does not need to be complete, vector spaces are not always complete.
4We do not write |0⟩ as this notation will be used to describe the vacuum in section 2.2.3.
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• Existence of an identity element for · in F :

∀ |ψ⟩ ∈ V : 1 · |ψ⟩ = |ψ⟩ , (2.13)

where 1 denotes an identity element.

The Vector space is then written F , V,+.

Hausdorff pre-Hilbert spaces or inner product spaces are vector spaces with an additional law:
the inner product (if F is a scalar field5, it is called a scalar product).
First we require the field to have a complex conjugate operation6

∗ : F → F : λ→ λ∗. (2.14)

The conjugate needs to be distributive over addition and multiplication, and needs to be selfinversive
(an involution), i.e.:

∀λ ∈ F : (λ∗)∗ = λ. (2.15)

Then the inner product is a positive semi-definite Hermitian form

⟨·|·⟩ : V × V → F : |v⟩ , |w⟩ → ⟨v|w⟩ . (2.16)

In Dirac notation, this is called a braket. The postulates for this law are as follows:

• Hermitian symmetry or conjugate symmetry:

∀v, w ∈ V : ⟨v|w⟩ = ⟨w|v⟩∗ , (2.17)

• Linearity at right:

∀ |w⟩ ∈ V, ∀ |v⟩ =
∑
i

ci |vi⟩ ∈ V, ci ∈ F with i ∈ {1, 2, ..., n}, : ⟨w|v⟩ =
∑
i

λi ⟨w|vi⟩ . (2.18)

Combined with the first condition, this also implies anti-linearity at left:

∀ |w⟩ ∈ V, ∀ |v⟩ =
∑
i

ci |vi⟩ ∈ V, ci ∈ F with i ∈ {1, 2, ..., n}, : ⟨v|w⟩ =
∑
i

c∗i ⟨vi|w⟩ , (2.19)

• Positive definiteness,
∀v ∈ V ⟨v|v⟩ ≥ 0, ⟨v|v⟩ = 0 ⇔ v = 0⃗. (2.20)

Two vectors are considered orthogonal if their scalar product is 0.

Hilbert spaces Finally, if we add a distance law d or a norm ∥ · ∥7 such that, with this law, the
vector space becomes a complete metric space, we obtain a Hilbert space. First, we require an
absolute value for the field elements | · | and a square root law √ for the image of f(v) = ⟨v, v⟩ 8.
Then we define the norm as

∥ · ∥ : V → F : |v⟩ , |w⟩ →
√

⟨v|v⟩. (2.21)

We use the following abusive notation: ∥ |v⟩ ∥ = ∥v∥. In general, to be a norm, a law requires the
following properties:

5Each element of the field can be represented by a single number.
6For the real field, this operation is the identity.
7A distance law and a norm are equivalent and related via d(|v⟩ , 0⃗) = ∥v∥ and d(|v⟩ , |w⟩) = ∥ |v⟩ − |w⟩ ∥.
8In particular this relations requires

√
λ
2
= λ, ∀λ ∈ F .
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• Subadditivity or triangular inequality:

∀ |v⟩ , |w⟩ ∈ V : ∥v + w∥ ≤ ∥v∥+ ∥w∥ , (2.22)

• Absolute homogeneity:
∀v ∈ V, ∀λ ∈ F : ∥λ |v⟩∥ = |λ| ∥v∥ , (2.23)

• Positive definiteness
∀v ∈ V ∥v∥ ≥ 0, ∥v∥ = 0 ⇔ v = 0⃗. (2.24)

Fortunately, we can demonstrate that Equation (2.21) ensures all these properties. Finally, V, ∥·∥
is a complete metric space if any Cauchy sequence converges in it.
For the vocabulary, a vector is normal if its norm is 1. Normalizing a vector reduces to dividing
it by its norm to obtain a new vector that is normal. Two vectors are parallel or aligned if their
scalar product is the product of their respective norm. In quantum theories, we consider a Hilbert
space H, defined on the complex field C with classical arithmetic laws9. The states of the system
are described by normalized vectors.
Vector spaces are well represented in physics, for instance, in classical mechanics, phase-space, or
space10 itself are Hilbert spaces, while in special relativity, space-time is a pseudo-Hilbert space11.
Electromagnetic fields are vector spaces as well, such as the states of the system in quantum field
theory or statistical physics.

2.1.2 Dual space and space of the endomorphims

Several spaces can be built on each vector space V , such as the dual space or the endomorphisms
space.

The Dual space V ∗ of a vector space V is the space of all linear forms of V . A linear form is an
application ⟨w| (this is the Dirac notation, and they are named bra’s):

⟨w| : V → F : |v⟩ → ⟨w| (|v⟩) . (2.25)

As the name indicates, it is linear:

∀ |v1⟩ , |v2⟩ ∈ V : ⟨w| (|v1⟩+ |v2⟩) = ⟨w| (|v1⟩) + ⟨w| (|v2⟩) . (2.26)

In space V ∗, the addition and multiplication laws are defined based on the application of the linear
form to the vectors:

+ :V ∗ × V ∗ → V ∗ : ⟨w1| , ⟨w2| → ⟨w1|+ ⟨w2| ,
such that ∀ |v⟩ ∈ V : (⟨w1|+ ⟨w2|) (|v⟩) = ⟨w1| (|v⟩) + ⟨w2| (|v⟩) , (2.27)

· :F × V ∗ → V ∗ : λ, ⟨w| → λ · ⟨w| ,
such that ∀ |v⟩ ∈ V : (λ ⟨w|) (|v⟩) = λ (⟨w| (|v⟩)) . (2.28)

Note that the dual of the dual of a space is the space itself. A space and its dual are both
isomorphic. If the vector space is now a pre-Hilbert space H, we can create a bijection from vectors
to linear forms, owing to the inner product. We say that the dual form ⟨v| associated with a vector
|v⟩ is the only linear form such that

∀ |v⟩ ∈ H : ⟨v| (|w⟩) = ⟨v|w⟩ . (2.29)
9In the following we will write H if we consider Hilbert spaces and V otherwise.

10The space as the space continuum in which objects lives.
11The scalar product associated with this space is not positive definite.
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Space of all linear endomorphisms. A linear endomorphism12 in V is a map intern in V ; i.e.,

Ô : V → V : ψ, (2.30)

The map must be intern and linear. We will also discuss linear operators, and most of the
time, we will not underline the linearity and only say endomorphism or operator. The set of all
endomorphisms, End(V ), with the following addition and multiplication laws is itself a vector
space:

+ :End(V )× End(V ) → End(V ) : Ô1, Ô2 → Ô1 + Ô2

such that ∀ |v⟩ ∈ V :
(
Ô1 + Ô2

)
(|v⟩) = Ô1 (|v⟩) + Ô2 (|v⟩) , (2.31)

· :F × End(V ) → End(V ) : λ, Ô → λ · Ô

such that ∀ |v⟩ ∈ V :
(
λÔ
)
(|v⟩) = λ

(
Ô (|v⟩)

)
. (2.32)

In Dirac’s notation, the parentheses are removed for simplicity, such that Ô (|v⟩) = Ô |v⟩. It also
forms a group with a composition relation such that

◦ : Ô, P̂ →
[
|v⟩ →

(
Ô ◦ P̂

)
|v⟩ = ÔP̂ |v⟩ = Ô

(
P̂ |v⟩

)]
. (2.33)

The neutral element for this operation is called the identity, and is written 1̂. This space is
isomorphic to the space of all linear forms in V ∗ ⊗ V : (V ∗ ⊗ V )∗ = V ⊗ V ∗. with the following
isomorphism: 13:

Ô →
[
⟨w| , |v⟩ → ⟨w|Ô|v⟩

]
. (2.34)

These two spaces are not distinguished in the remainder of this thesis. This isomorphism, combined
with the idea that V ⊗ V ∗ is self-dual (up to an isomorphism), implies that End(V ) is also
self-dual. We can therefore build an operation, intern in End(V ), which plays the role of the
dual of operators14. This operation is the adjoint operation, and we say that an operator is the
adjoint/conjugate transpose of another. The adjoint of Ô is the only operator Ô† such that

⟨ϕ|Ô†|ψ⟩ = ⟨ψ|Ô|ϕ⟩
∗
. (2.35)

Owing to the properties of dual and complex conjugation, any proposition in quantum mechanics
can be conjugated to obtain another equivalent proposition. To do so, each element is replaced
by its dual (a scalar by its complex conjugate, a ket by a bra, a bra by a ket, an operator by its
adjoint, etc.), and their apparition order is inverted. For instance:

λÂ |v⟩ ⟨w| T̂ |ψ⟩ = |x⟩+ |y⟩ ⇔ ⟨ψ| T̂ † |w⟩ ⟨v| Â†λ∗ = ⟨x|+ ⟨y| . (2.36)

Several endomorphism subfamilies exist. The self-adjoints aka Hermitian operators or observables15

are operators such that
Â = Â†. (2.37)

12We denote the endomorphisms using a hat. This is used to distinguish, for instance, matrices and operators of
quantum mechanics.

13The inverse of this relationship requires the notion of bases. If |vi⟩ is a basis of V and ⟨wi| a basis of V ∗, then
we have

O (⟨w| , |v⟩) → Ô =
∑
i,j

|wi⟩O (⟨wi| , |vj⟩) |vj⟩ .

14This affirmation can be understood by comparing the norm of a vector ∥v∥ =
√
⟨v|v⟩ and the Frobenius norm

of operators ∥Ô∥F =
√
tr (A†A). We could properly define the Frobenius inner product and demonstrate that it is

related to the classical inner product.
15This name is due to the existence of a one to one correspondence between these operators and the physical

quantities that can be observed in nature.
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The unitary operators follow the property

Û Û † = Û †Û = 1̂. (2.38)

The idempotent operators are defined by

Q̂2 = Q̂, (2.39)

and the bounded operators by

∃M ∈ R+
0 : ∀ |v⟩ ∈ V :

∥∥∥B̂ |v⟩
∥∥∥ ≤M ∥v∥ . (2.40)

Finally, we define several operations for the operators. The trace of an operator is the only linear
form on End(V ), such that

tr (|v⟩ ⟨w|) = ⟨w|v⟩ . (2.41)

To obtain a more precise definition, we need to develop the notion of bases16.
The commutator [·, ·] and the anticommutator {·, ·} of two operators are binary operations defined
as

[Â, B̂] = ÂB̂ − B̂Â, {Â, B̂} = ÂB̂ + B̂Â. (2.42)

If respectively the commutator (anticommutator) is the null operator, then we say that the operators
(anti-)commute. Several properties of the commutator are extensively used in the following sections:

• Anticommutativity:
[Â, B̂] = −[B̂, Â], (2.43)

• Alternativity:
[Â, Â] = 0, (2.44)

• Expulsion formulas:

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, (2.45)

• Jacobi’s identity:
[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0. (2.46)

2.1.3 Bases and components

The concepts of linear independence and basis are powerful tools in linear algebra and quantum
mechanics. Let us define a set of vectors {|vi⟩}. Then a vector |ψ⟩ is a linear combination of this
set if and only if there exists coefficients ci ∈ F such that∑

i

ci |vi⟩ = |ψ⟩ . (2.47)

The set of all linear combinations of {|vi⟩} is written as Span ({|vi⟩}) and is called the set spanned
by {|vi⟩}, or the span of {|vi⟩}. The vectors of a set are linearly independent if and only if no
vectors in this set are explicitly a linear combination of the others:

∀ |vi⟩ ∈ {|vi⟩} : |vi⟩ ̸∈ Span ({|vi⟩ , i ̸= j}) . (2.48)
16Alternatively we could also precise the isomorphism between End(V ) and V ⊗ V ∗.
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This set is also said to be a free part of V . Similarly, a set {|vi⟩} is said to be a generative part of
V , or a complete part, if and only if

Span ({|vi⟩}) = V. (2.49)

If a set {|vi⟩} is simultaneously a free part, and a generative part of V , then this set is said to be a
basis. In this case, the components of a vector |ψ⟩ are the coefficients ci in Equation (2.47). The
components always exist (because a basis is a generative part) and are unique (because a basis is a
free part).
Hereafter, we will only work with a Hilbert space H as we will use inner products. The dual basis
of the basis {|vi⟩} is the set of linear forms ⟨vi|, such that ⟨vi| is the dual form associated with the
vector |vi⟩, as they are each other’s complex conjugate

|ψ⟩ =
∑
i

ci |vi⟩ ⇔ ⟨ψ| =
∑
i

c∗i ⟨vi| , (2.50)

as shown in Appendix A.1.
A basis {|ni⟩} is orthogonal if all the vectors of the basis are orthogonal to each other, whereas it
is normal if they are all normal, or orthonormal if both. In this last case, the components ψi of |ψ⟩
on this basis are equals to

ψi = ⟨ni|ψ⟩ , (2.51)

as shown in Appendix A.2. A powerful relation for orthonormal basis is the closure relation. To
find it, let us decompose any vector |ψ⟩ on an orthonormal basis:

|ψ⟩ =
∑
i

ψi |ni⟩ =
∑
i

⟨ni|ψ⟩ |ni⟩ =

(∑
i

|ni⟩ ⟨ni|

)
|ψ⟩ ∀ |ψ⟩ . (2.52)

As this is true for all |ψ⟩, we find a relation whose name is the closure relation:∑
i

|ni⟩ ⟨ni| = 1̂. (2.53)

Changes of basis in this formalism are represented by invertible matrices. Considering only
orthonormal bases, then the changes of basis are described by unitary matrices.The change of basis
from {|ti⟩} to {|ui⟩} (both orthonormal) is an operator sending any vector of the t basis on the
corresponding vector of the u basis:

Û =
∑
i

|ui⟩ ⟨ti| . (2.54)

This operator is indeed unitary since

Û Û † =

(∑
i

|ui⟩ ⟨ti|

)(∑
j

|tj⟩ ⟨uj|

)
=
∑
ij

|ui⟩ ⟨ti|tj⟩ ⟨uj| =
∑
ij

|ui⟩ δij ⟨uj| =
∑
i

|ui⟩ ⟨ui| = 1̂.

(2.55)
Alternatively, if Û is unitary and {|ti⟩} is an orthonormal basis, then |ui⟩ = U |ti⟩ is an orthonormal
basis:

⟨ui|uj⟩ = ⟨ti|U †U |tj⟩ = ⟨ti|tj⟩ = δij. (2.56)

The change of basis applied to a vector |ψ⟩, gives us a vector Û |ψ⟩. The vision of changing the
basis of the vectors is referred to as the Schrödinger picture. Yet, in Section 2.2.1 we will explain
that we can only measure matrix elements of operators ⟨v|Ô|w⟩; this is equivalent to considering
that the change is not applied to vectors, but to operators. This representation is the Heisenberg
picture, and a change of basis leaves the vectors unchanged, but the operators become Û †ÔÛ .
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The trace of an operator can be made explicit thanks to bases. If {|ni⟩} is an orthonormal
basis, then the trace of Â is defined as

tr
(
Â
)
=
∑
i

⟨ni|Â|ni⟩ . (2.57)

The closure relation helps showing that the trace is independent of the basis, this is done in
Appendix A.3. The trace exhibits several interesting properties. It is linear and independent with
respect to the basis, which directly proves that the trace is unitary invariant:

tr
(
Û †ÔÛ

)
= tr

(
Â
)
. (2.58)

A stronger property is its cyclic invariance, which can be demonstrated using the closure relation.

Projectors are a particular kind of operators. If I is a subspace of H, then the operator projecting
a vector onto I is said to be a projector. The projector can be written with an orthonormal basis
of I, {ni}, as

P̂I =
∑
i

|ni⟩ ⟨ni| . (2.59)

This operator is Hermitian, idempotent, and bounded. It is extensively used for measurements.
A generalization of the closure relation for the projectors is that for a collection of sets {Ii},
orthogonal to each other (all vectors of Ii are orthogonal to all the vectors of Ij if i ̸= j), such
that their direct sum is H itself (all vectors of H can be written as a linear combination of vectors
of {Ii}). Then: ∑

i

P̂Ii = 1̂. (2.60)

2.1.4 Eigenvalues, eigenspaces and spectral decomposition

Very useful concepts in quantum mechanics are the notions of eigenvalues, eigenvectors, and
eigenspaces. Any non-zero vector |λ⟩ such that

Â |λ⟩ = λ |λ⟩ , (2.61)

is said to be an eigenvector of the operator Â with an eigenvalue λ. The subspace of all vectors
with the same eigenvalue is called eigenspace of the operator Â. The dimension of the eigenspace
associated with λi is the (geometric) degeneracy gi of the eigenvalue17. We call the spectrum of an
operator the set of all its eigenvalues σ

(
Â
)
, and spectral decomposition the set of pairs (λi, gi).

We call the eigenstructure the spectral decomposition coupled with eigenvectors. All operators
do not possess the same number of eigenvectors, and some do not even possess one eigenvector.
However, their existence is guaranteed for Hermitian operators by the spectral theorem:

If Â is an Hermitian operator on H, then there exists an orthonormal basis of H consisting of the
eigenvectors of Â. The eigenvalues are real.

This theorem guarantees the existence of eigenvalues and eigenvectors, and that the eigenspaces
associated with different eigenvalues are orthogonal to each other. A basis composed of eigenvectors
is called eigenbasis.
Note that for observables, we can use the eigenbasis of an operator to compute the trace, and we
find that for observables, the trace is the sum of the eigenvalues of the operator, weighted by their
degeneracies. A second important theorem is the compatibility theorem, which states that:

17As we will only work with Hermitian operators, our matrices will be diagonalizable and we will not distinguish
the notions of algebraic and geometric degeneracies.
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If Â and B̂ are observables, those three affirmations are equivalent:

1. Â and B̂ are compatible,

2. Â and B̂ share a common eigenbasis,

3. Â and B̂ commute.

If {Âi} is a set of observables, then if they all commute with each other, it is said to be a commuting
set; at least one common basis exists for all of them. If the basis vectors are unequivocally determined
by the knowledge of the eigenvalues or quantum numbers18, then the set of commuting operators
is said to be complete. These sets are complete sets of commuting observables (CSCO). Choosing
a CSCO fixes the basis in which we work. We say that a CSCO is minimal if removing any of the
observables removes the completeness of this set.
Several generalizations of the concepts of eigenvalues exist, such as the singular values decomposition,
whose applications include the Schmidt decomposition for any state of a multipartite system.

2.1.5 State and density operator

First, the states of quantum systems were described by normalized vectors; however, this formalism
cannot consider classical uncertainty. To solve this problem, states of a system are in full generality
described by density operators ρ̂ (see Section 2.2.1). These are Hermitian endomorphisms, positive
semi-definite and normalized; we will write T (H) ⊆ End (H) the set of all the endomorphisms
with those properties. The positive semi-definiteness is defined as

⟨ψ|ρ̂|ψ⟩ ≥ 0 ∀ |ψ⟩ ∈ H ⇔ λ ≥ 0 ∀λ ∈ σ (ρ̂) . (2.62)

The normalization of the operator is defined as

tr (ρ̂) = 1 ⇔
∑

λi∈σ(ρ̂)

λi = 1. (2.63)

This representation is more general than simply considering vectors. The vectors only represent a
part of the states of the system, which we will call pure states, as they do not contain classical
uncertainty. The density operator considers the stochastic distribution of the states and is called
a (statistical) mixture. Any pure state |ψ⟩ matches with a density operator ρ̂ψ by the following
relation

ρ̂ψ = |ψ⟩ ⟨ψ| . (2.64)

Because this application is not surjective, not all elements of T (H) are images of a pure state. This
shows that the density operators are a more general representation of the state of a system. If we
consider that the state of the system is one of the states {|ψi⟩}, with a probability pi respectively
(we impose that

∑
pi = 1), then the system will be described by the statistical mixture

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| . (2.65)

This relationship from Hn ⊗∆n−1 → T (H) is surjective if n (the number of vectors considered in
the mixture) is sufficiently large. We can interpret any density operator as a mixture of dim (H)
vectors19; indeed, if we consider the spectral decomposition of ρ̂ (it exists as ρ̂ is Hermitian), we get

ρ̂ =
∑
i

λi |λi⟩ ⟨λi| . (2.66)

18The quantum numbers are a set of numbers in bijection with the set of eigenvalues.
19That is, sufficiently large n.
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Based on Equations (2.62) and (2.63), we see that the eigenvalues are indeed probabilities (those
equations match the first two axioms of probabilities, and the third axiom will be obtained owing
to the measurement postulate, presented in Section 2.2.1). This proves that any density matrix
corresponds to a mixture of its eigenstates, with the probabilities being the eigenvalues. We can
add two additional comments.
First, the application presented in Equation (2.65) is not injective, implying that several mixtures
correspond to the same state. This confirms that the global phase of a state is irrelevant. Indeed
let us consider two mixtures {|ψi⟩} with probabilities pi and {eiϕi |ψi⟩} with the same probabilities,
then the density matrix for the second mixture is

ρ̂ =
∑
i

pi
(
eiϕi |ψi⟩

) (
e−iϕi ⟨ψi|

)
=
∑
i

pi |ψi⟩ ⟨ψi| , (2.67)

Therefore, the mixtures are identical. Or, working with H of dimension 2, with a basis {|0⟩ , |1⟩},
then the mixtures of {|0⟩ , |1⟩} with a probability of 1/2 each, of { |0⟩+|1⟩√

2
, |0⟩−|1⟩√

2
}, and a continuous

distribution evenly distributed, i.e. {cos θ |0⟩+ sin θ |1⟩} give rises to the same density operator,
since

1

2

(
|0⟩+ |1⟩√

2

⟨0|+ ⟨1|√
2

+
|0⟩ − |1⟩√

2

⟨0| − ⟨1|√
2

)
=

1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) ,∫ 2π

0

1

2π
(cos θ |0⟩+ sin θ |1⟩) (cos θ ⟨0|+ sin θ ⟨1|) dθ = 1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) .

(2.68)

Second, Equation (2.64) proves that any pure state gives a density operator with an eigenvalue
of one and all the other 0; and putting such a distribution in Equation (2.66) shows that such a
distribution gives a pure state. Therefore, we identify the pure state with the subset of T (H) with
one eigenvalue 1, the others 0.

2.2 Elements of quantum mechanics

The great novelty of quantum mechanics lies in the use of mathematical tools of linear algebra to
represent physics with simple postulates, which we discuss below using [12, 18, 19].

2.2.1 Postulate of quantum mechanics

The State of the system is describe thanks to a density operator ρ̂ ∈ F (H), as explained in
Section 2.1.5.

The measurement on the system in quantum mechanics will be described through Hermitian
operators Â. This justifies the name of observable for Hermitian operators as they represent
physical observable quantities. The equivalence relation between operators and physical quantities
is known as correspondence rule. As observable are Hermitian operators, it is possible to describe
them through their spectral decomposition:

Â =
∑
λ

λP̂λ. (2.69)

The outcomes of a measurement can only be the eigenvalues λ of the observable, and the corre-
sponding probabilities are given by

P (λ) = tr
(
ρ̂P̂λ

)
. (2.70)
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Given this postulate, we can compute the mean value of the measured observable as

∑
λ

λP(λ) =
∑
λ

λtr
(
ρ̂P̂λ

)
= tr

(∑
λ

λρ̂P̂λ

)
= tr

(
ρ̂Â
)
. (2.71)

We will abbreviated this by ⟨Â⟩ρ̂ or ⟨Â⟩. After the measurement, if the outcome of the measurement
is λ, the state of the system will be given by

ρ̂′ =
P̂λρ̂P̂λ

tr
(
ρ̂P̂λ

) , (2.72)

where the denominator ensures normalization. We may note that this kind of measurement is in
fact a particular kind of measurement, the projective (von Neumann) measurements. But there
are several generalizations such as the generalized measurements, or the positive operator valued
measure (POVM), but those will not be used in this thesis.

The postulate on evolution of the system states that the state of the system at time t1, ρ̂t1 ,
and at time t2, ρ̂t2 are related by a unitary U(t1, t2) depending only on t1 and t2. This unitary
can be related to the Hamiltonian in order to satisfy the Liouville–von Neumann equation (the
generalization of the Schrödinger equation for mixtures)

i
∂ρ̂

∂t
= [Ĥ, ρ̂] ⇒ ρ̂t2 = Û ρ̂t1Û

† with Û = exp

(
−i
∫ t2

t1

Ĥdt

)
. (2.73)

2.2.2 Composite quantum systems

In quantum theories, the state of composite quantum systems lies in the tensor product of the
vector spaces Ei associated with each subsystem20

H =
⊗
i

Ei. (2.74)

Then, if {|vij⟩ , ∀j} is a basis of Ei, a basis of H is the collection of vectors {⊗i |viji⟩ , ∀ji}, abbreviated
as {|v1j1 , v

2
j2
, ...⟩}. Note that we will also sometimes drop the commas.

An important difference between quantum and classical theories is that this representation allows
the appearance of new phenomena, with nonclassical correlations in the results of measurements.
This phenomenon is called entanglement, and presents several behaviours that classical systems
could not have, such as non-locality.
Let us describe particular kinds of states. First, if we describe a system where each subsystem is
in a state ρ̂i, then the global state is called a product state and is given by

ρ̂ = ⊗iρ̂i. (2.75)

A more general situation is considering statistical mixtures of product states, a separable state

ρ̂ =
∑
j

pj ⊗i ρ̂
j
i , (2.76)

that is, a non-entangled state.
20It also describes systems with several independent degrees of freedom.
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Now let us consider a particular family of observable, that are the product of observable applied
on each subsystem independently

Ô = ⊗iÔi. (2.77)

Then generally the mean value of this operator cannot be simplified,

⟨Ô⟩ = tr
(
ρ̂Ô
)
= tr

(
ρ̂
(
⊗iÔi

))
, (2.78)

but for separable states, we can separate the mean values of each subsystem

⟨Ô⟩ = tr
(
ρ̂Ô
)
= tr

(∑
j

pj(⊗iρ̂
j
i )(⊗kÔk)

)
=
∑
j

pjtr
(
⊗iρ̂iÔi

)
=
∑
j

pj
∏
i

⟨Ôi⟩
j
. (2.79)

Even further, for product states, it becomes

⟨Ô⟩ =
∏
i

⟨Ôi⟩ .

In this thesis we will also work with a special family of product states which are the copy states. If
Ei = E , ∀i, a product state is a state such that ρ̂i = ρ̂0,∀i:

ρ̂ = ⊗iρ̂0. (2.80)

2.2.3 Bosonic quantum systems

A boson is a particle (or more generally a system, for example a pair of electrons) symmetric with
respect to the exchange of any two bosons. In particular, it is not constrained by Pauli’s exclusion
principle, as several bosons can be in the same state. If H is the Hilbert space for a single boson,
and Ŝ is the symmetrization operator; then N bosons lie in the symmetric space WN = ŜH⊗N . As
we do not fix the total number of particles, the system is described by the direct sum of each space
with a fixed number of particles WN :

F =
∞⊕
N=0

ŜH⊗N . (2.81)

This space is called a Fock space. We call mode the n different degrees of freedom of the system.
A simple basis of the Fock space is the Fock basis, aka occupation number basis, or shortly, the
number basis. The vectors forming this basis are the Fock states, and they are described by the
number of particles in each mode, i.e. the occupation number of each mode. Therefore, we will
write |n1, n2, ..., nn⟩ for the state with n1 ≥ 0 particles in mode |ψ1⟩, n2 ≥ 0 in mode |ψ2⟩, etc. For
instance, with 3 modes

Ŝ (|ψ1⟩ ⊗ |ψ1⟩ ⊗ |ψ3⟩ ⊗ |ψ2⟩ ⊗ |ψ1⟩ ⊗ |ψ3⟩) = |3, 1, 2⟩ . (2.82)

The orthonormality relation reads

⟨n1, n2, ..., nn|n′
1, n

′
2, ..., n

′
n⟩ = δn1,n′

1
δn2,n′

2
...δnn,n′

n
. (2.83)

The vacuum state |0, 0, 0, ...⟩ will be abbreviated by |0⟩.
We can define the annihilation âi and creation â†i operators as

âi |n1, n2, ..., ni, ...nn⟩ =
√
ni |n1, n2, ..., ni − 1, ...nn⟩ (2.84)

â†i |n1, n2, ..., ni, ...nn⟩ =
√
ni + 1 |n1, n2, ..., ni, ...nn⟩ (2.85)
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One can verify that they are each other’s conjugate, and that they follow bosonic commutation
relations:

[âi, âj] = 0, [â†i , â
†
j] = 0, [âi, â

†
j] = δij.

Those operators allow us to relate any Fock state to the vacuum via the following relation

|n1, n2, ..., ni, ...nn⟩ =

(∏
i

√
ni!

−1
(
â†i

)ni

)
|0⟩ . (2.86)

We can also define the number operators as

n̂i = â†i âi, (2.87)

which when applied on a state gives the number of particles in the mode i:

n̂i |n1, n2, ..., ni, ...nn⟩ = â†i âi |n1, n2, ..., ni, ...nn⟩ ,
=

√
niâ

†
i |n1, n2, ..., ni − 1, ...nn⟩

= ni |n1, n2, ..., ni, ...nn⟩ . (2.88)

The total number of particles is then defined as

N̂ =
∑
i

n̂i. (2.89)

For a set of free bosons, each mode can be interpreted as an independent harmonic oscillator with
a total Hamiltonian

H =
∑
i

(
ωin̂i +

1

2

)
(2.90)

where ωi is the frequency of the ith oscillator. We can also define the position and the momentum
operators

x̂i =
âi + â†i√

2ωi
, p̂i = i

√
ωi
â†i − âi√

2
,⇐⇒ âi =

ωix̂i + ip̂i√
2ωi

, â†i =
ωix̂i − ip̂i√

2ωi
. (2.91)

Using these relations for Equation (2.90) leads to

H =
∑
i

ωix̂
2
i

2
+

p̂2i
2ωi

+
1

2
. (2.92)

For convenience, we set wi = 1 for now on.
In this formalism, a particular class of operators are the single-body observables. It is the class
of operators that acts on each particle separately (for instance the kinetic energy, or an external
potential are single body observable, while the potential due to the interaction of two particles is a
two-body observable). This class of observable can be expressed as

T̂ =
∑
ij

â†iTij âj. (2.93)

This formalism describes for instance photons in a black box, or more generally quanta of the
electro-magnetic field [20]. In classical theories the electromagnetic field is described as

E⃗(r⃗, t) =
∑
k⃗,λ

Eke⃗
(λ)
k

[
αk⃗,λe

i(k⃗r⃗−ωkt) + α∗
k⃗,λ
e−i(k⃗r⃗−ωkt)

]
. (2.94)

The quantized vesion of it is obtained by replacing the amplitude factor αk⃗,λ, by an annihilation
operator âk⃗,λ on a mode characterized by its wavenumber k⃗ and a polarisation λ. The complex
conjugate α∗

k⃗,λ
is replaced by the creation operator â†

k⃗,λ
. The quantum field theory, in general, is

then an extension of this formalism to infinitely many modes.
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2.3 Algebras and Lie algebras

In this thesis we will use the Jordan-Schwinger map extensively. This map, developed in Section 3.1,
binds matrices to operators, and preserves the commutation relations. As a vector space with
commutation relations is a Lie algebra, both the space of matrices and the space of operators
created thanks to the Jordan-Schwinger map are Lie algebras, and we will need several of their
properties. All the definitions and notations we will used are adopted from [21].

2.3.1 Definition:

An algebra g is a vector space defined over some field K equipped with of some binary bilinear
operation f : g⊗ g → g : (A,B) → C = f(A,B).
A specific kind of algebra is the Lie Algebra. In this case, the bilinear map f is a Lie bracket,
written, [·, ·] obeying the following postulates:

• Alternativity:
∀g ∈ g : [g, g] = 0, (2.95)

• Jacobi’s identity:
∀g, h, i ∈ g : [g, [h, i]] + [h, [i, g]] + [i, [g, h]] = 0, (2.96)

• Anticommutativity:
∀g, h ∈ g : [g, h] = −[h, g]. (2.97)

Using bilinearity, one can show that the knowledge of the Lie bracket in some basis on the vector
space gi is sufficient to totally determine the action of that given operation (cf. Appendix B.1).
An important example of a Lie algebra is End(V ) with the commutator as Lie bracket for any
vector space V over a field F of finite dimension n. It is of dimension n2, and it will be denoted by
gl(V ). Indeed, the set of all the endomorphisms of V , End(V ) = {f : V → V |f linear} is a vector
space, and the commutator defined with the classical composition law for endomorphisms satisfies
all the required postulates for Lie brackets (cf. Equations (2.43), (2.44) and (2.46)). This algebra,
and any of its subalgebras (a subspace of gl(V ) where [·, ·] is intern) are called linear Lie algebras.

2.3.2 Representations of Lie algebras

A representation of an algebra g is a homomorphism21 ϕ : g → gl(V ). Later in this thesis, if such a
homomorphism ϕ exists, by abuse of language, we will refer to gl(V ) as the representation itself.
The Jordan-Schwinger map being such a representation, the study of propertiesof representations
will be useful in Chapter 4.
First, as any linear operation, it can be defined by its action on a basis. Second, if the Lie bracket
is defined by its action on a basis, then the homomorphism conserves its definition. Explicitly,
for the particular homomorphism ϕ that directly maps the basis {gi} of g on a set {Gi} ∈ gl(V )
(with ϕ0(gi) = Gi∀i ∈ 1, ..., k), the defining properties of the Lie bracket are conserved by the
commutator:

[gi, gj] =
∑
k

fkijgk ⇒ [Gi, Gj] =
∑
k

fkijGk ∀i, j ∈ 1, ..., k cf. appendix B.2. (2.98)

An example of a representation is the identification of endomorphisms in V with matrices by their
action on a basis. The homomorphism used is the canonical homomorphism between gl(V ) and

21A homomorphism ϕ is a linear transformation from ϕ : L→ L′ such that ϕ([x, y]) = [ϕ(x), ϕ(y)].
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the algebra constituted by the set of n× n matrices with entries in F and the Lie bracket gl(n, F )
is the commutator.
Additionally, a representation will be said faithful if the homomorphism is injective.

gi ̸= gj ⇒ ϕ(gi) ̸= ϕ(gj). (2.99)

An example of not faithful homomorphism is the application sending any operator Â to 0. Indeed,
if [Â, B̂] = Ĉ, then [ϕ

(
Â
)
, ϕ
(
B̂
)
] = ϕ

(
Ĉ
)

is automatically verified as [0, 0] = 0 is always true.

2.3.3 Modules

The concept of modules is equivalent to representations. If V is a vector space with an operation
g× V → V : (x, v) → x · v with the following postulates:

• Linearity on Lie algebras elements:

(ax+ by) · v = a(x · v) + b(y · V ), (2.100)

• Linearity on vectors:
x · (av + bw) = a(x · v) + b(x · w), (2.101)

• Lie bracket acts as the commutator:

[x, y] · v = x · y · v − y · x · v. (2.102)

Then V is a g-module.
The connection with representations is immediate: in the representation ϕ : g → gl(V ), gl(V ) is
a g-module where x · v = ϕ(x)(v). Alternatively, the g-module gl(V ) defines the representation
ϕ : g → gl(V ).
Defining modules helps extending the ideas behind representations by adding several concepts. A
submodule W of V is a subspace of V that is a g-module. This is possible if and only if W is an
invariant subspace of V , i.e.

∀x ∈ g,∀w ∈ W ⊆ V : x · w ∈ W. (2.103)

A g-module is irreducible if it has only two submodules, 0⃗ and itself. Those notions will be
helpful to construct a basis of the elements of the Jordan-Schwinger map. An important results on
irreducible modules, is Schur’s lemma. It has several formulations, but we will just note one of its
corrolaries. On irreducible submodules, the only operators commuting with all elements of the
algebra should act proportionally to the identity.

2.3.4 Casimir element of a representation

Let L be any semisimple algebra22, and β any nondegenerate symmetric associative bilinear form
on L. If {xi} is a basis of L, then one can show that there exists one unique other basis {yi} such
that β(xi, yj) = δij. This basis is called the dual basis relative to β.
For a given representation ϕ : L→ gl(V ), one can study the following endomorphism of V

cϕ(β) =
∑
i

ϕ(xi)ϕ(yi). (2.104)

22The semisimplicity is here only to ensure the existence of a non-degenerate trace later. To be semismple, the
algebra should be non-abelian, with no non-zero proper ideals. An ideal i is a subalgebra of g such that [g, i] ⊆ i. It
is proper if i ̸= g and non-zero if i ̸= {⃗0}.
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As shown in Appendix B.3 this endomorphism of V has commutes with ϕ(L), or explicitly

[ϕ(v), cϕ(β)] = 0 ∀v ∈ L (2.105)

In the particular case where β(x, y) = tr (ϕ(x)ϕ(y)) then cϕ = cϕ(β) is the Casimir element of ϕ.
An important remark is that cϕ is not an element of the algebra L or its representation

¬{∀L, V, ∀ϕ : L→ V, ∃v ∈ L|ϕ(v) = cϕ} . (2.106)

And as explained before cϕ commutes with all elements of the representation of L.
One can examine the dual basis of an algebra for β(x, y) = Tr (ϕ(x)ϕ(y)). If M j

i is the basis
change matrix such as yi =

∑
jM

j
i xj, and βij = β(xi, xj)

δij = β(xi, yj) = tr (ϕ(xi)ϕ(yj)) =
∑
k

M k
j tr (ϕ(xi)ϕ(xk)) =

∑
k

M k
j βik =

∑
k

M k
j βki (2.107)

If βij is invertible, then one finds that M = β−1. The condition for βij to be invertible, or even to
exist will be important later, as we will work with Fock space, i.e. non-finite dimensional space
where traces of some operators will diverge; for instance, for a 1-mode oscillator tr(n̂) = ∞.

2.3.5 Relation between Lie algebras and Lie groups

There is a correspondence between Lie groups and Lie algebras; the following section will only give
an idea of this correspondence, but one should be really careful with applying it.
To deduce the algebra associated with a Lie group, one can say that the neighbourhood of the
identity generates the Lie algebra. The Lie algebra is the tangent space to the Lie group at the
identity. As the Lie groups are manifolds, there exists a coordinate system23 {xµ} such that to
each vector xµ corresponds one and only one operator J(xµ); it is possible to fix the coordinates in
such a way that J(0) is the identity. As the manifold is differentiable one can define a notion of a
derivative ∇µ, and define the operators Aµ = (∇µJ)|xµ=0. Those operators will serve as a basis
for the vector space of the Lie algebra, and as they are operators the Lie bracket will simply be
defined as their commutator. Let us note that the derivative should be defined properly such that
Aµ behave as a vector under a change of coordinates. For instance, the groups U(1) or SO(2) are
both equivalent topologically to a circle, therefore their Lie algebra are both 1-dimensional, as
represented in Figure 2.1 a). If there existed some Lie group diffeomorphic24 to a sphere, see b) (it
is not the case), then their algebra would be a plane, and it is the same for toroïdal groups, see c).
SU(2) is diffeomorphic to a 3-sphere, therefore its algebra is 3-dimensional. For flat groups such
as the translation group (which is diffeomorphic to R3), the tangeant space is isomorphic to the
group. Physically, this means that for instance both SU(2) and the translation group have three
generators.
To derive the Lie group from the algebra, one should use the exponential map, which in most cases
in physics can be interpreted as a matrix exponentiation:

exp : g → G : w =
∑
µ

wµAµ → exp(w) = exp(
∑
µ

wµAµ),=⇒ J(wµ) =
∞∑
i=0

(
∑

µw
µAµ)

i

i!
. (2.108)

23An implicit assumption made here is that the manifold can be covered by an unique chart, but this is not
always the case and one should be careful with the topology of manifolds.

24Two topological objects are diffeomorphic to one another if there exists a continuous differentiable isomorphism
with a differentiable inverse between the two.
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Figure 2.1: Topological representations of Lie groups and the related algebras.

2.3.6 Examples of Lie Algebra in physics

Physics is full of Lie algebras. First, as the symmetry groups are Lie groups, the vector space
generated by their generators with the commutation relations deduced from the commutation of
the elements of the groups are Lie algebras. so(3) corresponds to the rotation group SO(3) and
su(2) to the rotation of spin 1/2 particles SU(2). Those are not the only algebras considered in
physics; in each discipline using vector spaces, then, the space of endomorphisms is an algebra and
in quantum mechanics, the spaces of all the observables, of all the projectors or the one of all the
POVMs are subalgebras of that space. If we consider Span(â, â†), the Heisenberg-Weyl algebra
is obtained where the Lie bracket is deduced from [â, â†] = 1. In general relativity theory, the
set of generators of the group of changes of coordinates (the symmetry group considered is the
group of all the coordinate changes, as the equations of general relativity are covariant under any
diffeomorphism), constitutes a Lie algebra.

2.3.7 Properties of su(2)

A particularly important Lie algebra in this thesis and in general in physics is su(2). This algebra
is of finite dimension 3 and for a basis {gi}, the Lie bracket is defined by:

[gi, gj] =
∑
k

i · ϵijkgk (2.109)

In this section we will first present some properties of su(2) and then, we will define the complexified
algebra, and delve in the structure of irreducible modules of this algebra.
Let ϕ be a representation of su(2) such that ϕ(gi) = Gi. First we show that in any representation,
the operators Gi are traceless. Using the classical commutator as Lie bracket, the linearity of the
trace and its invariance under cyclic permutations.∑

k

iϵijktr (Gk) = tr ([Gi, Gj]) = 0 (2.110)

The Casimir operator of su(2) is G2 =
∑
G2
i (up to a normalization)25. We can easily verify that

25It is not easy to show in all generality. It would require to find the dual basis of {gi} according to Section (2.3.4),
but it can be verified for 2-dimensional representations, using the Pauli matrices as a basis of the algebra.
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this operator commutes with each basis element of the representation,

[G2, Gj] =
∑
i

[GiGi, Gj] =
∑
i

Gi[Gi, Gj] + [Gi, Gj]Gi =
∑
i,k

(iϵijkGiGk + iϵijkGkGi)

=
∑
i,k

i(ϵijk + ϵkji)GiGk = 0.
(2.111)

Further calculations will be made using another basis of su(2), which is called the complexified
algebra su(2),

{G+ = G1 + iG2, G− = G1 − iG2, G3} . (2.112)

The Lie bracket in this basis is then given by the following relations
[G3, G+] = [G3, G1] + i[G3, G2] = iG2 + i(−i)G1 = G+,
[G3, G−] = [G3, G1]− i[G3, G2] = iG2 − i(−i)G1 = −G−,
[G+, G−] = i[G2, G1]− i[G1, G2] = i(−i)G3 − i(+i)G3 = 2G3.

(2.113)

We will not describe the structure of irreducible modules of su(2) precisely. If V is a module of
the complexified algebra, then the definition of an eigenvector is similar to the one for operators :
v ∈ V is an eigenvector of G = ϕ(g) of eigenvalue λ ∈ F (R or C for the complexified algebra), if
and only if

Gv = λv. (2.114)

Then, let g3 be an eigenvector of G3 of eigenvalue λ. From this one, other eigenvectors can be
deduced easily, yielding

G3G+g3 = (G+G3 + [G3, G+])g3 = (λ+ 1)G+g3, (2.115)
G3G−g3 = (G−G3 + [G3, G−])g3 = (λ− 1)G+g3. (2.116)

This shows that both G+g3 and G−g3 are eigenvectors of G3, and as they have different eigenvalues
they cannot be the same vectors. Further, this explains why G+ and G− will be called rising and
lowering operators, respectively.
Now if there exists some W as submodule of V , irreducible and finite dimensional, there is only a
finite number of eigenvalues for any g ∈ gl(W ) (at most the dimension of W ). By contradiction
there must exist some eigenvector w0 of eigenvalue λ such that G−w0 = 0. Indeed, by construction
if λ− 1 is a non-zero eigenvalue, nor λ− n ∀n ∈ N, there exists an infinite number of different
eigenvalues. We will note wk = Gk

+wk. By induction, we can deduce

G−wk = −k(2λ+ k − 1)wk−1, (2.117)

as long as wk−1 ̸= 0⃗. Once again there is only a finite number of non-zero eigenvectors, therefore

∃l ∈ N : wl = 0⃗. (2.118)

Lets note wm the last non-zero eigenvector, then:

0⃗ = wm+1 = G+wm+1 = −(m+ 1)(2λ+m)wm. (2.119)

As wm ̸= 0⃗ and m ≥ 0, we have:
λ = −m

2
. (2.120)

With this method, we have constructed m+ 1 vectors w0, ...wm:

G−w0 = 0 and G−wk = −k(k −m− 1)wk−1 ∀k > 0,

G+wm = 0 and G+wk = wk+1∀k < m,

G3wk = (k − m

2
)wk.

(2.121)
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The vector space generated by the wk is of dimension d = m + 1, and is a submodule of W as
G3, G+, G− are intern. As W is irreducible this submodule which is of dimension d > 0 can only
be W itself.
W being an irreducible module of su(2), Schur’s lemma gives that all operators commuting
with each operator of the representation should be proportional to the identity on W . As G2 is
proportional to the Casimir element, it should then behave as the identity:

G2 = G2
1 +G2

2 +G2
3 =

(
G+ +G−

2

)2

−
(
G+ −G−

2

)2

+G2
3 =

G+G− +G−G+

2
+G2

3,

= G−G+ +G3 +G2
3

⇒ G2wk = (−(k + 1)(k −m) + (k − m

2
) + (k − m

2
)2)wk =

(
m

2
+
(m
2

)2)
wk =

d− 1

2

d+ 1

2
wk,

⇒ G2 =
d− 1

2

d+ 1

2
1

(2.122)
Interestingly, the proportionality coefficient is only a function of the dimension of the irreducible
module considered.

2.4 Uncertainty principle

2.4.1 Uncertainty relations

Uncertainty relations, and the uncertainty principle in general, are key findings in quantum theories.
In classical theories, there are no theoretical limitations on the precision one can get for the
measurement of observable quantities, and overall the knowledge of one does not impact the
precision obtainable on another. By opposition, in quantum theories, there exist uncompatible
observables, such that the precision of the measurement of one gives a lower bound on the precision
achievable with the measurement of the other.
The uncertainty principle was first introduced in 1927 by Heisenberg as a tought experiment
consisting of projecting photons on an electron to deduce its position and its momentum [1].
However this method of measurement introduces a little uncertainty on both the position of the
electron (as the photon comports as a wave its position is not precisely defined), and its momentum
(similarly, the direction of the photon is not precisely defined). In this procedure, Heisenberg
showed there was a trade off between both such that

δxδp ≈ 2π, (2.123)

where we set ℏ = 1. Later Kennard formalized this idea in terms of the variance of both probability
distributions over the two quadratures x̂, and p̂ [2],

∆2x∆2p ≥ 1

4
. (2.124)

Where ∆2x and ∆2p are respectively the variance of the probability distributions for the particle
with respect to the quadratures. Formally, he considered that both distributions are Fourier
transform from one another, and deduced this relation as a fundamental property of Fourier
transforms.
Physically, there are two interpretations of uncertainty, Kennard considered that it was an intrinsic
property of states, saying that any physical state has a variance in its position and its momentum.
In opposition, Heisenberg considerd that uncertainty relations describe an error disturbance only
due to the measurement of the system, and Ozawa derived formally his inequality in this sense [22].
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There have been many formulations of this principle. First in 1928 Robertson extended this
principle for any observables Â and B̂ [23], as

∆2Â∆2B̂ ≥ 1

4
|⟨ψ| [Â, B̂] |ψ⟩|2, (2.125)

where if we replace Â and B̂ by x̂ and p̂, with [x̂, p̂] = i we get back Kennard’s result. In
1930, Schrödinger [24] and Robertson [25] both independently improved this relation, to give the
Schrödinger-Robertson inequality

∆2Â∆2B̂ ≥ 1

4
|⟨[Â, B̂]⟩|2 + 1

4
|⟨{Â− ⟨Â⟩ , B̂ − ⟨B̂⟩}⟩|2. (2.126)

If the covariance of two observables is defined as covÂ,B̂ = 1
2
⟨{Â− ⟨Â⟩ , B̂ − ⟨B̂⟩}⟩, with naturally

∆2Â = covÂ,Â, the covariance matrix is the matrix

γÂ,B̂ =

(
covÂ,Â covÂ,B̂
covB̂,Â covB̂,B̂

)
(2.127)

and the Scrhödinger-Robertson inequality becomes

det
(
γÂ,B̂

)
≥ 1

4
|⟨[Â, B̂]⟩|2. (2.128)

Amongst others, a notable family of uncertainty relations are the entropic uncertainty relations.
These are expressed in terms of the entropies of the distributions[26, 27]. For continuous variables
such as x̂ and p̂, the entropy is expressed as

h(f) = −
∫ ∞

−∞
f(x) log f(x)dx. (2.129)

Then Beckner [28], Bialynicki-Birula and Mycielski [4] showed that

h(x) + h(p) ≥ 1 + log π. (2.130)

Entropic uncertainty relations are particularly important as they establish the link with quantum
information theories. Often, they are stronger than the classical Heisenberg relation that can be
deduced from it. Let us note that this formulation has, however, several weaknesses. Schrödinger-
Robertson’s inequality was saturated for all Gaussian pure states, and was invariant under
symplectic transformations26, which is not true for Equation (2.130).Several recent works such as
the one from Hertz et al. try to tackle those weaknesses [10, 30].
Uncertainty relations play a fundamental role in several parts of quantum applications. In quantum
cryptography, many protocols rely on the idea that the sender and the emitter can deduce from the
receiver’s error, the error on an eavesdropper’s side, and deduce the presence of one eavesdropper
or not [5, 6]. There also exists entanglement criteria that use uncertainty relations to check if a
state is entangled [7–9].

2.4.2 Multicopy uncertainty relations

In the article [10], Hertz et al. showed that the Scrödinger-Robertson uncertainty relation could
be deduced from simple relations on multicopy observables (by this we mean multi-mode operators
acting on a copy state). For instance, if we consider the operator

L̂y = x̂1 ⊗ p̂2 − p̂1 ⊗ x̂2 (2.131)
26For more details on this, have a look at [29].
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The positivity of the mean value of L̂2
y on a copy state ρ̂ ⊗ ρ̂ directly implies the Schrödinger-

Robertson inequality for centered states27. This can be generalized to 3-mode observables, allowing
to drop the centered assumption. These results motivate the use of such observables to deduce
uncertainty relations from simple inequalities. For instance, considering their entropy could lead to
stronger entropic uncertainty relations, or considering other states than copy states could lead to
new multi-mode uncertainty relations.

27States for which the mean-value of x̂ and p̂ are null.
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3. Uncertainty relations from the Jordan-
Schwinger map

3.1 Jordan-Schwinger map

The Jordan-Schwinger map is a homomorphism ϕ : h ⊆ gl(n,C) → gl (F(n)) between two
representations of a Lie algebra g of dimension N . More on this mapping can be found in the
initial article of Jordan [31], or in the article explaining how Schwinger used it [32]. Complete
development for su(2) can also be found in [13, 33]. These sources only consider the case of su(2),
but here we will define it for the general case.
h is a subalgebra of gl(n,C), the vector space of n-dimensional square matrices with complex
entries. By definition of a representation, h is of dimension N as g, so if the set of N vectors {gi}
is a basis of g, there exists some set of N matrices {Gi} making a basis of h and obeying the same
commutation rule as the gi’s, as already seen with Equation (2.98):

[gi, gj] =
∑
k

fkijgk ⇒ [Gi, Gj] =
∑
k

fkijGk∀i, j ∈ 1, ..., N. (3.1)

We note that for F(n), i.e. the Fock space of a n-mode harmonic oscillator, gl (F(n)) is the vector
space End(F(n)), the set of all the operators in F (n), with the commutator as Lie bracket. A
basis of this algebra are the n creation and the n annihilation operators {â†1, ..., â†n} and {â1, ..., ân}
with the bosonic commutation relations, i.e.

[âα, âβ] = [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ. (3.2)

The Jordan-Schwinger map can be defined by its action on the basis of h : {Gi} as:

Ĝi ≡
∑
αβ

â†α (Gi)α,β âβ ∀i ∈ [1, ..., N ]. (3.3)

One can then show that the set of the operators Ĝi is a representation of g by proving that the
commutation relation are preserved:

[Ĝi, Ĝj] =
∑
k

fkijĜk ∀i, j ∈ [1, ..., N ]. (3.4)

This is done in Appendix C.1. This also proves that the Jordan-Schwinger map is a homomorphism
as the Lie bracket is conserved. If one wants the operators Ĝi to be observables, the matrices Gi

should be Hermitian, as

Ĝ†
i =

∑
αβ

(
â†α (Gi)α,β âβ

)†
=
∑
αβ

â†β (Gi)
∗
α,β âα =

∑
αβ

â†α (Gi)
∗
β,α âβ. (3.5)

The definition of the Jordan-Schwinger map directly shows that the operators generated thanks
to the Jordan-Schwinger map are only single body observables, as they are all of the form of
Equation (2.93).
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3.2 General strategy

The aim of the first part of this thesis is to derive uncertainty relations for a multimode Hilbert
space using the Jordan-Schwinger map. The idea is to take a matrix, pass it through the Jordan-
Schwinger map, and then use inequalities already known for any operator (more precisely on the
results of their measurements in particular states) to deduce new inequalities on the quadratures x̂
and p̂ (on their measurements in these states). For instance A. Hertz et al. used the image of the
Pauli matrix σy by the Jordan-Schwinger map and considered that its variance should be positive
in a 2-copy state to deduce the classical Schrödinger-Robertson relation [10].
Several inequalities can be identified. For instance, for any observable, the mean square value and
variance of the measurement results should be positive.

⟨Ĝ2⟩ ≥ 0 and ∆2Ĝ ≥ 0. (3.6)

Further the entropy over the distribution of the outcomes of the measurement should also be
positive

S(Ĝ) ≥ 0. (3.7)
As discussed already, a big advantage of the Jordan-Schwinger map is that it preserves the
commutation relations. Let us not consider one matrix, but a set of matrices {Li} such that

[Li, Lj] =
∑
k

fijkLk, (3.8)

then the commutation relations are the same for the operators {L̂i} associated to them, i.e.

[L̂i, L̂j] =
∑
k

fijkL̂k. (3.9)

We can then use the Schrödinger-Robertson on this set of operators as a new suitable inequality:

∆2L̂i∆
2L̂j ≥

∑
k

1

4

∣∣∣fijk ⟨L̂k⟩∣∣∣2 + 1

4

∣∣∣⟨{L̂i − ⟨L̂i⟩ , L̂j − ⟨L̂j⟩
}
⟩
∣∣∣2 . (3.10)

For the particular case of su(2)28 this can be simplified as

∆2L̂i∆
2L̂j ≥

∑
k

|ϵijk|
4

⟨L̂k⟩
2
+

1

4

∣∣∣⟨{L̂i − ⟨L̂i⟩ , L̂j − ⟨L̂j⟩
}
⟩
∣∣∣2 . (3.11)

Alternatively we can use simpler of those inequalities such as for the mean square value

⟨
(
Ĝ1 ± Ĝ2

)2
⟩ ≥ 0 ⇐⇒ ⟨Ĝ2 + Ĥ2⟩ ≥

∣∣∣⟨{Ĝ, Ĥ}⟩
∣∣∣ , (3.12)

or for Schrödinger-Robertson(
∆2Ĝ+∆2Ĥ

)
≥
(
∆2Ĝ

)2
+
(
∆2Ĥ

)2
+

1

2

∣∣∣⟨[Ĝ, Ĥ]⟩
∣∣∣2 + 1

4

∣∣∣⟨{Ĝ− ⟨Ĝ⟩ , Ĥ − ⟨Ĥ⟩
}
⟩
∣∣∣2 . (3.13)

All operators we use are derived from the Jordan-Schwinger map; therefore, they are expressed in
terms of creation and annihilation operators. As Equation (2.91) establishes a clear link between
these operators and the quatratures on each mode, all inequalities can be converted into inequalities
in terms of position and momentum in each mode.
In the following we consider a general state and then particularize to several kinds of state, including
separable, product, and copy states.
In Section 3.3 we demonstrate that this approach does not lead to anything for 1-mode matrices.
In Section 3.4 we derive several novel relations for 2-mode representations of su(2). In Section 3.5
we deduce general inequalities by considering general matrices.

28We consider only representations where L̂i are observables. Their measurement outcomes are then always real.
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3.3 1-mode inequality

1-mode inequalities will not give interesting results; indeed, the only operators that can be created
with the Jordan-Schwinger map are proportional to the occupation number operator:

Ĝ = â†gâ = gn̂ = g(x̂2 + p̂2). (3.14)

As there is only one operator that we can create, all inequalities with more than one operator are
irrelevant. The variance and mean square values of Ĝ are trivially positive.

3.4 2-mode representation of su(2)

We consider Hermitian matrices29 in gl(2,C) such that

Li ≡
σi
2
, (3.15)

where σi are the three Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.16)

Using the Jordan-Schwinger map (cf. Equation (3.3)), the spin matrices become spin operators
given by

L̂1 = L̂x ≡
∑
α,β

â†α (Lx)α,β âβ =
â†1â2 + â†2â1

2
,

L̂2 = L̂y ≡
∑
α,β

â†α (Ly)α,β âβ = i · â
†
2â1 − â†1â2

2
, (3.17)

L̂3 = L̂z ≡
∑
α,β

â†α (Lz)α,β âβ =
â†1â1 − â†2â2

2
.

Using the relations between annihilation and creation operators, and the position, momentum
(Equations (2.91)) and the number operators (Equation (2.87)), the spin observables can be
re-expressed as

L̂x =
x̂1 ⊗ x̂2 + p̂1 ⊗ p̂2

2
, L̂y =

x̂1 ⊗ p̂2 − p̂1 ⊗ x̂2
2

, L̂z =
n̂1 − n̂2

2
=
x̂21 + p̂21 − x̂22 − p̂22

4
. (3.18)

Each operator provides access to information about the position and momentum of the states. In
particular, L̂z is simple to measure with optical circuits as it requires only counting the photon
number in each modes.
Using these expressions we can develop the inequalities given in Section 3.2.

29It is not necessary to consider other 2× 2 representations of su(2), the matrices used n those representations
are linear combinations of the Pauli matrices, therefore the inequalities generated by those new matrices are bilinear
combinations of the one generated by the Paui matrices
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3.4.1 Inequalities from ⟨L̂2
y⟩ ≥ 0

A. Hertz et al. showed that this inequality applied to a 2-copy state is equivalent to the Schrödinger-
Robertson inequality for a centered state. Here, we develop ⟨L̂2

y⟩ ≥ 0 for a general 2-mode state:

0 ≤ ⟨L̂2
y⟩ 0 ≤ 1

4
⟨(x̂1p̂2 − p̂1x̂2)

2⟩ , 0 ≤ 1

4

[
⟨x̂21p̂22⟩+ ⟨p̂21x̂22⟩ − ⟨{x̂1p̂2, p̂1x̂2}⟩

]
,

⇒ 0 ≤ 1

4

[
⟨x̂21p̂22⟩+ ⟨p̂21x̂22⟩ −

1

2
⟨{x̂1, p̂1}{x̂2, p̂2}⟩ −

1

2

]
. (3.19)

Equation (3.19) is an explicit uncertainty relation for a two-mode system. We can particularize
this result for several types of states using the properties of their means presented in Section 2.2.2.
For separable states we find:

0 ≤ 1

4

∑
i

pi

[
⟨x̂21⟩

i ⟨p̂22⟩
i
+ ⟨x̂22⟩

i ⟨p̂21⟩
i − 1

2
⟨{x̂1, p̂1}⟩i ⟨{x̂2, p̂2}⟩i −

1

2

]
, (3.20)

while for product states we get

0 ≤ 1

4

[
⟨x̂21⟩ ⟨p̂22⟩+ ⟨x̂22⟩ ⟨p̂21⟩ −

1

2
⟨{x̂1, p̂1}⟩ ⟨{x̂2, p̂2}⟩ −

1

2

]
, (3.21)

Finally, for copy-states we obtain

0 ≤ 1

4

[
2 ⟨x̂2⟩ ⟨p̂2⟩ − 1

2
⟨{x̂, p̂}⟩2 − 1

2

]
. (3.22)

Which can be rewritten as the classical Schrödinger-Robertson relation

det (γ) ≥ 1

4
, (3.23)

where γ is the covariance matrix for the centered states30,

γ =

(
⟨x̂2⟩ 1

2
⟨{x̂, p̂}⟩

1
2
⟨{x̂, p̂}⟩ ⟨p̂2⟩

)
. (3.24)

This result was already obtained by A. Hertz et al. in [10]. We proved that Equation (3.19)
implies the classical Schrödinger-Robertson inequality, (3.23). Similarly, for the particular case
of centered separable states, we can show that the mean system is indeed submitted to the
Schrödinger-Robertson inequality. If ˆ̄x = x̂1+x̂2

2
and ˆ̄p = p̂1+p̂2

2
, and γ̄ their covariance matrix we

expect that

det γ̄ ≥ 1

16
, (3.25)

using [ˆ̄x, ˆ̄p] = i
2
. If we note γi the covariance matrix on mode i, then

16 det γ̄ = det γ1 + det γ2 + ⟨x̂21⟩ ⟨p̂22⟩+ ⟨x̂22⟩ ⟨p̂21⟩ −
1

2
⟨{x̂1, p̂1}⟩ ⟨{x̂2, p̂2}⟩ ≥

1

4
+

1

4
+

1

2
= 1. (3.26)

This should be true for any state, but we only succeeded in demonstrating it this way for separable
states.
Other way around, even if the Robertson inequality (2.125) trivially implies (3.19) if you consider
Â = B̂ = L̂y, indeed, (

∆2L̂y

)2
≥ ⟨[L̂y, L̂y]⟩ = 0 ⇒ ⟨L̂2

y⟩ ≥ 0. (3.27)

30A centered state is a state such that ⟨x̂⟩ = ⟨p̂⟩ = 0

26



However, we were not able to derive Equation (3.19) in full generality from combinations of
Schrödinger-Robertson inequalities applied to the single-mode quadratures or a combination of
both (for instance, the mean momentum/position of the two modes or the half-difference). If this
was the case, then Equation (3.19) would not give any new insights. In contrast, if we show that it
is not possible to derive Equation (3.19) from simple inequalities, then there is a real novelty in
this equation, giving a coupling between the pairs x̂1, p̂2 and x̂2, p̂1.
Equation (3.20) can be used as an entanglement criterion, as if this inequality is violated, then the
state is not a product state, it is entangled. However, it requires the knowledge of the distribution
pi we do not know in general. Although, Equation (3.21) can be used as an entanglement criterion
for pure states, if this inequality is violated, then the state is not a product state, it is entangled31.
Future research should examine the states saturating Equations (3.19), (3.20), and (3.21). The
classical Schrödinger-Robertson and its symplectic generalization are saturated by all Gaussian
pure states, whereas ours is saturated by eigenstates of L̂y with eigenvalue ly = 0, (which can be
derived using the results in Sections 4.1 and 4.7).

3.4.2 Inequalities from ∆2Ly ≥ 0

This inequality gives very similar results to those obtained in the previous section, and for centered
states, they are exactly the same. Similarly for the centered state, we get back Scrödinger-
Robertson’s inequality.The only difference between the equations in the previous section is an
additional term, non-zero only for non-centered states, such that

⟨x̂21p̂22 + p̂21x̂
2
2⟩ − ⟨x̂1p̂2 + p̂1x̂2⟩2 −

1

2
⟨{x̂1, p̂1}{x̂2, p̂2}⟩ ≥

1

2
. (3.28)

In terms of variance, it becomes

∆2 (x̂1p̂2) + ∆2 (p̂1x̂2)−
1

2
⟨{x̂1, p̂1}{x̂2, p̂2}⟩ − 2 ⟨x̂1p̂2⟩ ⟨p̂1x̂2⟩ ≥

1

2
. (3.29)

This equation and those derived for separable and product states are saturated for all eigenstates
of L̂z.

3.4.3 Inequalities from ⟨L̂2
x⟩ ≥ 0

We now consider L̂2
x. For a general state, the inequality ⟨L̂2

x⟩ ≥ 0 is equivalent to:

1

4

[
⟨x̂21x̂22⟩+ ⟨p̂21p̂22⟩+ ⟨{x̂1, p̂1}{x̂2, p̂2}⟩ −

1

2

]
≥ 0. (3.30)

For separable states we get

1

4

∑
i

Pi

[
⟨x̂21⟩

i ⟨x̂22⟩
i
+ ⟨p̂21⟩

i ⟨p̂22⟩
i
+

1

2
⟨{x̂1, p̂1}⟩i ⟨{x̂2, p̂2}⟩i −

1

2

]
≥ 0, (3.31)

for product states

1

4

[
⟨x̂21⟩ ⟨x̂22⟩+ ⟨p̂21⟩ ⟨p̂22⟩+

1

2
⟨{x̂1, p̂1}⟩ ⟨{x̂2, p̂2}⟩ −

1

2

]
≥ 0, (3.32)

and finally for 2-copy states

1

4

[
⟨x̂2⟩2 + ⟨p̂2⟩2 + 1

2
⟨{x̂, p̂}⟩2 − 1

2

]
≥ 0. (3.33)

31It is not a product state as we considered only pure states.
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The latter inequality is a weaker inequality than the Schrödinger-Robertson inequality. Plugging(
⟨x̂2⟩ − ⟨p̂2⟩

)2 ≥ 0 ⇒ 2 ⟨x̂2⟩ ⟨p̂2⟩ ≤ ⟨x̂2⟩2 + ⟨p̂2⟩2 , (3.34)

and ⟨{x̂, p̂}⟩2 ≥ 0 in the Schrödinger-Robertson inequality, we find

1

2
≤ 2 ⟨x̂2⟩ ⟨p̂2⟩ − 1

2
⟨{x̂, p̂}⟩2 ≤ ⟨x̂2⟩2 + ⟨p̂2⟩2 + 1

2
⟨{x̂, p̂}⟩2 . (3.35)

These inequalities are saturated for the eigenstates of L̂x with lx = 0.
Similarly as for L̂y we had derived the Schrödinger-Robertson for the mean system by adding
inequalities on each mode separately (here Equation (3.33)) and inequality on the global 2-mode
system (Equation (3.31)) gives for separable states

⟨ x̂
2
1 + x̂22
2

⟩
2

+ ⟨ p̂
2
1 + p̂22
2

⟩
2

+
1

2
⟨{x̂1, p̂1}+ {x̂2, p̂2}

2
⟩
2

≥ 1

2
. (3.36)

And for centered states, we obtain an inequality on the mean system

⟨ˆ̄x2⟩2 + ⟨ ˆ̄p2⟩2 + ⟨{ˆ̄x, ˆ̄p}⟩
2

≥ 1

8
. (3.37)

The same way we have proven that (3.33) could be derived from the classical Schrödinger-Robertson
inequality, this relation on the mean system can be derived from (3.25). With this new inequality,
we have derived a new equation for 2-mode systems, which indicates correlations between x̂1x̂2
and p̂1p̂2, but all its consequences are weaker than those of ⟨L̂2

y⟩ ≥ 0 therefore, we conjecture that
Equation (3.30) is weaker than (3.19).
Finally, the results for ∆2L̂x are analogous to those for ⟨L̂x⟩; there is only an additional term that
is nonzero for the centered states.

3.4.4 Inequalities from ⟨L̂2
z⟩ ≥ 0

We can treat L̂z in the same way as we treated L̂x and L̂y:

0 ≥⟨L̂2
z⟩ =

1

16
⟨
(
x̂21 + p̂21 − x̂22 − p̂22

)2⟩
0 ≥ 1

16
(⟨x̂41⟩+ ⟨p̂41⟩+ ⟨x̂42⟩+ ⟨p̂42⟩ − 2 ⟨x̂21x̂22⟩ − 2 ⟨x̂21p̂22⟩

− 2 ⟨p̂21x̂22⟩ − 2 ⟨p̂21p̂22⟩+ ⟨
{
x̂21, p̂

2
1

}
⟩+ ⟨

{
x̂22, p̂

2
2

}
⟩)

0 ≥ 1

16
(⟨x̂41⟩+ ⟨p̂41⟩+ ⟨x̂42⟩+ ⟨p̂42⟩ − 2 ⟨x̂21x̂22⟩ − 2 ⟨x̂21p̂22⟩

− 2 ⟨p̂21x̂22⟩ − 2 ⟨p̂21p̂22⟩+
⟨{x̂1, p̂1}⟩2 + ⟨{x̂2, p̂2}⟩2

2
− 3) (3.38)

If we particularize this equation to copy states, it gives 0 ≥ 0. This shows that not all multi-mode
inequalities obtained by our method will give interesting when applying them to copy states.

3.4.5 Inequalities from ⟨L̂2
x + L̂2

y⟩ ≥ | ⟨{L̂x, L̂y}⟩ | ≥ 0

Let us consider a last equation, which has more than one operator. This equation can be developed
as the sum of those developed for L̂2

x and L̂2
y. This leads to the following results:

⟨(x̂21 + p̂21)(x̂
2
2 + p̂22)⟩ ≥ 1 (3.39)
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This simplifies to
⟨(x̂21 + p̂21)⟩ ⟨(x̂22 + p̂22)⟩ ≥ 1, (3.40)

for product states, and for 2-copy states to

⟨(x̂2 + p̂2)⟩ ≥ 1. (3.41)

This inequality is another consequence of the Schrödinger-Robertson inequality. None of the
inequalities we considered yielded stronger results than the Schrödinger-Robertson inequality.
However, several multimode inequalities were found.

3.5 General case

Let us now consider the general case of a Hermitian matrix G. To simply the expressions, we use
the index notation, which implies summation over repeated indices. Applying the Jordan-Schwinger
map to this matrix gives the operator

Ĝ = â†αGαβâβ, (3.42)

and using Equation (2.91), we can directly express this operator in terms of the single-mode
quadratures, namely

Ĝ =
1

2
(x̂α − ip̂α)Gαβ(x̂β + ip̂β)

=
Gαβ

2
(x̂αx̂β + p̂αp̂β + ix̂αp̂β − ip̂αx̂β)

= R (Gαβ) (x̂αx̂β + p̂αp̂β)−
I (Gαβ)

2
{x̂α, p̂β} , (3.43)

where R and I denote the real and imaginary parts, respectively. As we consider Hermitian matrices,
R (Gαβ) ≡ Rαβ is symmetric and I (Gαβ) ≡ Iαβ is antisymmetric, and they are independent.
Because I is zero for diagonal terms, we can remove the anticommutator and only keep the product
x̂αp̂β. For any operator Ĝ, we have ⟨Ĝ†Ĝ⟩ ≥ 0; in particular, for observables, this becomes ⟨Ĝ2⟩ ≥ 0.
Using this inequality on equation (3.43), we get

⟨(Rαβ (x̂αx̂β + p̂αp̂β)− Iαβx̂αp̂β) (Rγδ (x̂γx̂δ + p̂γ p̂δ)− Iγδx̂γ p̂δ)⟩ ≥ 0 (3.44)

Developing the product leads to the following inequality

RαβRγδ (⟨x̂αx̂βx̂γx̂δ⟩+ ⟨x̂αx̂β p̂γ p̂δ⟩+ ⟨p̂αp̂βx̂γx̂δ⟩+ ⟨p̂αp̂β p̂γ p̂δ⟩)
−RαβIγδ (⟨x̂αx̂βx̂γ p̂δ⟩+ ⟨p̂αp̂βx̂γ p̂δ⟩+ ⟨x̂γ p̂δx̂αx̂β⟩+ ⟨x̂γ p̂δp̂αp̂β⟩)
+IαβIγδ ⟨x̂αp̂βx̂γ p̂δ⟩ ≥ 0

(3.45)

The last term can be simplified to

IαβIγδ ⟨x̂αp̂βx̂γ p̂δ⟩ = IαβIγδ ⟨(x̂αp̂δ)(p̂βx̂γ)⟩

=
IαβIγδ

4
⟨([x̂αp̂δ] + {x̂αp̂δ})([p̂βx̂γ] + {p̂βx̂γ})⟩

=
IαβIγδ

4
⟨(iδα,δ + {x̂αp̂δ})(−iδβ,γ + {p̂βx̂γ})⟩

=
IαβIγδ

4
⟨δα,δδβ,γ − i{x̂αp̂δ}δβ,γ + iδα,δ{p̂βx̂γ}+ {x̂αp̂δ}{p̂βx̂γ}⟩

= tr
(
I2
)
+
IαβIγδ

4
⟨{x̂αp̂δ}{x̂γ p̂β}⟩ ,

(3.46)
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In the last step, we used the antisymmetry of I to cancel the two imaginary terms with coefficient
i. If we insert the imaginary part of the matrix L̂y and develop the sum, we obtain back all the
terms in equation 3.19.
Now, we focus on the terms with two matrices R. We are not able to simplify the terms with four
x̂’s or p̂’s, but we can simplify the two other terms:

RαβRγδ (⟨p̂αp̂βx̂γx̂δ⟩+ ⟨x̂αx̂β p̂γ p̂δ⟩) = RαβRγδ
1

2
⟨{x̂α, p̂γ}{x̂β, p̂δ}⟩ −

3

2
tr
(
R2
)
. (3.47)

The development is written in Appendix C.2. By inserting Lz into this equation, we obtain the
terms in Equation (3.38). However, this expression does not directly yield the expression we
obtained for L̂x, as there are still constants hidden in the couple of commutators at the end of
the equation. Therefore, this result is not yet satisfactory, but we were unable to find a better
simplification.
For terms with both R and I, we were not able to find simplifications either. Putting everything
together, we have the general inequality

3

2
tr
(
R2
)
− tr

(
I2
)
≤RαβRγδ

(
⟨x̂αx̂βx̂γx̂δ⟩+ ⟨x̂αx̂β p̂γ p̂δ⟩+

1

2
⟨{x̂α, p̂γ}{x̂β, p̂δ}⟩

)
−RαβIγδ ⟨{x̂αx̂β + p̂αp̂β, x̂γ p̂δ}⟩ +

IαβIγδ
4

⟨{x̂αp̂δ}{x̂γ p̂β}⟩ ,
(3.48)

with some terms being not simplified. Note that the trace of the square of an antisymmetric
operator is always negative as the eigenvalues of I are all imaginary.

3.6 Outlook

In this chapter, in Section 3.4 we developed several equations for the two mode states, mainly
using the positivity of the mean square value and variance. We did not present inequalities derived
from the Schrödinger-Robertson as we did not succeed in obtaining satisfactory expressions. In
future studies, one should continue to investigate these inequalities and try to apply them to more
modes. We also left open the question of saturating states because we needed the tools developed in
Chapter 4. These tools will also be useful for developing inequalities in the entropy of measurement
outcomes.
We then investigated more general uncertainty relations, where we performed calculations for
general matrices. However, we were not successful in simplifying all terms.
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4. Relating number and spin eigenstates

Several questions raised in the last chapter require a connection between the number basis and the
spin basis. Indeed, the states saturating the inequalities for the spin-like observables are easy to
find in the eigenbasis of those operators, but not in the number basis. Similarly, computing the
entropy of one of these spin operators requires knowledge of their eigenbasis. Further, as there are
many well-known results on finite dimensional, and particularly spin systems, whose analogs for
continuous variable systems have not yet been found, this research could provide new insights on
how to transfer those properties and help understand the behavior of continuous variable systems.
Beyond the entropic uncertainty relations, M. Arnhem, C. Griffet and N. Cerf raised the need for
such relationships since 2022 [34–36]. This motivates the investigation of the relation between the
spin basis and the number basis. We will develop the basis corresponding to the CSCO containing
(among others) the operators L̂2 and L̂z, and the change of basis in relation to the CSCO containing
the number operators of each mode. In Section 4.1 particular cases of one and two modes are
considered, and a more general procedure is described for n-mode systems in Section 4.4. In this
chapter the representation of su(2) considered is always the one with the matrix Lz being diagonal,
shortly this will be called as the diagonal representation of su(2). A more general treatment for
L̂x, L̂y, or other bases of the representation of su(2) obtained by Jordan-Schwinger can be derived
from Section 4.7, where the effects of unitaries and rotations in the spin space are discussed.

4.1 Low dimension cases

For particular cases of 1- and 2-mode systems, the relations between the number and spin basis are
trivial or already described in the literature. In this section, we review these relations and provide
several remarks to foreshadow their generalization.

4.1.1 1-mode systems

The particular case of 1-mode systems is trivial because L̂i = L̂2 = 0̂32. All states are eigenstates
of these operators, and they all share the same eigenvalue (or quantum number) 0. The entire
Hilbert space is an eigenspace for these operators. Neither L̂i nor L̂2 helps distinguish different
eigenvectors; they will not be useful in the construction of the basis. We arrive at the same
conclusion, considering that observables L̂i and L̂2 commute with all operators and do not add any
information on a common basis. Consequently, adding or removing those operators from a set of
observables does not affect the general commutation or its completeness. L̂i and L̂2 are irrelevant
to any CSCO.

4.1.2 2-mode systems

2-mode systems are also a particular case, as we show at the end of this subsection that {L̂2, L̂z}
forms a CSCO. In Section 2.3.7, we already showed that for any representation of su(2), L̂2 and
L̂z commute, we only need to show that their respective quantum numbers are sufficient to fully

32In Section 3.3, we said that all the 1-mode operators generated with the Jordan-Schwinger map are proportional
to the number operator. As the one dimensional matrix representation of spin is given by L̂i = (0), the proportionality
coefficient is 0.
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describe a basis. To establish the common eigenbasis of {L̂2, L̂i} we examine their eigenspaces and
intersections, see e.g. [13].
Let us define |v⟩ =

∑
n1,n2

vn1n2
|n1, n2⟩ as a common eigenvector of L̂2 and L̂z, associated with

the eigenvalues λ and λz, respectively. First, we compute λ by computing the matrix elements of
⟨n1, n2|L̂2|v⟩ for any vector |n1, n2⟩ of the number basis.

⟨n1, n2|L̂2|v⟩ = ⟨v|L̂2|n1n2⟩
∗
,

λ ⟨n1, n2|v⟩ = ⟨v| n̂1 + n̂2

2

(
n̂1 + n̂2

2
+ 1

)
|n1, n2⟩

∗

=
n1 + n2

2

(
n1 + n2

2
+ 1

)
⟨v|n1, n2⟩∗

=
n1 + n2

2

(
n1 + n2

2
+ 1

)
⟨n1, n2|v⟩

⇒ λ =
n1 + n2

2

(
n1 + n2

2
+ 1

)
, or ⟨n1, n2|v⟩ = 0, ∀n1, n2 ∈ N. (4.1)

Defining l = n1+n2

2
, we obtain the expression of the eigenvalues of L2 analog to the common

descriptions of spin systems:
λ = l · (l + 1). (4.2)

We use l as a quantum number associated with the observable L̂2. Equation 4.1 indicates that the
subspace associated with a given eigenvalue λ = l · (l+ 1), E l

L̂2 , is a subspace with n1 + n2 fixed. In
other words, it is an eigenspace of the total particle number operator of particles N̂ =

∑
i n̂i (this

illustrates the importance of N̂ in the discussion). We can reformulate the condition for a vector
|v⟩ to belong to E l

L̂2 as
|v⟩ ∈ E l

L̂2 ⇔ vn1n2 ∝ δl(n1+n2)/2
. (4.3)

At this point, we introduce a representation that will be helpful for understanding what happens
in higher dimensions. In Figure 4.1, we present all vectors of the number basis in a lattice, where
the coordinates of each point are the occupation numbers of each mode. In this representation, the
vectors spanning E l

L̂2 are given by the isolines of the function l = N
2
= n1+n2

2
, as shown in the left

plot in Figure 4.2. Physically, this implies that the spin of the system is equal to the mean number
of particles.
Similar to the computation of the eigenvalues of L̂2, we now compute λz based on the matrix
element ⟨n1n2|L̂z|v⟩.

⟨n1, n2|L̂z|v⟩ , = ⟨v|L̂z|n1, n2⟩
∗

λz ⟨n1, n2|v⟩ = ⟨v| n̂1 − n̂2

2
|n1, n2⟩

∗

=
n1 − n2

2
⟨v|n1, n2⟩∗

=
n1 − n2

2
⟨n1, n2|v⟩

⇒ λz =
n1 − n2

2
, or ⟨n1, n2|v⟩ = 0, ∀n1, n2 ∈ N. (4.4)

Further, we will use indiscriminately λz and lz, the first is the eigenvalue of L̂z, and the second is
the quantum number associated, but in this particular case, they are equal. The eigenvalues of L̂z
are then n1−n2

2
and the eigenspaces are subspaces with n1 − n2 fixed. The condition to belong to a

specific eigenspace E lz
L̂z

becomes

v ∈ E lz
L̂z

⇔ vn1n2 ∝ δlz(n1−n2)/2
. (4.5)
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Figure 4.1: Lattice representation of the vectors in the number basis for 2-mode systems.

We again represent the eigenspaces in the lattice representation. E lz
L̂z

is now represented by the
isolines of the function lz = n1−n2

2
, as shown in the right plot of Figure 4.2. The projection of the

spin is given by half the difference between occupation numbers.
Finally, the intersections of the eigenspace of L2 corresponding to a given value l and the eigenspace
of Lz of eigenvalue lz are given by

v ∈ E lz
L̂z

∩ E l
L̂2 ⇔ vn1n2 ∝ δlz(n1−n2)/2

δl(n1+n2)/2

⇔ vn1n2 ∝ δl+lzn1
δl−lzn2

. (4.6)

We can use this to express |v⟩ with the two quantum numbers l and lz:

|v⟩ =
∑
n1,n2

vn1n2
|n1n2⟩

∝
∑
n1,n2

δl+lzn1
δl−lzn2

|n1n2⟩

∝ |l + lz, l − lz⟩ . (4.7)

This relation allows us to fully describe a vector |v⟩ using the knowledge of l and lz. All vectors
of the common basis of L̂2 and L̂z are fully determined by knowledge of these quantum numbers.
Similarly, given that |lz| ≤ l, any pair of l and lz describes only one vector of the Hilbert space.
This demonstrates the completeness of the set of commuting observables, {L̂z, L̂2}. We can also
establish an explicit relation between what we call the spin basis (denoted by the index s) and the
number basis (which will, from now on, be noted by the index n):

|l, lz⟩s = |l + lz, l − lz⟩n ⇐⇒ |n1, n2⟩n = |n1 + n2

2
,
n1 − n2

2
⟩
s
. (4.8)

This relation is illustrated in Figure 4.3, where two intersections are shown: the intersection of E3
L̂2

(red line) and E−1

L̂z
(blue line) corresponds to the state |2, 4⟩n as expected. The intersections of E4

L̂2

and E3/2

L̂z
determine the state |5.5, 2.5⟩ according to the rules given by Equation (4.8); however, this
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Figure 4.2: Lattice representation of the elements of the number basis spanning E l
L̂2 on the left,

and E lz
L̂z

on the right

is not a real state. Thus, we need to add the habitual selection rule stating that if the spin is an
integer, then the projection is also an integer, and similarly, for half integers. This completes the
construction of the spin basis for 2-mode systems. Before moving to the general case, we provide
some remarks. The creation of an appropriate CSCO containing the operators L̂2 and L̂z is related
to the decomposition of the Hilbert space H, which is viewed as a module of su(2) in submodules
and, more precisely, irreducible submodules in the particular case of the 2-mode system.
The eigenspace E l

L̂2 is indeed a submodule of su(2). In this case, for any |v⟩ ∈ E l
L̂2 and for any

operator Ĝ in the Jordan-Schwinger representation of su(2), the application of Ĝ on |v⟩ is intern
in E l

L̂2 . To demonstrate this, we use that L̂2 is the Casimir element of the representation and,
therefore, commutes with all the elements of the algebra:

L̂2Ĝ |v⟩ = ĜL̂2 |v⟩ = l(l + 1)Ĝ |v⟩ ⇒ Ĝ |v⟩ ∈ E l
L̂2 . (4.9)

The application of Ĝ is intern to E l
L̂2 , which proves that the eigenspace of L̂2 is a su(2)-submodule.

As we only used the property that L̂2 commutes with each operator in the algebra, we can show in
the same way that the eigenspaces of any operator commuting with all the elements of the algebra
are submodules of the algebra.
Moreover, we can show that E l

L̂2 is an irreducible submodule. In Section 2.3.7, we have proven that
for an irreducible submodule of dimension d, we get

L̂2 =
d− 1

2

d+ 1

2
1̂, (4.10)

and the eigenvalues of L̂z are the d values from −d+1
2

to d−1
2

in steps of one. In the last paragraph,
we showed that E l

L̂2 is a submodule and we only have to prove its irreducibility. On the subspace
E l
L̂2 , the action of L̂2 is proportional to the identity

L̂2 |v⟩ = l(l + 1)1̂ |v⟩ , (4.11)

with l = n1+n2

2
. By comparing Equations (4.10) and (4.11), we find that for all irreducible

submodules included in E l
L̂2 , their dimension is d = 2l + 1 = n1 + n2 + 1. However, the dimension
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Figure 4.3: Intersections of the eigenspaces of E l
L̂2 and E lz

L̂z

of E l
L̂2 itself is d = 2l + 1 = n1 + n2 + 1 (as it is spanned by 2l + 1 vectors with lz running from −l

to +l). Comparing these two dimensions, we see that the submodule E l
L̂2 can be decomposed into

only one (nontrivial) submodule: itself. This is sufficient for proving that E l
L̂2 is irreducible.

In the following sections, to create a basis, we first decompose the Hilbert space H into irreducible
submodules of the algebra and use the quantum number associated with L̂z to determine the basis
for those submodules. This procedure has several advantages. First, the operators discriminating
the submodules will not only commute with L̂z but also with all Ĝ ∈ g. This will simplify the
expressions of the actions of these operators by concentrating on their action on the submodules.
For instance, this construction will also facilitate the change of basis into a basis related to L̂x or
L̂y as we can restrict ourselves to the base change inside the submodules only.
The last remark is the particular role of the operator N̂ . Indeed Equation (4.1) shows that the
eigenspaces of N̂ and L̂2 coincide, and that the eigenvalues are related to each other by the relation

λ =
N

2

(
N

2
+ 1

)
. (4.12)

This is enough to conclude that

L̂2 =
N̂

2

N̂ + 2 · 1̂
2

, (4.13)

but this equation can also be explicitly demonstrated (cf. Appendix D.1). This result implies that
N̂2 commutes with L̂2 and L̂i ∀i for 2-mode systems. Hence, the eigenspaces of N̂ are submodules
of the algebra. In the following section, we demonstrate amongst other that this is also the case
for n-mode systems.
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4.2 Prerequisite discussion on basis relations

Before describing the general algorithm for deducing the spin basis from the number basis, several
prerequisites must be discussed.

4.2.1 Counting quantum numbers

Intuitively, we can assume that for an n-mode system, n quantum numbers are necessary to fully
describe the state of the Hilbert space. Indeed, in the number basis, the n occupation numbers
ni giving the number of particles in mode i each describe one basis vector. Nevertheless, this
statement is generally false, and the general algorithm uses at most four quantum numbers. To
understand how this is possible, we present a small example with the 2-mode Hilbert space and
the number basis. Each basis vector can be represented on a lattice as presented in Figure 4.4 on
the left. We can number the states as shown on the right-hand side of the figure; in such a case,

Figure 4.4: Schematic representation of all basis state of a 2-mode Hilbert space on a lattice using
the quantum number associated with the number basis (left) and with a simple consecutive

numbering (right).

each state is perfectly defined by the new number associated with it and hence, this number can
be considered a quantum number describing the state. The map used is explicitly given by

ϕ : N2 → N : (n1, n2) → i =
(n1 + n2)(n1 + n2 + 1)

2
+ n1 + 1. (4.14)

Now, we rename the state |n1, n2⟩ as |i⟩ where i is the number associated with couple |n1, n2⟩ by
the map presented in Figure 4.4. Finally, we define the operator Ô

Ô =
∑
i

i |i⟩ ⟨i| , (4.15)

such that the set {Ô} is a CSCO on its own, equivalent to {n̂1, n̂2} because of the one-to-one
connection between quantum numbers i and couples (n1, n2). Note that this is possible because
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the eigenvalues of n̂1 and n̂2 are infinitely degenerated. By contrast, for {Ô} no eigenvalues are
degenerated. This is because the cardinals of N and N2 are equal and are denoted by ℵ0, and
the renumbering map in this section is only a bijection between N and N2 which was proposed
by Cantor in his first work on cardinality[37]. He also proved the existence of such bijections for
complete sets, using the decimal or the binary notations of the numbers, or space-filling curves [38].
These bijections are, however, not bicontinuous. A further look at set theory considerations can be
enriching. For instance, we can show that not all continuous-variable states33 could be represented
by a countable basis, as the cardinal of the set of such functions is ℵ2 = 2ℵ1 = 22

ℵ0 ̸= ℵ0. Only
adding the condition that the state is normalizable will not work either, indeed the cardinality
of the set of all these spaces (it corresponds to the set of the square-summable functions) is
the cardinality of the continuum ℵ1 = 2ℵ0 and not ℵ0 the cardinality of countable sets. Finally,
adding the restriction that the state should be continuous (the wave function is a square-summable
continuous function) provides the right cardinality. This is in line with the classical considerations
of quantum mechanics, which impose the continuity of the wave function.

4.2.2 Eigenspaces of N̂

As mentioned in Section 4.1.2, the eigenspaces of any observable Ô that commutes with all elements
of the algebra are submodules of the algebra. Indeed, let |v⟩ ∈ Eo

Ô
, then ∀Ĝ ∈ ϕ(su(2))

ÔĜ |v⟩ = ĜÔ |v⟩ = oĜ |v⟩ . (4.16)

Because the application of Ĝ is intern to Eo
Ô

for all Ĝ, Eo
Ô

is a submodule. Now, we can demonstrate
that N̂ commutes with all the operators generated through the Jordan-Schwinger map. The proof
is provided in Appendix D.2, but we present here a more elegant way to demonstrate this. N̂ is
the application of the Jordan-Schwinger map to the identity, namely:

ϕ(1) =
∑
αβ

â†αδαβâβ =
∑
α

â†αâα = N̂ .

As shown in Appendix C.1 the Jordan-Schwinger map preserves commutation relations. However,
the identity commutes with any matrix. Therefore, the total number of particles operator commutes
with all operators obtained using the Jordan-Schwinger map. This implies that the eigenspaces of
the total number operator are submodules of the algebra.

4.2.3 Sufficiency of the CSCO {L̂z, N̂}
One could expect that there exists a representation obtained using the Jordan-Schwinger map
that behaves similarly for n-mode states as for the 2-mode states. We look for a specific matrix
representation such that the subspace WN = {|ψ⟩ : N̂ |ψ⟩ = N |ψ⟩} is an irreducible submodule of
the algebra. If this is the case, then the value of l is fixed by the value of N (as Schur’s lemma
indicates that on an irreducible submodule, L̂2 acts proportionally to the identity, we then have
L̂ = f(N̂)), and each state in the submodules can be directly distinguished by their eigenvalue L̂z.
In Section 2.3.7, we proved that the action of L̂2 on an irreducible submodule of dimension d is
proportional to the identity and that the coefficient of proportionality is d−1

2
d+1
2

. The dimension of
WN is actually a combinatorial question: how many distributions of N balls in n bins do exist? It
is a problem similar to the number of combinations with repetition, for which the formula is

d =

(
n+N − 1

N

)
=

(n+N − 1)!

N !(n− 1)!
= O(Nn−1). (4.17)

33The state is not continuous, it is expressed in terms of continuous variables, but the wave function does not
need to be continuous
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This means that if WN is irreducible, then L̂2 should be given by

L̂2 =
∑
N

1

4

(
(n+N − 1)!

N !(n− 1)!
+ 1

)(
(n+N − 1)!

N !(n− 1)!
− 1

)
P̂N , (4.18)

where P̂N denotes the projector onto WN . When replacing n by 2 for the 2-mode system, it
becomes

L̂2 =
∑
N

1

4
(N + 2) (N) P̂N =

N̂

2

(
N̂

2
+ 1

)
. (4.19)

We obtained the same result by explicitly developing it. More generally, Equation (4.18) gives the
order of L̂2 with respect to N̂ , explicitly, we have34

L̂2 = O(N̂2(n−1)), (4.20)

If we consider the expression of L̂2 in the Jordan-Schwinger map

L̂2 =
∑
α,β,γ,δ

(∑
i

(Li)αβ(Li)γδ

)
â†αâβâ

†
γ âδ, (4.21)

only two pairs of â†â appear, which creates operators only in O(N̂2). This shows that, in the
Jordan-Schwinger map, WN can be an irreducible module only if n ≤ 2. This being said, two
options exist, decomposing WN in submodules (see Section 4.4) or finding a generalization of the
Jordan-Schwinger map (discussed in Appendix D.3).

4.3 Dimension of the eigenspaces of L̂z
Before establishing a connection between the number basis and the spin basis for the general case,
we need to examine the eigenstructure of the operator L̂z.

4.3.1 Eigenvalues of L̂z
In this section, we consider the particular case where Lz is diagonal. Other representations can be
deduced using unitaries, see Section 4.7. In this matrix representation35, (Lz)αβ can be expressed
as

(Lz)αβ = δαβ

(
α− (n+ 1)

2

)
∀α, β ∈ {1, .., n}. (4.22)

Through the Jordan-Schwinger map this gives directly

L̂z =
n∑
i=1

(i− (n+ 1)

2
)n̂i =

n∑
i=1

in̂i −
(n+ 1)

2

n∑
i=1

n̂i =
n∑
i=1

in̂i −
(n+ 1)

2
N̂ . (4.23)

Applying this operator to any vector of the number basis shows that the number basis is an
eigenbasis of L̂z

L̂z |k1, ..., kn⟩ =

(
n∑
i=1

i · n̂i −
(n+ 1)

2
N̂

)
|k1, ..., kn⟩ ,

34More precisely, one should say λ = O(N2(n−1)).
35The convention used in this chapter places the eigenvalues of lz in ascending order in order to facilitate the

calculations and interpretation of the combinatorial results we will be using. This convention is the opposite of that
used in the literature.
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=
n∑
i=1

i · n̂i |k1, ..., kn⟩ −
(n+ 1)

2
N̂ |k1, ..., kn⟩ ,

=
n∑
i=1

i · ki |k1, ..., kn⟩ −
(n+ 1)

2

n∑
i=1

ki |k1, ..., kn⟩ ,

=

(
n∑
i=1

i · ki −
(n+ 1)

2

n∑
i=1

ki

)
|k1, ..., kn⟩ . (4.24)

If N is the total number of particules, then the eigenvalue associated with each vector of the
number basis is

lz =
n∑
i

i · ki −
(n+ 1)N

2
. (4.25)

This is the sum of the number of particles in each mode weighted by the number associated with
the mode, up to an additive constant that depends only on the number of modes and the total
number of particles.

4.3.2 Analogous combinatorials problems

The next question that arises in the study of this operator’s eigenstructure is the degeneracy degree
of each value. Let us define g̃(n,N, lz) as the degeneracy of the eigenvalue lz of the operator L̂z
acting on WN , which is the subspace of the Hilbert space Hn with a fixed total number of particles
N . In other words, this is the dimension of the intersection of the eigenspace of L̂z with eigenvalue
lz and WN . The problem of determining g̃(n,N, lz) can be related to a combinatorial problem.
First, let us rewrite Equation (4.25) as

lz =
n∑
i=1

(
i− n+ 1

2

)
ni. (4.26)

This expression can be seen as N indistinguishable (in a quantum sense) balls distributed in n
boxes labelled by a score (i− n+1

2
), lz is the total score computed by adding the number of balls ni

in each box, weighted by the score of the box. This is presented on the left of Figure 4.5. Each
box contains a certain number of balls. In the figure on the right, this is particularized for the case
of 5 modes (5 boxes) and 6 particles (6 balls). With this particular distribution of the balls, the
scored obtained is

(−2) · 0 + (−1) · 3 + 0 · 1 + 1 · 1 + 2 · 1 = 0. (4.27)
Hence, it corresponds to the eigenvalue lz = 0 for the vector associated to this distribution, which
is equivalent to saying that

L̂z |0, 3, 1, 1, 1⟩n = 0. (4.28)

As ˜g(n,N, lz) is the number of distributions of the N balls in the n boxes that gives a score lz, we
can write that

g̃(n,N, lz) = #

{
k⃗ ∈ Nn|

n∑
i=1

ki = N,

n∑
i=1

(
i− n+ 1

2

)
· ki = lz

}
, (4.29)

where a constant factor
(
−n+1

2

)
appears. For the remainder of this section, we can make this disap-

pear by renumbering the boxes for simplicity: we define U(n,N, u) as the number of distributions
of N balls in n boxes numbered from 1 to n giving a score u, and T (n,N, t) as the number of
distributions of N balls in n boxes numbered from 0 to n− 1 giving a score t.{

U(n,N, u) = #{k⃗ ∈ Nn|
∑n

i=1 ki = N,
∑n

i=1 i · ki = u}
T (n,N, t) = #{k⃗ ∈ Nn|

∑n
i=1 ki = N,

∑n
i=1(i− 1) · ki = t}

(4.30)
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Figure 4.5: Illustration of the combinatorial problem equivalent to the computation of the
degeneracy of lz, in the general case (left) and for the particular case of 5 modes and 6 particles

(right).

This is schematically presented for the general and a particular case in Figure 4.6.

Figure 4.6: Schematic representation of U(n,N, u) and T (n,N, t) in a general case, and the
particular case of 5 boxes and 6 balls.

As we only renumbered the boxes, it is easy to relate these three quantities by modifying the total
score, which gives the following relations:{

g̃(n,N, lz) = U(n,N, lz +
(n+1)N

2
)

T (n,N, t) = U(n,N, t+N)
(4.31)

In Figure 4.7, we present all combinations of 6 balls in 5 boxes, giving a score of u = 13, t = 7 or
lz = −5, to exemplify Equations (4.31). It is important to emphasize that this is the only possible
combination, and that exchanging two balls does not count for a new combination. In contrast
to classical combinatorial problems, we find here the statistics of bosons that were considered for
the Jordan-Schwinger map. To compute these quantities, we attempted to find several recurrence
relations. For instance, we can express U(n + 1, N, u) using induction. Equation 4.31 can be
written as

U(n+ 1, N, u) = T (n+ 1, N, u−N). (4.32)

T (n+ 1, N, u−N) is the number of ball distributions in the (n+ 1) boxes numbered from 0 to n
giving the total score u−N . These distributions can be separated into N +1 sets according to the
number of balls in the first box (numbered 0). In the kth set, there will only be distributions such
that there are k balls in box 0 and N − k balls in the others (then numbered from 1 to n), with k
going from 0 to N . That is, the number of distributions of N balls in n+ 1 boxes is the number
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Figure 4.7: All combinations of 6 balls in 5 boxes giving a score of u = 13, t = 7 or lz = −5.

of distributions with all the balls in the n last boxes (and the right score), plus the number of
distributions with 1 balls in the first box and N − 1 in the others, plus the number of distributions
with 2 balls in the first box, etc. until all the balls are in the first box (always with the constraint
to have the right score). The cardinal of the set of distributions giving the score u−N is the sum
of the cardinal of each of those subsets (giving the score u−N and with k balls in the first box)

T (n+ 1, N, u−N) =
N∑
k=0

#{k⃗ ∈ Nn+1|
n+1∑
i=1

ki = N,

n+1∑
i=1

(i− 1) · ki = u−N, k1 = k}. (4.33)

The number of balls in the first box (numbered by 0) does not impact the score in this configuration;
therefore, we can forget this box and only consider the N − k balls in the other boxes. The total
score should stay equal to u−N

T (n+ 1, N, u−N) =
N∑
k=0

#{k⃗ ∈ Nn|
n+1∑
i=2

ki = N − k,
n+1∑
i=2

(i− 1) · ki = u−N}. (4.34)

To be more precise, there is only one way to place k balls in box 0, owing to the indistinguishability
of the balls; if it was not the case we should multiply each terms in the summation by the number
of possibilities to place k balls in this one box. Now, we count the number of possibilities of
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placing N − k balls in n boxes numbered from 1 to n realizing a score u −N . This quantity is
U(n,N − k, u−N). Indeed, it can be seen by making a change of variables in the last equation

T (n+ 1, N, u−N) =
N∑
k=0

#{k⃗ ∈ Nn|
n∑
i=1

ki = N − k,

n∑
i=1

i · ki = u−N}

=
N∑
k=0

U(n,N − k, u−N) (4.35)

Finally, we obtain the recurrence relation

U(n+ 1, N, u) =
N∑
k=0

U(n,N − k, u−N), (4.36)

with the initial condition
U(1, N, u) = δN,u. (4.37)

This condition implies that if there is one box (with score 1) and N balls, then the total score is
necessarily u = N . We can examine how this relationship works by computing the first steps:

U(2, N, u) =
N∑
k=0

U(1, N − k, u−N) =
N∑
k=0

δN−k,u−N =
N∑
k=0

δk,2N−u

=

{
1 if u ∈ [N, 2N ],
0 else. (4.38)

Note the small notation abuse, as this function is also 0 if u is not an integer. Finally, for three
boxes, we obtain

U(3, N, u) =
N∑
k=0

U(2, N − k, u−N),

=
N∑
k=0

1 if u−N ∈ [N − k, 2(N − k)],

= #

(
N ∩ [0, N ] ∩ [2N − u,

3N − u

2
]

)
,

=


⌊
2+u−N

2

⌋
if u ∈ [N, 2N ],⌊

2+3N−u
2

⌋
if u ∈ [2N, 3N ],

0 else,
(4.39)

where ⌊·⌋ is the floor function. In Appendix D.4, the recurrence relations are implemented in a
simple code to compute an array containing all the values of U(n,N, u).
It should be noted that there exist other problems with a combinatorial logic similar to the one
we discussed. For instance, U(n,N, u) is the number of combinations of N indistinguishable dices
with n faces yielding the total score u. This is different from the classical dice counting problem,
as the dice is now indistinguishable in a quantum manner.

4.3.3 Links with the q-binomial coefficients

The recurrence relation we obtained in the previous section is functional but not efficient, as it
relies on a sum of N terms at each step (for a depth of one, there are N terms in the summation,
O(N2) in the second step, etc.), which gives a final complexity of the order of O(Nn). Therefore,
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we will develop another recurrence relation, which will be easier to compute, and that we will be
able to link with already known coefficients, namely, the coefficients of the q-binomial polynomials.
The distributions counted by U(n,N, u) can be separated into two subsets: those with at least one
ball in the first box, and those with no balls in the first box. The first category was counted by
U(n,N − 1, u− 1). Indeed, if we consider that there is always one ball in the first box, we cannot
consider this ball anymore (there are N − 1 balls left), and we have to subtract the points it gave
to the total score (u− 1). The second category is represented by U(n− 1, N, u−N). Indeed, there
are no balls in the first box; therefore, we should only consider (n− 1) boxes. There are still N
balls, but the score on the boxes are now 2, ..., n, renumbering the boxes into 1, ..., n − 1 which
gives back the expression of U when changing the final score to u−N (the N balls have lost a
point). This leads to the following relation

U(n,N, u) = U(n,N − 1, u− 1) + U(n− 1, N, u−N). (4.40)

The initial condition needed is the following

U(n, 0, α) = U(1, N, α +N) = δα0. (4.41)

If there are 0 balls, the score should be 0; if there is only 1 box, then the score is the number of
balls. Appendix D.4 implements these relations to directly compute the value of U and adapts
it to find all the distributions of the balls. The idea is this time to find the U(n,N − 1, u − 1)
combinations with at least one ball in the first box, by considering U(n,N − 1, u− 1) for (N − 1)
balls with a score (u−1), and then adding one ball in the first box; similarly, for U(n−1, N, u−N)
combinations with no balls in the first box, by taking U(n− 1, N, u−N) for N balls in (n− 1)
boxes, with a score (u−N), and then adding one empty box in front.
Let us now use these relations to show that there is a link with the q-binomial (sometimes called
Gaussian binomial) coefficients that are already known and tabulated. All of their properties and
some tables are provided in [39].
For reminder, the binomial coefficients are defined through the following recurrence relation(

n
j

)
=

(
n− 1
j − 1

)
+

(
n− 1
j

)
∀1 ≤ j ≤ n− 1, (4.42)

with the explicit form being (
n
j

)
=

n!

j!(n− j)!
. (4.43)

The Gaussian binomial coefficients are polynomials in q defined in a similar way by[
n
k

]
q

=

[
n− 1
k − 1

]
q

+ qk
[
n− 1
k

]
q

∀1 ≤ k ≤ n− 1, (4.44)[
n
k

]
q

=qn−k
[
n− 1
k − 1

]
q

+

[
n− 1
k

]
q

∀1 ≤ k ≤ n− 1. (4.45)

Note that these relations are equivalent and that one is sufficient to determine the value of the
bracket. The initial values are given by[

n
0

]
q

=

[
n
n

]
q

= 1. (4.46)

An explicit form of the q-polynomial is given by[
n
k

]
q

=

k(n−k)∑
α=0

C(n, k, α)qα =
[n]q!

[k]q![n− k]q!
, (4.47)
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where Cn,k,α are the coefficients of the polynomial and [n]q! is defined as:

[n]q! =
n∏
i=1

[i]q, with [i]q =
i−1∑
j=0

qj. (4.48)

In the following, we will show that{
U(n,N, u) = C(n+N − 1, N, u−N),
C(n, k, α) = U(n− k + 1, k, α+ k).

(4.49)

For this purpose, let us define the polynomial

Pn,k(q) =

k(n−k)∑
α=0

U(n− k + 1, k, α+ k)qα. (4.50)

Then, we can directly match the initial condition for the q-binomial (Equation (4.46)) with the
initial condition for the function U (Equation (4.41)):

Pn,0(q) =
0∑

α=0

U(n+ 1, 0, α+ 0)qα = U(n+ 1, 0, 0) = 1 =

[
n
0

]
q

, (4.51)

Pn,n(q) =
0∑

α=0

U(1, n, α + n)qα = U(1, n, n) = 1 =

[
n
n

]
q

. (4.52)

Similarly, Equation (4.44) can be matched with Equation (4.40) as follows:

Pn−1,k−1(q) + qkPn−1,k(q) =

(k−1)(n−k)∑
α=0

U(n− k + 1, k − 1, α+ k − 1)qα

+ qk
k(n−k−1)∑
α=0

U(n− k, k, α + k)qα,

=

(k−1)(n−k)∑
α=0

U(n− k + 1, k − 1, α+ k − 1)qα

+

k(n−k−1)∑
α=0

U(n− k, k, α + k)qα+k,

=

(k−1)(n−k)∑
α=0

U(n− k + 1, k − 1, α+ k − 1)qα

+

k(n−k)∑
α=k

U(n− k, k, α)qα.

If α < k, then U(n − k, k, α) = 0 because there is no distribution in which the score is lower
than the number of balls, as each ball brings at least one point. Similarly, if α > (k − 1)(n− k),
U(n− k + 1, k − 1, α+ k − 1) = 0 because there could not be any combination with a score higher
than the accessible score (each ball gives at most as many points as the number of boxes). We can
then extend the limits of the summation by adding these null terms.

Pn−1,k−1(q) + qkPn−1,k(q) =

k(n−k)∑
α=0

U(n− k + 1, k − 1, α+ k − 1)qα
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+

k(n−k)∑
α=0

U(n− k, k, α)qα,

=

k(n−k)∑
α=0

(U(n− k + 1, k − 1, α+ k − 1) + U(n− k, k, α)) qα.

(4.53)

Then, using Equation (4.40), we find

Pn−1,k−1(q) + qkPn−1,k(q) =

k(n−k)∑
α=0

U(n− k + 1, k, α+ k)qα

=Pn,k(q). (4.54)

This is the recurrence relation of the q-binomial. As the initial condition is the same and the
recurrence relation is also the same, the two polynomials should be equal:

Pn,k(q) =

[
n
k

]
q

. (4.55)

The other recurrence relation for the q-binomial, given by Equation (4.45), can be verified similarly,
considering this time either the distribution with at least one ball in the last box or no ball in the
last box:

U(n,N, u) = U(n,N − 1, u−N) + U(n− 1, N, u). (4.56)

4.3.4 Examples and other comments

Finally, to determine the values of g̃(n,N, lz) starting from the values of U, Equation (4.31) should
be applied. This gives:

g̃(1, N, lz) =δlz ,0 and lz ∈ Z,

g̃(2, N, lz) =

{
1 if lz ∈ [−N

2
, N

2
] ∩ Z + (N+1)mod(2)

2
,

0 else
(4.57)

g̃(3, N, lz) =

{ ⌊
2+N−|lz |

2

⌋
if lz ∈ Z ∩ [−N,N ],

0 else.

These functions are shown in Figure 4.8 for one to three modes and from left to right 5 particles.
As shown in Figure 4.9, g̃(n,N, lz) becomes more complex for larger values of n and N . For large
values of n and N , the shape of the function appears Gaussian, as shown in Figure 4.10. However,
if we make a Gaussian fit conserving the variance, mean, and total sum of the function, we see two
divergences. For values of lz near 0 or |lz| ≫ 0 the Gaussian is always larger. In opposition for
intermediate values the Gaussian fit is smaller.
One thing interesting to notice is that in some cases lz has to be an integer and in other cases it
should be an half integer. This question can be viewed from two perspectives. First, as U(n,N, u)
is non-zero only for integer values of u, one has that lz + (n+1)N

2
must be an integer. Therefore, lz

is an integer, except if neither (n+ 1) nor N is even. In other words, lz is half-integer if n is even
and N is odd; conversely lz is integer if n is odd or N is even. Another perspective is that the spin
of our N particle state is the sum of the individual spins of each particle. If the number of modes
n is odd, then each particle carries an integer spin, and if it is even, then they carry a half-integer
spin. The value of the individual spins is related to the eigenvalue of the matrix Lz, which is an
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Figure 4.8: Degeneracies of the eigenvalues lz for one to three modes and 5 particles.
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Figure 4.9: Degeneracies of the eigenvalues lz for four to seven modes and one to seven particles.

integer for odd numbers of modes. The total spin can then only be a half integer if the number of
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Figure 4.10: Degeneracies of the eigenvalues lz for 15, 20 and 30 modes and 9, 18, 24 particles
respectively, and Gaussian fits preserving the variance and the total sum, showing that the

degeneracy distribution is of lower entropy.

N ∈ 2N + 1 N ∈ 2N
n ∈ 2N + 1 lz ∈ Z lz ∈ Z
n ∈ 2N lz ∈ Z+1

2
lz ∈ Z

Table 4.1: Values of lz as a function of the parity of n and N

modes is even and the number of particles is odd, as summarized in Table (4.1).
This discussion about the degeneracy of the eigenvalue lz on Wn can be used to answer several
questions:

• How many orthogonal irreducible submodules of su(2) can be constructed in WN for n modes?
If the value of lz is an integer, then all submodules will have one and only one vector giving
lz = 0; if there is more than one vector, then the module will not be irreducible. This directly
implies that the number of orthogonal irreducible submodules is g̃(n,N, 0).

• What is the dimension of the largest irreducible module? Because the irreducible modules
are eigenspaces of L̂2 their dimensions are given by (2l + 1). The largest value of lz in an
irreducible submodule is equal to the value of l for such a submodule, and as the highest value
of lz reachable is (N(n− 1)/2), the dimension of the largest submodule is (N(n− 1) + 1).

The link with the q-binomials is not insignificient, as the q-binomials already have applications
in the study of the structure of vector spaces; in the future, it would be interesting to see if this
relation could have been found only by geometrical considerations.

4.4 General algorithm

This algorithm constructs the basis of the Hilbert space Hn, where all basis vectors are eigenvectors
of N̂ , L̂2, L̂z, and the irreducible submodules are clearly separated, starting from the number basis.
The quantum numbers used will be N , l, and lz with an additional fourth number, called the
counting number, used to discriminate all basis vectors that share the same three first quantum
numbers. Therefore, each vector of the basis can be written as

|N, l, lz, c⟩s . (4.58)

The subscript s indicates that it is a vector of the new basis, the spin basis, and n indicates the
number basis (where the quantum numbers used to describe the state are the occupation numbers
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of each mode). In the following, we explicitly develop the first steps of the algorithm and then make
a shorter version to present it explicitly. The following notations are used: WN is the subspace
with a fixed total number of particles N , E lzN is the eigenspace of L̂z of eigenvalue lz in WN , and
Blz is the basis of E lzN we construct.

Initial step: Let us consider only WN , the subspace of Hn with states with total number of
particles N . The maximal value of lz reachable in this subspace is equal to lz = N(n− 1)/2 and as
g̃(n,N, N(n−1)

2
) = 1, there is only one vector |ψ⟩ realizing it, such that

L̂z |ψ⟩ =
N(n− 1)

2
|ψ⟩ . (4.59)

As N̂ commutes with all elements of su(2), it commutes with L̂+, or equivalently, as WN is a
submodule of the algebra, each operator in the algebra is intern to it, and we have that L̂+ |ψ⟩ ∈ WN .
The eigenvalue associated with L̂+ |ψ⟩ is

(
N(n−1)

2
+ 1
)

and no vectors of WN have such an eigenvalue

(as N(n−1)
2

is the largest admissible eigenvalue). This result implies that L̂+ |ψ⟩ = 0⃗. Therefore,
l = lz = N(n−1)

2
, because for irreducible modules of su(2), l is equal to the largest admissible

value of lz. (This is the classical result presented in Section 2.3.7). This vector is the first vector
of the basis. It corresponds to the particular case in which all balls are in the last box, that is,
|0, ..., 0, N⟩.We can then make the following identification:

|ψ⟩ = |N, N(n− 1)

2
,
N(n− 1)

2
, 0⟩

s
= |0, ..., 0, N⟩n (4.60)

We now have the first part of our basis

BN(n−1)
2

=

{
|N, N(n− 1)

2
,
N(n− 1)

2
, 0⟩

s

}
. (4.61)

First iteration: We now consider all values of lz ≥ 0 from lz = N(n − 1)/2 − 1 and at each
iteration, its value is decreased by one. Now, considering lz = N(n − 1)/2 − 1, once again
g̃(n,N, N(n−1)

2
− 1) = 1 (if there is more than one mode), this corresponds to the single distribution

where all the balls are in the last box, except one that is in the penultimate box. This configuration
can be matched with the vector |0, 0, ...1, N − 1⟩n. On the other hand, we can also construct a
vector with lz = N(n− 1)/2− 1 by using lowering operators

|N, N(n− 1)

2
,
N(n− 1)

2
− 1, 0⟩

s
≡

L̂− |N, N(n−1)
2

, N(n−1)
2

, 0⟩
s∥∥∥L̂− |N, N(n−1)

2
, N(n−1)

2
, 0⟩

s

∥∥∥ . (4.62)

As the dimension of the subspace with lz = N(n− 1)/2− 1 is one (the value of g̃), those vector
are equal

|N, N(n− 1)

2
,
N(n− 1)

2
− 1, 0⟩

s
= |0, 0, ...1, N − 1⟩n . (4.63)

The second part of the basis is

BN(n−1)
2

−1
=

{
|N, N(n− 1)

2
,
N(n− 1)

2
− 1, 0⟩

s

}
. (4.64)

For the sake of completeness, one can check using the image of the matrix L− by the Jordan-
Schwinger map L̂− that the complex phase of the vector is correct.
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Second iteration: Subsequently, considering lz = N(n − 1)/2 − 2, and if n ≥ 3, we have
g̃(n,N,N(n − 1)/2 − 2) = 2. This means that the eigenspace of L̂z in WN associated with this
eigenvalue E lzN is of dimension 2. There are two distributions of the balls corresponding to this
value, and they are the ones with two balls in the penultimate box, and the one with one in the
antepenultimate box, which gives two vectors generating that subspace: |0, 0, ..., 0, 2, N − 2⟩n and
|0, 0, ..., 1, 0, N − 1⟩n. In the subspace E lzN , there is already a known vector

|N, N(n− 1)

2
,
N(n− 1)

2
− 2, 0⟩

s
≡

L̂− |N, N(n−1)
2

, N(n−1)
2

− 1, 0⟩
s∥∥∥L̂− |N, N(n−1)

2
, N(n−1)

2
− 1, 0⟩

s

∥∥∥ (4.65)

Knowing this, we need only one other vector to form an orthogonal basis of E lzN . One can, for
instance, take the Gram-Schmidt algorithm to deduce it, and we name it:

|N, N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0⟩

s
. (4.66)

Let us examine the values of the quantum numbers: the number of particles is directly N , lz is the
number chosen for this step, and C = 0 as it is the only one we created here. For l we chose the
same value as lz, the reason is that

L̂+ |N, N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0⟩

s
= 0⃗. (4.67)

To prove this, we use the fact that L̂+ commutes with N̂ and increases the quantum number lz by

one. Immediately, L̂+ |N, N(n−1)
2

− 2, N(n−1)
2

− 2, 0⟩
s

is an element of E
N(n−1)

2
−1

N . However, this also

belongs to E
N(n−1)

2
−1

N

⊥
. Indeed the basis of E

N(n−1)
2

−1

N only contains |N, N(n−1)
2

, N(n−1)
2

− 1, 0⟩, and
L̂+ |N, N(n−1)

2
− 2, N(n−1)

2
− 2, 0⟩

s
is orthogonal to it:

s ⟨N,
N(n− 1)

2
,
N(n− 1)

2
− 1, 0| L̂+ |N, N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0⟩

s
,

=s ⟨N,
N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0| L̂− |N, N(n− 1)

2
,
N(n− 1)

2
− 1, 0⟩

∗

s
,

=s ⟨N,
N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0|N, N(n− 1)

2
,
N(n− 1)

2
− 2, 0⟩

∗

s
,

=s ⟨N,
N(n− 1)

2
,
N(n− 1)

2
− 2, 0|N, N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0⟩

s

=0, (4.68)

where the last equality is true owing to the construction of the basis. As the vector be-
longs to a vector space and is orthogonal, this vector can only be null. This proves that
L̂+ |N, N(n−1)

2
− 2, N(n−1)

2
− 2, 0⟩

s
= 0. Therefore, the value of l is N(n−1)

2
− 2. This part of

the basis is then

BN(n−1)
2

−2
=

{
|N, N(n− 1)

2
,
N(n− 1)

2
− 2, 0⟩

s
, |N, N(n− 1)

2
− 2,

N(n− 1)

2
− 2, 0⟩

s

}
. (4.69)

The general procedure is described in the following.

General method

1. Fix the number of mode n and the total number of particles N a basis should be constructed.
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2. Construct the first part of the basis with Equation (4.60):

BN(n−1)
2

=

{
|N, N(n− 1)

2
,
N(n− 1)

2
, 0⟩

s

}
. (4.70)

3. Loop over the values of lz from N(n−1)
2

to 0 (or 1
2

for half integer valued spins) by decreasing
lz by one at each step. In this loop, for each value of lz:

(a) Find all the vectors |⃗k⟩n corresponding to the eigenvalue lz. These span E lzN .

(b) Construct the first part of the corresponding basis by applying the lowering operator on
the basis of (lz + 1)

B0
lz =

 L̂− |ψ⟩∥∥∥L̂− |ψ⟩
∥∥∥ , ∀ |ψ⟩ ∈ Blz+1

 . (4.71)

This set of vectors spans L̂−E lz+1
N and contains g̃(n,N, lz + 1) vectors.

(c) Construct g(n,N, lz) = g̃(n,N, lz) − g̃(n,N, lz + 1) normalized vectors orthogonal to
each other and to B0

lz
36. Those vectors form the set

B1
lz = {|N, lz, lz, C⟩ , C ∈ {0, 1, ..., g(n,N, lz)− 1}} . (4.72)

They span E lzN \ L̂−E lz+1
N . The existence of such orthogonal vectors is guaranteed because

of the dimensions of E lzN . The value of l can be fixed to the same value as lz for the
vectors found (the demonstration is similar to that in Equation (4.68)).

(d) The basis of E lzN is then simply given by the two bases spanning its two orthogonal
subspaces:

Blz = B0
lz +B1

lz . (4.73)

4. Loop over the value of lz from 0 (−1
2

for half integer valued spin) to −N(n−1)
2

, decreasing lz
by one at each step. In this loop, for each value of lz, the lowering operator is applied on the
basis of the previous lz which do not vanish:

Blz =

 L̂− |N, l, lz + 1, C⟩∥∥∥L̂− |N, l, lz + 1, C⟩
∥∥∥ , ∀ |N, l, lz + 1, C⟩ ∈ Blz+1, such that |lz + 1| ≠ l

 . (4.74)

This algorithm is the main result of this thesis. It is implemented in Octave for positive values of
lz in Appendix D.6. In future research, it will help solve most of the issues we raised in Section 3.6.
In the rest of this section we will make some remarks regarding this algorithm, then in Section 4.5
we give an example of the application of the algorithm. In Section 4.6 we will extends this
algorithm to other operators than only the spin-like, and in Section 4.7 we show how to consider
transformations applied to the matrices used for the Jordan-Schwinger map. In this last section,
we will also consider the special case of rotations of the spins which will show the advantages of
the decomposition in submodules.

36g is larger than 0 for positive values of lz because of the properties of Gaussian binomial coefficients.
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Speeding up the construction of the basis for negative lz by appropriately choosing the
arbitrary bases for positive lz. In the following,

k⃗
is an array of n numbers such that

k
i = kn−i.

Then, in the context of second quantification, we define a mirror symmetry as,

mir : |v⟩ =
∑
k⃗

ck⃗ |⃗k⟩ → |v⟩ =
∑
k⃗

ck⃗ |⃗
k
⟩ . (4.75)

A vector |v⟩ is symmetric in itself with regard to the mirror symmetry if

|v⟩ = |v⟩ . (4.76)

In the algorithm in step 3.c, we construct an orthonormal basis, and with an appropriate choice at
this step, it may be possible to dramatically speed up step 4. First, by considering only the integer
values of lz, if ∀ |ψlz⟩ ∈ Blz , the corresponding vector in B0, L̂lz− |ψlz⟩ is symmetric, then we can
simply create the basis B−lz by using the symmetry of the vectors in Blz . For the half-integer spin
values of lz, we require that

L̂
⌈lz⌉
− |ψlz⟩ = mirL̂

⌊lz⌋
− |ψlz⟩ . (4.77)

Apparition of the irreducible submodules This construction allows us to highlight the
irreducible submodules. Indeed, the vector space

V (N, l, γ⃗) = span

|ψlz⟩ =
g(n,N,l)−1∑

i=0

γi |N, l, lz, i⟩s ,∀lz such that |lz| ≤ l


 , with γ⃗ ∈ Cg(n,N,l)

(4.78)
is an irreducible su(2)-module. Intuitively, it is an eigenspace of the Casimir operator L̂2 of
eigenvalue l(l+1) spanned from 2(l+1) basis vectors orthogonal to each other (they are eigenvectors
of the observable L̂z with different eigenvalues; they are therefore orthogonal) with the following
properties: 

L+ |ψl⟩ = 0,
L− |ψ−l⟩ = 0,
L+ |ψlz⟩ ∝ |ψlz+1⟩ .

(4.79)

Not all irreducible submodules can be described in this form because one can imagine an irreducible
submodule not contained in a space with a fixed total number of particles. For example, for 3-mode
systems:

X = Span

(
|0, 0, 0⟩s + |2, 0, 0⟩s√

2
=

1√
2
|0, 0, 0⟩n +

1√
3
|1, 0, 1⟩n −

1√
6
|0, 2, 0⟩n

)
, (4.80)

is an irreducible submodule (the irreducibility is direct, its dimension being one, we cannot separate
it in a direct sum of more than one vector space of non-zero dimension) but cannot be represented
by a space of the kind of V . To be complete, we have that

X ∈ V (0, 0)⊕ V (3, 0). (4.81)

The construction of V allows us to easily construct orthogonal submodules. Choosing orthogonal
vectors γ⃗ ensures orthogonality between the vector spaces. For |v⟩ ∈ V (N, l, γ⃗1), |w⟩ ∈ V (N, l, γ⃗2)
with γ⃗1 and γ⃗2 orthogonal we find

⟨v|w⟩ ∝ γ⃗1 · γ⃗2 = 0, if γ⃗1 ̸= γ⃗2.

The demonstration is written extensively in Appendix D.5. Finally, based on these considerations,
we can construct a full decomposition of Hn in independent irreducible submodules by considering
the following set of submodules:

{V (N, l, γ⃗c)|c ∈ {0, 1, ..., g(n,N, l)}} , (4.82)

where the collection {γ⃗c|c ∈ {0, 1, ..., g(n,N, l)}} is an arbitrary orthogonal basis of Cg(n,N,l).
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4.5 Application to 3-mode states

We apply the general method described above to create a basis for the three-mode case. In
Equation (4.57), it is proven that function g̃ is given by

g̃(3, N, lz) =

{ ⌊
2+N−|lz |

2

⌋
if lz ∈ Z ∩ [−N,N ],

0 otherwise ,
(4.83)

We also find this result graphically. For the 3-mode case, we can represent the vector of the

Figure 4.11: Lattice representation of the vectors of the number basis for 3-mode systems in top
left figure. In the top right, the eigenspaces of N̂ in this representation, and in the bottom left,

the eigenspaces of L̂z; their intersection is shown in the bottom right figure.

number basis in a lattice, as shown in the top left of Figure 4.11. Then, the subspaces with a
fixed total number of particles N are the surface of the equation n1 + n2 + n3 = N , as shown in
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|6,0,0〉 |5,1,0〉 |4,2,0〉 |3,3,0〉 |2,4,0〉 |1,5,0〉 |0,6,0〉

|5,0,1〉 |4,1,1〉 |3,2,1〉 |2,3,1〉 |1,4,1〉 |0,5,1〉

|4,0,2〉 |3,1,2〉 |2,2,2〉 |1,3,2〉 |0,4,2〉

|3,0,3〉 |2,1,3〉 |1,2,3〉 |0,3,3〉

|2,0,4〉 |1,1,4〉 |0,2,4〉

|1,0,5〉 |0,1,5〉

|0,0,6〉

|6,0,0〉 |0,6,0〉

|0,0,6〉

lz=-6

lz=-5

lz=-4

lz=-3

lz=-2

lz=-1

lz=0

lz=1

lz=2

lz=3

lz=4

lz=5

lz=6

Figure 4.12: Lattice representation of the vectors with total number of particle 6 on the left, and
on the right the representation of the eigenspaces of lz on the same representation.

the bottom left panel of Figure 4.11. In the diagonal representation, the operator L̂z is given by
n̂3 − n̂1. Therefore, in this representation, the eigenspaces of L̂z are the planes of the equation
lz = n3 − n1, which we shox in the top right of Figure 4.11. Then, the value of g(3, N, lz) is the
number of points on the line of intersection between the two planes, see Figure 4.11.
More precisely, when we focus on the case of a fixed total number of particles (as shown on the
right side of Figure 4.12), the intersections with the planes of fixed lz become lines on which the
number of states can be counted to obtain g̃. In this case, increasing the value of lz by one will
never increase g̃ by more than one. Therefore, a counting number is not required.
Let us now apply the general method; the initial vector is given by Equation (4.60), namely

|N,N,N⟩s = |0, 0, N⟩n . (4.84)

Then, Equation (4.63) predicts that

|N,N,N − 1⟩s = |0, 1, N − 1⟩n , (4.85)

This can be verified explicitly. In the matrix representation of su(2) where Lz is diagonal, the spin
matrices for the spin read

Lx = 2−1/2

 0 1 0
1 0 1
0 1 0

 , Ly = i2−1/2

 0 1 0
−1 0 1
0 −1 0

 , Lz =

 −1 0 0
0 0 0
0 0 1

 . (4.86)

Therefore, L− is given by

L− = Lx − iLy = 21/2

 0 1 0
0 0 1
0 0 0

 . (4.87)

Now, using Jordan-Schwinger map, the expression for L̂− is

L̂− =
√
2
(
â†1â2 + â†2â3

)
. (4.88)

Finally ,

L̂− |0, 0, N⟩n =
√
2
(
â†1â2 + â†2â3

)
|0, 0, N⟩n ,
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=
√
2
(
0⃗ +

√
N |0, 1, N − 1⟩n

)
,

⇒ |N,N,N − 1⟩s = |0, 1, N − 1⟩n . (4.89)

Then, there are two vectors with lz = N − 2: |0, 2, N − 2⟩n and |1, 0, N − 1⟩n. In the new basis,
the first vector corresponding to this eigenvalue is

L̂− |N,N,N − 1⟩s =
√
2
(
â†1â2 + â†2â3

)
|0, 1, N − 1⟩n ,

=
√
2
(
|1, 0, N − 1⟩n +

√
2
√
N − 1 |0, 2, N − 2⟩n

)
,

|N,N,N − 2⟩s =
|1, 0, N − 1⟩n +

√
2(N − 1) |0, 2, N − 2⟩n√
2N − 1

. (4.90)

We need to find another vector orthogonal to this one to make the second basis vector with this
eigenvalue

|N,N − 2, N − 2⟩s =
√

2(N − 1) |1, 0, N − 1⟩n − |0, 2, N − 2⟩n√
2N − 1

. (4.91)

We can continue until we obtain lz = 0.
In Appendix D.7, we show the full basis change for 6 particles.

4.6 Further generalization

A generalization of this algorithm considers the eigenbasis of any operator created using the
Jordan-Schwinger map (not only representations of su(2)). This section focuses on Hermitian
operators in diagonal form. The non-Hermitian operators are not treated here (the problem is that
their eigenbasis is not orthogonal), and the non-diagonal form can be deduced from this section
combined with the section on base changes 4.7.
For a diagonal matrix G, the Jordan-Schwinger map transforms this matrix into

Ĝ =
∑
α

n̂αΛα, (4.92)

where Λ⃗ denotes a vector containing the eigenvalues of Ĝ.
As previously suggested, the total number operator N̂ commutes with Ĝ and can therefore be
used to establish of a CSCO. Further, any occupation number operator commutes with Ĝ, and
therefore, the number basis is always an eigenbasis of Ĝ. Indeed, the number basis is a basis and
all its vectors are eigenvectors of Ĝ:

Ĝ |k1, ..., kn⟩ =
∑
α

Λ⃗n̂α |k1, ..., kn⟩ ,

=
∑
α

Λαkα |k1, ..., kn⟩ ,

= Λ⃗ · k⃗ |k1, ..., kn⟩ . (4.93)

If one wants to construct a basis using a CSCO containing this operator, then one must consider
constructing the set:

Vλ = {k⃗ ∈ Nn|Λ⃗ · k⃗ = λ} (4.94)

The equation Λ⃗ · k⃗ = λ is a linear Diophantine equation37. There already exists literature on this
problem, as it has applications in crystallography.

37A Diophantine equation is a polynomial equation, with two or more variables, integer coefficients, and whose
solutions of interest are the integer ones.
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Once Vλ is known, the set {|⃗k⟩}, with k⃗ ∈ Vλ is the eigenspace of Ĝ corresponding to the eigenvalue
λ. If dim (Vλ) ≤ 1, Ĝ is a CSCO. Otherwise, if dim

(
Vλ ∩ {|⃗k|1 = N}

)
≤ 1, then {N̂ , Ĝ} is a

CSCO because there are no states |⃗k⟩ with the same quantum numbers N and λ. Finally, in
the other cases, other quantum numbers are required to discriminate the different eigenvectors.
In particular, in cases where the eigenvalues are an arithmetic sequence, this operator has to be
treated similarly to L̂z.
Here, we provide a particular example. Let us consider G to be a n× n diagonal matrix, the ith
eigenvalue λi, is equal to the logarithm of the ith prime number pi. Then, each basis vector |⃗k⟩ is
an eigenvector of Ĝ, and its eigenvalue is the logarithm of the number whose decomposition into
prime numbers is given by k⃗:

ĝ |⃗k⟩ =
∑
α

Λαn̂α |⃗k⟩ =
∑
α

log(pα)kα |⃗k⟩ =
∑
α

log
(
pkαα
)
|⃗k⟩ = log

(∏
α

pkαα

)
|⃗k⟩ (4.95)

This operator is a CSCO because only one quantum number is sufficient to determine each state of
a basis; each integer vector corresponds to one state and one prime number. We might speculate
that such decomposition could be useful in the context of quantum cryptography.

4.7 Effect of unitaries

4.7.1 General transformations of matrices

Another generalization we consider are non-diagonal matrices, but if we take M to be the unitary
matrix diagonalizing a spin matrix L38, with Λ = diag (L) such that

L =MΛM †, (4.96)

as we already know how to construct the basis corresponding to Λ, we can solve the problem for
general L by discussing how the unitary acts. In the general case of the action of an unitary U
such that

G′ = UGU †, (4.97)

using the Jordan-Schwinger map on L, we get the operator

Ĝ′ = â†αG
′
αβâβ = â†αUαtGtuU

†
uβâβ, (4.98)

where we used the index notation which implies the summation of repeated indices. We can define
two new operators b̂u ≡ U †

uβâβ and b̂†t ≡ â†αUαt, which behave exactly as creation and annihilation
operators, but for other modes, that is, the linear combinations of the initial ones. Indeed, by
properties of the conjugate transpose, it is straightforward to demonstrate that they are adjoint to
each other; however, with properties of unitaries, we can also show that their commuting properties
are the ones expected for such operators. Indeed, as [b̂u, b̂t] = [b̂†u, b̂

†
t ] = 0 by linearity of the

commutators. Further, we have

[b̂u, b̂
†
t ] = [U †

uβâβ, â
†
αUαt] = U †

uβUαt[âβ, â
†
α] = U †

uβUαtδβ,α = U †
uαUαt = δu,t, (4.99)

where the last line is obtained by saying that the product of a unitary matrix and its adjoint is
the identity, and therefore, in index notation, a Kronecker delta. With the verified commutation

38Note that not all matrices are diagonalizable, and only those with orthogonal eigenspaces are diagonalized by
unitaries. Fortunately, all Hermitian matrices match these requirement
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relation, we can define the new occupation numbers in the new modes as m̂u = b̂†ub̂u ∀u. Fortunately,
the total number of particles remains unchanged by the unitaries:∑

u

m̂u =
∑
u

b̂†ub̂u = â†αUαuU
†
uβâβ = â†αδαβâβ =

∑
α

â†αâα =
∑
α

mα = N̂ . (4.100)

Those new operators b̂ and b̂† create a new ’number’ basis |m1,m2, ...,mn⟩, with a similar definition
as for Equation (2.86). In this basis, the operator Ĝ′ is obtained as a simple application of the
Jordan-Schwinger map (with the new mode operators) on matrix G:

Ĝ′ = b̂†tGtub̂u. (4.101)

If G is a diagonal matrix Λ, using the algorithm presented in the previous sections, we can create the
eigenbasis of G on the new number basis. However, if we want the eigenbasis to be expressed in the
original basis, we must know how to change the basis from {|m1,m2, ...,mn⟩} to {|n1, n2, ..., nn⟩}.
In order to obtain such transformation, we need to compute the scalar product

⟨n1, n2, ..., nn|m1,m2, ...,mn⟩ . (4.102)

If we write N =
∑

i ni andM =
∑

jmj for the total number of particles, we define two vectors β⃗ and
j⃗ of N and M components respectively. The n1 first components of β⃗ are 1, the following n2 seconds
are 2, etc. For instance, the vector β associated with the state |3, 2, 4⟩ is (1, 1, 1, 2, 2, 3, 3, 3, 3). In
Appendix D.8, we show that the scalar product is given by

⟨n1, n2, ..., nn|m1,m2, ...,mn⟩ = δN,M

n∏
i

√
ni!

mi!

∑
σ⃗∈Perm(β⃗)

(
N∏
c

Uσcjc

)
,

= δN,M

n∏
i

√
ni!

mi!

∑
σ⃗∈Perm(⃗j)

(
N∏
c

Uβcσc

)
,

(4.103)

where σ⃗ are permutations without repetitions39 (the vector (1, 1) has only one permutation: itself.
Thus, it is not counted twice). To understand this expression, we can apply it to the cases where
{|n′

1, n
′
2, ..., n

′
n⟩} and {|n1, n2, ..., nn⟩} belong to the same number basis. We know that the scalar

product is given by:
⟨n1, n2, ..., nn|n′

1, n
′
2, ..., n

′
n⟩ = δn1,n′

1
δn2,n′

2
...δnn,n′

n
(4.104)

First, if N ̸= N ′, then the scalar product should be 0. If the basis is the same, the unitary is
a Kronecker delta, Uα,β = δα,β. The product in Equation (4.103) is therefore 1 if σ⃗ = β⃗ and 0

otherwise. The sum is then equal to the number of permutations of j⃗ which is equal to β⃗. As we
consider permutations without repetition, we do not consider two times the same permutations;
thus, there cannot be two permutations equal to β⃗: the sum is either 1 if there is one permutation
equal to β⃗; otherwise, it is 0. Finally, as the components of β⃗ and j⃗ are in ascending order, the
only permutation σ⃗ that can be equal to β⃗ is j⃗ itself, if it counts the same number of 1, of 2, etc.
and therefore if ni = n′

i ∀i.

4.7.2 Relation between the spin-eigenstate using Wigner D-matrices

The result in the last subsection was general but it is complex to use, however, we can find a
particular expression for rotations in the space of spin operators. For instance, if we want to

39More precisely, due to intistinguishability of the particles, all equivalent permutations are counted only ones.
This is what we mean by without repetition in this Section, it is not the same meaning as classically.
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use the work we have done on L̂z to deduce the eigenstates of L̂y, using Equation(4.103) is not
practical. The basic idea of this subsection is to express the eigenvectors of the operators L̂x, L̂y, L̂z
as rotations of each other. Generally, the rotations are symmetries generated by the momentum
operators. In the following, we denote {gx, gy, gz} a particular basis of su(2)40. One can show that
the operator e−iθgj generates a rotation of angle θ around the axis j in su(2) [14]. This can be
resumed as

eiθgjgie
−iθgj =

{
cos θgi + ϵijk sin θgk i ̸= j,
gi i = j.

(4.105)

Without loss of generality we can take j = z, to any vector g⃗ = (agx + bgy + cgz) ∈ su(2) to obtain
a more general expression

eiγgz (agx + bgy + cgz) e
−iγgz = (a cos γ + b sin γ) gx + (b cos γ − a sin γ) gy + cgz. (4.106)

Identifying g⃗ to the triplet (a, b, c), this can be rewritten as a simple matrix-vector product

Rg⃗ =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

ab
c

 . (4.107)

This is the general matrix for the rotation around the z-axis. Now that the rotation around one
axis has been derived, one can combine several rotations around different axis to realize arbitrary
rotations. In particular, the rotations of any observable can be described using the Euler angles.
In the literature [14], we find that

R (α, β, γ) g⃗ = eiγgzeiβgyeiαgz g⃗e−iαgze−iγgye−iγgz . (4.108)

Thus the corresponding operator R can be defined as:

R (α, β, γ) ≡ e−iαgze−iγgye−iγgz , (4.109)

In the matrix form developed earlier, this can be rewritten as

R (α, β, γ) g⃗ =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

cos β 0 − sin β
0 1 0

sin β 0 cos β

 cosα sinα 0
− sinα cosα 0

0 0 1

ab
c

 . (4.110)

In particular: 
gx = R

(
0, π

2
, π
2

)
gy = R† (0, π

2
, π
2

)
gyR

(
0, π

2
, π
2

)
,

gy = R
(
0, π

2
, π
2

)
gz = R† (0, π

2
, π
2

)
gzR

(
0, π

2
, π
2

)
,

gz = R
(
0, π

2
, π
2

)
gx = R† (0, π

2
, π
2

)
gxR

(
0, π

2
, π
2

)
,

(4.111)

and 
gx = R

(
−π

2
,−π

2
, 0
)
gz = R† (−π

2
,−π

2
, 0
)
gzR

(
−π

2
,−π

2
, 0
)
,

gy = R
(
−π

2
,−π

2
, 0
)
gx = R† (−π

2
,−π

2
, 0
)
gxR

(
−π

2
,−π

2
, 0
)
,

gz = R
(
−π

2
,−π

2
, 0
)
gy = R† (−π

2
,−π

2
, 0
)
gyR

(
−π

2
,−π

2
, 0
)
.

(4.112)

All this discussion is valid for any representation of su(2). In particular, it is true for the matrix
representation, where the basis of su(2) we are using are the matrices Lx, Ly and Lz. If we want to

40In Section 2.3.7, we explained that the expected commutation relations for this basis was given by Equation 2.109

[gi, gj ] = iϵijkgk.
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make the base change using Equation (4.103), we need to know the unitary U corresponding to
the rotation, and we can find it thanks to Equation (4.108) as:

G′ =R† (α, β, γ)GR (α, β, γ)

= eiγLzeiβLyeiαLzGe−iαLze−iβLye−iγLz

⇒ U = eiγLzeiβLyeiαLz .

(4.113)

However, we can proceed in a more efficient way. If we do not consider the matrix representation,
but directly the operator representation, we directly obtain that the the rotation operator R̂ is
given by:

R̂ (α, β, γ) ≡ e−iαL̂ze−iγL̂ye−iγL̂z , (4.114)

Applying this operator on a state gives the state after rotation41. We denote the eigenvector of L̂z
on a particular submodule with N , l and C fixed by an index z

|N, l, lz, C⟩z , (4.115)

and similarly y for L̂y etc. We then introduce the Wigner D-matrices as

Dl
l′z ,lz

(α, β, γ) ≡z ⟨N, l, l′z, C|R (α, β, γ) |N, l, lz, C⟩z .

Due to Wigner-Eckart’s theorem, we know that these matrices are not depending on the quantum
numbers N and C. Stronger, they do not depend on the representation, therefore those matrices
are the same for our particular case of rotations of spin-like operators, and for classical rotations.
With those matrices we can simply compute the rotations as

R (α, β, γ) |N, l,m,C⟩z =
∑
l′z

Dl
l′z ,lz

(α, β, γ) |N, l, l′z, C⟩z . (4.116)

These matrices can be factorized in a simpler form using the Wigner small d matrices

Dl
m′,m (α, β, γ) ≡ e−iαm

′
dlm′,m (β) e−iγm, (4.117)

Allowing us to have a very concise formula for rotations:

R (α, β, γ) |N, l, lz, C⟩z =
∑
l′z

e−iαl
′
zdll′z ,lz (β) e

−iγlz (α, β, γ) |N, l, l′z, C⟩z . (4.118)

This expression justifies our decompositions into submodules. We have found a basis in which
rotations are expressed as a sum of a small number of vectors only. Moreover only one quantum
number is not left unchanged, and this is the case because the subspace with all the others fixed is
an irreducible submodule. To give a small practical example, we can compute the eigenstates of
L̂y. They are obtained by rotating the eigenstates of L̂z with angles α = −π/2, β = −π/2, γ = 0:

|N, l, ly, C⟩y =
∑
lz

e−i
π
2
lzdllz ,ly

(
−π
2

)
|N, l, lz, C⟩z . (4.119)

41Let us give a brief reminder about the Heisenberg picture and the Schrödinger picture. A symmetry operation
S is applied in the Heisenberg picture as Â→ S†ÂS = SÂ, which is equivalent to the Schrödinger picture where
the operation is applied on the state |ψ⟩ → S |ψ⟩ = |Sψ⟩ , since ⟨ϕ|SA|ψ⟩ = ⟨ϕ|S†AS|ψ⟩ = ⟨Sϕ|A|Sψ⟩.
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5. Conclusion and outlook

This thesis was structured in two parts: first, in Chapter 3, we have been able to find a gen-
eral way of producing multimode uncertainty relations using the Jordan-Schwinger map. Many
further calculations could still be performed and future works could consider other operators
(representations of su(2) with more modes, for instance) or other inequalities (for example, the
Schrödinger-Robertson inequality applied to the operators of the Jordan-Schwinger map or relations
on bounded observables). It would be interesting to determine whether the equations generated in
this way can (or cannot) be deduced from the classical Schrödinger-Robertson inequality or the
symplectic uncertainty relations. One may further investigate the inequality for general matrices
and check whether using a basis of Hermitian matrices could lead to a simpler result. We also
obtained different expressions of these uncertainties for several kinds of states, and it could be
interesting to check if the violation of a stronger inequality obtained for a single-party state could be
translated into an entanglement criterion for bipartite states. Finally, we left open the question of
the entropic uncertainty relations as this requires the knowledge of the eigenbasis of the constructed
operators.
We then naturally dedicated the second part of this thesis to the construction, in Chapter 4, of the
aforementioned basis using the tools given by Lie algebra theory. We first rederived the already
known result for 2-mode states, and found a generalization for any number of modes. This result
is new and, beyond the computation of the entropy of the observables, could help settle several
questions that arose in different works about entanglement and non-classicality. We also gave a
new mathematical background which may lead to a general way to design optical circuits. As an
outlook, future work could look deeper into the generalization of the Jordan-Schwinger map by
replacing the creation and annihilation operators by other operators sharing the same commutation
properties, but which will give new representations of su(2) that are easier to use to make basis
changes and to simplify many calculations in quantum information research.
In this thesis, we tried to take a general approach by focusing on mathematical rigor, keeping it
general enough so it should encapsulate various physical situations. Future works should focus
on specific examples, or making a stronger link between the mathematical developments and real
physical systems, giving more illustrations of the theoretical concepts discussed in the thesis. For
instance, even if we suggested a link between unitaries in the matrix space and quantum circuits,
the correspondence should be made explicit so to yield a general method to design the quantum
circuit associated with any unitary.
Future studies could further investigate the fundamental link between our spin-like observables and
the real spin of a bosonic system. Indeed, if the matrix lz describes the spin of a single boson, then
the total spin of the system is the single-body observable, obtained via the Jordan-Schwinger map.
In this way, some of our results allow for a new physical interpretation. It becomes obvious that the
commutation relations should be preserved, that the rotation in the spin phase space is similar to
a real rotation in space, and, moreover, our algorithm can be interpreted as a general procedure to
find the eigenbasis of the total spin of a system with many bosons. This could help solve problems
such as the behaviour of several bosons immersed in a magnetic field. Our results can also be
generalized to fermionic systems, as there exists a generalization of the Jordan-Schwinger map
to fermionic creation operators [33]. The only difference is that the statistics of the particles will
change; in each box there cannot be more than one fermion by Pauli’s exclusion principle.
This thesis highlighted the fundamental relations between bosonic systems and spin operators. As
the properties of the latter are well-known, we hope that our results will help to answer fundamental
questions arising in the context of continuous-variables quantum information.
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A. Hilbert spaces in quantum theories

A.1 Decomposition of a linear form in function of the com-
ponents of the dual vector

The components of the dual of a vector |ψ⟩ on the dual basis can be deduced from the components
of the vector itself. We write ⟨ψ| =

∑
i di ⟨vi| the decomposition of ⟨ψ| on the dual basis. Let us

compute the application of the linear form ⟨ψ| on any vector |ϕ⟩:

⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗ , Hermitian symmetry(∑
i

di ⟨vi|

)
ϕ =

(
⟨ϕ|

(∑
i

ci |vi⟩

))∗

, Decomposition in bases∑
i

di ⟨vi|ϕ⟩ =
∑
i

c∗i ⟨ϕ|vi⟩
∗ , Linearity∑

i

di ⟨vi|ϕ⟩ =
∑
i

c∗i ⟨vi|ϕ⟩ ∀ϕ, Hermitian symmetry

⇒ di = c∗i . (A.1)

We find that the components of the vector and its dual are the complex conjugate of each other.
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A.2 Decomposition of a vector in an orthonormal basis

Let’s be any vector |ψ⟩, and an orthonormal basis {ni}. As {ni} is a basis it is possible to define
ψi, the components of |ψ⟩, as

|ψ⟩ =
∑
j

ψj |nj⟩ . (A.2)

Taking the scalar product of this vector with any vector of the basis will directly allow us to express
the components in the basis:

⟨ni|ψ⟩ = ⟨ni|
∑
j

ψj |nj⟩ ,

=
∑
j

ψj ⟨ni|nj⟩ , by linearity at right for the scalar product

=
∑
j

ψjδij, by definition of orthonormality

= ψi. (A.3)

This imposes that the components of a vector in an orthonormal basis is given by its scalar products
with the basis vectors:

ψi = ⟨ni|ψ⟩ . (A.4)
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A.3 Independence of the trace of operators with respect to
the basis

If {|ni⟩} and {|mi⟩} are two orthonormal bases, we can use the closure relation to switch from one
to the other:

∑
i

⟨ni|Â|ni⟩ =
∑
i

⟨ni|

(∑
j

|mj⟩ ⟨mj|

)
Â

(∑
k

|mk⟩ ⟨mk|

)
|ni⟩ , Closure Relation

=
∑
ijk

⟨ni|mj⟩ ⟨mj|Â|mk⟩ ⟨mk|ni⟩ , , Distributivity

=
∑
ijk

⟨mj|Â|mk⟩ ⟨mk|ni⟩ ⟨ni|mj⟩ , Commutation of the scalars

=
∑
jk

⟨mj|Â|mk⟩ ⟨mk|

(∑
i

|ni⟩ ⟨ni|

)
|mj⟩ , Distributivity

=
∑
jk

⟨mj|Â|mk⟩ ⟨mk|mj⟩ , Closure relation

=
∑
jk

⟨mj|Â|mk⟩ δkj, Orthonormality of the basis

=
∑
j

⟨mj|Â|mj⟩ . (A.5)

The definition is consistent independently of the basis.
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B. Lie algebras

B.1 Determination of the action of the Lie bracket, based on
its action on some basis

Let’s be g some Lie algebra defined on some field F doted of the Lie bracket [·, ·]. Let’s be {gi} a
basis of such an algebra. Given that

∀gi, gj basis vectors : [gi, gj] = fkijgk with fkij ∈ F, (B.1)

it is possible to deduce the effect of the Lie bracket on any vector v ∈ g. Indeed as {gi} is a basis
of a vector space, it is possible to write:

v = vigi ∀v ∈ g with vi ∈ F, (B.2)

where we used the index notation (with automatical sum over the repeated indices). Therefore:

x = [v, w],

= [vigi, wjgj],

= vi · wj · [gi, gj], by bilinearity
= viwjf

k
ijgk. (B.3)
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B.2 Conservation of the defining relations of an algebra by
its representations

Let us show that for any representation ϕ0 : V → W, mapping a basis {gi} to a set {Gi}, if the
Lie brackets were defined on this basis, then the defining relations are preserved.

[gi, gj] = fkijgk,

ϕ0([gi, gj]) = ϕ0(f
k
ijgk),

[ϕ0(gi), ϕ0(gj)] = fkijϕ0(gk),

[Gi, Gj] = fkijGk, (B.4)

where we used the convention that repeated indices are automatically summed.
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B.3 An element cϕ commutes with all elements of L

Let’s be β any non-degenerate symmetric associative bilinear form on L; {xi} a basis of L and
{yi} the dual basis relative to β (i.e. β(xi, yj) = δij). Finally, let’s be any vector v. We can define
the coefficients aij and bij such that{

[v, xi] =
∑

j aijxj,

[v, yi] =
∑

j bijyj,
(B.5)

then, one can show that aik = −bki,

aik =
∑
j

aijδjk,

=
∑
j

aijβ(xj, yk), x and y are dual basis

= β([v, xi], yk), Linearity and definition of aij
= −β([xi, v], yk), Antisymmetry of the Lie bracket and linearity of β
= −β(xi, [v, yk]) Thanks to associativity and symmetry

= −
∑
j

bkjβ(xi, yj), Linearity and definition of bij

= −
∑
j

bkjδij, x and y are dual basis

= −bki (B.6)

This being shown, let’s compute the commutator between cϕ(β) and ϕ(v) for some v ∈ L.

[ϕ(v), cϕ(β)] =
∑
i

ϕ(v)ϕ(xi)ϕ(yi)− ϕ(xi)ϕ(yi)ϕ(v), Definition of the Casimir element

=
∑
i

(ϕ(v)ϕ(xi)ϕ(yi)− ϕ(xi)ϕ(v)ϕ(yi)) + (ϕ(xi)ϕ(v)ϕ(yi)− ϕ(xi)ϕ(yi)ϕ(v))

=
∑
i

[(ϕ(v)ϕ(xi)]ϕ(yi) + ϕ(xi)[ϕ(v)ϕ(yi)], Definition of the commutator

(B.7)

=
∑
ij

aijϕ(xj)ϕ(yi) + ϕ(xi)bijϕ(yj), Definition of aij and bij

(B.8)

=
∑
ij

aijϕ(xj)ϕ(yi)− ajiϕ(xi)bijϕ(yj)

= 0. (B.9)

This shows that for any β, cϕ commutes with ϕ(L).
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C. Inequalities

C.1 Conservation of the commutator by the Jordan-Schwinger
map

The demonstration that the Jordan-Schwinger map preserves the commutation relations, and is
therefore an acceptable representation of the algebra, is obtained only using linearity and the
expulsion properties of the commutator, the definition of the Jordan-Schwinger map, and the
commutation relation of annihilation and creation operators. Therefore any generalization of
the Jordan-Schwinger using operators with the same commutation relation will also preserve the
commutation relations.
Letbe an algebra such that

[Gi, Gj] = fkijGk, (C.1)

using the index notation (implicit summation over repeated indices). The Jordan-Schwinger map
gives:

Ĝi = â†α(Gi)αβâβ. (C.2)

Then we can develop the commutation relation of the operators by replacing their definition with
the Jordan-schwinger map.

[Ĝi, Ĝj] = [â†α (Gi)α,β âβ, â
†
γ (Gj)γ,δ âδ]

= (Gi)α,β (Gj)γ,δ [â
†
αâβ, â

†
γ âδ]

= (Gi)α,β (Gj)γ,δ
(
â†αâ

†
γ[âβ, âδ] + â†α[âβ, â

†
γ]âδ + â†γ[â

†
α, âδ]âβ + [â†α, â

†
γ]âβâδ

)
= (Gi)α,β (Gj)γ,δ

(
0 + â†αδβγ âδ + â†γ(−δαδ)âβ + 0

)
= (Gi)α,ϵ (Gj)ϵ,δ â

†
αâδ − (Gi)ϵ,β (Gj)γ,ϵ â

†
γ âβ

= (GiGj)µ,ν â
†
µâν − (GjGi)µ,ν â

†
µâν

= ([Gi, Gj])µ,ν â
†
µâν

= fkij â
†
µ(Gk)µ,ν âν

= fkijĜk (C.3)

This proves that the commutation relation of operators created thanks to the Jordan-Schwinger
map are similar to those of the initial algebra.
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C.2 Simplification of the general uncertainty relation for
symmetric matrices

In this appendix we simplify the cross terms appearing in the term with two matrices R in
Equation 3.45, using the symmetry properties of R.

RαβRγδ (⟨p̂αp̂βx̂γx̂δ⟩+ ⟨x̂αx̂β p̂γ p̂δ⟩)
=RαβRγδ ⟨{x̂αx̂β, p̂γ p̂δ}⟩
=RαβRγδ ⟨x̂α[x̂β, p̂γ p̂δ] + {x̂α, p̂γ p̂δ}x̂β⟩
=RαβRγδ ⟨x̂αp̂γ[x̂β, p̂δ] + x̂α[x̂β, p̂γ]p̂δ − p̂γ[x̂α, p̂δ]x̂β + {x̂α, p̂γ}p̂δx̂β⟩
=RαβRγδ ⟨ix̂αp̂γδβ,δ + ix̂αδβ,γ p̂δ − ip̂γδα,δx̂β + {x̂α, p̂γ}p̂δx̂β⟩
=RαβRγδ ⟨iδβ,δ(2x̂αp̂γ − p̂γx̂α) + {x̂α, p̂γ}p̂δx̂β⟩
=RαβRγδ ⟨iδβ,δ([x̂α, p̂γ] + x̂αp̂γ) + {x̂α, p̂γ}p̂δx̂β⟩
=RαβRγδ ⟨−δβ,δδα,γ + iδβ,δx̂αp̂γ + {x̂α, p̂γ}p̂δx̂β⟩

=RαβRγδ ⟨−δβ,δδα,γ + i
δβ,δ
2

([x̂α, p̂γ] + {x̂α, p̂γ}) +
1

2
{x̂α, p̂γ}([p̂δ, x̂β] + {p̂δ, x̂β})⟩

=RαβRγδ ⟨−
3

2
δβ,δδα,γ + i

δβ,δ
2

{x̂α, p̂γ}
δβ,δ
2

− i
δβ,δ
2

{x̂α, p̂γ}+
1

2
{x̂α, p̂γ}{p̂δ, x̂β}⟩

=RαβRγδ
1

2
⟨{x̂α, p̂γ}{x̂β, p̂δ}⟩ −

3

2
tr
(
R2
)

(C.4)

We see a constant term appearing that will be used as a lower bound.
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D. Relating number and spin eigenstates

D.1 Relations between L̂2 in the 2-mode system Jordan-
Schwinger representation of su(2)

To show the relation between the operator L̂2 and the operator N̂ , we can develop the operator
L̂2 as the sum over the L̂2

i , and then develop those operators through their definition by the
Jordan-Schwinger map, for a particular representation using Pauli matrices. As the Casimir
operator does not depend on the particular basis of the algebra that we use, this result will be
true for all representations of 2× 2 matrices.

L̂2 =L̂2
x + L̂2

y + L̂2
z,

=
1

4
(â†1â2â

†
1â2 + â†1â2â

†
2â1 + â†2â1â

†
1â2 + â†2â1â

†
2â1

− â†2â1â
†
2â1 + â†2â1â

†
1â2 + â†1â2â

†
2â1 − â†1â2â

†
1â2

+ â†1â1â
†
1â1 − â†1â1â

†
2â2 − â†2â2â

†
1â1 + â†2â2â

†
2â2),

=
1

4
(2â†1â2â

†
2â1 + 2â†2â1â

†
1â2

+ â†1â1â
†
1â1 − 2â†1â

†
2â1â2 + â†2â2â

†
2â2),

=
1

4
(2(â†1â1â

†
2â2 + â†1â1) + 2(â†1â1â

†
2â2 + â†2â2)

+ â†1â1â
†
1â1 − 2(â†1â1â

†
2â2) + â†2â2â

†
2â2),

=
1

4
((â†1â1â

†
2â2 + â†2â2â

†
1â1) + 2â†1â1 + 2â†2â2 + â†1â1â

†
1â1 + â†2â2â

†
2â2),

=
â†1â1 + â†2â2

2
+

(
â†1â1 + â†2â2

2

)2

,

=
n̂1 + n̂2

2

(
n̂1 + n̂2

2
+ 1̂

)
,

=
N̂

2

(
N̂

2
+ 1̂

)
. (D.1)

We therefore have a clear link between the Casimir operator L̂2 and the total number operator for
the particular case of 2-mode systems.
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D.2 Commutation relations between N̂ and Jordan-Schwinger
single body operators

In this appendix, we want to compute the commutation relation between N̂ and Ĝ = â†αGαβâβ
(using the implicit summation notation). We can develop the commutator using the classical
properties of it:

[N̂ , Ĝ] = [â†αâα, â
†
βGβγ âγ],

= Gβγ[â
†
αâα, â

†
βâγ],

= Gβγ

(
â†αâ

†
β[âα, âγ] + â†α[âα, â

†
β]âγ + â†β[â

†
α, âγ]âα + [â†α, â

†
β]âαâγ

)
,

= Gβγ

(
â†αâ

†
β · 0 + â†αδαβâγ − â†βδαγ âα + 0 · âαâγ

)
,

= Gβγ

(
â†βâγ − â†βâγ

)
,

= 0. (D.2)

This is an explicit proof that the total number operator commutes with all operators created
thanks to the Jordan-Schwinger map.
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D.3 Generalization of the Jordan-Schwinger map

In this section, we investigate generalizations of the Jordan-Schwinger map using more mode
operators to obtain higher-order functions of N̂ . The only requirement for such a map is to conserve
the commutation relations to preserve the algebra su(2). The first idea to generalize involves
replacing n× n matrices with 2f entry tensors42 with n values for each index; that is, by using
operators of the form

Ĝ =
∑

α1, ..., αf
β1, ..., βf

(
f∏
i=1

â†αi

)
G
α1...αf

β1...βf

(
f∏
j=1

âβj

)
. (D.3)

The convention for the product of two tensors used in this master thesis is the one conserving the
dimensions of the tensor

(GH)
α1...αf

γ1...γf =
∑

β1,...,βf

G
α1...αf

β1...βf
H
β1...βf

γ1...γf , (D.4)

and the definition of the commutator of two tensors derives naturally from it as

[G,H] = GH −HG. (D.5)

We consider a particular subclass of tensors vanishing if all covariant and contravariant indices are
not the same. We refer to this family of tensors as the plane diagonal tensor (because the nonzero
entries describe particular planes in the tensors):

G
α1...αf

β1...βf
=
∑
α,β

Gα
β

(
f∏
i=1

δααi

)(
f∏
j=1

δββj

)
. (D.6)

The product of two tensors of this form is given by

(GH)
α1...αf

γ1...γf =
∑
α,γ

∑
β

Gα
βH

β
γ

(
f∏
i=1

δααi

)(
f∏
j=1

δγγj

)
. (D.7)

Therefore, the product of two plane diagonal tensors is plane diagonal, and trivially, this is also
the case for their commutator. Using Equation (D.3), this family of tensors generates a specific
family of operators, referred to as plane diagonal operators, which are given by

Ĝ =
∑
α,β

(
â†α
)f
Gα

β (âβ)
f . (D.8)

If we compute the commutator of this family of tensors, we find that the commutator of such oper-
ators is no longer a plane diagonal operator, and is not even a tensor in the form of Equation (D.3).
Without details, if Ĝ and Ĥ are two plane diagonal operators, their commutator is given by

[Ĝ, Ĥ] =
∑
α,γ

∑
β

(
â†α
)f ( f∏

i=1

(n̂β + i)−
f∏
i=1

(n̂β + 1− i)

)(
Gα

βH
β
γ −Hα

βG
β
γ

)
(âγ)

f ,

=
∑
α,γ

∑
β

(
f∏
i=1

(n̂β + i− f − k)−
f∏
i=1

(n̂β + 1− i− f)

)(
â†α
)f (

Gα
βH

β
γ −Hα

βG
β
γ

)
(âγ)

f . (D.9)

42These are tensors with n2f elements.
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The polynomial of degree (f − 1) in n̂β that appears in this expression changes the order of the
operators in terms of â; therefore, the commutator is not intern in the class of operators described
by (D.3). Therefore, the commutation relation is not preserved for this generalization of the
Jordan-Schwinger map. This would be the case if the polynomial was 1 and if f = 1, that is, for
the classical Jordan-Schwinger map.
Even if this generalization does not work, there may be another that will. To find this, let us try
another generalization to increase the order of the Jordan-Schwinger map in terms of the operators
â and â† to the second order. In the demonstration that the Jordan-Schwinger map preserves
the commutation relation in Appendix C.1, we showed that the only property of âi and â†j that
mattered was their commutation relation:

[âi, âj] = 0, [â†i , â
†
j] = 0, and [âi, â

†
j] = δij. (D.10)

For the first order, we consider the operator b̂ = χ (â) = uâ+ vâ† + c. The commutation relations
are preserved if |u|2 − |v|2 = 1, and such transformations are called Bogoliubov transformations.
Now, if we consider second-order operators of the shape Ô = Aâ2 +Bn̂+ Câ†

2
+Dâ+ Eâ† + F ,

the conditions for the coefficients are more complex.

AB∗ = BC∗, |A|2 = |C|2, 2AD∗ +DB∗ = 2EC∗ +BE∗, |D|2 = |E|2 + 1. (D.11)

These equations have no general solutions; however, we can obtain two particular solutions:

Ô1 = eiϕ
(
K
(
â− â†

)2
+ â+ L

)
= eiϕ

(
K ′p̂2 + â+ L

)
,

Ô2 = eiϕ
(
iK
(
â+ â†

)2
+ â+ L

)
= eiϕ

(
iK ′x̂2 + â+ L

)
,

(D.12)

where K, k′, L, ϕ ∈ R. In both solutions, we add a Hermitian or anti-Hermitian operator and a
constant to the annihilation operator (and a complex phase). These solutions allow us to postulate
a new form of operator Ô = F̂ + â for higher-order generalization. F̂ is an operator that must be
built as a function of â and â†. The condition [Ô, Ô†] = 1 implies

[F̂ , F̂ †] + [F̂ , â†]− [F̂ †, â] = 0. (D.13)

If we postulate that F̂ † = eiϕF̂ with |λ| = 1, this expression can be further simplified. This family
of operators F̂ includes Hermitian operators if ϕ = 0 and anti-Hermitian operators if ϕ = π. The
condition becomes

[F̂ , a† − eiϕa] = [F̂ , (1− eiϕ)x̂+ i(1 + eiϕ)p̂] = 0. (D.14)

This condition is verified automatically if F̂ = f(â† − eiϕâ) = g((1 − eiϕ)x̂ + i(1 + eiϕ)p̂). If
f(x) =

∑∞
k=0 cke

iψkxk with ck, ψk ∈ R, then the condition F̂ † = eiϕF̂ becomes

ψk =
−1

2
((k + 1)ϕ+ kπ). (D.15)

Therefore, a general family of operators that can generalize the Jordan-Schwinger map are operators
of the following form:

F̂ = e−i
ϕ
2

∞∑
k=0

ck(ie
iϕ
2 â− ie−i

ϕ
2 â†)k = e−i

ϕ
2

∞∑
k=0

c′k

(
sin

ϕ

2
x̂+ cos

ϕ

2
p̂

)k
. (D.16)

In particular, if we want a Hermitian operator (ϕ = 0), we have F̂ =
∑∞

k=0 c
′
kp̂
k = f(p̂), where f is

a real function, and if we want an anti-Hermitian operator (ϕ = ±π), we have F̂ = i
∑∞

k=0 c
′
kx̂

k =

if(x̂). This describes a family of operators suitable for the Jordan-Schwinger map, as follows:

Ô(â) = e−i
ϕ
2

∞∑
k=0

ck(ie
iϕ
2 â− ie−i

ϕ
2 â†)k + â, with ck, ϕ ∈ R. (D.17)
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More generally, we can also consider multiplication by a complex phase and the addition of a
constant to get the transformation

Â = Ô(â) = ei(−
ϕ
2
+ψ)

∞∑
k=0

ck(ie
iϕ
2 â− ie−i

ϕ
2 â†)k + eiψâ+ L, with ck, ϕ, ψ ∈ R and L ∈ C. (D.18)

If ck = 0 ∀k ≥ 2, we find the Bogoliubov transformation; hence, the transformation Ôϕ,ψ,{ck},L is a
generalization of these transformations. Equations (D.12) are particular cases of this transformation,
with ck = 0 if k ̸= 2. It has not been proven whether the composition of several transformations
Ôϕi,ψi,{cik},Li is another transformation Ôϕ̃,ψ̃,{c̃k},L̃ or if it describes a larger family of transformations.
Using transformations Ô, we can generalize the Jordan-Schwinger map with a higher order in
terms of mode numbers as follows:

Ĝ =
∑
α,β

Â†
αGαβÂβ, (D.19)

with
Âα = Ôϕα,ψα,{cαk },Lα (âα) . (D.20)

Note that the coefficients ϕα, ψα, {cαk}, Lα do not need to be equal for each mode.
We will not use this generalization in this thesis, but further research should investigate if this
map has applications in several problems; for instance, one should consider the submodules of the
representation of su(2) generated with this map.
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D.4 Computations of the values of U(n,N, u)

This codes implements the Equation (4.36) with the initial condition given by Equation (4.37)
to create a 3-dimensional array containing all the values of U for 1 to n boxes, 1 to N balls and
scores from 1 to n×N .

1 function U=ballInBinStocked(n,N);
2 U=zeros(n,N,n*N);
3 for j=1:N
4 U(1,j,j)=1;
5 endfor
6 for i=2:n
7 for j=1:N
8 for k=j+1:i*j
9 U(i,j,k)+=sum(U(i-1,(j:-1:1),k-j));

10 endfor
11 U(i,j,j)+=1;
12 endfor
13 endfor
14

The Equation (4.40) is implemented in the following code, with the conditions given by Equa-
tion (4.41). A stronger initial condition is added: if u < N , then U = 0. This is not necessary, but
will help speed up the algorithm.

1 function U=ballInBinNotStocked(n,N,u);
2 if ((u<=N)||(N==0)|| (n==1))
3 U=(N==u);
4 return;
5 endif
6 U=ballInBinNotStocked(n,N-1,u-1)+ballInBinNotStocked(n-1,N,u-N);
7 endfunction

This same relation can be a bit modified to find all the possible combinations explicitly.

1 #BallsCombi
2 function C=BallsCombi(n,N,u)
3 if N==0
4 if u==0
5 C=zeros(1,n);
6 else
7 C=zeros(0,n);
8 endif
9 elseif n==1

10 if N==u
11 C=[N];
12 else
13 C=zeros(0,n);
14 endif
15 else
16 C1=BallsCombi(n,N-1,u-1);
17 C1(:,1)+=1;
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18 C2=BallsCombi(n-1,N,u-N);
19 C2=[zeros(size(C2)(1),1) C2];
20 C=[C2;C1];
21 endif
22 endfunction
23
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D.5 Orthogonality of submodules defined by orthogonal vec-
tors γ⃗

We note V (N, l, γ⃗) the submodules in the form of

V (N, l, γ⃗) = span

|ψlz⟩ =
g(n,N,l)−1∑

i=0

γi |N, l, lz, i⟩s ,∀lz such that |lz| ≤ l


 , with γ⃗ ∈ Cg(n,N,l).

(D.21)
If you consider two of those modules with different values of N or l, they are automatically
orthogonal; indeed, they are included in two orthogonal spaces. Specifically, V (N, l, γ⃗) is included
in the subspace of N̂ with eigenvalue N , and because N̂ is Hermitian, its eigenspaces are orthogonal;
thus, V (N) and V (N ′) lie in two orthogonal spaces if N ̸= N ′, they are orthogonal.
Now, we compare V (N, l, γ⃗1) and V (N, l, γ⃗2), where |v⟩ ∈ V (N, l, γ⃗1), |w⟩ ∈ V (N, l, γ⃗2), and v⃗ and
w⃗ are the vectors containing their components. We can compute their scalar product

⟨v|w⟩ =

(
l∑

lz=−l

v∗lz ⟨ψlz(γ⃗1)|

) l∑
l′z=−l

wl′z |ψl′z(γ⃗2)⟩

 ,

=
l∑

lz=−l

l∑
l′z=−l

v∗lzwl′z ⟨ψlz(c1)|ψl′z(c2)⟩ ,

=
l∑

lz=−l

l∑
l′z=−l

v∗lzwl′z

g(n,N,l)−1∑
i=0

γ∗1 i ⟨N, l, lz, i|s

g(n,N,l)−1∑
j=0

γ2j |N, l, l′z, j⟩s

 ,

=
l∑

lz=−l

l∑
l′z=−l

v∗lzwl′z

g(n,N,l)−1∑
i=0

g(n,N,l)−1∑
j=0

γ∗1 iγ2j ⟨N, l, lz, i|N, l, l
′
z, j⟩

 ,

=
l∑

lz=−l

l∑
l′z=−l

v∗lzwl′z

g(n,N,l)−1∑
i=0

g(n,N,l)−1∑
j=0

γ∗1 iγ2jδijδlzl′z

 ,

=
l∑

lz=−l

v∗lzwlz

g(n,N,l)−1∑
i=0

γ∗1 iγ2i

 ,

= (v⃗ · w⃗) (γ⃗1 · γ⃗2) .

The expression that we obtain is convenient. The scalar product of two vectors in two different
spaces V (N1, l1, γ⃗1) and V (N2, l2, γ⃗2) is zero if N1 ≠ N2 or l1 ̸= L2, else it is the product of the
scalar product of the defining vectors γ⃗i and the scalar product of the vector of their components.
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D.6 Implementation of the general algorithm in Octave

We present here the implementation of the general algorithm of Section 4.4 on Octave. The
coefficients for the basis change are stocked in the matrix C (and must be related to the matrix V
to find the corresponding vector in the number basis). It is not optimized, but is implemented in
order to be as close as possible to the algorithm we presented.

1 clear, close all, clc
2

3 % step 1
4 n = 4; % number of modes
5 N = 7; % number of particles
6

7 hs = (mod(n + 1, 2) && mod(N, 2)) / 2; % value to correct the indices for half
spin valued↪→

8

9 l_z_max = (n - 1) / 2 * N; % maximum value reachable for the spin
10 Lm = sqrt((n - (1:n-1)).* (1:n-1)); % non zero coefficients of the operator L_-
11 V = zeros(l_z_max + 1 - hs, 1, n); % V(lz + 1, num, ind) This matrix contains

all the vectors of the number basis corresponding to a value Lz. They are
all referenced by a number num. Therefore V(lz + 1, num, ind) gives the
number of particles in the mode ind for the num_th vector of a given lz

↪→

↪→

↪→

12 C = zeros(l_z_max + 1 - hs, 1, l_z_max + 1 - hs, 2); % C(l + 1, C, lz + 1, num)
contains the coefficients for the new basis lz.C(l+1, C, lz+1, num) gives
the coefficients for a vector | N, l, lz, C > _s for the vector num (cf
array V)

↪→

↪→

↪→

13 g = zeros(1, l_z_max + 1 - hs); % function g(lz) in the notes
14

15 % step 2
16 V(l_z_max + 1 - hs, 1, end) = N; % only vector with lz=l_z_max:| 0, 0, ..., N

>_n↪→

17 C(l_z_max + 1 - hs, 1, l_z_max + 1 - hs, 1) = 1; % identification | N, l_z_max,
l_z_max, 1 > _s = | 0, 0, ..., N > _n↪→

18 g(end) = 1;
19 gt = g; % dimension of the eigenspaces of lz
20

21 % step 3
22 for lz=l_z_max:-1: 1 % lz est en fait lz + 1
23 count = 0;
24 [n1, n2, n3] = size(V);
25 % step 3a and 3b
26 for num=1:n2
27 for ind=2:n
28 if V(lz + 1 - hs, num, ind) > 0
29 VP = V(lz + 1 - hs, num,:);
30 VP(ind) -= 1;
31 VP(ind - 1) += 1;
32 test = 0;
33 for i=1:count
34 if sum(VP == V(lz - hs, i,: )) == n
35 for l=lz+1:l_z_max + 1

78



36 for j=1:g(l - hs)
37 C(l - hs, j, lz - hs, i) += C(l - hs, j, lz + 1 - hs, num) *

sqrt( V(lz + 1 - hs, num, ind) * (V(lz + 1 - hs, num, ind -
1) + 1)) * Lm(ind - 1); % creation of the first part of the
new basis by applying L -

↪→

↪→

↪→

38 test = 1;
39 endfor
40 endfor
41 break;
42 endif
43 endfor
44 if !test % In this case we find a new vector of the number basis we had

not considered↪→

45 count += 1;
46 V(lz - hs, count,:)=VP;
47 for l=lz+1:l_z_max + 1
48 for j=1:g(l - hs)
49 C(l - hs, j, lz - hs, count) = C(l - hs, j, lz + 1 - hs, num) *

sqrt( V(lz + 1 - hs, num, ind) * (V(lz + 1 - hs, num, ind - 1)
+ 1)) * Lm(ind - 1);

↪→

↪→

50 endfor
51 endfor
52 endif
53 endif
54 endfor
55 endfor
56 % normalization
57 for l=lz+1:l_z_max + 1
58 for j=1:g(l - hs)
59 C(l - hs, j, lz - hs,:)=C(l - hs, j, lz - hs,:) / sqrt(sum(C(l - hs, j, lz

- hs,:).^ 2));↪→

60 endfor
61 endfor
62 % Step 3C
63 gt(lz - hs) = count;
64 g(lz - hs) = gt(lz - hs) - gt(lz + 1 - hs);
65 for j=1:g(lz - hs) % Gram-Schmidt to construct the new vectors
66 C(lz - hs, j, lz - hs, 1: n2)=rand(1, n2);
67 C(lz - hs, j, lz - hs,:)=C(lz - hs, j, lz - hs,:) / sqrt(sum(C(lz - hs, j,

lz - hs,:).^ 2));↪→

68 for l=lz+1:l_z_max + 1
69 for k=1:g(l - hs)
70 C(lz - hs, j, lz - hs,:) -= sum(C(lz - hs, j, lz - hs,:).*C(l - hs, k,

lz - hs,:))*C(l - hs, k, lz - hs,:);↪→

71 C(lz - hs, j, lz - hs,:)=C(lz - hs, j, lz - hs,:) / sqrt(sum(C(lz - hs,
j, lz - hs,:).^ 2));↪→

72 endfor
73 endfor
74 for k=1:j - 1
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75 C(lz - hs, j, lz - hs,:) -= sum(C(lz - hs, j, lz - hs,:).*C(lz - hs, k, lz
- hs,:))*C(lz - hs, k, lz - hs,:);↪→

76 C(lz - hs, j, lz - hs,:)=C(lz - hs, j, lz - hs,:) / sqrt(sum(C(lz - hs, j,
lz - hs,:).^ 2));↪→

77 endfor
78 endfor
79 endfor
80 % printing of the results
81 for lz=l_z_max+1:-1: 1
82 for l=l_z_max+1:-1: lz
83 for i=1:g(l - hs)
84 printf(sprintf('|%d,%d,%d,%d>_s = ', N, l - 1, lz - 1, i))
85 for num=1:gt(lz - hs)
86 printf(sprintf('%d|', C(l - hs, i, lz - hs, num)))
87 for j=1:n
88 printf(sprintf('%d', V(lz - hs, num, j)))
89 if j != n
90 printf(',')
91 endif
92 endfor
93 printf('>_n ')
94 if num != gt(lz - hs) && (C(l - hs, i, lz - hs, num + 1) >= 0)
95 printf('+')
96 endif
97 endfor
98 printf('\n')
99 endfor

100 endfor
101 endfor
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D.7 Spin Basis for 3 modes and 6 particles

We computed explicitly the vectors of the spin basis for 3-mode and 6 particles using the general
algorithm described in Section 4.4. If you use algorithm of Appendix D.6, the results are the same.

|6, 6, 6⟩s = |0, 0, 6⟩n ,
|6, 6, 5⟩s = |0, 1, 5⟩n ,

|6, 6, 4⟩s =
1√
11

(
|1, 0, 5⟩n +

√
10 |0, 2, 4⟩n

)
,

|6, 4, 4⟩s =
1√
11

(√
10 |1, 0, 5⟩n − |0, 2, 4⟩n

)
,

|6, 6, 3⟩s =
1√
11

(√
3 |1, 1, 4⟩n +

√
8 |0, 3, 3⟩n

)
,

|6, 4, 3⟩s =
1√
11

(√
8 |1, 1, 4⟩n −

√
3 |0, 3, 3⟩n

)
,

|6, 6, 2⟩s =
1√
33

(|2, 0, 4⟩n + 4 |1, 2, 3⟩+ 4 |0, 4, 2⟩n) ,

|6, 4, 2⟩s =
1√
77

(4 |2, 0, 4⟩n + 5 |1, 2, 3⟩ − 6 |0, 4, 2⟩n) ,

|6, 2, 2⟩s =
1√
21

(4 |2, 0, 4⟩n − 2 |1, 2, 3⟩+ |0, 4, 2⟩n) ,

|6, 6, 1⟩s =
1√
33

(√
5 |2, 1, 3⟩n +

√
20 |1, 3, 2⟩n +

√
8 |0, 5, 1⟩n

)
,

|6, 4, 1⟩s =
1√
77

(√
35 |2, 1, 3⟩n +

√
1 |1, 3, 2⟩n −

√
40 |0, 5, 1⟩n

)
,

|6, 2, 1⟩s =
1√
21

(√
8 |2, 1, 3⟩n −

√
8 |1, 3, 2⟩n +

√
5 |0, 5, 1⟩n

)
,

|6, 6, 0⟩s =
1√
231

(√
5 |3, 0, 3⟩n +

√
90 |2, 2, 2⟩n +

√
120 |1, 4, 1⟩n +

√
16 |0, 6, 0⟩n

)
,

|6, 4, 0⟩s =
1√
385

(√
54 |3, 0, 3⟩n +

√
147 |2, 2, 2⟩n −

√
64 |1, 4, 1⟩n −

√
120 |0, 6, 0⟩n

)
,

|6, 2, 0⟩s =
1√
21

(√
16 |3, 0, 3⟩n +

√
0 |2, 2, 2⟩n −

√
3 |1, 4, 1⟩n +

√
10 |0, 6, 0⟩n

)
,

|6, 0, 0⟩s =
1√
35

(√
16 |3, 0, 3⟩n −

√
8 |2, 2, 2⟩n +

√
6 |1, 4, 1⟩n −

√
5 |0, 6, 0⟩n

)
.

The negative lz vectors can be obtained by symmetry, inverting the number of particles in each
mode. For instance:

|6, 4,−1⟩s =
1√
77

(√
35 |3, 1, 2⟩n +

√
1 |2, 3, 1⟩n −

√
40 |1, 5, 0⟩n

)
.
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D.8 Demonstration for the scalar products of numbers be-
tween different number basis

In this section we compute
⟨n1, n2, ..., nn|m1,m2, ...,mn⟩ , (D.22)

where |n1, n2, ..., nn⟩ and |m1,m2, ...,mn⟩ are two Fock vectors corresponding to two different Fock
bases, for whose creation and annihilation operators are related by the relation

b̂u ≡ U †
uβâβ and b̂†t ≡ â†αUαt (D.23)

To do this, we need to develop the states with their definitions in Equation (2.86):

⟨n1, n2, ..., nn|m1,m2, ...,mn⟩ = ⟨0|

(
n∏
α

√
nj!

−1
(âα)

nα

)(
n∏
i

√
mi!

−1
(
b̂†i

)mi

)
|0⟩

=

(
n∏
α

√
nα!

)−1( n∏
i

√
mi!

)−1

⟨0|

(
n∏
β

â
nβ

β

)(
n∏
j

b̂†
mj

j

)
|0⟩

(D.24)

Let us now focus on the braket. We consider N =
∑

n βnβ and M =
∑

jmj and β⃗ and j⃗ the
vectors explained in Section 4.7.
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âβa

) ∑
k⃗∈{1,...,n}M

M∏
b
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= δN,M
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Finally, the matrix element is given by

⟨n1, n2, ..., nn|m1,m2, ...,mn⟩ = δN,M

n∏
i

√
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mi!

∑
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∑
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(
N∏
c
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) (D.26)
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