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Accessing continuous-variable entanglement witnesses with multimode spin observables
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We present several measurement schemes for accessing separability criteria for continuous-variable bipartite
quantum systems. Starting from moments of the bosonic mode operators, criteria suitable to witness entangle-
ment are expressed in terms of multimode spin observables via the Jordan-Schwinger map. These observables
are typically defined over a few replicas of the state of interest and can be transformed into simple photon number
measurements by passive optical circuits. Our measurement schemes require only a handful of measurements,
thereby allowing one to efficiently detect entanglement without the need for costly state tomography as illustrated
for a variety of physically relevant states (Gaussian, mixed Schrödinger cat, and NOON states). The influence of
typical experimental imperfections is shown to be moderate.
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I. INTRODUCTION

When analyzing the correlations between two systems,
the dividing line between the classical and the quantum is
marked by the phenomenon of entanglement. Over the last
two decades, plenty of methods for characterizing entangle-
ment theoretically as well as experimentally have been put
forward [1–3]. A common strategy relies on demonstrating
entanglement by violating a set of experimentally accessible
conditions fulfilled by all separable states and violated by
a few entangled ones. This includes the prominent Peres-
Horodecki (PPT) criterion [4,5], which states that bipartite
entanglement can be certified when the partially transposed
density operator exhibits a negative eigenvalue.

Conditions implied by this PPT criterion have been studied
extensively in the framework of continuous-variable quan-
tum systems [6–8], where entanglement detection is further
complicated by the infinite dimensional Hilbert space. This
encompasses formulations based on uncertainty relations for
second moments [9–13], fourth-order moments [14], en-
tropies over canonical variables [15–19], as well as entropic
quantities based on the Husimi Q distribution [20–24]. With
these approaches, entanglement could be certified experimen-
tally in the context of quantum optics [25–29] and with cold
atoms [30–36].

Although all of the aforementioned criteria are implied by
the PPT criterion, they are generally weaker in the sense that
they cannot detect entanglement for a few entangled states
that have a negative partial transpose. A complete hierarchy
of conditions in terms of moments of the bosonic mode oper-
ators, being sufficient and necessary for the negativity of the
partial transpose, has been put forward by Shchukin and Vogel
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in Ref. [37], and was further developed in Refs. [38,39]. While
this approach settled the quest for faithfully evaluating the
negativity of the partially transposed state, efficient methods
for accessing the most important low-order conditions have
until now remained elusive.

In this paper, we put forward simple measurement schemes
of these low-order conditions by introducing multimode spin
observables which act on a few replicas (i.e., independent
and identical copies) of the bipartite state of interest. Con-
trary to local canonical operators, whose low-order correlation
functions have to be measured through costly tomographic
routines involving homodyne measurements [40–42], such
multimode spin observables can be transformed into a bunch
of photon number measurements by using passive optical ele-
ments [43–45]. Following this multicopy technique, we devise
measurement protocols for three of the most interesting sep-
arability criteria obtained in Ref. [37] and illustrate how they
efficiently witness entanglement for the classes of Gaussian,
mixed Schrödinger cat, and NOON states, respectively. In all
cases, we discuss how experimental imperfections may affect
the detection capability.

The remainder of this paper is organized as follows. We
begin Sec. II with a brief recapitulation of the Shchukin-Vogel
hierarchy for entanglement witnesses (Sec. II A), followed
by an overview of the multicopy method (Sec. II B) and,
specifically, of the Jordan-Schwinger map used to build multi-
mode spin observables (Sec. II C). Thereupon, we derive and
evaluate multimode expressions for three important classes of
entanglement criteria in Sec. III, that is, criteria that are best
suited for Gaussian states (Sec. III A), mixed Schrödinger cat
states (Sec. III B), and NOON states (Sec. III C). We also dis-
cuss the influence of imperfect preparation and losses for each
criterion. Finally, we summarize our findings and provide an
outlook in Sec. IV.

Notation. We employ natural units h̄ = 1 and use bold (nor-
mal) letters for quantum operators O (classical variables O).
We write 〈O〉 = Tr{ρ O} for single-copy expectation values
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and 〈. . . 〈O〉 . . .〉 = Tr{(ρ ⊗ · · · ⊗ ρ) O} for multicopy expec-
tation values. The modes a and b are associated with Alice’s
and Bob’s subsystems A and B, respectively, and copies are
labeled by greek indices μ and ν.

II. PRELIMINARIES

A. Shchukin-Vogel hierarchy

We consider a bipartite continuous-variable quantum sys-
tem AB with local bosonic mode operators a and b satisfying
[a, a†] = [b, b†] = 1 (we restrict to Alice’s and Bob’s subsys-
tems consisting of one single mode). By the Peres-Horodecki
criterion, all separable states have a non-negative partial
transpose ρT2 � 0 [4,5]. Following Refs. [37–39], the non-
negativity of the partial transpose ρT2 can be assessed in
full generality by demanding that for all normally ordered
operators f = ∑

n,m,k,l cnmkl a†namb†kbl with complex-valued
c, the inequality Tr{ρT2 f † f } � 0 is fulfilled, which can be
expressed as a bilinear form in c with the matrix of moments
Dpqrs,nmkl = 〈a†qapa†namb†sbrb†kbl〉 as∑

n,m,k,l
p,q,r,s

c∗
pqrs cnmkl DT2

pqrs,nmkl � 0 (1)

for all c’s. By Silvester’s criterion, the latter inequality holds
true for all c’s if and only if all principal minors of the matrix
DT2 are non-negative. Using DT2

pqrs,nmkl = Dpqkl,nmrs, we obtain
that ρT2 is non-negative if and only if all determinants

d = |DT2 | =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 〈a〉 〈a†〉 〈b†〉 〈b〉 . . .

〈a†〉 〈a†a〉 〈a†2〉 〈a†b†〉 〈a†b〉 . . .

〈a〉 〈a2〉 〈aa†〉 〈ab†〉 〈ab〉 . . .

〈b〉 〈ab〉 〈a†b〉 〈b†b〉 〈b2〉 . . .

〈b†〉 〈ab†〉 〈a†b†〉 〈b†2〉 〈bb†〉 . . .
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2)

are non-negative.
By the latter arguments, the negativity of any principal

minor of the matrix DT2 provides a sufficient condition for
entanglement, i.e., an entanglement witness. This corresponds
to specific choices of f by setting the c coefficients in such a
way that one only keeps a subset of rows and corresponding
columns in the matrix DT2 . For example, we will focus in
what follows on the determinant of the matrix consisting of
the first, second, and fourth rows and columns of DT2 , denoted
as d1,2,4 in Eq. (9), and will use d1,2,4 < 0 as an entanglement
witness. Similarly, we will consider d1,4,9 [Eq. (28)] and d1,9,13

[Eq. (38)].
It is interesting to note that all principal minors of (2)

are invariant under arbitrary local rotations a → e−iθa a and
b → e−iθbb with θa, θb ∈ [0, 2π ), since, in every term of these
determinants, local annihilation and creation operators appear
in equal number, so that all phases cancel termwise. This
property will in turn carry over to the derived multicopy
observables, implying that all entanglement witnesses will be
invariant when Alice or Bob apply a local phase shift. The
same is not true in general for arbitrary local displacements
a → a + α and b → b + β with α, β ∈ C, which can be

seen by considering for example the subdeterminant d2,3. For
certain subdeterminants, however, this invariance is restored,
which is for example the case for d1,2,4 [Eq. (9)]. In that case,
the effect of local displacements can be discarded with simple
optical circuits involving only beam splitters and we may only
consider centered states [in this example, it is then enough to
use d2,4 as an entanglement witness, see Eq. (17)].

B. Multicopy method

All criteria obtainable by Shchukin-Vogel’s approach can
be expressed in terms of the non-negativity of a determinant
d containing moments, which offers the possibility to write
them in terms of expectation values of multimode observ-
ables. It is indeed known that any nth degree polynomial of
matrix elements of a state ρ can be accessed by defining some
observable acting on a n-copy version of the state, namely,
ρ⊗n [46]. Inspired by this multicopy method, tight uncertainty
relations [43] as well as nonclassicality witnesses [44] (see
also Ref. [45]) have been formulated by devising multicopy
observables from determinants similar to (2). The general
scheme is as follows. Given the determinant d of a matrix
containing expectation values of mode operators, the corre-
sponding multicopy observable D is obtained by dropping all
expectation values, assigning one copy to each row, and av-
eraging over all permutations of the copies. By construction,
the multicopy expectation value 〈. . . 〈D〉 . . .〉 coincides with
the determinant d .

For measuring these observables, the remaining task is to
find suitable optical circuits. We start from the n-dimensional
extension of mode operators describing subsystem A, which
reads [aμ, a†

ν] = δμν with μ, ν ∈ {1, . . . , n} and n denoting
the number of copies (we will of course use a similar notation
for copies of subsystem B). In order to transform the mea-
surement of some n-mode observable D into simple photon
number measurements, we employ passive linear interferome-
ters, which amounts to applying a unitary transformation (i.e.,
a passive Bogoliubov transformation) to the mode operators,
namely,

(a1, . . . , an)T → (a1′ , . . . , an′ )T = M (a1, . . . , an)T . (3)

The unitary matrix M can be decomposed in terms of two
building blocks, the beam splitter

BSμν (τ ) =
( √

τ
√

1 − τ√
1 − τ −√

τ

)
, (4)

with transmittivity τ ∈ [0, 1], and the phase shifter

PSμ(θ ) = e−iθ , (5)

with phase θ ∈ [0, 2π ), where μ and ν designate the mode in-
dices on which the corresponding transformations are applied.

C. Multimode spin operators

When restricting to two modes (μ, ν = 1, 2), a particularly
useful set of multimode operators can be constructed from
algebraic considerations. Considering again subsystem A, the
fundamental representation of the Lie algebra su(2), i.e., the
Pauli matrices Gj = σ j/2 fulfilling [Gj, Gk] = i ε jkl Gl with
j, k, l = 1, 2, 3, is realized on its two-mode extension by the
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quantum operators

L j =
∑
μ,ν

a†
μ (Gj )μν aν, (6)

where (Gj )μν denotes the (μ, ν)th entry of the Pauli matrix
Gj . This is known as the Jordan-Schwinger map. More gen-
erally, in the n-mode case, this leads to defining the three
two-mode spin operators

Lx
aμν

= 1

2
(a†

νaμ + a†
μaν, ),

Ly
aμν

= i

2
(a†

νaμ − a†
μaν, ),

Lz
aμν

= 1

2
(a†

μaμ − a†
νaν, ),

(7)

acting on the pair of modes (aμ, aν ). The Casimir operator
commuting with all three spin operators is given by the to-
tal spin (Laμν

)2 = (Lx
aμν

)2 + (Ly
aμν

)2 + (Lz
aμν

)2 and can also be

expressed as (Laμν
)2 = L0

aμν
(L0

aμν
+ 1), where the zeroth spin

component, defined as

L0
aμν

= 1
2 (a†

μaμ + a†
νaν ), (8)

denotes (one half) the total photon number on the two modes
of index μ and ν.

The zeroth and z components can be measured via photon
number measurements as 〈〈L0

aμν
〉〉 = (〈naμ

〉 + 〈naν
〉)/2 and

〈〈Lz
aμν

〉〉 = (〈naμ
〉 − 〈naν

〉)/2, where naμ
(or naν

) denotes the
particle number operator associated with mode aμ (or aν).
Note also that the zeroth component can be measured si-
multaneously with any other spin operator and will always
amount to measuring the total particle number. For the x and
y components, simple optical circuits for transforming them
into the z component are described in Refs. [43,44], which
will be discussed below. We may of course analogously define
the spin components Lx

bμν
, Ly

bμν
, Lz

bμν
, and L0

bμν
for any two

modes bμ and bν of subsystem B, which will be needed in
Secs. III A and III B. We may even define such spin operators
across the two subsystems. For a single copy, this amounts to
replacing aμ with a and aν with b in Eq. (7), as we will need
in Sec. III C.

III. MULTIMODE ENTANGLEMENT WITNESSES

Now we are ready to develop multicopy implementa-
tions of the separability criteria from the Shchukin-Vogel
hierarchy. In a nutshell, our overall strategy is to identify
physically relevant separability criteria from (2), rewrite them
in terms of multimode observables, and then apply linear op-
tical circuits transforming them into spin operators (7), which
can be accessed by photon number measurements following
Refs. [43,44]. Below, we provide the resulting measurement
routines for three classes of criteria that witness entanglement
in Gaussian (Sec. III A), mixed Schrödinger cat (Sec. III B),
and NOON states (Sec. III C). In each case, we address two
potential sources of experimental imperfections, namely, im-
perfect copies and optical losses.

First, remark that multiple identical copies of the state are
always assumed to be prepared in the multicopy method. In
practice, however, the preparation process encompasses slight

fluctuations, so that the prepared multicopy state will contain
imperfect copies. Although our separability criteria are not
guaranteed to remain necessarily valid from first principles
in this case, we analyze whether this effect might lead to
false-positive detection of entanglement, i.e., might result in
a negative determinant even if the imperfect copies are sep-
arable. To that end, we model the imperfect preparation by
assuming a fixed form of the state—for instance a Gaussian
form—for all copies but allow the parameters describing the
state to differ from copy to copy. Under this assumption, we
do not observe any false-positive detections for all the criteria
that we have studied. Yet, imperfect copies typically weaken
the detection capability of these criteria.

Second, it is clear that any optical setup will suffer from un-
avoidable losses, which may challenge the multicopy method.
We model their effect with a pure-loss channel: each mode
of interest aμ is coupled with the vacuum |0〉 via a beam
splitter of transmittance τaμ

[7,8]. Effectively, this amounts
to multiplying each mode operator aμ by √

τaμ
. As expected,

it appears that the detection of entanglement is hindered by
such optical losses for all the criteria we have studied. In what
follows, we quantify precisely the extent to which these two
sources of imperfections affect our criteria.

A. Second-order witness based on D1,2,4

1. Separability criterion

We start with the subdeterminant obtained from (2) by
selecting the rows and columns 1, 2, and 4 of DT2 , i.e.,

d1,2,4 =
∣∣∣∣∣∣

1 〈a〉 〈b†〉
〈a†〉 〈a†a〉 〈a†b†〉
〈b〉 〈ab〉 〈b†b〉

∣∣∣∣∣∣, (9)

corresponding to the operator f = c1 + c2a + c3b. As the
resulting entanglement witness d1,2,4 < 0 is of second order
in the mode operators, let us compare it to other prominent
second-order criteria. To that end, we introduce the nonlocal
quadrature operators [47]

x± = |r| x1 ± 1

r
x2, p± = |r| p1 ± 1

r
p2, (10)

with some real r 
= 0. For any separable state, the sums of the
variances of these operators are constrained by the criterion of
Duan et al. [9]:

dDuan = σ 2
x± + σ 2

p∓ −
(

r2 + 1

r2

)
� 0, (11)

where σ 2
x = 〈x2〉 − 〈x〉2 denotes the variance of the operator

x. Interestingly, the optimized (over r) version of condition
(11) is implied by the non-negativity of d1,2,4 (see Appendix
A for a proof). In fact, the witness d1,2,4 < 0 is strictly stronger
than the criterion of Duan et al. for detecting entanglement.

2. Application to Gaussian states

It is well known that the criterion (11) is a necessary and
sufficient condition for separability (after optimization over r)
in the case of Gaussian states as considered here (when Alice
and Bob hold one mode each) [2]. By the latter considerations,
the same holds true for the determinant d1,2,4. As a particular
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FIG. 1. (a) Optical circuit implementing the transformation M on three identical copies of the bipartite state ρ, where Alice holds modes
a1,2,3 and Bob holds modes b1,2,3. The displacement of the state ρ is removed by a sequence of two beam splitters of transmittances 1

2 and 2
3 ,

implemented locally by Alice and Bob, and leading to modes a1′,2′,3′ and b1′,2′,3′ . The mean field is concentrated on one mode of each subsystem
(a1′ and b1′ ), which is traced over. (b–d) Three optical circuits applied locally by Alice and Bob in order to access the expectation values of the
three operators C j , which are needed to evaluate the entanglement witness d1,2,4. While measuring C3 (d) requires photon number detectors
without any additional optical circuit, a beam splitter of transmittance 1

2 must be added by Alice and Bob for measuring C1 (b), preceded by a
phase shift of π

2 for measuring C2 (c).

example, we evaluate this determinant for the archetypal en-
tangled Gaussian state, the two-mode squeezed vacuum state

|ψ〉 =
√

1 − λ2
∞∑

n=0

λn|n, n〉, (12)

where λ ∈ (−1, 1). This leads to the expression

d1,2,4 = − λ2

1 − λ2
, (13)

which is indeed negative for any value of the parameter
λ ∈ (−1, 1). More details can be found in Appendix B1.

3. Multicopy implementation

We apply the multicopy measurement method, i.e., assign
one copy to each row of the matrix and sum over all permuta-
tions, yielding

D1,2,4 = 1

|S123|
∑

σ∈S123

∣∣∣∣∣∣∣∣∣

1 aσ (1) b†
σ (1)

a†
σ (2) a†

σ (2)aσ (2) a†
σ (2)b

†
σ (2)

bσ (3) aσ (3)bσ (3) b†
σ (3)bσ (3)

∣∣∣∣∣∣∣∣∣
, (14)

where S123 denotes the group of permutations over the index
set {1, 2, 3} with dimension |S123| = 3!. By construction, the
multicopy expectation value of this observable gives the de-
terminant (9), i.e., 〈〈〈D1,2,4〉〉〉 = d1,2,4.

Since d1,2,4 is invariant under displacements (see
Appendix C), we may access D1,2,4 by first applying a linear
optics transformation on Alice’s and Bob’s subsystems that
has the effect of concentrating the mean field on one mode of
each subsystem (a1 and b1) and canceling it on the other two
modes (a2 and a3, on Alice’s side, and b2 and b3 on Bob’s
side). To that end, as shown in Refs. [43,44], we may apply

the transformation

M = [
BSa1a3 (2/3) ⊗ Ia2

][
BSa1a2 (1/2) ⊗ Ia3

]

= 1√
6

⎛
⎜⎜⎝

√
2

√
2

√
2

√
3 −√

3 0

1 1 −2

⎞
⎟⎟⎠ (15)

to the a modes and similarly to the b modes as shown in
Fig. 1(a). Denoting with a prime all output modes of this
transformation, this results in

D1,2,4 = 1

2
(a†

2′a2′b†
3′b3′ + a†

3′a3′b†
2′b2′

− a†
2′a3′b†

2′b3′ − a†
3′a2′b†

3′b2′ )

= 1

|S2′3′ |
∑

σ∈S2′3′

∣∣∣∣∣a
†
σ (1)aσ (1) a†

σ (1)b
†
σ (1)

aσ (2)bσ (2) b†
σ (2)bσ (2)

∣∣∣∣∣
= D2,4, (16)

with S2′3′ denoting the group of permutations over the index
set {2′, 3′} with dimension |S2′3′ | = 2!. Note that the depen-
dence on mode a1′ and b1′ has disappeared, as expected.
Interestingly, the latter expression corresponds to the multi-
copy implementation of the subdeterminant

d2,4 =
∣∣∣∣〈a†a〉 〈a†b†〉
〈ab〉 〈b†b〉

∣∣∣∣, (17)

as 〈〈D2,4〉〉 = d2,4.
Let us now consider the experimental measurement of the

multimode observable D2,4. To that end, we define three oper-
ators C j based on the spin operators (7) and (8) applied onto
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modes 2′ and 3′ on Alice’s and Bob’s side, namely,

C1 = L0
a2′3′ L

0
b2′3′ − Lx

a2′3′ L
x
b2′3′ ,

C2 = L0
a2′3′ L

0
b2′3′ − Ly

a2′3′ L
y
b2′3′ ,

C3 = L0
a2′3′ L

0
b2′3′ − Lz

a2′3′ L
z
b2′3′ ,

(18)

leading to the simple decomposition (see Appendix D)

D2,4 = C1 − C2 + C3. (19)

Therefore, d1,2,4 can be accessed by measuring separately the
expectation value of each operator C j , resulting in

d1,2,4 = 〈〈C1〉〉 − 〈〈C2〉〉 + 〈〈C3〉〉. (20)

This is achieved by applying the three linear optical circuits
depicted in Figs. 1(b)– 1(d) on the a modes, namely,

M1 = BSa2′ a3′(1/2),

M2 = BSa2′ a3′(1/2)PSa3′(π/2),

M3 = Ia2′ a3′ ,

(21)

and analogously for the b modes. Afterwards, all three opera-
tors C j are of the same form

C j = 1
2

(
na2′′ nb3′′ + na3′′ nb2′′

)
, (22)

which is positive semidefinite and only contains photon num-
ber operators (the double primes denote the output modes of
the Mj transformations). Thus, the resulting observable D2,4

(hence also D1,2,4) depends on cross correlations between the
particle numbers on two modes on Alice’s and Bob’s sides,
so it can easily be accessed (provided we have detectors with
photon number resolution).

4. Imperfect copies and optical losses

We analyze the influence of imperfect copies and optical
losses when applying this witness to the two-mode squeezed
vacuum state (12). To that end, we allow for distinct squeezing
parameters λμ ∈ (−1, 1) for the two copies μ = 1, 2. Thus,
we consider the state |ψ〉〈ψ |1 ⊗ |ψ〉〈ψ |2 and insert beam
splitters with transmittances τaμ

, τbμ
� 1 on the four modes

(a1, a2) and (b1, b2) in order to model losses. Then, we obtain
for the expectation value of our multicopy observable D2,4

〈〈D2,4〉〉 = λ2
1λ

2
2

(
τa1τb2 + τa2τb1

) − 2λ1λ2
√

τa1τa2τb1τb2

2
(
1 − λ2

1

)(
1 − λ2

2

) ,

(23)

with a slight abuse of notation (we use double brackets al-
though the two copies are not identical). We note first that,
without losses, the multicopy expectation value

〈〈D2,4〉〉no-loss = λ1λ2(λ1λ2 − 1)(
1 − λ2

1

)(
1 − λ2

2

) (24)

is always negative provided λ1 and λ2 have the same sign.
Otherwise, if λ1 and λ2 have opposite signs, entanglement
is not detected anymore (this corresponds to false negatives,
i.e., the determinant fails to be negative even if the imperfect
copies are both entangled). We also see that 〈〈D2,4〉〉no-loss = 0
if λ1 = 0 or λ2 = 0, in which case the state |ψ〉1 or |ψ〉2

becomes trivially separable and hence we do not get a false-
positive detection of entanglement.

Now adding losses but assuming that τa1 = τa2 = τb1 =
τb2 ≡ τ , we get the expectation value

〈〈D2,4〉〉 = τ 2〈〈D2,4〉〉no-loss. (25)

Thus, in the interesting case where λ1 and λ2 have the same
sign, the no-loss negative value is multiplied by a positive fac-
tor τ 2 smaller than or equal to unity. This implies that losses
can only deteriorate the detection capabilities but, at the same
time, the two-mode squeezed vacuum state remains detected
for any nonvanishing transmittances τ > 0. More generally,
using (

√
τa1τb2 ± √

τa2τb1 )2 � 0, we obtain upper and lower
bounds on the expectation value of D2,4 with arbitrary losses,
namely,

τa1τb2 + τa2τb1

2
〈〈D2,4〉〉no-loss � 〈〈D2,4〉〉

� √
τa1τa2τb1τb2 〈〈D2,4〉〉no-loss,

(26)

where we have assumed again that λ1 and λ2 have the same
sign, so that 〈〈D2,4〉〉no-loss is negative. Both bounds sim-
ply collapse to τ 2〈〈D2,4〉〉no-loss in the case where τa1τb2 =
τa2τb1 ≡ τ 2, from which we draw the same conclusions. Oth-
erwise, for arbitrary transmittances, it is clear that losses
always bring the (negative) lower bound on 〈〈D2,4〉〉 closer to
zero, corroborating the idea that losses deteriorate the witness.
Yet, the two-mode squeezed vacuum state remains detected
for any nonvanishing transmittance τaμ

, τbμ
> 0 as the upper

bound on 〈〈D2,4〉〉 always remains negative. In short, although
the condition 〈〈D2,4〉〉no-loss < 0 only constitutes a valid en-
tanglement witness for λ1 = λ2, we observe that 〈〈D2,4〉〉 is
negative for all λ1, λ2 > 0 or λ1, λ2 < 0 and for arbitrary
losses.

We can further illustrate the fact that the false-positive de-
tection of entanglement is excluded by considering a finite set
of separable states. For example, for two imperfect copies of
a product of two single-mode squeezed states, the expectation
value is given by

〈〈D2,4〉〉 = 1
2

(
τa1τb2 sinh2 ra1 sinh2 rb2

+ τb1τa2 sinh2 ra2 sinh2 rb1

)
, (27)

where raμ
, rbμ

∈ [0,∞) are the squeezing parameters of the
four single-mode squeezed states injected in the circuit. This
expression is always non-negative and hence we cannot obtain
a false-positive detection of entanglement.

We have plotted the dependence of the multicopy expecta-
tion value 〈〈D2,4〉〉 on the two squeezing parameters λ1 and λ2

in the no-loss case in Fig. 2(a), together with contour lines of
equal total entanglement entropy and a diagonal line along
λ1 = λ2 indicating identical copies. Although false-positive
detection is excluded, we observe that the observable is not
jointly convex in λ1 and λ2 for a fixed amount of entanglement
as the case λ1 = λ2 corresponds to a local maximum (instead
of a global minimum) along every contour line of fixed total
entanglement entropy. However, since the non-negativity of
〈〈D2,4〉〉 does only constitute a separability criterion if the
two copies are perfect, the possibility that its value decreases
(becomes more negative) for imperfect copies is acceptable as
long as both states remain entangled.
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FIG. 2. (a) Expectation value of the multicopy observable D2,4 as a function of the squeezing parameters λ1 and λ2 describing two
different two-mode squeezed vacuum states, with contour lines of equal total entanglement entropy. The diagonal line corresponds to λ1 = λ2.
We observe that 〈〈D2,4〉〉 is negative for all λ1, λ2 > 0, but identical copies do not minimize 〈〈D2,4〉〉 for a given amount of entanglement.
(b) Dependence of 〈〈D2,4〉〉 on losses for given squeezing λ. As expected, decreasing the transmittance τ makes the value of 〈〈D2,4〉〉 approach
zero, but it remains negative for all τ > 0.

The effect of losses is illustrated for τ ≡ τa1 = τa2 = τb1 =
τb2 and perfect copies λ ≡ λ1 = λ2 in Fig. 2(b), together with
contours of equal τ and equal λ. For decreasing τ , the value
of 〈〈D2,4〉〉 falls off quadratically and attains zero for τ = 0,
i.e., when the input signal is fully lost. This detrimental effect
of losses is clearly stronger when the state is more entangled.

B. Fourth-order witness based on D1,4,9

1. Separability criterion

We now consider the criterion obtained from the operator
f = c1 + c2b + c3ab, corresponding to the determinant (see
Ref. [37] for the ordering convention of moments)

d1,4,9 =

∣∣∣∣∣∣∣∣
1 〈b†〉 〈ab†〉

〈b〉 〈b†b〉 〈ab†b〉
〈a†b〉 〈a†b†b〉 〈a†ab†b〉

∣∣∣∣∣∣∣∣
. (28)

This determinant is of fourth order in the mode operators
and thus the corresponding witness d1,4,9 < 0 is of particular
interest for detecting non-Gaussian entanglement.

2. Application to mixed Schrödinger cat states

We introduce the general family of two-mode Schrödinger
cat states obtained by superposing two pairs of coherent states
|α, β〉 and |−α,−β〉, namely,

ρ = N (α, β, z)[|α, β〉〈α, β| + |−α,−β〉〈−α,−β|
− (1 − z)(|α, β〉〈−α,−β| + |−α,−β〉〈α, β|)], (29)

with a mixing parameter z ∈ [0, 1] and a normalization con-
stant N (α, β, z) = [1 − (1 − z)e−2(|α2|+|β|2 )]−1/2, with α, β ∈
C. The state (29) is pure if and only if z = 0, in which
case it reduces to the cat state considered in Ref. [37], while
for z > 0 it corresponds to a mixed cat state. The special
case α = β has been considered in Refs. [15,17,21]. Further,
state (29) is separable if and only if z = 1 or α = β = 0 (in
which case it corresponds to the vacuum provided z 
= 0; it
is ill defined for z = 0 in this case). While second-moment
criteria cannot certify entanglement at all, sophisticated en-
tropic criteria witness entanglement only for sufficiently large
|α| = |β| � 3/2 [15,17,24], in which case (29) corresponds to
two well-separated coherent states.

In contrast, the determinant (28) evaluates to (details of this
calculation can be found in Appendix B2)

d1,4,9 = −|α|2|β|4 coth
[|α|2 + |β|2 − 1

2 ln (1 − z)
]

sinh2
[|α|2 + |β|2 − 1

2 ln (1 − z)
] . (30)

As hyperbolic functions map positive numbers to positive
numbers, entanglement is certified for the full parameter
range, i.e., all z ∈ [0, 1) and α, β ∈ C \{0}. However, this
criterion deteriorates when α and β become separated due
to the limited order of the moments involved in the criterion.
Otherwise, for α close to β, the witness d1,4,9 < 0 outperforms
all known entropic witnesses in the case of catlike entangle-
ment.

3. Multicopy implementation

To efficiently access d1,4,9, we again exploit the multicopy
method and define the corresponding multicopy observable as

D1,4,9 = 1

|S123|
∑

σ∈S123

∣∣∣∣∣∣∣
1 b†

σ (1) aσ (1)b
†
σ (1)

bσ (2) b†
σ (2)bσ (2) aσ (2)b

†
σ (2)bσ (2)

a†
σ (3)bσ (3) a†

σ (3)b
†
σ (3)bσ (3) a†

σ (3)aσ (3)b
†
σ (3)bσ (3)

∣∣∣∣∣∣∣, (31)

such that d1,4,9 = 〈〈〈D1,4,9〉〉〉. Equation (31) consists of 36 terms and can be rewritten as

D1,4,9 = F1 − F2 + F3 − F4 − F5, (32)
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FIG. 3. Optical circuits implementing the five transformations Mj that are needed for translating the measurements of the five multicopy
observables F j into photon number measurements. The expectation value 〈〈〈F j〉〉〉 is accessed after applying Mj from (a) to (e), respectively.
In all cases, Alice and Bob must apply local transformations to their respective subsystems (Alice holds modes a1,2,3 and Bob holds modes
b1,2,3). Note that the third copy is not needed for the measurement of 〈〈〈F3〉〉〉 (c).

after defining the five operators

F1 = 1

|P123|
∑

σ∈P123

(
Lx

aσ (1)σ (2)
+ Lx

aσ (3)σ (1)

)
nbσ (1)Lx

bσ (2)σ (3)
,

F2 = 1

|P123|
∑

σ∈P123

(
Lx

aσ (2)σ (3)
+ naσ (1)

)
nbσ (1)Lx

bσ (2)σ (3)
,

F3 = 1

|P123|
∑

σ∈P123

(
L0

aσ (1)σ (2)
− Lx

aσ (1)σ (2)

)
nbσ (1) nbσ (2) ,

F4 = 1

|P123|
∑

σ∈P123

(
Ly

aσ (1)σ (2)
+ Ly

aσ (3)σ (1)

)
nbσ (1) L

y
bσ (2)σ (3)

,

F5 = 1

|P123|
∑

σ∈P123

Ly
aσ (2)σ (3)

nbσ (1) L
y
bσ (2)σ (3)

,

(33)

where P123 denotes the group of cyclic permutations over
the index set {1, 2, 3}. Thus, the determinant d1,4,9 can be
accessed by measuring separately the expectation value of
each of the five operators F j , that is,

d1,4,9 = 〈〈〈F1〉〉〉 − 〈〈〈F2〉〉〉 + 〈〈〈F3〉〉〉
− 〈〈〈F4〉〉〉 − 〈〈〈F5〉〉〉. (34)

Fortunately, the multicopy expectation values 〈〈〈F j〉〉〉 sim-
plify by using the symmetry under permutations for the three
summands in every operator F j as well as for the spin opera-

tors themselves. This leads to

〈〈〈F1〉〉〉 = 2
〈〈〈

Lx
a12

nb1 Lx
b23

〉〉〉
,

〈〈〈F2〉〉〉 = 〈〈〈(
Lx

a23
+ na1

)
nb1 Lx

b23

〉〉〉
,

〈〈〈F3〉〉〉 = 〈〈〈(
L0

a12
− Lx

a12

)
nb1 nb2

〉〉〉
,

〈〈〈F4〉〉〉 = 2
〈〈〈

Ly
a12

nb1 Ly
b23

〉〉〉
,

〈〈〈F5〉〉〉 = 〈〈〈
Ly

a23
nb1 Ly

b23

〉〉〉
.

(35)

These five multicopy expectation values can be expressed in
terms of photon number measurements by applying the five
respective transformations shown in Figs. 3(a)–3(e), namely,

M1 = BSa1a2 (1/2)BSb2b3 (1/2) ⊗ Ib1a3 ,

M2 = BSa2a3 (1/2)BSb2b3 (1/2) ⊗ Ia1b1 ,

M3 = BSa1a2 (1/2) ⊗ Ib1b2a3b3 ,

M4 = BSa1a2 (1/2)BSb2b3 (1/2)PSa2 (π/2)

× PSb3 (π/2) ⊗ Ib1a3 ,

M5 = BSa2a3 (1/2)BSb2b3 (1/2)PSa3 (π/2)

× PSb3 (π/2) ⊗ Ia1b1 .

(36)

Incidentally, we note that the measurement of F3, imple-
mented via M3 [see Fig. 3(c)], only requires two copies, while
the other four multicopy observables F j are read out on three
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FIG. 4. (a) Negative regions of the expectation value of the multicopy observable D1,4,9 for the mixed Schrödinger cat state with real
αμ = βμ, zμ = 1/2, for μ = 1, 2, 3, and unequal first and second copies (α1 
= α2) while the third copy is equal to the second one (α3 = α2).
The expectation value 〈〈〈D1,4,9〉〉〉 remains negative only in a small region around α1 ≈ α2. (b) Multicopy expectation value 〈〈〈D1,4,9〉〉〉 as a
function of transmittance τ and amplitude α. Entanglement detection works best around α ≈ 1 and increasing losses also increase the (negative)
value of 〈〈〈D1,4,9〉〉〉 without breaking its negativity.

copies. Then, we finally obtain

〈〈〈F1〉〉〉 = 1
2 〈(na1′ − na2′

)
nb1′

(
nb2′ − nb3′

)〉,
〈〈〈F2〉〉〉 = 1

2

〈(
1
2

(
na2′ − na3′

) + na1′
)
nb1′

(
nb2′ − nb3′

)〉
,

〈〈〈F3〉〉〉 = 〈
na2′ nb1′ nb2′

〉
,

〈〈〈F4〉〉〉 = 1
2

〈(
na1′ − na2′

)
nb1′

(
nb2′ − nb3′

)〉
,

〈〈〈F5〉〉〉 = 1
4

〈(
na2′ − na3′

)
nb1′

(
nb2′ − nb3′

)〉
.

(37)

4. Imperfect copies and optical losses

The general expression for d1,4,9 when considering three
distinct copies and including losses can be found in
Appendix E. Here, we restrict our analysis to the special case
where all states are equally mixed zμ = 1/2 and comprise
equal pairs of real amplitudes αμ ≡ βμ ∈ R, and where all
modes undergo equal losses τ ≡ τaμ

= τbμ
, for μ = 1, 2, 3.

We analyze the behavior of 〈〈〈D1,4,9〉〉〉 for two different input
states (we take copies 2 and 3 to be equal but distinct from
copy 1) without losses in Fig. 4(a). We observe that if α1

and α2 are too distinct, 〈〈〈D1,4,9〉〉〉 becomes positive, hence
entanglement is undetected. This sensitivity to |α1 − α2| is
very strong for α1,2 � 3/2. Yet, false-positive detection is
excluded since 〈〈〈D1,4,9〉〉〉 � 0 if α1 = 0 or α2 = 0.

The case of perfect copies with equal losses in all modes
is considered in Fig. 4(b), where we plot the dependence of
〈〈〈D1,4,9〉〉〉 on the transmittance τ for a given α. As expected,
losses make the value of 〈〈〈D1,4,9〉〉〉 approach zero from be-
low for all α, but 〈〈〈D1,4,9〉〉〉 remains negative for all τ > 0
(of course, we have 〈〈〈D1,4,9〉〉〉 = 0 for τ = 0). Also, we
observe that the witness d1,4,9 < 0 works best around α ≈ 1,
i.e., if the two coherent states partially overlap. Note here
that 〈〈〈D1,4,9〉〉〉 approaches zero exponentially (from below)
for α → ∞, so that entanglement remains witnessed for all
α > 0.

C. Fourth-order witness based on D1,9,13

1. Separability criterion

We finally consider the separability criterion correspond-
ing to the operator f = c1 + c2ab + c3a†b†, i.e., selecting the

rows and columns 1, 9, and 13 in (2), leading to the determi-
nant

d1,9,13 =

∣∣∣∣∣∣∣∣
1 〈ab†〉 〈a†b〉

〈a†b〉 〈a†ab†b〉 〈a†2b2〉
〈ab†〉 〈a2b†2〉 〈aa†bb†〉

∣∣∣∣∣∣∣∣
. (38)

The resulting entanglement witness d1,9,13 < 0 is again of
fourth order in the mode operators. However, when expand-
ing the determinant d1,9,13, several products of fourth-order
expectation values appear, which gives an overall expression
of higher order when compared to d1,4,9 in Eq. (28). As we
may anticipate, the corresponding multicopy observable will
therefore be quite complex.

2. Application to NOON states

In order to illustrate this entanglement witness, we con-
sider the class of pure NOON states with arbitrary complex
amplitudes [48]

|ψ〉 = α|n, 0〉 + β|0, n〉, (39)

with integer n � 1 and |α|2 + |β|2 = 1. Note that this class
includes the first Bell state n = 1, α = β = 1/

√
2, as well

as the Hong-Ou-Mandel state n = 2, α = −β = 1/
√

2. The
state (39) is entangled for all allowed parameter values
except when α or β is equal to zero. However, entanglement
cannot be witnessed by any second-order or entropic crite-
rion that is valid for mixed states. Pure state entropic criteria
flag entanglement for low excitations, i.e., small n (see, e.g.,
Refs. [15,17,24]), while the Wehrl mutual information fully
detects entanglement as it corresponds to a perfect witness for
pure states [20]. In this sense, detecting the entanglement of
the NOON states (39) is known to be particularly challenging,
even for small n.

When evaluating the determinant (38) for state (39), we
find (see Appendix B3 for details)

d1,9,13 = −2 |α|2|β|2(δn1 + 2δn2). (40)
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Thus, the witness d1,9,13 < 0 flags entanglement for all NOON
states with α, β ∈ C (except when α = 0 or β = 0) when
n = 1, 2.

Unfortunately, the straightforward application of the mul-
ticopy method leads to an observable D1,9,13 which cannot be
accessed by using linear interferometers and photon number
measurements (see Appendix F). Therefore, we instead con-
sider the weaker criterion d ′

1,9,13 � d1,9,13, which has been put
forward in Ref. [14] (see also Ref. [37]) and relies on the same
moments as d1,9,13, namely,

d ′
1,9,13 = (〈a†ab†b〉 + 〈aa†bb†〉 + 〈a†2b2〉

+ 〈a2b†2〉 − 〈a†b + ab†〉2
)

× (〈a†ab†b〉 + 〈aa†bb†〉 − 〈a†2b2〉
− 〈a2b†2〉 + 〈a†b − ab†〉2

)

− 〈a†a + b†b + 1〉2
. (41)

For the family of NOON states (39), we find (since the crite-
rion contains the same moments as d1,9,13, the calculation is
completely analogous to the one presented in Appendix B3)

d ′
1,9,13 = [16 Re2(α∗β ) Im2(α∗β ) − 8 |α∗β|2]δn1

− 16 Re2(α∗β ) δn2. (42)

Clearly, d ′
1,9,13 is negative for n = 2 and all α, β ∈ C (which

includes the aforementioned example of the Hong-Ou-Mandel
state), while it is also negative for n = 1 provided both ampli-
tudes are for example pure real or imaginary (which includes
the aforementioned example of the first Bell state). Therefore,
we may equally proceed with d ′

1,9,13 instead of d1,9,13.
We have also checked the performance of d ′

1,9,13 for the
mixed Schrödinger cat states (29) considered in Sec. III B.
Interestingly, the results are very similar to those of d1,4,9 (see
Appendix G for a comparison). Therefore, one may choose
either one of the two depending on the application: d1,4,9

should be preferred when the measurements have to be local,
while d ′

1,9,13 is more useful when the number of copies should
be minimized (it requires a single copy, see below).

3. Multimode implementation

Interestingly, Eq. (41) can be expressed in terms of spin op-
erators across the bipartition AB without the need for several
copies, namely,

d ′
1,9,13 = 16 σ 2

Lx
ab
σ 2

Ly
ab

+ 4 σ 2
L0

ab
− 4 σ 2

Lz
ab

− 4
〈
Lx

ab

〉2 − 4
〈
Ly

ab

〉2 − 4
〈
Lz

ab

〉2
. (43)

To access d ′
1,9,13, we need three independent measurement

schemes for the three spin observables Lx
ab, Ly

ab, and Lz
ab (note

again that L0
ab can be measured simultaneously with Lz

ab). The
three corresponding transformations

M1 = BSab(1/2),

M2 = BSab(1/2)PSb(π/2),

M3 = Iab

(44)

can be respectively implemented by the three optical circuits
shown in Fig. 5. These circuits transform each spin operator

(a)

(b)

(c)

FIG. 5. Optical circuits implementing the transformations M1,
M2, and M3. (a) We measure Lx

ab by applying a balanced beam
splitter between the two local modes before using photon number
measurements. (b) To measure Ly

ab, we add a phase of π

2 on the
second mode before the balanced beam splitter, followed by pho-
ton number detectors. (c) Lz

ab directly follows from photon number
measurements.

into Lz
ab, whose relevant expectation values are given by〈(

Lz
a′b′

)2〉 = 1
4

(〈
n2

a′
〉 − 2〈na′nb′ 〉 + 〈

n2
b′
〉)
,〈

Lz
a′b′

〉2 = 1
4 (〈na′ 〉2 − 2〈na′ 〉〈nb′ 〉 + 〈nb′ 〉2).

(45)

Thus, applying these circuits and measuring the photon num-
bers yields the needed mean values and variances, so we
obtain d ′

1,9,13 using Eq. (43).
Let us remark that, compared to the other two entanglement

witnesses discussed in Secs. III A and III B where Alice and
Bob had to count photons locally on their copies, d ′

1,9,13 < 0
is a nonlocal condition in the sense that Alice and Bob have
to perform interferometric measurements on their joint system
AB.

4. Imperfect copies and optical losses

We do not need to analyze the effect of imperfect copies on
d1,9,13 since we have not developed a multicopy implementa-
tion of it. Nevertheless, it is worth illustrating the fact that this
criterion does not suffer from false positives by considering
the value of d1,9,13 when inputting three different product
states consisting each of two Fock states. For such states,
all off-diagonal elements of the matrix vanish, so that the
determinant is simply the product of the diagonal elements,
which are all positive. The determinant is thus always positive
and there are no false-positive detections.

Now coming to the criterion based on d ′
1,9,13, analyzing

imperfect copies is meaningless since there is no need to use
more than one copy to measure it. We can only analyze the
effect of losses. Adding losses to the two inputs of the optical
circuit leads to the expression

d ′
1,9,13 = [

16 Re2(α∗β ) Im2(α∗β ) τ 2
a τ 2

b

− 4 (|α|2τa + |β|2τb + 1) τaτb|α∗β|2]δn1

− 16 Re2(α∗β )τ 2
a τ 2

b δn2. (46)
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FIG. 6. Entanglement witness d ′
1,9,13 for NOON states as a function of transmittance τ and real amplitude α for n = 1 and 2 in (a) and (b),

respectively. Entanglement is detected for arbitrarily small but finite losses since d ′
1,9,13 < 0.

We exemplify the dependence on the transmittance τ ≡
τa = τb for the special case where α and β are real in
Figs. 6(a) and 6(b) for n = 1 and 2, respectively. In the
former case, the (negative) value of d ′

1,9,13 increases cubi-
cally with τ , while in the latter case it increases quartically
with τ . In both cases, entanglement is detected for all am-
plitudes α 
= 0, 1, and nonzero transmittance τ > 0, with
the violation of the separability criterion being the largest
around α ≈ 3/4.

IV. CONCLUSION AND OUTLOOK

To summarize, we have put forward schemes to efficiently
access three continuous-variable separability criteria based on
multimode operators, which are read out via linear interferom-
eters and photon number measurements. The implementation
of these schemes thus requires interferometric stability over
the few replicas of the state of interest as well as photon
number resolving detectors. The benefit is that the separability
criteria are directly accessed, implying that state tomography
is not needed. Our schemes encompass optical circuits for
second-moment criteria to detect entanglement of Gaussian
states, as well as two types of fourth-order criteria suitable
for witnessing entanglement in case of mixed Schrödinger
cat states (for full parameter ranges) and NOON states (for
low-energetic excitations), respectively.

While we focused on three specific separability criteria,
our approach is in no way limited to those. Hence, it is of
particular interest to identify other sets of relevant criteria
and devise suitable multimode observables and correspond-
ing measurement schemes. For example, one may investigate
other prominent second-order criteria such as the Simon crite-
rion [10], which is equivalent to the condition d1,2,3,4,5 � 0
[37], such that a multicopy implementation would require
five replicas (or four if the invariance under displacements
is exploited). Alternatively, one may try to implement the
second-order criteria due to Mancini and coworkers [11,12],
which constrain the product of the variances appearing in
(11) instead of their sum. Both criteria are interesting as they
are stronger than the criteria by Duan et al. [9] as well as
the condition d1,2,4 � 0 (all are equivalent in the Gaussian
case).

Furthermore, given that our method is generic and based
on the algebraic properties of spin operators, a more sys-
tematic approach, especially for more than three copies,
would be eligible. This may lead to feasible multicopy ob-
servables beyond three copies, which could allow us to
formulate multicopy versions of entanglement witnesses be-
yond fourth-order moments. In addition, the method should
be equally applicable to other bosonic systems characterized
by the pair a, a† satisfying [a, a†] = 1, going beyond quantum
optics.

At last, let us remark that the experimental application
of our schemes is within reach of current technologies. As
a matter of fact, the multicopy nonclassicality observable
presented in Ref. [45] has been successfully accessed on a
cloud quantum computer in a recent experiment [49], thereby
suggesting the general feasibility of the multicopy method. As
we have shown here, the typical experimental imperfections
should have a modest influence on the detection of entangle-
ment. All multimode observables that we have analyzed are
robust against losses in the sense that finite losses decrease
the chances for entanglement detection but never completely
prevent it. In all cases, false-positive detection of entangle-
ment could be excluded. Nevertheless, a deeper analysis of
experimental imperfections, for instance noise effects and
finite detector resolution, would be valuable towards an ex-
perimental implementation of our method.
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APPENDIX A: COMPARING d1,2,4 < 0 WITH THE
CRITERION OF DUAN ET AL.

One can show that d1,2,4 reduces to

d1,2,4 = σa†aσb†b − σa†b†σab, (A1)
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where

σyz = 〈yz〉 − 〈y〉〈z〉 (A2)

denotes the covariance of the two observables y and z. By
employing the identities

σa†a = 1
2

(
σ 2

x1
+ σ 2

p1
− 1

)
,

σb†b = 1
2

(
σ 2

x2
+ σ 2

p2
− 1

)
,

σab = 1
2

(
σx1x1 + iσx1 p2

+ iσx2 p1
− σp1 p1

)
,

σa†b† = σ
†
ab, (A3)

the condition d1,2,4 � 0 can be translated into a condition on
the local quadratures and their correlations

0 �
(
σ 2

x1
+ σ 2

p1
− 1

)(
σ 2

x2
+ σ 2

p2
− 1

)
− (

σx1x1 − σp1 p1

)2 − (
σx1 p2

+ σx2 p1

)2
. (A4)

Similarly, rewriting the criterion (11) in terms of local quadra-
tures using

σ 2
x± = r2σ 2

x1
+ 1

r2
σ 2

x2
± 2σx1x2 ,

σ 2
p±

= r2σ 2
p1

+ 1

r2
σ 2

p2
± 2σp1 p2

(A5)

allows one to optimize over r by searching for a global mini-
mum. One finds

r2 =
√

σ 2
x2

+ σ 2
p2

− 1

σ 2
x1

+ σ 2
p1

− 1
, (A6)

such that the optimal Duan criterion in local variables reads

dDuan = 2
√(

σ 2
x1

+ σ 2
p1

− 1
)(

σ 2
x2

+ σ 2
p2

− 1
)

± 2
(
σx1x2 − σp1 p2

)
. (A7)

The non-negativity of the latter is equivalent to the condition

0 �
(
σ 2

x1
+ σ 2

p1
− 1

)(
σ 2

x2
+ σ 2

p2
− 1

) − (
σx1x1 − σp1 p1

)2
.

(A8)

By comparing (A4) and (A8) it becomes apparent that d1,2,4 �
0 implies dDuan � 0 since (σx1 p2

+ σx2 p1
)2 � 0. Therefore,

d1,2,4 � 0 is stronger than dDuan � 0 in the sense that the
former condition contains additional information about the
correlations between quadratures of different types.

APPENDIX B: CALCULATION OF THE DETERMINANTS
FOR SEVERAL CLASSES OF STATES

1. d1,2,4 for the two-mode squeezed vacuum state

To evaluate the determinant d1,2,4 [Eq. (9)] for the two-
mode squeezed vacuum state (12), we use the lowering or
raising property of the annihilation or creation operator

a|n, n〉 = √
n|n − 1, n〉,

a†|n, n〉 = √
n + 1|n + 1, n〉,

(B1)

and similarly for the creation and annihilation operators acting
on mode b. Then follows for the first nontrivial matrix element

of d1,2,4

〈a†a〉 = (1 − λ2)
∞∑

n,n′=0

λnλn′ 〈n′, n′|a†a|n, n〉

= (1 − λ2)
∞∑

n,n′=0

λnλn′√
nn′ δnn′

= (1 − λ2)
∞∑

n=0

λ2nn

= λ2

1 − λ2
, (B2)

where we used the orthonormality of Fock states 〈n|n′〉 = δnn′ .
The remaining matrix elements are found analogously, lead-
ing to the expression (13) for the determinant

d1,2,4 =

∣∣∣∣∣∣∣∣
1 0 0

0 λ2

1−λ2
λ

1−λ2

0 λ
1−λ2

λ2

1−λ2

∣∣∣∣∣∣∣∣
= − λ2

1 − λ2
. (B3)

2. d1,4,9 for mixed Schrödinger cat states

We calculate the value of the determinant d1,4,9 [Eq. (28)]
for general entangled Schrödinger cat states defined in
Eq. (29) by using that canonical coherent states are eigenstates
of the annihilation operator

a|α, β〉 = α|α, β〉,
〈α, β|a† = 〈α, β|α∗,

(B4)

and similarly for mode B. We start with the matrix element
〈b†〉, which evaluates to

〈b†〉 ∝ Tr[|α, β〉〈α, β|b† + |−α,−β〉〈−α,−β|b†

− (1 − z)(|α, β〉〈−α,−β|b† + |−α,−β〉〈α, β|b†)]

= Tr[|α, β〉〈α, β|β∗ + |−α,−β〉〈−α,−β|(−β∗)

+ (1 − z)(|α, β〉〈−α,−β|β∗ − |−α,−β〉〈α, β|β∗)]

= 0.

(B5)

Analogously, we find for the remaining matrix elements

〈b〉 = 〈b†〉 = 0,

〈ab†〉 = 2αβ∗N (α, β, z)(1 + (1 − z)e−2|α|2−2|β|2 ),

〈a†b〉 = 2α∗βN (α, β, z)(1 + (1 − z)e−2|α|2−2|β|2 ),

〈b†b〉 = 2|β|2N (α, β, z)(1 + (1 − z)e−2|α|2−2|β|2 ),

〈ab†b〉 = 〈a†b†b〉 = 0,

〈a†ab†b〉 = |α|2|β|2.

(B6)
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The full determinant of d1,4,9 given in Eq. (30) follows then
after identifying the hyperbolic functions

coth
[|α|2 + |β|2 − 1

2 ln (1 − z)
]

= 2N (α, β, z)[1 + (1 − z)e−2(|α|2+|β|2 )] (B7)

and

sinh−2 [|α|2 + |β|2 − 1
2 ln (1 − z)

]
= 4N2(α, β, z)[1 + (1 − z)e−2(|α|2+|β|2 )]2 − 1. (B8)

3. d1,9,13 for NOON states

In order to evaluate d1,9,13 [Eq. (38)], we will use again the
properties of the creation and annihilation operators given in
(B1). For example, for the matrix element 〈ab†〉 we find

〈ab†〉 = (α∗〈n, 0| + β∗〈0, n|) ab†(α|n, 0〉 + β|0, n〉)

= (α∗〈n, 0| + β∗〈0, n|)√nα|n − 1, 1〉
= β∗√nαδn1

= αβ∗δn1. (B9)

Repeating this strategy for the other matrix elements leads to
the determinant

d1,9,13 =
∣∣∣∣∣∣

1 αβ∗δn1 α∗βδn1

α∗βδn1 0 2α∗βδn2

αβ∗δn1 2αβ∗δn2 n + 1

∣∣∣∣∣∣
= −2|α|2|β|2(δn1 + 2δn2), (B10)

which is nothing but Eq. (40).

APPENDIX C: INVARIANCE OF d1,2,4

UNDER DISPLACEMENTS

We prove that applying an arbitrary displacement
D(α)D(β ) on the bipartite state ρ does not change the value
of the determinant d1,2,4. The annihilation operators a and b
of the two subsystems transform as

a → a′ = a + α,

b → b′ = b + β,
(C1)

with complex phases α, β ∈ C. Then, the determinant trans-
forms as

d1,2,4 → d ′
1,2,4 =

∣∣∣∣∣∣
1 〈a′〉 〈b′†〉

〈a′†〉 〈a′†a′〉 〈a′†b′†〉
〈b′〉 〈a′b′〉 〈b′†b′〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 〈a + α〉 〈b† + β∗〉

〈a† + α∗〉 〈(a† + α∗)(a + α)〉 〈(a† + α∗)(b† + β∗)〉
〈b + β〉 〈(a + α)(b + β )〉 〈(b† + β∗)(b + β )〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 〈a〉 + α 〈b†〉 + β∗

〈a†〉 + α∗ 〈a†a〉 + α〈a†〉 + α∗(〈a〉 + α) 〈a†b†〉 + β∗〈a†〉 + α∗(〈b†〉 + β∗)
〈b〉 + β 〈ab〉 + α〈b〉 + β(〈a〉 + α) 〈b†b〉 + β∗〈b〉 + β(〈b†〉 + β∗)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 〈a〉 + α 〈b†〉 + β∗

〈a†〉 〈a†a〉 + α〈a†〉 〈a†b†〉 + β∗〈a†〉
〈b〉 〈ab〉 + α〈b〉 〈b†b〉 + β∗〈b〉

∣∣∣∣∣∣
= d1,2,4,

(C2)

where we used that the determinant remains invariant when adding to a column or row another column or row multiplied by
some complex number in the two last equations.

APPENDIX D: DECOMPOSITION OF d2,4

We start from the four products L j
a2′3′ L

j
b2′3′ for j ∈ {x, y, z, 0} applied to the modes 2′ and 3′, which read

Lx
a2′3′ L

x
b2′3′ = 1

4 (a†
3′a2′b†

3′b2′ + a†
2′a3′b†

2′b3′ + a†
2′a3′b†

3′b2′ + a†
3′a2′b†

2′b3′ ),

Ly
a2′3′ L

y
b2′3′ = − 1

4 (a†
3′a2′b†

3′b2′ + a†
2′a3′b†

2′b3′ − a†
2′a3′b†

3′b2′ − a†
3′a2′b†

2′b3′ ),

Lz
a2′3′ L

z
b2′3′ = 1

4 (a†
2′a2′b†

2′b2′ + a†
3′a3′b†

3′b3′ − a†
2′a2′b†

3′b3′ − a†
3′a3′b†

2′b2′ ),

L0
a2′3′ L

0
b2′3′ = 1

4 (a†
2′a2′b†

2′b2′ + a†
3′a3′b†

3′b3′ + a†
2′a2′b†

3′b3′ + a†
3′a3′b†

2′b2′ ). (D1)

Then, following the definitions of the operators C j given in (18) we find

C1 = 1
4 (a†

2′a2′b†
2′b2′ + a†

3′a3′b†
3′b3′ + a†

2′a2′b†
3′b3′ + a†

3′a3′b†
2′b2′ − a†

3′a2′b†
3′b2′ − a†

2′a3′b†
2′b3′ − a†

2′a3′b†
3′b2′ − a†

3′a2′b†
2′b3′ ),

C2 = 1
4 (a†

2′a2′b†
2′b2′ + a†

3′a3′b†
3′b3′ + a†

2′a2′b†
3′b3′ + a†

3′a3′b†
2′b2′ + a†

3′a2′b†
3′b2′ + a†

2′a3′b†
2′b3′ − a†

2′a3′b†
3′b2′ − a†

3′a2′b†
2′b3′ ),

C3 = 1
2 (a†

2′a2′b†
3′b3′ + a†

3′a3′b†
2′b2′ ), (D2)

022421-12



ACCESSING CONTINUOUS-VARIABLE ENTANGLEMENT … PHYSICAL REVIEW A 108, 022421 (2023)

such that

C1 − C2 + C3 = 1
2 (a†

2′a2′b†
3′b3′ + a†

3′a3′b†
2′b2′ − a†

2′a3′b†
2′b3′ − a†

3′a2′b†
3′b2′ )

= D2,4. (D3)

APPENDIX E: IMPERFECT COPIES AND OPTICAL LOSSES FOR d1,4,9

For three distinct copies of a mixed Schrödinger cat state (29) at the input and with losses incorporated, we find for the
corresponding multicopy expectation value

〈〈〈D1,4,9〉〉〉 = 1

3

∑
σ∈P123

τbσ (1) |βσ (1)|2N (ασ (1), βσ (1), zσ (1) )[1 + (1 − zσ (1) )e
−2|ασ (1)|2−2|βσ (1)|2 ]

× {
τaσ (2)τbσ (2) |ασ (2)|2|βσ (2)|2 + τaσ (3)τbσ (3) |ασ (3)|2|βσ (3)|2 − 4

√
τaσ (2)τbσ (2)τaσ (3)τbσ (3)

× N (ασ (2), βσ (2), zσ (2) )N (ασ (3), βσ (3), zσ (3) )[1 + (1 − zσ (2) )e
−2|ασ (2)|2−2|βσ (2)|2 ]

× [1 + (1 − zσ (3) )e
−2|ασ (3)|2−2|βσ (3)|2 ](ασ (2)β

∗
σ (2)α

∗
σ (3)βσ (3) + α∗

σ (2)βσ (2)ασ (3)β
∗
σ (3) )

}
. (E1)

APPENDIX F: MULTICOPY OBSERVABLE ASSOCIATED TO d1,9,13

The standard route to access d1,9,13 is to define the multicopy observable

D1,9,13 = 1

|S123|
∑

σ∈S123

∣∣∣∣∣∣∣∣
1 aσ (1)b

†
σ (1) a†

σ (1)bσ (1)

a†
σ (2)bσ (2) a†

σ (2)aσ (2)b
†
σ (2)bσ (2) a†2

σ (2)b
2
σ (2)

aσ (3)b
†
σ (3) a2

σ (3)b
†2
σ (3) aσ (3)a

†
σ (3)bσ (3)b

†

∣∣∣∣∣∣∣∣
, (F1)

with d1,9,13 = 〈〈〈D1,9,13〉〉〉.. Writing this operator in terms of spin operators leads to

D1,9,13 = 1

|P123|
∑

σ∈P123

(
−(

Lx2
aσ (1)σ (2)

− Ly2
aσ (1)σ (2)

)(
Lx2

bσ (1)σ (2)
− Ly2

bσ (1)σ (2)

) − {
Lx

aσ (1)σ (2)
, Ly

aσ (1)σ (2)

}{
Lx

bσ (1)σ (2)
, Ly

bσ (1)σ (2)

}
+ 2

[(
Lx

aσ (1)σ (2)
Lx

aσ (3)σ (1)
+ Ly

aσ (1)σ (2)
Ly

aσ (3)σ (1)

)(
Lx

bσ (1)σ (2)
Lx

bσ (3)σ (1)
+ Ly

bσ (1)σ (2)
Ly

bσ (3)σ (1)

)]
+ 2

[(
Ly

aσ (1)σ (2)
Lx

aσ (3)σ (1)
− Lx

aσ (1)σ (2)
Ly

aσ (3)σ (1)

)(
Ly

bσ (1)σ (2)
Lx

bσ (3)σ (1)
− Lx

bσ (1)σ (2)
Ly

bσ (3)σ (1)

)]
− 2

[
naσ (1) nbσ (1)

(
Lx

aσ (2)σ (3)
Lx

bσ (2)σ (3)
+ Ly

aσ (2)σ (3)
Ly

bσ (2)σ (3)

)] + (
naσ (1) naσ (2) nbσ (1) nbσ (2) + naσ (1) nbσ (1)

)
+ 1

2

(
naσ (1) naσ (2) nbσ (1) + naσ (1) naσ (3) nbσ (1) + naσ (1) nbσ (1) nbσ (2) + naσ (1) nbσ (1) nbσ (3)

)
− 1

2

{(
naσ (3) + nbσ (3) + 1

)[(
Lx

aσ (1)σ (2)
− iLy

aσ (1)σ (2)

) + (
Lx

bσ (1)σ (2)
+ iLy

bσ (1)σ (2)

)]}
− 1

2

{(
naσ (3) + nbσ (3) + 1

)[(
Lx

aσ (1)σ (2)
+ iLy

aσ (1)σ (2)

) + (
Lx

bσ (1)σ (2)
− iLy

bσ (1)σ (2)

)]})
. (F2)

However, this expression is not directly measurable due to all
terms of the form

Lx
aσ (1)σ (2)

Lx
aσ (3)σ (1)

, (F3)

which involve one and the same mode for several different
spin operators. Passive interferometers can only simplify one
of the two spin operators while complicating the other, thereby
hindering the measurement of such observables when restrict-
ing to photon number measurements.

APPENDIX G: APPLICATION OF d ′
1,9,13 TO MIXED

SCHRÖDINGER CAT STATES

When applying d ′
1,9,13 to the family of mixed Schrödinger

cat states (29), we only need to evaluate three addi-

tional moments, which can be computed along the lines of
Appendix B 2. We find the expressions

〈a†a〉 = 2|α|2N (α, β, z)(1 + (1 − z)e−2|α|2−2|β|2 ),

〈a2b†2〉 = α2β∗2,

〈a†2b2〉 = α∗2β2.

(G1)

We show the witness d ′
1,9,13 for β = α in Fig. 7(b) and

compare it to the witness d1,4,9 in Fig. 7(a). The resulting man-
ifolds are surprisingly similar (up to an overall scaling factor).
We observe that the witnesses work best around α ≈ 1/2, i.e.,
when the two underlying coherent states partially overlap, and
approach zero from below exponentially for α > 2.
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FIG. 7. Comparison of the witnesses d1,4,9 and d ′
1,9,13 for the mixed Schrödinger cat state (29) when β = α in (a) and (b), respectively.
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