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Gaussian work extraction from random Gaussian states is nearly impossible
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Quantum thermodynamics can be naturally phrased as a theory of quantum state transformation and energy
exchange for small-scale quantum systems undergoing thermodynamical processes, thereby making the resource
theoretical approach very well suited. A key resource in thermodynamics is the extractable work, forming the
backbone of thermal engines. Therefore it is of interest to characterize quantum states based on their ability to
serve as a source of work. From a near-term perspective, quantum optical setups turn out to be ideal test beds
for quantum thermodynamics; so it is important to assess work extraction from quantum optical states. Here, we
show that Gaussian states are typically useless for Gaussian work extraction. More specifically, by exploiting the
“concentration of measure” phenomenon, we prove that the probability that the Gaussian extractable work from
a zero-mean energy-bounded multimode random Gaussian state is nonzero is exponentially small. This result can
be thought of as an ε-no-go theorem for work extraction from Gaussian states under Gaussian unitaries, thereby
revealing a fundamental limitation on the quantum thermodynamical usefulness of Gaussian components.
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Introduction. In the wake of the rapid technological ad-
vancements making the control and efficient manipulation
of single quantum systems experimentally possible, it has
become necessary to address the energetics of nanoscale de-
vices [1–9]. Quantum thermodynamics is a burgeoning field
of research broadly aimed at systematically addressing this
question and, in particular, at challenging the applicability of
classical thermodynamics at atomic scales, where quantum
effects are inescapable [10–15]. A number of approaches to a
theory of quantum thermodynamics have been developed, in-
cluding, notably, a quantum resource-theory-based formalism
[16–21], a purely information theoretic framework [22,23],
and open-systems dynamics [24,25] (see also a recent book
[10]). To complement the theoretical efforts towards quan-
tum thermodynamics, there are also exciting new experiments
[8,9,26,27] that confirm the distinctive features of quantum
engines that have been theoretically predicted. Furthermore,
quantum effects have been shown to offer advantages in
charging quantum batteries [28] and in heat bath algorithmic
cooling [29,30].
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Despite tremendous experimental progress in designing
quantum thermal machines, quantum thermodynamics is still
largely a theoretical endeavor, and more experimental models
are needed to confirm the theoretical predictions. It is well
established that Gaussian quantum optical states can readily
be prepared in the laboratory and Gaussian quantum opera-
tions can be implemented efficiently; hence quantum optical
setups form a uniquely suited test bed for quantum thermo-
dynamics (see, e.g., Ref. [7]). Given that these are central
features of quantum thermodynamics, work extraction and
battery charging have then been investigated in Refs. [31,32]
when restricted to Gaussian operations. More generally, a the-
ory of Gaussian work extraction from multipartite Gaussian
states has also been developed in Ref. [20]. Interestingly, the
total amount of work that can be extracted using Gaussian
unitaries from a (zero-mean) multipartite Gaussian state was
proven to be equal to the difference between the trace and
symplectic trace of the covariance matrix [20] [see Eq. (3)].
In order to benchmark the experimental usefulness of such
a Gaussian framework for quantum thermodynamics, it is
therefore essential to resolve the question of what is the
amount of work that can be extracted with Gaussian unitaries
if we start from a random multimode Gaussian state? Here,
we solve this question by exploiting the “concentration of
measure” phenomenon [33], which states, broadly speaking,
that a sufficiently smooth function on a measurable proba-
bility space concentrates around its expected value (see also
Refs. [34–44]).

We start by introducing a procedure to sample energy-
bounded random covariance matrices corresponding to a
uniform measure on the set of multipartite Gaussian states,
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FIG. 1. Schematic of Gaussian work extraction from random
Gaussian states. The dashed red rectangle represents the preparation
of energy-bounded m-mode random Gaussian mixed states starting
from the tensor product of n random squeezed vacuum states, while
the dashed blue rectangle represents Gaussian work extraction. In
both rectangles, the LI box stands for a linear interferometer (an array
of beam splitters and phase shifters). Our main result is the proof
that the state emerging from the dashed red rectangle is typically a
product of thermal states and hence no work can be extracted by
Gaussian means (see Theorem 1).

following Refs. [39,44]. As a first technical result, we then
show that such random covariance matrices are, typically,
locally thermal. Building on this, we prove that the probability
that the Gaussian extractable work from a zero-mean energy-
bounded random Gaussian state is nonzero is exponentially
small. This can be interpreted as an ε-no-go theorem for
work extraction from random Gaussian states under Gaussian
unitaries (see Fig. 1), where ε > 0 denotes the work that could
potentially be extracted. We then discuss the impact of this
fundamental near impossibility on quantum thermodynamics
in the Gaussian regime.

Gaussian states. Consider an n-mode bosonic system
described by Hilbert space Hn := L2(R)⊗n and let
x̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n) be the canonical position
and momentum operators. They satisfy the canonical
commutation relations [x̂i, x̂ j] = i�i j IHn (i, j = 1, . . . , 2n),
where we set h̄ = 1 and i = √−1,

� =
(

0 In

−In 0

)
, (1)

and In is an n × n identity matrix. The Hamiltonian of the ith
mode is given by Ĥi := (q̂2

i + p̂2
i )/2 assuming that the angular

frequencies of all modes are equal to 1. For an arbitrary
n-mode state ρ, the 2n-dimensional mean vector (or coherence
vector) x̄ is defined as x̄ := 〈x̂〉 = Tr(ρ x̂), where the angular
bracket 〈•〉 denotes the expectation value with respect to ρ.
Similarly, the 2n × 2n real positive-definite covariance matrix
� of state ρ is defined via the second-order moments as �i j :=
1
2 〈{x̂i − 〈x̂i〉, x̂ j − 〈x̂ j〉}〉, where {•, •} is the anticommutator.
Gaussian states are states whose characteristic function is
Gaussian; hence they are completely described by their mean
vector and covariance matrix [45]. For example, a thermal
state is a Gaussian state with x̄ = 0 and � = (n̄ + 1/2) I2n,
where n̄ is the average photon number per mode.

Gaussian unitaries. Gaussian unitaries are defined as uni-
taries that map Gaussian states onto Gaussian states. In
particular, a Gaussian unitary U in state space induces an
affine map (S, d) : x̂ → S x̂ + d in the space of quadrature
operators x̂, where S ∈ Sp(2n,R) is a 2n × 2n real symplectic
matrix (such that S �ST = �) and d is a 2n-dimensional
real vector (displacement vector) [45]. Thus a Gaussian uni-
tary can be written as US,d = Dd US , where US corresponds
to the symplectic map x̂ → S x̂ and the Weyl operator Dd
corresponds to the map x̂ → x̂ + d. Under Gaussian uni-
taries, the first- and second-order moments transform as x̄ →
S x̄ + d and � → S�ST . Of special importance to us are the
energy-conserving (or passive) Gaussian unitaries, which in-
duce orthogonal symplectic transformations S ∈ Sp(2n,R) ∩
O(2n) ≡ Kn on the quadrature operators, where Sp(2n,R)
is the group of real 2n × 2n symplectic matrices and O(2n)
is the group of real orthogonal 2n × 2n matrices. Physically,
passive Gaussian unitaries comprise all linear-optical circuits,
also called as linear interferometers (LIs). The other Gaussian
unitaries that are relevant here are squeezers. For example, a
single-mode squeezer induces the symplectic transformation
S = diag{z, z−1}, where z = er with r ∈ R being the squeez-
ing parameter.

Gaussian extractable work. The energy of an arbitrary
quantum state only depends on the first two moments, x̄ and
�. In particular, the energy of an m-mode state ρ is simply
given by Tr[ρ Ĥ ] = 1

2 (Tr[�] + |x̄|2), where Ĥ = ∑m
i=1 Ĥi is

the total Hamiltonian [45]. Now, for any state ρ (Gaussian
or otherwise), we define the Gaussian extractable work as
the maximum decrease in energy under Gaussian unitaries.
Given the decoupled structure of Gaussian unitaries as US,d =
Dd US = US Dd′ , we can always separate the Gaussian ex-
tractable work into two components associated, respectively,
with S and d′. Starting from a state with x̄ �= 0, it is trivial
to extract work first via displacement Dd′ up to the point
where x̄ = 0, thereby making this component uninteresting (it
can be viewed as classical). Thus we may restrict ourselves
to zero-mean states with no loss of generality. Furthermore,
using the Bloch-Messiah decomposition [46,47], US can be
written as the concatenation of a linear interferometer (LI),
a layer of single-mode squeezers, and a second LI. Since
the latter leaves the energy unchanged, we may disregard it.
Hence the Gaussian extractable work from a zero-mean state
ρ is given by (see dashed blue rectangle in Fig. 1)

W (ρ) = max
LI,Usq

Tr[Ĥ (ρ − Usq LI[ρ]U †
sq )], (2)

where Usq denotes the squeezing unitary which corresponds to
the tensor product of single-mode squeezers. This maximiza-
tion yields a particularly simple expression in the phase-space
picture, namely [20],

W (ρ) ≡ W (�) = 1
2 (Tr[�] − STr[�]), (3)

where STr[�] denotes the symplectic trace of the covariance
matrix �, i.e., the sum of all its symplectic eigenvalues. Note
that the Gaussian extractable work W (ρ) is solely a function
of �, so we simply note it W (�).

Random sampling of Gaussian states. In order to establish
the typical behavior of the Gaussian extractable work, we need
to give a prescription for the random sampling of covariance
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FIG. 2. The schematic on the left depicts the m-mode system of
interest (from which work is extracted) denoted as the region Rs,
which is part of an n-mode system. The remaining N = n − m modes
constitute the environment, denoted as the region Re. Note that in the
most general scenario, the state of the n-mode region Rs + Re can be
mixed. However, from Proposition 1 of the Supplemental Material
[50], an energy-bounded mixed Gaussian state can be purified into
an energy-bounded pure Gaussian state. The schematic on the right
represents such a purification of the n-mode region into a 2n-mode
region. Now, the state of the m-mode system of interest is obtained
by performing a partial trace of (2n − m) modes on a pure 2n-mode
state.

matrices. Consider first an n-mode pure Gaussian state. Its
covariance matrix � can be obtained by applying some Gaus-
sian unitary to the vacuum state; that is, it can be written as
� = SST /2, where S ∈ Sp(2n,R). From the Bloch-Messiah
decomposition, we have S = O [Z (z) ⊕ Z−1(z)] O′, where
O, O′ ∈ Kn and Z (z) ⊕ Z−1(z) is a collection of n single-
mode squeezers and Z (z) = diag{z1, . . . , zn} with zi � 1 for
all 1 � i � n. Therefore the covariance matrix is written as

� = 1
2 O [J (z) ⊕ J−1(z)] OT , (4)

where J (z) = Z (z)2. Now, to define a random covariance
matrix, we need to sample O and J (z) with appropriate prob-
ability measures on their respective spaces. While Kn is a
compact space and admits an invariant Haar measure, the
space of matrices J (z) is not compact and does not admit
a natural invariant normalizable measure. To properly define
the sampling of a random �, we need some compactness
constraint, which can be provided by imposing an energy
bound, Tr[�] � 2E , where E is fixed (remember that x̄ = 0).
Following Refs. [39,44], we can sample random matrices
J (z) by randomly choosing the vector z via the flat Lebesgue
measure on the set

GE :=
{

(z1, . . . , zn) | zi � 1 and
n∑

i=1

(
z2

i + z−2
i

)
� 4E

}
;

that is, we define the measure dμz = dz1 · · · dzn/Vol(GE ),
where Vol(GE ) is the volume of GE [48]. Then, using the fact
that Kn is isomorphic to the complex unitary group U(n) :=
{U ∈ Cn×n : U †U = In}, we generate random O ∈ Kn via the
invariant measure on Kn induced by the Haar measure on
U(n). Second, a natural probability measure on the set of
energy-bounded random Gaussian mixed states can be in-
duced by performing a partial trace on the random pure state
where z and O are sampled according to the above measures
[49]. Note that a Gaussian purification argument can be used
as illustrated in Fig. 2 in order to show that the full state can
be taken to be pure with no loss of generality (see Proposition
1 of the Supplemental Material [50]). The partial trace of
N = n − m out of n modes (see Fig. 2) corresponds to the

map �m,N on the covariance matrix defined as

� 
→ �m := �m,N � �m,N , (5)

where �m,N = �̃ ⊕ �̃ and �̃ = diag{
m︷ ︸︸ ︷

1, . . . , 1,

N=n−m︷ ︸︸ ︷
0, . . . , 0}. Let

Lm,E be the resulting set of covariance matrices �m for
m-mode energy-constrained Gaussian mixed states, i.e.,
Tr[�m] � 2E for �m ∈ Lm,E . We shall now establish the typ-
icality of the extractable work in Lm,E .

Typicality of Gaussian extractable work. We consider a
physical scenario where the system of interest is interacting
with an inaccessible large environment. This is a common
setting in the theory of decoherence responsible for loss of
coherence in quantum systems as a consequence of the partial
trace of the environment [51]. In particular, in our case the
system of interest is a zero-mean energy-bounded m-mode
Gaussian system embedded in a large Gaussian environment
comprising N � m modes, so we must characterize the scal-
ing in n = m + N of the energy constraint on the full n-mode
system as follows.

Definition 1. An m-mode random Gaussian state is said
to be polynomially energy bounded of degree β � 0 if it
results from partial tracing an n-mode random Gaussian pure
state over N = n − m modes and its covariance matrix can be
written as [cf. Eq. (5)]

�m := 1
2 �m,N On J̃n(z) OT

n �m,N , (6)

where On ∈ Kn and the sequence J̃n(z) := Jn(z) ⊕ J−1
n (z) is

such that ||J̃n(z)||∞ = O(nβ ) [52].
Since On is passive, the n-mode random Gaussian pure

state of covariance matrix �n := 1
2 OnJ̃n(z)OT

n has energy
Eβ = O(nβ+1). Then, it can be used to generate a polynomi-
ally energy-bounded m-mode random Gaussian mixed state
according to Definition 1 (see Fig. 2).

Before proving our main result, we first need to establish
the asymptotic behavior of the eigenspectrum and symplec-
tic eigenspectrum of the energy-bounded random covariance
matrices �m from Definition 1, which is the content of the
following two lemmas (their proofs are provided in the Sup-
plemental Material [50]).

Lemma 1. Let �m be the covariance matrix of an
m-mode polynomially energy-bounded random Gaussian
state of degree β < 1/4 (see Definition 1). For universal con-
stants γ , γ̃ > 0 such that ε > 2γ nβ−1, the eigenvalues {λi}2m

i=1
of �m converge in probability to νth, i.e.,

Pr

[
2m∑
i=1

(λi − νth )2 > ε

]
� exp[−γ̃ ε2n1−4β], (7)

where νth = Tr[J̃2n(z)]/(8n).
Lemma 2 [44]. Let �m be the covariance matrix of an

m-mode polynomially energy-bounded random Gaussian
state of degree β < 1/8 (see Definition 1). For universal
constants C, c > 0 such that ε > Cnβ−1, the symplectic eigen-
values {νi}m

i=1 of �m converge in probability to νth, i.e.,

Pr

[
m∑

i=1

(
ν2

i − ν2
th

)2
> ε

]
� exp[−cε2n1−8β ], (8)

where νth = Tr[J̃2n(z)]/(8n).
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Our main result lies in the following ε-no-go theorem for
the Gaussian extractable work from a polynomially energy-
bounded random Gaussian state.

Theorem 1 (typicality of the Gaussian extractable work).
Let �m be the covariance matrix of an m-mode polynomially
energy-bounded random Gaussian state of degree β < 1/8
resulting from performing a partial trace on a random n-mode
state as in Definition 1. Then, for universal constants c̃,C >

0 such that ε >
√

2Cmnβ−1, the Gaussian extractable work
W (�m) satisfies

Pr[W (�m) > ε] � exp[−c̃ε4n1−8β ]. (9)

As noted above, the energy of �n scales as O(nβ+1), so the
energy of �m scales as O(nβ ) after tracing over the N = �(n)
environmental modes [49]. The extractable work tolerance ε

in Theorem 1 thus scales as
√ m

n1−β , which goes to zero in the
limit n → ∞ as β < 1/8. Furthermore, the right-hand side of
Eq. (9) in Theorem 1 exponentially goes to zero in the limit
n → ∞ as β < 1/8. These two elements make Theorem 1
meaningful.

Proof of the theorem. Using the Gaussian purification argu-
ment (see Proposition 1 of the Supplemental Material [50]),
i.e., n 
→ 2n, Eq. (6) becomes

�m := 1
2�m,N+nO2nJ̃2n(z)OT

2n�m,N+n, (10)

where O2n ∈ K2n is a 4n × 4n orthogonal symplectic matrix.
Also, we have (see Refs. [44,50])

O2n = P

(
U 0
0 U ∗

)
P−1, (11)

where P = 1√
2

(I2n iI2n

iI2n I2n

)
and U is a 2n × 2n random unitary

matrix. We define the function Tm : U(2n) → R of random
unitary matrices as

Tm(U ) :=
2m∑

k=1

(λk − νth )2, (12)

where {λk}2m
k=1 are the eigenvalues of �m ≡ �m(U ) as defined

from Eqs. (10) and (11) and νth is the average energy per
mode of the 2n-mode input pure state with covariance matrix
1
2 O2nJ̃2n(z)OT

2n, that is, νth = Tr[J̃2n(z)]/(8n). By exploiting
the concentration of measure, Lemma 1 then gives us an ex-
ponentially small upper bound on Pr[Tm(U ) > ε]. Similarly,
we define the function Tm : U(2n) → R as

Tm(U ) := 2
m∑

k=1

(
ν2

k − ν2
th

)2
, (13)

where {νk}m
k=1 are the symplectic eigenvalues of �m(U ),

and use Lemma 2 to obtain an exponentially small up-
per bound on Pr[Tm(U ) > ε] (see also Ref. [44]). Thus,
together, Lemmas 1 and 2 imply that energy-bounded ran-
dom Gaussian states are typically locally thermal with the
same average energy in each mode (since both the symplec-
tic and regular eigenspectra concentrate around a thermal
spectrum).

This is the key to our proof of the near impossibility
of Gaussian work extraction from energy-bounded random
Gaussian states. Consider the function �m : U(2n) → R as
�m(U ) := Tm(U ) + Tm(U ). From Lemmas 1 and 2 we know

that both T (U ) and T(U ) are Lipschitz continuous functions
on U(2n) [50]. Then, for any two unitaries U,V ∈ U(2n), we
have

|�(U ) − �(V )| � |T (U ) − T (V )| + |T(U ) − T(V )|
� O(n4β )||U − V ||2.

Thus �m(U ) is a Lipschitz continuous function on U(2n) with
a Lipschitz constant given by θ n4β , where θ is a universal
constant. Furthermore, we have

EU �(U ) = EU T (U ) + EUT(U )

= O(nβ−1) � Cnβ−1,

where C is a universal constant [50]. Next, we can exploit the
concentration of measure for �m(U ) in a manner similar to
that followed for Tm(U ) and Tm(U ). For universal constants
C, c′ > 0 such that δ > 2Cnβ−1, we have

Pr[�(U ) � δ] � Pr

[
�(U ) >

δ

2
+ EU �(U )

]
� exp

[
− δ2n

48θ2n8β

]
� exp[−c′δ2n1−8β ], (14)

where c′ is a universal constant. Then, we express the Gaus-
sian extractable work W (�m) as a function of �m(U ). Noting
that W (�m) = |W (�m)|, we have

W (�m) =
∣∣∣∣∣1

2

2m∑
k=1

(λk − νth ) +
m∑

k=1

(νth − νk )

∣∣∣∣∣
� 1

2

(
2m∑

k=1

|λk − νth| + 2
m∑

k=1

∣∣ν2
k − ν2

th

∣∣)

�
√

m

√√√√ 2m∑
k=1

|λk − νth|2 + 2
m∑

k=1

∣∣ν2
k − ν2

th

∣∣2

=
√

m �m(U ),

where the first inequality follows from the triangle inequality
and the fact that νth + νk � 1. The second inequality fol-
lows from the inequality (

∑n
i=1 xi )2 � n

∑n
i=1 x2

i . Letting δ >

2Cnβ−1 and using Eq. (14), we have

Pr[W (�m) �
√

mδ] � Pr[�m(U ) � δ]

� 1 − exp[−c′δ2n1−8β ].

Furthermore, letting ε = √
mδ >

√
2Cmnβ−1, we have

Pr[W (�m) > ε] � exp[−c̃ε4n1−8β],

where c̃ is a universal constant, which concludes our
proof. �

Conclusion. We have established the near impossibility—
in a strong sense—of extracting work from (zero-mean)
polynomially energy-bounded random multimode Gaussian
states using Gaussian unitaries. Qualitatively, this follows
from the fact that these states are typically locally thermal
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as a consequence of the “concentration of measure” phe-
nomenon, so one cannot extract work from such states. This
is a probabilistic statement in the sense that there remains an
exponentially small probability that it does not hold. In this
regard, our ε-no-go theorem slightly contrasts with the well-
known Gaussian no-go theorems, e.g., for Gaussian universal
quantum computation [53], for the distillation of entangle-
ment from Gaussian states using Gaussian local operations
and classical communication [54–56], or for Gaussian quan-
tum error correction [57].

Our findings reveal a fundamental limitation on the pro-
cessing of Gaussian states using Gaussian operations and
show that harnessing quantum thermodynamical processes is
typically impossible in the Gaussian regime. This limitation
even goes beyond the extractable work as a similar ε-no-go
theorem can be proven for the single-mode relative entropy of
activity (an alternative measure of the distance from a Gaus-
sian thermal state defined in Ref. [20]) of random Gaussian
states; see Ref. [58].

Keeping in mind that quantum optical setups are among the
leading platforms for experimental quantum thermodynam-
ics, our results point to an essential requirement to consider
non-Gaussian (or even perhaps nontypical Gaussian) compo-
nents in quantum thermodynamics. A natural question that
arises in this regard is the following: Which nontypical or
non-Gaussian states can get around the ε-no-go theorems
presented here and hence be useful for work extraction? It
would be very interesting to address this question, which,

in turn, could open up exciting developments in quantum
thermodynamics with non-Gaussian resources, a topic that has
hardly been explored to date.

On a final note, our results are reminiscent to the de Finetti
theorem for quantum states that are invariant under orthogonal
symplectic transformations [59]. Such a de Finetti theorem
states that if we perform a partial trace on a state that obeys
this invariance, the resulting state approaches a mixture of
products of (independent and identically distributed) thermal
states. However, we note that the random states considered
here are not, in general, invariant under orthogonal symplectic
transformations; yet we are able to show that they concentrate
around a product of thermal states with the same mean photon
number. In fact, we have a stronger bound here as the error
probability is exponentially small, while it is polynomially
small in the de Finetti theorem of Ref. [59]. On the other hand,
our result is only concerned with Gaussian states, while the
de Finetti theorem of Ref. [59] holds for any state with the
right invariance. This suggests that it would be interesting to
explore the relationship between de Finetti theorems and the
“concentration of measure” phenomenon.
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