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In Section I, we use a Gaussian purification argument to prove that the total state can be taken pure with no loss
of generality in the argument leading to the definition of the set Lm,E . In Sections II and III, we state and prove
Lemmas 1 and 2, respectively, which are used in order to prove Theorem 1 in the main text. In Appendix A, we detail
the mathematical tools used to prove the results of the main text. Appendix B elaborates on the method to compute
average over Haar distributed unitaries following Weingarten calculus.

I. GAUSSIAN PURIFICATION

We have the following proposition on the structure of the set Lm,E .

Proposition 1 (Gaussian purification). For any covariance matrix ΓΓΓm ∈ Lm,E, there exists a 2m-mode covariance
matrix ΓΓΓ corresponding to pure Gaussian state with Tr[ΓΓΓ] ≤ 4E such that ΓΓΓm = ΠΠΠm,mΓΓΓΠΠΠm,m, where ΠΠΠm,m =

diag{
m︷ ︸︸ ︷

1, · · · , 1,
m︷ ︸︸ ︷

0, · · · , 0} ⊕ diag{
m︷ ︸︸ ︷

1, · · · , 1,
m︷ ︸︸ ︷

0, · · · , 0}.

Proof. Given an m-mode covariance matrix ΓΓΓm of system A, using Williamson’s theorem, we can write

ΓΓΓm = SΓΓΓ0mST , (1)

where S is a symplectic matrix and ΓΓΓ0m = diag{ν1, · · · , νm} ⊕ diag{ν1, · · · , νm} with νi being the symplectic eigen-
values. ΓΓΓ0m is a collection of m single mode thermal states and the mean photon number of the ith thermal state is
given by (2νi − 1)/2. It is known that a single mode thermal state can be purified using two mode squeezed state. In
particular, a two mode squeezer on systems A and R is described as a symplectic transformation STMS given by

STMS =

(
cosh riI sinh riσz
sinh riσz cosh riI

)
, (2)

which acts linearly on the two mode quadrature operators xi = (qAi , p
A
i , q

R
i , p

R
i ). The covariance matrix for two mode

vacuum state is given by 1
2 (I ⊕ I), where I is a 2 × 2 identity matrix. Then the two mode squeezed vacuum state is

given by

ΓΓΓTMS =
1

2
STMSST

TMS

=
1

2

(
cosh riI sinh riσz
sinh riσz cosh riI

)(
cosh riI sinh riσz
sinh riσz cosh riI

)
=

1

2

(
cosh 2riI sinh 2riσz
sinh 2riσz cosh 2riI

)
=

(
νiI

√
ν2i − 1/4σz√

ν2i − 1/4σz νiI

)
, (3)

where cosh 2ri = 2νi. We see that indeed removing one mode (the R mode) gives us a thermal state with mean

photon number (2νi − 1)/2. Similarly, we can write purification for m modes. In particular, Γ̃ΓΓ2m is a purification of
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ΓΓΓ0m, where

Γ̃ΓΓ2m =

(
ΓΓΓ0m V
V ΓΓΓ0m

)
, (4)

V = ⊕n
i=1

√
ν2i − 1/4σz, and the order of quadrature operators is given by (qA1 , p

A
1 · · · , qAm, pAm, qR1 , pR1 · · · , qRm, pRm).

Thus, we have

ΓΓΓ′
2m := (S ⊕ Im)Γ̃ΓΓ2m(S ⊕ Im)T

=

(
SΓΓΓ0mST SV
V ST ΓΓΓ0m

)
=

(
ΓΓΓm SV
V ST ΓΓΓ0m

)
, (5)

where S is the same as in Eq. (1). For consistency of the notation, we further need to perform a permutation Pπ on
2m indices such that

Pπ(qA1 , p
A
1 · · · , qAm, pAm, qR1 , pR1 · · · , qRm, pRm)T = (qA1 , · · · , qAm, qR1 · · · , qRm, pA1 , · · · , pAm, pR1 , · · · , pRm)T . (6)

Thus, the desired purification is given by ΓΓΓ2m = PπΓΓΓ′
2mP

−1
π as ΓΓΓm = ΠΠΠm,mΓΓΓ2mΠΠΠm,m. Now let ΓΓΓm ∈ Lm,E , i.e.,

Tr[ΓΓΓm] ≤ 2E. The energy corresponding to covariance matrix ΓΓΓ2m is given by

1

2
Tr[ΓΓΓ2m] =

1

2
Tr[ΓΓΓ′

2m]

=
1

2
Tr[ΓΓΓm] +

1

2
Tr[ΓΓΓ0m]

≤ Tr[ΓΓΓm]

≤ 2E, (7)

where we used the fact that Tr[ΓΓΓm] = Tr[SΓΓΓ0mST ] ≥ minS∈Sp(2n,R) Tr[SΓΓΓ0mST ] = Tr[ΓΓΓ0m] [1]. This completes the
proof of the proposition.

II. PROOF OF LEMMA 1

In this Appendix, we give the precise statement and proof of Lemma 1, which establishes the typicality of the
eigenspectra as needed to prove our main result on the Gaussian extractable work, Theorem 1 of the main text. First,
let us recall the physical procedure to sample a n-mode energy-constrained random Gaussian pure state. We sample z
satisfying the energy constraint, yielding a squeezed vacuum state |Ψ(z)⟩ = |ψz1⟩⊗ · · ·⊗ |ψzn⟩ with covariance matrix
J(z) ⊕ J−1(z), and then we apply a random O ∈ Kn sampled from the invariant measure on Kn. This is done via
the isomorphism F : U(n) 7→ Kn defined as

O ≡ F (U) := P

(
U 0
0 U∗

)
P−1, (8)

where P = 1√
2

(
In iIn
iIn In

)
and P † = P−1. Using the Gaussian purification argument, we actually replace n with 2n

in the above. Then, the zero-mean random m-mode pure

ΓΓΓm :=
1

2
ΠΠΠm,N+nO2nJ̃2n(z)OT

2nΠΠΠm,N+n, (9)

Lemma 1. Let ΓΓΓm be the covariance matrix as in Eq. (9). Further, assume that 4β < 1. For universal constants
γ, γ̃ > 0 such that ϵ > 2γnβ−1, the eigenvalues {λi}2mi=1 of ΓΓΓm converge in probability to νth, i.e.,

Pr

[
2m∑
i=1

(λi − νth)
2
> ϵ

]
≤ exp

[
−γ̃ϵ2n1−4β

]
, (10)

where νth is the average energy per mode of the 2n-mode input pure state, i.e., νth = Tr[J̃2n(z)]/(8n).
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Proof. Let us consider a function Tm : U(2n) → R of random unitary matrices defined as

Tm(U) := Tr
[
(ΓΓΓm − νthI2m)

2
]
, (11)

where ΓΓΓm ≡ ΓΓΓm(U) is defined by Eq. (9) and νth is the average energy of the 2n-mode input pure state with

covariance matrix 1
2O2nJ̃2n(z)OT

2n. Thus we have νth = Tr[J̃2n(z)]/(8n). Also, note that νth is uniformly bounded in

n by definition of J̃2n(z) = J2n(z) ⊕ J−1
2n (z) with

∣∣∣∣∣∣J̃2n(z)
∣∣∣∣∣∣
∞

= O
(
nβ
)
. Since ΓΓΓm is a real symmetric matrix, it can

be diagonalized by an orthogonal matrix and we have

Tm(U) =

2m∑
k=1

(λk − νth)
2
. (12)

Thus, the lemma provides us with an upper bound to the probability Pr [Tm(U) > ϵ]. The proof follows from the
concentration of measure phenomenon as we show below. First, we compute the average value of the function Tm(U).
By definition of ΓΓΓm, we have

2ΓΓΓm =
1

2

(
ΠΠΠ iΠΠΠ
iΠΠΠ ΠΠΠ

)
A(U)

(
ΠΠΠ iΠΠΠ
iΠΠΠ ΠΠΠ

)
, (13)

where

A(U) =

(
UAUT −iUBU†

−iU∗BUT −U∗AU†

)
(14)

with A = (J2n(z)− J−1
2n (z))/2 and B = (J2n(z) + J−1

2n (z))/2. From Remark 1 in appendix B, we have EUUAU
T = 0.

Further, it is easy to see that

EUUBU
† = Tr[B]

I
2n
. (15)

Now, using ||B||1 = Tr[B] = 4nνth, we have EUΓΓΓm = νth

(
ΠΠΠ 0
0 ΠΠΠ

)
. Thus,

Tr [EUΓΓΓm] = 2mνth. (16)

Moreover,

4ΓΓΓ2
m =

i

2

(
ΠΠΠ iΠΠΠ
iΠΠΠ ΠΠΠ

)(
Q(U) −B(U)

−B∗(U) Q∗(U)

)(
ΠΠΠ iΠΠΠ
iΠΠΠ ΠΠΠ

)
,

where

Q(U) = −iUBU†ΠΠΠUAUT − iUAUTΠΠΠU∗BUT ;

B(U) = UBU†ΠΠΠUBU† + UAUTΠΠΠU∗AU†.

Using Remark 1 of Appendix B, we have EUQ(U) = 0. Thus,

4EUΓΓΓ2
m =

(
ΠΠΠEUB(U)ΠΠΠ 0

0 ΠΠΠEUB(U)ΠΠΠ

)
. (17)

We now compute the EUB(U). We have

B(U) = UBU†ΠΠΠUBU† + UAUTΠΠΠU∗AU†.
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We first compute EUUBU
†ΠΠΠUBU† as follows.

EUUBU
†ΠΠΠUBU†

= EU

∑
i1,k1,i2,k2,j1,l1,j2,l2

Ui1k1
Bk1l1U

∗
j1l1ΠΠΠj1i2Ui2k2

Bk2l2U
∗
j2l2 |i1⟩⟨j2|

=
∑

i1,k1,i2,k2,j1,l1,j2,l2

Bk1l1ΠΠΠj1i2Bk2l2

∑
α,β∈S2

2∏
x=1

δixjα(x)

2∏
y=1

δkylβ(y)
Wg(2n, α−1β) |i1⟩⟨j2|

=
∑

i1,k1,i2,k2,j1,l1,j2,l2

Bk1l1ΠΠΠj1i2Bk2l2 |i1⟩⟨j2| [δi1j1δi2j2δk1l1δk2l2Wg(2n, (1)(2)) + δi1j1δi2j2δk1l2δk2l1Wg(2n, (12))

+δi1j2δi2j1δk1l1δk2l2Wg(2n, (12)) + δi1j2δi2j1δk1l2δk2l1Wg(2n, (1)(2))]

=
∑

i1,k1,i2,k2

[Bk1k1
ΠΠΠi1i2Bk2k2

|i1⟩⟨i2|Wg(2n, (1)(2)) +Bk1k2
ΠΠΠi1i2Bk2k1

|i1⟩⟨i2|Wg(2n, (12))

+Bk1k1
ΠΠΠi2i2Bk2k2

|i1⟩⟨i1|Wg(2n, (12)) +Bk1k2
ΠΠΠi2i2Bk2k1

|i1⟩⟨i1|Wg(2n, (1)(2))]

= (Tr[B])
2

ΠΠΠWg(2n, (1)(2)) + Tr[B2]ΠΠΠWg(2n, (12)) + (Tr[B])
2

Tr[ΠΠΠ]I2nWg(2n, (12)) + Tr[B2]Tr[ΠΠΠ]I2nWg(2n, (1)(2))

= (Tr[B])
2

(ΠΠΠWg(2n, (1)(2)) +mI2nWg(2n, (12))) + Tr[B2] (ΠΠΠWg(2n, (12)) +mI2nWg(2n, (1)(2)))

= (Tr[B])
2 2nΠΠΠ −mI2n

2n(4n2 − 1)
+ Tr[B2]

2mnI2n −ΠΠΠ

2n(4n2 − 1)
.

Now we compute EUUAU
TΠΠΠU∗AU† as follows.

EUUAU
TΠΠΠU∗AU†

= EU

∑
i1,k1,i2,k2,j1,l1,j2,l2

Ui1k1Ak1k2Ui2k2ΠΠΠi2j1U
∗
j1l1Al1l2U

∗
j2l2 |i1⟩⟨j2|

=
∑

i1,k1,i2,k2,j1,l1,j2,l2

Ak1k2
ΠΠΠi2j1Al1l2

∑
α,β∈S2

2∏
x=1

δixjα(x)

2∏
y=1

δkylβ(y)
Wg(2n, α−1β) |i1⟩⟨j2|

=
∑

i1,k1,i2,k2,j1,l1,j2,l2

Ak1k2
ΠΠΠi2j1Al1l2 |i1⟩⟨j2| [δi1j1δi2j2δk1l1δk2l2Wg(2n, (1)(2)) + δi1j1δi2j2δk1l2δk2l1Wg(2n, (12))

+δi1j2δi2j1δk1l1δk2l2Wg(2n, (12)) + δi1j2δi2j1δk1l2δk2l1Wg(2n, (1)(2))]

=
∑

i1,k1,i2,k2

[Ak1k2
ΠΠΠi2i1Ak1k2

|i1⟩⟨i2|Wg(2n, (1)(2)) +Ak1k2
ΠΠΠi2i1Ak2k1

|i1⟩⟨i2|Wg(2n, (12))

+Ak1k2
ΠΠΠi2i2Ak1k2

|i1⟩⟨i1|Wg(2n, (12)) +Ak1k2
ΠΠΠi2i2Ak2k1

|i1⟩⟨i1|Wg(2n, (1)(2))]

= Tr[A2] (ΠΠΠWg(2n, (1)(2)) + ΠΠΠWg(2n, (12)) + Wg(2n, (12))mI + Wg(2n, (1)(2))mI)

= Tr[A2]
1

2n(2n+ 1)
(ΠΠΠ +mI) .

Thus,

EUB(U) =
(2nΠΠΠ −mI2n) (Tr[B])

2

2n(4n2 − 1)
+

(2mnI2n −ΠΠΠ)Tr[B2]

2n(4n2 − 1)
+

Tr[A2]

2n(2n+ 1)
(ΠΠΠ +mI) .

And we then get

ΠΠΠEUB(U)ΠΠΠ =

(
(2n−m)

2n(4n2 − 1)
(Tr[B])

2
+

(2mn− 1)

2n(4n2 − 1)
Tr
[
B2
]

+
(m+ 1) Tr

[
A2
]

2n(2n+ 1)

)
ΠΠΠ.

For large n, we have

Tr [ΠΠΠEUB(U)ΠΠΠ] =
m

4n2
(
1 +O

(
n−1

))
(Tr[B])

2
+O

(
n−2

)
Tr
[
B2
]

+O
(
n−2

)
Tr
[
A2
]
. (18)
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Using ||B||1 = Tr[B] = 4nνth, ||B||∞ = O
(
nβ
)
, and Tr

[
A2
]
≤ Tr

[
B2
]
≤ ||B||1 ||B||∞ = νthO

(
nβ+1

)
, we have

Tr [ΠΠΠEUB(U)ΠΠΠ] = 4mν2th
(
1 +O

(
n−1

))
+ νthO

(
nβ−1

)
= 4mν2th +O

(
nβ−1

)
. (19)

Thus, we have

4Tr
[
EUΓΓΓ2

m

]
= 8mν2th +O

(
nβ−1

)
. (20)

Combining Eqs. (16) and (20), we have

EUT (U) = EUTr
[
ΓΓΓ2
m

]
− 2νthEUTr [ΓΓΓm] + 2mν2th

= 2mν2th +O
(
nβ−1

)
− 4mν2th + 2mν2th

= O
(
nβ−1

)
.

Thus, there exists a universal constant γ > 0 such that EUT (U) ≤ γnβ−1.
Next, we bound the Lipschitz constant for the function T (U). Let ΓΓΓm(U) and ΓΓΓm(V ) be two covariance matrices

generated via unitaries U and V , respectively. Also, let us denote ΓΓΓm(U) by ΓΓΓm and ΓΓΓm(V ) by Γ̃ΓΓm. Then we have

|T (U) − T (V )| ≤
∣∣∣Tr
[
ΓΓΓ2
m − Γ̃ΓΓ

2

m

]∣∣∣+ 2νth

∣∣∣Tr
[
ΓΓΓm − Γ̃ΓΓm

]∣∣∣
≤
∣∣∣∣∣∣ΓΓΓ2

m − Γ̃ΓΓ
2

m

∣∣∣∣∣∣
1

+ 2νth

∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
1

≤
(
||ΓΓΓm||∞ +

∣∣∣∣∣∣Γ̃ΓΓm

∣∣∣∣∣∣
∞

+ 2νth

) ∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
1

≤ 2
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
1

≤ 2
√

2m
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
2
, (21)

where we have used max
{
||ΓΓΓm||∞ ,

∣∣∣∣∣∣Γ̃ΓΓm

∣∣∣∣∣∣
∞

}
≤
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞
/2 and 2νth ≤

∣∣∣∣∣∣J̃2n(z)
∣∣∣∣∣∣
∞

. Further, we have∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
2
≤ 1

2

∣∣∣∣∣∣F (U)J̃2n(z)F (U)T − F (V )J̃2n(z)F (V )T
∣∣∣∣∣∣
2

≤ 1

2

∣∣∣∣∣∣F (U)J̃2n(z) (F (U) − F (V ))
T
∣∣∣∣∣∣
2

+
1

2

∣∣∣∣∣∣(F (U) − F (V )) J̃2n(z)F (V )T
∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

||F (U) − F (V )||2

=
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

||U ⊕ U∗ − V ⊕ V ∗||2

≤ 2
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

||U − V ||2 . (22)

Thus,

|T (U) − T (V )| ≤ 4
√

2m
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣2
∞

||U − V ||2
= O

(
n2β
)
||U − V ||2 ,

where we have used the fact that
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

= O
(
nβ
)
. Thus, the Lipschitz constant L for the function T (U) is equal

to O
(
n2β
)
. Now, we use concentration of measure phenomenon to the function T (U) of random unitaries U . Let us

take

ϵ > 2γnβ−1,

where γ is a universal constant. Then we have

Pr [T (U) > ϵ] ≤ Pr
[
T (U) >

ϵ

2
+ EUT (U)

]
≤ exp

[
− nϵ2

48L2

]
≤ exp

[
−γ̃ϵ2n1−4β

]
,
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where the second inequality follows from the concentration of measure phenomenon (see Appendix A) and γ̃ is a
suitable universal constant. This concludes the proof of the Lemma 1.

III. PROOF OF LEMMA 2

In this Appendix, we give the precise statement and proof of Lemma 2. In a similar way as Lemma 1, Lemma 2
establishes the typicality of the symplectic eigenspectra (see also Ref. [2]). Let us consider a function Tm : U(2n) → R
of random unitary matrices defined as

Tm(U) := Tr
[(

(ΩΩΩΓΓΓm)2 + ν2thI2m
)2]

= 2

m∑
k=1

(
−ν2k + ν2th

)2
, (23)

where {νk}mk=1 are the symplectic eigenvalues of ΓΓΓm and {±iνk}mk=1 comprises the spectra of matrix ΩΩΩΓΓΓm. Also,

ΓΓΓm ≡ ΓΓΓm(U) is defined by Eq. (9) and νth = Tr[J̃2n(z)]/(8n) as before.

Lemma 2 (Ref. [2]). Let ΓΓΓm be the covariance matrix as in Eq. (9). Further, assume that 8β < 1. For universal
constants C, c > 0 such that ϵ > Cnβ−1, the symplectic eigenvalues {νi}mi=1 of ΓΓΓm converge in probability to νth, i.e.,

Pr

[
m∑
i=1

(
ν2i − ν2th

)2
> ϵ

]
≤ exp

[
−cϵ2n1−8β

]
. (24)

The proof of the above lemma follows from the concentration of measure phenomenon applied to Tm(U). The key
steps include the calculation of the Lipschitz constant for Tm(U) and its average with respect to the unitaries. For
completeness, we show that EUTm(U) = O

(
nβ−1

)
and the Lipschitz constant for Tm(U) is given by O

(
n4β
)
. Note

that these results easily follow from Ref. [2].

Proof. We first compute the average of the function Tm(U) over random unitaries. Following Ref. [2], we have

4EUTr
[
(ΩΩΩΓΓΓm)2

]
= −2m

[
2n−m

2n(4n2 − 1)
(Tr[B])

2 − m+ 1

2n(2n+ 1)
Tr[A2] +

mn− 1

2n(4n2 − 1)
Tr[B2]

]
= −2m

[
1

4n2
(
1 +O

(
n−1

))
(Tr[B])

2
+O

(
n−2

)
Tr[A2] +O

(
n−2

)
Tr[B2]

]
.

Using ||B||1 = Tr[B] = 4nνth, ||B||∞ = O
(
nβ
)
, and Tr

[
A2
]
≤ Tr

[
B2
]
≤ ||B||1 ||B||∞ = νthO

(
nβ+1

)
, we have

EUTr
[
(ΩΩΩΓΓΓm)2

]
= −2mν2th +O

(
nβ−1

)
.

Similarly, following Ref. [2], we have

EUTr
[
(ΩΩΩΓΓΓm)4

]
= 2mν4th +O

(
nβ−1

)
.

Thus,

EUTm(U) = O
(
nβ−1

)
. (25)

Now, we compute the Lipschitz constant for the function Tm(U). Let ΓΓΓm(U) ≡ ΓΓΓm and ΓΓΓm(V ) ≡ Γ̃ΓΓm. Then, again
from Ref. [2], we have

|T(U) − T(V )| ≤
(

4
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣3
∞

+ 4ν2th

∣∣∣∣∣∣J̃2n(z)
∣∣∣∣∣∣
∞

) ∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
1

≤ 5
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣3
∞

∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
1

≤ 5
√

2m
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣3
∞

∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
2
,
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where we have used max
{
||ΓΓΓm||∞ ,

∣∣∣∣∣∣Γ̃ΓΓm

∣∣∣∣∣∣
∞

}
≤
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞
/2 and 2νth ≤

∣∣∣∣∣∣J̃2n(z)
∣∣∣∣∣∣
∞

. In Lemma 1, we have proved∣∣∣∣∣∣ΓΓΓm − Γ̃ΓΓm

∣∣∣∣∣∣
2
≤ 2

∣∣∣∣∣∣J̃2n(z)
∣∣∣∣∣∣
∞

||U − V ||2, therefore

|T(U) − T(V )| ≤ 10
√

2m
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣4
∞

||U − V ||2
= O

(
n4β
)
||U − V ||2 ,

where we have used the fact that
∣∣∣∣∣∣J̃2n(z)

∣∣∣∣∣∣
∞

= O
(
nβ
)
. Thus, the Lipschitz constant L for the function T(U) is equal

to O
(
n4β
)
.

Now, we use concentration of measure phenomenon to the function T(U) of random unitaries U . Let C be a
universal constant such that EUTm(U) ≤ Cnβ−1 and let ϵ > Cnβ−1. Then we have

Pr [T(U) > 2ϵ] ≤ Pr [T (U) > ϵ+ EUT (U)]

≤ exp

[
− nϵ2

12L2

]
≤ exp

[
−cϵ2n1−8β

]
,

where c is a suitable universal constant. This concludes the proof of the Lemma 2.
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Appendix A: Norms, Lipschitz continuity and concentration of measure phenomenon

Matrix norms:– Let us consider a vector space Vn of complex n× n matrices. Let X,Y ∈ Vn, then a matrix norm
on Vn is a real-valued non-negative function ||·|| : Vn → R satisfying the following properties:

1. ||X|| ≥ 0 while the equality holds if and only if X = 0.

2. ||αX|| = |α| ||X|| for all α ∈ C.

3. ||X + Y || ≤ ||X|| + ||Y ||.

4. ||XY || ≤ ||X|| ||Y ||.

The last property is called the submultiplicativity [3]. An important family of matrix norms, called Schatten p-norms
with p ≥ 1, is defined as

||X||p :=

(
n∑

i=1

spi (X)

)1/p

, (A1)
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where {si} are the singular values of X ∈ Vn. These norms are unitarily invariant, i.e., for unitaries U, V ∈ Vn,
||UXV ||p = ||X||p. Of particular importance to us are the cases with p = 1, 2,∞, which correspond to trace,
Hilbert-Schmidt, and operator norms, respectively. In particular,

||X||1 := Tr
[√

X†X
]

; (A2a)

||X||2 :=
√

Tr [X†X]; (A2b)

||X||∞ := max
x̸⃗=0

||Xx⃗||
||x⃗||

, (A2c)

where x⃗ is an n dimensional vector and ||·|| is usual Euclidean norm for vectors. We list some of the relations between
these norms that we will be using. Let X ∈ Vn, then

||X||1 ≤
√
n ||X||2 ≤ n ||X||∞ . (A3)

Moreover, for X,Y, Z ∈ Vn, we have

||XY Z||p ≤ ||X||∞ ||Y ||p ||Z||∞ . (A4)

Lipschitz continuity:– Let us consider two metric spaces (X, dX) and (Y, dY ), where dX (or dY ) denotes the metric
on X (or Y ). A function F : X → Y is said to be a Lipschitz continuous function if for any x, x′ ∈ X

dY (F (x) − F (x′)) ≤ L dX(x, x′), (A5)

where the positive constant L is called the Lipschitz constant [4]. Note that any other constant L′ ≥ L is also a
valid Lipschitz constant. For this work, we are interested in functions F : U(n) → R, where U(n) is the set of n× n
unitary matrices and R is the set of real numbers. Such a function F is a Lipschitz continuous function with Lipschitz
constant L if for any U, V ∈ U(n) we have

|F (U) − F (V )| ≤ L ||U − V ||2 . (A6)

Concentration of the measure phenomenon:– The concentration of the measure phenomenon refers to the
collective phenomenon of certain smooth functions defined over measurable vector spaces taking values close to their
average values almost surely [5]. There are various versions of concentration inequalities depending on the input
measurable space and there are various ways to prove them. A very general technique to prove such inequalities is via
logarithmic Sobolev inequalities together with the Herbst argument (this is also called the “entropy method”, see e.g.
[5–7]). Since we are interested in functions on the unitary group U(n), a particularly suitable concentration inequality
is given as follows [8] (see also [2]):

Theorem 1 ([8]). Let U(n) be the group of n× n unitary matrices which is equipped with the Hilbert-Schmidt norm.
Let F : U(n) → R be a Lipschitz continuous function with Lipschitz constant L. Then for any ϵ > 0

Pr [F (U) > EUF + ϵ] < exp

[
− nϵ2

12L2

]
, (A7)

where EU denotes the average with respect to Haar measure on U(n).

Appendix B: Average over unitaries and Weingarten calculus

Computing averages over the Haar measure on the unitary group is an essential part for establishing concentration
inequalities for functions on the unitary group. In this section, we present briefly a method of Ref. [9] to compute
averages (see also Ref. [10]). Let U(n) be the group of n × n unitary matrices equipped with the normalized Haar
measure and Sd be the symmetric group of d objects. Let Uij = ⟨i|U |j⟩ be the matrix elements of U ∈ U(n) in the
computational basis. Then we have the following formula for the averages:

EU

[
d∏

a=1

Uiaja

d∏
b=1

U∗
i′bj

′
b

]
=

∑
π,σ∈Sd

d∏
a=1

δiai′π(a)

d∏
b=1

δjbj′σ(b)
Wg

(
n, π−1σ

)
, (B1)
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where π and σ are permutations and the function Wg
(
n, π−1σ

)
is called the Weingarten function, defined as

Wg (n, π) =
1

d!2

∑
λ⊢d

l(λ)≤n

χλ(π)(χλ(1))2

sλ,n(1)
. (B2)

In the above expression λ is a Young tableaux and the sum is over all the Young tableaux with d boxes and rows
l(λ) ≤ n. For a given λ, χλ is the character corresponding to the irreducible representation labeled as λ of Sd. sλ,n(1)
is the dimension of the representation of U(n) corresponding to a tableaux λ. In this work, we will need to compute
averages for d = 2 case. In this case,

Wg (n, (1)(2)) =
1

n2 − 1
; (B3)

Wg (n, (12)) = − 1

n(n2 − 1)
. (B4)

Remark 1. From Eq. (B1) if the number of U terms is different than that of U∗, then the expectation in Eq. (B1)
is zero.
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