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In Section I, we use a Gaussian purification argument to prove that the total state can be taken pure with no loss
of generality in the argument leading to the definition of the set £,, g. In Sections II and IlI, we state and prove
Lemmas 1 and 2, respectively, which are used in order to prove Theorem 1 in the main text. In Appendix A, we detail
the mathematical tools used to prove the results of the main text. Appendix B elaborates on the method to compute
average over Haar distributed unitaries following Weingarten calculus.

I. GAUSSIAN PURIFICATION

We have the following proposition on the structure of the set £, g.

Proposition 1 (Gaussian purification). For any covariance matriz Ty, € Ly, g, there exists a 2m-mode covariance
matriz T' corresponding to pure Gaussian state with Tr[I'] < 4E such that 'y, = 1L, LI, 0, where I, =

. m m . m m
dlag{l,"' 31»07"' ,O}EBdlag{l, 71a07"' 30}
Proof. Given an m-mode covariance matrix I',, of system A, using Williamson’s theorem, we can write

T,, = STy.S7, (1)

where § is a symplectic matrix and Ty, = diag{v1,--- , v} @ diag{v1,- - , v} with v; being the symplectic eigen-
values. Ty, is a collection of m single mode thermal states and the mean photon number of the ith thermal state is
given by (2v; — 1)/2. It is known that a single mode thermal state can be purified using two mode squeezed state. In
particular, a two mode squeezer on systems A and R is described as a symplectic transformation Stpss given by

(2)

( coshr;I sinh rioz)
Stms = ;

sinhr;o, coshr;l

which acts linearly on the two mode quadrature operators x; = (qZA, pf‘, ql*, pf). The covariance matrix for two mode

vacuum state is given by %(]I @ 1), where I is a 2 X 2 identity matrix. Then the two mode squeezed vacuum state is
given by
1 T
Prys = §ST]MSSTMS
. 1 coshr;l sinhr;o, coshr;I sinhr;o,
~ 9 \sinhr;o, coshr;I sinhr;o, coshr;l

_ 1 [ cosh2rl sinh2r;o,
~ 9 \sinh2r;0, cosh2r;I

- (., V) 3)

where cosh2r; = 2v;. We see that indeed removing one mode (the R mode) gives us a thermal state with mean
photon number (2v; — 1)/2. Similarly, we can write purification for m modes. In particular, Iy, is a purification of
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Ty, where

= Lo V
F2m = ( ‘O/ FOm) ) (4)

V = @ \/v? —1/40,, and the order of quadrature operators is given by (q{‘,pi4 e ,q;fl,p;‘,‘wq{%,p{% o qB ply.
Thus, we have

FIQm = (8 S2) Hm)me (S (5) Hm)T

(8T, ST SV
VST Tom

r,, sv
= (VST FOm) ) (5)

where S is the same as in Eq. (1). For consistency of the notation, we further need to perform a permutation P, on
2m indices such that

A

)T = (QI [ 7q71‘?wQ{% a%ﬁ,?pfa"' 7]727]7{%,"' apﬁ)T' (6)

A A A
PTI'(Ql 7pi4 e anvp'ryNQ{%ale T 7q717%17p2
Thus, the desired purification is given by I's,, = P, P! as T, = IO, »nLomIly m. Now let 'y, € Lok, e,

2m*
Tr[[',,] < 2E. The energy corresponding to covariance matrix I's,, is given by

1 1
§Tr [om] = §Tr [I‘IQm]

1 1
= §Tr[]:‘m] + iTI'[FOm}
< T[T,

< 2F, (7)

where we used the fact that Tr[[',,,] = Tr[STy,,ST] > mingegp(2n,R) Tr[ST0,nST] = Tr[To) [1]. This completes the
proof of the proposition. O

II. PROOF OF LEMMA 1

In this Appendix, we give the precise statement and proof of Lemma 1, which establishes the typicality of the
eigenspectra as needed to prove our main result on the Gaussian extractable work, Theorem 1 of the main text. First,
let us recall the physical procedure to sample a n-mode energy-constrained random Gaussian pure state. We sample z
satisfying the energy constraint, yielding a squeezed vacuum state |¥(z)) = |¢,,) ® - - - ® |1, ) with covariance matrix
J(z) ® J71(z), and then we apply a random O € K,, sampled from the invariant measure on K,,. This is done via
the isomorphism F : U(n) — K,, defined as

O=FU):=P (g 3) Pt (8)

where P = % (1]}1" 1&1 ") and Pt = P~!. Using the Gaussian purification argument, we actually replace n with 2n

in the above. Then, the zero-mean random m-mode pure

1 ~
Fm = inm,NJrnOQnJQn (Z)Ognnm,NJrn» (9)

Lemma 1. Let T, be the covariance matriz as in Eq. (9). Further, assume that 45 < 1. For universal constants
7,5 > 0 such that € > 2ynP~, the eigenvalues {Xi}2™ of Ty, converge in probability to vy, i.e.,

2m

Z ()\z — Vth)2 > €

i=1

Pr < exp [-7e*n' ], (10)

where vy, is the average energy per mode of the 2n-mode input pure state, i.c., v, = Tr[Jan (2)]/(8n).



Proof. Let us consider a function 7,, : U(2n) — R of random unitary matrices defined as
Ton(U) i=Tr [T = vinlam)’ (11)

where T, = T',,,(U) is defined by Eq. (9) and 1y, is the average energy of the 2n-mode input pure state with
covariance matrix $Osg;,J2,(2)03,,. Thus we have vy, = Tr[Ja,(2)]/(8n). Also, note that 14y is uniformly bounded in

n by definition of Jo,(z) = Jon(z) & J5.' (z) with szn(z) ‘

be diagonalized by an orthogonal matrix and we have

=0 (n'@ ) Since I',,, is a real symmetric matrix, it can
oo

Tn(U) =" (A —vin)”. (12)

k=1

Thus, the lemma provides us with an upper bound to the probability Pr[7T,,(U) > €]. The proof follows from the
concentration of measure phenomenon as we show below. First, we compute the average value of the function T, (U).

By definition of I, we have
1 /10 I II I
A =5 (il'[ 11) AU) (il’[ 1'[> ) (13)

where

T s T
UAU iUBU ) (14)

AWU) = (—iU*BUT U AU

with A = (Jan(z) — J{T}(z))/Q and B = (Jon(z) + J{nl(z))/l From Remark 1 in appendix B, we have ExUAUT = 0.
Further, it is easy to see that

I
EyUBUT = Tr[B]%. (15)

Now, using ||B||, = Tr[B] = 4nuty, we have Eyl'y, = 14y (l(-)l ﬁ) Thus,

Tr [Eyl,,] = 2muyy,. (16)

Moreover,

w3 BB S G

where

Q(U) = —iUBUMUAUT — iU AUTIU*BUT;
B(U)=UBUMIUBU' + UAUTTIU* AU

Using Remark 1 of Appendix B, we have EyQ(U) = 0. Thus,

NEyB(U)I 0 ) . (17)

2 _
BT, = ( 0 OEGBU)I
We now compute the EyB(U). We have

B(U) =UBUMIUBU' + UAUTTIU* AU



We first compute ExUBUTIUBU? as follows.

EyUBUTIUBUT
= IE:U Z Ui1k1Bk111UjlllnjthhszlezU;;lg |21><]2|

11,k1,92,k2,51,01,72,12

2 2
= > BTyt Biot, [ 0iaiace) L1 kotoe, We@n, @™ ) [ix)jal

11,k1,12,k2,51,01,52,12 a,fES2 z=1 y=1

= Z Bk1llnj1i2Bk2l2 |Zl><]2| [5i1j1 5i2j25k1116k212Wg(2n7 (1)(2)) + 5ilj15i2j25k1125k2l1Wg(2n3 (12))

11,k1,82,k2,51,01,52,02

+6i1j25i2j1 5k111§k212Wg(2n’ (12)) + 6’i1j25i2j1 5k1125k211Wg(2n7 (1)(2))]
= Z [Bk1klni1isz2k2 |7’1><Z2| Wg(2n7 (1)(2)) + Bk1k2ni1isz2k1 |11><12| Wg(2n7 (12))

i1,k1,12,k2
+Bk1k’1ni2i2Bk2k2 ‘Zl><ll| Wg(2na (12)) + Bk1k2ni2i2Bk2k’1 |Zl><zl|Wg(2n7 (1)(2))]
= (Ty[B])* TIWg(2n, (1)(2)) + Tr[B*[TIWg(2n, (12)) + (Tx[B])* Tr[[]T, We(2n, (12)) + Tr[B*| T[T, We(2n, (1)(2))
= (Tx[B])* (MWg(2n, (1)(2)) + mls, We(2n, (12))) + Tr[B?] (TTWg(2n, (12)) + mla, We(2n, (1)(2)))
2mnls,, —1II
2n(4rf2 1)

o 2nIl — mlls,

= (Tr[B]) @ — 1) + Tr[B?]

Now we compute EgUAUTTIU* AU as follows.

EwUAUTIIU* AU
=Ey Z Uil k1 Aklkz Ui2k2Hi2j1 U;lllAlllz U;’;lz |’Ll><]2‘

i1,k1,12,k2,51,01,52,l2

2 2
= Z Ak ko Ilig, Al Z H 6imja(ac) H 5kyl;3(y)Wg<2n7 a—l[@) i1 X J2|

i1,k1,02,k2,41,01,72,l2 a,BESy x=1 y=1
= Z Ak ko Iliy, Al |Zl><j2| [5i1j1 6i2j26k1116/€252Wg(2n’ (1)(2)) + 6i1j16i2j257€1126k2l1Wg(2n7 (12))

i1,k1,12,k2,51,01,52,02

+5i1j2512j16k’1116k212Wg(2n’ (12)) + 6i1j25i2j15k1126k’2llwg(2n7 (1)(2))]
= Y [ Ak, Ak, i )izl We(2n, (1)(2)) + Ak, k. Tigi, Apyry i1 )i2| We(2n, (12))

i1,k1,i2,k2

+A/€11€2Hi2i2‘4/€11€2 ‘Zl><ll| Wg(2n’ (12)) + Ak1k2Hi2i2Ak2k1 ‘Zl><ll| Wg(QTL, (1)(2))]
= Tr[A?] (MWg(2n, (1)(2)) + IWg(2n, (12)) + Wg(2n, (12))ml + Wg(2n, (1)(2))mlI)

= To[4?); (I + mI) .

n(2n +1)
Thus,

(2nI1 — mla,) (TX[B))?*  (2mnly, — ) Tr[B2] Tr[A2]

EuB(U) = 2n(4n2 — 1) 2n(4n? — 1) 2n(2n +1)

(IT 4+ ml).

And we then get

(2n —m)
2n(4n? — 1)

(2mn — 1)

(T([B)” + 2n(4n? — 1)

Tr [Bz] +

MEB(U)II = ( Mw) II.

2n(2n + 1)

For large n, we have

m

Tr MEBU] =

(1+0 (n™Y) (Tx[B])? + O (n™2) Tr [B*] + O (n™2) Tr [A?]. (18)



Using ||B||, = Tr[B] = 4nun, ||B||, = O (n?), and Tr [A%] < Tr [B?] < ||B||; ||B|| = v O (n”T1), we have
Tr MEyB()I] = 4mvd, (1+0 (n71)) + 14,0 (nﬁfl)
=4mvd, + 0 (n”71). (19)
Thus, we have
ATr [EuyT2,] = 8mug, + O (nP71). (20)
Combining Egs. (16) and (20), we have
EyT(U) = EuTr [T2,] — 20, EuTr [Thn] + 2muy,
=2mvd + O (nﬁfl) —dmud, + 2mvd,
=0 (nﬁ_l) .

Thus, there exists a universal constant v > 0 such that EyT(U) < yn~1L.
Next, we bound the Lipschitz constant for the function T(U). Let I',,(U) and T',, (V) be two covariance matrices

generated via unitaries U and V, respectively. Also, let us denote I',,,(U) by T';, and T, (V) by I';;,. Then we have

~2
T(U) = T(V)| < [T [12, ~ T, ]| + 2van

Tr [I"m — fm}

“Jre ¥

m

+ 2Vth
1

ot

1

< (1l [Fu] 00 [
o0

2o 2],

< 2\/%“(7%@) LO ‘ T, —f“m’ . (21)
where we have used max{||I‘m||oo ( meOO} < HJQ,L(Z)HOO/z and 2vy, < HLH(Z)HOO. Further, we have
[ = % [FU) (@)UY ~ W) Tn ()0
< S [F@) Rontm) () = F )|+ 5 || @)~ FO) Bontm E 07|,
< || nt@)||_11F @) = FOV),
= || Fn)|| 0@ 0"~V eV,
< 2||Tou@)||_ 11U~ V1, (22)

Thus,
TW) = T(V)] < 4V2m || Tou(2)
—0 () |lU=V],,

2
o=Vl

where we have used the fact that ngn(z)

‘ =0 (nﬁ) Thus, the Lipschitz constant L for the function T(U) is equal

to O (nzB ) Now, we use concentration of measure phenomenon to the function T(U) of random unitaries U. Let us
take

€> 2771’871,

where 7 is a universal constant. Then we have

Pr[T(U) > ¢ < Pr [T(U) > g + EUT(U)}

n€2
S exp | =R

< exp [—?eanw] ,



where the second inequality follows from the concentration of measure phenomenon (see Appendix A) and 7 is a
suitable universal constant. This concludes the proof of the Lemma 1. O

III. PROOF OF LEMMA 2

In this Appendix, we give the precise statement and proof of Lemma 2. In a similar way as Lemma 1, Lemma 2
establishes the typicality of the symplectic eigenspectra (see also Ref. [2]). Let us consider a function ¥, U(2n) - R
of random unitary matrices defined as

%, (U) ;:Tr[((nrm)uufhﬂrzm} 2" (2 + )’ (23)
k=1

where {v}7", are the symplectic eigenvalues of I',,, and {=%iv;}7", comprises the spectra of matrix QI',,. Also,
I, =T, (U) is defined by Eq. (9) and vy, = Tr[J2,(2)]/(8n) as before.

Lemma 2 (Ref. [2]). Let T, be the covariance matriz as in Eq. (9). Further, assume that 88 < 1. For universal
constants C,c > 0 such that € > CnP~1, the symplectic eigenvalues {vit™, of Ty, converge in probability to vy, i.e.,

Pr [Z (V,2 - yfh)z > 6] < exp [ ce*n'™ Sﬁ] (24)
i=1

The proof of the above lemma follows from the concentration of measure phenomenon applied to %,,(U). The key
steps include the calculation of the Lipschitz constant for <, (U) and its average with respect to the unitaries. For
completeness, we show that Ey%,,,(U) = O (nﬁfl) and the Lipschitz constant for T,,(U) is given by O (n‘w). Note
that these results easily follow from Ref. [2].

Proof. We first compute the average of the function ¥,,(U) over random unitaries. Following Ref. [2], we have

AEyTx [(QF,,)%] = —2m {%2&;7_”1) (Tr[B])® — %Trw] + MTr[BQ]]
= —2m {412 (1+0(n™)) (Tx[B))* 4+ O (n™?) Tr[A%] + O (n?) Tr[BQ]] .

Using ||B||, = Tr[B] = 4nvp, ||B||, = O (nf), and Tr [42] < Tr [B?] < ||B|l, ||B||., = nO (n+1), we have
EyTr [(QF,)°] = —2mud, + 0 (7).
Similarly, following Ref. [2], we have
EyTr [(Q,)*] = 2myg, + O (n71).
Thus,
EyTn(U) =0 (n°71). (25)

Now, we compute the Lipschitz constant for the function %,,(U). Let I, (U) =T, and T, (V) = fm Then, again
from Ref. [2], we have
L
oo 1

~ 3
5(0) - 50| < (4 Fenta)|[_ -+ 2

| Ton(2)

<] [ 5],

<o Gt -7




where we have used maux{||I‘m||OO ,

me } < ngn(z)H /2 and 2wy, < ngn(z)H . In Lemma 1, we have proved

oo

Hl"m —meZ <2 ngn(z)Hoo ||U = V||,, therefore

T0) = (V)| < 10V2m || Ton(2)
=0 () |[U =Vl

v,

where we have used the fact that ngn (z) H = O (n”). Thus, the Lipschitz constant L for the function T(U) is equal
to O (n*?).

Now, we use concentration of measure phenomenon to the function T(U) of random unitaries U. Let C be a
universal constant such that BT, (U) < Cnf~! and let € > Cn”~1. Then we have

Pr[T(U) > 2¢ < Pr[T(U) > ¢ + EgT(U))]
< exp [_12L2]
< exp[ ce2nt~ SB]

where c is a suitable universal constant. This concludes the proof of the Lemma 2.
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Appendix A: Norms, Lipschitz continuity and concentration of measure phenomenon
Matrix norms:— Let us consider a vector space V,, of complex n X n matrices. Let X,Y € V,,, then a matrix norm
on V,, is a real-valued non-negative function ||-|| : V,, — R satisfying the following properties:
1. ||X|| > 0 while the equality holds if and only if X = 0.
2. [|aX]|| = |a|||X]| for all « € C.
3. |1 + Y| < [1X]] +[IY]].
4 IXY | < (111

The last property is called the submultiplicativity [3]. An important family of matrix norms, called Schatten p-norms
with p > 1, is defined as

1/p
111, : (ZS ) , (A1)
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where {s;} are the singular values of X € V,,. These norms are unitarily invariant, i.e., for unitaries U,V € V,,
|lUXV]| = ||X|\p. Of particular importance to us are the cases with p = 1,2,00, which correspond to trace,
Hilbert—gchmidt, and operator norms, respectively. In particular,

X1, == Tr[ XTX}; (A2a)
X1y 1= £/ Tr [XTX]; (A2D)
Xz
1X (], o= ma XL (A2)
720 ||Z|
where Z is an n dimensional vector and ||-|| is usual Euclidean norm for vectors. We list some of the relations between
these norms that we will be using. Let X € V,,, then
X1l < Val[X[l, < n Xl - (A3)
Moreover, for X,Y, Z € V,,, we have
IXY Zl], < [[X|loo V1], 1211 - (A4)

Lipschitz continuity:— Let us consider two metric spaces (X, dx) and (Y, dy ), where dx (or dy) denotes the metric
on X (orY). A function F : X — Y is said to be a Lipschitz continuous function if for any =, 2’ € X

dy (F(z) — F(z2")) < L dx(z,2), (A5)

where the positive constant L is called the Lipschitz constant [4]. Note that any other constant L’ > L is also a
valid Lipschitz constant. For this work, we are interested in functions F' : U(n) — R, where U(n) is the set of n x n
unitary matrices and R is the set of real numbers. Such a function F is a Lipschitz continuous function with Lipschitz
constant L if for any U,V € U(n) we have

[FU) = FV)| < LU=V, (A6)

Concentration of the measure phenomenon:— The concentration of the measure phenomenon refers to the
collective phenomenon of certain smooth functions defined over measurable vector spaces taking values close to their
average values almost surely [5]. There are various versions of concentration inequalities depending on the input
measurable space and there are various ways to prove them. A very general technique to prove such inequalities is via
logarithmic Sobolev inequalities together with the Herbst argument (this is also called the “entropy method”, see e.g.
[5—7]). Since we are interested in functions on the unitary group U(n), a particularly suitable concentration inequality
is given as follows [8] (see also [2]):

Theorem 1 ([8]). Let U(n) be the group of n X n unitary matrices which is equipped with the Hilbert-Schmidt norm.
Let F: U(n) — R be a Lipschitz continuous function with Lipschitz constant L. Then for any € > 0

2
Pr[F(U) > EyF + ¢] < exp {17;22] (A7)

where By denotes the average with respect to Haar measure on U(n).

Appendix B: Average over unitaries and Weingarten calculus

Computing averages over the Haar measure on the unitary group is an essential part for establishing concentration
inequalities for functions on the unitary group. In this section, we present briefly a method of Ref. [9] to compute
averages (see also Ref. [10]). Let U(n) be the group of n X n unitary matrices equipped with the normalized Haar
measure and Sy be the symmetric group of d objects. Let U;; = (i| U |j) be the matrix elements of U € U(n) in the
computational basis. Then we have the following formula for the averages:

d d

.
10U 1103,
b=1

a=1

Ey

d d
= Z H 6i“i;(a) H 5jbj;(b)Wg (n’ 7(710-) ’ (Bl)
b=1

m,0€S8q a=1




where 7 and ¢ are permutations and the function Wg (n, w‘lo) is called the Weingarten function, defined as

1 Mm)(xM(1))?
We (n,7) = -5 % X TR (Si(:(l() ) (B2)
I(A\)<n

In the above expression A is a Young tableaux and the sum is over all the Young tableaux with d boxes and rows
I(\) < n. For a given A, x” is the character corresponding to the irreducible representation labeled as A of Sg. s an(l)
is the dimension of the representation of U(n) corresponding to a tableaux A. In this work, we will need to compute
averages for d = 2 case. In this case,

Weg (n,(1)(2)) = 5— (B3)

Wg (n,(12)) = - (B4)

n(n?—1)

Remark 1. From Eq. (Bl) if the number of U terms is different than that of U*, then the expectation in Eq. (B1)
18 zero.
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