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Abstract

The so-called nonclassicality of a single-mode state of light and the entanglement of bipartite

photonic states are central quantum phenomena which underlie two of the most essential

differences between the classical and the quantum. Since their discovery, these properties

have attracted a tremendous, constant interest from the quantum physics community, with the

goal of developing protocols that take advantage of them and have no classical counterpart. To

take a single example, the entanglement of two photons can be used as a resource to perform

quantum cryptography in a device-independent manner, that is, to distribute a secret key in a

secure way between two parties who do not even need to trust their quantum devices. In order

to exploit these properties and develop optical sources of nonclassical or entangled states, it is

crucial to be able to detect whether the state emitted by the source is effectively nonclassical

or entangled. Along this way, numerous witnesses (sufficient conditions) for nonclassicality

or entanglement have been conceived over the years.

In this thesis, we are especially interested in a hierarchy of criteria that has been developed

by Shchukin, Richter, and Vogel in the early 2000s. The most common witness of entangle-

ment is the PPT criterion for “positive partial transpose”, which states that any separable

state must remain physical after undergoing a partial transpose. If this condition is not met, it

means that the state is entangled. Based on this, a complete set of criteria was expressed by

these authors based on a matrix of moments of the mode (creation and annihilation) operators.

Similarly, a set of criteria was built based on a matrix of normally-ordered moments in order

to express the non-negativity of the Glauber-Sudarshan P-function, giving rise to a hierarchy

of nonclassicality witnesses.

The main difficulty in the practical detection of nonclassicality or entanglement is the

measurement of the quantities that are needed to apply these criteria. As a matter of fact, it is

often mandatory to resort first to complete quantum state tomography, i.e., reconstructing the

density matrix in its entirety, which is a very costly procedure as it requires performing a huge

amount of measurements. The various witnesses for nonclassicality or entanglement due to

Shchukin, Richter, and Vogel may avoid full tomography but require inefficient sequential

measurements for all entries of the matrices. Overcoming this lack of simple practical imple-

mentation is the main motivation of this thesis.

For this purpose, we develop a multicopy method inspired from an early work by Brun,

in which several identical and independent copies (replicas) of the optical state of interest

are processed in a linear interferometer, followed by a bunch of photodetectors with photon-

number resolution. First, we apply this method to the above nonclassicality hierarchy. We

select some of the most interesting low-order criteria within this hierarchy and analyze their
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detection capability on test cases, such as squeezed states, Fock states, and Schrödinger cat

states. We devise several two- or three-copy optical schemes implementing these criteria and

show that the detection power generally scales with the number of copies. It also appears that

adding an extra copy sometimes enables making the criterion invariant under displacements

in phase space. Further, we highlight an especially efficient four-copy criterion which, if

realized, would enable the detection of the nonclassicality of all of the above example states

(including displaced states).

Second, we turn to an alternative quantity that has recently been put forward to witness

optical nonclassicality, namely the quadrature coherence scale. This quantity measures the

scale over which the (x, p) quadrature components of the optical field lose their coherence,

indicating nonclassicality as soon as it exceeds some threshold. We design a multicopy mea-

surement scheme of this quantity, which circumvents the need for full state tomography. We

prove that its implementation only requires a balanced beam splitter acting on two replicas of

the state, followed by photon number measurements and classical postprocessing. Moreover,

we generate synthetic data and prove that the shape of the photon number distribution at the

output of the interferometer gives us information on the value of the witness and thus on the

degree of nonclassicality of the state under scrutiny.

Third, we address the above hierarchy of entanglement witnesses and develop multicopy

procedures to measure three selected such witnesses. These procedures consist in using local

interferometers on both sides of the bipartite state, followed again by photon number mea-

surements and classical postprocessing. The derivation relies on the Jordan-Schwinger repre-

sentation of spin observables in terms of multimode operators. We show that these witnesses

detect the entanglement of all entangled Gaussian states, and, for the considered 4th-order

witnesses, also the entangled Schrödinger cat states and some N00N states. We further an-

alyze the influence of some of the dominant practical imperfections that could hinder these

multicopy measurement schemes, namely, imperfect copies (resulting from source fluctua-

tions) and optical losses in the circuit.

As a fourth contribution of this thesis, we devise a new separability criterion for bipartite

continuous-variable states that is inspired from the multicopy spin observables associated with

the PPT criterion. We compare this criterion to the most common criteria and show that it

implies Mancini et al.’s criterion, which in turn implies Duan et al.’s criterion. It is therefore

a necessary and sufficient condition for the entanglement detection of Gaussian entangled

states, and hence a strong entanglement witness for arbitrary states based on second-order

moments (not even requiring any optimization procedure). Overall, this thesis emphasizes

the wide range of applicability of the multicopy technique in quantum optics and continuous-

variable quantum information.



Titre

Détection de la non-classicalité optique et de l’intrication quantique à l’aide d’observables

multi-copie.
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Résumé

La non-classicalité d’un état monomode de la lumière et l’intrication d’états photoniques bi-

partites sont des phénomènes quantiques centraux composant deux des différences les plus

essentielles entre les domaines classique et quantique. Depuis leur découverte, ces pro-

priétés ont suscité un intérêt considérable et constant de la part de la communauté des physi-

ciens, dans le but de développer des protocoles basés sur ces phénomènes et qui n’ont pas

d’équivalent classique. Pour prendre un seul exemple, l’intrication de deux photons peut être

utilisée comme ressource pour effectuer de la cryptographie quantique, c’est-à-dire pour dis-

tribuer une clé secrète de manière sécurisée entre deux parties qui n’ont même pas besoin de

faire confiance à leurs dispositifs quantiques. Afin d’exploiter ces propriétés et de développer

des sources optiques d’états non-classiques ou intriqués, il est crucial de pouvoir détecter si

l’état émis par la source est effectivement non-classique ou intriqué. Dans cette optique, de

nombreux témoins (conditions suffisantes) de non-classicalité ou d’intrication ont été conçus

au fil des années.

Dans cette thèse, nous nous intéressons particulièrement à une hiérarchie de critères qui

a été développée par Shchukin, Richter et Vogel au début des années 2000. Le témoin le plus

courant de l’intrication est le critère PPT de "textitpositive partial transpose", qui stipule que

tout état séparable doit rester physique après avoir subi une transposition partielle. Si cette

condition n’est pas remplie, cela signifie que l’état est intriqué. Sur cette base, un ensemble

complet de critères a été exprimé par ces auteurs à partir d’une matrice de moments des opéra-

teurs de mode (création et annihilation). De même, un ensemble de critères a été construit sur

la base d’une matrice de moments dans l’ordre normal afin d’exprimer la non-négativité de la

fonction P de Glauber, donnant lieu à une hiérarchie de témoins de non-classicalité.

La principale difficulté dans la détection pratique de la non-classicalité ou de l’intrication

est la mesure des quantités nécessaires à l’application de ces critères. En effet, il est souvent

nécessaire de recourir d’abord à une tomographie complète de l’état quantique, c’est-à-dire

de reconstruire la matrice densité dans son intégralité, ce qui est une procédure très coû-

teuse car elle nécessite d’effectuer un très grand nombre de mesures. Les divers témoins de

non-classicalité ou d’intrication de Shchukin, Richter et Vogel peuvent éviter la tomographie

complète mais nécessitent des mesures séquentielles inefficaces pour toutes les entrées des

matrices. La principale motivation de cette thèse est donc de remédier à ce manque de mise

en oeuvre pratique simple.

À cette fin, nous développons une méthode multi-copie inspirée d’un travail de Brun, dans

laquelle plusieurs copies identiques et indépendantes (répliques) de l’état optique sont traitées

dans un interféromètre linéaire, suivi d’un ensemble de photodétecteurs résolvant le nombre
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de photons. Nous appliquons tout d’abord cette méthode à la hiérarchie de non-classicalité

susmentionnée. Nous sélectionnons certains des critères d’ordre inférieur les plus intéressants

au sein de cette hiérarchie et analysons leur capacité de détection sur des cas tests, tels que les

états comprimés, les états de Fock et les états-chat de Schrödinger. Nous concevons plusieurs

schémas optiques à deux ou trois copies mettant en oeuvre ces critères et montrons que le

pouvoir de détection s’échelonne généralement avec le nombre de copies. Il apparaît égale-

ment que l’ajout d’une copie supplémentaire permet parfois de rendre le critère invariant en

cas de déplacements dans l’espace des phases. En outre, nous mettons en évidence un critère

à quatre copies particulièrement efficace qui, s’il était implémenté, permettrait la détection de

la non-classicalité de tous les états cités en exemple ci-dessus (y compris les états déplacés).

Ensuite, nous nous intéressons à une autre quantité qui a été récemment mise en avant

pour témoigner de la non-classicalité optique, à savoir la "quadrature coherence scale". Cette

quantité mesure la distance sur laquelle les composantes en quadrature (x, p) du champ op-

tique perdent leur cohérence, indiquant la non-classicalité dès qu’elle dépasse un certain seuil.

Nous concevons un schéma de mesure multi-copie de cette quantité, qui contourne le besoin

d’une tomographie d’état complète. Nous prouvons que son implémentation ne nécessite

qu’un diviseur de faisceau équilibré agissant sur deux répliques de l’état, suivi de mesures du

nombre de photons et d’un post-traitement classique. En outre, nous générons des données

synthétiques et prouvons que la forme de la distribution du nombre de photons à la sortie de

l’interféromètre nous renseigne sur la valeur du témoin et donc sur le degré de non-classicalité

de l’état examiné.

Troisièmement, nous abordons la hiérarchie susmentionnée des témoins d’intrication et

développons des procédures multi-copie pour mesurer trois témoins particuliers. Ces procé-

dures consistent à utiliser des interféromètres locaux des deux côtés de l’état bipartite, suivis

à nouveau par des mesures du nombre de photons et un post-traitement classique. La déri-

vation repose sur la représentation de Jordan-Schwinger des observables de spin en termes

d’opérateurs multimodes. Nous montrons que ces témoins détectent l’intrication de tous les

états gaussiens intriqués et, pour les témoins d’ordre 4 considérés, également les états-chat

intriqués de Schrödinger et certains états N00N. Nous analysons en outre l’influence de cer-

taines imperfections pratiques importantes qui pourraient entraver ces schémas de mesure

multi-copie, à savoir les copies imparfaites (résultant des fluctuations de la source) et les

pertes optiques dans le circuit.

Comme quatrième contribution de cette thèse, nous concevons un nouveau critère de sé-

parabilité pour les états bipartites qui s’inspire des observables de spin multi-copie associées

au critère PPT. Nous comparons ce critère aux critères les plus courants et montrons qu’il

implique le critère de Mancini et al., qui à son tour implique le critère de Duan et al.. Il s’agit

donc d’une condition nécessaire et suffisante pour la détection d’intrication d’états intriqués

gaussiens, et par conséquence d’un témoin d’intrication fort pour des états arbitraires basés sur

des moments du second ordre (ne nécessitant même pas de procédure d’optimisation). Dans

l’ensemble, cette thèse souligne le large éventail d’applications de la technique multi-copie

en optique quantique et en information quantique à variation continue.
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Chapter 1

Introduction

Since its inception at the beginning of the twentieth century, quantum theory has attracted an

endless curiosity from scientists due to the plethora of new paths that it opens. As is well

known, the two phenomena that originated the advent of quantum mechanics are the black-

body radiation [120] and the photoelectric effect [35]. Both discoveries hinted to the fact that

there exist quanta of energy and thus that all classical theories, implying continuous energy

spectra, cannot describe all phenomena at the microscopic scale.

After these two key discoveries, much effort has been devoted, among other things, to

unveiling the divergence between the classical and quantum theories. Today, a large number

of characteristics have been found to be specific to quantum theory, but the uncertainty prin-

ciple is probably the most famous one, which is known even to the laymen. This principle

was first discovered by Heisenberg [59] before being mathematically formalized by Kennard

[80]. In classical physics, one may define exactly the position and momentum of a particle.

Instead, in quantum mechanics, uncertainty relations indicate that it is impossible to define

simultaneously the position and momentum of a particle with arbitrary precision. The un-

certainty principle has far reaching consequences, especially in the rapidly evolving field of

quantum information. For example, it provides the ability to perform quantum cryptography

[13], which is an important field of research today.

Apart from the uncertainty principle, there are numerous manifestations of what is col-

loquially called the nonclassicality of a quantum state. In this thesis, we focus on the states

of the electromagnetic field of light, which can be described in general as states of a bosonic

field or harmonic oscillator in a (countably) infinite-dimensional Hilbert space. In the litera-

ture, there exist several definitions for nonclassicality based on the different quasi-probability

distributions that can be used to describe the state of light in phase space. We have chosen

to focus on what is often called “optical nonclassicality” and has long been advocated by

Glauber as a sensible definition of the departure from classical optics. Accordingly, a state

of light is said to be nonclassical if its P-function [46, 47, 149] is not a classical probability

distribution, i.e., if it is not a non-negative function [151]. Hence, the first strategy one could
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think of for determining whether a state is nonclassical is to measure its P-function. However,

this requires full state tomography, that is, one has to measure the whole density matrix of the

state, for which some examples can be found in Refs. [153, 115, 99, 28]. Alternatively, one

may turn to nonclassicality witnesses that are easier to access, most prominently Mandel’s

parameter [100] and the squeezing parameter [2]. In this thesis, we have chosen to con-

sider in particular a complete hierarchy of nonclassicality criteria that has been put forward

by Shchukin, Richter and Vogel [142, 140], as well as a more recent notion of quadrature

coherence scale [30, 75, 62, 61, 63].

Another striking difference between the classical and the quantum is the phenomenon of

entanglement that may be observed between two or more systems. The fact that something

unexpected can happen for bipartite systems, from a classical point of view, was first uncov-

ered in 1935 by Einstein, Podolsky and Rosen [36]. Later, a mathematical inequality was

constructed by Bell [12], allowing ones to decide whether stronger-than-classical correlations

can occur in nature or not. Then, this inequality was reformulated such that the experimental

observation of this weird feature, namely nonlocality and its fellow entanglement, was done

by Aspect et al. in 1982 [9] based on the theoretical work of Clauser et al. [27]. The Nobel

Prize in Physics was awarded in 2022 to Clauser, Zeilinger, and Aspect, underlying the crucial

importance of quantum entanglement in today’s physics, where it is the central focus of an

entire field of research. It is at the heart of communication protocols such as quantum tele-

portation [14] or quantum cryptography [37], which could not be realized without it. Hence,

assessing whether a state is entangled or not, and hence, if it can be used for some protocols, is

of central importance. To that end, so-called entanglement witnesses have been developed for

discrete-variable systems [127, 119, 71, 21, 113, 22, 70] as well as for continuous variables

[34, 98, 45, 143, 3, 141]. However, many of the powerful entanglement witnesses require

state tomography once again.

One of the main objectives of this thesis is to develop a new approach for efficiently mea-

suring some of the witnesses cited above: regarding optical nonclassicality, we consider the

hierarchy of Shchukin, Richter, and Vogel [142, 140] as well as the quadrature coherence

scale [30, 75, 62, 61, 63], while for entanglement, we consider the hierarchy of Shchukin and

Vogel [141]. This approach relies on a early paper by Brun [18] showing that any polyno-

mial function of a state can be measured by using a multicopy observable applied on sev-

eral independent identical copies. This method has already been widely used in other fields

[40, 73, 38, 29, 78, 109, 16, 110, 116], but its use in the area of quantum optics is rather limited

(it had been used once before this thesis in connection with uncertainty relations [65]).

Part I focuses on the needed background in order to present the results obtained in this

thesis. As they all revolve around quantum optics, we provide a brief overview of the basics

of this field in Chapter 2. We start from the quantization of the electromagnetic field and

its representation with quasiprobability distributions in phase space. Then, we define the

set of quantum states as well as unitaries that are needed for our work. In Chapter 3, we

introduce the notion of nonclassicality. In particular, we focus on optical nonclassicality,

2



which is based on the Glauber-Sudarshan P quasiprobability distribution, and discuss the most

commonly used witnesses, namely the Mandel and the squeezing parameters. Afterwards, we

review the hierarchy of criteria discovered by Shchukin, Richter, and Vogel, as well as the

quadrature coherence scale, which are central to our work. Chapter 4 is dedicated to the

definition of entanglement as well as to entanglement witnesses, which allow ones to detect if

a state is entangled. Particular attention is paid to the separability criteria derived by Shchukin

and Vogel in 2005. Finally, we present Brun’s multicopy method in Chapter 5. We also

discuss some applications of this method, especially the one related to uncertainty relations

in quantum optics.

Parts II and III report on the main contributions of this thesis. Part II presents the appli-

cation of the multicopy method for the detection of nonclassicality, while Part III follows the

same approach for the detection of entanglement.

Part II comprises two chapters, each one being associated with a different nonclassicality

criterion. In Chapter 6, we show that several criteria belonging to the hierarchy of Shchukin,

Richter, and Vogel can be implemented practically with the multicopy method. The advantage

of this method is that the witness is accessed by performing simple photon-number measure-

ments after the application of a linear interferometer. We show that stronger witnesses can

be obtained if the number of copies involved is increased. For example, we prove that it is

sometimes possible to obtain a displacement-invariant criterion simply by adding an extra

copy. Furthermore, we highlight a criterion that would allow, if realized, to detect the non-

classicality of the four classes of nonclassical states that we consider (even and odd cat states,

squeezed states, and Fock states) while being also displacement invariant. Then, in Chapter

7, we analyze the multicopy measurement of the quadrature coherence scale. To do this, we

first apply the method to measure the purity of a quantum state (which is necessary as it ap-

pears in the expression of the quadrature coherence scale) before extending this technique to

the multicopy measurement of the quadrature coherence scale. We also perform numerical

simulations in order to illustrate the feasibily of our method.

Part III is also divided into two chapters following two diametrically opposed approaches.

The approach of Chapter 8 is similar to the strategy followed in Part II. Namely, we start

from an existing separabilty criterion to which we apply the multicopy method to find an

efficient implementation. Here, the implemented criteria are those of Shchukin and Vogel for

witnessing the entanglement of a bipartite state. We implement three different criteria, each

of which is particularly well-suited for the detection of the entanglement of a certain class

of entangled states (Gaussian, Schrödinger cat and N00N states). We also study the effect

that two practical imperfections might have on the detection of entanglement, namely optical

losses and imperfect copies. Then, in Chapter 9, we follow an opposite approach: starting

from a multicopy observable presenting the desired symmetries, we derive a new separability

criterion that is quadratic in the mode operators. We compare this new criterion to the similar

ones described in the literature, and show that our witness is stronger than most of them.
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Finally, we summarize all the main results of this thesis in Chapter 10 and discuss some

ideas for future directions.
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Basics of quantum
optics in

phase space
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Chapter 2

Quantum optics

Quantum optics is the quantum description of phenomena involving light. In this field, the

energy is quantized and the corresponding quanta are called photons. The original work

presented in this thesis lies in the area of quantum optics. Hence, in this chapter, we need to

make a brief introduction to this subject.

We start this chapter by quantizing the electromagnetic field, which is the basis of quan-

tum optics. Then, we present the quasi-distributions used to describe quantum states in

phase space. After doing that, we introduce the different states we will use in this thesis

and present unitary operations that can be used in a quantum circuit. We restrict to the el-

ements that will be useful in the rest of the thesis. This chapter is mainly based on Refs.

[2, 93, 94, 101, 157, 43, 159, 17].

2.1 Quantization of the electromagnetic field

Maxwell’s equations for an electromagnetic field are given by:

∇⃗ × E⃗ =
−∂B⃗

∂t
,

∇⃗ × B⃗
µ0

= ϵ0
∂E⃗
∂t

+ J⃗,

ϵ0∇⃗ · E⃗ = σ,

∇⃗ · B⃗ = 0,

(2.1)

where E⃗ is the electric field, B⃗ the magnetic field, J⃗ the current density, ϵ0 the vacuum per-

mittivity, µ0 the vacuum permeability and σ the charge density. These equations describe

classically the evolution of the electromagnetic field. Solving them allows us to write the

electromagnetic field under the form

E⃗(⃗r, t) = ∑
k⃗

∑
λ=1,2

e⃗⃗k,λiωk

(
A⃗k,λe−iωkt+i⃗k.⃗r − A∗

k⃗,λ
eiωkt−i⃗k.⃗r

)
, (2.2)

7
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where e⃗⃗k,λ is the polarization vector, ωk is the mode angular frequency and k⃗ is the wave

vector. For the quantization of the electromagnetic field, the complex amplitudes, A⃗k,λ and

A∗
k⃗,λ

, are replaced by operators:

A⃗k,λ → â⃗k,λ,

A∗
k⃗,λ

→ â†
k⃗,λ

,
(2.3)

where â⃗k,λ and â†
k⃗,λ

are the annihilation and creation operators, respectively. They follow the

bosonic commutation rules:
[â⃗k,λ, â†

k⃗′,λ′ ] = δ⃗k,⃗k′ δλ,λ′ ,

[â⃗k,λ, â⃗k′,λ′ ] = 0,

[â†
k⃗,λ

, â†
k⃗′,λ′ ] = 0,

(2.4)

where [., .] is the commutator between two operators defined as:

[Â, B̂] = ÂB̂ − B̂Â. (2.5)

Then, the Hamiltonian of the system can be expressed as

Ĥ = ∑
k⃗

∑
λ=1,2

h̄ωk

(
â†

k⃗,λ
â⃗k,λ +

1
2

)
, (2.6)

where h̄ is the reduced Planck constant. In the rest of the thesis, we will work with natural

units: h̄ = 1 and ωk = 1. Then, introducing the number operator n̂⃗k,λ = â†
k⃗,λ

â⃗k,λ, we can

rewrite the Hamiltonian

Ĥ = ∑
k⃗

∑
λ=1,2

(
n̂⃗k,λ +

1
2

)
, (2.7)

where n̂⃗k,λ is the number of photons in the mode k⃗, λ. For simplicity, in what follows, we will

often work with only one mode with a fixed polarization such that we can drop the indices

k⃗ and λ, and also drop vector symbols. It is important to mention that, even if we simplify

some notations by restricting ourselves to one mode, everything that will be presented later

can generally be extended to several modes quite easily.

In the case of one mode, the operator n̂⃗k,λ is reduced to n̂ and is called the number oper-

ator. Its eigenstates are the Fock states: n̂|n⟩ = n|n⟩, where n is a non-negative integer, that

form an orthonormal basis of the Hilbert space, i.e. it can be used to express any state (pure

or mixed). Any quantum state can be described by a density operator which is a bounded

linear operator presenting three properties: it is Hermitian and non-negative, and it has a unit

trace. Using the Fock basis, the density operator of any one mode state can be expressed in

this basis as:

ρ̂ =
∞

∑
n,n′=0

ρnn′ |n⟩ ⟨n′| . (2.8)

We will present the Fock states in more detail in Subsection 2.4.2.

Other quantum states are very important in this thesis: the coherent states. The coherent

8
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states are defined as the eigenstates of the annihilation operator

â|α⟩ = α|α⟩, (2.9)

where α is a complex number. Coherent states have two main properties. First, they are not

orthogonal to each other. Indeed, their overlap is not equal to zero, since

⟨β|α⟩ = e
−|α−β|2

2 . (2.10)

Second, the coherent states form an overcomplete basis:∫
d2α |α⟩⟨α| = π. (2.11)

Those states will be studied in more details in Subsection 2.4.1.

According to Eq. (2.7), we see that the state with the minimal energy has an energy of
1
2 . This state is called the vacuum state, |0⟩, and corresponds to a state with zero photons.

The vacuum state is also defined according to the effect of the annihilation operator on it:

â|0⟩ = 0. Hence, it is a particular coherent state.

Using the annihilation and creation operators, it is also possible to define the quadratures

of the electromagnetic field:

x̂ =
1√
2
(â + â†),

p̂ =
−i√

2
(â − â†).

(2.12)

Interestingly, the Hamiltonian presented in Eq. (2.6) is the same as the Hamiltonian of a free

harmonic oscillator. In this case, x̂ and p̂ correspond to the position and momentum of the

oscillator. It is also possible to write the Hamiltonian in terms of x̂ and p̂:

Ĥ =
1
2
(
x̂2 + p̂2) . (2.13)

The eigenstates |x⟩ and |p⟩ of the operators x̂ and p̂,

x̂|x⟩ = x|x⟩,

p̂|p⟩ = p|p⟩,
(2.14)

form two bases (both are complete sets of orthogonal state vectors). However, these states are

non-physical as they are non-normalizable. The two bases are connected to each other by a

Fourier transform
|x⟩ = 1

2π

∫ ∞

−∞
dp eixp|p⟩,

|p⟩ = 1
2π

∫ ∞

−∞
dx e−ixp|x⟩.

(2.15)

Using these states, we can also express the state |ψ⟩ in the position basis as a wave function

as ψ(x) = ⟨x|ψ⟩.

9
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2.2 Uncertainty relations

The quadratures x̂ and p̂ are canonically conjugated as their commutator [x̂, p̂] is equal to i.
This can easily be demonstrated starting from the definitions of the quadratures in terms of

the creation/annihilation operators (2.12) and using the bosonic commutation relations (2.4).

Any two operators that are canonically conjugated have to follow the Heisenberg uncertainty

relation [59]. This means that the following inequality has to be fulfilled for all physical

states:

σ2
x σ2

p ≥ 1
4

, (2.16)

where σ2
x = ⟨x̂2⟩ − ⟨x̂⟩2 is the variance of x̂ and σ2

p is the variance of p̂, which is defined

analogously. This uncertainty relation indicates that it is impossible to perfectly determine the

two quadratures simultaneously and is a typical quantum feature. Indeed, in classical physics,

we can measure the two quadratures simultaneously.

The first uncertainty relation was uncovered by Heisenberg [59] in 1927 and mathemati-

cally formulated by Kennard [80]. However, this relation is only saturated by pure Gaussian

states with no correlations between the x and p quadratures (Gaussian states will be presented

later in Section 2.4.1). This seminal relation was then generalised, for arbitrary observables Â
and B̂ by Robertson [126]. Later, in order to obtain an uncertainty relation that is saturated by

all pure Gaussian states, it was also improved by Schrödinger [134] in 1930, by the addition

of an anticommutator {., .} to the right-hand-side of the inequality, leading to the well-known

Schrödinger-Robertson uncertainty relation:

σ2
Aσ2

B ≥ 1
4
| ⟨[Â, B̂]⟩ |2 + 1

4
| ⟨{Â − ⟨Â⟩ , B̂ − ⟨B̂⟩}⟩ |2, (2.17)

where the anticommutator between two operators is defined as {Â, B̂} = ÂB̂ + B̂Â. In the

special case of the quadratures x̂ and p̂, this last inequality can be written in compact form:

det γ ≥ 1
4

, (2.18)

where γ is the covariance matrix defined as:

γ =

(
σ2

x σxp

σxp σ2
p

)
, (2.19)

and σxp is the covariance between x̂ and p̂. Compared to the original one, this last uncertainty

relation is now saturated by all pure Gaussian states.

2.3 Quasi-probability distributions

Describing the state of a classical particle is easy as we just need to specify its position and

momentum. We can therefore represent this state as a single point in the phase space where

10
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one axis corresponds to the position while the other one to the momentum for an object

moving in one dimension. For a quantum state, this representation is more complicated as

this state must satisfy the uncertainty relations like the Robertson-Schrödinger uncertainty

relation (Eq. (2.16)). It is then not possible to describe the state of a system by giving its

position and its momentum. Instead, in order to describe the state in the phase space, we then

use quasi-probability distributions. These are different from probability distributions as they

do not obey all the properties of a probability distribution, as we will see in what follows.

Three quasi-probability distributions will be presented as they are the most important ones in

quantum optics.

2.3.1 Wigner function

We start by presenting the Wigner function [161] as it is the most widely used quasi-probability

distribution. This function is defined for a state ρ̂ of n-modes (n ∈ N) as

W(x⃗, p⃗) =
1

(2π)n

∫ ∞

−∞
dy⃗ e−i p⃗·⃗y ⟨x⃗ +

y⃗
2
| ρ̂|⃗x − y⃗

2
⟩, (2.20)

where x⃗ = {x1, x2, ..., xn} and p⃗ = {p1, p2, ..., pn}. It is also possible to express the Wigner

function using the momentum representation instead of the position representation:

W(x⃗, p⃗) =
1

(2π)n

∫ ∞

−∞
d⃗q ei⃗x·⃗q⟨ p⃗ +

q⃗
2
|ρ̂| p⃗ − q⃗

2
⟩. (2.21)

The Wigner function of a state sums up to one like every probability distribution∫ ∞

−∞
dx⃗dp⃗ W(x⃗, p⃗) = 1, (2.22)

which is a consequence of the normalization of the state, Tr(ρ̂) = 1 as it will be shown

after. Moreover, its values are real, W(x⃗, p⃗) = W(x⃗, p⃗)∗. However, it is a quasi-probability

distribution as it can possess negative values.

By integrating the Wigner function over x or p, we obtain the marginal functions px(x⃗)
and pp( p⃗).These marginals are important as they provide the probability distributions for the

position and the momentum:

px(x⃗) =
∫ ∞

−∞
dp⃗ W(x⃗, p⃗) = ⟨x⃗|ρ̂|⃗x⟩,

pp( p⃗) =
∫ ∞

−∞
dx⃗ W(x⃗, p⃗) = ⟨ p⃗|ρ̂| p⃗⟩.

(2.23)

Unlike Wigner functions, these distributions fulfill all the properties of a classical probability

distribution as they correspond to distributions over measurement outcomes.

The Wigner function has another interesting property: it is the Wigner-Weyl transform of

the density operator ρ̂ of the state. The Wigner-Weyl transform of an operator Â is given by
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Ã(x⃗, p⃗):

Ã(x⃗, p⃗) =
1

(2π)n

∫ ∞

−∞
dy⃗ e−i p⃗·⃗y⟨x⃗ +

y⃗
2
|ÂS |⃗x − y⃗

2
⟩, (2.24)

where ÂS is the symmetrized form of the operator Â in terms of the quadrature operators x̂
and p̂ (for example, if Â = x̂ p̂, then, ÂS = x̂ p̂+ p̂x̂

2 ). As a consequence of this, the Wigner

function is associated with the symmetric order of the operators x̂ and p̂ (or â† and â). Hence,

looking at the definition of the Wigner function (Eq. (2.20)), it is clear that that the Wigner

function is indeed the Wigner-Weyl transform of ρ̂. In the rest of this thesis, we will use the

Wigner-Weyl transform in Chapter 6. We then list here some basic identities for one-mode

system (n = 1):
Operator Â → 2πÃ(x, p)

x̂ → x

p̂ → p

x̂2 → x2

p̂2 → p2

x̂ p̂ + p̂x̂
2

→ xp

(2.25)

x̂2 p̂2 + x̂ p̂x̂ p̂ + x̂ p̂2 x̂ + p̂x̂2 p̂ + p̂x̂ p̂x̂ + p̂2 x̂2

6
→ x2 p2.

The Wigner-Weyl transform of the identity operator 1̂ is simply equal to the constant function

1/2π. Note also that the Wigner-Weyl transforms of operators f (x̂) and g( p̂) are f (x)/2π

and g(p)/2π, respectively, where f and g are arbitrary functions.

The Wigner-Weyl transform is mainly used to calculate the overlap between two linear

operators Â1 and Â2 according to:

Tr(Â1 Â2) = (2π)n
∫

dx⃗ dp⃗ Ã1(x⃗, p⃗) Ã2(x⃗, p⃗). (2.26)

We will use the overlap formula for one-mode systems (n = 1) in Chapter 7 in order to verify

some of our results. Moreover, using this formula and the fact that the Wigner function is the

Wigner-Weyl transform of the state, we can mention two corollaries to this overlap formula

which are often used in quantum optics. First, we can use the Wigner function to calculate

the mean value of an operator Â using the Wigner-Weyl transform:

⟨Â⟩ = Tr(Âρ̂) = (2π)n
∫ ∞

−∞
dx⃗dp⃗ W(x⃗, p⃗)Ã(x⃗, p⃗). (2.27)

Second, the trace of ρ̂ is linked to the integral of the Wigner function:

Tr(ρ̂) =
∫

dx⃗ dp⃗ W(x⃗, p⃗) = 1, (2.28)

which proves that the integral of the Wigner function has to be equal to 1. Another interesting

property of the Wigner function is that its value at the origin is proportional to the expectation

12



2.3. QUASI-PROBABILITY DISTRIBUTIONS

value of the photon number parity (in the single-mode case): W(0, 0) = 1
π Tr(ρ̂(−1)n̂). To

prove this, we need to compute the Wigner-Weyl transform of the parity operator (−1)n̂/π,

namely

1
2π

∫
dy ⟨x − y

2
| (−1)n̂

π
|x +

y
2
⟩ eipy =

1
2π2

∫
dy ⟨x − y

2
| − x − y

2
⟩ eipy. (2.29)

Indeed, applying the parity operator on the state |x + y
2 ⟩ transforms the state in |−x − y

2 ⟩:

(−1)n̂ |x +
y
2
⟩ = eiπn̂ |x +

y
2
⟩ ,

= ∑
n

eiπn |n⟩ ⟨n|x +
y
2
⟩,

= ∑
n
(−1)n |n⟩ 1

π
1
4
√

2nn!
Hn

(
x +

y
2

)
e−

1
2 (x+ y

2 )
2
,

= ∑
n
|n⟩ 1

π
1
4
√

2nn!
Hn

(
−x − y

2

)
e−

1
2 (−x− y

2 )
2
,

= ∑
n
|n⟩ ⟨n| − x − y

2
⟩,

= |−x − y
2
⟩ ,

(2.30)

where we started by applying the closure relation 1̂ = ∑n |n⟩ ⟨n|. Then, we injected in

the equation the wave function of a Fock states (which will be given in Eq. (2.78)) that

involves Hermite polynomials of order n Hn. Finally, we used the property of the Hermite

polynomials, (−1)nHn(z) = Hn(−z), that allows us to find back the closure relation to

simplify the expression. The Weyl transform then implies ⟨x − y
2 | − x − y

2 ⟩ which is equal

to zero unless x = −x. We can reformulate this by using a Dirac delta:

⟨x − y
2
| (−1)n̂

π
|x +

y
2
⟩ =

⟨x − y
2 | − x − y

2 ⟩
π

=
δ(2x)

π
, (2.31)

leading to:

1
2π

∫
dy ⟨x − y

2
| (−1)n̂

π
|x +

y
2
⟩ eipy =

δ(2x)
2π2

∫
dy eipy,

=
δ(x)δ(p)

2π
,

(2.32)

where we have used the identity
∫

dy eipy = 2π δ(p) and δ(2x) = δ(x)
2 . Hence, using the

overlap formula (2.26), we get

1
π

Tr
(
ρ̂ (−1)n̂) = 2π

∫
dx dp W(x, p)

δ(x)δ(p)
2π

,

= W(0, 0), (2.33)

as desired. We will use this property in Chapter 7.

13



CHAPTER 2. QUANTUM OPTICS

2.3.2 Glauber-Sudarshan function

The P function, also called Glauber-Sudarshan function or simply Sudarshan function, can

be used to write what is called the "optical equivalence theorem" [46, 47, 149, 84] which is a

way of writing the density matrix of a state as a distribution of coherent states

ρ̂ =
∫

d2α P(α)|α⟩⟨α|, (2.34)

where α is a coherent state as defined in Eq. (2.9). It is important to note that calling the

Glauber-Sudarshan function a "function" is an abuse of language as it is in general a distri-

bution. Moreover, in some special cases, it is so singular that it is not even a distribution.

However, this denomination is common in the literature and so we will use it in this thesis.

P(α) is a normalized function that can be negative like Wigner functions. However, it often

becomes singular, in which case it has to be understood as a distribution with respect to the

phase space integral (as mentioned before, sometimes, it does not correspond to a distribution

anymore as it is too singular). This quasi-probability function is associated to the normal

order where all creation operators are put before the annihilation operators. This order may

be written with ": :". The expectation value of a normal ordered term is calculated with the

P-Sudarshan function, as [20, 19]

⟨â†k âl⟩ =
∫

d2α α∗kαl P(α). (2.35)

The P-Sudarshan function can be used to obtain the Wigner function of a state. To do so, we

have to convolute the P-function with a Gaussian function having the same width as the vac-

uum. However, the most important application of the P-function for this thesis is that it can

be used to define the optical nonclassicality. Indeed, a quantum state is defined as optically

classical if its P-Sudarshan function corresponds to a classical probability distribution func-

tion. Hence, a state is classical if its P-function does not present negativities and, intuitively

speaking, is not too peaked.

2.3.3 Husimi function

By convoluting the Wigner function of a state with a Gaussian function having the same width

as the vacuum, we obtain a smoother quasi-probability distribution: the Husimi Q function

[77]. Another definition of the Q function states that it is proportional to the probability

distribution of finding the coherent state |α⟩ (defined in Eq. (2.9)), i.e., if the state is given by

ρ̂, its Husimi distribution is given by:

Q(α) =
1
π
⟨α|ρ̂|α⟩. (2.36)

This expression directly follows from Eq. (2.11). The Q function is normalized to one and

is always positive unlike the Wigner function. In what follows, we will see that it can also

be used to study the nonclassicality of a state. This function is associated to the anti-normal

14



2.4. QUANTUM STATES

order in terms of the creation and annihilation operator. The anti-normal order means that all

the annihilation operators are put before the creation operators. This means that we can use

the Husimi function to calculate the mean value of an anti-normally ordered operator

⟨âk â†l⟩ =
∫

d2α αkα∗lQ(α). (2.37)

The Husimi function can also be obtained from the P-function as:

Q(α) =
1
π

∫
dβ2 P(β)e−|α−β|2 . (2.38)

This can be proving by injecting Eq. (2.34) in Eq. (2.36) and by using the overlap of two

coherent states, Eq. (2.10).

Finally, we can note that there exists a general way of writing these three quasi-probability

distributions by allowing for convolutions with arbitrary widths.

2.4 Quantum states

In quantum optics, states are usually split into two categories: the Gaussian states and the

non-Gaussian ones. We start by presenting the Gaussian states as they are very important in

quantum optics. Then, we present some non-Gaussian states.

2.4.1 Gaussian states

Gaussian states are defined as states having a Gaussian Wigner function. Interestingly enough,

the state is then completely defined by its moments of order one and two. The moment of the

first order is the mean value vector (or displacement vector) and is equal to

⟨⃗r⟩ = Tr(⃗rρ̂), (2.39)

where

r⃗ = {x̂1, p̂1, x̂2, p̂2, ..., x̂n, p̂n} (2.40)

is the quadrature vector and n the dimension of the state. The second order moment is the

covariance matrix of the state

γij =
1
2
⟨{r̂i, r̂j}⟩ − ⟨r̂i⟩⟨r̂j⟩. (2.41)

In what follows, we will mainly present one mode states so that the covariance matrix reduces

to the one presented in Eq. (2.19). It is important to mention that any symmetric matrix is not

necessarily a valid covariance matrix. Indeed, the covariance matrix must follow certain rules

to describe a physical quantum state. One of these rules is the uncertainty principle as shown
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CHAPTER 2. QUANTUM OPTICS

in Eq. (2.18). If this condition is not fulfilled, the state can not exist.

For Gaussian states, using only these two moments, we can find back the value of all the

other moments as we will do in Chapter 6.

We can also write the Wigner function of the state:

WG(x⃗, p⃗) =
1

(2π)n
√

det γ
e−

1
2 (⃗r−⟨⃗r⟩)Tγ−1 (⃗r−⟨⃗r⟩), (2.42)

where x⃗ = {x1, x2, ..., xn} and p⃗ = {p1, p2, ..., pn}. Calculating properties for Gaussian

states is easier than for non-Gaussian states. For example, we can calculate the purity of a

Gaussian state. The purity of a quantum state is an important quantity as it describes the

mixedness of the state. It is equal to 1 if the state is pure, while it is lower than 1 if the state

is mixed. It is defined as

P(ρ̂) = Tr(ρ̂2), (2.43)

which can be calculated by applying Eq. (2.26) for a n-mode system:

P(ρ̂) = (2π)n
∫

dx⃗dp⃗ W2(x⃗, p⃗), (2.44)

where the Wigner function W(x⃗, p⃗) is the Wigner-Weyl transform of the state ρ̂. This finally

yields

P(ρ̂) =
1

2n
√

det γ
. (2.45)

This value is well known for Gaussian states. In Chapter 7, we will prove this equation by

using the multicopy method. Another interesting quantity for Gaussian states that we will use

in the same way is the overlap between two Gaussian states. The overlap between two states

ρ̂A and ρ̂B is defined as Tr(ρ̂Aρ̂B), which can be calculated using Eq. (2.26) and the Wigner

functions of the two states, namely

Tr(ρ̂Aρ̂B) = (2π)n
∫

dx⃗dp⃗ WA(x⃗, p⃗)WB(x⃗, p⃗). (2.46)

which yields:

Tr(ρ̂Aρ̂B) =
1√

det(γA + γB)
. (2.47)

One of the most important example of a one-mode Gaussian state is the vacuum state al-

ready mentioned in the last sections. We can write the displacement vector and the covariance

matrix of this state:

⟨⃗r⟩ =
(

0
0

)
, (2.48)

γ =

(
1
2 0
0 1

2

)
. (2.49)

The vacuum state is very important as we can obtain the other Gaussian states by applying
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operations on it. These operations will be described in the next section. We first present the

different types of Gaussian states.

Coherent states

Coherent states are called coherent as they describe the state emitted by an ideal laser source.

They are also often called classical as they exhibit classical properties. We already mentioned

that they are defined as they eigenstates of the annihilation operator (Eq. (2.9)). Taking the

adjoint of this relation, we have

⟨α|â† = ⟨α|α∗, (2.50)

which will be used later.

Two of their properties were already given before: their non-orthogonality between each

other (Eq. (2.10)) and the fact that they form an overcomplete basis (Eq. (2.11)). In addition to

those properties, they saturate all uncertainty relations. Indeed, we can calculate the variance

of x̂ using Eqs. (2.9) and (2.50):

σ2
x = ⟨α|( â† + â√

2
)2|α⟩ − ⟨α|( â† + â√

2
)|α⟩2,

= ⟨α| â
†2 + â2 + 2â† â + 1

2
|α⟩ − ⟨α|α + α∗

√
2

|α⟩2,

=
α∗2 + α2 + 2α∗α + 1

2
− α∗2 + α2 + 2α∗α

2
,

=
1
2

,

(2.51)

where we used the bosonic commutation relations between the first and second line. Analo-

gous calculations lead to σ2
p = 1

2 such that, for coherent states, we obtain the expression

σ2
x σ2

p =
1
4

, (2.52)

which shows that inequality (2.16) is indeed saturated for coherent states.

Using the values obtained for the variances and doing the same kind of calculation to

obtain the covariance, we can write the covariance matrix of a coherent state

γ =

(
1
2 0
0 1

2

)
, (2.53)

and we can also calculate its mean value vector

⟨⃗r⟩ =
(√

2 ℜ(α)√
2 ℑ(α)

)
. (2.54)

Using these informations, we can represent a coherent state |α⟩ in the phase space as done in
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Figure 2.1: Phase space representation of a coherent state.

Fig. 2.1. It is interesting to notice that the vacuum state is just a particular case of a coherent

state where α = 0. It is also possible to decompose the coherent state in the Fock basis

|α⟩ = e
−|α|2

2

∞

∑
n=0

αn
√

n!
|n⟩. (2.55)

Using this expression, we can calculate the photon number distribution of a coherent state

p(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
, (2.56)

which is a Poisson distribution with its mean and variance equal to |α|2. This distribution

will be used in Chapter 7 to prove differently a known property of the so-called quadrature

coherence scale [30, 75, 62, 61, 63].

Squeezed states

Squeezed states are Gaussian states whose variances in both quadratures are not the same

anymore. Indeed, squeezed states have been compressed along a direction and stretched along

the perpendicular direction. This phenomenon is represented in the phase space in Fig. 2.2

in the particular case of a squeezing along the x-axis (ϕ = 0). Squeezed states are defined

with a complex squeezing parameter ξ = reiϕ, where ϕ ∈ [0, 2π[ is the squeezing angle and

r ∈ [0,+∞[ the squeezing intensity.

As for coherent states, squeezed states can also be decomposed in the Fock basis,

|ξ⟩ = 1√
cosh(r)

∞

∑
n=0

einϕ

√
(2n)!

2nn!
tanhn(r)|2n⟩, (2.57)

where we notice that the sum only involves terms with an even number of photons. This

property will be used in Chapter 6 to calculate the elements of some matrix.
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Figure 2.2: Phase space representation of a squeezed vacuum state.

In the special case ϕ = 0, we can give the mean value vector and the covariance matrix

of a squeezed state. This state is still centered in phase space so that its mean value vector is

equal to 0⃗

⟨⃗r⟩ =
(

0
0

)
. (2.58)

The covariance matrix shows that one quadrature is compressed and the other one stretched:(
e−2r

2 0
0 e2r

2

)
. (2.59)

We see that squeezed states also saturate the uncertainty relation (2.18).

Thermal states

Thermal states are mixed Gaussian states. Like coherent states, the two variances are equal

but this time, they are greater than 1
2 . We can represent them in phase space as done in Fig.

2.3. They are defined in the Fock basis with one parameter q as

ρ̂q = (1 − q)
∞

∑
n=0

qn|n⟩⟨n|, (2.60)

Using this expression, we can compute the mean number of photons in the state, namely:

⟨n̂⟩q =
q

1 − q
. (2.61)
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Figure 2.3: Phase space representation of a thermal state.

The states can then be expressed using this mean number as

ρ̂q =
∞

∑
n=0

⟨n̂⟩n
q

(1 + ⟨n̂⟩q)
n+1 |n⟩⟨n|. (2.62)

The mean value vector of a thermal state is a zero-vector as the state is centered in the

phase space and the covariance matrix is given by:

γ =

(
⟨n̂⟩q +

1
2 0

0 ⟨n̂⟩q +
1
2

)
. (2.63)

We can mention that the thermal states do not saturate the uncertainty relation (2.18) for non-

zero temperature.

EPR states

Finally, a well-known two-mode Gaussian state in quantum optics is the two-mode squeezed

vacuum state (TMSV). This state is also often called the EPR state (for Einstein-Podolski-

Rosen [36]) and can be written in the Fock basis:

|EPR⟩ = 1
cosh r

∞

∑
n=0

(tanh r)n|n, n⟩. (2.64)

In some reference books, the parameter r is not the one used to write the state and it is instead

expressed as a function of λ = tanh r:

|EPR⟩ =
√

1 − λ2
∞

∑
n=0

λn|n, n⟩. (2.65)
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In the limit of infinite squeezing (r → ∞), the state is a maximally entangled state which

is one reason for its importance. The other reason is that it is a joint eigenstate of the com-

muting operators x̂1 − x̂2 and p̂1 + p̂2, where 1 and 2 denote the first and the second mode,

respectively. The covariance matrix of the EPR state is given by

γ =
1
2


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (2.66)

Note that one way to obtain a TMSV state is to send two squeezed vacuum states with perpen-

dicular squeezing in a balanced beam splitter. This can also be performed by using parametric

processes such as over-threshold parametric amplification. In Chapter 8, we will use these en-

tangled states as references to analyze our multicopy entanglement criteria.

2.4.2 Non-Gaussian states

Cat states

Cat states are named after the well-known thought experiment of Schrödinger [135] where a

cat is simultaneously in two very different macroscopic states (dead and alive). Therefore, cat

states are defined as an equal superposition of two opposed coherent states. These states can

be split into two categories, the even and odd cat states

|c±⟩ =
1√
N±

(|α⟩ ± | − α⟩), (2.67)

where the subscript + corresponds to the even cat state and the subscript − to the odd cat

state and where N± are the normalization constants

N± = 2
(

1 ± e−2|α|2
)

. (2.68)

Cat states enjoy two interesting properties that will be exploited in Chapter 6. First, the even

and odd cat states are orthogonal to each other. This can easily be demonstrated using the

properties of the coherent states

⟨c−|c+⟩ =
1√

N−N+
(⟨α| − ⟨−α|)(|α⟩+ | − α⟩),

=
1√

N−N+
(⟨α|α⟩+ ⟨α| − α⟩ − ⟨−α|α⟩ − ⟨−α| − α⟩),

=
1√

N−N+
(1 + e

−|−α−α|2
2 − e

−|α+α|2
2 − 1),

= 0.

(2.69)
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The second interesting property is that applying an annihilation operator to an even cat state

gives a state proportional to an odd cat state and vice versa

â|c±⟩ = â
1√
N±

(|α⟩ ± | − α⟩),

=
1√
N±

√
N∓√
N∓

(α|α⟩ ∓ α| − α⟩),

=
α
√

N∓√
N±

|c∓⟩.

(2.70)

Taking the adjoint, we have also ⟨c±|â† = ⟨c∓| α∗
√

N∓√
N±

. All these properties will be used in

Chapter 6.

It is also possible to generalize the cat states to a two-mode state. This corresponds to the

state:

ρ̂ = N(α, β, z)
[
|α, β⟩ ⟨α, β|+ |−α,−β⟩ ⟨−α,−β|

− (1 − z) (|α, β⟩ ⟨−α,−β|+ |−α,−β⟩ ⟨α, β|)
]
,

(2.71)

with a mixing parameter z ∈ [0, 1] and a normalization constant

N(α, β, z) =

(
1 − (1 − z)e−2(|α2|+|β|2)

)−1

2
, (2.72)

with α, β ∈ C. This state is an entangled state except when z = 1 and α = β = 0.

Fock states

As said before, the Fock states are the eigenstates of the number operator:

n̂|n⟩ = n|n⟩. (2.73)

They are often used in quantum optics as they form a complete basis, namely they are or-

thonormal

⟨n′|n⟩ = δn′,n, (2.74)

where δ is the Kronecker delta. The Fock state |0⟩ is nothing else than the vacuum state. The

application of the creation/annihilation operator to a Fock state gives another Fock state with

one photon more/less:
â|n⟩ =

√
n|n − 1⟩,

â†|n⟩ =
√

n + 1|n + 1⟩.
(2.75)

Hence, any Fock state can be obtained by applying several times the creation operator to the

vacuum state:

|n⟩ = â†n
√

n!
|0⟩. (2.76)
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Figure 2.4: Wigner function of a Fock state |n⟩ with n = 0, 2, 4. We see that the Wigner
function possesses negative values for n = 2, 4.

We can give the Wigner function of a Fock state

Wn(x, p) =
(−1)n

π
e−x2−p2

Ln(2(x2 + p2)), (2.77)

where Ln is the Laguerre polynomial of order n. An important property of the Fock state is

that its Wigner function is negative in some regions (except for |0⟩), which was not the case

for a Gaussian state. This effect can be seen in Fig. 2.4.

We can also give its wave function (which was already used in Eq. (2.30)):

ψn(x) = ⟨x|n⟩ = 1

π
1
4
√

2nn!
Hn(x)e−

x2
2 , (2.78)

where Hn is the Hermite polynomial of order n.

N00N states

These states are pure bipartite states with arbitrary complex amplitudes defined as [131]:

|ψ⟩ = α |n, 0⟩+ β |0, n⟩ , (2.79)

with integer n ≥ 1 and |α|2 + |β|2 = 1.

This class of non-Gaussian states includes two well-known states: the first Bell state

n = 1, α = β = 1/
√

2, as well as the Hong-Ou-Mandel state n = 2, α = −β = 1/
√

2 [69].

Moreover, these N00N states are entangled states for the whole range of the parameter n.

2.5 Quantum operations

In the last section, we presented the different kinds of states that will be used in this thesis.

The objective of the thesis is to design quantum circuits allowing to measure certain properties

of states, like nonclassicality. To design such circuits, we introduce quantum operations to
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transform states. Here, we present Gaussian unitaries that can be implemented in a circuit.

Moreover, the unitaries we present allow us to create the Gaussian states presented before

starting from the vacuum state.

The unitaries that we present are called Gaussian because, if the state entering the unitary

is Gaussian, then the output state is Gaussian too. The operations can also be classified as

active or passive. An active operation is an operation that does not conserve the number of

photons in the state while a passive one conserves the mean photon number. Finally, the

unitaries can also be classified depending on the number of modes involved. Indeed, some

operations involve only one mode while others make an interaction between several modes.

We separate the operations according to this property (single-mode/two-mode interactions) in

the rest of this section. Before doing that, we give some generalities about Gaussian unitaries

and how they change states and their quadratures. The transformations will be written Û. Û
is unitary, which means that Û†Û = ÛÛ† = 1 and hence Û† = Û−1. Applying such a

transformation to a state ρ̂ gives a new state ρ̂′

ρ̂ → ρ̂′ = Ûρ̂Û†. (2.80)

If the unitary is Gaussian, it can be generated as Û = e−iĤ by a Hamiltonian Ĥ having the

property that it is a polynomial of second order in the creation and annihilation operators.

Since the Hamiltonian is hermitian, Ĥ = Ĥ†, the operator Û is indeed unitary:

Û†Û = eiĤe−iĤ = 1. (2.81)

A Hamiltonian of second order in the creation and annihilation operators can be written under

the general form

Ĥ = i(⃗a†⃗α + a⃗† F⃗a + a⃗†G⃗a†T) + H.c., (2.82)

where a⃗ is the vector of the annihilation operators (⃗a = {â1, â2, ..., ân}), a⃗† is the vector of

the creation operators, α⃗ is a complex vector of dimension n, F and G are n × n complex

matrices and H.c. stands for Hermitian conjugate.

We can analyze the effect of such an operation in terms of the transformation of the

annihilation operators and creation operators or in terms of its action on the quadratures. The

annihilation operators are transformed following a linear unitary Bogoliubov transformation:

a⃗ → Û†⃗aÛ = A⃗a + B⃗a† + α⃗, (2.83)

where A and B are n × n complex matrices satisfying ABT = BAT and AA† = BB† + 1.

The values of the matrices A and B depend on the values of the matrices F and G following

lengthy calculations which are not detailed here. These calculations are simplified when

dealing with particular examples. The description of the modification of the quadratures is

easier as it is given by an affine map:

r⃗ → S⃗r + d⃗, (2.84)
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where r⃗ is the vector of dimension 2n already defined in Eq. (2.40), d⃗ is a real vector of

dimension 2n and S is a real symplectic matrix of dimension 2n which can also be derived

from A and B by doing long calculations. A symplectic matrix is a matrix satisfying [136]

SΩST = Ω, (2.85)

where Ω is the symplectic form

Ω =
n⊕

k=1

ω, ω =

(
0 1
−1 0

)
. (2.86)

This matrix has to be symplectic to preserve the commutation relations between the quadra-

tures. Finally, as Gaussian states are completely defined by their displacement vector and

their covariance matrix, it is interesting to write the effect of the unitary operation on them:

⟨⃗r⟩ → S⟨⃗r⟩+ d⃗, γ → SγST. (2.87)

2.5.1 Single mode operations

Displacement

The displacement unitary is a single-mode active Gaussian unitary. Its effect in phase space

is to displace the state. An example is shown in Fig. 2.5 a). In a quantum optics circuit, we

can represent a displacement operation as a circle, see Fig. 2.5 a).

The unitary is defined with a complex parameter α:

D̂(α) = eαâ†−α∗ â. (2.88)

The inverse operation is also a displacement, this time with a parameter −α:

D̂−1(α) = D̂(−α). (2.89)

Coherent states can be created by applying a displacement operator on the vacuum state

|α⟩ = D̂(α)|0⟩. (2.90)

This constitutes an alternative definition of a coherent state: a coherent state |α⟩ is a state

obtained by displacing the vacuum of α in phase space.

The effect of the displacement on the creation and annihilation operators is given by

D̂†(α)âD̂(α) = â + α,

D̂†(α)â†D̂(α) = â† + α∗,
(2.91)
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while the quadratures change as

D̂†(α)x̂D̂(α) = x̂ +
√

2Re(α),

D̂†(α) p̂D̂(α) = p̂ +
√

2Im(α).
(2.92)

Phase shift

A phase shift can also be called a rotation as its action rotates the distribution in phase space

(see Fig. 2.5 b)). Moreover, this unitary corresponds to the free evolution of a harmonic

oscillator. It is a passive operation as it conserves the number of photons. In the rest of the

thesis, the phase-shift operation will be represented in quantum optics circuits as a square, see

Fig. 2.5 b).

The unitary is

R̂(ϕ) = e−iϕâ† â = e−iϕn̂, (2.93)

where we see that we can express it using the number operator. The annihilation and creation

operators are transformed by multiplying them with a phase:

R̂†(ϕ)âR̂(ϕ) = âe−iϕ,

R̂†(ϕ)â†R̂(ϕ) = â†eiϕ.
(2.94)

We can write the symplectic matrix associated to a rotation as

R(ϕ) =

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)
, (2.95)

which is nothing but a rotation matrix. Using this symplectic matrix, we can find the trans-

formed quadratures: (
x̂
p̂

)
→ R(ϕ)

(
x̂
p̂

)
=

(
cos ϕ x̂ + sin ϕ p̂
− sin ϕ x̂ + cos ϕ p̂

)
. (2.96)

Squeezing

The operation of squeezing is an active operation and its unitary is given by

Ŝ(ξ) = e
1
2 (ξ â†2−ξ∗ â2), (2.97)

where ξ = reiϕ is a complex number, r is the squeezing parameter and ϕ is the squeezing

angle. Ŝ(ξ) is a unitary operator and its inverse corresponds to a squeezing with a parameter

−ξ:

Ŝ−1(ξ) = Ŝ†(ξ) = Ŝ(−ξ). (2.98)
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Using this operator, we can give an alternative definition for squeezed states: a squeezed

state is a state obtained after the application of the squeezing operator on the vacuum state

|ξ⟩ = Ŝ(ξ)|0⟩. This is presented in Fig. 2.5 c). Finally, in this thesis, a squeezer will be

represented in a circuit as an oval, see Fig. 2.5 c).

Applying a squeezing to the creation and annihilation operators transforms them as the

following Bogoliubov transformations

Ŝ†(ξ)âŜ(ξ) = cosh r â − eiϕ sinh r â†,

Ŝ†(ξ)â†Ŝ(ξ) = cosh r â† − e−iϕ sinh r â.
(2.99)

A state with a non-zero squeezing angle ϕ can also be obtained by squeezing along the x axis

followed by a rotation using a phase-shifter. Hence, we will in the rest of this paragraph study

the particular case ϕ = 0, ξ = r. In this case, the symplectic matrix associated to a squeezing

is

S(r) =
(

e−r 0
0 er

)
. (2.100)

With this symplectic matrix, the quadratures evolve as

x̂ → e−r x̂,

p̂ → er p̂.
(2.101)

General one-mode Gaussian operation

It is possible to define a general unitary such that, applied to the vacuum state, it can generate

any one-mode Gaussian state. To do so, we have to combine a displacement, a rotation and a

squeezing along the quadrature x̂

|α, ϕ, r⟩ = D̂(α)R̂(ϕ)Ŝ(r)|0⟩. (2.102)

It is important to note that the order of the application of the unitaries is important as they do

not commute D̂(α)Ŝ(ξ) ̸= Ŝ(ξ)D̂(α). However, it is possible to obtain the same Gaussian

state by applying the operation in another order with the parameters α, ϕ and r adapted.
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Figure 2.5: Representation of one-mode Gaussian unitaries and their effect in quantum phase-
space: a) displacement operation, b) phase-shift operation, c) single-mode squeezing.
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2.5.2 Two-mode operations

Beam splitter

The beam splitter is one of the most important two-mode Gaussian unitaries. It constitutes

the simplest example of an interferometer and we will represent it in circuits as in Fig. 2.6 a).

The unitary is defined by

B̂(θ) = eθ(â† b̂−âb̂†), (2.103)

where â and b̂ are the annihilation operators corresponding to the two modes and θ is a pa-

rameter that describe the transmittivity of the beam splitter. Indeed, the transmittivity is given

by

τ = cos2(θ). (2.104)

If this transmittivity is equal to 1
2 , we call this a 50:50 beam splitter or balanced beam splitter.

The reflectivity of the beam splitter can be deduced from the transmittivity, r = 1 − τ. The

annihilation operators of the two modes are transformed as

B̂†(τ)âB̂(τ) =
√

τâ +
√

1 − τb̂,

B̂†(τ)b̂B̂(τ) = −
√

1 − τâ +
√

τb̂.
(2.105)

We can find the transformations of the creation operators by taking the adjoints of these ex-

pressions. The symplectic matrix associated to a beam splitter is given by

B(τ) =


√

τ 0
√

1 − τ 0
0

√
τ 0

√
1 − τ

−
√

1 − τ 0
√

τ 0
0 −

√
1 − τ 0

√
τ

 , (2.106)

and the quadratures transform then as
x̂1

p̂1

x̂2

p̂2

→ B(τ)


x̂1

p̂1

x̂2

p̂2

 . (2.107)

A property of the beam splitter that we will use in what follows is that if the two inputs are

identical centered Gaussian states, the beam splitter does not change the states, i.e., the output

is the same as the input.

Note that, here, we used the general convention for the definition of the beam splitter.

However, sometimes it is more convenient to define the action of the beam splitter as:(
â′

b̂′

)
=

( √
τ

√
1 − τ√

1 − τ −
√

τ

)(
â
b̂

)
. (2.108)
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In the result chapters, we will always precise which convention is used before using it.

Two-mode squeezing

The Gaussian unitary associated to a two-mode squeezer is

Ŝ2(r) = e
r
2 (âb̂−â† b̂†), (2.109)

where r is a parameter quantifying the two-mode squeezing. This operation is not a new one

as it can be obtained by using two balanced beam splitters and two one-mode squeezers with

opposite parameters (ξ and −ξ). This is presented in Fig. 2.6 b). First, the two modes interact

in a 50:50 beam splitter then one mode is squeezed while the other mode is anti-squeezed.

Finally, they interact again in a balanced beam splitter. Knowing this decomposition, we can

find the symplectic matrix associated to the two-mode squeezer:

S2(r) = B
(

1
2

)T

(S(−r)⊗ S(r))B
(

1
2

)
,

=


cosh r 0 sinh r 0

0 cosh r 0 − sinh r
sinh r 0 cosh r 0

0 − sinh r 0 cosh r

 .
(2.110)

The quadratures are then transformed as:
x̂1

p̂1

x̂2

p̂2

→ S2(r)


x̂1

p̂1

x̂2

p̂2

 . (2.111)

Interestingly enough, applying this two-mode squeezer to a two-mode vacuum state generates

an EPR state.

|EPR⟩ = S2(r)|00⟩. (2.112)

Finally, starting from the EPR state, we can obtain a thermal state with a parameter n̄ =

sinh2 r by tracing out the second mode:

ρ̂q = Tr2(|EPR⟩⟨EPR|). (2.113)
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Figure 2.6: Representation of two-mode Gaussian unitaries and their effect in quantum phase-
space: a) beam splitter and b) two-mode squeezer.
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Chapter 3

Notion of nonclassicality and
nonclassicality witnesses

Quantum states can be divided in two categories: classical and nonclassical states. As its

name indicates, a classical state is a state presenting all the common properties that are ex-

pected from states described by classical theories. On the other side, a nonclassical state is

a state that presents properties that cannot be described by classical theories. Such states are

very important in quantum optics as their nonclassical properties can be seen as resources for

quantum information protocols. The use of nonclassical states is at the origin of quantum ad-

vantages in areas such as quantum computation but we can also mention distributed quantum

computing, quantum networks, quantum boson sampling, quantum metrology or quantum

communication [114, 145, 85, 139, 162, 138, 88, 44, 123]. Moreover, it has been proven

that nonclassicality is a necessary condition to create entanglement with a beam splitter and

entanglement is one of the biggest features that differentiates classical and quantum theory

[83]. Given its importance in quantum information, entanglement will be treated separately

in Chapter 4.

Knowing the importance of the nonclassical states, it is necessary to have a clear definition

of what a nonclassical state is and how to detect it. In this chapter, we start by defining when

a state is considered as nonclassical and then we review some of the criteria whose violation

signals nonclassicality. Among the nonclassicality criteria, two are very important in this

thesis: the Shchukin, Richter and Vogel criteria and the quadrature coherence scale. Indeed,

Chapters 6 and 7 focus on how to measure these criteria by using a multicopy measurement

technique. Finally, we shortly outline the link between nonclassicality and entanglement.

3.1 Definition of optical nonclassicality

The definition of optical nonclassicality is based on the P-Sudarshan function defined in Sub-

section 2.3.2. However, we must mention that there exist several definitions of nonclassicality.
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In this thesis, we focus on the optical nonclassicality (based on the P-Sudarshan function) but

it is also possible to study the nonclassicality of a state based on the negativity of its Wigner

function [23] (where the nonclassicality of the state is witnessed by the negativity of the

Wigner function) or based on the zeros of its Husimi function [97]. With these definitions, the

ensemble of nonclassical states is not the same as the one for optical nonclassicality. Hence,

these other definitions will not be used in this thesis; we will only define the nonclassicality

of a state based on its P-Sudarshan function.

As a reminder, every state can be expressed using the P-Sudarshan distribution as

ρ̂ =
∫

d2α P(α)|α⟩⟨α|. (3.1)

As presented is Subsection 2.3.2, the P-Sudarshan function can have negative values and can

be ill-behaved (it can contain derivative of Dirac delta distributions). This is at the basis of

the definition of a nonclassical state: if the P-Sudarshan function is not a probability distribu-

tion, the state is nonclassical [151]. Conversely, if the P-function of a state can be identified

as a classical probability distribution, the state is said to be classical. If P is a probability

distribution function, it means that it is positive everywhere and at most proportional to the

Dirac delta function (but not its derivative). The Dirac delta distribution (P(α) = δ(α − α′))

corresponds to the P-function of a coherent state:

ρ̂ =
∫

d2α′ δ(α − α′)|α′⟩⟨α′| = |α⟩⟨α|. (3.2)

This is logical as we already mentioned the fact that the coherent states are also often called

classical states. All other classical states can always be written as convex mixtures of coherent

states. For example, thermal states fulfill this condition and are hence classical.

The whole study in this thesis is based on the fact that coherent states are classical states.

We must mention that all scientists do not agree on this definition. Indeed, some people con-

sider that coherent states are nonclassical states as they are used in some quantum protocols

such as for example continuous-variable quantum key distribution [53]. However, according

to the definition of optical nonclassicality, coherent states are classical states and it is thus the

convention we use in this thesis.

Among the states studied in Chapter 2, the squeezed states, the cat states and the Fock

states do not have P-functions which correspond to proper probability distributions (their ex-

pressions involve derivatives of Dirac delta-functions) and are thus nonclassical (see Chapter

6).

The definition of optical nonclassicality is based on the P-Sudarshan function. Hence, to

identify nonclassical states, the first idea one could have would be to analyze the P-function of

a given state. However, determining the P-function of a given state requires full tomography

and is often unfeasible. Therefore, one instead prefers nonclassicality witnesses which corre-

spond to conditions on expectation values of suitably chosen hermitian operators fulfilled by

classical states. Thus, nonclassicality is demonstrated when such a condition is violated. In
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what follows, we describe some of the well-known witnesses for nonclassicality.

3.2 Witnesses for detecting nonclassicality

3.2.1 Mandel parameter

This witness is due to Mandel [100]. He noticed that the coherent states have a Poissonian

photon number distribution as shown in Eq. (2.56). According to the definition, a state is

classical if it can be expressed as a convex mixture of coherent states. This implies that the

photon number distribution of a classical state can only be wider than a Poissonian distribu-

tion. Mandel thus stated that if the photon number distribution of a state is narrower than a

Poissonian distribution, then it is nonclassical. Such distributions are called sub-Poissonian

distributions.

To express this mathematically, we introduce the Mandel parameter QM:

QM =
⟨(â† â)2⟩ − ⟨â† â⟩2 − ⟨â† â⟩

⟨â† â⟩ =
σ2

n
⟨â† â⟩ − 1, (3.3)

where σ2
n is the variance of the photon number n̂ = â† â. Coherent states have Poissonian

photon number distributions and therefore, the variance of their number of photons is equal

to the mean number of photons, resulting in QM = 0. If the distribution is narrower, then

the variance is lower than the mean and thus QM < 0, which is an evidence of nonclassical-

ity. Otherwise, if QM ≥ 0, the witness is inconclusive; we can not conclude if the state is

nonclassical or not.

It is possible to prove rigorously that Mandel parameter can only become negative for

nonclassical states. To do so, we have to analyze the numerator of Eq. (3.3) (the denominator

is always non-negative):

⟨(â† â)2⟩ − ⟨â† â⟩2 − ⟨â† â⟩ = ⟨â†2 â2⟩ − ⟨â† â⟩2
, (3.4)

by using the bosonic commutation relations. Then, we express the two remaining terms by

using the P-Sudarshan function (Eq. (2.35)):

⟨â†2 â2⟩ =
∫

d2α P(α)α∗2α2,

⟨â† â⟩ =
∫

d2α P(α)α∗α,
(3.5)

leading to

⟨(â† â)2⟩ − ⟨â† â⟩2 − ⟨â† â⟩ =
∫

d2α P(α)(α∗α − ⟨α∗α⟩P)
2. (3.6)

As the value of "(α∗α − ⟨α∗α⟩P)
2" in the integral is always positive, the integral can only be
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negative if the P-Sudarshan function shows negative values. Hence, QM < 0 only if the state

is nonclassical.

This criterion detects the nonclassicality of Fock states, in which case QM = −1. How-

ever, some nonclassical states such as the squeezed states lead to positive values of the Mandel

parameter and are therefore not identified as nonclassical by this criterion. There is a need to

develop other criteria.

3.2.2 Squeezing parameter

This witness is based on a rotated quadrature:

x̂θ =
âe−iθ + â†eiθ

√
2

, (3.7)

where θ ∈ [0, 2π[ describes the angle of the quadrature. For example, θ = 0 corresponds to

the usual quadrature x̂ while θ = π
2 is the p-quadrature. The squeezing parameter is given

by:

Sθ = ⟨: x̂2
θ :⟩ − ⟨x̂θ⟩2 , (3.8)

where : : corresponds to the normal order. By developing the first term and putting it in normal

order, we can reexpress the squeezing parameter as

Sθ =

〈
â2e−2iθ + â†2e2iθ + 2â† â

2

〉
−
〈

âe−iθ + â†eiθ
√

2

〉2

. (3.9)

Once again, this parameter is equal to 0 for coherent states. Indeed, we have

Sθ = ⟨α| â2e−2iθ + â†2e2iθ + 2â† â
2

|α⟩ − ⟨α| âe−iθ + â†eiθ
√

2
|α⟩2 ,

=
α2e−2iθ + α∗2e2iθ + 2α∗†α

2
−
(

αe−iθ + α∗eiθ
√

2

)2

,

= 0.

(3.10)

It can be proven that the squeezing parameter can be negative only if the state is non-

classical. To prove this, the same method as the proof for the Mandel parameter is used: the

parameter is expressed as a function of the P-Sudarshan function using Eq. (2.35), then we

obtain an integral that can be negative only if the P-function takes negative values.

Similarly to the Mandel parameter, the squeezing parameter is only a sufficient crite-

rion. It is not able to detect the nonclassicality of all the nonclassical states; for example, the

squeezing parameter is positive for Fock states. This time, however, it is negative for squeezed

states. In this sense, it is complementary to the Mandel parameter. We thus still need other

witnesses. Note that more details can be found on the squeezing witness in the case of mixed
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states in Ref. [2].

3.2.3 Shchukin, Richter and Vogel matrix of moments

A part of this section is based on the following paper that I published together with Matthieu

Arnhem and Nicolas Cerf:

M. Arnhem, C. Griffet and N. J. Cerf. Multicopy observables for the detection of optically

nonclassical states. Physical Review A, 106: 043705, October 2022. [6]

One of the two most important witnesses of this thesis is based on a matrix of moments.

This was first presented in Ref. [142, 140] by Shchukin, Richter and Vogel. We present here

the development leading to this witness and give some of its properties.

As shown in Subsection 2.3.2, the expectation value of a normally-ordered function of

the annihilation â and creation â† operators can be expressed using the P-function as it is

the quasi-probability distribution associated with the normal order. We can then express the

expectation value of any normally-ordered operator function : ĝ(â, â†) : as

⟨ : ĝ(â, â†) : ⟩ =
∫

d2α P(α) g(α, α∗). (3.11)

Hence, if the P function P(α) admits negative values, then Eq. (3.11) can become negative

for some well chosen function ĝ(â, â†). These negative values are a clear evidence of the

nonclassicality of the state ρ̂ as indicated by the definition of nonclassicality (see Section 3.1).

This suggests a close connection between the expectation value of normally-ordered functions

and the nonclassical character of the P function: as observed in Ref. [140], any normally-

ordered Hermitian operator of the form : f̂ † f̂ : can be used to detect nonclassicality. As shown

in Ref. [142], these witnesses of nonclassicality can be constructed for three different sets of

operators (â, â†), (x̂ϕ, p̂ϕ) and (x̂ϕ, n̂). Note that the operators used for the construction do

not need to be conjugate variables (as shown by the last set of operators considered by the

authors, (x̂ϕ, n̂)). In this thesis, we only consider the set (â, â†). In this case, one exploits the

fact that any operator f̂ can be expressed as a (normally-ordered) Taylor series

f̂ (â, â†) =
∞

∑
k=0

∞

∑
l=0

ckl â†k âl . (3.12)

The expectation value of : f̂ † f̂ : can then be written in terms of the P function following Eq.

(3.11) as

⟨ : f̂ † f̂ : ⟩ =
∫

d2α P(α) | f (α)|2, (3.13)

where f (α) = ∑∞
k=0 ∑∞

l=0 ckl α∗k αl . This expression is always positive for any f (α) provided

P(α) is a classical probability distribution Pcl(α) as it is then positive everywhere. Hence, for

any nonclassical state ρ̂ there exists an appropriate operator f̂ , such that this state is witnessed,
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i.e.

∀ nonclassical ρ̂ ∃ f̂ s.t. ⟨ : f̂ † f̂ : ⟩ < 0. (3.14)

Furthermore, as shown in Ref. [140], these nonclassicality criteria can be reformulated

in terms of an infinite countable set of inequalities, which involve the principal minors of an

infinite-dimensional matrix of moments. The infinite set of inequalities completely character-

izes the nonclassicality of the quantum state under study.

To obtain this set of inequalities, we first express the necessary and sufficient criterion for

classicality by injecting the expression of f̂ (Eq. (3.12)) in Eq. (3.14):

⟨ : f̂ † f̂ : ⟩ =
∞

∑
k,m=0

∞

∑
l,n=0

c∗mnckl ⟨â†(k+n) âl+m⟩ ≥ 0, ∀ f̂ , (3.15)

for any complex coefficients cij’s. To go further, the authors use Sylvester’s criterion which

is a necessary and sufficient condition to determine if a Hermitian matrix is positive-definite.

The Hermitian matrix considered here is the matrix D∞ which is an infinite matrix associated

with the quadratic form, Eq. (3.15). Then, Sylvester’s criterion states that the matrix if

positive-definite (and thus that the state is classical) if all the determinants of the matrix of

moments DN are non-negative. These submatrices DN are defined as

DN =



1 ⟨â⟩ ⟨â†⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â†2⟩ ...
⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†3⟩ ...
⟨â⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â3⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ...
⟨â†2⟩ ⟨â†2 â⟩ ⟨â†3⟩ ⟨â†2 â2⟩ ⟨â†3 â⟩ ⟨â†4⟩ ...
⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â† â3⟩ ⟨â†2 â2⟩ ⟨â†3 â⟩ ...
⟨â2⟩ ⟨â3⟩ ⟨â† â2⟩ ⟨â4⟩ ⟨â† â3⟩ ⟨â†2 â2⟩ ...

...
...

...
...

...
...

. . .


, (3.16)

and contain all normally-ordered moments of â and â†. The matrix of moments DN , where

N is the size of the matrix, can be defined for any dimension N × N and its determinant

will be written d1···N = det(DN) in the rest of this thesis, where the index of d means that

all rows and columns of DN are kept in the range from 1 to N. Remarkably, as a conse-

quence of Bochner’s theorem, the classicality criteria become necessary and sufficient when

the determinants are positive for all orders [142], that is, ρ̂ is classical if and only if

d1...N ≥ 0, ∀N. (3.17)

The determinants d1...N are the so-called dominant principal minors of matrix DN , i.e.,

the determinants of the matrices constructed by taking all rows and columns in the upper-left

corner of the matrix. Hence, the negativity of any single determinant d1...N of order N is a

sufficient condition for nonclassicality.
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One property is that one can construct various matrices of moments having similar prop-

erties and nonclassicality detection power. In this thesis, we focus on the principal minors

of the matrix of moments DN , which are built by selecting some rows and corresponding

columns and then taking the determinant of the resulting matrix. For example, if rows and

columns i, j, and k are selected, the associated principal minor is written dijk. Interestingly,

any principal minor such as dijk provides a sufficient criterion for nonclassicality: if dijk < 0,

then the state ρ̂ is nonclassical. Some examples of principal minors that are not dominant are

d14, d15, d124, d134, and d145, while examples of dominant principal minors are d12, d123, d1234,

and d1235. Note that we adopt a slightly relaxed definition of a dominant principal minor: it is

associated with the upper left submatrix but assuming the order of rows and columns is irrele-

vant within a given block (the block structure of the matrix of moments DN will be described

in Chapter 6). For example, d1235 is understood as a dominant principal minor although the

fourth row and column are omitted. Each of these minors might have a distinct physical in-

terpretation and hence, detect the nonclassicality of different types of nonclassical states (see

Ref. [105] for a review of nonclassicality criteria).

To measure these witnesses, Shchukin and Vogel designed circuits in Ref. [142]. How-

ever, their circuits are designed to measure each moment of the matrix one by one. This means

that to calculate one determinant, we need to make one measure for each element. One of the

objective of this thesis is to find a less costly protocol to measure these determinants by using

a multicopy technique. This is done in Chapter 6.

3.2.4 Quadrature coherence scale

A part of this section is based on the following paper that I published together with Matthieu

Arnhem, Stephan De Bièvre and Nicolas Cerf:

C. Griffet, M. Arnhem, S. De Bièvre, and N. J. Cerf. Interferometric measurement of the

quadrature coherence scale using two replicas of a quantum optical state. Physical Review

A, 108: 023730, August 2023. [50]

In this section, we focus on a witness of optical nonclassicality called the quadrature

coherence scale (QCS), introduced in Ref. [30] and further studied in Refs. [75, 62, 61, 63].

When it was first defined [30], the QCS was called the ordering sensitivity as it was linked to

the change in the s-ordered entropy that is defined in that paper. Later, it was renamed QCS

[62] as it can be proven to be linked to the coherences with respect to the quadratures of the

state.

The QCS of the state ρ̂ of n bosonic modes is denoted as C(ρ̂). There exist several

definitions of the QCS but the most common one is the following [30, 62]:

C2(ρ̂) =
1

2nP(ρ̂)

(
2n

∑
j=1

Tr
(
[ρ̂, r̂j][r̂j, ρ̂]

))
, (3.18)
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where r̂ = (x̂1, p̂1, · · · , x̂n, p̂n) is the vector of position and momentum quadratures, and

P(ρ̂) = Tr(ρ̂2) is the purity of the state ρ̂ that was already defined in Eq. (2.43). It was

shown in Ref. [30] that the QCS is a witness of optical nonclassicality: if C(ρ̂) > 1, then

the state ρ̂ is nonclassical. Since the converse is not true, this witness is not faithful, i.e. not

necessary and sufficient. It nevertheless provides both an upper and lower bound on some

suitably defined distance from the set of optically classical states Ccl and, as such, it defines

an optical nonclassicality measure [30]:

C(ρ̂)− 1 ≤ d(ρ̂, Ccl) ≤ C(ρ̂), (3.19)

where d(ρ̂, Ccl) is the distance to the classical set of states. In particular, the larger the QCS,

the farther the state is from Ccl. In addition, C2(ρ̂) has a direct physical interpretation as being

inversely proportional to the decoherence time of ρ̂ [62].

Another expression of the QCS presented in Ref. [30] will be used in this thesis:

C2(ρ̂) =
1
4
∥∇αW∥2

2

∥W∥2
2

, (3.20)

where W is the Wigner function of the state and ∥ · ∥2 stands for the L2-norm, such that

for example ∥W∥2
2 :=

∫
d2α |W(α)|2 and ∇α = (∂α1 , ∂α2). Intuitively, this means that

if the Wigner function of the state oscillates a lot, then the QCS is bigger. Comparing the

Wigner functions of different states can lead to an intuition about the QCS of these states. For

example, in Ref. [30], the authors compare two families of states:

ρ̂2M =
1

2M

2M

∑
n=1

|n⟩⟨n|, ρ̂even,M =
1
M

M

∑
n=1

|2n⟩⟨2n|. (3.21)

with M ≥ 1. The purity and QCS of these states are given in Ref. [30]:

P(ρ̂2M) =
1

2M
, P(ρ̂even,M) =

1
M

, (3.22)

and

C2(ρ̂2M) = 1 +
1
M

, C2(ρ̂even,M) = 1 + 2(M + 1). (3.23)

We see that the QCS of the two states are bigger than 1, showing the nonclassicality of these

families of states. It also appears that the QCS of ρ̂even,M increases proportionally to M while

for the other class of states, there is no such increase. This can be linked to the fact that the

Wigner function of ρ̂even,M shows deeper fluctuations as can be seen in Fig. 3.1.

The evaluation of the QCS on large families of benchmark states has confirmed its effi-

ciency as an optical nonclassicality measure [30, 75, 62, 61, 63]. One important example is

the case of a Gaussian state. It was proven in Ref. [61] that the QCS is then given by

C2(ρ̂G) =
Trγ−1

4n
, (3.24)
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Figure 3.1: Wigner function of ρ̂2M and ρ̂even,M for M = 10. For larger fluctuations around
the mean of the Wigner function, the QCS increases. (Figure taken from Ref. [30]).

where γ is the covariance matrix of the state. We will prove again this expression using the

formalism developed in Chapter 7.

The values of the QCS for two particular Gaussian states are of interest in this thesis as

we will use them in Chapter 7: the values for the squeezed states and the value for the thermal

states,

C2(|ξ⟩) = cosh(2r),

C2(ρ̂q) =
1

1 + 2 ⟨n̂⟩q
,

(3.25)

respectively. In Ref. [49], the authors calculated the values of the QCS in the case of lossy

squeezed states or thermal states. They represent the losses by a beam splitter of transmittance

η where one entry is the state and the other one is the vacuum. The QCS for these states is

then given by

C2(|ξ⟩; η) =
1

1 + (1 − 2η) η cosh(2r)−η
η cosh(2r)−η+1

,

C2(ρ̂q; η) =
1

1 + 2η ⟨n̂⟩q
,

(3.26)

which reduces to Eq. (3.25) in the special case of η = 1, i.e. when there are no losses.
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3.3 Nonclassicality and entanglement

It has been proven in 2002 that there exists a close connection between nonclassicality and

entanglement [83]. Entangled states are multipartite states presenting features that can not be

described with classical theories. The well-known case of bipartite entangled states will be

presented in detail in the next chapter (Chapter 4). However, we can already mention that they

are very important for quantum communication protocols and are thus essential in the field.

Kim et al. (Ref. [83]) proved that nonclassicality is needed in order to produce entangle-

ment when using a simple beam splitter. The setup presented in Ref. [83] is the following:

the authors use a 50:50 beam splitter where the two inputs are two independent states (i.e.,

two states that are not entangled). Then, the authors analyze the output to see if the state is

entangled or not depending on the input modes.

First, the authors investigate two different kinds of input states: Fock states and squeezed

states. It is well known that in these two particular cases, it is possible to produce entangle-

ment. Indeed, inputting one single photon in each input, |1⟩ |1⟩, the output state is the famous

Hong-Ou-Mandel state (Ref. [69]):

|HOM⟩ = |2, 0⟩ − |0, 2⟩√
2

, (3.27)

which is an entangled state. For squeezed states, we already mentioned that it is possible

to obtain a TMSV states which is a maximally entangled state in the limit of an infinite

squeezing.

After that, the authors study what happens if the two input states are general mixed Gaus-

sian states. In this case, it is proven that if the two input states are classical, then the output

state is not entangled. In conclusion, nonclassicality is then a necessary condition for the

creation of entanglement through a 50:50 beam splitter.
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Chapter 4

Notion of entanglement and
separability criteria

One of the most important features of bipartite states in quantum information is certainly

entanglement. Bipartite states are states shared between two parties A and B (often called

Alice and Bob). These states can present a particular property called entanglement which

is a property that can not be described classically. Entanglement is one of the most impor-

tant discoveries in quantum optics as it leads to new perspectives for communications that

do not exist when considering only classical mechanics. Nowadays, entanglement is at the

basis of many quantum communication protocols like quantum teleportation [14] or quantum

cryptography [37].

The notion of entanglement arose in 1935 after a paper by Einstein, Podolsky and Rosen

[36] who wanted to prove that the quantum theory was not complete. In what follows, we will

call this paper EPR after the names of its authors. The term "entanglement" itself was first

used by Schrödinger in one of his letters to Einstein. In the EPR paper, the authors propose a

thought experiment to prove that there should be a classical theory based on hidden variables

that could justify the results of a thought experiment. Later, it was proven that quantum theory

is not incomplete and that the results were due to entanglement. Still today, the state that was

used for this argument is very important as it corresponds to a maximally entangled state that

we call EPR-state (this state was already introduced in Chapter 2).

Since entanglement is very important, it is also crucial to be able to determine whether

a state is entangled or not. If the state is not entangled, we call it separable. To do so,

separability criteria and entanglement witnesses are defined. In this chapter, we start by giving

the definition of an entangled state. After that, we review some entanglement witnesses and

in particular, Shchukin-Vogel witnesses (Ref. [141]) that will be used in Chapter 8. Reviews

about entanglement can be found in Refs. [58, 74]; many of the definitions presented in this

chapter are taken from these two references.
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4.1 Definition of entanglement and separability criteria

Defining an entangled state is done by defining what it is not. Indeed, we rather define a

separable state (i.e., a state that is not entangled) and then say that a state is entangled if and

only if it can not be expressed under this form. Here, we start by the simplest case: the case

of a pure state.

A pure state is separable if and only if it can be written under the form of a tensor product

between two states:

|ψAB⟩ = |ψA⟩ ⊗ |ψB⟩ = |ψA⟩ |ψB⟩ , (4.1)

where |ψA⟩ (respectively |ψB⟩) is a state living in the Hilbert space HA (respectively HB)

and |ψAB⟩ is a state living in the tensor product of the two Hilbert spaces HA ⊗HB. If the

state can not be expressed under this form, it is entangled. Usually, for pure states, we will

drop the ⊗ symbol for simplicity as it is done in the last equality of Eq. (4.1).

In the case of mixed states, there exists a particular case of a separable state: the product

state. A product state has the following form

ρ̂AB = ρ̂A ⊗ ρ̂B, (4.2)

which means that it corresponds to a tensor product between two monopartite states. One of

these states belongs to Alice, ρ̂A, while the second one belongs to Bob, ρ̂B. According to

this expression, it is clear that Alice (or Bob) can apply any local unitary transformation to

her system or make any measurement on it and that this won’t affect Bob’s state. A general

separable mixed state is defined as a state ρ̂AB that can be put under the form of a convex

mixture of product states; namely,

ρ̂AB = ∑
i

pi

(
ρ̂i

A ⊗ ρ̂i
B

)
, (4.3)

where pi ≥ 0 ∀i and ∑i pi = 1. If a mixed state can not be put under this form, it is entangled.

Finding if a state is entangled based on this definition is proven to be a NP-hard problem

[74]. Hence, two simpler tools have been developed: separability criteria and entanglement

witnesses. Separability criteria are mathematical conditions which give necessary and some-

times even sufficient criteria for separability. However, often, the knowledge of the state,

i.e. its full density matrix, is required to use these criteria. Hence, we need to perform full

tomography of the state, which is very costly [153, 115, 99, 28]. In contrast, entanglement

witnesses are observables, Ŵ, that can be measured. The result of the measurement of a wit-

ness gives a negative value, Tr(ρ̂Ŵ) < 0, only if the state is entangled. However, if the result

is positive, Tr(ρ̂Ŵ) ≥ 0, then we can not say if the state is entangled or separable. Witnesses

are easier to use as they do not require full tomography. Moreover, for every entangled state,

44
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there exists an entanglement witness that can detect it [71]. Sometimes, separability crite-

ria can be stated as entanglement witnesses. Hence, in many cases, the names "separability

criterion" and "entanglement witness" are used as synonyms. In the rest of the sections, we

describe separability criteria and entanglement witnesses starting from the discrete-variable

case before turning to the continuous-variable case.

Notice that the definitions given in this section are restricted to bipartite entanglement as

we will only consider bipartite systems in the rest of this thesis. However, there also exist

separability criteria and entanglement witnesses for multipartite systems with more than two

parties. Details can be found in Ref. [58].

4.2 Discrete-variable separability criteria

4.2.1 Criteria based on the Schmidt decomposition

Detecting entanglement in the particular case of discrete pure states is an easy task when

using the Schmidt decomposition of a state [112]. Indeed, each pure bipartite state can be

decomposed as

|ψAB⟩ = ∑
i

λi|iA⟩|iB⟩, (4.4)

where ∑i λ2
i = 1 and |iA⟩ (respectively |iB⟩) is an orthonormal basis of HA (respectively

HB). The λ2
i ’s are the Schmidt coefficients. The Schmidt rank of the state |ψAB⟩ is defined

as the number of λi strictly positive. For pure states, this Schmidt rank is necessary and

sufficient to determine if the state is entangled: a pure bipartite state is separable if and only

if its Schmidt rank is equal to 1.

Note that the fact that the state is entangled implies that the two subsystems obtained

when tracing out one of the two modes (either A or B) are mixed. Indeed, we can show that

the subsystem of Alice obtained by tracing out the mode B is given by

ρ̂A = TrB(ρ̂AB) = ∑
i

λ2
i |iA⟩⟨iA|. (4.5)

Hence, if more than one Schmidt coefficient is non-zero, then ρ̂A is mixed. This is a signature

of the fact that the total state |ψAB⟩ is entangled. This can be reformulated using the von

Neumann entropy [154] defined for a quantum state ρ̂ as S(ρ̂) = −Tr (ρ̂ log2 ρ̂). The von

Neumann entropy can also be formulated in terms of the eigenvalues µi of ρ̂ as S(ρ̂) =

−∑i µi log2 µi. In the case of the state presented in Eq. (4.5), this reduces to

S(ρ̂A) = −Tr
(
λ2

i log2 λ2
i
)

. (4.6)

It appears that if the Schmidt rank is equal to 1, S(ρ̂A) = 0. This means that if the von

Neumann entropy of any of the two subsystems is equal to zero, we can conclude that the
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bipartite state is separable.

For mixed states, the detection of entanglement becomes more complicated. There exists

a generalization of this criterion for mixed states that is called the computable cross-norm

criterion. This criterion is due to Rudolph [127]. To define this criterion, we use a generalized

Schmidt decomposition that is valid for mixed states: the operator Schmidt (OS) decomposi-

tion, which allows to write, for a mixed quantum state ρ̂ as

ρ̂ = ∑
i

λOS
i
(

Âi ⊗ B̂i
)

, (4.7)

where the operators Âi’s (respectively B̂i’s) form an orthonormal basis of the operator space

of subsystem A (respectively B), in the sense that

Tr
(

Â†
i Âj

)
= δij, (4.8)

and the same for B̂i.

Using this operator Schmidt decomposition, the cross-norm criterion can be stated as

follows: if the state ρ̂ is separable, then ∑i λOS
i ≤ 1. Conversely, if ∑i λOS

i > 1, then it

means that the state is entangled.

4.2.2 Positive partial transpose

One of the most important separability criteria is the positive partial transpose criterion (PPT).

It is very important as many of the criteria developed after it are based on it or are reformu-

lations of it. PPT was first developed by Peres [119] as a necessary criterion for separability.

Peres stated that if the state ρ̂AB is separable, then (ρ̂AB)
TB ≥ 0, where TB is the partial trans-

pose applied to the subsystem B. It means that the density matrix of the state after application

of the partial transposition on subsystem B should remain non-negative or, in other words,

that the density matrix has to remain physical under partial transposition. Note that, here,

we apply the partial transposition on subsystem B but equivalent results are obtained if this

transposition is done on subsystem A. In general, this condition is only a necessary condition,

but Horodecki et al. showed in Ref. [71] that the condition becomes also sufficient when

considering systems of dimensions 2x2 or 2x3: in such systems, ρ̂AB is separable if and only

if (ρ̂AB)
TB ≥ 0. We can write the mathematical form of this criterion by decomposing the

density matrix of the state in a well-chosen product basis as:

ρ̂AB =
N

∑
i,j

M

∑
k,l

ρij,kl |i⟩ ⟨j|⊗ |k⟩ ⟨l| is separable ⇒ (ρ̂AB)
TB =

N

∑
i,j

M

∑
k,l

ρij,kl |i⟩ ⟨j|⊗ |l⟩ ⟨k| ≥ 0.

(4.9)

In systems of dimension higher than 2x2 or 2x3, the PPT criterion is not sufficient, and

hence, even if the density matrix of the partially-transpose state possesses only positive values,

46



4.2. DISCRETE-VARIABLE SEPARABILITY CRITERIA

we can not conclude whether the state is entangled or not. The states whose entanglement is

not detected by PPT are called bound entangled states [72] and other criteria are needed to

detect their entanglement, for example the cross-norm criterion of Subsection 4.2.1.

4.2.3 Entropies and majorization criteria

Other criteria based on the von Neumann entropy have been developed in Refs. [71, 21] and

are based on the joint von Neumann entropy:

S(ρ̂AB) = −Tr(ρ̂AB log2 ρ̂AB). (4.10)

References [71, 21] state that if ρ̂AB is separable then S(ρ̂AB) ≥ S(ρ̂A) and S(ρ̂AB) ≥ S(ρ̂B).

This can also be rewritten using conditional von Neumann entropies as S(A|B) = S(ρ̂AB)−
S(ρ̂B) ≥ 0 and S(B|A) = S(ρ̂AB)− S(ρ̂A) ≥ 0.

These entropy criteria are in fact implied by another criterion based on majorization the-

ory: the criterion of Nielsen and Kempe (Ref. [113]). The authors prove that if ρ̂AB is

separable then

λρAB ≺ λρA and λρAB ≺ λρB , (4.11)

where the λρ’s are the eigenvalues of the state ρ̂ and λ ≺ η means that η majorizes λ.

Interested readers can found more information about majorization theory in Ref. [104]. In

general, majorization relations between two probability distributions imply inequalities on

Schur-concave and Schur-convex functions. Since the von Neumann entropy is an example

of a Schur-concave function, we can easily prove that the separability criteria presented above

(Refs. [71, 21]) are implied by Nielsen and Kempe’s criterion.

4.2.4 Other witnesses: reduction map and faithful entanglement

There exist many other criteria for discrete variables systems that can be found for example

in the review of Gühne and Tóth [58]. We mention two of them here. The first one is the

reduction criterion [22, 70] that is based on a reduction map

Λ : ρ̂AB → 1A ⊗ ρ̂B − ρ̂AB. (4.12)

If a state is separable, then one has Λ(ρ̂AB) ≥ 0.

Another witness often used is a witness based on the fidelity of the state we want to

analyze with a known entangled state. If the fidelity is high, it means that the two states are

close to each other. This kind of witness is written as

Ŵ = α1− |ψ⟩ ⟨ψ| , (4.13)
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where α is a constant and |ψ⟩ is an entangled state. Usually, |ψ⟩ is taken to be a maximally

entangled state. We say that the state is entangled if Tr(ρ̂Ŵ) < 0. Such states are called

faithful entangled states. More details about the geometry of faithful entanglement can be

found in Ref. [57].

4.3 Continuous-variable separability criteria

4.3.1 Duan, MGVT and Simon criteria

Based on the PPT criterion, it is possible to derive several criteria involving moments of the

quadratures. When limiting ourselves to moments of second order, we can find three famous

witnesses due to Duan et al. [34], Simon [143] and Mancini et al. [98, 45].

The PPT criterion has initially been expressed for discrete variables; it is then needed to

see what is the effect of a partial transposition on a continuous-variable system. This was

done in Simon’s paper [143]. He proved that applying a partial transpose on a continuous-

variable system reduces to a local mirror reflection in the phase space. Indeed, starting from

the definition of the Wigner function, he showed that the Wigner function of a bipartite state

is transformed under a partial transposition as

W(x1, x2, p1, p2)
TB−→ W(x1, x2, p1,−p2). (4.14)

Applying a partial transpose on the second subsystem is then reduced to the change of sign of

the momentum of this subsystem, p̂2 → − p̂2. The three following separability criteria can

be demonstrated by using this simple change.

We start with EPR-like operators defined as

x̂± = |r|x̂1 ±
1
r

x̂2,

p̂± = |r| p̂1 ±
1
r

p̂2,
(4.15)

where r is non-zero and real.

Then, replacing the observables Â and B̂ in the Robertson-Schrödinger uncertainty rela-

tion Eq. (2.17) by the EPR-like quadratures given in Eq. (4.15), x̂± and p̂±, gives:

σ2
x±σ2

p± ≥ 1
4
| ⟨[x̂±, p̂±]⟩ |2 +

1
4
| ⟨{x̂± − ⟨x̂±⟩ , p̂± − ⟨ p̂±⟩}⟩ |2. (4.16)

In the right-hand side, we will only take into account the first term (the second one is always

positive so we can remove it and keep a valid inequality). Calculating the commutator then

gives:

σ2
x±σ2

p± ≥ 1
4

(
|r|2 + 1

r2

)2

. (4.17)
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Developing the simple inequality (σx± − σp±)
2 ≥ 0, we can rewrite

σ2
x± + σ2

p± ≥ 2σx±σp± . (4.18)

Using then Eq. (4.17), we obtain

σ2
x± + σ2

p± ≥ 2σx±σp± ≥
(
|r|2 + 1

r2

)
. (4.19)

This expression can be separated into two different uncertainty relations

σ2
x± + σ2

p± ≥
(
|r|2 + 1

r2

)
,

σ2
x±σ2

p± ≥ 1
4

(
|r|2 + 1

r2

)2

.
(4.20)

Using the PPT criterion, we can obtain separability criteria by applying the partial transposi-

tion to the state in these inequalities. Note that a partial transposition will change the sign of

p̂2 as mentioned before, therefore transforming p̂± into p̂∓, but it won’t affect x̂± as it can

be seen from the definitions of x̂± and p̂±, Eqs. (4.15). The two separability criteria obtained

are

σ2
x± + σ2

p∓ ≥ |r|2 + 1
r2 . (4.21)

σ2
x±σ2

p∓ ≥ 1
4

(
|r|2 + 1

r2

)2

. (4.22)

where the first one (presented in Eq. (4.21)) is nothing else than the criterion of Duan et al.

(note that the initial proof of Duan et al. is completely different from the one presented here).

The second separability criterion we just proved simultaneously is the criterion by Mancini et

al. [98, 45]. We can already note that this criterion is stronger than the one of Duan. This is

obvious when looking at Eq. (4.19). Usually, this criterion is named MGVT after the authors’

names.

The last criterion of order two has been proposed by Simon [143] and is based on the

formulation of the uncertainty principle proved in his paper [144]. In this paper, he showed

the following uncertainty relation:

γ +
i
2

Ω ≥ 0, (4.23)

where γ is the 4x4 covariance matrix of the bipartite state and Ω is the symplectic form

defined in Eq. (2.86). By applying the partial transpose to this relation, Simon obtained the

following separability criterion

γTB +
i
2

Ω ≥ 0. (4.24)

Simon’s criterion is stronger than the one of Duan et al. and Mancini et al. Indeed, it can be

reformulated under the form of a sum of the variances of two observables that are more general

than the EPR-like quadratures. A schematic representation of the states whose entanglement

can be detected by these three witnesses is shown in Fig. 4.1. In this figure, we represent the
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convex set of separable states inside the convex set of all states. Then, we add a line in blue

for each of the three criteria. The states whose entanglement is detected by a criterion are on

the right of the associated line while the undetected entangled states are on the left of it.

When considering Gaussian states, the three aforementioned criteria all become equal.

Moreover, for Gaussian states, the criteria are proved to be necessary and sufficient for sep-

arability which explains why the Gaussian entangled states are on the right of every line in

Fig. 4.1. This is done for example in Duan et al. paper [34] where it is shown that a bipartite

Gaussian state can be transformed without changing the entanglement of the state into the

standard form

γG =


n1 0 c1 0
0 n2 0 c2

c1 0 m1 0
0 c2 0 m2

 , (4.25)

where
n1 − 1
m1 − 1

=
n2 − 1
m2 − 1

(4.26)

and

|c1| − |c2| =
√
(n1 − 1)(m1 − 1)−

√
(n2 − 1)(m2 − 1). (4.27)

By using this form, the authors prove that if the Gaussian state is entangled, then the witness

is necessary and sufficient. Later, it has been proved that all three criteria can be extended and

are necessary and sufficient when considering 1 × N Gaussian states (this means that Alice

possesses one mode and Bob N modes) [160] or N × M bisymmetric Gaussian states [137].

Finally, these three separability criteria were improved in 2016 by taking into account

the degree of Gaussianity [64]. This allows the detection of the entanglement of some non-

Gaussian states that could not be detected by any of the former second-moment criteria.

4.3.2 Higher-order criteria: Shchukin-Vogel hierarchy

A part of this section is based on the following paper that I published together with Tobias

Haas and Nicolas Cerf:

C. Griffet, T. Haas, and N. J. Cerf. Accessing continuous-variable entanglement witnesses

with multimode spin observables. Physical Review A, 108: 022421, August 2023. [51]

All the criteria presented in the previous section are limited to moments of the quadratures

of order two. This is shown to give necessary and sufficient conditions when considering

Gaussian states. However, for non-Gaussian states these criteria are not necessary and suf-

ficient but only necessary separability criteria. Hence, many non-Gaussian entangled states

are not detected. To improve this, one possibility is to derive new witnesses based on higher

order of the quadratures. This is sketched in Fig. 4.1; where we can see that states whose

entanglement was not detected by second order criteria can be detected by a higher order cri-
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Figure 4.1: Representation of the convex set of separable states inside the set of all the states.
Each line corresponds to an entanglement witness which detects the entanglement of the states
on the right of the line. The blue lines correspond to second order criteria (from the weaker
to the stronger one: Duan et al., MGVT and Simon criteria). The green line corresponds to
a fictive higher order criterion. Gaussian entangled states do not constitute a convex set of
states, emphasized by the dashed lines.

terion. Moreover, such witnesses are incomparable to the ones of order two presented before:

it is possible to find states that are detected by e.g. Duan et al.’s criterion but that will not be

detected by a higher order criterion.

One example of such criterion is the witness of Agarwal [3] which involves fourth order

terms. Since this witness is important for our results on multicopy observables to detect en-

tanglement, it will be analyzed in Chapter 8 where we will showcase a class of non-Gaussian

entangled states that can be detected as entangled states. We will also devise an implementa-

tion allowing us to efficiently measure this witness.

In 2005, a complete hierarchy of criteria was developed by Shchukin and Vogel [141].

These criteria involve arbitrarily high moments of the quadratures. We describe this hierarchy

in more detail here as it will be at the basis of the results presented in Chapter 8. Note that this

result was further analyzed in a comment [106] and in a paper by Miranowicz et al. [107]. To

develop the hierarchy, Shchukin and Vogel use the fact that the non-negativity of the partial

transpose ρ̂TB can be assessed in full generality by demanding that for all normally-ordered

operators

f̂ = ∑
n,m,k,l

cnmkl â†n âmb̂†k b̂l , (4.28)
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with complex-valued c’s, the inequality

Tr
(

ρ̂TB f̂ † f̂
)
≥ 0, (4.29)

is fulfilled. Indeed, the mean value of f̂ † f̂ , with f̂ being any operator of the form given in Eq.

(4.28), must be non-negative:

Tr
(

ρ̂ f̂ † f̂
)
≥ 0. (4.30)

Then, applying the PPT criterion (taking the partial transpose on the second mode) leads to Eq.

(4.29). Using the matrix of moments Dpqrs,nmkl = ⟨â†q âp â†n âmb̂†sb̂r b̂†k b̂l⟩, this inequality

can then be expressed as a bilinear form in c as

∑
n,m,k,l
p,q,r,s

c∗pqrs cnmkl DTB
pqrs,nmkl ≥ 0, (4.31)

for all complex-valued c’s. By Sylvester’s criterion, the latter inequality holds true for all c’s

if and only if all principal minors of the matrix DTB are non-negative. Since DTB
pqrs,nmkl =

Dpqkl,nmrs due to the form of the matrix of moments, the authors obtain that ρ̂TB is non-

negative if and only if all determinants

d = |DTB | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ⟨â⟩ ⟨â†⟩ ⟨b̂†⟩ ⟨b̂⟩ . . .
⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩ ⟨â†b̂†⟩ ⟨â†b̂⟩ . . .
⟨â⟩ ⟨â2⟩ ⟨ââ†⟩ ⟨âb̂†⟩ ⟨âb̂⟩ . . .
⟨b̂⟩ ⟨âb̂⟩ ⟨â†b̂⟩ ⟨b̂†b̂⟩ ⟨b̂2⟩ . . .
⟨b̂†⟩ ⟨âb̂†⟩ ⟨â†b̂†⟩ ⟨b̂†2⟩ ⟨b̂b̂†⟩ . . .

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.32)

are non-negative. This proves that the negativity of any minor of matrix DTB provides an

entanglement witness. It can also be proven that the principal minors of this matrix also lead

to valid entanglement witnesses. Indeed, taking a specific choice for f̂ where for example, we

cancel some of the coefficients c leads to a smaller matrix. In fact, this smaller matrix corre-

sponds to the matrix DTB where we only keep a subset of rows and corresponding columns.

In Chapter 8, we will focus on three submatrices: d1,2,4, d1,4,9, and d1,9,13. The notation d1,2,4

indicates that we look at the determinant of the matrix consisting of the first, second, and

fourth rows and columns of DTB . The interest of these matrices will be presented in detail in

Chapter 8.

In order to better show the process leading to these criteria based on submatrices, we

develop here how we can obtain the criterion based on d1,2,4. We start by taking the following

function f̂1,2,4:

f̂1,2,4 = c1 + c2 â + c3b̂, (4.33)

then we can express the partial transpose of the mean value of f̂ † f̂ as

⟨ f̂ †
1,2,4 f̂1,2,4⟩

TB = ⟨(c∗1 + c∗2 â† + c∗3 b̂†)(c1 + c2 â + c3b̂)⟩TB . (4.34)
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Rewriting this expression as a bilinear form for c, we have

⟨ f̂ †
1,2,4 f̂1,2,4⟩

TB =
(

c∗1 c∗2 c∗3
)
⟨

 1 â b̂
â† â† â â†b̂
b̂† b̂† â b̂†b̂

⟩

TB c1

c2

c3

 . (4.35)

To obtain the determinant we are looking for, we still need to apply the partial transpose on

the matrix we just obtained. We know that applying a partial transposition corresponds to the

sign flip of p̂2 which corresponds to the transformation:

b̂ −→ b̂†,

b̂† −→ b̂,

b̂†b̂ −→ (b̂†b̂)TB = (b̂TB b̂†TB) = b̂†b̂.

(4.36)

The a-mode operators are not affected, leading to the expression:

⟨ f̂ †
1,2,4 f̂1,2,4⟩

TB =
(

c∗1 c∗2 c∗3
)
⟨

 1 â b̂†

â† â† â â†b̂†

b̂ âb̂ b̂†b̂

⟩

c1

c2

c3

 . (4.37)

Using Sylvester’s criteria, this expression is non-negative if and only if

d1,2,4 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨b̂†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†b̂†⟩
⟨b̂⟩ ⟨âb̂⟩ ⟨b̂†b̂⟩

∣∣∣∣∣∣∣ ≥ 0. (4.38)

We can then verify that it indeed corresponds to taking the rows and columns 1, 2, and 4 in

Shchukin-Vogel’s matrix (4.32).

Interestingly, Shchukin and Vogel demonstrated that some well-known criteria are partic-

ular cases of their matrix. For example, Simon’s criterion is deduced from d1,2,3,4,5 ≥ 0.

We also note that all principal subdeterminants of (4.32) are invariant under arbitrary

local rotations â → e−iθa â and b̂ → e−iθb b̂ (with the definitions of rotations coming from

Section 2.5.1). Indeed, in every term of these determinants, local annihilation and creation

operators appear equally often so that all phases cancel termwise. This property implies that

the entanglement witnesses are invariant if Alice or Bob applies a local phase shift. The same

is not true for arbitrary local displacements in general, â → â + α and b̂ → b̂ + β, which can

be seen by considering for example the subdeterminant d2,3. Indeed, d2,3 is equal to

d2,3 =

∣∣∣∣∣⟨â† â⟩ ⟨â†2⟩
⟨â2⟩ ⟨ââ†⟩

∣∣∣∣∣ , (4.39)
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while its displaced version is given by

ddisplaced
2,3 =

∣∣∣∣∣⟨(â† + α∗)(â + α)⟩ ⟨(â† + α∗)2⟩
⟨(â + α)2⟩ ⟨(â + α)(â† + α∗)⟩

∣∣∣∣∣ . (4.40)

When developing the two determinants, we can easily prove that d2,3 ̸= ddisplaced
2,3 . However,

for some specific subdeterminants, this symmetry is restored, as we will see in Chapter 8.

4.3.3 Other criteria: entropic based criteria, realignement criteria and criteria
based on Q-distribution

There exist many other criteria but as they are not used in this thesis, we will not present

them in detail here. Among them, we can however cite the fact that the cross-norm criterion

presented in Subsection 4.2.1 can be reformulated under a new form that is more adapted

to continuous-variables systems. This was done by Chen et al. in 2003 [25] and is called

the realignment criterion as it is based on a realignment map. The realignment criterion was

also reexpressed in another form [164], while a weaker form that gives similar results for

some states and is easier to measure has been proposed [60]. Criteria based on the entropy

have also been developed by applying the PPT criterion to continuous-variable uncertainty

relations formulated in terms of entropies [156, 155, 130, 150, 132, 133]. Finally, new criteria

based on the Husimi Q-distribution have also been expressed [42, 41, 55, 54, 56]. These are,

again, derived from the PPT criterion.

Many entanglement criteria have already been implemented in practice. Indeed, for ex-

ample, entanglement was certified experimentally in the context of quantum optics [33, 133,

7, 122, 108] and in cold atom experiments [52, 148, 118, 39, 87, 89, 86]. However, new

technological advances demand for new physical implementation of criteria.
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Chapter 5

Multicopy measurement method

The main theme in this thesis, the multicopy method was first introduced by Brun in 2004

[18]. This method allows to access polynomial functions of a quantum state by performing

measurements on several replicas of the state. In the next chapters, we will use it to measure

different witnesses of nonclassicality and entanglement. Here, we first present the multicopy

method and then show recent results in the context of quantum optics [65].

5.1 Measurement of a polynomial function of the state

5.1.1 Objective

In quantum information, many witnesses and important quantities can be written in the form

of a polynomial function of a state ρ̂

f (ρ̂) = ∑
i1,j1,...,im,jm

ci1 j1...im jm ρi1,j1 ρi2,j2 ...ρim jm + ... ∑
i1,j1

ci1 j1 ρi1,j1 + c, (5.1)

where the c’s are complex constants and the ρi,j are the matrix elements involved in the ex-

pression of the density operator in the basis {|i⟩}:

ρ̂ =
d−1

∑
i,j=0

ρi,j|i⟩⟨j|. (5.2)

Using the normalization of the state, Trρ̂ = 1, this expression can be reduced to an expression

involving only terms of the order m:

f (ρ̂) = ∑
i1,j1,...,im,jm

ci1 j1...im jm ρi1,j1 ρi2,j2 ...ρim,jm . (5.3)

Usually, quantities expressed in such a form can only be measured by doing full tomography

of the state, which is a complicated process. Some examples of this full tomography process
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are presented in [153, 115, 99, 28]. In order to overcome this difficulty, Brun presented in

Ref. [18] an alternative measurement method that involves several copies of a state.

5.1.2 Multicopy measurement method

Brun defined a multicopy observable Â f that has to be applied to m identical copies of a

quantum state ρ̂ if the objective is to measure a polynomial function of order m:

f (ρ̂) = Tr(Â f ρ̂⊗m). (5.4)

In order to determine this observable Â f , Brun defines the operators

Âi1 j1...im jm = |j1⟩⟨i1| ⊗ ... ⊗ |jm⟩⟨im|, (5.5)

such that

Tr(Âi1 j1...im jm ρ̂⊗m) = ρi1,j1 ...ρim,jm . (5.6)

Then, using these operators, it is possible to obtain Â f as

Â f = ∑
i1,j1,...,im,jm

ci1 j1...im jm Âi1 j1...im jm , (5.7)

such that, by measuring the mean value of this observable on m identical copies of the state,

we obtain the desired value of the function f (ρ̂). However, such operator is not always

Hermitian (Â f ̸= Â†
f ) and hence, it is not always directly measurable. In such cases, it is

needed to define two new operators that will be observable and that we can measure to obtain

the value of the function:

Ô f = 1
2 (Â f + Â†

f ),

Ô′
f = −i

2 (Â f − Â†
f ). (5.8)

Using these observables, we can express Â f :

Â f = Ô f + iÔ′
f . (5.9)

The function is then given by f (ρ̂) = Tr(ρ̂⊗m(Ô f + iÔ′
f )).

Once the observables are found, it is still needed to find an implementable circuit to apply

the measurement. This last step is not trivial and there exists no general algorithm to do

it. If the circuit exists and is simple, we obtain a way of measuring the desired function

that is substantially simpler than doing full tomography. Hence, we are mainly concerned

with finding expressions and corresponding implementations of multicopy observables which

implement witnesses for the detection of nonclassicality and entanglement.
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5.2 Application of the method

Since the publication of Brun’s paper, some applications of this multicopy measurement tech-

nique have been proposed. In this section, we start by the analysis of a simple function as

an example: the purity. We then make a brief analysis of the main applications of multi-

copy measurements in the literature. Finally, we present the only known application of the

multicopy technique in quantum optics.

5.2.1 Multicopy observable for the measure of the purity

As said before, the purity of a quantum state is an important quantity in quantum optics. Its

expression is given in Eq. (2.43). Apart from the fact that the purity is useful to describe a

quantum state, the purity is even more important for this thesis as it appears in the expression

of the quadrature coherence scale (QCS), see Eq. (3.18). Since one of the results of this thesis

is a multicopy observable to measure the QCS, we also have, as a subroutine, a multicopy

implementation for the measurement of the purity.

Looking at Eq. (2.43), we see that the purity consists of a function of the density operator

of the form of Eq. (5.3). The order of the polynomial involved is two which means that we

need two copies to implement the multicopy version. The multicopy version of the purity can

be found in Ref. [18]:

P(ρ̂) = Tr(ρ̂⊗2Ŝ), (5.10)

where Ŝ is the swap operator. This expression will be proved again in Chapter 7 when we will

be interested in the measurement of the quadrature coherence scale.

The swap operator for the measurement of the purity has already been implemented in

the context of many-body Bose-Hubbard systems [29, 78]. We will demonstrate again the

implementation of the swap operator in a quantum optics context in Chapter 7.

The multicopy measurement technique has also been used to measure fidelity, overlap and

purity using discrete circuits involving phase-shifts [40, 73, 38]. Experimental implementa-

tions can also be found in Refs. [109, 16, 110, 116].

5.2.2 Application of the method in quantum optics

Prior to this thesis original work, there was only one application of the multicopy measure-

ment technique in the field of quantum optics [65]. During this thesis, the technique has been

applied to other quantum optics examples. It is thus interesting to study in more details Ref.

[65]. Its objective was to use a multicopy setup in order to find an (entropic) uncertainty
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relation invariant under all Gaussian transformations. Indeed, as mentioned earlier, the in-

variance under symplectic transformations of the uncertainty relation is a desired property

because then all pure Gaussian states saturate the inequality. This was not fulfilled in the first

uncertainty relations of Heisenberg and Kennard [59, 80] but was satisfied for the relation of

Robertson and Schrödinger, Eq. (2.18) [134, 126]. For entropies, such a relation has only

been conjectured (see Ref. [152]).

In Ref. [65], the authors want to find back this uncertainty relation but also the circuit

to measure it. The first step is to find a two-copy observable such that its variance is equal

to σ2
x σ2

p . To do so, there exist several observables but the authors impose that the observable

must be invariant by rotation. This leads to the following observable:

L̂y = i
2 (â1 â†

2 − â†
1 â2),

= 1
2 (x̂1 p̂2 − p̂1 x̂2), (5.11)

which is such that its mean value is equal to 0, ⟨⟨L̂y⟩⟩ = 0. This observable is called L̂y as it

can be obtained by applying the Jordan-Schwinger map on the y-Pauli matrix as we will show

later in this thesis and the notation ⟨⟨...⟩⟩ represents the mean value of the observable for two

identical copies ⟨⟨...⟩⟩ = Tr (... ρ̂ ⊗ ρ̂). The variance of L̂y is given by:

σ2
L̂y

= ⟨⟨L̂2
z⟩⟩ =

1
2

(
detγc +

1
4
⟨[x̂, p̂]⟩2

)
, (5.12)

where γc stands for the covariance matrix of a centered state:

γc =

(
⟨x̂2⟩ 1

2 ⟨{x̂, p̂}⟩
1
2 ⟨{x̂, p̂}⟩ ⟨ p̂2⟩

)
. (5.13)

By definition, the variance of an observable has to be bigger than zero:

det γc ≥ −1
4
⟨[x̂, p̂]⟩2. (5.14)

This inequality is nothing but the Robertson-Schrödinger uncertainty relation for centered

states: det γc ≥ 1
4 . Moreover, the authors designed a circuit to measure the observable L̂y

(see Fig. 5.1). To measure this observable, the second copy of the state is first rotated by

an angle of π
2 , then the two modes are sent in a 50:50 beam splitter and finally, the photon

numbers in both outputs are measured. After the application of such circuit, the observable is

equal to:

L̂y =
1
2
(n̂′

1 − n̂′
2), (5.15)

which means that the observable is linked to the number of photons in each output.

To summarize, the authors have found a multicopy observable which has a variance linked

to the uncertainty relation. However, this observable is only invariant under rotation and not

under displacement, so it needs to be improved. For that, it appears that increasing the number

of copies leads to a better result. Indeed, the authors managed to find a 3-copy observable
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Figure 5.1: Circuit for the measurement of L̂y (Figure taken from Ref. [65]).

presenting all the wanted invariances.

To express it, we define the observable L̂ij
y acting on the modes i and j:

L̂ij
y =

1
2
(x̂i p̂j − p̂i x̂j), (5.16)

then the 3-copy observable is given by:

M̂ =
1√
3
(L̂12

y + L̂23
y + L̂31

y ). (5.17)

As for the 2-copy observable, its mean value for three identical copies is equal to zero:

⟨⟨⟨M̂⟩⟩⟩ = 0, (5.18)

while its variance is given by:

σ2
M̂ = ⟨⟨⟨M̂2⟩⟩⟩ = 1

2
(detγ +

1
4
⟨[x̂, p̂]⟩2), (5.19)

where the notation ⟨⟨⟨...⟩⟩⟩ corresponds to the expectation value on three identical copies:

Tr (... ρ̂ ⊗ ρ̂ ⊗ ρ̂). Since this variance is also bigger than zero by definition, it gives:

det γ ≥ −1
4
⟨[x̂, p̂]⟩2. (5.20)

This final inequality is nothing else than the Robertson-Schrödinger uncertainty relation of

Eq. 2.18. Thus, the authors managed to find a 3-copy observable leading to uncertainty

relations presenting the right invariances. Moreover, the circuit implementing M̂ is found in

the paper (see Fig. 5.2).

Based on this observable, it is also possible to write an entropic uncertainty relation:

H(M̂)ρ ≥ 0. (5.21)

Analyzing these results, we can draw some conclusions that were useful in obtaining
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Figure 5.2: Circuit for the measurement of M̂ (Figure taken from Ref. [65]).

the results of this thesis. Indeed, we see the importance of the invariance under symplectic

transformations. It also appears that increasing the numbers of copies improves the results,

as in this case, it allows them to consider non-centered states. Finally, the authors implement

a multicopy version of the determinant of the covariance matrix. The form of a determinant

suits very well the multicopy method as we can find a multicopy observable by assigning

to each row a copy. These remarks lead us to investigate the multicopy implementation of

witnesses that are put under the form of a determinant. This is exactly what we do in Chapters

6 and 8.

On the mathematical side, the authors are using an observable L̂y which is a component

of the angular momentum L̂. In what follows, we will still use this observable but also the

other components x and z of the same angular momentum. We will also show that they can

be obtained using the so-called Jordan Schwinger map.
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Multicopy criteria for nonclassicality
detection
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Chapter 6

Multicopy observables for the
detection of optically nonclassical
states

This chapter is based on the following paper that I published together with Matthieu Arnhem

and Nicolas Cerf:

M. Arnhem, C. Griffet and N. J. Cerf. Multicopy observables for the detection of optically

nonclassical states. Physical Review A, 106: 043705, October 2022. [6]

6.1 Introduction

Determining whether a quantum optical state admits nonclassical properties or not is an ubiq-

uitous question in the theory of quantum optics as well as in the development of quantum

technologies. Numerous proposals for identifying quantum states displaying nonclassicality

have been discussed in the literature, see e.g. [4, 97, 124, 125, 128, 30, 61] or see [105] for a

review of different criteria. We focus here on a possible definition of optical nonclassicality as

introduced by Glauber and Sudarshan [46, 47, 149], starting from the assertion that classical

states are those that are expressible as convex mixtures of coherent states. Accordingly, when

the Glauber-Sudarshan P function of a state is incompatible with a true probability distribu-

tion (i.e., when it admits negative values in phase space or is not well-behaved in the sense

that it cannot be expressed as a regular function), the state is said to be optically nonclassical.

A straightforward operational meaning of optical nonclassicality is that it is a necessary con-

dition in order to produce entanglement with a beam splitter [76, 117, 48] (see Section 3.3).

More generally, being able to identify and characterize such nonclassical optical states is es-

sential since nonclassical features are often taken as resources for quantum information tasks

[114, 145] such as quantum computation [85], distributed quantum computing [139], quan-

63



CHAPTER 6. MULTICOPY OBSERVABLES FOR THE DETECTION OF OPTICALLY
NONCLASSICAL STATES

tum networks [162], quantum boson sampling [138], quantum metrology [88, 44] or quantum

communication [123].

Various implementation methods have been proposed for identifying nonclassical states,

exploiting measurements ranging from single-photon detection [146, 10] to continuous-variable

measurements such as homodyne detection [142] or heterodyne detection [15]. In this chap-

ter, we introduce a technique that uses multiple replicas (i.e., identical copies) of a quantum

state in order to construct a nonclassicality observable. The relevance of multicopy observ-

ables in quantum optics has recently been explored in the context of uncertainty relations [65].

It relies on the observation that polynomial functions of the elements of a density matrix can

be expressed by defining an observable acting on several replicas of the state, avoiding the

need for quantum tomography [18]. In the present chapter, we consider the nonclassicality

criteria resulting from the matrix of moments of the optical field as introduced in [140, 142].

In the simplest cases at hand, the multicopy observables enable an original implementation of

nonclassicality witnesses through linear interferometry and photon number detectors.

This chapter is constructed as follows. In Section 6.2, we review the properties of the

matrix of moments defined in Eq. (3.16) that can be used when designing the implementation

of the criteria. In Section 6.3, we benchmark the performances of the nonclassicality criteria

derived from the determinant of these matrices [142, 140]. We consider a variety of states

that are known to be nonclassical (Fock states, squeezed states, cat states, squeezed thermal

states) in order to identify which criteria do detect their nonclassicality. This is useful to guide

our search for designing multicopy nonclassicality observables, as carried out in Section 6.4.

There, we focus on the most interesting criteria based on a few selected principal minors

of the matrix of moments as identified in Section 6.3 and provide a physical implementa-

tion whenever possible. Finally, in Section 6.5, we give our conclusions and discuss further

perspectives.

6.2 Optical nonclassicality of quantum states

In Section 6.3, we will study all the principal minors of the matrix of moment DN of dimen-

sion 5 × 5, which is helpful to determine which of them are good candidates for constructing

a multicopy observable (as will then be addressed in Section 6.4). Before coming to this, it is

relevant to list the important properties of the matrix of moments DN and its determinants:

• The matrix of moment DN presents a block structure. Indeed, the matrix of moments

DN is defined in Eq. (3.16). By inspection, we see that the entry mi,j of row i and

column j results from the (expectation value of the) product of the first entries in the

same row and same column taken in normal order, namely

mi,j = ⟨m̂i,j⟩ = ⟨: m̂i,1 m̂1,j :⟩ = ⟨: m̂†
1,i m̂1,j :⟩, (6.1)
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where the entries of the first row are defined as

m̂1,j = â†l ân−l . (6.2)

In this expression, the index j is decomposed into two indices n and l via

j =
n(n + 1)

2
+ l + 1, (6.3)

which can be understood from the block structure of the matrix DN as illustrated in

Fig. 6.1. The index n stands for the block index and goes from 0 to infinity (when

N → ∞). It corresponds to the total order in â and â† of the block, while l goes from 0

to n corresponds to the order in â† (the order in â being of course n − l) within the nth

block.

• The matrix of moment DN is Hermitian. Hence, its determinant as well as all its princi-

pal minors are real-valued. This is easily seen from Eq. (6.1) since mi,j = ⟨: m̂†
1,i m̂1,j :

⟩ = ⟨: (m̂†
1,j m̂1,i)

† :⟩ = m∗
j,i.

• All principal minors of matrix DN vanish for coherent states |α⟩. This property is

consistent with the fact that the coherent states are on the boundary of the convex set of

classical states. Any statistical mixture of coherent states is classical and can only give

a higher value of all principal minors. Conversely, a slight deviation from a coherent

state to a nonclassical state may induce some principal minor to have a negative value.

The nonclassicality of coherent states is of course not detected by all nonclassicality

criteria since they are classical, but they come with a vanishing value for all principal

Figure 6.1: Block structure of the matrix of moments. The blocks of the same color are
composed of entries having the same total power in â and â†. Each element can be either
defined with respect to its row i and column j, either with the number of its block n and its
position j in the block (vertically and horizontally). The link between these two notations is
given by Eq. (6.3).
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minors (dominant or not) of the matrix of moment, which is consistent with extremality.

For example, using â|α⟩ = α|α⟩ and ⟨α|â† = ⟨α|α∗, the matrix of moments D123 can

be written as

D|α⟩
123 =

 1 α α∗

α∗ α∗α α∗2

α α2 α∗α

 . (6.4)

One may see that D|α⟩
123 is a rank-one matrix since it can be written as the outer product

α⃗ ⊗ α⃗†, where α⃗ = (1, α, α∗)†. Hence, its determinant d|α⟩123 is equal to 0. In view of the

form of the matrix of moments, this argument holds for all principal minors (of order

strictly greater than one) which are therefore equal to 0 for coherent states. This shows

the special role played by coherent states in the sense that they saturate all inequalities

in Eq. (3.17).

• All principal minors of matrix DN are invariant under rotations in phase space. Hence,

all corresponding nonclassicality criteria are invariant under rotations in phase space.

This property is consistent with the fact that nonclassicality is a feature that is unaf-

fected by such rotations. This simplifies the calculations since all phase terms can be

given arbitrary values and will typically be set to zero. The invariance of d1···N =

det(DN) under rotations is easy to prove. Indeed, applying a rotation transforms the

operator â into eiθ â and â† into e−iθ â†. Since each term in the development of the de-

terminant of DN always involves the same power in â and â†, the factors eiθ and e−iθ

cancel each other out. Hence, the observable is not affected by phase shifts and the

criterion is invariant under rotations. For example, we have

dθ
123 =

∣∣∣∣∣∣∣
1 ⟨âe−iθ⟩ ⟨â†eiθ⟩

⟨â†eiθ⟩ ⟨â†eiθ âe−iθ⟩ ⟨â†2e2iθ⟩
⟨âe−iθ⟩ ⟨â2e−2iθ⟩ ⟨â†eiθ âe−iθ⟩

∣∣∣∣∣∣∣ ,

= ⟨â† â⟩2 − ⟨â†2⟩⟨â2⟩ − 2⟨â†⟩⟨â⟩⟨â† â⟩+ ⟨â†2⟩⟨â⟩2 + ⟨â†⟩2⟨â2⟩,

= d123,

(6.5)

where the superscript θ means that the state has been rotated by an angle θ. In view

of the form of DN , it is clear that this rotation invariance also holds for all principal

minors (and not just dominant principal minors).

• All dominant principal minors of matrix DN are invariant under displacements in phase

space. This property is consistent with the fact that nonclassicality is unaffected by such

displacements. Hence, we can simplify our calculations by considering states that are

centered in phase space. Note that, unfortunately, the nondominant principal minors

do not enjoy this invariance property. In Section 6.4.1, we will consider the effect of

displacements on some non-dominant principal minors and illustrate how it affects the

detection capability of the corresponding criteria. The invariance under displacements

of the dominant principal minors d1···N = det(DN) of the matrix of moments can be

understood from the simple example of d123. It exploits a property of the determinant,
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namely that adding to a column (or row) a linear combination of any other columns (or

rows) does not change the value of the determinant. By using this property recursively

to d123, we show that it is equal to dα
123 where the superscript α means that the state

has been transformed by the displacement operator D̂(α) = exp
(
αâ† − α∗ â

)
, which

transforms the operator â into â + α and â† into â† + α∗.

d123 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨â†⟩+ α∗

⟨â†⟩ ⟨â† â⟩+ α⟨â†⟩ ⟨â†2⟩+ α∗⟨â†⟩
⟨â⟩ ⟨â2⟩+ α⟨â⟩ ⟨â† â⟩+ α∗⟨â⟩

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨â†⟩+ α∗

⟨â†⟩+ α∗ ⟨â† â⟩+ α⟨â†⟩+ α∗(⟨â⟩+ α) ⟨â†2⟩+ α∗⟨â†⟩+ α∗(⟨â†⟩+ α∗)

⟨â⟩+ α ⟨â2⟩+ α⟨â⟩+ α(⟨â⟩+ α) ⟨â† â⟩+ α∗⟨â⟩+ α(⟨â†⟩+ α∗)

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â + α⟩ ⟨â† + α∗⟩

⟨â† + α∗⟩ ⟨(â† + α∗)(â + α)⟩ ⟨(â† + α∗)2⟩
⟨â + α⟩ ⟨(â + α)2⟩ ⟨(â† + α∗)(â + α)⟩

∣∣∣∣∣∣∣ ,

= dα
123.

(6.6)

This proof holds for any dominant principal minors dN but not for the other principal

minors of the matrix of moments DN . Remember that we adopt a slightly relaxed

definition of dominant principal minors, which means that we must exhaust all rows

and columns of a block before moving to the next block but the order of rows and

columns is irrelevant within a given block.

6.3 Nonclassicality criteria based on the matrix of moments

Let us benchmark the performance of the nonclassicality criteria derived from the principal

submatrices of the matrix of moments DN (up to N = 5) in terms of their ability to detect the

nonclassicality of various nonclassical states. We express the corresponding principal minors

for common classes of nonclassical pure states, such as Fock states, squeezed states, or cat

states (note that all these states are centered in phase space). All values are listed in Table

6.1, where negative values imply the actual detection of nonclassicality (see entries with gray

background). We then study the performance of the criteria when applied to Gaussian (pure

or mixed) states and determine that d123 is a necessary and sufficient nonclassicality criterion

for these states. Overall, our observations lead us to focus on d15, d23, d123 and d1235 when

constructing multicopy nonclassicality observables in Section 6.4.

67



CHAPTER 6. MULTICOPY OBSERVABLES FOR THE DETECTION OF OPTICALLY
NONCLASSICAL STATES

6.3.1 Nonclassical pure states

Fock states

Fock states |n⟩ (except for the vacuum state |0⟩) are common nonclassical states, which can

be identified as nonclassical states by criteria such as d15, d125, d135, d145, or d1235, as can be

seen in Table 6.1 (see Subsection 2.4.2 for the definition of a Fock state). In a nutshell, the

nonclassicality of the Fock states is only detected when an odd number of off-diagonal entries

of the type ⟨â†k âk⟩ appear in the principal submatrix of the matrix of moments DN . This

explains why Fock states’ nonclassicality is only detected in Table 6.1 for criteria that involve

the fifth row or column since the first non-zero off-diagonal element of D5 is (D5)1,5 =

(D5)5,1. For completeness, we list all nonzero moments (entries of matrix D5) in Table 6.2.

Squeezed states

Squeezed states are nonclassical quantum states (see Subsection 2.4.1 for the definition of

a squeezed state) which can be used, for instance, to enhance the sensitivity of the LIGO

experiment [1, 26] by improving a detector such that it can go beyond the quantum noise

limit. In order to check which principal minors detect them as nonclassical states, we need to

evaluate the entries of the matrix of moments D5. First, we observe that all moments ⟨â†k âl⟩
of odd order k + l vanish since squeezed states can be decomposed into even Fock states

[159], that is

|Sr⟩ =
1√

cosh r

∞

∑
k=0

(−eiϕ tanh r)k

√
2k!

2kk!
|2k⟩, (6.7)

where r is the squeezing factor and ϕ is the squeezing angle.

The non-vanishing low-order moments are listed in Table 6.2 (as a consequence of the

rotation invariance, we may assume ϕ = 0 without loss of generality). These expressions

allow us to easily calculate the different determinants of principal submatrices from the matrix

of moments D5 for squeezed states (see Table 6.1). The nonclassicality of squeezed states is

detected, for example, by d23, d123, d234, d235, or d1235.
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Table 6.1: Principal minors of the matrix of moments (3.16) up to dimension N=5 evaluated for different classes
of nonclassical (centered) pure states, namely Fock states |n⟩, squeezed states |Sr⟩ of squeezing parameter r, and
even or odd cat states |cβ

±⟩ of complex amplitude β. A light gray background corresponds to states that are
detected as nonclassical since the determinant is always negative, while a dark gray background corresponds to
states that are only detected as nonclassical above a certain threshold value of the squeezing parameter r. The
smallest minor that detects the nonclassicality of Fock states (and odd cat states) is d15, while the smallest minor
that detects the nonclassicality of squeezed states (and even cat states) is d23. The minor d123 is equal to d23 for
centered states, but, in addition, is invariant under displacements (not visible in the table). The minor d1235 yields
the strongest criterion in this table since it detects the nonclassicality of Fock, squeezed, and (even and odd) cat
states. It is worth mentioning that the minors d24 = d26 = d34 = d36 and d25 = d35 are positive (implying no
detection of nonclassicality) for all states for which the moments of odd total order in â and â† are zero.
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⟨â

2 ⟩
=

⟨â
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Table 6.2: Non-zero moments (entries of the matrix D5) evaluated for different classes of
nonclassical (centered) states, namely Fock states |n⟩, squeezed states |Sr⟩ of squeezing pa-
rameter r, even or odd cat states |cβ

±⟩ of complex amplitude β, and Gaussian mixed states
(for these, we may consider with no loss of generality a thermal state of mean photon number
n that is squeezed with a squeezing parameter r). All these moments are used to evaluate
the nonclassicality criteria based on the minors of the matrix of moments (3.16) as shown in
Tables 6.1 and 6.3.
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Cat states

Another archetype of nonclassical states consists of the even and odd optical cat states, written

|c+⟩ and |c−⟩ respectively. These states were defined in Subsection 2.4.2. However, we

remind here their definition: they are defined as superpositions of coherent states of opposite

phases |β⟩ and | − β⟩, namely

|cβ
±⟩ =

1√
N±

(|β⟩ ± | − β⟩), (6.8)

where β is a complex amplitude and N+ and N− are normalization constants defined as

N± = 2
(

1 ± e−2|β|2
)

. Remember that even cat states and odd cat states are orthogonal to

each other, i.e., ⟨cα
±|c

β
∓⟩ = 0, while applying the annihilation operator to an odd cat state

results in a state proportional to an even cat state and vice-versa:

â |cβ
±⟩ = β

√
N∓
N±

|cβ
∓⟩ . (6.9)

As the even cat state is orthogonal to the odd cat state, many moments appearing in the matrix

will vanish and be equal to zero. As an example, we can calculate ⟨cβ
±| â |cβ

±⟩:

⟨cβ
±| â |cβ

±⟩ = ⟨cβ
±| β

√
N∓
N±

|cβ
∓⟩ = β

√
N∓
N±

⟨cβ
±|c

β
∓⟩ = 0. (6.10)

Using this logic, the only non-zero entries in the matrix of moments DN are those of form

⟨â†k âl⟩ where k + l is even, as shown in Table 6.2 up to k + l = 4. This allows us to calculate

the different determinants of principal submatrices from the matrix of moments D5 for even

and odd cat states (see Table 6.1).

Observations

From Table 6.1, we can make the following observations (limited to the matrix of moments

up to dimension 5) :

• Increasing the dimension of the matrix of moments does not necessarily lead to a

stronger criterion. For example, d12345 does not detect the nonclassicality of more

states than d1234 while being of higher order.

• Some criteria seem to be complementary in the sense that if the nonclassicality of a

state is detected by one criterion, it will not be detected by the complementary criterion

and vice-versa. This is, for instance, the case of d15 (detecting the nonclassicality of

Fock states but not squeezed states) and d23 (detecting the nonclassicality of squeezed

states but not Fock states). Furthermore, it is often the case that a criterion detecting

the nonclassicality of Fock states such as d15 also detects the nonclassicality of odd cat
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states (similarly, a criterion detecting squeezed states as nonclassical such as d23 often

detects even cat states as nonclassical).

• The strongest criterion seems to be based on d1235 since it is the lowest order determi-

nant that detects the nonclassicality of Fock states, squeezed, and (even and odd) cat

states.

These observations motivate the rest of this chapter, in which we will mostly focus on the

multicopy observables for determinants d15, d23, d123 and d1235.

6.3.2 Nonclassical mixed states

The nonclassicality of mixed states has been studied, for example, in Refs. [82, 96, 75] and

many other papers. We consider here the simplest case of Gaussian mixed states, for which

the limit of nonclassicality is well known: a state is nonclassical if the smallest quadrature

variance is smaller than the vacuum noise variance [82]. The relevant Gaussian mixed states

here are the squeezed thermal states, since a displacement does not affect nonclassicality. It

is also sufficient to consider squeezing of the x-quadrature since all considered criteria are

invariant under rotations. The covariance matrix of these states is written as

γG = (n +
1
2
)

(
e−2r 0

0 e2r

)
, (6.11)

where n is the mean photon number of the thermal state that is squeezed and r is the squeezing

parameter.

In order to calculate the principal minors of interest (d15, d23, d123, and d1235), we take

advantage of the fact that, for Gaussian states, the moments of order higher than two can be

expressed as a function of the first- and second-order moments only. Given that squeezed

thermal states are centered states, all elements of the matrix of moments DN can thus be

expressed from the covariance matrix γG. For example, the fourth-order moment ⟨â†2 â2⟩ can

be calculated from the Wigner function W(x, p) of the state ρ̂ by using the overlap formula

⟨Â⟩ = Tr(Âρ̂) =
∫

dx dp W(x, p) Ā(x, p), (6.12)

where Ā(x, p) is the Weyl transform of Â. The latter can be obtained by exploiting the com-

mutation relation [â, â†] = 1 in such a way as to write Â = â†2 â2 in terms of symmetrically-

ordered operators only, namely

Â = S(â†2 â2)− 2 S(â† â) +
1
2

, (6.13)

72



6.3. NONCLASSICALITY CRITERIA BASED ON THE MATRIX OF MOMENTS

Squeezed thermal states
d15

1
4 [1 − 2(1 + 2n) cosh(2r) + (1 + 2n)2 cosh(4r)]

d123 = d23
1
2 + n + n2 − 1

2 (1 + 2n) cosh(2r)
d1235 d15 d23

Table 6.3: Principal minors of the matrix of moments D5 evaluated for centered Gaussian
states (i.e., squeezed thermal states).

where S(·) denotes symmetric ordering and

S(â†2 â2) =
1
6
(â†2 â2 + â† ââ† â + â† â2 â† + ââ† ââ† + ââ†2 â + â2 â†2),

S(â† â) =
1
2
(â† â + ââ†).

(6.14)

Hence, Â can be reexpressed in terms of the x̂ and p̂ quadrature operators as

Â =
1
12

(x̂2 p̂2 + p̂2 x̂2 + x̂ p̂x̂ p̂ + x̂ p̂2 x̂ + p̂x̂2 p̂ + p̂x̂ p̂x̂) +
1
4
(x̂4 + p̂4)− (x̂2 + p̂2) +

1
2

.

(6.15)

The Weyl transform of this expression yields

Ā(x, p) =
1
2

x2 p2 +
1
4
(x4 + p4)− (x2 + p2) +

1
2

, (6.16)

so that the mean value of Â can be written as

⟨Â⟩ = 1
2
⟨x2 p2⟩+ 1

4

(
⟨x4⟩+ ⟨p4⟩

)
−
(
⟨x2⟩+ ⟨p2⟩

)
+

1
2

. (6.17)

For a Gaussian distribution, we have

⟨x4⟩ = 3 ∆x4 = 3
(

n +
1
2

)2

e−4r,

⟨x2 p2⟩ = ∆x2∆p2 =

(
n +

1
2

)2

,

⟨p4⟩ = 3 ∆p4 = 3
(

n +
1
2

)2

e4r,

(6.18)

so that we get the expression of ⟨â†2 â2⟩ that is displayed in Table 6.2 for Gaussian states. By

using the same method to calculate the other nonzero moments (also displayed in Table 6.2),

we finally obtain the corresponding values of the principal minors shown in Table 6.3.

We see that d15 is always positive for any values of parameters n and r, so it does not yield

a criterion. In contrast, d23 is interesting as it can be negative for some values of n and r. Of

course, when the mean number of thermal photons n = 0, we recover the result for squeezed

states and d23 = − sinh2(r) is negative for all values of the squeezing parameter r > 0.

However, when n > 0, the determinant becomes positive below some threshold value of r.

From Ref. [82], we know that a necessary and sufficient condition for a squeezed thermal
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state with covariance matrix γG to be nonclassical is

(n +
1
2
) e−2r <

1
2

. (6.19)

It is easy to check that this precisely corresponds to the condition d23 < 0, so the criterion

based on the sign of d23 is necessary and sufficient for squeezed thermal states. Note that d23

is not invariant under displacements, so that this criterion loses its power when applied to an

arbitrary Gaussian state (i.e., a displaced squeezed thermal state). However, the determinant

d123 can be used instead since it is invariant under displacements and coincides with d23 for

centered states. Thus, d123 < 0 provides a necessary and sufficient nonclassicality criterion

for Gaussian states.

Note finally that for the special case of centered Gaussian states (squeezed thermal states),

d1235 is equal to the product of d15 and d23 since all entries of odd order in the annihilation

and creation operators in the matrix of moments D5 vanish. Since d15 is always positive

for Gaussian states, d1235 has thus the same detection power as d23. Furthermore, since it

is invariant under displacements, d1235 has the same detection power as d123 for arbitrary

Gaussian states. Yet, going beyond Gaussian states, we have seen that d1235 actually surpasses

d123 in the sense that it also detects the nonclassicality of (displaced) Fock states.

This is also true for non-Gaussian mixed states. For example, we may consider a restricted

class of non-Gaussian mixed states that are nonclassical as a result of photon addition or

subtraction from a Gaussian state. Such states are viewed as essential for quantum computing,

see e.g. Refs. [24, 158]. Interestingly, all the moments appearing in the matrix of moments

DN for these states can be deduced from the moments of the corresponding Gaussian states

as displayed in Table 6.2. Indeed, for the photon-subtracted Gaussian states, the moments are

⟨â†k âl⟩ = Tr(â†k âl âρG â†) = Tr(â†(k+1) â(l+1)ρG),

= ⟨â†(k+1) â(l+1)⟩G,
(6.20)

where we have used the cyclic invariance property of the trace. For the photon-added Gaussian

states, it can be shown that

⟨â†k âl⟩ = Tr(â†k âl â†ρG â),

= Tr((â†(k+1) â(l+1) + (l + k + 1)â†k âl + klâ†(k−1) â(l−1))ρG),

= ⟨â†(k+1) â(l+1)⟩G + (l + k + 1) ⟨â†k âl⟩G + kl ⟨â†(k−1) â(l−1)⟩G.

(6.21)

Hence, we can easily derive the principal minors for photon-added and photon-subtracted

Gaussian states directly from the matrix of moments calculated for the corresponding Gaus-

sian states. It is worth noticing that even the simpler criterion based on d15 can detect the non-

classicality of photon-subtracted Gaussian states for small values of n and r, while it is useless

in the case of Gaussian states. The parameter ranges of the Gaussian photon-substracted states

for which d15 detects the nonclassicality is presented on Fig. 6.2.
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Figure 6.2: Value of d15 for Gaussian photon-substracted states. The blue region shows the
values of the parameters for which the nonclassicality of the state is detected by d15.

6.4 Multicopy nonclassicality observables

Potential implementations of nonclassicality criteria based on the matrix of moments DN have

been considered in Ref. [142], but the idea was to experimentally evaluate each individual

entry of the matrix before calculating its determinant. Instead, in the present work, we look

for an optical implementation that makes it possible to directly access the value of the de-

terminant by measuring the expectation value of some nonclassicality observable. Since the

principal minors discussed in Section 6.3 (especially d15, d23, d123, and d1235) are polynomial

functions of the matrix elements of ρ̂, we turn to multicopy observables as defined in Ref.

[18]. This method appears to be well adapted here since the nonclassicality criteria involve

determinants (a similar technique has been successfully applied for accessing determinants of

other matrices of moments connected to uncertainty relations, see Ref. [65]).

We start by detailing the design of two-copy observables for accessing the determinants

d12 and d14, used as examples to introduce the method, followed by d23 and d15. Then, we

increase the number of copies and consider the 3-copy nonclassicality observable for d123 and

4-copy nonclassicality observable for d1235. We also discuss the optical implementation of

these observables whenever possible. In what follows, when we present a circuit, it is implicit

that we put identical copies of a state in each input of the circuit.
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6.4.1 Two-copy observables

Instructive examples: d12 and d14

The determinant d12, which is expressed as

d12 =

∣∣∣∣∣ 1 ⟨â⟩
⟨â†⟩ ⟨â† â⟩

∣∣∣∣∣ = ⟨â† â⟩ − ⟨â⟩⟨â†⟩, (6.22)

is useless for nonclassicality detection in the sense that it is positive for all (classical or non-

classical) states. Indeed, d12 is simply the thermal (or chaotic) photon number, i.e., the total

photon number minus the coherent photon number ⟨â⟩⟨â†⟩. Since d12 is invariant under dis-

placements, centering the state on the origin in phase space simply results in d12 = ⟨â† â⟩ ≥ 0.

Nevertheless, it is instructive to illustrate the multicopy observable technique with this

simple example, where we need two copies of the original state ρ̂. We consider a 2 × 2
operator matrix mimicking the matrix of moments D2 except that we remove all expectation

values. Then, we associate the first row of this operator matrix with the first copy (mode

1) and the second row with the second copy (mode 2). In a last step, we average over all

permutations σ ∈ S2 on the mode indices in order to ensure the Hermiticity of the resulting

multicopy observable, that is,

B̂12 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣ 1 âσ(1)

â†
σ(2) â†

σ(2) âσ(2)

∣∣∣∣∣ ,

=
1
2
(â†

2 â2 + â†
1 â1 − â1 â†

2 − â2 â†
1),

(6.23)

where |S2| = 2! is the order of the symmetric group S2.

Note that the method used above to obtain the multicopy observable will be used again

several times in this thesis. The different steps to obtain the observable starting from a deter-

minant that we want to measure are always the same. First, we drop the mean value in the

determinant so that the determinant now contains operators. Then, we assign to each row of

the determinant a copy index and finally, we sum on all the permutations of the indices so that

the obtained operator is Hermitian. This method will always work when dealing with matri-

ces that are Hermitian (which is the case in this chapter and will be the case in Chapter 8) by

construction. In this case, this method gives us an easier way to obtain multicopy observables

than the method presented by Brun in Ref. [18].

The value of the determinant d12 is obtained by measuring the expectation value of this

observable on two copies of the same state ρ̂, namely ⟨⟨B̂12⟩⟩ ≡ Tr[(ρ̂ ⊗ ρ̂) B̂12]. Indeed, we
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have

⟨⟨B̂12⟩⟩ =
1
2
⟨⟨ â†

2 â2 + â†
1 â1 − â1 â†

2 − â2 â†
1 ⟩⟩,

=
1
2
(⟨â†

2 â2⟩+ ⟨â†
1 â1⟩ − ⟨â1⟩⟨â†

2⟩ − ⟨â2⟩⟨â†
1⟩),

= ⟨â† â⟩ − ⟨â⟩⟨â†⟩ = d12,

(6.24)

where ⟨·⟩ ≡ Tr[ρ̂ ·].

Finally, we look for an optical implementation of observable B̂12 by means of linear op-

tics and photon-number resolving detectors. Although it is not immediately obvious from

Eq. (6.23), we can exploit the Jordan-Schwinger representation of angular momenta in terms

of bosonic annihilation and creation operators. The Jordan-Schwinger representation of the

SU(2) algebra connects the angular momentum operators with the bosonic mode operators of

two modes â1 and â2 as follows

L̂j =
1
2

Â†σj Â, (6.25)

where Â = (â1 â2)T and σj are the three Pauli matrices with j = x, y, z. The fourth associated

operator is denoted as

L̂0 =
1
2

Â†σ0Â, (6.26)

where σ0 = 1 is the 2 × 2 identity matrix, and it is linked to the Casimir operator L̂2
x +

L̂2
y + L̂2

z = L̂0(L̂0 + 1). We get a representation of angular momenta as we recover the usual

commutation relations [L̂j, L̂k] = i ϵj,k,l L̂l with ϵj,k,l being the Levi-Civita symbol, as well as

[L̂j, L̂0] = 0, ∀j.

The three components of the angular momentum L̂ can then be expressed as

L̂x =
1
2
(â†

2 â1 + â†
1 â2), (6.27)

L̂y =
i
2
(â†

2 â1 − â†
1 â2), (6.28)

L̂z =
1
2
(â†

1 â1 − â†
2 â2). (6.29)

Hence, we can express B̂12 as the difference between L̂0 (i.e., half the total photon number)

and the x-component of the angular momentum operator, namely,

B̂12 = L̂0 − L̂x. (6.30)

In order to find the optical implementation of B̂12, let us derive the effect of linear op-

tics transformations on the angular momentum operators. When applying a beam splitter of

77



CHAPTER 6. MULTICOPY OBSERVABLES FOR THE DETECTION OF OPTICALLY
NONCLASSICAL STATES

transmittance τ, the angular momentum operators transform as

L̂0 → L̂0,

L̂x → (1 − 2τ) L̂x + 2
√

τ(1 − τ) L̂z,

L̂y → −L̂y,

L̂z → (2τ − 1) L̂z + 2
√

τ(1 − τ) L̂x.

(6.31)

When applying a phase shifter of phase ϕ on the second mode, the angular momentum oper-

ators transforms as

L̂0 → L̂0,

L̂x → cos(ϕ) L̂x − sin(ϕ) L̂y,

L̂y → cos(ϕ) L̂y + sin(ϕ) L̂x,

L̂z → L̂z.

(6.32)

These expressions are useful in order to find optical schemes for measuring the multicopy

observables of interest. For example, we see that L̂y transforms into L̂x under a phase shift of

π/2, while L̂x transforms into L̂z and vice versa under a 50:50 beam splitter transformation.

This allows us to reexpress the multicopy observables of interest in such a way that they only

depend on L̂0 and L̂z operators (hence they are accessible via photon number measurement).

Since the application of any linear optics (passive) transformation does not change the total

photon number, L̂0 is unaffected by such a transformation which can de seen in Eqs. 6.31 and

6.32. In contrast, L̂x can be turned by a 50:50 beam splitter into L̂z, which corresponds to the

difference of the photon numbers between the two modes. This transformation has already

been used in Ref. [65]. We can prove this by studying the transformation of the operators:

applying a 50:50 beam splitter transforms the mode operators according to

â′1 =
â1 + â2√

2
, â′2 =

â1 − â2√
2

, (6.33)

so that L̂x transforms into L̂′
z = 1

2 (â′†1 â′1 − â′†2 â′2), where the primes refer to mode operators

after the beam splitter. Hence, the operator B̂12 is transformed into

B̂12 = L̂0 − L̂′
z =

1
2
(n̂′

1 + n̂′
2 − n̂′

1 + n̂′
2) = n̂′

2, (6.34)

where n̂′
1 = â′†1 â′1 and n̂′

2 = â′†2 â′2.

This implies that measuring the mean photon number in the second mode after the beam

splitter transformation of Fig. 6.3 gives the value of the determinant

d12 = ⟨⟨B̂12⟩⟩ = ⟨n̂′
2⟩. (6.35)

Obviously, we have d12 ≥ 0, so that d12 does not yield a useful criterion to detect nonclassical

states. It is trivial to understand from Eq. (6.33) that this scheme gives access to the thermal
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Figure 6.3: Implementation of the measurement of d12. We first apply a 50:50 beam-splitter
and then use a photon-number resolving detector on the second mode (i.e., the mode where
the coherent fields of the two identical input states interfere destructively), yielding n′

2.

(or chaotic) photon number since the coherent component of the two identical input states is

concentrated on the first output mode â′1, while the mean field vanishes in the second output

mode â′2. The latter is then only populated by the thermal photons.

Before moving to principal minors that are actually useful to detect nonclassicality, let us

briefly consider the next case in Table 6.1, namely,

d14 =

∣∣∣∣∣ 1 ⟨â2⟩
⟨â†2⟩ ⟨â†2 â2⟩

∣∣∣∣∣ = ⟨â†2 â2⟩ − ⟨â2⟩⟨â†2⟩. (6.36)

By building the corresponding two-copy observable, it is straightforward to check that d14 ≥
0 so it is useless for nonclassicality detection. Indeed, we have

B̂14 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣ 1 â2
σ(1)

â†2
σ(2) â†2

σ(2) â
2
σ(2)

∣∣∣∣∣ ,

=
1
2
(â†2

2 â2
2 + â†2

1 â2
1 − â2

1 â†2
2 − â2

2 â†2
1 ),

(6.37)

In analogy with B̂12, this two-copy observable can be reexpressed in terms of angular mo-

mentum operators, namely,

B̂14 = 2 (L̂2
0 − L̂2

x). (6.38)

As before, we may transform L̂x into L̂′
z by using a 50:50 beam splitter as described in Eq.

(6.33), which gives

B̂14 = 2 (L̂2
0 − L̂

′2
z ) = 2 n̂′

1n̂′
2. (6.39)

Thus, this determinant can be accessed by applying a 50:50 beam splitter on two identical

copies as in Fig. 6.3 but then measuring the mean value of the product of the photon numbers,

that is

d14 = ⟨⟨B̂14⟩⟩ = 2 ⟨n̂′
1n̂′

2⟩ ≥ 0. (6.40)
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In the following, we apply the same technique to determinants that enable the detection of

nonclassicality. The calculations follow exactly the same path: we assign a mode to each row

of the operator matrix and then symmetrize it as in Eq. (6.23) or (6.37). Finally, whenever

possible, we find a linear optics transformation such that the observable can be measured by

means of photon number resolving detectors. Since the difficulty of this procedure increases

with the number of copies, we limit our search to principal submatrices of D5 up to dimension

4 × 4.

Detection of squeezed states: d23

As shown in Table 6.1, the two most interesting principal submatrices of dimension 2 × 2 for

detecting nonclassical states are d15 and d23. We start with d23, expressed as

d23 =

∣∣∣∣∣⟨â† â⟩ ⟨â†2⟩
⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣ = ⟨â† â⟩2 − ⟨â2⟩⟨â†2⟩. (6.41)

The criterion derived from d23 detects the nonclassicality of squeezed states and even cat

states (it does not detect the nonclassicality of Fock states and odd cat states). Note that

d23 is not invariant under displacements (as we shall see, this invariance can be enforced by

considering d123 instead). Following the procedure described in Section 6.4.1, we obtain the

multicopy observable

B̂23 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣â†
σ(1) âσ(1) â†2

σ(1)

â2
σ(2) â†

σ(2) âσ(2)

∣∣∣∣∣ ,

= â†
1 â1 â†

2 â2 −
1
2

(
â†2

1 â2
2 + â†2

2 â2
1

)
.

(6.42)

Similarly as for B̂12 or B̂14, we can express B̂23 in terms of angular momentum operators,

namely,

B̂23 = 2 L̂2
y − L̂0. (6.43)

It must be noted that Eq. (6.43) can also be reexpressed more concisely as a normally ordered

operator, namely,

B̂23 = 2 : L̂2
y : , (6.44)

where the normal ordering symbol must be understood term by term, that is, we must expand

L̂2
y in powers of â and â† and then normally order each term separately.

Using Eq. (6.43), we may design a linear interferometer in order to measure B̂23 with

photon-number resolving detectors. We consider the same interferometer as considered in

Ref. [65], which is composed of a π/2 phase shifter on the second mode followed by a 50:50

beam splitter as shown in Fig. 6.4. Under the π/2 local phase shift, the second mode operator
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Figure 6.4: Implementation of the measurement of d23. We first apply a phase shift of phase
π/2 on the second mode, followed by a 50:50 beam splitter. Then, the value of d23 is accessed
by measuring the number of photons in both output modes and computing Eq. (6.47).

transforms according to

â′2 = −i â2, (6.45)

while the 50:50 beam splitter transformation is described in Eq. (6.33). The operator L̂0 is

again invariant under these operations, but L̂y transforms into L̂′
x following the phase shifter

on the second mode and then transforms into L̂′
z after the 50:50 beam splitter. Hence, after

applying the interferometer shown in Fig. 6.4, the nonclassicality observable takes the form

B̂23 = 2 : L̂
′2
z : ,

= 2 L̂
′2
z − L̂0,

=
1
2
(n̂′

1 − n̂′
2)

2 − 1
2
(n̂′

1 + n̂′
2),

(6.46)

and its expectation value yields

d23 = ⟨⟨B̂23⟩⟩,

=
1
2
〈
(n̂′

1 − n̂′
2)

2 − (n̂′
1 + n̂′

2)
〉

.
(6.47)

As a consequence, the principal minor d23 can be evaluated simply by accessing the joint

photon number statistics on the two output modes â′1 and â′2.

It is instructive to understand how the nonclassicality of a squeezed state is detected by

Eq. (6.47). Two copies of a squeezed state are transformed through the interferometer of

Fig. 6.4 as follows. The phase shift rotates the second squeezed states by π/2, and the

50:50 beam splitter produces (from the two orthogonal squeezed states) a two-mode squeezed

vacuum state, (cosh r)−1 ∑∞
n=0(tanh r)n |n, n⟩. This state exhibits a perfect photon-number

correlation. Hence, the squared photon-number difference in Eq. (6.47) vanishes while the

second term, which is proportional to the sum of photon numbers, comes with a negative sign.

Thus, squeezed states are detected as nonclassical with d23 < 0 as soon as r > 0.

Note that Eq. (6.47) can also be reformulated as
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d23 =
1
2
(
Q′

1⟨n̂′
1⟩+ Q′

2⟨n̂′
2⟩+ ⟨n̂′

1⟩2 + ⟨n̂′
2⟩2 − 2⟨n̂′

1n̂′
2⟩
)

, (6.48)

where Q′
1 and Q′

2 denote the Mandel Q parameters of the output states occupying modes â′1
and â′2. The Q parameter is defined as

Q =
(∆n̂)2 − ⟨n̂⟩

⟨n̂⟩ , (6.49)

and measures the deviation from “Poissonianity” of the state (it vanishes for a coherent state,

associated with a Poisson distribution). If the input state is a product of two identical coherent

states, it is transformed under the interferometer of Fig. 6.4 into a product of two coherent

states, hence Q′
1 = Q′

2 = 0. Further, ⟨n̂′
1⟩2 = ⟨n̂′

2⟩2 = ⟨n̂′
1n̂′

2⟩ since the two output coherent

states are independent and have equal squared amplitudes. This confirms that d23 = 0 for

coherent states.

Detection of Fock states: d15

The criterion based on d15 is complementary to the one based on d23 as it detects the nonclas-

sicality of Fock states and odd cat states (it does not detect the nonclassicality of squeezed

states and even cat states). It is defined as

d15 =

∣∣∣∣∣ 1 ⟨â† â⟩
⟨â† â⟩ ⟨â†2 â2⟩

∣∣∣∣∣ = ⟨â†2 â2⟩ − ⟨â† â⟩2, (6.50)

and is not invariant under displacements (just as d23). It can be rewritten as

d15 = ⟨n̂2⟩ − ⟨n̂⟩2 − ⟨n̂⟩ = (∆n̂)2 − ⟨n̂⟩, (6.51)

and can thus be reexpressed in terms of the Mandel Q parameter of the input state as

d15 = Q ⟨n̂⟩, (6.52)

so that the nonclassicality criterion based on d15 is simply a witness of the sub-Poissonian

statistics (Q < 0) of the state. Obviously, we have d15 = 0 for coherent states while d15 > 0
for (classical) thermal states, as expected.

The procedure described in Section 6.4.1 yields the following two-copy nonclassicality

observable

B̂15 =
1
2
(n̂1 − n̂2)

2 − 1
2
(n̂1 + n̂2), (6.53)

whose expectation value is written as

d15 =
1
2
〈
(n̂1 − n̂2)

2 − (n̂1 + n̂2)
〉

. (6.54)

Interestingly, d15 involves the same observable as the one used to measure d23 [see Eq. (6.47)]
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Figure 6.5: Extended circuit that interpolates between the measurement of d15 and d23. We
need a phase shifter of phase ϕ followed by a beam splitter of transmittance τ, and then we
measure the photon number on both output modes in order to access the expectation value of
the observable of Eq. (6.56).

except that we do not need the prior interferometer. This similarity will be exploited in the

next section. It also implies that d15 can be expressed in terms of Mandel Q parameters of the

input states, namely

d15 =
1
2
(
Q1⟨n̂1⟩+ Q2⟨n̂2⟩+ (⟨n̂1⟩ − ⟨n̂2⟩)2) , (6.55)

which resembles Eq. (6.48) where we have used ⟨n̂1n̂2⟩ = ⟨n̂1⟩ ⟨n̂2⟩ since the inputs are in a

product state. Of course, for two identical inputs, this reduces to Eq. (6.52).

Interpolation between d15 and d23

As we observe in Table 6.1, the criteria d15 and d23 taken together detect the nonclassicality

of the four considered kinds of pure states. Given the similarity between Eqs. (6.47) and

(6.54), it is tempting to construct a common multicopy observable that interpolates between

d15 and d23. It is based on a linear optical interferometer composed of a phase shifter of phase

ϕ and a beam splitter of transmittance τ (see Fig. 6.5), followed by the measurement of the

observable

B̂15,23 =
1
2
(n̂′

1 − n̂′
2)

2 − 1
2
(n̂′

1 + n̂′
2), (6.56)

where the primes refer to output modes. By applying the interferometer of Fig. 6.5 backwards

on Eq. (6.56), we may reexpress it as a function of the input mode operators, namely

B̂15,23 =
1
2

: [(â†
2 â1 e−iϕ + â†

1 â2 eiϕ) 2
√
(1 − τ)τ + (â†

1 â1 − â†
2 â2) (−1 + 2τ)]2 : . (6.57)

This observable clearly interpolates between B̂15 (τ = 1) and B̂23 (ϕ = π/2 and τ = 1/2).

Since Eq. (6.57) is the square of a Hermitian operator, B̂15,23 can be written under the form

: f̂ † f̂ : and is indeed a valid observable for witnessing nonclassicality.

We start by setting the phase shift to ϕ = π/2 as it does not play any role in B̂15 and study

the detection of the different types of nonclassical states as a function of the transmittance
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Figure 6.6: Detection limit on the parameter (n or r) characterizing the input state for several
values of the transmittance τ (the phase is set to ϕ = π/2). The red area corresponds to the
values of n where the nonclassicality of the Fock states are detected (their nonclassicality is
detected for τ = 1, reducing to d15), while the green region corresponds to the values of r
where the nonclassicality of the squeezed states is detected (their nonclassicality is detected
for τ = 1/2, reducing to d23). Unfortunately, at the threshold value τ∗ ≈ 0.8536, all Fock
states and squeezed states are left undetected.

τ (with 1/2 ≤ τ ≤ 1), see Fig. 6.6. It appears that the nonclassicality of Fock states

|n⟩ with n ≥ 1 may only be detected when the transmittance is above a threshold value

τ∗ = (2 +
√

2)/4 ≈ 0.8536, while the nonclassicality of squeezed states with r > 0 may

only be detected for values of the transmittance lower than this threshold τ∗. The value of

τ∗ is such that the coefficients of the two operator terms in Eq. (6.57) are equal. Moreover,

it is possible to show that the nonclassicality of odd cat states may only be detected when

τ > τ∗ while the nonclassicality of even cat states may only be detected when τ < τ∗. This

means that there is no value of the transmittance enabling the detection of the four classes of

nonclassical states considered in Table 6.1. Unfortunately, changing the value of the phase

shift ϕ does not change the situation, so we cannot find a single two-copy observable that

detects all four classes of nonclassical states.

Note that the criteria based on d15 and d23 can be viewed as complementary: if one of

them detects a nonclassical state, i.e., its value is negative, then the other one is necessarily

positive for that state (of course, they can be both positive as, for example, for classical states).

Indeed, we have

d23 + d15 = d14 ≥ 0, (6.58)

where the inequality comes from Eq. (6.40). Hence, the witnesses d15 and d23 cannot both

simultaneously detect nonclassicality for a given state.

This can also be observed in Table 6.1 and Fig. 6.6: d15 and d23 play complementary roles

in the detection of nonclassical states. In order to illustrate this fact, we study an arbitrary
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superposition of Fock states |0⟩, |1⟩, and |2⟩ with real amplitudes a, b, and c, namely,

|ψ012⟩ = a|0⟩+ b|1⟩+ c|2⟩, (6.59)

where a2 + b2 + c2 = 1. First, by setting c = 0 in Eq. (6.59), i.e., for a superposition of |0⟩
and |1⟩ Fock states, we see that the determinant d23 is always positive since ⟨â†2⟩ = ⟨â2⟩ = 0,

so the nonclassicality is not detected. In contrast, d15 is always negative for all superpositions

of |0⟩ and |1⟩ (this is expected since d15 detects the nonclassicality of |1⟩). For this special

case, the values of d23 and d15 are plotted in Fig. 6.9. Second, by setting b = 0.1 in Eq.

(6.59), the situation is a bit more complicated but it confirms the complementarity of d23 and

d15, as shown in Fig. 6.7.

0.2 0.4 0.6 0.8 1.0
c

-0.5

0.5

Figure 6.7: Comparison of the values of d15 and d23 for a ternary superposition of |0⟩, |1⟩,
and |2⟩ Fock states (with b = 0.1). The criteria d15 and d23 are complementary in the sense
that they do not simultaneously detect nonclassicality.

Effect of a displacement on d15 and d23

In general, we expect that the nonclassical character of a quantum state will be harder to detect

when the state is moved away from the origin in phase space. As we shall see, this is often

(but not always) the case. We can calculate the difference ∆α between the determinant (d15

or d23) when the state is displaced by D̂(α) with α = |α|eiθα and the same determinant when

the state is centered. The differences ∆α in the case of d15 are presented in Table 6.4 for the

considered states.

For Fock states as well as odd cat states, the effect of a displacement on d15 is given by

an extra positive factor ∆α > 0, so that displacements always deteriorate the detection. For

squeezed states as well as even cat states, the result of a displacement on d15 is that it can

either enhance (∆α < 0) or deteriorate (∆α > 0) the detection of nonclassicality. Indeed, the
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State ∆α = dα
15 − d15

Fock ∆α = 2n|α|2
Squeezed ∆α = 2 sinh (r)|α|2(cosh (r) cos (2θα − ψ) + sinh (r))
Odd cat ∆α = 2|α|2|β|2(cos (2θα − 2θβ) +

N+
N−

)

Even cat ∆α = 2|α|2|β|2(N−
N+

− cos (2θα − 2θβ))

Table 6.4: Effect of the displacement D̂(α) on the determinant d15. The table shows the
difference between the determinant when the state is displaced and when it is centered (so
that ∆α < 0 implies an enhanced detection capability).

sign of ∆α depends on the difference between the angle of squeezing ψ (or the angle of the

cat state θβ) and the angle of the displacement θα.

6.4.2 Three-copy observable

As we have observed in Section 6.4.1, the two-mode criteria d23 and d15 are not invariant un-

der displacements. This comes with the fact that some nonclassical states become undetected

if they are displaced in phase space. In order to overcome this effect of displacements, we

build an observable involving a third replica of the input state following a similar reasoning as

in Ref. [65]. We focus on the three-copy observable B̂123, which can be obtained by extending

the procedure described in Section 6.4.1. From the explicit form of the principal minor

d123 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣∣∣ ,

= ⟨â† â⟩2 − ⟨â†2⟩⟨â2⟩ − 2⟨â†⟩⟨â⟩⟨â† â⟩+ ⟨â†2⟩⟨â⟩2 + ⟨â†⟩2⟨â2⟩,

(6.60)

we get the corresponding nonclassicality observable

B̂123 =
1

|S3| ∑
σ∈S3

∣∣∣∣∣∣∣∣
1 âσ(1) â†

σ(1)

â†
σ(2) â†

σ(2) âσ(2) â†2
σ(2)

âσ(3) â2
σ(3) â†

σ(3) âσ(3)

∣∣∣∣∣∣∣∣ ,

=
1
3

(
â†

2 â2 â†
3 â3 + â†

1 â1 â†
3 â3 + â†

1 â1 â†
2 â2

)
− 1

6
(â†2

2 â2
3 + â2

2 â†2
3 + â†2

1 â2
3 + â2

1 â†2
3 + â†2

1 â2
2 + â2

1 â†2
2 )

− 1
3
(â†

1 â1 â†
2 â3 + â†

1 â1 â2 â†
3 + â1 â†

2 â2 â†
3 + â†

1 â†
2 â2 â3 + â1 â†

2 â†
3 â3 + â†

1 â2 â†
3 â3)

+
1
3

(
â†2

1 â2 â3 + â1 â†2
2 â3 + â1 â2 â†2

3

)
+

1
3

(
â2

1 â†
2 â†

3 + â†
1 â2

2 â†
3 + â†

1 â†
2 â2

3

)
,

(6.61)

where |S3| = 3!. It is straightforward to check that the mean value of this observable (6.61)

over three identical copies gives ⟨⟨⟨B̂123⟩⟩⟩ = d123.
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Similarly to B̂23, the nonclassicality observable B̂123 can be written in a much more com-

pact form in terms of a normally-ordered expression

B̂123 =
2
3

:
(

L̂12
y + L̂23

y + L̂31
y

)2
: , (6.62)

where L̂kl
y = i

2 (â†
l âk − â†

k âl). Here, the superscript of the angular momentum component L̂y

stands for the two modes that are involved in the definition (6.28). The observable B̂123 can be

accessed by first applying a linear optics transformation corresponding to the first two beam

splitters in Fig. 6.8, which effects the rotation

â′1 =
1√
3
(â1 + â2 + â3),

â′2 =
1√
2
(â1 − â2),

â′3 =
1√
6
(â1 + â2 − 2â3),

(6.63)

on the mode operators. Interestingly, this induces the same rotation of the angular momentum

y-components,

L̂23′
y =

1√
3
(L̂23

y + L̂31
y + L̂12

y ),

L̂31′
y =

1√
2
(L̂23

y − L̂31
y ),

L̂12′
y =

1√
6
(L̂23

y + L̂31
y − 2L̂12

y ).

(6.64)

In other words, the two vectors (â1, â2, â3)T and (L̂23
y , L̂31

y , L̂12
y )T undergo the exact same or-

thogonal transformation. Note that, in contrast, the vectors (L̂23
x , L̂31

x , L̂12
x )T and (L̂23

z , L̂31
z , L̂12

z )T

undergo different linear transformations which are mixing their components. By using Eq.

(6.64), we can reexpress Eq. (6.62) in terms of output angular momentum variables as

B̂123 = 2 :
(

L̂23′
y

)2
: , (6.65)

which resembles Eq. (6.44) except that it acts on modes 2 and 3. Hence, in analogy with what

we did for B̂23, we can access B̂123 with a subsequent linear optical transformation applied

onto modes 2 and 3, corresponding to the phase shifter and last beam splitter in Fig. 6.8.

This converts the angular momentum y-component associated with modes 2 and 3 into the

corresponding z-component, so we have

B̂123 = 2 :
(

L̂23′′
z

)2
: ,

= 2
(

L̂23′′
z

)2
− L̂23

0 ,
(6.66)

where the double primes refer to the output of the full circuit of Fig. 6.8. Here L̂kl
z =

1
2 (â†

k âk − â†
l âl) and L̂kl

0 = 1
2 (â†

k âk + â†
l âl). Thus, after applying this circuit, the observable
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Figure 6.8: Three-mode circuit for accessing the nonclassicality witness d123. We recognize
the circuit for measuring d23 applied on modes 2 and 3, preceded by two beam splitters of
transmittance 1/2 and 2/3 corresponding to the transformation of Eq. (6.63). The role of
these two beam splitters is to concentrate the coherent field of the three replicas into mode 1,
which is left unmeasured.

B̂123 transforms into

B̂123 =
1
2
(n̂′′

2 − n̂′′
3 )

2 − 1
2
(n̂′′

2 + n̂′′
3 ), (6.67)

which is analogous to Eq. (6.46). Its expectation value yields

d123 = ⟨⟨⟨B̂123⟩⟩⟩ ,

=
1
2
〈
(n̂′′

2 − n̂′′
3 )

2 − (n̂′′
2 + n̂′′

3 )
〉

.
(6.68)

The intuition behind this circuit follows from Ref. [65]. With the first two beam splitters

in Fig. 6.8, we apply a transformation that concentrates the coherent component of the three

identical input states in the first mode, which is traced out. The second and third modes thus

have a vanishing mean field, so we can apply the same scheme as for measuring B̂23 but on

these two modes, which leads to B̂123. Up to a mode relabelling, the operator in Eq. (6.67)

is indeed the same as the one used for evaluating d23, see Eq. (6.47). Notably, the circuit for

evaluating d123 as shown in Fig. 6.8 is the same circuit as the one used in Ref. [65] in order

to measure an uncertainty observable; the key difference is that the observable (n̂′′
2 − n̂′′

3 )
2/4

must be measured instead at the output of the circuit in order to evaluate the uncertainty.

It must be noted that the circuit of Fig. 6.8 is not unique. Another option to access B̂123

is to apply the circuit of a three-dimensional discrete Fourier transform on the three input

modes. This circuit is actually equivalent to the circuit of Fig. 6.8 up to ±π/6 phase shifters

on modes 2 and 3, which do not play a role since we measure photon numbers. Hence, this

leads to the same observable.

We stress that in addition of being the displacement-invariant version of d23, the criterion

based on d123 is also superior in that it is able to detect the nonclassicality of states that are

different from displaced states detected by d23. A simple example is the superposition of

the two Fock states |0⟩ and |1⟩, see Eq. (6.59) with c = 0. The values of d23 and d123 are

plotted in Fig. 6.9. We see that while d23 never detects any superposition of the first two Fock
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Figure 6.9: Comparison of the values of d123 and d23 for a superposition of |0⟩ and |1⟩ Fock
states |ψ01⟩ = a|0⟩+ b|1⟩. While d23 never detects any such superposition as nonclassical,
d123 detects them up to b = 0.7. Moreover, d15 always detects these superposition states as
nonclassical.

states, d123 detects such superpositions up to b = 0.7. Note that d15 is always negative, which

confirms that these superpositions are always nonclassical.

6.4.3 Four-copy observable

By adding a fourth replica of the input state, it is possible to further improve the detection ca-

pability of nonclassicality observables. The most interesting nonclassicality criterion derived

from a 4× 4 matrix is d1235 since it detects the nonclassicality of all squeezed, Fock, and even

or odd cat states (see Table 6.1). It is written as

d1235 =

∣∣∣∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩ ⟨â† â⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩ ⟨â†2 â⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â† â2⟩
⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†2 â2⟩

∣∣∣∣∣∣∣∣∣∣
. (6.69)

As before, its associated four-copy observable B̂1235 can be obtained by assigning a different

mode to each row and averaging over all |S4| = 4! permutations, namely

B̂1235 =
1

|S4| ∑
σ∈S4

∣∣∣∣∣∣∣∣∣∣∣

1 âσ(1) â†
σ(1) â†

σ(1) âσ(1)

â†
σ(2) â†

σ(2) âσ(2) â†2
σ(2) â†2

σ(2) âσ(2)

âσ(3) â2
σ(3) â†

σ(3) âσ(3) â†
σ(3) â

2
σ(3)

â†
σ(4) âσ(4) â†

σ(4) â
2
σ(4) â†2

σ(4) âσ(4) â†2
σ(4) â

2
σ(4)

∣∣∣∣∣∣∣∣∣∣∣
. (6.70)
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This expression of B̂1235 is lengthy but we know that calculating its mean value ⟨⟨⟨⟨B̂1235⟩⟩⟩⟩
yields d1235. Since it is an Hermitian operator, B̂1235 may be rewritten as B̂1235 = : f̂ †

1235 f̂1235 :,
where f̂1235 is Hermitian too and is defined as

f̂1235 =
−i

2
√

6
(â†

1 â1 â†
2 â3 − â†

1 â†
2 â2 â3 − â†

1 â1 â2 â†
3 + â1 â†

2 â2 â†
3 + â†

1 â2 â†
3 â3 − â1 â†

2 â†
3 â3

− â†
1 â1 â†

2 â4 + â†
1 â†

2 â2 â4 + â†
1 â1 â†

3 â4 − â†
2 â2 â†

3 â4 − â†
1 â†

3 â3 â4 + â†
2 â†

3 â3 â4

+ â†
1 â1 â2 â†

4 − â1 â†
2 â2 â†

4 − â†
1 â1 â3 â†

4 + â†
2 â2 â3 â†

4 + â1 â†
3 â3 â†

4 − â2 â†
3 â3 â†

4

− â†
1 â2 â†

4 â4 + â1 â†
2 â†

4 â4 + â†
1 â3 â†

4 â4 − â†
2 â3 â†

4 â4 − â1 â†
3 â†

4 â4 + â2 â†
3 â†

4 â4),

=
2√
6
(L̂12

z L̂34
y + L̂13

z L̂42
y + L̂14

z L̂23
y + L̂12

y L̂34
z + L̂13

y L̂42
z + L̂14

y L̂23
z ),

=
1√
6

∑
σ∈P4

L̂σ(1)σ(2)
z L̂σ(3)σ(4)

y ,

(6.71)

where P4 is the group of even permutations. The expression of f̂1235 can be further sim-

plified if we apply some linear optics transformation on the four modes. In analogy with the

three-mode observable, we apply an orthogonal transformation on the mode operators that

has the property of concentrating the coherent component of the four identical input states

onto the first mode. By choosing the tensor product of two two-dimensional discrete Fourier

transforms (realized with 50:50 beam splitters),

â′1 =
1
2
(â1 + â2 + â3 + â4),

â′2 =
1
2
(â1 − â2 + â3 − â4),

â′3 =
1
2
(â1 + â2 − â3 − â4),

â′4 =
1
2
(â1 − â2 − â3 + â4),

(6.72)

we obtain the simpler expression

f̂1235 = −
√

2
3
(L̂23′

x L̂23′
y + L̂34′

x L̂34′
y + L̂42′

x L̂42′
y ), (6.73)

which only depends on modes 2, 3, and 4 as expected since B̂1235 is invariant under displace-

ments. Thus, f̂1235 is simply proportional to the scalar product between vectors (L̂23′
x , L̂34′

x , L̂42′
x )T

and (L̂23′
y , L̂34′

y , L̂42′
y )T. However, we have not found a way to further simplify this expression

and bring it to an experimental scheme. The problem is that f̂1235 is made of products of non-

commuting operators L̂kl
x and L̂kl

y , which, in addition, do not transform similarly when the

mode operators undergo an orthogonal transformation. Unfortunately, applying local phase

shifts and beam splitters does not help in reducing to an expression involving L̂kl
z and L̂kl

0 only,

as we were able to do for all previous multicopy observables.
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Note that the issue does not seem to be related to the fact that we consider a four-copy

observable. Indeed, while it is useless for nonclassicality detection, the principal minor d25

can be expressed as the expectation value of the two-copy observable

B̂25 = : (L̂0 − L̂x)(L̂2
0 − L̂2

z) : , (6.74)

which also cannot be accessed using only linear optics and photon number measurements.

Let us stress that the criterion based on d1235 is in general stronger than those based on

d23 and d15. In the special case of centered states, that is ⟨â⟩ = ⟨â†⟩ = 0, we can show that

d1235 can be negative even if d15 and d23 are both positive.

In this case, the determinant d1235 can be written as

d1235 =

∣∣∣∣∣∣∣∣∣∣
1 0 0 ⟨â† â⟩
0 ⟨â† â⟩ ⟨â†2⟩ ⟨â†2 â⟩
0 ⟨â2⟩ ⟨â† â⟩ ⟨â† â2⟩

⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†2 â2⟩

∣∣∣∣∣∣∣∣∣∣
, (6.75)

which, by using the method of cofactors, simplifies to

d1235 = d235 − ⟨â† â⟩2d23. (6.76)

We may factorize the determinant d235 by using the following property of determinants of

block matrices. If A and D are square matrices and if A−1 exists, then

det

(
A B
C D

)
= det(A) det(D − CA−1B). (6.77)

Hence, assuming the extra constraint that D23 is invertible, we get

d235 = d23

(
⟨â†2 â2⟩ −

(
⟨â† â2⟩ ⟨â†2 â⟩

)
D−1

23

(
⟨â†2 â⟩
⟨â† â2⟩

))
. (6.78)

By plugging Eq. (6.78) into Eq. (6.76), we rewrite d1235 in a factorized form as

d1235 = d23

(
d15 −

(
⟨â† â2⟩ ⟨â†2 â⟩

)
D−1

23

(
⟨â†2 â⟩
⟨â† â2⟩

))
. (6.79)

In particular, under the assumption that D23 is positive definite (and hence d23 > 0) and that

d15 < 0, then d1235 < 0 and nonclassicality can be detected for sure. Moreover, we see that

d1235 is stronger than d23 and d15 since even if d15 is positive but smaller than the second term

in the right-hand side of Eq. (6.79), then d1235 will detect the state as nonclassical.

An alternate decomposition of d1235 can be obtained by exchanging the role of d15 and
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d23, which results in

d1235 = d23 det

(
D15 −

1
d23

(
0 0
0 x

))
,

= d23 d15 − x.

(6.80)

with x = 2⟨â† â⟩⟨â†2 â⟩⟨â† â2⟩ − ⟨â†2⟩⟨â† â2⟩2 − ⟨â2⟩⟨â†2 â⟩2. In this case again, we see that

d1235 is stronger than d15 and d23 as it can be negative even if d15 and d23 are both positive.

If we further assume that ⟨â†2 â⟩ = ⟨â† â2⟩ = 0, then we simply have

d1235 = d15d23, (6.81)

in which case a separate implementation of the d15 and d23 circuits becomes sufficient to

obtain the value of d1235 and there is no need for a four-copy observable. This is the case for

Fock, squeezed, and cat states.

6.5 Conclusion and perspectives

In summary, we have analyzed a family of nonclassicality criteria based on the matrix of mo-

ments of the optical field and (restricting ourselves to dimension N = 5) have benchmarked

their ability to detect nonclassical states, such as Fock states, squeezed states, and cat states.

We have then developed a multicopy technique that allowed us to access these criteria by con-

sidering several identical replicas of the state and measuring the expectation value of some

appropriate observables. For two- and three-copy nonclassicality observables, we have found

a physical implementation that relies on linear optics and photodetectors with single-photon

resolution. The main advantage of this multicopy technique is that it overcomes the need

for full state tomography in order to detect nonclassicality. Furthermore, higher-order mo-

ments of the considered state can be accessed by measuring only lower-order moments such

as the photon number on several replicas. The price to pay is of course the need to ensure

interferometric stability on the replicas over which a joint observable is measured.

Specifically, we have found that the criteria based on d23 and d15 are detecting well-

known nonclassical features such as squeezing (for d23) and sub-Poissonian photon number

statistics (for d15). These criteria can be accessed with a simple linear optics circuit applied

on two replicas of the state, followed by photon number measurement. Then, we have found

a stronger criterion based on d123, which is invariant under displacements but keeps the same

detection performance as d23. This criterion can be associated with a three-copy nonclassi-

cality observable B̂123, which can again be accessed with interferometry and photon number

measurements. Further, it also leads to a necessary and sufficient condition for the detection

of nonclassicality in the entire set of Gaussian (pure and mixed) states.

Finally, we have identified the criterion based on d1235 as the most remarkable of all cri-
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teria built from the minors of the matrix of moments of dimension N = 5. It detects the

nonclassicality of all states that are detected by d15 and d123 but also the nonclassicality of

many more states that cannot be detected by either of them. We have found a simple expres-

sion for its associated four-copy nonclassicality observable B̂1235, but have unfortunately not

been able to find a corresponding physical implementation in terms of a linear interferom-

eter and photon number detectors. Finding an implementation (involving probably a more

complex circuit or higher-order measurements) is left as a challenging open problem. The

difficulty arises because of the much higher order in mode operators of the observable B̂1235.

Since we deal with three modes in Eq. (6.73) rather than two modes as in Eq. (6.65), a possi-

ble approach could be to exploit the adjoint representation formed by 3 × 3 matrices instead

of the fundamental representation of SU(2) (i.e., the set of 2 × 2 Pauli matrices), written in

terms of mode operators. Even though d1235 only gives a sufficient (not necessary) condition

for nonclassicality, it is expected to detect a wide range of nonclassical states, so that finding

a feasible optical implementation of d1235 would be highly valuable. Of course, in order to

avoid false positives, one would have to assess the robustness of this nonclassicality condition

against slightly different replicas, which will necessarily be the case in practice.

Another promising direction that is left for further work would be to extend our technique

for detecting the nonclassicality of multimode optical states. We should be able to develop

multicopy multimode observables, where each replica is made of several modes. Overall, this

could result in an experimentally-friendly procedure to certify optical nonclassicality.
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Chapter 7

Two-copy measurement of the
quadrature coherence scale

This chapter is based on the following paper that I published together with Matthieu Arnhem,

Stephan De Bièvre and Nicolas Cerf:

C. Griffet, M. Arnhem, S. De Bièvre, and N. J. Cerf. Interferometric measurement of the

quadrature coherence scale using two replicas of a quantum optical state. Physical Review

A, 108: 023730, August 2023. [50]

7.1 Introduction

In quantum optics, a state ρ̂ is said to be optically classical provided its Glauber-Sudarshan

P function is non-negative [151]. In other words, an optically classical state is a statistical

mixture of coherent states. Detecting the optical nonclassicality of a given state ρ̂ using this

definition is, unfortunately, very difficult since the P function can be singular and hence hard

to determine both theoretically and experimentally. Further, it is impractical to rule out the

existence of a convex mixture of coherent states realizing ρ̂ by checking all realizations of ρ̂.

Instead, one is usually forced to resort to so-called witnesses, which only provide a neces-

sary condition on the non-negativity of P(z), hence a sufficient condition on nonclassicality.

Following this line, a large variety of witnesses and measures of optical nonclassicality have

been proposed over the last decades in order to detect and quantify nonclassicality, see, e.g.,

Refs. [4, 97, 124, 128, 30, 162, 88, 15, 66, 11, 67, 68, 90, 91, 32, 103, 79, 8, 147, 81, 5, 111,

129, 163, 95].

In this chapter, we focus on a witness of optical nonclassicality called the quadrature co-

herence scale (QCS) that we presented in Section 3.2.4. The difficulty with measuring the

QCS (or many other nonclassicality witnesses) of an arbitrary state ρ̂ arises from the fact that

it is a nonlinear function of ρ̂, as is obvious from Eq. (3.18). At first sight, it therefore seems
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that the task of experimentally accessing C(ρ̂) imposes one to carry out an exhaustive state

tomography of ρ̂ before computing Eq. (3.18). Here, we contradict this statement and exhibit

an elegant solution that bypasses state tomography and only requires two replicas (indepen-

dent and identical copies) of ρ̂ in order to measure C(ρ̂). The fact that nonlinear functions of a

state may be estimated by quantum interferometry using several replicas of the state has long

been known [38, 109]. Specifically, the evaluation of any polynomial in the matrix elements

of ρ̂ can be reduced to the measurement of a joint observable over several replicas of ρ̂ (the

order of the polynomial translates into the number of replicas) [18]. This multicopy interfero-

metric technique has, for example, been used to witness qubit entanglement by coupling two

identical pairs of polarization-entangled photons with beam splitters [16]. It was also shown

to give direct access to the purity and entanglement of atomic qubits in an optical lattice by

coupling the atoms pairwise via beam-splitter operations [110, 116]. Notably, this method has

been exploited for experimentally accessing the entanglement in a many-body Bose-Hubbard

system [29, 78]. In particular, the purity of ultracold bosonic atoms in an optical lattice was

accessed in Ref. [78] by probing the average parity at the output of a 50:50 beam splitter

(realized by controlled tunneling).

Nonetheless, this multicopy technique has not yet been much exploited in continuous-

variable quantum information theory and quantum optics. An exception is the recent deriva-

tion of symplectic-invariant entropic uncertainty relations in phase-space by using a multi-

copy uncertainty observable [65]. In a related work, it was also shown that nonclassicality

witnesses based on matrices of moments of the optical field could be expressed as multicopy

observables, resulting in possible experimental schemes to detect nonclassicality [6]. Here,

we use similar ideas and show that the QCS of a state can be experimentally accessed by per-

forming an interferometric measurement involving only two replicas of the state impinging

on a 50:50 beam splitter. We thereby establish an interesting connection between the non-

classicality of a state and the resulting photon-number distribution at the output of the beam

splitter, which can be viewed as an extension of the Hong-Ou-Mandel effect.

The chapter is organized as follows. In Section 7.2, we describe the aforementioned two-

copy interferometric circuit and show how it enables measuring the purity of a single-mode

state, which constitutes the denominator of the QCS. Then, in Section 7.3, we show how to

use the same measurement to determine the numerator of the QCS, thereby establishing our

central result. In Section 7.4, we illustrate our two-copy expression of the QCS [Eq. (7.21)]

by applying it on several families of benchmark states. As a by-product of our analysis, we

provide in Section 7.5 an alternative expression for the QCS that exploits the phase-space

formulation of quantum optics and is of interest in its own right. In the process, we show

that the same interferometric circuit can be used to compute the overlap between two distinct

single-mode states. For notational convenience, we limit ourselves to the state of a single

bosonic mode in Secs. 7.2, 7.3, 7.4, and 7.5, but we then show in Section 7.6 how to extend

our results to multimode states. Finally, we conclude in Section 7.7.
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7.2 Two-copy observable for measuring the purity

As is well known, directly accessing the purity P(ρ̂) = Tr(ρ̂2) of a quantum state ρ̂ as the

expectation value of some observable is impossible since it is nonlinear in ρ̂. However, as is

also well known and readily checked, it can be reexpressed as the expectation value of the

so-called swap operator Ŝ taken over two replicas of the state, that is [38, 109]

P(ρ̂) = Tr
(
(ρ̂ ⊗ ρ̂) Ŝ

)
, (7.1)

where Ŝ is defined as Ŝ|φ⟩|ψ⟩ = |ψ⟩|φ⟩, ∀ |φ⟩, |ψ⟩. Note that Ŝ is a unitary operator that is

also Hermitian, so that it can be viewed as an observable. The fact that we need two replicas

here is of course simply related to the fact that P(ρ̂) is quadratic in ρ̂.

To find the actual measurement scheme, we proceed as in Refs. [29, 78]. The swap

operator Ŝ naturally extends to the infinite-dimensional Fock space of a bosonic mode (or

harmonic oscillator), in which case it is convenient to express it in terms of mode operators â
and b̂, namely,

Ŝ = ei π
2 (â†−b̂†)(â−b̂). (7.2)

To prove this equation, we introduce the Hamiltonian Ĥ = −(â† − b̂†)(â − b̂) and write the

Heisenberg evolution of â and b̂, namely,

â(t) = exp(itĤ) â exp(−itĤ),

b̂(t) = exp(itĤ) b̂ exp(−itĤ). (7.3)

Hence,

i
dâ(t)

dt
= [â(t), Ĥ] = −â(t) + b̂(t),

i
db̂(t)

dt
= [b̂(t), Ĥ] = −b̂(t) + â(t), (7.4)

resulting in the solution

â(t) =
1 + e2it

2
â +

1 − e2it

2
b̂,

b̂(t) =
1 − e2it

2
â +

1 + e2it

2
b̂. (7.5)

Setting t = π/2, we obtain

â(π/2) = b̂, b̂(π/2) = â, (7.6)

effecting a swap of the two modes. This implies that Ŝ = e−i π
2 Ĥ, which proves Eq. (7.2).

In order to measure Ŝ, we can simply use a 50:50 (balanced) beam splitter. The latter
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corresponds to the Gaussian unitary [159]

ÛBS = e
π
4 (â† b̂−âb̂†), (7.7)

and, in the Heisenberg picture, it transforms the mode operators â and b̂ as

ĉ := Û†
BS â ÛBS = (â + b̂)/

√
2,

d̂ := Û†
BS b̂ ÛBS = (−â + b̂)/

√
2, (7.8)

where ĉ and d̂ denote the corresponding output mode operators. Hence, Eq. (7.2) can be

reexpressed as

Ŝ = eiπ d̂† d̂ = (−1)n̂d , (7.9)

where n̂d = d̂†d̂ is the photon number in mode d̂. Here, d̂ stands for the “difference” mode,

that is, it exhibits destructive interference if we feed the beam splitter with two identical

coherent states. From Eq. (7.9), it thus appears that the measurement of the purity of a state

can be achieved by measuring the average parity of the photon number in the “difference”

mode at the output of a 50:50 beam splitter after having sent two identical copies of the state

at its input. Indeed, Eq. (7.1) reduces to

P(ρ̂) = Tr
(
(ρ̂ ⊗ ρ̂) (−1)n̂d

)
,

= Tr
(

ÛBS(ρ̂ ⊗ ρ̂)Û†
BS (−1)n̂b

)
, (7.10)

where the first (second) line corresponds to the Heisenberg (Schrödinger) picture. An anal-

ogous expression can be found in Refs. [29, 78]. Using the unitary ÛBS corresponding to a

50:50 beam splitter as defined in Eq. (7.7), we can also express the swap operator (7.2) in the

Heisenberg picture as

Ŝ = Û†
BS eiπ b̂† b̂ ÛBS. (7.11)

Hence, the swap operator can be implemented by processing the two modes (forwards) through

a 50:50 beam splitter, acting with a π-phase shift in the second mode, and then processing

again the two modes (backwards) through a 50:50 beam splitter. As we could expect, Ŝ is sim-

ply the Gaussian unitary that corresponds to a Mach-Zehnder interferometer with a π-phase

in one of the two arms, effecting a swap between the two modes.

As an illustration, let us check the effect of Ŝ on two coherent states |α⟩ and |β⟩. We have

Ŝ |α⟩ ⊗ |β⟩ = Û†
BS eiπ b̂† b̂ ÛBS |α⟩ ⊗ |β⟩,

= Û†
BS eiπ b̂† b̂

∣∣∣α + β√
2

〉∣∣∣−α + β√
2

〉
,

= Û†
BS

∣∣∣α + β√
2

〉∣∣∣α − β√
2

〉
,

=
∣∣∣ (α + β)− (α − β)

2

〉∣∣∣ (α + β) + (α − β)

2

〉
,

= |β⟩ ⊗ |α⟩, (7.12)
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Figure 7.1: Two-copy circuit implementing the measurement of the purity P(ρ̂) as well as
quadrature coherence scale C(ρ̂) of a bosonic state ρ̂. Two identical copies of the state are sent
on a 50:50 beam splitter and the photon number statistics is measured in the output mode d
(associated with destructive interference). The mean photon number parity yields the purity,
while the numerator and denominator of Eq. (7.21) can be accessed separately in order to
determine the QCS.

where we have used the fact that a product of coherent states |α⟩ ⊗ |β⟩ results under ÛBS into

another product of coherent states |(α + β)/
√

2⟩ ⊗ |(−α + β)/
√

2⟩. Alternatively, we can

simply check that Ŝ |α⟩ ⊗ |β⟩ is a common eigenstate of â and b̂ with respective eigenvalues

β and α (note the interchange). Indeed, we have

â (Ŝ |α⟩ ⊗ |β⟩) = Ŝ (Ŝ† â Ŝ) |α⟩ ⊗ |β⟩,

= Ŝ b̂ |α⟩ ⊗ |β⟩,

= β (Ŝ |α⟩ ⊗ |β⟩), (7.13)

and a similar equation holds for b̂ (Ŝ |α⟩ ⊗ |β⟩).

To sum up, the two-copy interferometric procedure in order to measure the purity of a

state ρ̂ is represented in Fig. 7.1. One must send two identical copies of ρ̂ on a 50:50 beam

splitter, which results in the output state ÛBS (ρ̂ ⊗ ρ̂) Û†
BS, and then measure the number of

photons with a photon-number resolving detector in the output that is associated with de-

structive interference. The purity is simply equal to the expectation value of the parity of the

photon number in the reduced state ρ̂d = Trc(ρ̂ ⊗ ρ̂) of mode d̂, namely,

P(ρ̂) = Trd
(
ρ̂d (−1)n̂d

)
. (7.14)

This means that two identical copies have to be sent into a balanced beam splitter. At the out-

put d of the beam splitter, we measure the number of photons. This experience is reproduced

several times and we then calculate the mean value of the parity of the number of photons

measured. This gives the purity of the input state. It makes sense that the output mode d̂ is

solely involved here because we expect the purity to be invariant under displacements of ρ̂ in

phase space. Indeed, mode ĉ must be disregarded since its state depends on the mean field

of the input state ρ̂ (in contrast, the mean field of ρ̂d always vanishes, regardless of the mean

field of ρ̂). Furthermore, we easily understand that Eq. (7.14) only shows a dependence in the
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photon number n̂d in mode d̂ since the purity is also invariant under rotations of ρ̂ in phase

space (remember that a rotation of ρ̂ induces a rotation of ρ̂d since the beam splitter unitary

ÛBS is covariant with respect to a pair of identical rotations).

7.3 Two-copy observable for measuring the QCS

The central result of this chapter is a two-copy interferometric procedure for measuring the

QCS of a state. In the case of a single-mode state ρ̂, Eq. (3.18) reduces to

C2(ρ̂) = − 1
2P(ρ̂)

Tr
(
[ρ̂, x̂]2 + [ρ̂, p̂]2

)
, (7.15)

where the purity P(ρ̂) appears in the denominator. The latter can be accessed by applying the

multicopy technique as explained in Section 7.2 [see Eq. (7.14)], so we only need to focus on

the numerator N (ρ̂). Writing

C2(ρ̂) =
N (ρ̂)

P(ρ̂)
, (7.16)

the numerator can be rewritten as

N (ρ̂) = −1
2

Tr
(
[ρ̂, x̂]2 + [ρ̂, p̂]2

)
,

=
1
2

(∫
(x − x′)2 |⟨x|ρ̂|x′⟩|2 dx dx′

+
∫
(p − p′)2 |⟨p|ρ̂|p′⟩|2 dp dp′

)
,

=
1
2

(∫
(x − x′)2 ⟨x, x′|ρ̂ ⊗ ρ̂|x′, x⟩dx dx′

+
∫
(p − p′)2 ⟨p, p′|ρ̂ ⊗ ρ̂|p′, p⟩dp dp′

)
, (7.17)

where we have expanded the first and second terms of the right-hand side in the position and

momentum basis, respectively.

In order to access N (ρ̂) from two copies of ρ̂, we proceed along the same line as for the

purity P(ρ̂). It is easy to recognize the two-copy observable N̂ that appears in Eq. (7.17),

that is,

N (ρ̂) = Tr
(
(ρ̂ ⊗ ρ̂) N̂

)
, (7.18)

where

N̂ =
1
2
[
(x̂a − x̂b)

2 + ( p̂a − p̂b)
2] Ŝ, (7.19)

with x̂a (p̂a) and x̂b (p̂b) denoting the position (momentum) quadratures of modes â and b̂.

The terms involving these quadratures can be simplified by using the quadratures (x̂d, p̂d) of

the difference mode d̂, that is,

N̂ = (x̂2
d + p̂2

d) Ŝ = (1 + 2 n̂d) Ŝ. (7.20)
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The observable N̂ plays the same role here as the swap operator Ŝ in Eq. (7.1). Note that

the two factors in N̂ are commuting Hermitians, which implies that N̂ is itself Hermitian, as

expected. Remarkably, we see that N̂ is measurable with the same circuit as the one used for

the purity in Fig. 7.1. Indeed, putting together Eqs. (7.9) and (7.20), we obtain the two-copy

expression for the QCS,

C2(ρ̂) =
Trd
(
ρ̂d (−1)n̂d (1 + 2 n̂d)

)
Trd (ρ̂d (−1)n̂d)

, (7.21)

which is our main result. We again need to send two replicas of ρ̂ on a 50:50 beam splitter and

measure the photon number n̂d of the state ρ̂d in the “difference” mode d̂. From the measured

statistics of n̂d, we can compute both the numerator and denominator of Eq. (7.21).

Similarly as before, only the state of mode d̂ is involved in Eq. (7.21), which was expected

since the QCS is invariant under displacements in phase space. Further, Eq. (7.21) only

depends on the photon number n̂d in mode d̂, which ensures that the QCS is, in addition,

invariant under rotations in phase space.

7.4 Applications

Let us discuss some applications of this new expression of the QCS as a two-copy observable,

Eq. (7.21). First, we emphasize that it gives a better grasp on the reason why it detects optical

nonclassicality than the one-copy expression, Eq. (7.15). Indeed, we will show that it can be

used to prove quite easily that C2 ≤ 1 for any classical state (mixture of coherent states). In

contrast with the proof of Ref. [30], the physical interpretation is straightforward. Sending two

identical coherent states |α⟩ ⊗ |α⟩ in the 50:50 beam splitter of Fig. 7.1 results in a coherent

state |
√

2 α⟩ in mode ĉ and the vacuum state |0⟩ in mode d̂. Hence, the measured value of n̂d

always vanishes and it is immediate that C2(|α⟩⟨α|) = 1 for any coherent state |α⟩. Then,

a simple calculation exploiting the Poisson distribution of the photon number in a coherent

state is enough to prove that C2 can only decrease when mixing coherent states. Indeed, all

classical states are mixtures of coherent states ρ̂ =
∫

P(α) |α⟩⟨α|d2α. To measure the QCS,

we inject two identical copies of state ρ̂ in the circuit of Fig. 7.1, so the input state is

ρ̂ ⊗ ρ̂ =
∫

P(α) P(β) |α⟩⟨α| ⊗ |β⟩⟨β|d2α d2β, (7.22)

with
∫

P(α)d2α = 1 and P(α) ≥ 0, ∀α. Each product term |α⟩ ⊗ |β⟩ of this mixture

results, at the output of the 50:50 beam splitter, into another product of coherent states |(α +

β)/
√

2⟩ ⊗ |(−α + β)/
√

2⟩. We only care here about the reduced output state in mode d̂,

that is

ρ̂d =
∫

Pd(γ) |γ⟩⟨γ|d2γ, (7.23)

where we have made the change of variables δ = (α + β)/
√

2 and γ = (−α + β)/
√

2,

and then have integrated over variable δ. Here, Pd(γ) of course depends on P(α) but its
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explicit expression is irrelevant for the proof; we only note that Pd(γ) ≥ 0, ∀γ, since it is a

probability density, so that ρ̂d is a classical state too.

We are left with having to compute the mean values of (−1)n̂d and (−1)n̂d(1 + 2n̂d)

based on the distribution of the photon number nd in state ρ̂d. Using the probability distribu-

tion of the photon number in a coherent state |γ⟩,

pγ(n) = e−|γ|2 |γ|2n

n!
, (7.24)

we obtain the following expressions

∞

∑
nd=0

(−1)nd pγ(nd) = e−|γ|2 , (7.25)

∞

∑
nd=0

(−1)nd (1 + 2nd) pγ(nd) = e−|γ|2(1 − |γ|2). (7.26)

Hence, taking the average over γ, we obtain the simple expression for the QCS:

C2(ρ) =

∫
Pd(γ) e−|γ|2(1 − |γ|2)d2γ∫

Pd(γ) e−|γ|2 d2γ
, (7.27)

= 1 −
∫

Pd(γ) e−|γ|2 |γ|2 d2γ∫
Pd(γ) e−|γ|2 d2γ

. (7.28)

Since the second term in this expression is always positive, the QCS can only be smaller than

or equal to 1 for classical states.

Second, we note that the definition of the QCS as given by Eq. (3.18) [or Eq. (7.15) for a

single mode] is not convenient for computing its value. A number of alternative expressions

have been derived in Refs. [30, 75, 62, 61] that are more suitable for this purpose in various

situations. For example, if the Wigner function of state ρ̂ is known, one can use Eq. (3.20),

see below. Simple expressions also exist when the state ρ̂ is pure [30] or Gaussian [62, 61].

In what follows, we analyze the new expression, Eq. (7.21), and illustrate its merits. We start

by rewriting the expression of the purity, Eq. (7.10), as

P(ρ̂) =
∞

∑
n=0

pn (−1)n, (7.29)

where

pn = ⟨n|ρ̂out,b|n⟩, (7.30)

is the probability of finding n photons in state

ρ̂out,b = Tra

(
ÛBS(ρ̂ ⊗ ρ̂)Û†

BS

)
(7.31)
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at the measured output of the beam splitter. Similarly,

N (ρ̂) =
∞

∑
n=0

pn (−1)n (1 + 2n) , (7.32)

so that Eq. (7.21) can be rewritten as

C2(ρ̂) = 1 + 2 ∑n n (−1)n pn

∑n(−1)n pn
. (7.33)

Whereas it looks simple, Eq. (7.33) yields a convenient method to compute the QCS theo-

retically only when the pn’s can be easily calculated. Still, the main message of our chapter

is that, provided the pn’s can be experimentally measured using the above interferometric

scheme, we get access to C2(ρ̂) from Eq. (7.33).

Interestingly, we may suggestively rewrite C2(ρ̂) in terms of some peculiar average. Let

πn =
(−1)n pn

∑n(−1)n pn
(7.34)

be the quasi-probability distribution associated with pn (with ∑n πn = 1 but πn ≱ 0). Then,

Eq. (7.33) becomes

C2(ρ̂) = 1 + 2 ⟨n ⟩π, (7.35)

where ⟨·⟩π denotes the average with respect to πn. Hence, ⟨n⟩π > 0 is equivalent to C2(ρ̂) >

1 as a sufficient condition for optical nonclassicality.

At this point, it is instructive to consider what happens when ρ̂ = |ψ⟩⟨ψ| is a pure state,

so that

P(|ψ⟩⟨ψ|) = ∑
n
(−1)n pn = 1. (7.36)

Since ∑n pn = 1, this implies that only even values of n can be observed at the output of

the 50:50 beam splitter (pn = 0 if n is odd), which can be viewed as the manifestation of

an extended Hong-Ou-Mandel effect. In this case πn = pn becomes a genuine probability

distribution and the QCS is simply given by

C2(|ψ⟩⟨ψ|) = 1 + 2 n̄, (7.37)

where n̄ = ∑n n pn is the average photon number in the measured output mode of the beam

splitter. We see here that the QCS always exceeds one unless the pure state |ψ⟩ is a coherent

state, in which case pn = δn,0 and n̄ = 0. This is consistent with the fact that the only classical

pure states are coherent states. The value of the QCS for all other pure states is very easy to

find since n̄ = ⟨â† â⟩ψ − ⟨â⟩ψ ⟨â†⟩ψ, where ⟨·⟩ψ = ⟨ψ| · |ψ⟩ denotes the expectation value in

the input pure state |ψ⟩. This is sometimes also called the number of thermal (non-coherent)

photons of |ψ⟩. Furthermore, it is just equal to the average photon number n̄ = ⟨â† â⟩ψ of

the input state if the latter state is centered on the origin (if the mean field vanishes). We

then immediately recover the known expressions of the QCS for a vacuum squeezed state or
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a Fock state [30], namely,

C2(|ξ⟩⟨ ξ|) = cosh(2r), C2(|n⟩⟨n|) = 1 + 2n. (7.38)

Let us turn to examples of mixed states ρ̂ and illustrate how the behavior of distribution

of the pn’s yields a qualitative idea on the value of the QCS. For this purpose, we consider the

following two families of states (these states were already presented in Section 3.2.4 but we

give back their purity and QCS here as we will use it):

ρ̂2M =
1

2M

2M

∑
n=1

|n⟩⟨n|, ρ̂even,M =
1
M

M

∑
n=1

|2n⟩⟨2n|. (7.39)

with M ≥ 1. It was shown in Ref. [30] that

P(ρ̂2M) =
1

2M
, P(ρ̂even,M) =

1
M

, (7.40)

and

C2(ρ̂2M) = 1 +
1
M

, C2(ρ̂even,M) = 1 + 2(M + 1). (7.41)

In other words, as M increases, both states are increasingly mixed, but, whereas this goes

with a lower nonclassicality for ρ̂2M, the nonclassicality of ρ̂even,M gets higher. As shown

in Ref. [30], this corresponds to increasingly fast oscillations in the Wigner function of the

ρ̂even,M, which are absent for the ρ̂2M.

These two families of states are phase-invariant. For those states, we can evaluate nu-

merically the pn to show that they can give information about the QCS. To find the pn for

phase-invariant states, let us first derive the photon number probability at the output if we put

N photons in mode â and N′ photons in mode b̂. Then the initial state is given by:

|NN′⟩a,b =
â†N
√

N!
b̂†N′

√
N′!

|00⟩a,b. (7.42)

Expanding this state on the number bases associated to the c and d modes yields:

|NN′⟩a,b =
(−ĉ† + d̂†)N

√
2N N!

(ĉ† + d̂†)N′

√
2N′ N′!

|00⟩a,b, (7.43)

=
N+N′

∑
n=0

N′

∑
n′=0

c(n, n′, N, N′)|N + N′ − n, n⟩c,d, (7.44)

where

c(n, n′, N, N′) =
(−1)N−n+n′√

N!N′!(N + N′ − n)!n!√
2N+N′(n − n′)!n′!(N − n + n′)!(N′ − n′)!

. (7.45)

Consequently, the photon probability distribution in mode d̂ is equal to:

pN,N′
n =

( N′

∑
n′=0

c(n, n′, N, N′)
)2

. (7.46)
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Figure 7.2: Graphs of pn as defined in Eq. (7.30) for the states ρ̂2M and ρ̂even,M with M = 5,
as well as for ρ̂thermal,q with q = 0.85. The value of q is chosen so that ⟨n̂⟩0.85 = 5.7 is close
to the mean photon number in ρ̂10 and ρ̂even,5, namely, 5.5 and 6. The purities of these states
are given, respectively, by P(ρ̂10) = 1/10, P(ρ̂even,5) = 1/5, and P(ρ̂thermal,q) = 0.08,
while their QCS are given by C2(ρ̂10) = 6/5, C2(ρ̂even,5) = 13, and C2(ρ̂thermal,q) = 0.08.

If the state is ρ̂ = ∑m λm|m⟩⟨m|, then as input state, we have:

ρ̂ ⊗ ρ̂ = ∑
m

∑
m′

λmλm′ |m⟩⟨m| ⊗ |m′⟩⟨m′|, (7.47)

and the probability distribution is given by:

pn = ∑
m

∑
m′

λmλm′ pm,m′
n . (7.48)

These expressions are readily evaluated numerically and are used to produce the plots in

Fig. 7.2 representing the numerically obtained values of pn for both states for M = 5. It is

also clear that these expressions are not a convenient starting point to compute the QCS of the

state ρ̂. One observes on these graphs that the pn’s evolve more smoothly as a function of n
for ρ̂10 than for ρ̂even,5. Since for both states P(ρ̂) = ∑10

k=0(p2k − p2k+1), this immediately

explains the lower value of the purity for ρ̂10 than for ρ̂even,5. In general, it is clear that if

the pn’s evolve slowly with n, the value of the purity will tend to be smaller. If, on the other

hand, they change sharply with successive n (with higher values for even n than for odd

n), the purity will tend to be larger. This effect is accentuated in the numerator of the QCS

because of the extra n factor. This qualitatively explains the large value of the QCS for ρ̂even,5

as a consequence of the sharp variations in the corresponding pn’s as observed in Fig. 7.2.

To further corroborate this picture, we compute the QCS for thermal states (defined in
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Subsection 2.4.1)

ρ̂q = (1 − q)∑
n

qn|n⟩⟨n|, 0 ≤ q < 1, (7.49)

with a mean photon number ⟨n̂⟩q = q/(1 − q). Since sending two identical thermal states at

a beam splitter results into the same product of thermal states at the output [159], we simply

have pn = (1 − q) qn. The graph of pn for q = 0.85 is shown in Fig. 7.2 and one sees that it

is indeed very smooth as a function of n, without fast oscillations as expected since thermal

states are well known to be classical. Using Eq. (7.29) and (7.32), we have

P(ρ̂q) = (1 − q)
∞

∑
n=0

(−1)nqn =
1 − q
1 + q

, (7.50)

N (ρ̂q) = (1 − q)
∞

∑
n=0

(−1)nqn(1 + 2n) =
(1 − q)2

(1 + q)2 , (7.51)

so that Eq. (7.33) yields

C2(ρ̂q) =
1 − q
1 + q

=
1

1 + 2⟨n̂⟩q
< 1. (7.52)

We can also represent the influence of the value of the parameter M or q. Indeed, for the

states ρ̂2M, we know that the QCS decreases when M increases. This appears clearly when

representing the pn for different values of M (see Fig. 7.3). Indeed, for greater values of M,

we see that pn is smoother and thus that the differences (p2k − p2k+1) are smaller. As these

differences are involved in the calculation of the numerator of the QCS weighted by n, if they

are smaller, the QCS will be smaller which corresponds to the theory expectation.

For ρ̂even,M, the effect is the opposite. Indeed, for these states, the QCS depends linearly

on M and thus increases when M increases. In Fig. 7.4, we see that pn is oscillating for any

value of M with local minima for n odd. However, when M is bigger, the oscillations extend

to higher n’s. This is expected since for M bigger, we input more photons in the circuit.

However, this explains why the QCS increases with the value of M. Indeed, the numerator

of the QCS is weighted by n; hence, the oscillations for high n leads to a bigger value for the

QCS.

Finally, thermal states are classical states which means that their QCS is smaller than one

for any value of the parameter q. We thus expect that pn will be very smooth for any value of

the parameter. This is what we represent in Fig. 7.5 and indeed, all the distributions are very

smooth.

In summary, when the pn’s can be determined, experimentally or otherwise, an inspection

of their behavior as a function of n gives a good indication on whether the QCS is large or

small. More precisely, one expects that when the pn’s evolve slowly with n, the state has a

small QCS, whereas sharp variations in the pn’s indicate a large QCS, hence a nonclassical

state. Note that these variations can be viewed as a consequence of quantum interference, so

that we see here again that large interference effects are associated to a large degree of non-
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Figure 7.3: Graphs of pn as defined in Eq. (7.30) for states ρ̂2M for M = 2, 4, 6, 8 and 10.

Figure 7.4: Graphs of pn as defined in Eq. (7.30) for states ρ̂even,M for M = 2, 4, 6, 8 and 10.
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Figure 7.5: Graphs of pn as defined in Eq. (7.30) for states ρ̂q for q = 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9.

classicality. When the state is pure (except for coherent states), the full sequence pn exhibits

clear oscillations since all odd terms vanish (extended Hong-Ou-Mandel effect). When the

state is mixed, the fluctuations may remain, but are less pronounced. Eq. (7.33) suggests that

the QCS is a measure of the intensity of these fluctuations.

7.5 Phase-space interpretation

Combining the results of the previous sections with phase-space formalism, we can express

the purity and QCS of a state ρ̂ in terms of the Wigner function of the output state ρ̂d that

is found in the output mode d̂ (associated with destructive interference). This in turn yields

expressions of the purity and QCS in terms of the Wigner function of state ρ̂. We refer to

Subsection 2.3.1 for the basics of Wigner functions and the conventions we use here.

It is instructive to consider the purity as a special case of the overlap of two input states ρ̂a

and ρ̂b impinging on the 50:50 beam splitter in Fig. 7.1. If their respective Wigner functions

are denoted by Wa(x, p) and Wb(x, p), then the Wigner function of the state on mode d̂,

ρ̂d = Trc(ρ̂a ⊗ ρ̂b) = Tra

(
ÛBS(ρ̂a ⊗ ρ̂b)Û†

BS

)
, (7.53)

is given by the (scaled) convolution [92]

Wd(x, p) = 2
∫

Wa(x′, p′)Wb(x′ +
√

2x, p′ +
√

2p)dx′ dp′. (7.54)
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Its value at the origin in phase-space is thus

Wd(0, 0) = 2
∫

Wa(x′, p′)Wb(x′, p′) dx′ dp′. (7.55)

Note that Wd(x, p) ≥ 0, ∀x, p, at the output of a 50:50 beam splitter with arbitrary input states

ρ̂a and ρ̂b [152], which is consistent with the fact that the overlap Tr(ρ̂a ρ̂b) is non-negative.

Hence, using the overlap formula Eq. (2.26), we have

Tr(ρ̂a ρ̂b) = π Wd(0, 0). (7.56)

Then, using the well-known property that the value of a Wigner function evaluated at the

origin is proportional to the expectation value of the photon number parity, [see Subsection

2.3.1, Eq. (2.33)], we conclude that [29, 78]

Tr(ρ̂a ρ̂b) = π Wd(0, 0) = Trd
(
ρ̂d (−1)n̂d

)
. (7.57)

This implies that the overlap between states ρ̂a and ρ̂b can be accessed by measuring the ex-

pectation value of the photon number parity on the output mode d̂ (associated with destructive

interference) of a 50:50 beam splitter using the scheme of Fig. 7.1 but with input states ρ̂a

and ρ̂b. Of course, the purity corresponds to the special case where ρ̂a and ρ̂b are both equal

to ρ̂ in which case, Eq. (7.57) reduces to Eq. (7.14).

We will now use Eq. (7.21) to express the QCS in terms of the Wigner function of the

state ρ̂d and its derivatives evaluated at the origin. For the denominator, the desired expression

results from Eq. (7.57) where ρ̂a = ρ̂b, that is,

P(ρ̂) = Tr
[
(ρ̂ ⊗ ρ̂) Ŝ

]
,

= Trd
[
ρ̂d (−1)n̂d

]
,

= π Wd(0, 0). (7.58)

For the numerator N (ρ̂), we can write

N (ρ̂) = Tr
[
(ρ̂ ⊗ ρ̂) N̂

]
,

= Trd
[
ρ̂d (x̂2

d + p̂2
d) (−1)n̂d

]
. (7.59)

In order to express the QCS in terms of the Wigner function of state ρ̂d, we then need to

compute the Weyl transform of the operator (x̂2 + p̂2) (−1)n̂/π and then apply the overlap
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formula. We first calculate the Weyl transform of x̂2 (−1)n̂/π, namely

1
2π

∫
⟨x − y

2
| x̂

2 (−1)n̂

π
|x +

y
2
⟩ eipy dy

=
1

2π2

∫ (
x − y

2

)2
⟨x − y

2
| − x − y

2
⟩ eipy dy,

=
δ(2x)
8π2

∫
y2 eipy dy,

= −δ(x) δ′′(p)
8π

, (7.60)

where we have used the identity
∫

y2 eipy dy = −2π δ′′(p). Using the overlap formula, we

then obtain

1
π

Tr
(
ρ̂ x̂2 (−1)n̂) = −2π

∫
W(x, p)

δ(x) δ′′(p)
8π

dx dp,

= −1
4

∂2W
∂p2

∣∣∣∣
x=0,p=0

, (7.61)

where we have used the identity
∫

f (x) δ′′(x) dx = f ′′(0). Similarly, we have

1
π

Tr
(
ρ̂ p̂2 (−1)n̂) = −1

4
∂2W
∂x2

∣∣∣∣
x=0,p=0

, (7.62)

so that

1
π

Tr
(
ρ̂ (x̂2 + p̂2) (−1)n̂) = −1

4
∆W

∣∣∣∣
x=0,p=0

, (7.63)

where ∆ stands for the Laplacian. The numerator of the QCS can then be expressed as

N (ρ̂) = −π

4
∆Wd

∣∣∣∣
x=0,p=0

. (7.64)

As a result, we obtain

C2(ρ̂) =
N (ρ̂)

P(ρ̂)
= −1

4
∆Wd

Wd

∣∣∣∣
x=0,p=0

. (7.65)

Finally, we can express C2(ρ̂) in terms of the Wigner function of the state ρ̂ itself (instead

of ρ̂d). From Eq. (7.54) with Wa = Wb = W and partial integration, one readily sees that

∆Wd(0, 0) = 4
∫

W(x′, p′)∆W(x′, p′)dx′ dp′, (7.66)

= −∥∇αW∥2. (7.67)

Using this together with Eq. (7.55) for Wa = Wb = W, Eq. (7.65) can be reexpressed as

C2(ρ̂) =
1
4
∥∇αW∥2

2

∥W∥2
2

, (7.68)
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which is nothing else than the formula already known (Eq. (3.20)).

Using these results, one can easily recover the well-known formula for Gaussian purity,

overlap and QCS. To do this, we start from the expression of the Wigner function of a Gaus-

sian state centered at origin given by Eq. (2.42). It is sufficient to consider a centered state

here since the purity and QCS are both invariant under displacements in phase-space (and

displacements are easy to account for in the overlap between two states).

Purity We can recover the expression of the purity by using Eq. (7.56). If ρ̂ is a Gaussian

state centered at origin, then ρ̂d = ρ̂ because the product of two identical Gaussian states

impinging on a beam splitter remains unchanged [159]. Thus, Wd(0, 0) = 1/(2π
√

det γ)

according to Eq. (2.42), so that we have, from Eq. (7.56),

Tr
(
ρ̂2) = π Wd(0, 0) =

1
2
√

det γ
, (7.69)

which is indeed the usual formula for the purity of a Gaussian state Eq.(2.45) ([159]).

Interestingly enough, it then follows from Eq. (7.14) that, for a centered Gaussian state,

Tr
(
ρ̂2) = Tr

(
ρ̂ (−1)n̂) .

Overlap We now use Eq. (7.56) in the special case where ρ̂a and ρ̂b are two Gaussian states

(both assumed to be centered for simplicity). First note that, if ρ̂a (ρ̂b) is characterized by the

covariance matrix γa (γb), then the output state ρ̂d of the 50:50 beam splitter is a centered

Gaussian state with covariance matrix γd = (γa + γb)/2 [159]. Its Wigner function as given

by Eq. (2.42) admits the value at origin

Wd(0, 0) =
1

2π
√

det γd
=

1
π
√

det(γa + γb)
. (7.70)

Using Eq. (7.56), we then find

Tr(ρ̂a ρ̂b) =
1√

det(γa + γb)
, (7.71)

which is the well-known formula (Eq. (2.47)) for the overlap between two centered Gaussian

states [102].

Quadrature coherence scale If the input state is Gaussian, then Wd is simply equal to the

Wigner function of the input state and has the form of Eq. (2.42). In that case, the Laplacian

at origin is easily expressed as:

∆Wd
∣∣

x=0,p=0 = − Tr(γ−1)

2π
√

det γ
, (7.72)
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while Wd(0, 0) = 1/(2π
√

det γ), so that we conclude that the QCS of a Gaussian state of

covariance matrix γ is

C2(ρ̂) = −1
4

∆Wd

Wd

∣∣∣∣
x=0,p=0

=
1
4

Tr(γ−1), (7.73)

in agreement with the expression proven in Ref. [62] (Eq. (3.24)).

7.6 Multimode case

The extension of the multicopy interferometric method to the measurement of the QCS and

purity of a n-mode state is immediate. Note first that the swap operator can be written as

Ŝ = ei π
2 ∑N

k=1(â†
k−b̂†

k )(âk−b̂k), (7.74)

where k is the mode index. Coupling the set of â and b̂ modes pairwise is done with stack of

N beam splitter (see Fig. 7.6), each of them effecting the unitary

ÛBSk = e
π
4 (â†

k b̂k−âk b̂†
k ). (7.75)

Defining ĉk and d̂k as in Eq. (7.8), one finds:

Ŝ =
N

∏
k=1

eiπd̂†
k d̂k = (−1)∑N

k=1 n̂dk . (7.76)

Hence, the multimode purity is expressible as before,

P(ρ̂) = Tr
(
(ρ̂ ⊗ ρ̂)Ŝ

)
= Tr

(
ρ̂d(−1)∑k n̂dk

)
, (7.77)

where

ρ̂d = Trc(ρ ⊗ ρ).

Again, the same circuit can be used to measure the multimode version of the QCS with

C2(ρ̂) =
Tr
(

ρ̂d ∑k′(−1)∑k n̂dk (1 + 2n̂dk′
)
)

n Tr
(

ρ̂d(−1)∑k n̂dk

) . (7.78)

7.7 Conclusion

The quadrature coherence scale is an efficient nonclassicality witness and measure, which can

be expressed through several equivalent formulas, making it relatively easy to compute for a

large variety of states [30, 75, 62, 61]. It has a clear physical interpretation, notably because
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Figure 7.6: Circuit implementing the measurement of the purity and QCS for a N-mode state
ρ̂. Here, two identical copies of the state are sent in a stack of 50:50 beam splitters and the
photon number statistics is measured in the output modes d̂k, with k = 1, · · · N.

it is inversely proportional to the decoherence time of the state [62]. Nevertheless, since it is

a nonlinear function of the density matrix, its measurement would a priori seem to require

a complete state tomography. We have shown that this problem can be avoided through the

use of a simple two-copy interferometric measurement scheme using a 50:50 beam splitter

associated with photon counting. The method can easily be adapted to multimode systems,

in which case one needs to couple the modes pairwise using a stack of 50:50 beam splitters.

The downside of this procedure is of course the need to ensure the interferometric stability of

the joint measurement of the two replicas, as well as the need for photon-number resolving

detectors.

The underlying multicopy technique used here was put forward in the 2000s [18, 38,

109] and was more recently applied to bosonic atoms in optical lattices [29, 78] as well as

continuous-variable quantum optical systems [65, 6]. The present work further extends the

range of applicability of this set of techniques in quantum optics. Recently, our scheme has

been implemented in Ref. [49] proving that it is indeed implementable. In this paper, the

authors implement our scheme to measure the QCS of squeezed states using the Xanadu’s

machine Borealis. They prove that the value of the QCS obtained by performing the ex-

113



CHAPTER 7. TWO-COPY MEASUREMENT OF THE QUADRATURE COHERENCE
SCALE

Figure 7.7: Experimental implementation of our scheme to measure the QCS of a squeezed
state (Figure taken from Ref. [49]).

periment matches with the expected theoretical value up to some practical imperfections. A

scheme showing the experiment is shown in Fig. 7.7 where two pulsed identical squeezed

states are put into the circuit. The two states then interact into a balanced beam splitter and

the output photon numbers are measured. The statistics of the number of photons obtained is

then used to obtain the value of the QCS which is in agreement with the theory.
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Chapter 8

Multicopy observables for the
detection of continuous-variable
entanglement

This chapter is based on the following paper that I published together with Tobias Haas and

Nicolas Cerf:

C. Griffet, T. Haas, and N. J. Cerf. Accessing continuous-variable entanglement witnesses

with multimode spin observables. Physical Review A, 108: 022421, August 2023. [51]

8.1 Introduction

Entanglement is, without doubt, one of the most important properties in quantum mechanics.

Over the last two decades, plenty of methods for characterizing entanglement theoretically

as well as experimentally have been put forward [121, 74, 58]. A common strategy relies

on demonstrating entanglement by violating a set of experimentally accessible conditions

fulfilled by all separable states and violated by a few entangled ones. This includes the promi-

nent Peres-Horodecki (PPT) criterion [119, 71], which states that bipartite entanglement can

be certified when the partially transposed density operator exhibits a negative eigenvalue.

Conditions implied by this PPT criterion have been studied extensively in the framework

of continuous variable quantum systems [17, 159, 136], where entanglement detection is

further complicated by the infinite dimensional Hilbert space. This encompasses formula-

tions based on uncertainty relations for second moments [34, 143, 98, 45, 64], fourth-order

moments [3], entropies over canonical variables [156, 155, 130, 150, 132], as well as en-

tropic quantities based on the Husimi Q-distribution [42, 41, 55, 54, 56]. With these ap-

proaches, entanglement could be certified experimentally in the context of quantum optics

[33, 133, 7, 122, 108] and with cold atoms [52, 148, 118, 39, 87, 89, 86].
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Although all of the aforementioned criteria are implied by the PPT criterion, they are

generally weaker in the sense that they can not detect entanglement for a few entangled states

that have a negative partial transpose. A complete hierarchy of conditions in terms of moments

of the bosonic mode operators, being sufficient and necessary for the negativity of the partial

transpose, has been put forward by Shchukin and Vogel in [141], and was further developed in

Refs. [106, 107]. While this approach settled the quest for faithfully evaluating the negativity

of the partially transposed state, efficient methods for accessing the most important low-order

conditions have until now remained elusive.

In this work, we put forward simple measurement schemes of these low-order conditions

by introducing multimode spin observables which act on a few replicas (i.e., independent

and identical copies) of the bipartite state of interest. Contrary to local canonical operators,

whose low-order correlation functions have to be measured through costly tomographic rou-

tines involving homodyne measurements [115, 99, 28], such multimode spin observables can

be transformed into a bunch of photon number measurements by using passive optical ele-

ments [65, 6, 50]. Following this multicopy technique, we devise measurement protocols for

three of the most interesting separability criteria obtained in Ref. [141] and illustrate how

they efficiently witness entanglement for the classes of Gaussian, mixed Schrödinger cat, and

N00N states, respectively. In all cases, we discuss how experimental imperfections may affect

the detection capability.

We begin Section 8.2 with a brief recapitulation of the Shchukin-Vogel hierarchy for en-

tanglement witnesses (Subsection 8.2.1), followed by an overview of the multicopy method

(Subsection 8.2.2) and, specifically, of the Jordan-Schwinger map used to build multimode

spin observables (Subsection 8.2.3). Thereupon, we derive and evaluate multimode expres-

sions for three important classes of entanglement criteria in Section 8.3, that is, criteria that

are best suited for Gaussian states (Subsection 8.3.1), mixed Schrödinger cat states (Subsec-

tion 8.3.2), and N00N states (Subsection 8.3.3). We also discuss the influence of imperfect

preparation and losses for each criterion. Finally, we summarize our findings and provide an

outlook in section 8.4.

8.2 Preliminaries

In this section, we review all the important notions that we use to obtain our result. A few

notations are important as well in this chapter: we write ⟨Ô⟩ = Tr{ρ̂ Ô} and ⟨. . . ⟨Ô⟩ . . .⟩ =
Tr{(ρ̂ ⊗ · · · ⊗ ρ̂) Ô} for single copy and multicopy expectation values, respectively. The

modes â and b̂ are associated with Alice’s and Bob’s subsystems A and B, respectively, and

copies are labeled by greek indices µ, ν.
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8.2.1 Shchukin-Vogel hierarchy

The important separability criteria used in this chapter are the ones due to Shchukin and Vogel

[141] that we already presented in Section 4.3.2. In this paper, they present a hierarchy of

determinants that give necessary conditions for separability. These determinants are presented

in Eq. (4.32). If a determinant is negative for a state then we can conclude that this state is

entangled. We also presented the invariances of these determinants: they are invariant under

rotations. However, this is not true for displacements. Indeed, many determinants vary if

the state is displaced. In what follows, we will use three different criteria involving one that

presents the invariance by displacement: d1,2,4.

8.2.2 Multicopy method

All criteria obtainable by Shchukin-Vogel’s approach can be expressed in terms of the non-

negativity of a determinant d containing moments, which offers the possibility to write them in

terms of expectation values of multimode observables. It is indeed known that any n-th degree

polynomial of matrix elements of a state ρ̂ can be accessed by defining some observable

acting on a n-copy version of the state, namely ρ̂⊗n [18]. Inspired by this multicopy method,

tight uncertainty relations [65] as well as nonclassicality witnesses [6] (see also [50]) have

been formulated by devising multicopy observables from determinants similar to (4.32). The

general scheme is as follows. Given the determinant d of a matrix containing expectation

values of mode operators, the corresponding multicopy observable D̂ is obtained by dropping

all expectation values, assigning one copy to each row and averaging over all permutations of

the copies. By construction, the multicopy expectation value ⟨. . . ⟨D̂⟩ . . .⟩ coincides with the

determinant d.

For measuring these observables, the remaining task is to find suitable optical circuits.

We start from the n-dimensional extension of mode operators describing subsystem A, which

reads [âµ, â†
ν] = δµν with µ, ν ∈ {1, . . . , n} and n denoting the number of copies (we will of

course use a similar notation for copies of subsystem B). In order to transform the measure-

ment of some n-mode observable D̂ into simple photon-number measurements, we employ

passive linear interferometers, which amounts to applying a unitary transformation (i.e., a

passive Bogoliubov transformation) to the mode operators, namely

(â1, ..., ân)
T → (â1′ , ..., ân′)T = M (â1, ..., ân)

T. (8.1)

The unitary matrix M can be decomposed in terms of two building blocks already defined in

Subsections 2.5.1 and 2.5.2, namely, the beam splitter defined as

BSµν(τ) =

( √
τ

√
1 − τ√

1 − τ −
√

τ

)
, (8.2)
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with transmittivity τ ∈ [0, 1] and the phase shifter

PSµ(θ) = e−iθ , (8.3)

with phase θ ∈ [0, 2π), where µ and ν designate the mode indices on which the corresponding

transformations are applied.

8.2.3 Multimode spin operators

When restricting to two modes (µ, ν = 1, 2), a particularly useful set of multimode operators

can be constructed from algebraic considerations. Considering again subsystem A, the fun-

damental representation of the Lie algebra su(2), i.e. the Pauli matrices Gj = σj/2 fulfilling

[Gj, Gk] = i ϵjkl Gl with j, k, l = 1, 2, 3, is realized on its two-mode extension by the quantum

operators

L̂j = ∑
µ,ν

â†
µ (Gj)µν âν, (8.4)

where (Gj)µν denotes the (µ, ν)th entry of the Pauli matrix Gj. This is known as the Jordan-

Schwinger map. More generally, in the n-mode case, this leads to defining the three two-mode

spin operators

L̂aµν
x =

1
2

(
â†

ν âµ + â†
µ âν,

)
,

L̂aµν
y =

i
2

(
â†

ν âµ − â†
µ âν,

)
,

L̂aµν
z =

1
2

(
â†

µ âµ − â†
ν âν,

)
,

(8.5)

acting on the pair of modes (âµ, âν). The Casimir operator commuting with all three spin

operators is given by the total spin (L̂aµν)2 = (L̂aµν
x )2 + (L̂aµν

y )2 + (L̂aµν
z )2 and can also be

expressed as (L̂aµν)2 = L̂aµν

0 (L̂aµν

0 + 1), where the 0th spin component, defined as

L̂aµν

0 =
1
2

(
â†

µ âµ + â†
ν âν

)
, (8.6)

denotes (one half) the total photon number on the two modes of index µ and ν.

The 0th and z-components can be measured via photon number measurements as ⟨⟨L̂aµν

0 ⟩⟩ =
(⟨n̂aµ⟩+ ⟨n̂aν⟩)/2 and ⟨⟨L̂aµν

z ⟩⟩ = (⟨n̂aµ⟩ − ⟨n̂aν⟩)/2, where n̂aµ (or n̂aν ) denotes the parti-

cle number operator associated with mode âµ (or âν). Note also that the 0th component can

be measured simultaneously with any other spin operator and will always amount to mea-

suring the total particle number. For the x- and y-components, simple optical circuits for

transforming them into the z-component are described in [65, 50], which will be discussed

below. We may of course analogously define the spin components L̂bµν
x , L̂bµν

y , L̂bµν
z , and L̂bµν

0

for any two modes b̂µ and b̂ν of subsystem B, which will be needed in subsection 8.3.1 and

subsection 8.3.2. We may even define such spin operators across the two subsystems. For a

single copy, this amounts to replacing âµ with â and âν with b̂ in Eq. (8.5), as we will need in

subsection 8.3.3.
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8.3 Multimode entanglement witnesses

Now we are ready to develop multicopy implementations of the separability criteria from the

Shchukin-Vogel hierarchy. In a nutshell, our overall strategy is to identify physically relevant

separability criteria from (4.32), rewrite them in terms of multimode observables, and then

apply linear optical circuits transforming them into spin operators (8.5), which can be ac-

cessed by photon number measurements following [65, 50]. Below, we provide the resulting

measurement routines for three classes of criteria that witness entanglement in Gaussian (sub-

section 8.3.1), mixed Schrödinger cat (subsection 8.3.2), and N00N states (subsection 8.3.3).

In each case, we address two potential sources of experimental imperfections, namely imper-

fect copies and optical losses.

First, remark that multiple identical copies of the state are always assumed to be prepared

in the multicopy method. In practice, however, the preparation process encompasses slight

fluctuations, so that the prepared multicopy state will contain imperfect copies. Although our

separability criteria are not guaranteed to remain necessarily valid from first principles in this

case, we analyze whether this effect can lead to false-positive detection of entanglement, i.e.,

can result in a negative determinant even if the imperfect copies are separable. To that end,

we model the imperfect preparation by assuming a fixed form of the state – for instance a

Gaussian form – for all copies but allow the parameters describing the state to differ from

copy to copy. Under this assumption, we do not observe any false-positive detections for

all the criteria that we have studied. Yet, imperfect copies typically weaken the detection

capability of these criteria.

Second, it is clear that any optical setup will suffer from unavoidable losses, which may

challenge the multicopy method. We model their effect with a pure-loss channel: each mode

of interest âµ is coupled with the vacuum |0⟩ via a beam splitter of transmittance τaµ [159,

136]. Effectively, this amounts to multiplying each mode operator âµ by √
τaµ . As expected,

it appears that the detection of entanglement is hindered by such optical losses for all the

criteria we have studied. In what follows, we quantify precisely the extent to which these two

sources of imperfections affect our criteria.

8.3.1 Second-order witness based on D1,2,4

Separability criterion

We start with the subdeterminant obtained from (4.32) by selecting the rows and columns 1,2,

and 4 of DT2 , i.e.,

d1,2,4 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨b̂†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†b̂†⟩
⟨b̂⟩ ⟨âb̂⟩ ⟨b̂†b̂⟩

∣∣∣∣∣∣∣ , (8.7)
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corresponding to the operator f̂ = c1 + c2 â + c3b̂. As the resulting entanglement witness

d1,2,4 < 0 is of second order in the mode operators, let us compare it to other prominent

second-order criteria. To that end, we introduce the non-local quadrature operators [36]

x̂± = |r| x̂1 ±
1
r

x̂2, p̂± = |r| p̂1 ±
1
r

p̂2, (8.8)

with some real r ̸= 0. For any separable state, the sums of the variances of these operators

are constrained by the criterion of Duan, Giedke, Cirac and Zoller [34]

dDuan = σ2
x± + σ2

p∓ −
(

r2 +
1
r2

)
≥ 0, (8.9)

where σ2
x = ⟨x̂2⟩ − ⟨x̂⟩2 denotes the variance of the operator x̂. Interestingly, the optimized

(over r) version of condition (8.9) is implied by the non-negativity of d1,2,4.

Indeed, one can show that d1,2,4 reduces to

d1,2,4 = σa†aσb†b − σa†b† σab, (8.10)

where

σyz = ⟨ŷẑ⟩ − ⟨ŷ⟩ ⟨ẑ⟩ (8.11)

denotes the covariance of the two observables ŷ, ẑ. By employing the identities

σa†a =
1
2

(
σ2

x1
+ σ2

p1
− 1
)

,

σb†b =
1
2

(
σ2

x2
+ σ2

p2
− 1
)

,

σab =
1
2
(
σx1x1 + iσx1 p2 + iσx2 p1 − σp1 p1

)
,

σa†b† = σ†
ab,

(8.12)

the condition d1,2,4 ≥ 0 can be translated into a condition on the local quadratures and their

correlations

0 ≤
(

σ2
x1
+ σ2

p1
− 1
) (

σ2
x2
+ σ2

p2
− 1
)
−
(
σx1x1 − σp1 p1

)2 −
(
σx1 p2 + σx2 p1

)2 . (8.13)

Similarly, rewriting the criterion (8.9) in terms of local quadratures using

σ2
x± = r2σ2

x1
+

1
r2 σ2

x2
± 2σx1x2 ,

σ2
p± = r2σ2

p1
+

1
r2 σ2

p2
± 2σp1 p2 ,

(8.14)

allows to optimize over r by searching for a global minimum. One finds

r2 =

√
σ2

x2
+ σ2

p2
− 1

σ2
x1
+ σ2

p1
− 1

, (8.15)
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such that the optimal Duan criterion in local variables reads

dDuan = 2
√(

σ2
x1
+ σ2

p1
− 1
) (

σ2
x2
+ σ2

p2
− 1
)
± 2

(
σx1x2 − σp1 p2

)
. (8.16)

The non-negativity of the latter is equivalent to the condition

0 ≤
(

σ2
x1
+ σ2

p1
− 1
) (

σ2
x2
+ σ2

p2
− 1
)
−
(
σx1x1 − σp1 p1

)2 . (8.17)

By comparing (8.13) and (8.17) it becomes apparent that d1,2,4 ≥ 0 implies dDuan ≥ 0 since(
σx1 p2 + σx2 p1

)2 ≥ 0. Therefore, d1,2,4 ≥ 0 is stronger than dDuan ≥ 0 in the sense that the

former condition contains additional information about the correlations between quadratures

of different types. Hence, the witness d1,2,4 < 0 is strictly stronger than the criterion of Duan

et al. for detecting entanglement.

Application to Gaussian states

It is well known that the criterion (8.9) is a necessary and sufficient condition for separabil-

ity (after optimization over r) in the case of Gaussian states as considered here (when Alice

and Bob hold one mode each) [74]. By the latter considerations, the same holds true for the

determinant d1,2,4. As a particular example, we evaluate this determinant for the archety-

pal entangled Gaussian state, the two-mode squeezed vacuum state (which was presented in

Subsection 2.4.1)

|ψ⟩ =
√

1 − λ2
∞

∑
n=0

λn |n, n⟩ , (8.18)

where λ ∈ (−1, 1).

To evaluate the determinant d1,2,4 (Eq. (8.7)) for the two-mode squeezed vacuum state

(8.18), we use the lowering/raising property of the annihilation/creation operator

â |n, n⟩ =
√

n |n − 1, n⟩ ,

â† |n, n⟩ =
√

n + 1 |n + 1, n⟩ ,
(8.19)

and similarly for the b-creation and annihilation operators acting on mode B. Then follows

for the first non-trivial matrix element of d1,2,4

⟨â† â⟩ = (1 − λ2)
∞

∑
n,n′=0

λnλn′ ⟨n′, n′| â† â |n, n⟩

= (1 − λ2)
∞

∑
n,n′=0

λnλn′√
nn′ δnn′

= (1 − λ2)
∞

∑
n=0

λ2nn

=
λ2

1 − λ2 ,

(8.20)
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where we used the orthonormality of Fock states ⟨n|n′⟩ = δnn′ . The remaining matrix ele-

ments are found analogously, leading to the expression (8.21) for the determinant

d1,2,4 =

∣∣∣∣∣∣∣
1 0 0
0 λ2

1−λ2
λ

1−λ2

0 λ
1−λ2

λ2

1−λ2

∣∣∣∣∣∣∣ = − λ2

1 − λ2 , (8.21)

which is indeed negative for any value of the parameter λ ∈ (−1, 1).

Multicopy implementation

We apply the multicopy measurement method, i.e., assign one copy to each row of the matrix

and sum over all permutations, yielding

D̂1,2,4 =
1

|S123| ∑
σ∈S123

∣∣∣∣∣∣∣∣
1 âσ(1) b̂†

σ(1)

â†
σ(2) â†

σ(2) âσ(2) â†
σ(2)b̂

†
σ(2)

b̂σ(3) âσ(3)b̂σ(3) b̂†
σ(3)b̂σ(3)

∣∣∣∣∣∣∣∣ , (8.22)

where S123 denotes the group of permutations over the index set {1, 2, 3} with dimension

|S123| = 3!. By construction, the multicopy expectation value of this observable gives the

determinant (8.7), i.e., ⟨⟨⟨D̂1,2,4⟩⟩⟩ = d1,2,4.

Indeed, we write out (8.22), giving the 36 terms

D̂1,2,4 =
1
6

(
â†

1 â1b̂†
2 b̂2 + â†

1 â1b̂†
3 b̂3 + â†

2 â2b̂†
1 b̂1 + â†

2 â2b̂†
3 b̂3 + â†

3 â3b̂†
1 b̂1 + â†

3 â3b̂†
2 b̂2

+ â†
2 â1b̂†

2 b̂3 + â†
3 â1b̂†

3 b̂2 + â†
3 â2b̂†

3 b̂1 + â†
2 â3b̂†

2 b̂1 + â†
1 â2b̂†

1 b̂3 + â†
1 â3b̂†

1 b̂2

+ â†
2 â3b̂†

1 b̂3 + â†
3 â2b̂†

1 b̂2 + â†
1 â3b̂†

2 b̂3 + â†
1 â2b̂†

3 b̂2 + â†
2 â1b̂†

3 b̂1 + â†
3 â1b̂†

2 b̂1

− â†
2 â2b̂†

1 b̂3 − â†
3 â3b̂†

1 b̂2 − â†
1 â1b̂†

2 b̂3 − â†
1 â1b̂†

3 b̂2 − â†
2 â2b̂†

3 b̂1 − â†
3 â3b̂†

2 b̂1

− â†
1 â2b̂†

1 b̂2 − â†
1 â3b̂†

1 b̂3 − â†
2 â3b̂†

2 b̂3 − â†
2 â1b̂†

2 b̂1 − â†
3 â1b̂†

3 b̂1 − â†
3 â2b̂†

3 b̂2

− â†
2 â1b̂†

3 b̂3 − â†
3 â1b̂†

2 b̂2 − â†
1 â3b̂†

2 b̂2 − â†
1 â2b̂†

3 b̂3 − â†
3 â2b̂†

1 b̂1 − â†
2 â3b̂†

1 b̂1

)
.

(8.23)

When computing the multicopy expectation value of this expression on three copies of the

state ρ̂, every term appears six times, resulting in

⟨⟨⟨D̂1,2,4⟩⟩⟩ = ⟨â† â⟩ ⟨b̂†b̂⟩+ ⟨â⟩ ⟨â†b̂†⟩ ⟨b̂⟩

+ ⟨b̂†⟩ ⟨â†⟩ ⟨âb̂⟩ − ⟨b̂†⟩ ⟨â† â⟩ ⟨b̂⟩

− ⟨â⟩ ⟨â†⟩ ⟨b̂†b̂⟩ − ⟨â†b̂†⟩ ⟨âb̂⟩

= d1,2,4,

(8.24)

as desired.
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We prove that applying an arbitrary displacement D̂(α)D̂(β) on the bipartite state ρ̂ does

not change the value of the determinant d1,2,4. The annihilation operators â and b̂ of the two

subsystems transform as

â → â′ = â + α,

b̂ → b̂′ = b̂ + β,
(8.25)

with complex phases α, β ∈ C. Then, the determinant transforms as

d1,2,4 → d′1,2,4 =

∣∣∣∣∣∣∣
1 ⟨â′⟩ ⟨b̂′†⟩

⟨â′†⟩ ⟨â′† â′⟩ ⟨â′†b̂′†⟩
⟨b̂′⟩ ⟨â′b̂′⟩ ⟨b̂′†b̂′⟩

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 ⟨â + α⟩ ⟨b̂† + β∗⟩

⟨â† + α∗⟩ ⟨(â† + α∗)(â + α)⟩ ⟨(â† + α∗)(b̂† + β∗)⟩
⟨b̂ + β⟩ ⟨(â + α)(b̂ + β)⟩ ⟨(b̂† + β∗)(b̂ + β)⟩

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨b̂†⟩+ β∗

⟨â†⟩+ α∗ ⟨â† â⟩+ α ⟨â†⟩+ α∗(⟨â⟩+ α) ⟨â†b̂†⟩+ β∗ ⟨â†⟩+ α∗(⟨b̂†⟩+ β∗)

⟨b̂⟩+ β ⟨âb⟩+ α ⟨b̂⟩+ β(⟨â⟩+ α) ⟨b̂†b̂⟩+ β∗ ⟨b̂⟩+ β(⟨b̂†⟩+ β∗)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨b̂†⟩+ β∗

⟨â†⟩ ⟨â† â⟩+ α ⟨â†⟩ ⟨â†b̂†⟩+ β∗ ⟨â†⟩
⟨b̂⟩ ⟨âb⟩+ α ⟨b̂⟩ ⟨b̂†b̂⟩+ β∗ ⟨b̂⟩

∣∣∣∣∣∣∣
= d1,2,4,

(8.26)

where we used that the determinant remains invariant when adding to a column/row another

column/row multiplied by some complex number in the two last equations. Since d1,2,4 is

invariant under displacements, we may access D̂1,2,4 by first applying a linear optics transfor-

mation on Alice’s and Bob’s subsystems that has the effect of concentrating the mean field on

one mode of each subsystem (â1 and b̂1) and canceling it on the other two modes (â2 and â3,

on Alice’s side, and b̂2 and b̂3 on Bob’s side). To that end, as shown in Refs. [65, 50], we may

apply the transformation

M =
[
BSa1a3 (2/3)⊗ Ia2

][
BSa1a2 (1/2)⊗ Ia3

]

=
1√
6


√

2
√

2
√

2√
3 −

√
3 0

1 1 −2

 (8.27)

to the â-modes and similarly to the b̂-modes as shown in Figure 8.1a. Denoting with a prime

all output modes of this transformation, this results in
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D̂1,2,4 =
1
2

(
â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′

− â†
2′ â3′ b̂†

2′ b̂3′ − â†
3′ â2′ b̂†

3′ b̂2′
)

=
1

|S2′3′ | ∑
σ∈S2′3′

∣∣∣∣∣â†
σ(1) âσ(1) â†

σ(1)b̂
†
σ(1)

âσ(2)b̂σ(2) b̂†
σ(2)b̂σ(2)

∣∣∣∣∣
= D̂2,4,

(8.28)

with S2′3′ denoting the group of permutations over the index set {2′, 3′} with dimension

|S2′3′ | = 2!. Note that the dependence on mode â1′ and b̂1′ has disappeared, as expected.

Interestingly, the latter expression corresponds to the multicopy implementation of the subde-

terminant

d2,4 =

∣∣∣∣∣⟨â† â⟩ ⟨â†b̂†⟩
⟨âb⟩ ⟨b̂†b̂⟩

∣∣∣∣∣ , (8.29)

as ⟨⟨D̂2,4⟩⟩ = d2,4.

Let us now consider the experimental measurement of the multimode observable D̂2,4. To

that end, we define three operators Ĉj based on the spin operators (8.5) and (8.6) applied onto

modes 2′ and 3′ on Alice’s and Bob’s side, namely

Ĉ1 = L̂a2′3′
0 L̂b2′3′

0 − L̂a2′3′
x L̂b2′3′

x ,

Ĉ2 = L̂a2′3′
0 L̂b2′3′

0 − L̂a2′3′
y L̂b2′3′

y ,

Ĉ3 = L̂a2′3′
0 L̂b2′3′

0 − L̂a2′3′
z L̂b2′3′

z ,

(8.30)

leading to the simple decomposition

D̂2,4 = Ĉ1 − Ĉ2 + Ĉ3. (8.31)

Indeed, we start from the four products L̂a2′3′
j L̂b2′3′

j for j ∈ {x, y, z, 0} applied to the modes

2′ and 3′, which read

L̂a2′3′
x L̂b2′3′

x =
1
4

(
â†

3′ â2′ b̂†
3′ b̂2′ + â†

2′ â3′ b̂†
2′ b̂3′ + â†

2′ â3′ b̂†
3′ b̂2′ + â†

3′ â2′ b̂†
2′ b̂3′

)
,

L̂a2′3′
y L̂b2′3′

y = −1
4

(
â†

3′ â2′ b̂†
3′ b̂2′ + â†

2′ â3′ b̂†
2′ b̂3′ − â†

2′ â3′ b̂†
3′ b̂2′ − â†

3′ â2′ b̂†
2′ b̂3′

)
,

L̂a2′3′
z L̂b2′3′

z =
1
4

(
â†

2′ â2′ b̂†
2′ b̂2′ + â†

3′ â3′ b̂†
3′ b̂3′ − â†

2′ â2′ b̂†
3′ b̂3′ − â†

3′ â3′ b̂†
2′ b̂2′

)
,

L̂a2′3′
0 L̂b2′3′

0 =
1
4

(
â†

2′ â2′ b̂†
2′ b̂2′ + â†

3′ â3′ b̂†
3′ b̂3′ + â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′

)
.

(8.32)
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Then, following the definitions of the operators Ĉj given in (8.30) we find

Ĉ1 =
1
4

(
â†

2′ â2′ b̂†
2′ b̂2′ + â†

3′ â3′ b̂†
3′ b̂3′ + â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′

− â†
3′ â2′ b̂†

3′ b̂2′ − â†
2′ â3′ b̂†

2′ b̂3′ − â†
2′ â3′ b̂†

3′ b̂2′ − â†
3′ â2′ b̂†

2′ b̂3′
)

,

Ĉ2 =
1
4

(
â†

2′ â2′ b̂†
2′ b̂2′ + â†

3′ â3′ b̂†
3′ b̂3′ + â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′

+ â†
3′ â2′ b̂†

3′ b̂2′ + â†
2′ â3′ b̂†

2′ b̂3′ − â†
2′ â3′ b̂†

3′ b̂2′ − â†
3′ â2′ b̂†

2′ b̂3′
)

,

Ĉ3 =
1
2

(
â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′

)
,

(8.33)

such that

Ĉ1 − Ĉ2 + Ĉ3 =
1
2

(
â†

2′ â2′ b̂†
3′ b̂3′ + â†

3′ â3′ b̂†
2′ b̂2′ − â†

2′ â3′ b̂†
2′ b̂3′ − â†

3′ â2′ b̂†
3′ b̂2′

)
= D̂2,4,

(8.34)

as expected. Therefore, d1,2,4 can be accessed by measuring separately the expectation value

of each operator Ĉj, resulting in

d1,2,4 = ⟨⟨Ĉ1⟩⟩ − ⟨⟨Ĉ2⟩⟩+ ⟨⟨Ĉ3⟩⟩ . (8.35)

This is achieved by applying the three linear optical circuits depicted in Figure 8.1b-d on the

â modes, namely

M1 = BSa2′ a3′ (1/2) ,

M2 = BSa2′ a3′ (1/2) PSa3′ (π/2) ,

M3 = Ia2′ a3′ ,

(8.36)

and analogously for the b̂ modes. Afterwards, all three operators Ĉj are of the same form

Ĉj =
1
2

(
n̂a2′′ n̂b3′′

+ n̂a3′′ n̂b2′′

)
, (8.37)

which is positive semi-definite and only contains photon number operators (the double primes

denote the output modes of the Mj transformations). Thus, the resulting observable D̂2,4

(hence also D̂1,2,4) depends on cross correlations between the particle numbers on two modes

on Alice’s and Bob’s sides, so it can easily be accessed (provided we have detectors with

photon number resolution).
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Figure 8.1: a) Optical circuit implementing the transformation M on three identical copies
of the bipartite state ρ̂, where Alice holds modes â1,2,3 and Bob holds modes b̂1,2,3. The
displacement of the state ρ̂ is removed by a sequence of two beam splitters of transmittances
1
2 and 2

3 , implemented locally by Alice and Bob, and leading to modes â1′,2′,3′ and b̂1′,2′,3′ . The
mean field is concentrated on one mode of each subsystem (â1′ and b̂1′), which is traced over.
b-d) Three optical circuits applied locally by Alice and Bob in order to access the expectation
values of the three operators Ĉj, which are needed to evaluate the entanglement witness d1,2,4.
While measuring Ĉ3 (see d) requires photon number detectors without any additional optical
circuit, a beam splitter of transmittance 1

2 must be added by Alice and Bob for measuring Ĉ1

(see b), preceded by a phase shift of π
2 for measuring Ĉ2 (see c).
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Imperfect copies and optical losses

We analyze the influence of imperfect copies and optical losses when applying this witness

to the two-mode squeezed vacuum state (8.18) by using two "toy" models. To that end, we

allow for distinct squeezing parameters λµ ∈ (−1, 1) for the two copies µ = 1, 2. Thus, we

consider the state |ψ⟩ ⟨ψ|1 ⊗ |ψ⟩ ⟨ψ|2 and insert beam splitters with transmittances τaµ , τbµ
≤

1 on the four modes (â1, â2) and (b̂1, b̂2) in order to model losses. Then, we obtain for the

expectation value of our multicopy observable D̂2,4

⟨⟨D̂2,4⟩⟩ =
λ2

1λ2
2(τa1 τb2 + τa2 τb1)− 2λ1λ2

√
τa1 τa2 τb1 τb2

2(1 − λ2
1)(1 − λ2

2)
, (8.38)

with a slight abuse of notation (we use double brackets although the two copies are not iden-

tical). We note first that, without losses, the multicopy expectation value

⟨⟨D̂2,4⟩⟩
no-loss

=
λ1λ2(λ1λ2 − 1)
(1 − λ2

1)(1 − λ2
2)

(8.39)

is always negative provided λ1 and λ2 have the same sign. Otherwise, if λ1 and λ2 have

opposite signs, entanglement is not detected anymore (this corresponds to false negatives, i.e.,

the determinant fails to be negative even if the imperfect copies are both entangled). We also

see that ⟨⟨D̂2,4⟩⟩
no-loss

= 0 if λ1 = 0 or λ2 = 0, in which case the state |ψ⟩1 or |ψ⟩2 becomes

trivially separable and hence, we do not get a false-positive detection of entanglement.

Now adding losses but assuming that τa1 = τa2 = τb1 = τb2 ≡ τ, we get the expectation

value

⟨⟨D̂2,4⟩⟩ = τ2 ⟨⟨D̂2,4⟩⟩
no-loss . (8.40)

Thus, in the interesting case where λ1 and λ2 have the same sign, the no-loss negative value

is multiplied by a positive factor τ2 smaller than or equal to unity. This implies that losses can

only deteriorate the detection capabilities but, at the same time, the entanglement of the two-

mode squeezed vacuum state remains detected for any non-vanishing transmittances τ > 0.

More generally, using (
√

τa1 τb2 ±
√

τa2 τb1)
2 ≥ 0, we obtain upper and lower bounds on the

expectation value of D̂2,4 with arbitrary losses, namely

τa1 τb2 + τa2 τb1

2
⟨⟨D̂2,4⟩⟩

no-loss ≥ ⟨⟨D̂2,4⟩⟩ ≥
√

τa1 τa2 τb1 τb2 ⟨⟨D̂2,4⟩⟩
no-loss , (8.41)

where we have assumed again that λ1 and λ2 have the same sign, so that ⟨⟨D̂2,4⟩⟩
no-loss

is neg-

ative. Both bounds simply collapse to τ2 ⟨⟨D̂2,4⟩⟩
no-loss

in the case where τa1 τb2 = τa2 τb1 ≡
τ2, from which we draw the same conclusions. Otherwise, for arbitrary transmittances, it is

clear that losses always bring the (negative) lower bound on ⟨⟨D̂2,4⟩⟩ closer to zero, corrob-

orating the idea that losses deteriorate the witness. Yet, the entanglement of the two-mode

squeezed vacuum state remains detected for any non-vanishing transmittance τaµ , τbµ
> 0

as the upper bound on ⟨⟨D̂2,4⟩⟩ always remains negative. In short, although the condition
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⟨⟨D̂2,4⟩⟩
no-loss

< 0 only constitutes a valid entanglement witness for λ1 = λ2, we observe

that ⟨⟨D̂2,4⟩⟩ is negative for all λ1, λ2 > 0 or λ1, λ2 < 0 and for arbitrary losses.

We can further illustrate the fact that the false-positive detection of entanglement is ex-

cluded by considering a finite set of separable states. For example, for two imperfect copies

of a product of two single-mode squeezed states, the expectation value is given by

⟨⟨D̂2,4⟩⟩ =
1
2

(
τa1 τb2 sinh2 ra1 sinh2 rb2 + τb1 τa2 sinh2 ra2 sinh2 rb1

)
, (8.42)

where raµ , rbµ
∈ [0, ∞) are the squeezing parameters of the four single-mode squeezed states

injected in the circuit. This expression is always non-negative and hence, we cannot obtain a

false positive.

Figure 8.2: a) Expectation value of the multicopy observable D̂2,4 as a function of the squeez-
ing parameters λ1, λ2 describing two different two-mode squeezed vacuum states, with con-
tour lines of equal total entanglement entropy. The diagonal line corresponds to λ1 = λ2.
We observe that ⟨⟨D̂2,4⟩⟩ is negative for all λ1, λ2 > 0, but identical copies do not minimize
⟨⟨D̂2,4⟩⟩ for a given amount of entanglement. b) Dependence of ⟨⟨D̂2,4⟩⟩ on losses for given
squeezing λ. As expected, decreasing the transmittance τ makes the value of ⟨⟨D̂2,4⟩⟩ ap-
proach zero, but it remains negative for all τ > 0.

We have plotted the dependence of the muticopy expectation value ⟨⟨D̂2,4⟩⟩ on the two

squeezing parameters λ1 and λ2 in the no-loss case in Figure 8.2a, together with contour

lines of equal total entanglement entropy and a diagonal line along λ1 = λ2 indicating iden-

tical copies. Although false-positive detection is excluded, we observe that the observable

is not jointly convex in λ1 and λ2 for a fixed amount of entanglement as the case λ1 = λ2

corresponds to a local maximum (instead of a global minimum) along every contour line of

fixed total entanglement entropy. However, since the non-negativity of ⟨⟨D̂2,4⟩⟩ does only

constitute a separability criterion if the two copies are perfect, the possibility that its value

decreases (becomes more negative) for imperfect copies is acceptable as long as both states

remain entangled.

The effect of losses is illustrated for τ ≡ τa1 = τa2 = τb1 = τb2 and perfect copies

λ ≡ λ1 = λ2 in Figure 8.2b, together with contours of equal τ and equal λ. For decreasing

τ, the value of ⟨⟨D̂2,4⟩⟩ falls off quadratically and attains zero for τ = 0, i.e., when the input

signal is fully lost. This detrimental effect of losses is clearly stronger when the state is more

entangled.
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8.3.2 Fourth-order witness based on D1,4,9

Separability criterion

We now consider the criterion obtained from the operator f̂ = c1 + c2b̂+ c3 âb̂, corresponding

to the determinant (see [141] for the ordering convention of moments)

d1,4,9 =

∣∣∣∣∣∣∣
1 ⟨b̂†⟩ ⟨âb̂†⟩
⟨b̂⟩ ⟨b̂†b̂⟩ ⟨âb̂†b̂⟩
⟨â†b̂⟩ ⟨â†b̂†b̂⟩ ⟨â† âb̂†b̂⟩

∣∣∣∣∣∣∣ . (8.43)

This determinant is of fourth order in the mode operators and thus the corresponding witness

d1,4,9 < 0 is of particular interest for detecting non-Gaussian entanglement.

Application to mixed Schrödinger cat states

We use here the general family of two-mode Schrödinger cat states obtained by superposing

two pairs of coherent states presented in Eq.(2.71). The state (2.71) is pure if and only if

z = 0, in which case it reduces to the cat state considered in Ref. [141], while for z > 0 it

corresponds to a mixed cat state. The special case α = β has been considered in Refs. [156,

130, 41]. Further, state (2.71) is separable if and only if z = 1 or α = β = 0 (in which case

it corresponds to the vacuum provided z ̸= 0; it is ill-defined for z = 0 in this case). While

second-moment criteria can not certify entanglement at all, sophisticated entropic criteria

witness entanglement only for sufficiently large |α| = |β| ≳ 3/2 [156, 130, 56], in which

case (2.71) corresponds to two well separated coherent states.

We calculate the value of the determinant d1,4,9 [Eq. (8.43)] for general entangled Schrödinger

cat states defined in Eq. (2.71) by using that canonical coherent states are eigenstates of the

annihilation operator

â |α, β⟩ = α |α, β⟩ ,

⟨α, β| â† = ⟨α, β| α∗,
(8.44)

and similarly for mode B. We start with the matrix element ⟨b̂†⟩, which evaluates to

⟨b̂†⟩ ∝Tr
[
|α, β⟩ ⟨α, β| b̂† + |−α,−β⟩ ⟨−α,−β| b̂†

− (1 − z)
(
|α, β⟩ ⟨−α,−β| b̂† + |−α,−β⟩ ⟨α, β| b̂†

) ]
,

=Tr
[
|α, β⟩ ⟨α, β| β∗ + |−α,−β⟩ ⟨−α,−β| (−β∗)

+ (1 − z) (|α, β⟩ ⟨−α,−β| β∗ − |−α,−β⟩ ⟨α, β| β∗)
]
,

=0.

(8.45)
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Analogously, we find for the remaining matrix elements

⟨b̂⟩ = ⟨b̂†⟩ = 0,

⟨âb̂†⟩ = 2αβ∗N(α, β, z)(1 + (1 − z)e−2|α|2−2|β|2),

⟨â†b̂⟩ = 2α∗βN(α, β, z)(1 + (1 − z)e−2|α|2−2|β|2),

⟨b̂†b̂⟩ = 2|β|2N(α, β, z)(1 + (1 − z)e−2|α|2−2|β|2),

⟨âb̂†b̂⟩ = ⟨â†b̂†b̂⟩ = 0,

⟨â† âb̂†b̂⟩ = |α|2|β|2.

(8.46)

The full determinant of d1,4,9 follows then after identifying the hyperbolic functions

coth
[
|α|2 + |β|2 − 1

2
ln (1 − z)

]
= 2N(α, β, z)

[
1 + (1 − z)e−2(|α|2+|β|2)

]
, (8.47)

and

sinh−2
[
|α|2 + |β|2 − 1

2
ln (1 − z)

]
= 4N2(α, β, z)

[
1 + (1 − z)e−2(|α|2+|β|2)

]2
− 1.

(8.48)

The determinant (8.43) evaluates to

d1,4,9 = −|α|2|β|4
coth

[
|α|2 + |β|2 − 1

2 ln (1 − z)
]

sinh2 [|α|2 + |β|2 − 1
2 ln (1 − z)

] . (8.49)

As hyperbolic functions map positive numbers to positive numbers, entanglement is certified

for the full parameter range, i.e. all z ∈ [0, 1) and α, β ∈ C \{0} and thus the witness d1,4,9 <

0 strongly outperforms all known entropic witnesses in the case of cat-like entanglement.

Multicopy implementation

To efficiently access d1,4,9, we again exploit the multicopy method and define the correspond-

ing multicopy observable as

D̂1,4,9 =
1

|S123| ∑
σ∈S123

∣∣∣∣∣∣∣∣
1 b̂†

σ(1) âσ(1)b̂†
σ(1)

b̂σ(2) b̂†
σ(2)b̂σ(2) âσ(2)b̂†

σ(2)b̂σ(2)

â†
σ(3)b̂σ(3) â†

σ(3)b̂
†
σ(3)b̂σ(3) â†

σ(3) âσ(3)b̂†
σ(3)b̂σ(3)

∣∣∣∣∣∣∣∣ , (8.50)

such that d1,4,9 = ⟨⟨⟨D̂1,4,9⟩⟩⟩. Equation (8.50) consists of 36 terms and can be rewritten as

D̂1,4,9 = F̂1 − F̂2 + F̂3 − F̂4 − F̂5, (8.51)
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after defining the five operators

F̂1 =
1

|P123| ∑
σ∈P123

(
L̂

aσ(1)σ(2)
x + L̂

aσ(3)σ(1)
x

)
n̂bσ(1) L̂

bσ(2)σ(3)
x ,

F̂2 =
1

|P123| ∑
σ∈P123

(
L̂

aσ(2)σ(3)
x + n̂aσ(1)

)
n̂bσ(1) L̂

bσ(2)σ(3)
x ,

F̂3 =
1

|P123| ∑
σ∈P123

(
L̂

aσ(1)σ(2)
0 − L̂

aσ(1)σ(2)
x

)
n̂bσ(1)

n̂bσ(2)
,

F̂4 =
1

|P123| ∑
σ∈P123

(
L̂

aσ(1)σ(2)
y + L̂

aσ(3)σ(1)
y

)
n̂bσ(1)

L̂
bσ(2)σ(3)
y ,

F̂5 =
1

|P123| ∑
σ∈P123

L̂
aσ(2)σ(3)
y n̂bσ(1)

L̂
bσ(2)σ(3)
y ,

(8.52)

where P123 denotes the group of cyclic permutations over the index set {1, 2, 3}. Thus, the

determinant d1,4,9 can be accessed by measuring separately the expectation value of each of

the five operators F̂j, that is,

d1,4,9 = ⟨⟨⟨F̂1⟩⟩⟩ − ⟨⟨⟨F̂2⟩⟩⟩+ ⟨⟨⟨F̂3⟩⟩⟩ − ⟨⟨⟨F̂4⟩⟩⟩ − ⟨⟨⟨F̂5⟩⟩⟩ . (8.53)

Fortunately, the multicopy expectation values ⟨⟨⟨F̂j⟩⟩⟩ simplify by using the symmetry under

permutations for the three summands in every operator F̂j as well as for the spin operators

themselves. This leads to

⟨⟨⟨F̂1⟩⟩⟩ = 2 ⟨⟨⟨L̂a12
x n̂b1 L̂b23

x ⟩⟩⟩ ,

⟨⟨⟨F̂2⟩⟩⟩ = ⟨⟨⟨
(

L̂a23
x + n̂a1

)
n̂b1 L̂b23

x ⟩⟩⟩ ,

⟨⟨⟨F̂3⟩⟩⟩ = ⟨⟨⟨
(

L̂a12
0 − L̂a12

x
)

n̂b1 n̂b2⟩⟩⟩ ,

⟨⟨⟨F̂4⟩⟩⟩ = 2 ⟨⟨⟨L̂a12
y n̂b1 L̂b23

y ⟩⟩⟩ ,

⟨⟨⟨F̂5⟩⟩⟩ = ⟨⟨⟨L̂a23
y n̂b1 L̂b23

y ⟩⟩⟩ .

(8.54)

These five multicopy expectation values can be expressed in terms of photon number mea-

surements by applying the five respective transformations shown in Figure 8.3a-e, namely

M1 = BSa1a2 (1/2)BSb2b3 (1/2)⊗ Ib1a3 ,

M2 = BSa2a3 (1/2)BSb2b3 (1/2)⊗ Ia1b1 ,

M3 = BSa1a2 (1/2)⊗ Ib1b2a3b3 ,

M4 = BSa1a2 (1/2)BSb2b3 (1/2) PSa2 (π/2) PSb3 (π/2)⊗ Ib1a3 ,

M5 = BSa2a3 (1/2)BSb2b3 (1/2) PSa3 (π/2) PSb3 (π/2)⊗ Ia1b1 .

(8.55)

Incidentally, we note that the measurement of F̂3, implemented via M3 (see Figure 8.3 c),

only requires two copies, while the other four multicopy observables F̂j are read out on three
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copies. Then, we finally obtain

⟨⟨⟨F̂1⟩⟩⟩ =
1
2
⟨
(
n̂a1′ − n̂a2′

)
n̂b1′

(
n̂b2′

− n̂b3′

)
⟩ ,

⟨⟨⟨F̂2⟩⟩⟩ =
1
2
⟨
(1

2
(
n̂a2′ − n̂a3′

)
+ n̂a1′

)
n̂b1′

(
n̂b2′

− n̂b3′

)
⟩,

⟨⟨⟨F̂3⟩⟩⟩ = ⟨n̂a2′ n̂b1′
n̂b2′

⟩ ,

⟨⟨⟨F̂4⟩⟩⟩ =
1
2
⟨
(
n̂a1′ − n̂a2′

)
n̂b1′

(
n̂b2′

− n̂b3′

)
⟩ ,

⟨⟨⟨F̂5⟩⟩⟩ =
1
4
⟨
(
n̂a2′ − n̂a3′

)
n̂b1′

(
n̂b2′

− n̂b3′

)
⟩ .

(8.56)
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Figure 8.3: Optical circuits implementing the five transformations Mj that are needed for
translating the measurements of the five multicopy observables F̂j into photon number mea-
surements. The expectation value ⟨⟨⟨F̂j⟩⟩⟩ is accessed after applying Mj from a) to e), re-
spectively. In all cases, Alice and Bob must apply local transformations to their respective
subsystems (Alice holds modes â1,2,3 and Bob holds modes b̂1,2,3). Note that the third copy is
not needed for the measurement of ⟨⟨⟨F̂3⟩⟩⟩ (see c).
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Imperfect copies and optical losses

For three distinct copies of a mixed Schrödinger cat state (2.71) at the input and with losses

incorporated, we find for the corresponding multicopy expectation value

⟨⟨⟨D̂1,4,9⟩⟩⟩ =
1
3 ∑

σ∈P123

τbσ(1)
|βσ(1)|2N(ασ(1), βσ(1), zσ(1))

(
1 + (1 − zσ(1))e

−2|ασ(1)|2−2|βσ(1)|2)
)

[
τaσ(2)τbσ(2)

|ασ(2)|2|βσ(2)|2 + τaσ(3)τbσ(3)
|ασ(3)|2|βσ(3)|2 − 4

√
τaσ(2)τbσ(2)

τaσ(3)τbσ(3)

N(ασ(2), βσ(2), zσ(2))N(ασ(3), βσ(3), zσ(3))
(

1 + (1 − zσ(2))e
−2|ασ(2)|2−2|βσ(2)|2

)
(

1 + (1 − zσ(3))e
−2|ασ(3)|2−2|βσ(3)|2

) (
ασ(2)β

∗
σ(2)α

∗
σ(3)βσ(3) + α∗

σ(2)βσ(2)ασ(3)β
∗
σ(3)

) ]
.

(8.57)

Here, we restrict our analysis to the special case where all states are equally mixed zµ = 1/2
and comprise equal pairs of real amplitudes αµ ≡ βµ ∈ R, and where all modes undergo

equal losses τ ≡ τaµ = τbµ
, for µ = 1, 2, 3. We analyze the behavior of ⟨⟨⟨D̂1,4,9⟩⟩⟩ for two

different input states (we take copies 2 and 3 to be equal but distinct from copy 1) without

losses in Figure 8.4a. We observe that if α1 and α2 are too distinct, ⟨⟨⟨D̂1,4,9⟩⟩⟩ becomes

positive, hence entanglement is undetected. This sensitivity to |α1 − α2| is very strong for

α1,2 ≳ 3/2. Yet, false-positive detection is excluded since ⟨⟨⟨D̂1,4,9⟩⟩⟩ ≥ 0 if α1 = 0 or

α2 = 0.

Figure 8.4: a) Negative regions of the expectation value of the multicopy observable D̂1,4,9 for
the mixed Schrödinger cat state with real αµ = βµ, zµ = 1/2, for µ = 1, 2, 3, and unequal
first and second copies (α1 ̸= α2) while the third copy is equal to the second one (α3 = α2).
The expectation value ⟨⟨⟨D̂1,4,9⟩⟩⟩ remains negative only in a small region around α1 ≈ α2.
b) Multicopy expectation value ⟨⟨⟨D̂1,4,9⟩⟩⟩ as a function of transmittance τ and amplitude
α. Entanglement detection works best around α ≈ 1 and increasing losses also increase the
(negative) value of ⟨⟨⟨D̂1,4,9⟩⟩⟩ without breaking its negativity.

The case of perfect copies with equal losses in all modes is considered in Figure 8.4b,

where we plot the dependence of ⟨⟨⟨D̂1,4,9⟩⟩⟩ on the transmittance τ for a given α. As

expected, losses make the value of ⟨⟨⟨D̂1,4,9⟩⟩⟩ approach zero from below for all α, but

⟨⟨⟨D̂1,4,9⟩⟩⟩ remains negative for all τ > 0 (of course, we have ⟨⟨⟨D̂1,4,9⟩⟩⟩ = 0 for τ = 0).

Also, we observe that the witness d1,4,9 < 0 works best around α ≈ 1, i.e., if the two coher-

ent states partially overlap. Note here that ⟨⟨⟨D̂1,4,9⟩⟩⟩ approaches zero exponentially (from

below) for α → ∞, so that entanglement is indeed witnessed for all α > 0.
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8.3.3 Fourth-order witness based on D1,9,13

Separability criterion

We finally consider the separability criterion corresponding to the operator f̂ = c1 + c2 âb̂ +
c3 â†b̂†, i.e., selecting the rows and columns 1, 9, and 13 in (4.32), leading to the determinant

d1,9,13 =

∣∣∣∣∣∣∣
1 ⟨âb̂†⟩ ⟨â†b̂⟩

⟨â†b̂⟩ ⟨â† âb̂†b̂⟩ ⟨â†2b̂2⟩
⟨âb̂†⟩ ⟨â2b̂†2⟩ ⟨ââ†b̂b̂†⟩

∣∣∣∣∣∣∣ . (8.58)

The resulting entanglement witness d1,9,13 < 0 is again of fourth order in the mode operators.

However, when expanding the determinant d1,9,13, several products of fourth-order expecta-

tion values appear, which gives an overall expression of higher order when compared to d1,4,9

in Eq. (8.43). As we may anticipate, the corresponding multicopy observable will therefore

be quite complex.

Application to N00N states

In order to illustrate this entanglement witness, we consider the class of pure N00N states

with arbitrary complex amplitudes defined in Subsection 2.4.2 (Eq. (2.79)).

The state (2.79) is entangled for all allowed parameter values except when α or β is

equal to 0. However, entanglement can not be witnessed by any second-order nor entropic

criterion that is valid for mixed states. Pure state entropic criteria flag entanglement for low

excitations, i.e. small n, see e.g. [156, 130, 56], while the Wehrl mutual information fully

detects entanglement as it corresponds to a perfect witness for pure states [42]. In this sense,

detecting the entanglement of the N00N states (2.79) is known to be particularly challenging,

even for small n.

In order to evaluate d1,9,13 [Eq. (8.58)], we will use again the properties of the creation

and annihilation operators given in (8.19). Exemplary, for the matrix element ⟨âb̂†⟩ we find

⟨âb̂†⟩ =
(

α∗ ⟨n, 0|+ β∗ ⟨0, n|
)

âb̂†
(

α |n, 0⟩+ β |0, n⟩
)

,

=
(

α∗ ⟨n, 0|+ β∗ ⟨0, n|
)√

nα |n − 1, 1⟩ ,

= β∗√nαδn1,

= αβ∗δn1.

(8.59)

Repeating this strategy for the other matrix elements leads to the determinant

d1,9,13 =

∣∣∣∣∣∣∣
1 αβ∗δn1 α∗βδn1

α∗βδn1 0 2α∗βδn2

αβ∗δn1 2αβ∗δn2 n + 1

∣∣∣∣∣∣∣ . (8.60)
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Thus, when evaluating the determinant (8.58) for state (2.79), we find

d1,9,13 = −2 |α|2|β|2 (δn1 + 2δn2) . (8.61)

Thus, the witness d1,9,13 < 0 flags entanglement for all N00N states with α, β ∈ C (except

when α = 0 or β = 0) when n = 1, 2.

The standard route to access d1,9,13 is to define the multicopy observable

D̂1,9,13 =
1

|S123| ∑
σ∈S123

∣∣∣∣∣∣∣∣
1 âσ(1)b̂†

σ(1) â†
σ(1)b̂σ(1)

â†
σ(2)b̂σ(2) â†

σ(2) âσ(2)b̂†
σ(2)b̂σ(2) â†2

σ(2)b̂
2
σ(2)

âσ(3)b̂†
σ(3) â2

σ(3)b̂
†2
σ(3) âσ(3) â†

σ(3)b̂σ(3)b̂†

∣∣∣∣∣∣∣∣ , (8.62)

with d1,9,13 = ⟨⟨⟨D̂1,9,13⟩⟩⟩. Writing this operator in terms of spin operators leads to

D̂1,9,13 =
1

|P123| ∑
σ∈P123

{
−
(
(L̂

aσ(1)σ(2)
x )2 − (L̂

aσ(1)σ(2)
y )2

) (
(L̂

bσ(1)σ(2)
x )2 − (L̂

bσ(1)σ(2)
y )2

)
−
{

L̂
aσ(1)σ(2)
x , L̂

aσ(1)σ(2)
y

}{
L̂

bσ(1)σ(2)
x , L̂

bσ(1)σ(2)
y

}
+ 2

[(
L̂

aσ(1)σ(2)
x L̂

aσ(3)σ(1)
x + L̂

aσ(1)σ(2)
y L̂

aσ(3)σ(1)
y

) (
L̂

bσ(1)σ(2)
x L̂

bσ(3)σ(1)
x + L̂

bσ(1)σ(2)
y L̂

bσ(3)σ(1)
y

)]
+ 2

[(
L̂

aσ(1)σ(2)
y L̂

aσ(3)σ(1)
x − L̂

aσ(1)σ(2)
x L̂

aσ(3)σ(1)
y

) (
L̂

bσ(1)σ(2)
y L̂

bσ(3)σ(1)
x − L̂

bσ(1)σ(2)
x L̂

bσ(3)σ(1)
y

)]
− 2

[
n̂aσ(1) n̂bσ(1)

(
L̂

aσ(2)σ(3)
x L̂

bσ(2)σ(3)
x + L̂

aσ(2)σ(3)
y L̂

bσ(2)σ(3)
y

)]
+
(

n̂aσ(1) n̂aσ(2) n̂bσ(1)
n̂bσ(2)

+ n̂aσ(1) n̂bσ(1)

)
+

1
2

(
n̂aσ(1) n̂aσ(2) n̂bσ(1)

+ n̂aσ(1) n̂aσ(3) n̂bσ(1)
+ n̂aσ(1) n̂bσ(1)

n̂bσ(2)
+ n̂aσ(1) n̂bσ(1)

n̂bσ(3)

)
− 1

2

[(
n̂aσ(3) + n̂bσ(3)

+ 1
) ((

L̂
aσ(1)σ(2)
x − iL̂

aσ(1)σ(2)
y

)
+
(

L̂
bσ(1)σ(2)
x + iL̂

bσ(1)σ(2)
y

))]
− 1

2

[(
n̂aσ(3) + n̂bσ(3)

+ 1
) ((

L̂
aσ(1)σ(2)
x + iL̂

aσ(1)σ(2)
y

)
+
(

L̂
bσ(1)σ(2)
x − iL̂

bσ(1)σ(2)
y

))]}
.

(8.63)

However, this expression is not directly measurable due to all terms of the form

L̂
aσ(1)σ(2)
x L̂

aσ(3)σ(1)
x , (8.64)

which involve one and the same mode for several different spin operators. Passive interfer-

ometers can only simplify one of the two spin operators while complicating the other, thereby

hindering the measurement of such observables when restricting to photon number measure-

ments.

Thus, unfortunately, the straightforward application of the multicopy method leads to

an observable D̂1,9,13 which cannot be accessed by using linear interferometers and photon

number measurements. Therefore, we instead consider the weaker criterion d′1,9,13 ≥ d1,9,13,
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which has been put forward in Ref. [3] and reads

d′1,9,13 =
(
⟨â† âb̂†b̂⟩+ ⟨ââ†b̂b̂†⟩+ ⟨â†2b̂2⟩+ ⟨â2b̂†2⟩ − ⟨â†b̂ + âb̂†⟩2

)
(
⟨â† âb̂†b̂⟩+ ⟨ââ†b̂b̂†⟩ − ⟨â†2b̂2⟩ − ⟨â2b̂†2⟩+ ⟨â†b̂ − âb̂†⟩2

)
− ⟨â† â + b̂†b̂ + 1⟩2

.

(8.65)

For the family of N00N states (2.79), we find (since the criterion contains the same moments

as the determinant d1,9,13, the calculation is completely analogous to the one presented for the

calculation of d1,9,13)

d′1,9,13 =
[
16 Re2(α∗β) Im2(α∗β)− 8 |α∗β|2

]
δn1 − 16 Re2(α∗β) δn2. (8.66)

Clearly, d′1,9,13 is negative for n = 2 and all α, β ∈ C (which includes the aforementioned

example of the Hong-Ou-Mandel state), while it is also negative for n = 1 provided both am-

plitudes are for example pure real or imaginary (which includes the aforementioned example

of the first Bell state). Therefore, we may equally proceed with d′1,9,13 instead of d1,9,13.

Figure 8.5: Optical circuits implementing the transformations M1, M2, and M3. a) We mea-
sure L̂ab

x by applying a balanced beam splitter between the two local modes before using
photon number measurements. b) To measure L̂ab

y , we add a phase of π
2 on the second mode

before the balanced beam splitter, followed by photon number detectors. c) L̂ab
z directly fol-

lows from photon number measurements.

Multimode implementation

Interestingly, Eq. (8.65) can be expressed in terms of spin operators across the bipartition AB
without the need for several copies, namely

d′1,9,13 = 16 σ2
Lab

x
σ2

Lab
y
+ 4 σ2

Lab
0
− 4 σ2

Lab
z
− 4 ⟨L̂ab

x ⟩2 − 4 ⟨L̂ab
y ⟩2 − 4 ⟨L̂ab

z ⟩2
. (8.67)

To access d′1,9,13, we need three independent measurement schemes for the three spin observ-

ables L̂ab
x , L̂ab

y , L̂ab
z (note again that L̂ab

0 can be measured simultaneously with L̂ab
z ). The three
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Figure 8.6: Entanglement witness d′1,9,13 for N00N states as a function of transmittance τ and
real amplitude α for n = 1 and n = 2 in a) and b), respectively. Entanglement is detected for
arbitrarily small but finite losses since d′1,9,13 < 0.

corresponding transformations

M1 = BSab (1/2) ,

M2 = BSab (1/2) PSb (π/2) ,

M3 = Iab,

(8.68)

can be respectively implemented by the three optical circuits shown in Figure 8.5. These

circuits transform each spin operator into L̂ab
z , whose relevant expectation values are given by

⟨
(

L̂a′b′
z

)2
⟩ = 1

4
(
⟨n̂2

a′⟩ − 2 ⟨n̂a′ n̂b′⟩+ ⟨n̂2
b′⟩
)

,

⟨L̂a′b′
z ⟩

2
=

1
4

(
⟨n̂a′⟩2 − 2 ⟨n̂a′⟩ ⟨n̂b′⟩+ ⟨n̂b′⟩2

)
.

(8.69)

Thus, applying these circuits and measuring the photon numbers yields the needed mean

values and variances, so we obtain d′1,9,13 using Eq. (8.67).

Let us remark that, compared to the other two entanglement witnesses discussed in sub-

section 8.3.1 and subsection 8.3.2 where Alice and Bob had to count photons locally on their

copies, d′1,9,13 < 0 is a non-local condition in the sense that Alice and Bob have to perform

interferometric measurements on their joint system AB.

Imperfect copies and optical losses

We do not need to analyze the effect of imperfect copies and losses on d1,9,13 since we have

not developed a multicopy implementation of it. Nevertheless, it is worth illustrating the fact

that this criterion does not suffer from false positives by considering the value of d1,9,13 when

inputting three different product states consisting each of two Fock states. For such states,

all off-diagonal elements of the matrix vanish, so that the determinant is simply the product

of the diagonal elements, which are all positive. The determinant is thus always positive and

there are no false-positive detections.
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Now coming to the criterion based on d′1,9,13, analyzing imperfect copies is meaningless

since there is no need to use more than one copy to measure it. We can only analyze the effect

of losses. Adding losses to the two inputs of the optical circuit leads to the expression

d′1,9,13 =
(

16 Re2(α∗β) Im2(α∗β) τ2
a τ2

b − 4 (|α|2τa + |β|2τb + 1) τaτb|α∗β|2
)

δn1

− 16 Re2(α∗β)τ2
a τ2

b δn2.
(8.70)

We exemplify the dependence on the transmittance τ ≡ τa = τb for the special case where

α and β are real in Figure 8.6a and Figure 8.6b for n = 1 and n = 2, respectively. In the

former case, the value of d′1,9,13 increases cubically with τ, while in the latter case it increases

quartically with τ. In both cases, entanglement is detected for all amplitudes α ̸= 0, 1, and

non-zero transmittance τ > 0, with the violation of the separability criterion being the largest

around α ≈ 3/4.

8.4 Conclusion and outlook

To summarize, we have put forward schemes to efficiently access three continuous-variable

separability criteria based on multimode operators, which are read out via linear interferom-

eters and photon number measurements. The implementation of these schemes thus requires

interferometric stability over the few replicas of the state of interest as well as photon-number

resolving detectors. The benefit is that the separability criteria are directly accessed, imply-

ing that state tomography is not needed. Our schemes encompass optical circuits for second-

moment criteria to detect entanglement of Gaussian states, as well as two types of fourth-order

criteria suitable for witnessing entanglement in case of mixed Schrödinger cat states (for full

parameter ranges) and N00N states (for low-energetic excitations), respectively.

While we focused on three specific separability criteria, our approach is in no way limited

to those. Hence, it is of particular interest to identify other sets of relevant criteria and de-

vise suitable multimode observables and corresponding measurement schemes. For example,

one may investigate other prominent second-order criteria such as the Simon criterion [143],

which is equivalent to the condition d1,2,3,4,5 ≥ 0 [141], such that a multicopy implementation

would require five replicas. Alternatively, one may try to implement the second-order criteria

due to Mancini et al. [98, 45], which constrain the product of the variances appearing in (8.9)

instead of their sum. Both criteria are interesting as they are stronger than the criteria by Duan

et al. [34] as well as the condition d1,2,4 ≥ 0 (all are equivalent in the Gaussian case).

Furthermore, given that our method is generic and based on the algebraic properties of

spin operators, a more systematic approach, especially for more than three copies, would

be eligible. This may lead to feasible multicopy observables beyond three copies, which

could allow us to formulate multicopy versions of entanglement witnesses beyond fourth-

order moments. In addition, the method should be equally applicable to other bosonic systems

characterized by the pair â, â† satisfying [â, â†] = 1, going beyond quantum optics.
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At last, let us remark that the experimental application of our schemes is within reach of

current technologies. As a matter of fact, the multicopy nonclassicality observable presented

in Ref. [50] has been successfully accessed on a quantum computer in a recent experiment

[49], thereby suggesting the general feasibility of the multicopy method. As we have shown

here using two very simple models, the typical experimental imperfections should have a

modest influence on the detection of entanglement. All multimode observables that we have

analyzed are robust against losses in the sense that finite losses decrease the chances for en-

tanglement detection but never completely prevent it. In all cases, false-positive detection of

entanglement could be excluded by our small analysis. However, a more realistic analysis of

the effect of losses and imperfect copies is needed in order to assert with certainty that the

effect of imperfections is not too large. Moreover, a deeper analysis of other experimental

imperfections, for instance noise effects, would be valuable towards an experimental imple-

mentation of our method.
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Chapter 9

Multicopy entanglement witness for
the EPR-covariance matrix

This chapter is based on an unpublished work realized together with Tobias Haas and Nicolas

Cerf.

In the previous chapters presenting the main results obtained during this thesis, the logic

was always the same. Indeed, we always started from existing witnesses to detect nonclassi-

cality or entanglement. We usually analyzed the properties of these criteria like for example

its invariances as this was useful for the following steps. Then, we formulated the multicopy

observables that gave back the witnesses when taking their mean values on multiple copies of

a state. Finally, we searched for implementations of these observables.

One question that arose was then "Is it possible to do the reverse process?". By reverse

process, we mean starting from a multicopy observable that we define to obtain a valid non-

classicality or entanglement witness. This is what we do in this chapter, we define a two-copy

observable based on EPR-like quadratures and we verify which entanglement witness can

be obtained by applying the PPT criterion. Then, we will improve our results by using a

three-copy observable to retain invariance by displacements. We will end up with a new en-

tanglement witness which we will compare to other known criteria. This whole approach is

inspired by the one presented in Hertz et al. paper, Ref. [65] which we presented in Section

5.2.2.

9.1 Two-copy observable

Before defining our observables, we need to define non-local quadrature operators which are

a generalization of the EPR-like operators already used in Eq. (4.15).
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x̂± = a1 x̂1 ± a2 x̂2,

p̂± = b1 p̂1 ± b2 p̂2,
(9.1)

where a1, a2, b1, and b2 are reals. In the particular case a1 = a2 = |r| and b1 = b2 = 1
r , these

generalized operators reduce to the ones presented in Eq. (4.15) which are the ones used in

entanglement criteria by Duan et al. and MGVT. It can be proved that the new operators that

we constructed are up to a constant conjugated pairs by calculating their commutators:

[x̂±, p̂±] = i(a1b1 + a2b2),

[x̂±, p̂∓] = i(a1b1 − a2b2).
(9.2)

Note that the ± variables are independent if and only if a1b1 = a2b2, in which case the second

commutator vanishes.

9.1.1 Two-copy uncertainty observable

Based on the quadratures defined in Eq. (9.1), we define the two copy operator

L̂±
y =

1
2
(x̂± ⊗ p̂± − p̂± ⊗ x̂±). (9.3)

This observable can be interpreted as the y-component of an angular momentum obtained by

using the Jordan-Schwinger map on the Pauli matrices. We start with analyzing the mean and

the variance of this observable in order to see if we can extract a separability criterion from it.

We start by calculating the mean of the operator presented in Eq. (9.3) for two identical

bipartite states ρ̂:

⟨⟨L̂±
y ⟩⟩ = Tr

(
L̂±

y (ρ̂ ⊗ ρ̂)
)

,

=
1
2
(⟨x̂±⟩ ⟨ p̂±⟩ − ⟨ p̂±⟩ ⟨x̂±⟩)

= 0.

(9.4)

As the mean value of the observable is equal to zero, to calculate its variance, we just need to

compute its second moment:

⟨⟨L̂±2
y ⟩⟩ = Tr

(
L̂±2

y (ρ̂ ⊗ ρ̂)
)

,

=
1
4

Tr
((

x̂2
± ⊗ p̂2

± + p̂2
± ⊗ x̂2

± − x̂± p̂± ⊗ p̂± x̂± − p̂± x̂± ⊗ x̂± p̂±
)

ρ̂ ⊗ ρ̂
)

,

=
1
4
(
⟨x̂2

±⟩ ⟨ p̂2
±⟩+ ⟨ p̂2

±⟩ ⟨x̂2
±⟩ − ⟨x̂± p̂±⟩ ⟨ p̂± x̂±⟩ − ⟨ p̂± x̂±⟩ ⟨x̂± p̂±⟩

)
,

=
1
2
(
⟨x̂2

±⟩ ⟨ p̂2
±⟩ − ⟨x̂± p̂±⟩ ⟨ p̂± x̂±⟩

)
.

(9.5)
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In order to reexpress this expression under a reduced form, we will introduce a covariance

matrix for the EPR-like quadratures:

γ± =

(
σ2

x± σx±p±

σx±p± σ2
p±

)
, (9.6)

where

σ2
x± = Tr

(
ρ̂x̂2

±
)
− Tr (ρ̂x̂±)

2 ,

σ2
p± = Tr

(
ρ̂ p̂2

±
)
− Tr (ρ̂ p̂±)

2 ,

σx±p± =
1
2

Tr (ρ̂{x̂±, p̂±})− Tr (ρ̂x̂±)Tr (ρ̂ p̂±) .

(9.7)

The main differences between these expressions and the usual ones used for a covariance

matrix is that here ρ̂ is a bipartite state and we consider the EPR-like quadratures defined in

Eq. (9.1) instead of the usual x̂ and p̂. In the special case of centered states ρ̂, all the mean

values appearing in the covariance matrix (Eq. (9.7)) will be equal to zero and we will add

the upper index c showing that the states are centered:

γc
± =

(
σc2

x± σc
x±p±

σc
x±p± σc2

p±

)
=

(
Tr
(
ρ̂x̂2

±
) 1

2 Tr (ρ̂{x̂±, p̂±})
1
2 Tr (ρ̂{x̂±, p̂±}) Tr

(
ρ̂ p̂2

±
) )

. (9.8)

Analyzing Eq. (9.5), we see that the first term can be linked with the diagonal elements of

this matrix for centered states. We still need to modify the expression of the second term. To

do so, we express x̂± p̂± and p̂± x̂± as a function of the commutator and the anticommutator

of x̂± and p̂±:

x̂± p̂± =
1
2
([x̂±, p̂±] + {x̂±, p̂±}) ,

p̂± x̂± =
1
2
(−[x̂±, p̂±] + {x̂±, p̂±}) .

(9.9)

Injecting this in Eq. (9.5) leads to:

⟨⟨L̂±2
y ⟩⟩ = 1

2

(
σc2

x±σc2
p± +

1
4

Tr (ρ̂[x̂±, p̂±])
2 − 1

4
Tr (ρ̂{x̂±, p̂±})2

)
,

=
1
2

(
σc2

x±σc2
p± − σc2

x±p± +
1
4

Tr (ρ̂[x̂±, p̂±])
2
)

,

=
1
2

(
det(γc

±) +
1
4

Tr (ρ̂[x̂±, p̂±])
2
)

.

(9.10)

As we know that the variance of the operator L̂±2
y is equal to the second order moment we

just calculated and we know the value of the commutator, we obtain the wanted expression,

namely,

σ2
L±

y
=

1
2

(
det(γc

±)−
1
4
(a1b1 + a2b2)

2
)

. (9.11)
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A variance can not be negative σ2
L±

y
≥ 0, hence we obtain the following physical condition

which is nothing else than an uncertainty relation:

det(γc
±) ≥

1
4
(a1b1 + a2b2)

2. (9.12)

In the particular case a1 = a2 = b1 = b2 = 1, it reduces to the simple expression

det(γc
±) ≥ 1. (9.13)

9.1.2 Two-copy entanglement observable

Starting from Eq.(9.10), we want to obtain a separability criterion. To do so, we apply the

PPT criterion that we presented in Section 4.2.2. It states that if we do a partial transposition

on a separable state ρ̂, then the state obtained should remain physical. If it is not physical,

then it means that the state was entangled. Here, we will apply the partial transpose to the

operator. Indeed, we can prove that:

Tr
(

ρ̂TB Â
)
= Tr

(
ρ̂ÂTB

)
. (9.14)

We can easily prove this equality in the special case that interests us, i.e. when the observable

has the form

Â = ∑
j

aj(Âj
1 ⊗ Âj

2), (9.15)

where Âj
i is a local operator on the subsystem i and aj are reals. If the operator Â has this

form, then we have:

Tr
(

ρ̂TB Â
)
= Tr

 ∑
n1,n′

1,n2,n′
2

pn1,n′
1

n2,n′
2

(
|n1⟩ ⟨n′

1| ⊗ (|n2⟩ ⟨n′
2|)T

)
∑

j
aj(Âj

1 ⊗ Âj
2)

 ,

= ∑
n1,n′

1,n2,n′
2

pn1,n′
1

n2,n′
2
∑

j
ajTr

(
|n1⟩ ⟨n′

1| Âj
1

)
Tr
(
(|n2⟩ ⟨n′

2|)T Âj
2

)
,

= ∑
n1,n′

1,n2,n′
2

pn1,n′
1

n2,n′
2
∑

j
ajTr

(
|n1⟩ ⟨n′

1| Âj
1

)
Tr
(
|n2⟩ ⟨n′

2| (Âj
2)

T
)

,

= Tr

 ∑
n1,n′

1,n2,n′
2

pn1,n′
1

n2,n′
2

(
|n1⟩ ⟨n′

1| ⊗ (|n2⟩ ⟨n′
2|)T

)
∑

j
aj(Âj

1 ⊗ (Âj
2)

T)

 ,

= Tr
(

ρ̂ÂTB
)

.

(9.16)

As a reminder, doing a partial transposition in continuous variable reduces to a mirror

reflection of the p-quadrature for the second mode p̂2 −→ − p̂2. We thus need to see how

this transforms the different operators that are involved in the uncertainty relation: x̂±, p̂±,

x̂2
±, p̂2

±, [x̂±, p̂±], and {x̂±, p̂±}. We present here the detailed calculations for all of them by
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starting with x̂± and p̂±:

x̂TB
± = (a1 x̂1 ± a2 x̂2)

TB ,

= a1 (x̂1 ⊗ 1̂T
2 )± a2 (1̂1 ⊗ x̂T

2 ),

= a1 (x̂1 ⊗ 1̂2)± a2 (1̂1 ⊗ x̂2),

= a1 x̂1 ± a2 x̂2,

= x̂±.

(9.17)

The fact that x̂± is not affected by the partial transposition is logical as the partial transposition

only applies a mirror reflection to p̂2.

p̂TB
± = (b1 p̂1 ± b2 p̂2)

TB ,

= b1 ( p̂1 ⊗ 1̂T
2 )± b2 (1̂1 ⊗ p̂T

2 ),

= b1 p̂1 ∓ b2 p̂2,

= p̂∓.

(9.18)

Next, we calculate the partial transpose of the square of the same operators. To do so, we start

by developing the square and then we apply on each term the partial transpose:

(x̂2
±)

TB = (a1 x̂1 ± a2 x̂2)
2TB ,

= a2
1 (x̂2

1 ⊗ 1̂T
2 ) + a2

2 (1̂1 ⊗ x̂2T
2 )± 2a1a2 (x̂1 ⊗ x̂T

2 ),

= (a1 x̂1 ± a2 x̂2)
2,

= x̂2
±.

(9.19)

( p̂2
±)

TB = b2
1 ( p̂2

1 ⊗ 1̂T
2 ) + b2

2 (1̂1 ⊗ p̂2T
2 )± 2b1b2 ( p̂1 ⊗ p̂T

2 ),

= b2
1 ( p̂2

1 ⊗ 1̂2) + b2
2 (1̂1 ⊗ p̂2

2)∓ 2b1b2 ( p̂1 ⊗ p̂2),

= (b1 p̂1 ∓ b2 p̂2)
2,

= p̂2
∓,

(9.20)

which is the same as in the linear case, i.e., x̂2
± is not affected by the partial transposition

while there is a sign flip for p̂2
±. Finally, we need to calculate the partial transposition of the

commutator and of the anticommutator of x̂± and p̂±. We first analyze x̂± p̂± and p̂± x̂±:

(x̂± p̂±)TB = ((a1 x̂1 ± a2 x̂2)(b1 p̂1 ± b2 p̂2))
TB ,

= a1b1 (x̂1 p̂1 ⊗ 1̂T
2 ) + a2b2 (1̂1 ⊗ (x̂2 p̂2)

T)± a1b2 (x̂1 ⊗ p̂T
2 )± a2b1 ( p̂1 ⊗ x̂T

2 ),

= a1b1 (x̂1 p̂1 ⊗ 1̂2)− a2b2 (1̂1 ⊗ p̂2 x̂2)∓ a1b2 (x̂1 ⊗ p̂2)± a2b1 ( p̂1 ⊗ x̂2),

= a1b1 ( p̂1 x̂1 ⊗ 1̂2) + ia1b1 − a2b2 (1̂1 ⊗ p̂2 x̂2)∓ a1b2 (x̂1 ⊗ p̂2)± a2b1 ( p̂1 ⊗ x̂2),

= p̂∓ x̂± + ia1b1,

(9.21)

where we used (ÂB̂)T = B̂T ÂT between the second and the third line and the commutator
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[x̂1, p̂1] = i between the third and fourth line. Following the same reasoning, we have:

( p̂± x̂±)TB = ((b1 p̂1 ± b2 p̂2)(a1 x̂1 ± a2 x̂2))
TB ,

= a1b1 ( p̂1 x̂1 ⊗ 1̂T
2 ) + a2b2 (1̂1 ⊗ ( p̂2 x̂2)

T)± a1b2 (x̂1 ⊗ p̂T
2 )± a2b1 ( p̂1 ⊗ x̂T

2 ),

= a1b1 ( p̂1 x̂1 ⊗ 1̂2)− a2b2 (1̂1 ⊗ x̂2 p̂2)∓ a1b2 (x̂1 ⊗ p̂2)± a2b1 ( p̂1 ⊗ x̂2),

= a1b1 (x̂1 p̂1 ⊗ 1̂2)− ia1b1 − a2b2 (1̂1 ⊗ x̂2 p̂2)∓ a1b2 (x̂1 ⊗ p̂2)± a2b1 ( p̂1 ⊗ x̂2),

= x̂± p̂∓ − ia1b1.

(9.22)

Now that we have the expressions for these two elements, we can calculate the commutator

and the anticommutator as:

[x̂±, p̂±]TB = (x̂± p̂±)
TB − ( p̂± x̂±)TB ,

= p̂∓ x̂± − x̂± p̂∓ + 2ia1b1,

= [ p̂∓, x̂±] + 2ia1b1,

= −i(a1b1 − a2b2) + 2ia1b1,

= i(a1b1 + a2b2),

= [x̂±, p̂±].

(9.23)

{x̂±, p̂±}TB = (x̂± p̂±)
TB + ( p̂± x̂±)TB ,

= p̂∓ x̂± + x̂± p̂∓,

= {x̂±, p̂∓}.

(9.24)

With all these expressions, we can then apply the PPT criterion to Eq. (9.10). First, we

define a new momentum operator where we flip the signs of the p̂±-operators:

L̂
′±
y =

1
2
(x̂± ⊗ p̂∓ − p̂∓ ⊗ x̂±). (9.25)

This expression is nothing else than L̂±TB
y . We then want to show that applying the partial

transpose on the two copies of the state ρ̂ ⊗ ρ̂ and measuring on this new state the mean value

of (L̂±
y )

n gives up to a given constant the same as measuring the mean value for the initial

state of (L̂
′±
y )n:

Tr
((

ρ̂TB ⊗ ρ̂TB
)
(L̂±

y )
n
)
= Tr

(
(ρ̂ ⊗ ρ̂) (L̂

′±
y )n

)
+ C, (9.26)

where C is a constant. For n = 1, this relation is obvious. Indeed, Tr
(

ρ̂TB ⊗ ρ̂TB(L̂±
y )
)
=

Tr
(

ρ̂ ⊗ ρ̂(L̂
′±
y )TB

)
= 0 as these two observables are designed to have a mean equal to zero

for two identical copies. For n = 2, this relation is not obvious anymore. In order to prove
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that it is true, we will develop Tr
(

ρ̂TB ⊗ ρ̂TB(L̂±
y )

2
)

by using the Eqs. (9.14), (9.17)-(9.24).

Tr
(

ρ̂TB ⊗ ρ̂TB(L̂±
y )

2
)

=
1
4

Tr
(

ρ̂TB ⊗ ρ̂TB
(
x̂2
± ⊗ p̂2

± + p̂2
± ⊗ x̂2

± − x̂± p̂± ⊗ p̂± x̂± − p̂± x̂± ⊗ x̂± p̂±
))

,

=
1
2

(
Tr
(

ρ̂TB x̂2
±

)
Tr
(

ρ̂TB p̂2
±

)
− Tr

(
ρ̂TB x̂± p̂±

)
Tr
(

ρ̂TB p̂± x̂±
))

,

=
1
2

(
Tr
(

ρ̂ x̂2TB
±

)
Tr
(

ρ̂ p̂2TB
±

)
− Tr

(
ρ̂ (x̂± p̂±)TB

)
Tr
(

ρ̂ ( p̂± x̂±)TB
))

,

=
1
2
(
Tr
(
ρ̂ x̂2

±
)

Tr
(
ρ̂ p̂2

∓
)
− Tr (ρ̂ x̂± p̂∓)Tr (ρ̂ ( p̂∓ x̂±))− ia1b1 Tr (ρ̂[x̂±, p̂±])− a2

1b2
1
)

,

= Tr
(

ρ̂ ⊗ ρ̂(L̂
′±
y )2

)
− 1

2
a1b1a2b2.

(9.27)

If the initial state was separable then the PPT criterion states that Tr
((

ρ̂TB ⊗ ρ̂TB
)
(L̂±

y )
2
)
≥

0. Hence, we end up with a necessary condition for separability:

ρ̂ separable ⇒ σ2
L
′±
y

≥ 1
2

a1b1a2b2. (9.28)

If this inequality is violated, then the state ρ̂ is entangled.

In order to rewrite this criterion under a form that uses the moments of the EPR-quadratures,

we use the partial transpose on Eq. (9.10) (see Eqs. (9.17)-(9.24)):

σ2
L
′±
y

=
1
2

(
det(γ̃c

±) +
1
4

Tr(ρ̂[x̂±, p̂∓])2
)
=

1
2

(
det(γ̃c

±)−
1
4
(a1b1 − a2b2)

2
)

, (9.29)

where we defined the covariance matrix of the partially transposed state as

γ̃± =

(
σ2

x± σx±p∓

σx±p∓ σ2
p∓

)
. (9.30)

Once again, the upper index c indicates that it is the covariance matrix in the particular case

of a centered state. Finally, plugging this Eq. (9.29) in our entanglement witness (Eq. (9.28))

gives

1
2

(
det(γ̃c

±)−
1
4
(a1b1 − a2b2)

2
)
≥ 1

2
a1b1a2b2,

det(γ̃c
±) ≥ a1b1a2b2 +

1
4
(a1b1 − a2b2)

2,
(9.31)

leading to the necessary condition for separability:

ρ̂ separable ⇒ det(γ̃c
±) ≥

1
4
(a1b1 + a2b2)

2. (9.32)

We will compare this criterion to other known criteria in Section 9.3. However, we already
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notice that we restricted ourselves to centered states which is obviously not the most general

case. Our previous chapters on multicopy for witnessing nonclassicality or entanglement

showed us that often, when we want to obtain something invariant under any displacement,

we need to add one copy. This is then what we do in the next section: we add a copy to try to

obtain a criterion valid for any state, even if it is displaced.

9.2 Three-copy observable

9.2.1 Three-copy uncertainty observable

Similarly to what we did for two copies, we start by defining a new multicopy operator by

using the Jordan-Schwinger map. Here, we define it based on three operators which are each

involving two different copies. Moreover, each of these three operators has a similar form as

the one used in the two-copy case (Eq. (9.3)):

M̂±
x = 1̂1 ⊗ x̂± ⊗ p̂± − 1̂1 ⊗ p̂± ⊗ x̂±,

M̂±
y = p̂± ⊗ 1̂2 ⊗ x̂± − x̂± ⊗ 1̂2 ⊗ p̂±,

M̂±
z = x̂± ⊗ p̂± ⊗ 1̂3 − p̂± ⊗ x̂± ⊗ 1̂3.

(9.33)

Using these expressions, the multicopy observable that we will analyze is the sum of the latter:

M̂± =
1√
3

∑
i

M̂±
i . (9.34)

Now, we will perform the same kind of calculations as those we did for the two-copy

observable. Hence, we will give the important steps of the calculations but not all the details.

First, we calculate the first and second moment of M̂±. By construction of each M̂±
i , it

appears that ⟨⟨⟨M̂±
i ⟩⟩⟩ = 0, and thus

⟨⟨⟨M̂±⟩⟩⟩ = 0. (9.35)

Developing the second order moment gives:

⟨⟨⟨M̂±2⟩⟩⟩ =1
3

Tr
(
(ρ̂ ⊗ ρ̂ ⊗ ρ̂)(

M̂±2
x + M̂±2

y + M̂±2
z + {M̂±

x , M̂±
y }+ {M̂±

y , M̂±
z }+ {M̂±

z , M̂±
x }
) )

.

(9.36)

The three terms M̂±2
i will give three times the same contribution to this expression which is

nothing else than the same terms than those appearing in Eq. (9.10):

⟨⟨⟨M̂±2
i ⟩⟩⟩ = 2Tr

(
ρ̂x̂2

±
)

Tr
(
ρ̂ p̂2

±
)
+

1
2

Tr (ρ̂[x̂±, p̂±])
2 − 1

2
Tr (ρ̂{x̂±, p̂±})2 , (9.37)
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so that we just need to analyze the mean value of the anticommutators:

{M̂±
x , M̂±

y } =M̂±
x M̂±

y + M̂±
y M̂±

x ,

=x̂± ⊗ p̂± ⊗ {x̂±, p̂±}+ p̂± ⊗ x̂± ⊗ {x̂±, p̂±}

− 2p̂± ⊗ p̂± ⊗ x̂2
± − 2x̂± ⊗ x̂± ⊗ p̂2

±.

(9.38)

This leads to:

⟨⟨⟨{M̂±
x , M̂±

y }⟩⟩⟩ =2Tr (ρ̂x̂±)Tr (ρ̂ p̂±)Tr (ρ̂{x̂±, p̂±})
− 2Tr (ρ̂ p̂±)

2 Tr
(
ρ̂x̂2

±
)
− 2Tr (ρ̂x̂±)

2 Tr
(
ρ̂ p̂2

±
)

,
(9.39)

and we have exactly the same expression for ⟨⟨⟨{M̂±
y , M̂±

z }⟩⟩⟩ and ⟨⟨⟨{M̂±
z , M̂±

x }⟩⟩⟩. One

big difference here with respect to the result for the two-copy observable is that there are

terms involving the mean values of x̂± and p̂± which was not the case before. Due to these

terms, when adding all the ⟨⟨⟨M̂±2
i ⟩⟩⟩ and ⟨⟨⟨{M̂±

i , M̂±
j }⟩⟩⟩, the determinant of the general

covariance matrix γ± will appear and not only the one for centered states. We will directly

give the final expression for the mean value of M̂±2 which is equal to the variance of M̂±

because its mean value is equal to 0:

σ2
M± = 2

(
detγ± +

1
4

Tr (ρ̂[x̂±, p̂±])
2
)

. (9.40)

As this variance can not be negative, we obtain the following uncertainty relation for the state

ρ̂:

σ2
M± ≥ 0 ⇒ detγ± ≥ 1

4
(a1b1 + a2b2)

2, (9.41)

where we replaced the commutator by its value. Note that this expression is exactly the same

as Eq. (9.12) but for arbitrary states. We are not restricted to centered states anymore.

9.2.2 Three-copy entanglement observable

Using the same strategy as before, we define the operators that we obtain by applying a partial

transpose on the M̂±
i , namely,

M̂
′±
x = 1̂1 ⊗ x̂± ⊗ p̂∓ − 1̂1 ⊗ p̂∓ ⊗ x̂±,

M̂
′±
y = p̂∓ ⊗ 1̂2 ⊗ x̂± − x̂± ⊗ 1̂2 ⊗ p̂∓,

M̂
′±
z = x̂± ⊗ p̂∓ ⊗ 1̂3 − p̂∓ ⊗ x̂± ⊗ 1̂3,

(9.42)

such that

M̂
′± =

1√
3

∑
i

M̂
′±
i . (9.43)

Then, measuring the mean value of (M̂±)n for partially transposed states, ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB ,

should give the same than the mean value of (M̂
′±)n on the initial state ρ̂ ⊗ ρ̂ ⊗ ρ̂ up to a
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constant:

Tr
((

ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB
)
(M̂±)n

)
= Tr

(
(ρ̂ ⊗ ρ̂ ⊗ ρ̂) (M̂

′±)n
)
+ C. (9.44)

For n = 1, as before, it is obvious due to the form of the operators:

Tr
((

ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB
)

M̂±
)
= Tr

(
(ρ̂ ⊗ ρ̂ ⊗ ρ̂) M̂

′±
)
= 0. (9.45)

For the second moment, we will explicitly prove that this also holds. To do so, we start by

developing the expression by using Eqs. (9.37), (9.39) and by transferring the partial transpose

to the operators:

Tr
((

ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB
)
(M̂±)2

)
= 2Tr

(
ρ̂(x̂2

±)
TB
)

Tr
(

ρ̂( p̂2
±)

TB
)
+

1
2

Tr
(

ρ̂[x̂±, p̂±]TB
)2

− 1
2

Tr
(

ρ̂{x̂±, p̂±}TB
)2

+ 2Tr
(

ρ̂x̂TB
±

)
Tr
(

ρ̂ p̂TB
±

)
Tr
(

ρ̂{x̂±, p̂±}TB
)

− 2Tr
(

ρ̂ p̂TB
±

)2
Tr
(

ρ̂(x̂2
±)

TB
)
− 2Tr

(
ρ̂x̂TB

±

)2
Tr
(

ρ̂( p̂2
±)

TB
)

.

(9.46)

To go further, we use Eqs. (9.17)-(9.24):

Tr
((

ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB
)
(M̂±)2

)
=2Tr

(
ρ̂x̂2

±
)

Tr
(
ρ̂ p̂2

∓
)
+

1
2

Tr (ρ̂[x̂±, p̂±])
2

− 1
2

Tr (ρ̂{x̂±, p̂∓})2 + 2Tr (ρ̂x̂±)Tr (ρ̂ p̂∓)Tr (ρ̂{x̂±, p̂∓})

− 2Tr (ρ̂ p̂∓)
2 Tr

(
ρ̂(x̂2

±)
)
− 2Tr (ρ̂x̂±)

2 Tr
(
ρ̂ p̂2

∓
)

,

=2Tr
(
ρ̂x̂2

±
)

Tr
(
ρ̂ p̂2

∓
)
+

1
2

Tr (ρ̂[x̂±, p̂∓])
2

− 1
2
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=2Tr
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ρ̂x̂2

±
)

Tr
(
ρ̂ p̂2

∓
)
+

1
2

Tr (ρ̂[x̂±, p̂∓])
2

− 1
2
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2 Tr
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− 1
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2,

=Tr
(
(ρ̂ ⊗ ρ̂ ⊗ ρ̂) (M̂

′±)2
)
− 2a1b1a2b2,

(9.47)

where we had to add the mean value of the commutator between x̂± and p̂∓ and we used the

known values for the two commutators.

The PPT criterion implies that for a separable state Tr
((

ρ̂TB ⊗ ρ̂TB ⊗ ρ̂TB
)
(M̂±)2) ≥ 0
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leading to the following necessary criterion for separability:

ρ̂ separable ⇒ σ2
M′± ≥ 2a1b1a2b2. (9.48)

Expressing this in terms of the covariance matrix γ̃± of the partially transposed state (Eq.

(9.30)) can be done by using Eq. (9.40) where we replace all the p̂± by p̂∓:

σ2
M′± = 2

(
detγ̃± +

1
4

Tr (ρ̂[x̂±, p̂∓])
2
)

, (9.49)

leading to

2
(

detγ̃± +
1
4

Tr (ρ̂[x̂±, p̂∓])
2
)
≥ 2a1b1a2b2. (9.50)

We obtain our necessary criterion by isolating the determinant:

ρ̂ separable ⇒ detγ̃± ≥ 1
4
(a1b1 + a2b2)

2. (9.51)

This criterion is the same than the one for two copies but generalized to arbitrary states. In

the next section, we will compare it to other known criteria.

9.3 Comparison with well-known entanglement criteria

In the previous sections, we demonstrated two necessary criteria for separability given in Eq.

(9.32) and Eq. (9.51). These two criteria reduce to the same one when the state is centered.

However, for a displaced state, Eq. (9.32) is not valid. This shows that the criterion presented

in Eq. (9.51) is stronger which is the reason why we will concentrate ourselves on that one.

As our criterion involves moments of order two in the quadratures, we will compare it

to the ones of Duan et al., MGVT and Simon that were presented in detail in Subsection

4.3.1. Here, we used generalized EPR-like operators defined with four parameters a1, b1,

a2, and b2 (Eq. (9.1)) but the witnesses that we want to compare to are based on the usual

EPR-like operators (Eq. (4.15)) which only depends on one real parameter r. The generalized

quadratures are equal to the usual ones when taking a1 = b1 = r and a2 = b2 = 1
|r| . In this

particular case, our criterion reduces to:

ρ̂ separable ⇒ detγ̃± ≥ 1
4
(r2 +

1
|r|2 )

2. (9.52)

Developing the determinant leads to

σ2
x±σ2

p∓ ≥ 1
4
(r2 +

1
|r|2 )

2 + σ2
x±p∓ . (9.53)
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Figure 9.1: Continuous-variable witnesses for the detection of entanglement compared to our
new criterion (in red).

As σ2
x±p∓ is always positive, this implies

σ2
x±σ2

p∓ ≥ 1
4
(r2 +

1
|r|2 )

2, (9.54)

which is exactly the MGVT criterion (Eq. (4.22)). Moreover, we already proved that the

criterion of MGVT is stronger than the one of Duan et al. Hence, our criterion also implies

the one of Duan et al. However, Simon’s criterion is the more general criterion that can

be written using only second order moments which means that it is still stronger than ours.

Furthermore, as Duan’s criterion is necessary and sufficient for the detection of Gaussian

bipartite entangled states, the same holds true for our witness. A comparison similar to Fig.

4.1 is shown in Fig. 9.1 with our criterion highlighted in red.

9.4 Conclusion and outlook

In this chapter, we have been studying the problem from another perspective: we started by

defining a multicopy observable that has a symmetrical form. We then calculated its mean

value and variances which lead us to an uncertainty relation based on the covariance matrix

for EPR-like quadratures. Then, we applied the PPT criterion in order to obtain a separability

criterion. However, our result was only valid for centered states. Hence, we added a copy

and defined a new observable for three copies. Redoing the same calculation, we ended up
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with a new entanglement witness which is true for arbitrary states and not only the centered

ones. Finally, we compared our criterion to criteria known in the literature and we proved that

it implies MGVT criterion and thus that it is necessary and sufficient for Gaussian bipartite

entangled states.

One question remains about our entanglement three copy witness: how can we measure

it? Indeed, when translating its expression in terms of quadratures into an expression based

on the creation and annihilation operators, we can prove that it can not be measured by using

only photon number detectors. This appears because in the expression, there are terms that do

not contain the same number of creation and annihilation operators and it is thus impossible

to obtain only number operators. One possible way of avoiding such problem could be to

consider homodyne or heterodyne detectors but this is left as an open problem for future

work.
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Chapter 10

Conclusion of this thesis and future
perspectives

The aim of this thesis was to design quantum optical circuits in order to efficiently detect the

nonclassicality of single-mode states or entanglement of bipartite states of the electromagnetic

field. Detecting these two uniquely quantum features is usually done by resorting to so-called

witnesses, whose measurement often relies on full tomography of the state, involving a very

costly operation in terms of experimental runs. Hence, the main objective of this thesis was to

find simpler ways of accessing important nonclassicality and entanglement witnesses. To that

end, we exploited Brun’s multicopy technique, which gives direct access to nonlinear quanti-

ties via the expectation value of joint observables, corresponding physically to the application

of a linear interferometer on several independent and identical copies of the state.

The first nonclassicality witnesses we studied in Chapter 6 belong to a hierarchy of non-

classicality witnesses due to Shchukin, Richter, and Vogel. This hierarchy is based on a matrix

of normally-ordered moments of the mode operator: if the determinant of any (principal) sub-

matrix is negative, then the state is nonclassical. We started by identifying the most interesting

low-dimension submatrices to see which states can be detected as nonclassical. To do so, we

considered different examples of test states, namely, the cat states, squeezed states, and Fock

states. We proved that each of these classes of pure nonclassical states can be detected when

considering suitable subdeterminants. We also analyzed the nonclassicality of mixed Gaus-

sian states and we proved that all nonclassical Gaussian states can be detected. After having

analyzed these criteria in detail, we then turned to their implementation, starting with the sim-

plest case of 2x2 determinants. Using the multicopy technique, we managed to find several

interesting interferometric circuits using two identical copies, a passive interferometer, and

photon number detectors. However, the measurable witnesses with our technique appeared

not to be invariant under displacements (by construction, the invariance under phase rota-

tions is guaranteed), and could not detect the nonclassicality of the entirety of sample states

mentioned above. In order to overcome this difficulty, we investigated the implementation of

3-copy witnesses. This led to an improvement as we could then design circuits detecting the
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nonclassicality for some displaced states, e.g., all displaced squeezed states, but not for all the

above-mentioned nonclassical states after displacement. Finally, we identified an "ideal" wit-

ness in this hierarchy, which can detect the nonclassicality of all our example states, including

displaced ones. This witness involves four copies of the state of interest and exhibits a strong

detection capability. Unfortunately, we could not find an efficient implementation to mea-

sure it with linear optics and photon number measurements, even though we could simplify

its expression by using a four-copy interferometer. Thus, one possible direction for future

work would be to find a more systematic procedure to design circuits based on determinants.

One may also consider to use active elements such as squeezers and/or homodyne/heterodyne

detection.

In Chapter 7, we studied another possible method to witness the nonclassicality of a state

based on a recently introduced quantity, namely the quadrature coherence scale (QCS). If its

value exceeds one, the state is necessary nonclassical. However, before this thesis, no simple

experimental implementation was known and its measurement seemed to require a full to-

mography of the state. Here, we applied the multicopy method and designed a simple circuit

to measure the QCS. We separated the problem into two independent steps: the measurement

of the numerator and denominator of the QCS, which are both written as quadratic expres-

sions of the density operator, meaning that they are accessible using only two copies. After

finding the 2-copy observables associated with the numerator and denominator, we managed

to find a simple and unique optical implementation for measuring the QCS (it is just the

classical postprocessing that differs for the numerator and denominator). We also simulated

the corresponding experiment for some specific classes of nonclassical states, and analyzed

how the photon number obtained after the interferometric measurement gives some indication

on the nonclassicality of the state. We also reformulated our results in terms of the Wigner

function of the output state, which allowed us to reinterpret some known results. Finally, we

generalized our circuit to multimode states.

Then, in Chapter 8, we turned to the measurement of entanglement witnesses. We used

the hierarchy of Shchukin and Vogel and isolated three most promising low-order witnesses

of bipartite entanglement based on three corresponding determinants. Each of these three

witnesses allows ones to detect an interesting class of entangled states: Gaussian entangled

states, generalized Schrödinger cat states, and low-order N00N states. We exploited again the

multicopy method in order to find the multimode observables that can be measured to yield

the above three witnesses. In the two first cases, we could design appropriate circuits, using

a local passive interferometer supplemented with photon number measurement by each party.

For the third witness, we could not find an implementation using only passive interferometry

and photon-number resolving detectors. However, we could find the linear-optics implemen-

tation of a weaker form of the criterion, which still detects the entanglement of low-order

N00N states. This implementation is different in its spirit as it does not need several copies

but requires non-local measurements, i.e., the interferometer extends across the two parties.

Finally, for the three circuits, we studied the effect of two practical imperfections: optical

losses and the fact that the different copies are imperfect due to source flucutations.
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Finally, in Chapter 9, we followed a completely different approach. We started by defin-

ing a two-copy observable in terms of EPR-type quadratures that has the desired rotation

invariance. By expressing the condition that its variance must be non-negative, we obtained

a condition that turned out to be equivalent to an uncertainty relation (but is only valid for

centered states). Once this was done, we applied the positive-partial-transpose (PPT) crite-

rion at the level of the two-copy observable in order to translate the uncertainty relation into

a separability criterion. This gave us a new separability criterion (valid for centered states)

involving second-order moments but going beyond all known second-order criteria. We could

then relax the fact that it is valid for centered states only by using the same methodology

as before, namely we increased the number of copies and defined a three-copy observable.

Doing the same kind of calculations as for the two-copy case, we managed to prove that it

leads to the same separability criterion but is valid, this time, for arbitrary states. Finally, we

compared our criterion to the known second-order criteria and proved that it implies the crite-

rion of MGVT, which is a necessary and sufficient condition for the separability of Gaussian

bipartite states, proving that our criterion is necessary and sufficient for Gaussian states as

well. However, we are still lacking an implementation to measure our three-copy observable

which is probably only possible by using homodyne and heterodyne detectors.
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