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We consider a quantum bosonic channel that couples the input mode via a beam splitter
or two-mode squeezer to an environmental mode that is prepared in an arbitrary state.
We investigate the classical capacity of this channel, which we call a non-Gaussian atten-
uator or amplifier channel. If the environment state is thermal, we of course recover a
Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we
derive both a lower and an upper bound to the classical capacity of the channel, drawing
inspiration from the classical treatment of the capacity of non-Gaussian additive-noise
channels. We show that the lower bound to the capacity is always achievable and give
examples where the non-Gaussianity of the channel can be exploited so that the com-
munication rate beats the capacity of the Gaussian-equivalent channel (i.e. the channel
where the environment state is replaced by a Gaussian state with the same covariance
matrix). Finally, our upper bound leads us to formulate and investigate conjectures
on the input state that minimizes the output entropy of non-Gaussian attenuator or
amplifier channels. Solving these conjectures would be a main step toward accessing the
capacity of a large class of non-Gaussian bosonic channels.

Keywords: Classical capacity; non-Gaussian channels; quantum attenuator; quantum
amplifier; minimum output entropy.

1. Introduction

It only took a few decades before Shannon’s groundbreaking mathematical the-
ory of information1 was propelled to a whole new level through the advance of
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quantum mechanics. With the field of quantum information, the theoretical frame-
work describing the transmission of information over any physical medium was
born. In particular, it provided a precise characterization of the optimal rate of
data transmission over a quantum channel, defined as the classical capacity or
quantum capacity depending on the nature of the data being transmitted.

When it comes to classical data, the information content retrievable from a
quantum state is subject to a fundamental upper bound known as the Holevo
information,2 which caps the amount of classical bits extractable from the system.
The classical capacity of a channel is then obtained by maximizing the Holevo
information at the output of the channel over every possible input ensemble,3,4

usually subject to an energy constraint in the case of infinite-dimensional systems.
Throughout this paper, our focus will be on the classical capacity and we will often
simply refer to it as the capacity of the channel.

Over the years, there has been a continuous effort toward studying the classical
(and quantum) capacities of various types of quantum channels, leading in some
cases to exact solutions. In this endeavor, the family of bosonic Gaussian channels
(BGCs) has attracted a particular interest5 as BGCs adequately model most optical
links of modern communication systems. Their classical capacity was exactly solved
in Ref. 6 for the most common case of phase-insensitive (and phase-conjugating)
channels, based on the solution of a Gaussian optimizer conjecture.7 More general
cases of phase-sensitive BGCs were studied in Refs. 8 and 9. Besides Gaussian chan-
nels, let us mention the depolarizing channel, whose capacity was solved in Ref. 10,
and, on a more recent note, the amplitude damping and dephasing channels, whose
minimum output entropy (MOE) was studied in Ref. 11. The quantum capacity of
the dephasing channel was studied in Refs. 12 and 13 and solved in Ref. 14.

It is only recently that the communication over non-Gaussian quantum chan-
nels has started to attract attention. For example, the quantum capacity of so-called
general attenuators was considered in Refs. 15 and 16. General attenuators couple
an input state with an arbitrary environment through the action of a beam split-
ter, and can be understood as the quantum analog of the (scaled) addition of two
random variables, as depicted in Fig. 1. From a more fundamental perspective,

Fig. 1. Left panel: Classical non-Gaussian additive-noise channel, where X, Y and N denote,
respectively, the input, output and noise random variables. The noise N admits an arbitrary
probability density. Right panel: Quantum non-Gaussian attenuator channel. The input state ρ̂
is coupled with an arbitrary environment state σ̂ through a beam splitter of transmittance η,
resulting in an output state M[ρ̂] while tracing out the other output mode. Here, M denotes the
corresponding trace-preserving completely positive map acting on ρ̂.
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several entropic properties of quantum attenuators have been studied and conjec-
tured in Refs. 17 and 18. Note that the case of a general attenuator with a Fock
environment belongs to the family of photon-added Gaussian channels as defined in
Ref. 19.

Here, we will consider a specific type of non-Gaussian quantum channels whose
Stinespring dilation involves a Gaussian unitary, specifically a beam splitter or two-
mode squeezer. If the environment is initially in a thermal state, the channel reduces
to the well-known (Gaussian phase-insensitive) quantum attenuator or amplifier
channel, whose classical capacity was derived in Ref. 6. Instead, we will assume here
that the environment state is arbitrary, which yields what we call a non-Gaussian
attenuator or amplifier channel. We will be interested in the ultimate classical
communication rate via this channel, namely its classical capacity (we actually
restrict ourselves to the single-shot capacity, ignoring the potential complication
brought by superadditivity20).

Our main result is that we are able to constrain the classical capacity of such
a non-Gaussian channel C(M) by using the known capacity of the corresponding
Gaussian-equivalent channel C(MG), namely

C(MG) ≤ C(M) ≤ C(MG) + Δ, (1)

where the width Δ of this interval is linked to the non-Gaussian character of the
channel M (it can be explicitly expressed in some cases, or numerically computed).
In addition, we conduct numerical exploration to investigate the minimum output
entropy of various quantum non-Gaussian attenuators. Little is known about this
quantity as of today although it is a key ingredient to compute the width Δ, i.e.
the potential capacity increase due to non-Gaussianity.

This paper is organized as follows. We first recall in Sec. 2 the treatment of
the capacity of classical non-Gaussian additive-noise channels in order to stress the
similarities and discrepancies between the classical and quantum scenarios. Then,
in Sec. 3, we derive lower and upper bounds on the classical capacity of quantum
non-Gaussian attenuator or amplifier channels. This leads us to investigate the
width Δ in Sec. 4 and, in particular, formulate conjectures on the minimum output
entropy of certain classes of quantum non-Gaussian channels (especially when the
environment state is Fock-diagonal or admits some discrete symmetries). Finally,
we conclude in Sec. 5.

2. Classical Additive-Noise Channel

Consider an arbitrary (non-Gaussian) additive-noise channel (see Fig. 1) that is
modeled by

X → Y = X + N, (2)

where X denotes the input, Y denotes the output and N denotes the noise. Here,
X , Y and N are real-valued random variables and N is assumed to be independent
of X , which implies that σ2

Y = σ2
X + σ2

N . We will also use the quantum-inspired
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notation

M : pX → pY = M[pX ], (3)

where pX and pY are the probability densities of the input and output variables, and
the channel is viewed as a stochastic map M depending on the probability density
pN of the noise. Without loss of generality, we restrict ourselves to probability
densities of the input pX and noise pN that have a zero mean (hence, the same is
true for pY ). We will follow Ref. 21 to express the lower and upper bounds on the
capacity of M, which is defined as

C(M) := max
pX∈PE

I(X :X + N), (4)

where I(X : Y ) = h(Y ) − h(Y |X) stands for the mutual information between
variables X and Y , with h(·) standing for Shannon differential entropy and PE

standing for the set of probability densities with a variance that does not exceed E

(interpreted as an energy), namely

PE :=
{

pX : σ2
X =

∫
x2pX(x)dx ≤ E

}
. (5)

Since I(X :X + N) = h(X + N) − h(X + N |X) = h(X + N) − h(N) as the noise
is independent of the input, the capacity may be rewritten as

C(M) = max
pX∈PE

h(X + N) − h(N), (6)

where the maximization does not involve the second term as it only depends on the
noise.a

2.1. Capacity of the Gaussian-equivalent channel

We define the Gaussian-equivalent channel as the map MG obtained when the noise
N is replaced by a Gaussian noise NG with the same variance (σ2

N = σ2
NG

), namely

X → Y = X + NG, (7)

or, using the quantum-inspired notation,

MG : pX → pY = MG[pX ]. (8)

Using Shannon theory, the capacity of this Gaussian channel can be expressed
exactly because the maximum in Eq. (4) is attained when the input is Gaussian-
distributed with variance E, so when X is replaced by XG (with σ2

X = σ2
XG

). Hence,
we have

C(MG) = I(XG :XG + NG)

= h(XG + NG) − h(NG). (9)

aThis is in sharp contrast with the classical capacity of quantum channels, where the corresponding
negative term depends both on the noise and on the input, see Sec. 3.
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Since both XG + NG and NG are Gaussian-distributed, their entropies can be writ-
ten explicitly as

h(XG + NG) =
1
2

ln(2πe(σ2
XG

+ σ2
NG

)),

h(NG) =
1
2

ln(2πeσ2
NG

), (10)

which yield the standard expression

C(MG) =
1
2

ln(1 + γ), (11)

with γ = σ2
XG

/σ2
NG

being the signal-to-noise ratio. Starting from C(MG), we will
now prove the lower and upper bounds on C(M), namely Eq. (1) where the width
will be expressed as a relative entropy, i.e. Δcl = D(N‖NG), which measures the
non-Gaussianity of the noise N .

Let us indeed recall the fact that the relative entropy between any random
variable X and the corresponding Gaussian-distributed random variable XG is given
by

D(X‖XG) = h(XG) − h(X) ≥ 0, (12)

where this expression as an entropy difference holds provided X and XG have the
same mean and variance (recall that the mean of all variables is set to zero here).
Inequality (12) expresses the fact that the Gaussian probability density has the
highest entropy among all probability densities with the same variance. Hence, the
difference D(X‖XG) is a measure of the non-Gaussianity of X .

2.2. Lower bound on C(M)

Among all distributions with the same variance, the optimal distribution pX that
achieves the capacity C(M) of the arbitrary channel M has no reason to be the
Gaussian distribution XG that achieves the capacity of the Gaussian-equivalent
channel MG. Hence, we get a lower bound on C(M) by injecting the Gaussian
input XG into channel M, namely

C(M) ≥ I(XG :XG + N). (13)

We now compare the situations where this same Gaussian input XG is injected into
the channel M or into the Gaussian-equivalent channel MG. We have

I(XG :XG + N) − I(XG :XG + NG)

= [h(XG + N) − h(N)] − [h(XG + NG) − h(NG)]

= [h(NG) − h(N)] − [h(XG + NG) − h(XG + N)]

= D(N‖NG) − D(XG + N‖XG + NG)

≥ 0, (14)
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where we may write relative entropies because N and NG (respectively, XG +N and
XG + NG) have the same variance. The inequality comes from the data processing
inequality for the relative entropy D(N‖NG), when the variables N and NG are
both processed in a channel with additive Gaussian noise XG. Finally, combining
inequalities (13) and (14), we have

C(M) ≥ I(XG :XG + N) ≥ C(MG), (15)

where C(MG) = I(XG :XG +NG) is indeed the capacity of MG since it is achieved
by XG. The capacity of the Gaussian-equivalent channel C(MG) is thus a lower
bound on C(M). Note that this lower bound is achievable since injecting the Gaus-
sian input XG into channel M gives the rate I(XG : XG + N), which cannot be
lower than the lower bound C(MG).

The interpretation is straightforward. The Gaussian noise NG can only have a
larger entropy than N since σ2

N = σ2
NG

, so it is somehow more detrimental to the
transmission of information than N . Thus, replacing the noise N by its Gaussian
equivalent NG makes a Gaussian channel that can only transmit less information,
hence its lower capacity.

2.3. Upper bound on C(M)

We now express the difference between the mutual information when an arbitrary
input X is injected in the channel with arbitrary noise N and when the input XG

(with variance σ2
XG

= σ2
X) is injected in the Gaussian channel (with noise variance

σ2
NG

= σ2
N ),

I(X :X + N) − I(XG :XG + NG)

= [h(X + N) − h(N)] − [h(XG + NG) − h(NG)]

= [h(NG) − h(N)] − [h(XG + NG) − h(X + N)]

= D(N‖NG) − D(X + N‖XG + NG)

≤ D(N‖NG), (16)

where we get relative entropies because N and NG (respectively, X + N and XG +
NG) have the same variance. The inequality in Eq. (16) comes from D(X+N‖XG+
NG) ≥ 0, so that we have

I(X :X + N) ≤ I(XG :XG + NG) + D(N‖NG). (17)

We must maximize I(X :X + N) over pX ∈ PE in order to find C(M), but the
right-hand side of this inequality does not directly depend on X (it only depends
on its variance via XG). Hence, we obtain

C(M) ≤ C(MG) + D(N‖NG). (18)

Thus, for a classical non-Gaussian channel, the width of the interval is given by
Δcl = D(N‖NG), which is the relative entropy between the noise N and the
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Gaussian-equivalent noise NG, measuring the non-Gaussianity of the additive noise
of the channel. The more non-Gaussian is the noise, the larger is the potential
capacity increase with respect to the Gaussian-equivalent channel. This capacity
increase is nevertheless restricted to Δcl at most, which tends to zero when the
noise N tends to a Gaussian noise NG, in which case both the lower and upper
bounds converge to C(MG) as expected.

3. General Quantum Attenuator or Amplifier Channels

We will now transpose the above scenario to non-Gaussian quantum channels. We
will first consider the general (non-Gaussian) quantum attenuator map shown in
Fig. 1,

M : ρ̂ → M[ρ̂] = ρ̂ �η σ̂ := Tr2[Ûη(ρ̂ ⊗ σ̂)Û †
η ]. (19)

It is realized with a beam splitter (denoted with �) of arbitrary transmittance η

(0 ≤ η ≤ 1) that couples the input state ρ̂ with an environment prepared in an
arbitrary state σ̂ (we may assume with no loss of generality that the latter has a
zero mean vector). The beam splitter is described by the two-mode unitary operator
Ûη = exp(θ (â†b̂ − âb̂†)) where η = cos2 θ and â, b̂ are the mode operators of the
input and the environment, respectively. We also assume the input and environment
to be initially in a product state (just like the classical noise is independent of the
input), so that the covariance matrix of the output state can be expressed as

Cov(M[ρ̂]) = ηCov(ρ̂) + (1 − η)Cov(σ̂). (20)

Further, we may assume with no loss of generality that the environment state
has a covariance matrix proportional to the identity, Cov(σ̂) ∝ I2. Indeed, if it is
not the case, we may apply a squeezing unitary Û to σ̂ so that Cov(Û σ̂Û †) ∝ I2.
Then, by applying the same Û on the input state ρ̂, we can move Û to the output
state, namely (Û ρ̂Û †) �η (Û σ̂Û †) = Û(ρ̂ �η σ̂)Û †, see Sec. 4.1 and Fig. 2. Since
acting with Û at the output of the channel is reversible, the capacity of the channel
with modified environment is simply equal to C(M) provided each input state ρ̂

is replaced by Û ρ̂Û †.b Thus, we will restrict to quantum attenuator maps whose
environment state has a zero mean and a covariance matrix proportional to the
identity. Since the treatment of the quantum amplifier map is very similar, we will
only sketch it in Sec. 3.5.

For a quantum channel, the mutual information must be replaced by the
classical-quantum mutual information (or Holevo information2), namely

χ[{pi, ψ̂i},M] = S

(
M

[∑∫
i

piψ̂i

])
−

∑∫
i

piS(M[ψ̂i]), (21)

bSince the channel capacity is defined with an energy constraint on the average input state, one
should actually take into account the energy cost of this extra squeezing U . Thus, the freedom to
convert the environment to a state whose covariance matrix is proportional to the identity is only
valid above some energy threshold.22,23 We restrict to this regime in this analysis.

2440003-7

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
4.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

a0
2:

27
88

:1
02

8:
bb

0:
f5

fc
:5

82
1:

bf
4f

:4
26

4 
on

 0
9/

20
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 10, 2024 10:49 WSPC/187-IJQI 2440003

Z. Van Herstraeten, S. Guha & N. J. Cerf

which is a function of the input ensemble {pi, ψ̂i} and of the map M. Here, S(·)
stands for the von Neumann entropy and we note that the ensemble can very well
be realized by a continuum of input states, in which case the sum over i would be
replaced by an integral (hence, the hybrid notation). In analogy with Eq. (4), the
classical capacityc of M is expressed as a maximum,

C(M) := max
{pi, ψ̂i} ∈ Eν

χ[{pi, ψ̂i},M], (22)

where Eν is the set of all ensembles {pi, ψ̂i} whose average photon number is at
most ν, namely

Eν :=

{
{pi, ψ̂i} : Tr[ρ̂â†â] ≤ ν, with ρ̂ =

∑∫
i

piψ̂i

}
. (23)

Note that, as a consequence of the concavity of the von Neumann entropy, it
is sufficient to consider ensembles of pure states ψ̂i in this maximization. Further,
we may actually restrict the maximization to ensembles {pi, ψ̂i} such that ρ̂ has a
zero mean vector and a covariance matrix verifying Tr[Cov(ρ̂)] = 1 + 2ν, i.e. whose
average photon number reaches ν.

3.1. Capacity of the Gaussian-equivalent channel

We will compare M with the Gaussian-equivalent map denoted as MG, in which
the environment is prepared in the Gaussian state σ̂G such that Cov(σ̂G) = Cov(σ̂),
namely

MG : ρ̂ → MG[ρ̂] = ρ̂ �η σ̂G := Tr2[Ûη(ρ̂ ⊗ σ̂G)Û †
η ]. (24)

Since we restrict to Cov(σ̂) ∝ I2, the environment state is such that Cov(σ̂G) ∝ I2,
so it is a thermal state with the same average photon number as σ̂ (which we take
equal to n̄). Hence, the resulting Gaussian map MG is phase-insensitive, and its
capacity is known.6 Since

Cov(MG[ρ̂]) = ηCov(ρ̂) + (1 − η)Cov(σ̂G), (25)

it is important to stress that injecting the same state ρ̂ into channels M or MG

results in two distinct output states that have nevertheless the same covariance
matrix Cov(MG[ρ̂]) = Cov(M[ρ̂]).

When computing the capacity of MG, we know that the maximum in Eq. (22)
is attained when the input ensemble is a thermal state τ̂ν of average photon number
ν realized with Gaussian-distributed coherent states ϕ̂α = |α〉 〈α|, which we denote

cWe focus on the single-shot capacity and will not consider the regularization problem here, namely

the fact that the ultimate capacity of M should be written as limn→∞ C(M⊗n)/n
?
= C(M).
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as {pα, ϕ̂α}.6 Thus,

C(MG) = χ[{pα, ϕ̂α},MG] = S

(
MG

[∑∫
α

pαϕ̂α

])
−

∑∫
α

pα S(MG[ϕ̂α])

= g(ην + n̄) − g(n̄), (26)

where g(x) = (x + 1) ln(x + 1) − x ln(x) is the von Neumann entropy of a thermal
state of average photon number x. We will now exploit the knowledge of C(MG)
in order to find the lower and upper bounds of C(M), similarly as in the classical
case.

Let us note first that the quantum relative entropy between ρ̂ and ρ̂G can be
expressed as

D(ρ̂‖ρ̂G) = S(ρ̂G) − S(ρ̂) ≥ 0 (27)

as long as ρ̂G is the Gaussian state with the same covariance matrix and same
mean vector as ρ̂ (here, we set the mean vector of all states to zero). Just like with
the classical relative entropy, this inequality expresses that the Gaussian state ρ̂G

has the highest von Neumann entropy among all states ρ̂ with the same covariance
matrix. Hence, D(ρ̂‖ρ̂G) can be viewed as a measure of the non-Gaussianity of ρ̂.

3.2. Lower bound on C(M)

We know that the input ensemble {pα, ϕ̂α} realizing a thermal state τ̂ν of average
photon number ν has no reason to achieve the capacity C(M) but it yields a lower
bound to this capacity, namely

C(M) ≥ χ[{pα, ϕ̂α},M]. (28)

As for classical channels, we compare the situations where the same input ensemble
{pα, ϕ̂α} is injected either in channel M or in the Gaussian-equivalent channel MG.
We have

χ[{pα, ϕ̂α},M] −χ[{pα, ϕ̂α},MG]

= S

(
M

[∑∫
α

pαϕ̂α

])
−

∑∫
α

pαS(M[ϕ̂α]) − S

(
MG

[∑∫
α

pαϕ̂α

])

+
∑∫

α
pαS(MG[ϕ̂α])

=
∑∫

α
pαS(MG[ϕ̂α]) −

∑∫
α

pαS(M[ϕ̂α]) − S

(
MG

[∑∫
α

pαϕ̂α

])

+ S

(
M

[∑∫
α

pαϕ̂α

])

2440003-9

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
4.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

a0
2:

27
88

:1
02

8:
bb

0:
f5

fc
:5

82
1:

bf
4f

:4
26

4 
on

 0
9/

20
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 10, 2024 10:49 WSPC/187-IJQI 2440003

Z. Van Herstraeten, S. Guha & N. J. Cerf

=
∑∫

α
pα D(M[ϕ̂α]‖MG[ϕ̂α]) − D

(
M

[∑∫
α

pαϕ̂α

]∥∥∥∥∥MG

[∑∫
α

pαϕ̂α

])

≥ 0, (29)

where we can write quantum relative entropies since applying the maps M and MG

to a same input state gives two output states with the same covariance matrix. The
inequality in (29) comes from the double convexity of the quantum relative entropy,
namely

D

(∑
i

piρ̂i

∥∥∥∥∥
∑

i

piσ̂i

)
≤

∑
i

piD(ρ̂i‖σ̂i). (30)

Thus, combining Eqs. (28) and (29), we have

C(M) ≥ χ[{pα, ϕ̂α},M] ≥ C(MG), (31)

where we have used C(MG) = χ[{pα, ϕ̂α},MG] since the capacity of MG is
attained by using the Gaussian encoding {pα, ϕ̂α}. Similarly as for classical chan-
nels, the capacity of the Gaussian-equivalent channel C(MG) is thus a lower
bound on C(M). This lower bound is achievable since injecting {pα, ϕ̂α} into
channel M gives the rate χ[{pα, ϕ̂α},M], which cannot be lower than the lower
bound C(MG).

3.3. Upper bound on C(M)

Just as in the classical analysis, we now compare the situation when some arbitrary
ensemble {pi, ψ̂i} is injected in the channel M and when the Gaussian ensem-
ble {pα, ϕ̂α} with the same total covariance matrix is injected in the Gaussian-
equivalent channel MG,

χ[{pi, ψ̂i},M] −χ[{pα, ϕ̂α},MG]

= S

(
M

[∑∫
i

piψ̂i

])
−

∑∫
i

piS(M[ψ̂i]) − S

(
MG

[∑∫
α

pαϕ̂α

])

+
∑∫

α
pαS(MG[ϕ̂α])

=
∑∫

α
pαS(MG[ϕ̂α]) −

∑∫
i

piS(M[ψ̂i]) − S

(
MG

[∑∫
α

pαϕ̂α

])

+ S

(
M

[∑∫
i

piψ̂i

])
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=
∑∫

α
pαS(MG[ϕ̂α]) −

∑∫
i

piS(M[ψ̂i]) − D(M[ρ̂]‖MG[ρ̂G])

≤
∑∫

α
pαS(MG[ϕ̂α]) −

∑∫
i

piS(M[ψ̂i]), (32)

where we defined ρ̂ =
∑∫

i
piψ̂i and ρ̂G =

∑∫
α

pαϕ̂α, with the latter state being the

Gaussian state with the same covariance matrix as ρ̂, i.e. Cov(ρ̂G) = Cov(ρ̂). The
inequality in Eq. (32) comes from D(M[ρ̂]‖MG[ρ̂G]) ≥ 0, where we can indeed
write a relative entropy because Cov(M[ρ̂]) = Cov(MG[ρ̂G]). Thus, defining

Δ[{pi, ψ̂i}] :=
∑∫

α
pαS(MG[ϕ̂α]) −

∑∫
i

piS(M[ψ̂i]), (33)

we have

χ[{pi, ψ̂i},M] ≤ χ[{pα, ϕ̂α},MG] + Δ[{pi, ψ̂i}], (34)

which is the counterpart of Eq. (17). To make this analogy more obvious, one should
write explicitly the classical analog of Eq. (33), namely

Δcl =
∫

dxpXG(x)h(x + NG |x) −
∫

dxpX(x)h(x + N |x)

= h(XG + NG |XG) − h(X + N |X)

= h(NG) − h(N)

= D(N‖NG). (35)

Nicely enough, Δcl does not depend on the input probability density pX for classical
channels. This results from the fact that the noise is additive and the Shannon
differential entropy is invariant under translation, i.e. h(X + a) = h(X), ∀ a ∈ R.
This is unfortunately not so simple for quantum channels.18

In order to get the capacity C(M), we must maximize χ[{pi, ψ̂i},M] over
all input ensembles {pi, ψ̂i} ∈ Eν . Note first that the Gaussian ensemble {pα, ϕ̂α}
appearing in Eqs. (33) and (34) indirectly depends on the considered input ensemble
{pi, ψ̂i} since both ensembles must give an average state (respectively, ρ̂G and ρ̂)
that has the same covariance matrix. This is why we note Δ as a functional of
{pi, ψ̂i} only. More precisely, when maximizing Eq. (34) over {pi, ψ̂i} ∈ Eν , the cor-
responding maximization over the Gaussian-equivalent ensembles {pα, ϕ̂α} reaches
its maximum for Cov(ρ̂G) ∝ I2, which only depends on the average photon num-
ber ν since Tr[Cov(ρ̂G)] = 1 + 2ν.d Thus, the maximization of χ[{pα, ϕ̂α},MG] in

dHere again, we assume that the input photon number ν is above some threshold, so that none of
the quadratures of ρ̂G is squeezed. This is needed since ρ̂G is realized with a mixture of coherent
states {pα, ϕ̂α}. We restrict to this regime here.
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Eq. (34) yields the capacity of the Gaussian-equivalent channel MG, so we get

C(M) ≤ C(MG) + max
{pi, ψ̂i} ∈ Eν

Δ[{pi, ψ̂i}]. (36)

Importantly, the first term of Δ[{pi, ψ̂i}] does not need to be maximized (it
is a constant) since ρ̂G is known to be realized with coherent states ϕ̂α in the
maximization of χ[{pα, ϕ̂α},MG] giving C(MG). Maximizing the second term
amounts to finding the minimum output entropy of the non-Gaussian channel M
(averaged over the input symbols). The latter entropy can in turn be further lower
bounded by finding the pure state ψ̂ that minimizes the output entropy S(M[ψ̂])
since the von Neumann entropy is concave. Hence, the maximum of Δ[{pi, ψ̂i}] can
itself be upper bounded, resulting in our final upper bound on the capacity

C(M) ≤ C(MG) + Δmax, (37)

where the potential capacity increase is defined as

Δmax = SMG

min − SM
min, (38)

with

SMG

min = min
ψ̂

S(MG[ψ̂]) ≡ S(MG[|0〉〈0|]),

SM
min = min

ψ̂
S(M[ψ̂]). (39)

Here, SM
min stands for the minimum output entropy of the non-Gaussian channel

M, while SMG

min stands for the minimum output entropy of the Gaussian-equivalent
channel MG, which is achieved simply by inputting the vacuum state |0〉 (or any
coherent state ϕ̂α).

3.4. Properties of Δmax

The potential capacity increase Δmax is thus expressed as an entropy difference,
which plays a similar role as the relative entropy D(N‖NG) for classical non-
Gaussian channels. Indeed, a classical input signal can simply be fully zeroed
in order to minimize the output entropy since there is no quantum noise, i.e.
pX(x) = δ(x), with δ denoting the Dirac distribution. Accordingly, we may thus
rewrite Eq. (35) as

Δcl = D(N‖NG) = h(MG[δ]) − h(M[δ]), (40)

which is the straightforward analog of Eq. (38). In the quantum case, however,
we have to express the difference between the (averaged) output entropies when
considering the optimal ensemble of input pure states.

As an interesting special case, consider the non-Gaussian channels M that are
such that the minimum output entropy is reached by the vacuum state |0〉 (or
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any coherent state ϕ̂α), just as for the Gaussian-equivalent channels MG. If M
satisfies this property of having a Gaussian minimizer (such cases will be discussed
in Sec. 4), then its potential capacity increase can be written as

Δmax = S(MG[|0〉〈0|]) − S(M[|0〉〈0|])

= D(M[|0〉〈0|]‖MG[|0〉〈0|]), (41)

which is simply the non-Gaussianity of the output state of the channel M when
the input is taken as the minimizing state |0〉 (or any coherent state ϕ̂α). In
this case, the expression is identical to its classical counterpart Δcl, see Eq. (35)
or (40).

More generally, if vacuum is not the state minimizing the output entropy of M,
Δmax is still easily shown to be nonnegative. Indeed, we have

Δmax = S(MG[|0〉〈0|]) − min
ψ̂

S(M[ψ̂])

≥ S(MG[|0〉〈0|]) − S(M[|0〉〈0|]), (42)

which is always nonnegative as a consequence of our previous argument. The non-
Gaussianity of the output associated to vacuum can thus always be used as a lower
bound to the value of Δmax.

Note, finally, that the upper bound (37) becomes tight in the limit where ν  1.
Indeed, the capacity C(M) tends to the upper bound C(MG) + Δmax in this case
since the averaged output state of M can be made to approach a thermal (Gaussian)
state simply by choosing a Gaussian input ensemble. In contrast, the upper bound
(37) becomes loose in the limit of ν � 1. This is because Δmax is a characteristic
of the channel M and is independent of ν. When ν → 0, the upper bound on
C(M) tends to a constant value Δmax as C(MG) → 0, whereas we expect that the
capacity C(M) → 0.

3.5. Quantum amplifier channel

The exact same treatment extends to quantum amplifier channels with non-
Gaussian noise, corresponding to η > 1. This is because the reasoning is inde-
pendent of η and only depends on the way the input and output covariance matri-
ces are related. The same is true for phase-conjugating channels, corresponding to
η < 0. Hence, the upper and lower bounds on the capacity hold for all non-Gaussian
attenuator and (phase-conjugate) amplifier channels with an arbitrary environment
state σ̂.

4. Minimum Output Entropy: Numerical Exploration

The difference between the upper and lower bounds on the capacity C(M) that we
derived in Sec. 3 is a difference between the minimum output entropies of the non-
Gaussian channel M and its Gaussian associate MG. The minimum output entropy
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(MOE) of Gaussian channels has been extensively studied in the literature6,24,25;
however, very little is known for the non-Gaussian channels.11

In this section, we investigate the MOE of quantum attenuator channels with
non-Gaussian environment (it is expected that the case of quantum amplifier
channels would lead to the same conclusions). We first consider the case of an
environment that is phase-invariant, and then look at a particular example of an
environment that possesses other relevant symmetries. To help us identifying the
input states that minimize the output entropy, we make use of a numerical min-
imization routine described in Appendix A. We stress that our findings in this
section are thus based on numerics only and do not rely on analytical results. How-
ever, supported by these numerics, we suggest and conjecture some properties for
the states minimizing the output entropy of quantum attenuators. In a nutshell, we
make the following observations (detailed in the rest of this section):

• Coherent states achieve the MOE of quantum attenuators with phase-invariant
(i.e. Fock-diagonal) environments.

• The MOE state of a quantum attenuator is, in some cases, not unique (even if
the trivial nonuniqueness due to displacements is disregarded).

• The MOE state of a quantum attenuator is, in some cases, non-Gaussian (this
can only happen if the environment is non-Gaussian and not Fock-diagonal).

• The MOE state of a quantum attenuator is invariant under the phase-space
symmetries respected by the environment.

• For a fixed environment, the MOE state of a quantum attenuator may depend
on the transmittance η.

4.1. Preliminaries: Properties of quantum attenuator channels

Before diving into the results of our numerical exploration, let us recall some impor-
tant properties of the family of (generalized) quantum attenuators. The unitary
transformation implemented by the beam-splitter benefits from several commuta-
tion relations with Gaussian unitary operators, which carry on to the correspond-
ing channels. These commutation rules are illustrated in Fig. 2. In the follow-
ing, the displacement operator D̂α, the rotation operator R̂θ and the squeezing
operator Ŝr are defined as usual: D̂α = exp(αâ† − α∗â), R̂θ = exp(−iθâ†â) and
Ŝr = exp(r(â2 − â†2)/2).

First, a displacement operation on the inputs of a beam splitter is equivalent to
a displacement on its outputs with the adequate displacement parameters. A direct
consequence of that equivalence is that applying the operator D̂α to the input of
a quantum attenuator with transmittance η produces the same result as applying
the operator D̂√

ηα to its output. More precisely, we may write

M[D̂αρ̂D̂†
α] = D̂√

ηαM[ρ̂]D̂†√
η α, (43)

for any quantum attenuator M with transmittance η (and arbitrary environment).
Since displacement is a unitary operator, this also means that the eigenvalues of

2440003-14

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

02
4.

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

a0
2:

27
88

:1
02

8:
bb

0:
f5

fc
:5

82
1:

bf
4f

:4
26

4 
on

 0
9/

20
/2

4.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 10, 2024 10:49 WSPC/187-IJQI 2440003

Classical capacity of quantum non-Gaussian attenuator and amplifier channels

Fig. 2. Commutation properties of the beam splitter. For each column, the upper and lower
setups yield the same two-mode unitary operation (up to a global phase). In the first column
(displacement), the relation holds provided β1 =

√
ηα1 +

√
1 − ηα2 and β2 = −

√
1 − ηα1 +

√
ηα2.

In the second column (rotation), the commutation relation holds provided all rotation operators
have the same angle θ. In the third column (reflection), the commutation relation holds provided all
reflection operators have the same angle θ. (∗Note that reflections are not physically implementable
since they are related to the phase-conjugation operator, which is anti-unitary.) In the fourth
column (squeezing), the commutation relation holds provided all squeezing operators have the
same squeezing parameter r.

the output are preserved under any displacement of the input, hence the output
always possesses the same von Neumann entropy. When looking for the states that
minimize the output entropy of a quantum attenuator, it is thus sufficient to restrict
to inputs with zero mean displacement. For the same reason, we may, without loss
of generality, only consider environments with zero mean displacement.

Second, rotating both inputs of a beam splitter is equivalent to rotating its two
outputs as long as the rotation angles are the same. This property is illustrated in
the second column of Fig. 2. A similar commutation relation holds for the reflection
operator M̂θ that we define as follows. Denote as M̂ the phase-conjugation operation
(the letter M that is chosen as M̂ acts as a mirror over the x-axis in phase space).
The map |ψ〉 → M̂ |ψ〉 corresponds to ψ(x) → ψ∗(x) and W (x, p) → W (x,−p).
We then define the reflection operator with angle θ as M̂θ = R̂θM̂R̂†

θ. In phase
space, the operator M̂θ performs a reflection around an axis intersecting the origin
of phase space and making an angle θ with the x-axis. The commutation between
the reflection operator and beam splitter is illustrated in the third column of Fig. 2.

With the above observations in mind, we introduce the following lemma.

Lemma 1 (Channel covariance). A quantum attenuator channel is covariant
with respect to the rotation and reflection symmetries of its environment. Let M be
a quantum attenuator with transmittance η and environment σ̂. We then have

∀ R̂θ | σ̂ = R̂θσ̂R̂†
θ : M[R̂θρ̂R̂†

θ] = R̂θM[ρ̂]R̂†
θ,

∀ M̂θ | σ̂ = M̂θσ̂M̂ †
θ : M[M̂θρ̂M̂ †

θ ] = M̂θM[ρ̂]M̂ †
θ .

(44)
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Lemma 1 is a direct consequence of the commutation relations between the
beam-splitter unitary and the rotation or reflection operators as schematized in
Fig. 2. We have also used the fact that partial tracing is invariant under a unitary
operation over the partial-traced mode.

Let us finally highlight a last commutation rule between the beam splitter and
the squeezing operator. Squeezing both inputs of the beam splitter is equivalent to
squeezing its two outputs as long as the squeezing parameters are the same. This
relation is illustrated in the fourth column of Fig. 2. Combining this relation with
the commutation rule between the beam-splitter unitary and the rotation operator,
it appears that we may restrict, when looking for minimum-output-entropy states,
to environments with a covariance matrix proportional to the identity. If the envi-
ronment has a covariance matrix in a different form, it is always possible to use
the appropriate rotation and squeezing operators in order to make its covariance
matrix proportional to the identity matrix.

In conclusion, we may consider, without loss of generality, environments which
have a zero mean displacement and a covariance matrix proportional to the identity
matrix. The environment σ̂ has a zero mean displacement if and only if Tr[σ̂â] = 0.
A simple derivation gives x̂p̂ + p̂x̂ = i(â†2 − â2) and x̂2 − p̂2 = â†2 + â2. As a
consequence, any zero-mean environment σ̂ has a covariance matrix proportional
to the identity if and only if Tr[σ̂â2] = 0. Note that we will also only consider input
states ρ̂ such that Tr[ρ̂â] = 0, but the input states may have an arbitrary covariance
matrix, so that Tr[ρ̂â2] will in general be nonzero.

4.2. Phase-invariant environment

Here, we consider quantum attenuator channels that are associated with a phase-
invariant environment. Recall that a quantum state σ̂ is said to be phase-invariant
if it is invariant under any rotation operation, i.e. such that R̂θσ̂R̂†

θ = σ̂, ∀ θ. As a
consequence of Lemma 1, a quantum attenuator with phase-invariant environment
is covariant with respect to any rotation. Such a channel M is called phase-covariant
(or rotation-covariant), i.e. M[R̂θρ̂R̂†

θ] = R̂θM[ρ̂]R̂†
θ, ∀θ.

Let us first focus on phase-covariant quantum attenuators that are associated
with a pure environment. Such channels are thus quantum attenuators with the
environment in a Fock state, and in the following we refer to them as Fock atten-
uators (also called photon-added channels in Ref. 19). A Fock attenuator with
transmittance η and the environment in the Fock state |n〉 is defined as

Mη,n[ρ̂] = Tr2[Ûη(ρ̂ ⊗ |n〉〈n|)Û †
η ]. (45)

From our (rather exhaustive) numerical simulations, it appears that the states
that minimize the output entropy of Fock attenuators Mη,n are coherent states.
Indeed, when running our minimization routine, we observe that the result always
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converges to a coherent state. We observe this behavior regardless of the values of
η and n. With this in mind, we lay the following conjecture.

Conjecture 1 (Fock attenuator). The minimum output entropy of a Fock atten-
uator channel Mη,n is achieved by coherent states, ∀ η, n.

Some extra observations should be made about Conjecture 1. First, when the
environment is in the vacuum state, the conjecture is trivially true as the output
associated to vacuum Mη,0[|0〉〈0|] = |0〉〈0| is a pure vacuum state (this is expected
as the channel is then a Gaussian channel).

Second, we notice that there sometimes exist other states performing as well as
coherent states. For example, let us consider the Fock attenuator with transmittance
η = 1/2 and environment in the Fock state |1〉, so that σ̂ = |1〉〈1|. For that particular
channel, the output associated to vacuum is M1/2,1(|0〉|0〉) = (|0〉〈0|+ |1〉〈1|)/2 and
the output associated to the Fock state 1 is M1/2,1(|1〉〈1|) = (|0〉〈0|+ |2〉〈2|)/2 (as a
consequence of the Hong–Ou–Mandel effect). These two output states have identical
eigenvalues {1/2, 1/2} so that they also have equal von Neumann entropies.

Assuming Conjecture 1 is true, we are in position to compute the capacity
interval width Δ for Fock attenuators. Recall that Δ = SMG

min − SM
min, so that

we can now simply set SM
min to the output entropy associated to vacuum SM

0 :=
S(M(|0〉〈0|)), hence we would have Δ = SMG

min −SM
0 . Note that, in case Conjecture 1

was proven wrong (so that SM
0 > SM

min), the value SMG

min − SM
0 would then be a

lower bound on the true value of Δ. Under the assumption of Conjecture 1, we
illustrate the value of Δ for Fock attenuators in Fig. 3. In Fig. 4, we focus on
the particular example of the Fock attenuator with transmittance η = 1/2 and
environment σ̂ = |1〉〈1| and plot the interval of admissible values of its classical
capacity as a function of the photon number constraint at its input.

Let us now extend the discussion to the case of phase-covariant attenuator
channels with mixed environments. Such channels have an environment state σ̂ that
is diagonal in the Fock basis, i.e. such that σ̂ =

∑
pn|n〉〈n| for some probability

vector p. A phase-covariant attenuator channel is thus defined as

Mη,p[ρ̂] = Tr2

[
Ûη

(
ρ̂ ⊗

( ∞∑
n=0

pn|n〉〈n|
))

Û †
η

]
=

∞∑
n=0

pn Mη,n[ρ̂], (46)

so that it is simply a convex mixture of Fock attenuators.
As we did for Fock attenuators, we ran our minimization routine to identify

the input states achieving the lowest output entropy for such channels. For various
choices of η and p, the routine always converged toward a coherent state. This leads
us to lay the following extension to Conjecture 1.

Conjecture 2 (Phase-covariant attenuator). The minimum output entropy of
a phase-covariant attenuator channel Mη,p is achieved by coherent states, ∀η,p.

Conjecture 2 is a generalization of Conjecture 1 to mixed environments. Note
that in the special case of a thermal environment (i.e. when p is a geometric dis-
tribution), Conjecture 2 is of course known to hold from Ref. 6.
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4.3. Environment with discrete symmetries

Let us now consider a family of quantum attenuators where, rather than being
phase-invariant, the environment possesses finite numbers of rotation and reflection
symmetries. That is, we consider an environment σ̂ such that there exist finite
sets {θ1, . . . , θM} and {ϕ1, . . . , ϕN} such that R̂θi σ̂R̂†

θi
= σ̂ and M̂ϕi σ̂M̂ †

ϕi
= σ̂.

Fig. 3. Capacity interval widths Δ for several Fock attenuator channels (with the environment
in state σ̂ = |n〉〈n|) as a function of the transmittance η. We note that Δ is independent of the
constraint on the photon number ν at the input.

Fig. 4. Upper and lower bounds on the classical capacity C of a non-Gaussian quantum channel
as a function of the photon number ν at the input. The illustrated example is a Fock attenuator
with environment σ̂ = |1〉〈1| and transmittance η = 1/2. The classical capacity C must lie in the
blue area, between the lower bound CG and the upper bound CG + Δ. In the regime of low ν, the
capacity C goes to zero so that C → CG for ν � 1. In the regime of high ν, the capacity C tends
to the upper bound C → CG + Δ for ν � 1 as the bound becomes asymptotically achievable.
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From Lemma 1, this implies that the corresponding quantum attenuator is covariant
with respect to these sets of rotations and reflections, but not with respect to any
rotation or reflection (hence, it is in general not phase-covariant).

We will only focus here on one particular example of an environment with such
discrete symmetries (we expect our conclusions to be common to all channels with
an environment obeying this type of symmetries). Let us consider the state

|ψ〉 =
1√
2
(|0〉 + |3〉), (47)

which has a zero mean displacement vector and a covariance matrix proportional
to the identity. The state |ψ〉 admits a three-fold rotational symmetry so that it is
invariant under R̂θ for θ ∈ {2π/3, 4π/3}. Moreover, since it has real-valued Fock
coefficients, it is invariant under phase conjugation. More precisely, |ψ〉 is invariant
under M̂θ for θ ∈ {0, 2π/3, 4π/3}. Its Wigner function is represented in Fig. 5.

Let us now consider the quantum attenuator M with transmittance η = 1/2 and
environment σ̂ = |ψ〉〈ψ|. In the previous subsection, we had observed that coherent
states appeared to be the states of minimum output entropy for phase-covariant
channels. For the present channel with restricted symmetries, it is thus natural to
question whether coherent states (or, more generally, some Gaussian pure states)
may again achieve the minimum output entropy. Remember that to sample the out-
put entropy associated to every Gaussian pure state, it suffices to look at squeezed
states with zero displacement, i.e. pure states of the form R̂ϕŜr|0〉. Moreover, taken

Fig. 5. Wigner function of the state |ψ〉 = (|0〉 + |3〉)/
√

2. The state |ψ〉 has a zero mean
displacement vector and a covariance matrix proportional to the identity. It has two rotation
symmetries, namely R̂θ for θ ∈ {2π/3, 4π/3}, and three reflection symmetries, namely M̂θ for

θ ∈ {0, 2π/3, 4π/3}. We are considering a quantum attenuator channel whose environment is in
state |ψ〉.
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Fig. 6. Output entropy Sout of the quantum attenuator with transmittance η = 1/2 and envi-
ronment state σ̂ = |ψ〉〈ψ|, where |ψ〉 = (|0〉+ |3〉)/

√
2. We compare the output entropy associated

to Gaussian squeezed states of the form R̂θ Ŝr|0〉 at the input. The left plot shows Sout as a
function of r, with the different blue curves corresponding to different values of θ (sampled over
[0, π/3]). The red curve corresponds to the value θ = π/6. Note that the output entropy increases
monotonically with r for r ≥ 1. The right plot shows Sout as a function of θ, with the different
blue curves corresponding to different values of r (sampled over [0, 1]). The red curve corresponds
to the value r = 0.515187. It appears that the minimum output entropy (among squeezed states)
is achieved for θ = π/6 and r ≈ 0.515187; for that state we find Sout ≈ 0.93333.

into account the symmetry of the environment, it suffices to sample ϕ over [0, π/3].
The results of our numerical investigations are plotted in Fig. 6. It appears that the
Gaussian squeezed state with angle θ = π/3 and squeezing parameter r ≈ 0.515
is the state that achieves the minimum output entropy among all Gaussian input
states, and the output entropy yields Sout ≈ 0.933. It is interesting to notice that
the state minimizing the output entropy among Gaussian states is a squeezed state
even though the covariance matrix of |ψ〉 is proportional to the identity.

We now run our minimization routine and check whether there exists an input
state that outperforms the squeezed state identified in Fig. 6. The answer is posi-
tive as the routine converges toward a non-Gaussian state that achieves an output
entropy Sout ≈ 0.872, which is strictly lower than what is achieved by the optimal
Gaussian pure state. We illustrate our numerical result in Fig. 7. It is remarkable
that the routine converges toward a state that shares the same rotation and reflec-
tion symmetries as the environment state |ψ〉. We have observed a similar behavior
for attenuator channels whose environment exhibits other discrete symmetries and
for different values of η. We illustrate these findings in Fig. 8. This leads us to make
the following conjecture.

Conjecture 3 (Phase-space symmetries). The (zero-mean) state achieving the
minimum output entropy of a quantum attenuator channel is invariant under the
same rotation and reflection symmetries as the environment.

Observe that Conjecture 3 is consistent with Conjectures 1 and 2, but does
not imply them. For example, for phase-covariant attenuators, Conjecture 3 would
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Fig. 7. Illustration of the search for the MOE states performed by our minimization routine
described in Appendix A. We consider a channel M with transmittance η = 1/2 and environment
state σ̂ = |ψ〉〈ψ| for |ψ〉 = (|0〉 + |3〉)/

√
2 (see its Wigner function in Fig. 5). Left state is the

initial random state. Then, each step further right corresponds to a state of lower output entropy
than the previous one, as selected by our routine. Right state is the final state. Observe that the
last state exhibits the same rotation and reflection symmetries as |ψ〉.

Fig. 8. For various environment states (shown on top of each column), we run our routine to find
the state that minimizes the output entropy. The upper row corresponds to the Wigner function
of the environment state, and the lower row corresponds to the Wigner function of the input state
minimizing the output entropy, as found by our routine. We note that the (discrete) rotation and
reflection symmetries are the same. In each case, the transmittance has been chosen to η = 1/2.

imply that the minimum output entropy is achieved by any Fock state (while |0〉
is the only MOE state among them). We stress that Conjecture 3 only applies to
zero-mean states, as only those states may possess a rotation symmetry.

Assuming Conjecture 3 is true (taken for granted), we can simplify the search
for MOE states by restricting to the set of states exhibiting the same symmetries
as the environment. In particular, any state with an m-fold rotation symmetry is
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an eigenstate of the rotation operator R̂2π/m and can be written as

|φ〉 =
∞∑

n=0

cn|m · n + p〉, (48)

where p ∈ N is some offset. We have then R̂2π/m|φ〉 = exp(−2πip/m)|φ〉. Adding
the constraint that |φ〉 has real coefficient in the Fock basis (so that cn ∈ R, ∀n)
then ensures that |φ〉 also has the corresponding reflection symmetries.

Let us conclude this analysis by investigating how the MOE state depends on the
transmittance η. For phase-covariant attenuators, we had observed from numerics
that the minimum-output-entropy states are coherent states and that this holds for
any phase-invariant environment and any value of η. We have now seen that turn-
ing to other environment states with restricted symmetries makes the MOE state
different from a coherent state. Let us now analyze what happens if we change the
value of the transmittance η, but keep the same environment. In Fig. 9, we com-
pare three different attenuator channels, each associated with the same environment
|ψ〉 = (|0〉+|3〉)/

√
2 but with different values of transmittance (η ∈ {1/2, 3/5, 2/3}).

Note that for consistency, we have performed the minimization routine without
restricting to the set of states with same symmetries as the environment (i.e. not
taking Conjecture 3 for granted). Although the MOE state changes, the symmetries
survive.

Let us make a final remark concerning Fig. 9. Changing the transmittance of
a beam splitter from η to 1 − η and adding a phase rotation of π on one of its
inputs is equivalent to permuting the two outputs, up to some rotations at the
output. Moreover, when a quantum attenuator with a pure environment is fed with
a pure input state, the output of the channel has the same eigenvalues as the
discarded environment (i.e. the traced-over output mode of the beam splitter), as a
consequence of the Schmidt decomposition of bipartite pure states. The combination

Fig. 9. We consider a quantum attenuator with environment |ψ〉 = (|0〉 + |3〉)/
√

2 and various
values of transmittance (η ∈ {1/2, 3/5, 2/3}). We numerically minimize the output entropy and
observe that the state minimizing the output entropy varies depending on the value of η. Yet, the
MOE state always keeps the exact same rotation and reflection symmetries as the environment
state |ψ〉. Finally, note that since the channel has a pure environment, it suffices to apply a
π rotation to the MOE state associated to η to obtain the MOE state associated to 1 − η.
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of these two facts implies that the MOE state of a quantum attenuator with trans-
mittance η and pure environment |ψ〉 is also the MOE state of the quantum atten-
uator with transmittance 1 − η and environment |ψ〉, with an extra π rotation.

Although we only investigated the case of quantum attenuators in this section,
we expect our observations to extend to the case of quantum amplifiers.

5. Conclusions

In view of the growing interest for non-Gaussian quantum channels in quantum
information theory, it is a natural goal to explore the communication properties
of such channels. In this work, we have focused on evaluating precisely the classi-
cal capacity of a large class of non-Gaussian quantum channels, i.e. the number of
classical bits that can reliably be transmitted per use of the channel. We have stud-
ied the family of quantum channels known as quantum attenuators and quantum
amplifiers, which couple an input bosonic state to an arbitrary bosonic environment
through a Gaussian unitary transformation (either a beam splitter or a two-mode
squeezer). These channels, which are described using the quantum analog of the
scaled addition of two random variables at the core of classical additive-noise chan-
nels, have received an increasing attention over the last years.

Our main result is to constrain the classical capacity of these non-Gaussian
quantum channels into an interval that is related to the capacity of their Gaussian-
equivalent channels. Since this result builds on a related result about the capacity of
classical non-Gaussian channels,21 we use Sec. 2 to lay out this classical result into
a formalism that allows us to generalize it. In Sec. 3, we then present the deriva-
tion of our quantum result. We relate any non-Gaussian attenuator (or amplifier)
channel M to a Gaussian channel MG where the non-Gaussian environment is
replaced by its Gaussian associate with the same covariance matrix. As MG is a
Gaussian channel, its classical capacity C(MG) is exactly known. We then proceed
to lower bound the capacity of the non-Gaussian channel C(M) by the one of the
associated Gaussian channel, i.e. C(M) ≥ C(MG), and to upper bound it by the
Gaussian capacity plus some constant, i.e. C(M) ≤ C(MG) + Δ. The width of
the capacity interval Δ depends on the non-Gaussian character of M and is related
to its minimum output entropy.

This naturally leads us to search for the states that minimize the output entropy
of quantum attenuators, which we carry out in Sec. 4. We first point out that the
symmetries of the environment play an important role in the properties of the
channel. Supported by numerical evidence, we conjecture that the output entropy
of quantum attenuators with an environment that is phase-invariant (i.e. diagonal
in the Fock basis) is minimized by coherent states. The only caveat is that coher-
ent states may, in some cases, not be the unique minimizers. Beyond this case of
phase-invariant environments, we highlight that the output entropy of attenuators
with arbitrary environments is sometimes minimized by non-Gaussian states. Yet,
symmetry seems to play a role here and we make the further conjecture that states
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minimizing the output entropy of a quantum attenuator share the same symme-
tries as the environment (up to a displacement). Finally, we observe that, for a
fixed non-Gaussian environment, the minimum-output-entropy states may vary as
a function of the transmittance of the attenuator.

Directions for future research notably include further work on the search for the
minimum-output-entropy states of generalized quantum attenuators. It is reason-
able to anticipate that, for some particular non-Gaussian environments, the states
minimizing the output entropy may be determined exactly. Along this line, proving
the conjectures that we laid in Sec. 4 would be a great step forward.

Finally, it would be interesting to investigate the multimode version of the non-
Gaussian quantum channels analyzed here. In particular, it would be important
determining whether the capacity is additive or not for these non-Gaussian channels
(as it is the case for Gaussian attenuator and amplifier channels).
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Appendix A. Minimization Routine

We present hereafter a simple routine used to minimize a function of a pure state
f(|ψ〉). In our context, the function f is the von Neumann entropy of a channel M
acting on an input state |ψ〉, i.e. f(|ψ〉) = S(M(|ψ〉〈ψ|)).

A.1. Parameters

The following are the parameters involved in the routine:

NFock : Cutoff photon number

Ninit : Number of random states generated at initialization

Nloop : Number of loops

Nit : Number of iterations per loop

δ : Initial deviation
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A.2. Pure state generation

Draw a random unitary (NFock + 1)× (NFock + 1) matrix U according to the Haar
measure. Then the random pure state is

|ψrand〉 =
NFock∑
n=0

U0n|n〉.

A.3. Routine

Generate Ninit random pure states. Define |ψmin〉 as |ψmin〉 = argmin f(|ψ〉).
Repeat {1 → 2} Nloop times:

(1) Repeat {a → b → c} Nit times:

(a) Generate a random |ψrand〉.
(b) |ψtest〉 = |ψmin〉 + δ|ψrand〉. Normalize |ψtest〉.
(c) If f(|ψtest〉) < f(|ψmin〉), then |ψmin〉 ← |ψtest〉.

(2) Reduce δ : δ ← δ/2.
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