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Majorization theoretical approach to entanglement enhancement via local filtration
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From the perspective of majorization theory, we study how to enhance the entanglement of a two-mode
squeezed vacuum (TMSV) state by using local filtration operations. We present several schemes achieving
entanglement enhancement with photon addition and subtraction, and then consider filtration as a general
probabilistic procedure consisting in acting with local (nonunitary) operators on each mode. From this, we
identify a sufficient set of two conditions for these filtration operators to successfully enhance the entanglement
of a TMSV state, namely, the operators must be Fock orthogonal (i.e., preserving the orthogonality of Fock states)
and Fock amplifying (i.e., giving larger amplitudes to larger Fock states). Our results notably prove that ideal
photon addition, subtraction, and any concatenation thereof always enhance the entanglement of a TMSV state in
the sense of majorization theory. We further investigate the case of realistic photon addition (subtraction) and are
able to upper bound the distance between a realistic photon-added (-subtracted) TMSV state and a nearby state
that is provably more entangled than the TMSV, thus extending entanglement enhancement to practical schemes
via the use of a notion of approximate majorization. Finally, we consider the state resulting from k-photon
addition (on each of the two modes) on a TMSV state. We prove analytically that the state corresponding to
k = 1 majorizes any state corresponding to 2 � k � 8 and we conjecture the validity of the statement for all
k � 9.
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I. INTRODUCTION

Quantum theory reveals the existence of correlations be-
tween quantum systems that are of a stronger essence than any
classical counterpart. As such, entanglement is a highly valu-
able quantum resource and is, without surprise, at the heart of
many applications of quantum science. From entanglement-
based quantum key distribution [1] to quantum sensing [2,3]
and entanglement-assisted communications [4,5], quantum
entanglement is used with great success to overtake the limits
of what is possible in the classical world.

Entanglement is qualitatively refined into different cat-
egories depending on the nature of the carrier states.
Continuous-variable (CV) entanglement is the property of en-
tangled states defined in an infinite-dimensional Hilbert space
[6,7]. It is the setting in which entanglement was originally
thought, as in the (nonphysical) state of two particles with
perfectly correlated momenta [8]. A realistic quantum-optical
version of that CV state is found in the two-mode squeezed
vacuum (TMSV), produced through spontaneous parametric
down conversion. The TMSV state has nonperfect correla-
tions distributed according to a Gaussian distribution, making
this state part of the family of Gaussian states. In a CV regime,
a distinction should be made between Gaussian entanglement
and non-Gaussian entanglement [9]. Gaussian entanglement
can always be undone with passive linear optics (i.e., beam
splitters and phase shifters) [10] and it cannot be distilled

by means of Gaussian local operations and classical com-
munication [11–13]. Further, it cannot be used as a resource
for quantum computational advantage [14], a consequence of
the fact that Wigner-positive states are classically simulat-
able (with Wigner-positive measurements) [15]. Note that it
can, in principle, achieve quantum advantage with Wigner-
negative measurements, as in Gaussian boson sampling [16],
though this advantage then stems from the measurement
rather than the state itself. Therefore, non-Gaussian entangle-
ment remains viewed today as a crucial resource for quantum
applications.

In practice, non-Gaussian entanglement is more challeng-
ing to produce than Gaussian entanglement. The latter can
indeed be produced by exploiting spontaneous parametric
down conversion. An effective strategy to generate non-
Gaussian entanglement is to perform non-Gaussian operations
on a entangled Gaussian state. In particular, recent theoretical
works have studied schemes of entanglement enhancement
with photon addition and subtraction [17–20].

Quantifying the entanglement of mixed quantum states is,
in general, a difficult task. For such states, indeed, there exist
a variety of different measures, ranging from logarithmic neg-
ativity, von Neumann or Rényi entropy of the reduced state, to
squashed entanglement [21]. The situation, however, becomes
much simpler when it comes to pure entangled states, as most
of these measures reduce to the entropy of entanglement.
In the asymptotic regime, the possibility to transform many
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copies of a pure entangled state into many copies of another
one depends solely on the value of their respective entropy
of entanglement. The single-shot (nonasymptotic) case, how-
ever, cannot be resolved with a single measure and requires
more complex conditions, reflecting the absence of regulariza-
tion. These conditions are encapsulated by Nielsen’s theorem
[22] which, for pure states, provides a necessary and sufficient
condition for the transformation of one state into another via
local operation and classical communication (LOCC). Note
that LOCC is, in general, nonreversible as it may include
measurements [23].

Theorem 1 (Nielsen [22]). Let |�〉, |�〉 be pure states
of a bipartite Hilbert space H = H1 ⊗ H2. We define σ̂� =
Tr2[|�〉〈�|] and σ̂� = Tr2[|�〉〈�|]. Then, the state |�〉 is
transformable into |�〉 via LOCC if and only if σ̂� � σ̂� (i.e.,
σ̂� majorizes σ̂�).

Nielsen’s theorem calls for introducing two important con-
cepts: (i) the Schmidt decomposition of bipartite pure states
and (ii) the theory of majorization. First (i), any pure bi-
partite state |�〉 admits a Schmidt decomposition |�〉 =∑

n
√

pn|un〉|vn〉, where {pn} are the components of a prob-
ability vector p and {|un〉}, {|vn〉} are two orthonormal vector
sets. The probabilities {pn} are called the Schmidt coefficients
of |�〉 and yield the eigenvalues of the partial-traced state
(either over H1 or H2). Second (ii), majorization theory is
a mathematical framework used to compare disorder among
probability distributions [24]. Two (infinite-dimensional)
probability vectors p, q ∈ RN obey the majorization rela-
tion p � q if and only if there exists a column-stochastic
matrix D such that q = Dp (a column-stochastic matrix has
non-negative entries, columns summing up to 1, and rows
summing up to less than or equal to 1 [25]). In a similar
fashion, we say that two density operators ρ̂, σ̂ obey the ma-
jorization relation ρ̂ � σ̂ if and only if their eigenvalues obey
the corresponding majorization relation λ(ρ̂ ) � λ(σ̂ ), where
λ(ρ̂ ) is the vector of eigenvalues of ρ̂. Note that if both states
have the same vector of eigenvalues (regardless of the order-
ing), we say that they are equivalent and write it as ρ̂ ≡ σ̂ .
This is a weaker condition than a strict equality between the
two states, namely, ρ̂ = σ̂ . Let us mention that Nielsen’s the-
orem was originally formulated in a finite-dimensional setting
and was later extended to CV entanglement [26].

Throughout this paper, we will be interested in schemes of
entanglement enhancement on a TMSV. We consider a gen-
eral setup where we are allowed to act locally on each mode
of the TMSV with some local operations, possibly including
measurements. As such, these (nonunitary) operations are,
in general, stochastic and associated to some probability of
success. We call that process of entanglement enhancement
filtration, as it keeps the resulting state conditionally on some
measurement. The setup is described in Fig. 1. We will then
seek conditions for the pair of operators to produce a state
that is more entangled than the TMSV, in the strong sense of
majorization (as per Nielsen’s theorem).

At first glance, it may seem surprising that entangle-
ment enhancement is possible by acting only locally on a
quantum state. This is explained by the fact that filtration
operations are, in general, nondeterministic and are associated
with a probability of success. As such, filtration operations
extend beyond the set of LOCCs [23]. Once the distillable

FIG. 1. A pumped crystal produces a TMSV via spontaneous
parametric down conversion. Then, we act locally on both modes
with some operators possibly including measurements. We call that
process filtration. We will study the conditions for filtration to pro-
duce an output state that is more entangled than the TMSV, in the
majorization sense.

entanglement of the filtered state is multiplied by the proba-
bility of success, it cannot exceed the distillable entanglement
of the original state.

This paper is structured as follows. We use Sec. II to define
our notations and introduce several schemes of entanglement
enhancement, going from basic to more general setups. We
end up with a similar scheme as the one described in Fig. 1
and focus on this one. In Sec. III, we present our main
analytical results. We provide a sufficient condition for a pair
of operators acting on a TMSV to produce a more entangled
state. That result allows us to prove that any concatenation
of (ideal) creation or annihilation operators always enhances
the entanglement of a TMSV. Section IV is devoted to the
cases of realistic photon addition and subtraction (with gain
g > 1 or transmittance η < 1), which fall beyond the scope
of the theorems proven in the previous section. For these
realistic operators, we provide an upper bound on the distance
from the produced state to a state for which a majorization
relation provably holds. We finish by discussing our results
and concluding in Sec. V.

II. ENTANGLEMENT-ENHANCEMENT SCHEMES

In this section, we describe several schemes of entangle-
ment enhancement on a TMSV. Starting from a TMSV, we
want to build a state that is more entangled. Each scheme is
defined by how we are allowed to interact with the TMSV.
We are going to describe three schemes for entanglement
enhancement, with increasing complexity. Then, in the next
section, we will focus on the last of them, which is the more
general.

Let us first define our notations. We consider a bipartite
Hilbert space H which is the tensor product of two infinite-
dimensional Hilbert spaces, H1 (mode 1) and H2 (mode 2).
The annihilation operators on mode 1 and mode 2 are, respec-
tively, â and b̂; the creation operators on mode 1 and 2 are,
respectively, â† and b̂†. They satisfy the canonical commuta-
tion relations [â, â†] = 1, [b̂, b̂†] = 1, and operators defined
over different modes always commute. For the sake of simple
notations, we define Â(k) := â†k if k � 0 and Â(k) := â−k

if k < 0, so that the operator Â(k) creates or annihilates k
photons on mode 1 (depending on the sign of k). We similarly
define B̂(k) over mode 2. Notice that Â(k) and B̂(l ) always
commute, but Â(k) and Â(l ) only commute when k and l have
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the same sign [similarly for B̂(k) and B̂(l )]. We define the
usual photon-number operators n̂1 := â†â and n̂2 := b̂†b̂. We
will work in the Fock basis {|n〉}, where |n〉 is an eigenstate
of the photon-number operator with eigenvalue n ∈ N (sepa-
rately for H1 and H2, and then use the tensor product of these
two bases for H). We use the vector norm ‖|ψ〉‖ := √〈ψ |ψ〉.

In each case, we consider a two-mode squeezer (TMS)
fed by a two-mode vacuum input, so that the output is a
TMSV. The unitary operator of the TMS is defined as Ûλ =
exp[r(â†b̂† − âb̂)] with r ∈ [0,∞) and λ = tanh2 r. Through-
out this paper, we denote the TMSV state vector as |�λ〉 =
Ûλ|0, 0〉, which gives

|�λ〉 = √
1 − λ

∞∑
n=0

√
λ

n|n, n〉. (1)

The squeezing of the TMSV is measured in dB as
10 log10 e2r = (20/ ln 10)r = (20/ ln 10) tanh−1(

√
λ). Partial

tracing a TMSV over one of its modes yields a thermal state,
τ̂λ = Tr2[|�λ〉〈�λ|], which gives

τ̂λ = (1 − λ)
∞∑

n=0

λn|n〉〈n|, (2)

and has mean photon number λ/(1 − λ) = sinh2 r. The vector
of eigenvalues of the thermal state τ̂λ is τ with components
τn = (1 − λ)λn. The vector τ is also the vector of Schmidt
coefficients of the TMSV |�λ〉.

The different schemes that we are going to define here-
after enable us to act on |�λ〉 in order to create a pure state
|�〉 (heralded by the success of the filtration) that is more
entangled than |�λ〉 in the sense of majorization theory. We
say that a filtration protocol enhances the entanglement when
the final state can be transformed back into the original state
via LOCC. We know from Nielsen theorem [22] that |�〉 is
transformable into |�λ〉 via LOCC if and only if τ̂λ � σ̂�,
where σ̂� = Tr2[|�〉〈�|] is the reduced single-mode state
associated with |�〉. Thus, checking whether the thermal state
τ̂λ majorizes the reduced single-mode state after filtration is
how we will assess that filtration has been successful.

The present section is solely focused on defining the
filtration schemes under investigation. We will study how
entanglement is enhanced in the next section. We make a dis-
tinction between schemes and setups as follows: a scheme is a
family of setups (with multiple possible parameters), whereas
a setup is a particular instance that produces a well-defined
state. We consider that two setups are equivalent when they
produce two states having same Schmidt coefficients (hence,
two states that are equivalent in the sense of majorization
theory), since in that case it is possible to transform each state
into the other one using LOCC.

A. Dual-mode single addition or subtraction

The first scheme that we consider allows us to add or sub-
tract an arbitrary number of photons once for each mode of the
TMSV. This means that a setup from that scheme is uniquely
defined by two integers k, l ∈ Z, where k (l) is the number of
added or subtracted photons on mode 1 (2). This scheme is
similar to the one proposed in Ref. [17]. See Fig. 2(a) for an
illustration. The pure state resulting from acting on the TMSV

FIG. 2. Illustration of the three different schemes considered in
Sec. II. Each (orange) round-cornered box is an ideal photon addition
or subtraction (k, l ∈ Z), or a more general single-mode quantum op-
erator (F̂ , Ĝ). Scheme (a) corresponds to dual-mode single addition
or subtraction (see, also, Ref. [17]) and yields the pure state |�k,l

λ 〉.
Scheme (b) corresponds to single-mode multiple addition or subtrac-
tion and yields the pure state |�k

λ〉. Finally, scheme (c) corresponds
to the filtration scheme and yields the pure state |�F̂ ,Ĝ

λ 〉. Note that
for each scheme, we consider that the output state |�〉 is normalized.
Scheme (c) is a generalization of scheme (b), which itself generalizes
scheme (a).

with a setup of this scheme is then∣∣�k,l
λ

〉
:= N −1/2

k,l Â(k)B̂(l )|�λ〉, (3)

with Nk,l := ‖Â(k)B̂(l )|�λ〉‖2 being a normalization con-
stant. Note that |�0,0

λ 〉 = |�λ〉. The corresponding single-
mode state is then σ̂ k,l

λ
:= Tr2[|�k,l

λ 〉〈�k,l
λ |], which should be

compared to τ̂λ.
Hereafter, we identify some equivalences in this

entanglement-enhancement scheme as follows:
(i) Mode exchange equivalence. From the invariance of

the TMSV state under the exchange of the two modes, it
follows that swapping operations performed on mode 1 and
mode 2 yields another state, which is simply the original
state with modes 1 and 2 swapped. Then, we know from
Schmidt decomposition that both single-mode reduced states
are equivalent. We write

σ̂ k,l
λ ≡ σ̂ l,k

λ ∀k, l ∈ Z. (4)

(ii) Dual addition vs subtraction equivalence. Reference
[17] shows that adding or subtracting k photons on both modes
of the TMSV yields two equivalent states (they are different
but have the same eigenvalues). We write

σ̂ k,k
λ ≡ σ̂−k,−k

λ ∀k ∈ Z. (5)

(iii) Single addition vs subtraction identity. Reference [17]
proves the remarkable relation b̂|�λ〉 = √

λ â†|�λ〉, which al-
lows one to move a creation operator on one mode into an
annihilation operator on the other mode. We write

σ̂ 0,k
λ = σ̂−k,0

λ ∀k ∈ Z, (6)

where we actually have a strict equality instead of an equiva-
lence (the extra λ factor disappears after normalization). The
superscripts zero are crucial here because the above relation
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only holds if acting on the TMSV state |�λ〉. The use of this
relation is further discussed in Appendix A.

B. Single-mode multiple addition or subtraction

In light of this observation (see, also, Appendix A), we are
now going to consider a scheme where we apply an arbitrary
number of creation and/or annihilation operators, but on only
one of the two modes. A setup of this new scheme is then
defined by a vector k ∈ ZN , where N is the total number of
creation or annihilation operators (each associated to a kn).
See Fig. 2(b) for an illustration. This corresponds to applying
the following operator F̂k on mode 1 of the TMSV:

F̂k = Â(kN )Â(kN−1) · · · Â(k2)Â(k1). (7)

Note that since Â(k) and Â(l ) do not commute in general,
the order introduced in Eq. (7) is important (the first photon
addition or subtraction is k1, the second is k2, and so on). We
may then define the resulting pure state of operator F̂k acting
on |�λ〉 as follows:∣∣�k

λ

〉
:= N −1/2

k F̂k|�λ〉, (8)

where F̂k acts on mode 1 and the normalization constant is
defined as Nk := ‖F̂k|�λ〉‖2.

From Eq. (A1) (or its corollary), observe that |�k,l
λ 〉 = |�k

λ〉
if we choose k = (−l, k). This demonstrates that the single-
mode multiple addition or subtraction scheme is more general
than the dual-mode single addition or subtraction scheme.

C. General filtration scheme

We finally introduce a last scheme, the most general one
that we will consider. It generalizes the two formerly intro-
duced schemes. See Fig. 2(c) for an illustration. We act on
the first mode of the TMSV with a filtration operator F̂ and
on its second mode with another filtration operator Ĝ, hence
producing the following pure state:∣∣�F̂ ,Ĝ

λ

〉 = N −1/2
F̂ ,Ĝ

(F̂ ⊗ Ĝ)|�λ〉, (9)

where the normalization constant is defined as NF̂ ,Ĝ :=
‖(F̂ ⊗ Ĝ)|�λ〉‖2.

The scheme considered here is very general, but it is im-
portant to highlight an implicit underlying assumption. By
considering that we act on both modes with some operators
(F̂ , Ĝ), we imply that we transform pure states into (pos-
sibly non-normalized) pure states. For that reason, quantum
channels applying pure states onto mixed states do not belong
to the present scheme. Note, also, that for the filtration to
succeed with a nonzero probability, the filtration operators
F̂ , Ĝ must be bounded. This is not the case for the Â(k)
operators (with k �= 0), for example, which are unbounded.
This is the reason why we will be referring to ideal photon
addition or subtraction (whose success probability is strictly
zero), in contrast to realistic photon addition or subtraction
(see Sec. IV).

III. MAIN THEOREMS

In this section, we present our main analytical results.
We consider the last scheme introduced in Sec. II C; see

Fig. 2(c). First, we look at the simpler case of only one
filtration operator acting on mode 1 (see Theorem 2), then
we will move to the general case of two filtration operators
acting separately on mode 1 and mode 2 (see Theorem 3).
For both cases, we will identify a set of sufficient conditions
for these operators to produce a state that is more entangled
than the original TMSV state, using Nielsen’s theorem (see
Sec. I) to compare entangled pure states. Our proof relies
on the explicit construction of a column-stochastic matrix
relating the Schmidt coefficients of both bipartite entangled
pure states.

As an introduction to the present section, let us define two
properties of a filtration operator that will play an important
role in the proof of our theorems.

Definition 1 (Fock-orthogonal operator). An operator F̂
is Fock orthogonal iff it preserves the orthogonality of Fock
states, i.e., 〈F̂m|F̂n〉 = 0, ∀m �= n.

We use the compact notation |F̂n〉 := F̂ |n〉. This property
can be understood as a relaxed form of unitarity: it requires
orthogonality conservation over the basis of Fock states, but
it is not necessarily true for arbitrary bases. For that reason,
Fock-orthogonal operators are, in general, nonunitary. In fact,
nonunitarity is a crucial property for our local scheme to
enhance entanglement because any local unitary operator has
no influence on entanglement. The next property is precisely
related to nonunitarity.

Definition 2 (Fock-amplifying operator). An operator F̂ is
Fock amplifying iff it gives greater amplitudes to higher Fock
states, i.e., ‖F̂ |n〉‖ � ‖F̂ |n + 1〉‖, ∀n.

In some sense, the Fock-amplifying condition hints at the
fact that the filtration operator is generally not unitary. Indeed,
for any unitary operator Û , we have ‖Û |n〉‖ = 1 so that the
inequality ‖Û |n〉‖ � ‖Û |n + 1〉‖ is trivially satisfied. Thus,
as soon as one of the inequalities is strict, the operator must
necessarily be nonunitary.

Interestingly, the conditions for an operator F̂ to be Fock
orthogonal or Fock amplifying boil down to conditions on the
operator F̂ †F̂ . Indeed, the operator F̂ is Fock orthogonal if
and only if the operator F̂ †F̂ is diagonal in the Fock basis, and
the operator F̂ is Fock amplifying if and only if the diagonal
entries of F̂ †F̂ in the Fock basis are nondecreasing with n.
Finally, the operator F̂ is both Fock orthogonal and Fock
amplifying if and only if F̂ †F̂ = f (n̂), where f : N → R+
is a nondecreasing function.

From Definitions 1 and 2, it is clear that an operator F̂ is
both Fock orthogonal and Fock amplifying if and only if it
acts onto the Fock basis as follows:

F̂ |n〉 = ϕn|φn〉, (10)

where {|φn〉} is an orthonormal set and ϕ ∈ CN is an am-
plitude vector such that |ϕn| � |ϕn+1| ∀n. The operator F̂ is
uniquely defined by {|φn〉} and ϕ. Table I mentions a few
examples of common Fock-orthogonal Fock-amplifying fil-
tration operators.

A. Single-mode majorization theorem

With these newly defined properties, we are now in
position to present Theorem 2. In this section, we consider
an entanglement-enhancement scheme where we only act
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TABLE I. Examples of Fock-orthogonal, Fock-amplifying fil-
tration operators, where the amplitudes ϕn and vector sets {|φn〉}
refer to Eq. (10). The (ideal) noiseless linear amplifier (NLA)
is associated to a gain g � 1 [27–29]. Note that in the case
of the annihilation operator, some vectors |φn〉 = |n − k〉 are ill
defined; this is not a problem since they are associated to a
zero amplitude (cf. the indicator function [.]). Finally, observe
that all of the above-mentioned operators are Fock preserving
(see Def. 4), so that every concatenation thereof yields an-
other Fock-preserving, Fock-orthogonal, Fock-amplifying operator
(from Theorem 4).

Operator F̂ ϕn {|φn〉}
Annihilation âk

√
n!/(n − k)! [n � k] {|n − k〉}

Creation â†k
√

(n + k)!/n! {|n + k〉}
Photon number n̂ n {|n〉}
NLA gn̂ gn {|n〉}

to a TMSV on its first mode with some operator F̂ . This
corresponds to the scheme of Fig. 2(c) with Ĝ chosen to the
identity operator 1̂.

Theorem 2. Let F̂ be a Fock-orthogonal and Fock-
amplifying operator. Let τ̂ be a thermal state, and σ̂ the result
of F̂ acting on τ̂ , so that σ̂ = F̂ τ̂ F̂ †/Tr[F̂ τ̂ F̂ †]. Then, the
majorization relation σ̂ ≺ τ̂ holds.

Proof. We define the vector τ ∈ RN as the vector of eigen-
values of the thermal state τ̂ , so that τn = (1 − λ)λn. Then,
using Eq. (10), the density operator σ̂ can be expressed as
follows:

σ̂ = N−1
∞∑

n=0

τn|ϕn|2|φn〉〈φn|, (11)

where the normalization constant is N = Tr[F̂ τ̂ F̂ †] =∑
n τn|ϕn|2. It follows from the Fock orthogonality of F̂ that

the set {|φn〉} is orthonormal, so that the vector σ ∈ RN with
components σn := N−1τn|ϕn|2 is the vector of eigenvalues of
σ̂ . Then, it suffices to find a column-stochastic matrix D such
that σ = Dτ in order to prove that σ̂ ≺ τ̂ .

To build such a column-stochastic matrix, we focus on a
particular structure. We consider a matrix D that is lower trian-
gular and circulant (repeating the columns with an increasing
offset), as follows:

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

d0 0 0 0 · · ·
d1 d0 0 0 · · ·
d2 d1 d0 0 · · ·
d3 d2 d1 d0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

The components of D are defined from the vector d as Di j =
di− j , with the convention that dn = 0, ∀n < 0. A motiva-
tion for this choice of structure is that it is an easy task to
build a column-stochastic matrix in this way. Indeed, D is
column-stochastic if and only if the vector d is a probabil-
ity vector (

∑
n dn = 1 and dn � 0 ∀n). With the additional

constraint that σ = Dτ, we find the components of d, so that
dn = λn(|ϕn|2 − |ϕn−1|2)/N with the convention that ϕn = 0,

∀n < 0. Indeed, this gives:

∞∑
j=0

Di jτ j =
i∑

j=0

di− j (1 − λ)λ j

= 1

N (1 − λ)
i∑

j=0

λi(|ϕi− j |2 − |ϕi− j−1|2)

= 1

N τi|ϕi|2 = σi.

Let us now check that d is a probability vector. It is normalized
to 1:

∞∑
n=0

dn = 1

N

∞∑
n=0

λn|ϕn|2 − 1

N

∞∑
n=0

λn|ϕn−1|2

= 1

N

∞∑
n=0

λn|ϕn|2 − 1

N

∞∑
n=0

λn+1|ϕn|2

= 1

N (1 − λ)
∞∑

n=0

λn|ϕn|2 = 1

N

∞∑
n=0

τn|ϕn|2 = 1,

where the last equality follows from the definition of the
normalization constant N . Then, the components of d are
non-negative as soon as |ϕn| − |ϕn−1| � 0 ∀n, which follows
from the assumption that F̂ is Fock-amplifying. The ma-
trix D is thus column-stochastic and such that σ = Dτ. This
proves σ̂ ≺ τ̂ . �

B. Dual-mode majorization theorem

Theorem 2 considers a scheme where we only interact with
one mode of the TMSV. Our next theorem is a generalization
to the case where we use two operators to act on each mode of
the TMSV. The setup is illustrated in Fig. 2(c). An important
ingredient of this second theorem is a property closely related
to Fock-amplifying operators, but for a pair of operators.

Definition 3 (Jointly Fock-amplifying operator pair). A pair
of operators (F̂ , Ĝ) is jointly Fock amplifying iff

‖F̂ |n〉‖ · ‖Ĝ|n〉‖ � ‖F̂ |n + 1〉‖ · ‖Ĝ|n + 1〉‖ ∀n.

A jointly Fock-amplifying pair of operators gives a greater
amplitude to higher Fock states. From the definition, it is
obvious that any two Fock-amplifying operators form a jointly
Fock-amplifying pair. However, two operators do not need
to be separately Fock amplifying in order to make a jointly
Fock-amplifying pair. As an example, a noiseless linear am-
plifier with gain g and a noiseless linear attenuator [27–29]
with transmittance η make a Fock-amplifying pair as soon as
g · η � 1, even though the noiseless linear attenuator is not
Fock amplifying (∀η). Of course, any pair (F̂ , 1̂) is jointly
Fock amplifying if and only if F̂ is Fock amplifying (1̂ is the
identity operator).

Theorem 3. Let F̂ , Ĝ be two Fock-orthogonal opera-
tors such that (F̂ , Ĝ) is jointly Fock amplifying. Let |�〉
be a TMSV state, with the associated thermal state τ̂ =
Tr2[|�〉〈�|], and let σ̂ be the single-mode result of (F̂ , Ĝ)
acting on |�〉, such as

σ̂ = N−1Tr2[(F̂ ⊗ Ĝ)|�〉〈�|(F̂ † ⊗ Ĝ†)], (13)
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where N = ‖(F̂ ⊗ Ĝ)|�〉‖2. Then, the majorization relation
σ̂ ≺ τ̂ holds.

Proof. Let the vector τ with components τn be the vector
of eigenvalues of τ̂ . Since F̂ and Ĝ are Fock orthogonal, we
can write their action onto Fock states as, respectively, F̂ |n〉 =
ϕn|φn〉 and Ĝ|n〉 = γn|ψn〉, where {|φn〉} and {|ψn〉} are two
orthonormal sets. The two-mode pure state |�〉 = N−1/2

(F̂ ⊗ Ĝ)|�〉 is then

|�〉 = N−1/2
∞∑

n=0

√
τn ϕnγn|φn〉|ψn〉. (14)

The above expression is the Schmidt decomposition of |�〉,
from the orthogonality of the sets {|φn〉} and {|ψn〉}. The
single-mode state σ̂ is then computed as

σ̂ = N−1
∞∑

n=0

τn |ϕn|2 |γn|2 |φn〉〈φn|. (15)

Let us now define the operator D̂ acting on the Fock basis
as D̂|n〉 = ϕnγn|φn〉 and observe that σ̂ = D̂τ̂ D̂†/Tr[D̂τ̂ D̂†].
Since the set {|φn〉} is orthonormal, D̂ is Fock orthogonal.
Since (F̂ , Ĝ) is a jointly Fock-amplifying pair, it follows that
|ϕn||γn| � |ϕn+1||γn+1|, so that D̂ is Fock amplifying. From
Theorem 2, this then implies that σ̂ ≺ τ̂ . �

C. Concatenation theorem

The last question we address in this section concerns the
concatenation of filtration operators: is the concatenation of
two Fock-orthogonal (Fock-amplifying) operators also Fock
orthogonal (Fock amplifying)? Observe first that if we have
two operators F̂ and Ĝ which are both Fock orthogonal and
Fock amplifying, their concatenation ĜF̂ may itself be nei-
ther. As an example, consider F̂ = Û â and Ĝ = â, where Û
is some unitary operator. It is easily seen that both F̂ and Ĝ
are Fock orthogonal and Fock amplifying; however, their con-
catenation ĜF̂ = âÛ â, in general, is not. In this section, we
are going to identify an additional property which ensures that
the Fock-orthogonal or Fock-amplifying property is preserved
under concatenation.

Definition 4 (Fock-preserving operator). An operator F̂ is
Fock preserving iff: (a) it maps Fock states onto Fock states,
i.e., 〈k|F̂n〉〈l|F̂n〉 = 0, ∀n, k �= l , and (b) it maps higher
Fock states onto higher Fock states, i.e., 〈k|F̂m〉〈l|F̂n〉 =
0,∀k > l, m < n.

Let us give more intuition about Def. 4 by introducing the
matrix F with elements Fi j = 〈i|F̂ | j〉. Condition (a) of Def. 4
implies that every column of F has, at most, one nonzero entry.
Condition (b) of Def. 4 implies that the row index of nonzero
entries must be nondecreasing as the column index increases.
From these observations, we understand that an operator F̂ is
Fock preserving if and only if it acts on the Fock basis as

F̂ |n〉 = ϕn|mn〉, (16)

where ϕ ∈ CN is an amplitude vector and m ∈ NN is a vec-
tor with integer nondecreasing components (mn � mn+1). In
Eq. (16), the Fock state |n〉 is applied onto another Fock state
with photon number mn.

Theorem 4 (Concatenability). (a) If F̂ , Ĝ are Fock pre-
serving, then ĜF̂ is Fock preserving. (b) If F̂ , Ĝ are Fock

FIG. 3. Realistic schemes of photon addition and subtraction.
On the left (right), a two-mode squeezer with gain g (beam splitter
with transmittance η) acts on an input ρ̂ and a vacuum environment
|0〉; then, conditionally on the measurement of k photons at the
environment output, the (non-normalized) resulting state is Âk ρ̂Â†

k

(B̂k ρ̂B̂†
k). The expression of the Kraus operators Âk and B̂k is given in

Eq. (17).

orthogonal, then ĜF̂ is Fock orthogonal, provided that F̂ is
Fock preserving too. (c) If F̂ , Ĝ are Fock amplifying, then ĜF̂
is Fock amplifying, provided that F̂ is Fock preserving too.

The proof of Theorem 4 is provided in Appendix B. In a
nutshell, the Fock-preserving property allows an operator to
carry over its Fock-orthogonal or Fock-amplifying property
when concatenated with another operator.

We observe that the creation and annihilation operators
are Fock preserving. As a consequence, any concatenation
of such operators yields an operator that is Fock orthogonal,
Fock amplifying, and Fock preserving. Thus, following from
our Theorems 2–4, we have shown that any concatenation of
photon addition and subtraction on a TMSV always produces
a state that is more entangled than the TMSV. Finally, we
should stress the fact that this result applies to ideal photon
addition and subtraction. In the next section, we will address
the case of realistic photon addition and subtraction.

IV. REALISTIC PHOTON ADDITION AND SUBTRACTION

The schemes shown in Figs. 2(a) and 2(b) presented in
Sec. II use ideal versions of photon addition and subtrac-
tion. Indeed, âk and â†k are unbounded operators that cannot
be exactly implemented in a physical setup. In practice,
photon addition (subtraction) is usually performed using a
quantum-limited amplifier (pure-loss channel), followed by
postselection (see Fig. 3). We denote the Kraus operators
of the quantum-limited amplifier (with gain g) and pure-loss
channel (with transmittance η) as Âk and B̂k , respectively
[30,31]:

Âk =
√

(g − 1)k

gk!
√

g−n̂â†k,

B̂k =
√

(1 − η)k

k!
√

η
n̂âk . (17)

Ideal photon addition and subtraction correspond to the lim-
iting cases of g → 1 and η → 1 (and probability of success
going to zero for k > 0). At this point, it is interesting to
notice that realistic photon addition and subtraction acting on
a thermal state produce two states with the same eigenvalues,
when their efficiencies are related as η · g = 1. More precisely,
the following relation holds:

Âk τ̂ Â†
k

Tr[Âk τ̂ Â†
k]

≡ B̂k τ̂ B̂†
k

Tr[B̂k τ̂ B̂†
k]

, (18)
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FIG. 4. Each point on this graph corresponds to a couple (η, λ).
The parameter λ defines a thermal state τ̂λ and the parameter η

defines a set of realistic photon-subtraction Kraus operators {B̂k}
[see Eq. (17)]. We then compare τ̂λ to σ̂k = B̂k τ̂λB̂†

k/Tr[B̂k τ̂λB̂†
k] for

k ∈ {1, . . . , 6}. The color of the point (η, λ) is related to the values
of k above which entanglement enhancement is successful (σ̂k ≺ τ̂λ).
Note that we get identical results for realistic photon addition since it
produces equivalent output as realistic photon subtraction when g =
1/η. For ideal photon addition (g = 1) or ideal photon subtraction
(η = 1), the majorization relation always holds, as expected from
Theorem 2. Note that the squeezing expressed in dB is related to
λ as λ[dB] = (20/ ln 10) tanh−1(

√
λ).

under the condition that η · g = 1. In other terms, this means
that realistic photon addition and subtraction are equally good
at enhancing entanglement on a TMSV.

It is natural to examine whether the realistic operators of
Eq. (17) fall into the scope of Theorems 2 or 3. To verify that,
we need to check whether these operators are Fock orthogonal
and Fock amplifying. It is easily seen that any of the Âk

and B̂k are Fock orthogonal. However, none of them is Fock
amplifying, as we have

‖Âk|n〉‖ � ‖Âk|n + 1〉‖ ⇔ n � k

g − 1
,

‖B̂k|n〉‖ � ‖B̂k|n + 1〉‖ ⇔ n � k

1 − η
. (19)

Thus, for g > 1 or η < 1, there is a threshold on n above which
the magnitude of the amplitudes ceases to increase with n.
Therefore, Theorems 2 and 3 do not apply to these realistic
operators.

Remember now that Theorems 2 and 3 provide us with a
sufficient condition for majorization, so that the condition not
being fulfilled does not imply that there is no majorization
relation. Indeed, we observe from numerical simulations that
in some realistic regime (η < 1 or g > 1), the majorization
relation σ̂ ≺ τ̂ does hold (where σ̂ = Âk τ̂ Â†

k/Tr[Âk τ̂ Â†
k] ≡

B̂k τ̂ B̂†
k/Tr[B̂k τ̂ B̂†

k]). This is illustrated in Fig. 4. We observe
that for a given λ and η = 1/g, there is a minimum number of
photons that must be added or subtracted in order to achieve
entanglement enhancement as witnessed by a majorization
relation. For a fixed λ, this minimum number of photons gets
larger when we move far from the ideal photon addition or
subtraction (i.e., when η = 1/g gets much smaller than 1).

This increase of the minimum number of photons that must
be added or subtracted is even faster when λ is larger, which
means that entanglement enhancement is more sensitive to
the nonideality of photon addition and subtraction in the
high-squeezing regime; this makes sense in view of Eq. (19)
together with the fact that the photon-number distribution is
wider for a TMSV state with higher squeezing.

Note that for reference, we also plotted in Appendix C the
region of (η, λ) where the entropy of entanglement increases
after photon subtraction; see Fig. 7. Comparing with Fig. 4, it
is apparent that the region where σ̂ ≺ τ̂ is strictly included in
the region where S(σ̂ ) � S(τ̂ ), as expected from the fact that
a majorization relation implies an inequality on entropies but
does not assume asymptotic regularization (hence, it is more
strict than a simple comparison of entropies).

A. Approximate majorization

Let us get a closer look at these realistic operators and
see whether we can gain some insight into the existence of
a majorization relation. Interestingly, the operators Âk and
B̂k are Fock orthogonal, so that it is possible to build a
matrix M such that σ = Mτ (as we did in the first step of
the proof of Theorem 2). The matrix M has the structure of
(12) and is defined with respect to a vector m with compo-
nents mn = λn(|ϕn|2 − |ϕn−1|2)/N , where |ϕn| = ‖Âk|n〉‖ or
‖B̂k|n〉‖. When the index n becomes higher than the threshold
of Eq. (19), the components mn become strictly negative, so
that the matrix M is not column stochastic. However, observe
that the factor λn becomes close to zero as n grows, so that
the negative entries of the matrix M may all be very close
to zero. This means that even though M possesses negative
entries, it may actually be close to being column stochastic.
Remember also that, in accordance with Fig. 4, another ma-
trix D connecting τ to σ may very well exist that is exactly
column stochastic in case a majorization relation holds, but its
structure must then slightly differ from that of Eq. (12).

With this in mind, let us take a step back and take in-
spiration from [32]. Consider that we have two probability
vectors σ, τ related through a matrix M as σ = Mτ, where
M has the structure of Eq. (12), i.e., it is a lower-triangular
circulant matrix such that Mi j = mi− j for a vector m ∈ RN

(with mn = 0 ∀n < 0). Observe that when the vector m is a
probability vector (mn � 0, ∀n, and

∑
n mn = 1), the matrix

M is column stochastic. However, as soon as m possesses
one strictly negative component, the matrix M is not column
stochastic. If that happens, we are unable to conclude that
σ ≺ τ, whereas it may or may not be the case. In what follows,
we are going to prove a theorem which upper bounds the
distance between the vector σ and another vector s which is
such that s ≺ τ holds for sure.

Theorem 5 (Approximate majorization). Let σ, τ ∈ RN be
probability vectors. Let σ = Mτ, where M ∈ RN×N is such
that Mi j = mi− j for a vector m ∈ RN (with mn = 0, ∀n < 0).
Let ν be the absolute sum of the negative components of m,
i.e., ν = ∑

n : mn<0 |mn|. Then, there exists a vector s ≺ τ such
that δ(σ, s) � ν, where δ(·, ·) stands for the total variation
distance.

Proof. Let us define the vector ε with components
εn := − min(mn, 0), and the matrix E with entries
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Ei j := − min(Mi j, 0). The vector ε only contains the absolute
value of the negative components of m and is filled with
zeros at the positive components of m. The matrix E is built
similarly with respect to M. Using this, we can then define
the matrix D = (M + E)/α, where α is a normalization
constant defined as α = 1 + ∑

n εn. Observe that the matrix
D is column stochastic by definition: it has only non-negative
entries, the sum of each column is 1, and the sum of each
row is less than or equal to 1. Starting from σ = Mτ, we
may write σ = (αD − E)τ or, equivalently, σ = αDτ − Eτ.
Introducing then the vector s := Dτ, we have σ = αs − Eτ.
Now, from the column stochasticity of D, observe that the
majorization relation s ≺ τ holds.

The next step of our reasoning is to evaluate the total vari-
ation distance (TVD) between σ and s. The TVD is defined
from the �1 norm, which for vectors is ‖p‖ = ∑

n |pn| and for
matrices is ‖M‖ = max j

∑
i |Mi j |. The TVD between σ and s

is then δ(σ, s) := (1/2)‖σ − s‖. Observe that ‖E‖ = ‖ε‖ and
α = 1 + ‖ε‖. Note that ‖ε‖ is the absolute value of the sum of
all the negative entries of m (so that ‖ε‖ = ν in the statement
of Theorem 5). We can then upper bound δ(σ, s) as follows:

δ(σ, s) = 1
2‖σ − s‖

= 1
2‖(α − 1)s − Eτ‖

� 1
2 |α − 1| · ‖s‖ + 1

2‖Eτ‖
� 1

2‖ε‖ + 1
2‖E‖

= ‖ε‖. (20)

The first inequality comes from the triangle inequality, while
the second one comes from the matrix norm inequality for
vectors (‖Eτ‖ � ‖E‖ · ‖τ‖). We also have used ‖s‖ = ‖τ‖ =
1 and ‖E‖ = ‖ε‖. This concludes our proof, as we have shown
that s ≺ τ and δ(σ, s) � ‖ε‖ = ν. �

As a conclusion, the value of ‖ε‖ gives us a good indicator
of the maximum distance between σ and s. The smaller the
value of ‖ε‖, the closer to σ̂ it is guaranteed that there exists
a state for which the majorization relation holds. As implied
in Fig. 4, remember that a nonzero value of the TVD δ does
not automatically imply that the majorization relation between
σ and τ does not hold (but we can only check numerically
whether or not majorization holds). In practice, however, it
seems that majorization holds provided δ is sufficiently small
(see Fig. 5).

The upper bound on the TVD that we have derived may
now be applied to uniform continuity bounds for various
functionals. The particular case of the Shannon entropy for
infinite-dimensional vectors was studied in Ref. [33]. Recall
that the Shannon entropy of a probability vector p is de-
fined as H (p) := −∑

n pn ln pn, and that the von Neumann
entropy of a quantum state ρ̂ is the Shannon entropy of
its eigenvalues, i.e., S(ρ̂ ) := H[λ(ρ̂)]. Introducing the binary
entropy h2(x) := −x ln x − (1 − x) ln(1 − x) and the mean
photon number of a probability vector p as Np = ∑

n n pn, it
is shown that

|H (σ ) − H (s)| � h2[δ(σ, s)] + Nh2[δ(σ, s)/N]

� h2(‖ε‖) + Nh2(‖ε‖/N ), (21)
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FIG. 5. Each couple (η, λ) defines a thermal state τ̂ and a state
σ̂ = Â1τ̂ Â†

1/Tr[Â1τ̂ Â†
1], where Â1 is the realistic single-photon ad-

dition operator [see Eq. (17) with k = 1]. This logarithmic plot
associates each point (η, λ) to a value d , such that we can ensure that
the state σ̂ is at a distance of, at most, 10−d (in TVD) from another
state that is majorized by τ̂ ; see Eq. (26). Note that no distinction
is made among values above 7 and among values below 0. This
figure should be compared with Fig. 4 for k = 1.

where N = max(Nσ, Ns). The second inequality of Eq. (21)
holds as soon as ‖ε‖ � 1/2, since h2 is nondecreasing over
[0, 1/2]. Equation (21) is useful because it sets an upper
bound to the quantity H (σ ) − H (s), which is itself an upper
bound on H (σ ) − H (τ ) (since s ≺ τ). In practice, the quantity
H (σ ) = S(σ̂ ) is known as the entropy of entanglement of the
bipartite pure state |�〉 (such that σ̂ = Tr2[|�〉〈�|]) and is the
most common measure of entanglement for pure states.

B. Application to realistic single-photon addition

Let us now apply Theorem 5 to realistic photon addition.
Note that our results will seamlessly extend to realistic pho-
ton subtraction since they produce equivalent states [when
g · η = 1; see Eq. (18)]. In order to make that equivalence
more obvious, we introduce the parameter μ = λ/g, which
should simply be set to μ = ηλ in the case of realistic photon
subtraction. Observe that μ ∈ [0, 1] and μ � λ.

From now on, we define the vector m as mn = λn(|ϕn|2 −
|ϕn−1|2)/N , where |ϕn| = ‖Âk|n〉‖ (with |ϕn| = 0 ∀n < 0).
The normalization constant is N = ∑

n λn(|ϕn|2 − |ϕn−1|2).
The components of m can be computed as follows:

mn = (1−μ)k+1μn−1

1−λ

(k+n−1)!
k!n! (kμ + nμ − nλ),

which in turn defines the matrix M with components Mi j =
mi− j . The matrix M is such that σ = Mτ, where τ is the
vector of eigenvalues of the thermal state τ̂ and σ is the
vector of eigenvalues of the realistic photon-added thermal
state σ̂ = Âk τ̂ Â†

k/Tr[Âk τ̂ Â†
k]. We define the vector ε as εn =

− min(mn, 0). Observe that mn is negative if and only if
n � k/(g − 1) = μk/(λ − μ). In order to compute the TVD
between σ and another state s such that s ≺ τ, we need to
sum all the negative entries of m. We define the partial sum of
the last components of m starting from index p as �(p). This
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evaluates to the following:

�(p) :=
∞∑

n=p

mn = μp(1 − μ)k (k + p − 1)!

×
[

λ − μ

(λ − 1)μk!(p − 1)!
+ F (1, k + p; p + 1; μ)

(k − 1)!

]
,

(22)

where F (a, b; c; z) is the regularized hypergeometric distri-
bution. It is remarkable to obtain a closed expression for the
summation here (this works for any k ∈ N \ {0}).

At this point, we will focus on realistic single-photon addi-
tion, i.e., set k = 1. Equation (22) then becomes

�(p)|k=1 = μp

[
1 − (λ − μ)(1 − μ)

(1 − λ)μ
p

]
. (23)

The component mn becomes negative as soon as n�1/(g−1).
If 1/(g − 1) ∈ N, we just need to insert p = 1/(g − 1) =
μ/(λ − μ) in �(p) to get the exact solution for ‖ε‖ = �(p),
which will read as follows:

‖ε‖ = expμ

(
μ

λ − μ

)
λ − μ

1 − λ
, (24)

where expμ(x) := μx. Keep it mind that the above relation
only holds when μ/(λ − μ) ∈ N and observe that this ap-
proximately holds as soon as g or η is close to 1.

In general, however, μ/(λ − μ) is not an integer and we
will upper bound ‖ε‖. To do so, simply note that the sum of
all the negative components of m is greater than or equal to
the minimum of �(p). Let us define p∗ as the argument of
the minimum of �(p), so that minp �(p) = �(p∗) (note that
p∗ ∈ R). The value of p∗ can be computed as follows:

p∗ = μ(1 − λ)

(1 − μ)(λ − μ)
− 1

ln μ
. (25)

We then have ‖ε‖ � |�(p∗)|, which yields

‖ε‖ � expμ

(
μ(1 − λ)

(λ − μ)(1 − μ)

)

× 1

e ln μ

μ(1 − λ)

(1 − μ)(λ − μ)
. (26)

Remember that the above expression also applies to realistic
single-photon subtraction if we set μ = ηλ. The upper bound
(26) holds for every possible value of λ and μ (every gain g or
transmittance η).

We plot the upper bound (26) in Fig. 5. It is interesting
to observe that the region where the relation σ ≺ τ holds (as
shown in Fig. 4 for k = 1) and the region where we can ensure
a sufficiently small TVD [as shown in Fig. 5 for δ(σ, s) �
10−7] accurately coincide. It was expected that for a small
enough TVD, the majorization relation σ ≺ τ would hold (so
that the small-TVD region is included in the majorization
region), but it is remarkable that the small-TVD region covers
most of the majorization region [as soon as δ(σ, s) � 10−7].
Indeed, there could have existed regions where the majoriza-
tion relation holds, but we are not able to ensure a small TVD;
Figs. 4 and 5 show that it is not the case. This illustrates the
practical applicability of our Theorem 5, even for realistic
photon addition and subtraction.

V. DISCUSSION AND CONCLUSION

Throughout this paper, we have investigated the enhance-
ment of the entanglement of a TMSV state by using local
operations on each of its two modes. We presented in Sec. II
several schemes based on photon addition and subtraction,
and then introduced a more general filtration scheme consist-
ing in applying some local (nonunitary) operator on each of
the two modes.

Our main analytical result was presented in Sec. III, where
we provided a set of sufficient conditions on the filtration op-
erators in order to produce a state that is more entangled than
the original TMSV state. It is remarkable that a set of only
two properties is sufficient to guarantee this entanglement
enhancement: the filtration operators must be Fock orthogonal
and jointly Fock amplifying. It is not surprising that these
properties give a particular importance to the Fock basis as
it is the natural basis of the TMSV, i.e., the basis appearing in
its Schmidt decomposition. The criterion we used to compare
entanglement relied on majorization theory through Nielsen’s
theorem. The main ingredient of our proof is the derivation of
a column-stochastic matrix that exploits the intrinsic symme-
try of the TMSV and corresponding reduced thermal states,
whose eigenvalues obey a geometric distribution. Our result
implies in turn that any concatenation of the (ideal) creation
and annihilation operators on the TMSV produces states that
are more entangled than the original TMSV.

In Sec. IV, we addressed the case of realistic photon ad-
dition and subtraction as realized with a beam splitter or
two-mode squeezed supplemented with postselection. The
associated filtration operators are not Fock amplifying, in
contrast to their ideal counterparts. Thus, as such, these oper-
ators are not concerned by our theorems. Nevertheless, in the
case of filtration scheme based on realistic photon addition
or subtraction, we were able to set an upper bound on the
distance between the state that is actually produced and a
state for which the majorization relation provably holds. To
some extent, this upper bound gives us a figure of merit on the
efficiency of the scheme.

Another issue that is worth discussing is that the filtra-
tion schemes analyzed here are inherently associated with
a success probability P � 1. A detailed exploration of the
relationship between P and the amount of entanglement en-
hancement that is achieved would be meaningful if we were
focusing on a specific measure of entanglement, such as the
entanglement entropy, rather than the majorization theoretical
approach considered here, which yields a dichotomic criterion
(the majorization relation either holds or not). Nevertheless,
we are able to provide some general intuition about the inter-
play between the Fock-amplifying property and the success
probability. To illustrate this, consider a single-mode filtration
scheme employing a Fock-amplifying and Fock-orthogonal
operator F̂ acting on the Fock basis as F̂ |n〉 = ϕn|φn〉. In
practice, filtration operators are Kraus operators, meaning that
F̂ belongs to a set {F̂k} such that

∑
k F̂ †

k F̂k = 1̂ and F̂ †
k F̂k � 0.

This condition implies that |ϕn| � 1. The probability of suc-
cess P of the local filtration scheme is then expressed as

P = ‖F̂ |�λ〉‖2 =
∑

n

|ϕn|2τn. (27)
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Since |ϕn|2 � 1, the above equation implies that P � 1, as
expected. From Eq. (27), the success probability can be inter-
preted as an overlap between the eigenvalues τn of the thermal
state and the squared amplitudes |ϕn|2 of the Fock-amplifying
operator F̂ . Now, observe that the eigenvalues τn = (1 − λ)λn

decrease with n, whereas the squared amplitudes |ϕn|2 in-
crease with n and eventually reach a plateau at (or below) 1.
The more gradual is this increase of |ϕn|2 with n, the smaller
is the resulting overlap: this reveals a trade-off between the
Fock-amplifying character of F̂ and the success probability
P . Additionally, as the parameter λ increases (higher-energy
TMSV state), the barycenter of the eigenvalues τn shifts to-
wards higher n, leading to an increased success probability P
for a fixed F̂ . Note that all of the above reasoning naturally
extends to a pair of jointly Fock-amplifying operators used in
a dual-mode scheme.

We take advantage of the present discussion to address
some further considerations. In our analysis until now, one of
the two states whose entanglement we compared was always
the TMSV. However, it is natural to try to compare states
produced from different setups in order to determine whether
one entanglement-enhancement setup is more efficient than
another one, for example. The task appears to be much harder
as we can no longer exploit the simple structure of the TMSV.
Nevertheless, in some cases, we could still establish a ma-
jorization relation from previously proven results.

In particular, let us consider the case of dual-mode single-
photon addition or subtraction; see Fig. 2(a) and Eq. (3). Here,
σ̂ k,l is the partial trace of a TMSV with k photons added or
subtracted on mode 1 and l photons added or subtracted on
mode 2 (depending on the sign of k and l). According to Sec.
III, we know σ̂ k,l ≺ σ̂ 0,0. Reference [17] proves the following
relation (with k � 0):

â†k Ûλ|0, 0〉 ∝ b̂k Ûλ|0, 0〉 ∝ Ûλâ†k|0, 0〉, (28)

where the sign “ ∝′′ denotes that the states are equal up to
a normalization constant. From this, we observe that σ̂ k,0 =
σ̂ 0,−k = Tr2[Ûλ(|k〉〈k| ⊗ |0〉〈0|)Û †

λ ] is the output of the Fock
state k through a quantum-limited amplifying channel. This is
a bosonic Gaussian channel and thus obeys the majorization
ladder for Fock states [34–36], which implies the following:

σ̂ k,0 � σ̂ k+1,0 ∀k ∈ N,

σ̂−k,0 � σ̂−k−1,0 ∀k ∈ N. (29)

Equation (29) is interesting because it allows us to compare
different entanglement-enhanced TMSV states among them:
we observe that the more photons we add or subtract on one
mode (the second mode being untouched), the more the re-
sulting state becomes entangled. Actually, even if we apply a
fixed photon addition (or subtraction) on the second mode, we
observe from numerics that the relation σ 0,l � σ k,l appears to
hold in general, for all k, l ∈ N and all λ.

In the same spirit, it is tempting to look for majorization
relations between the states σ̂ k,k and σ̂ l,l (for k, l ∈ N). In-
deed, we have been able to prove particular instances of that
relation, namely, the cases σ̂ 1,1 � σ̂ k,k for k ∈ {2, . . . , 8} (see
Appendix D) and we conjecture the validity of the afore-
mentioned majorization relation for all higher k (we have not
found any numerical counterexample to this conjecture).

In Ref. [17], it is observed that the entropy of entanglement
of the state σ̂ k,k grows monotonically with k. Following this,
another natural majorization chain could be that the state
σ̂ k,k majorizes the state σ̂ k+1,k+1 (with k ∈ N), but we found
instances of k such that there is no majorization relation (for
example, we found that σ̂ 8,8 �� σ̂ 9,9 for λ = 0.015). Reference
[17] also points out that for a total number of photon addi-
tions (photon subtractions) fixed to 2K , the state yielding the
greatest entropy of entanglement is achieved when the photon
additions (photon subtractions) are split equally among both
modes, i.e., for the state σ K,K . This could suggest that a ma-
jorization relation holds between the states σ K,K and σ k,2K−k

(for k ∈ {0, . . . , 2K}); however, we found from numerics that
the two states are sometimes incomparable.

Finally, we would like to make an observation about
Eq. (28). The quantum-limited amplifier belongs to the fam-
ily of phase-insensitive bosonic Gaussian channels (BGCs),
which has been proven to obey a fundamental majorization
relation: the output associated to vacuum majorizes any other
output [37,38]. At first sight, it may seem possible to use
Eq. (28) in order to commute an arbitrary number of creation
or annihilation operators with the TMS unitary. From the
fundamental majorization relation at the output of BGCs, this
would be an easy proof that any concatenation of creation or
annihilation operators produces a state more entangled than
the TMSV. However, that reasoning would be flawed because
the relation â†kÛλ|0, 0〉 ∝ Ûλâ†k|0, 0〉 does not generalize to
arbitrary states (i.e., â†kÛλ|m, n〉 �∝ Ûλâ†k|m, n〉 for arbitrary
m, n). It is nevertheless true that any concatenation of creation
and annihilation operators enhances the entanglement of a
TMSV (as we have shown in Sec. III).
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APPENDIX A: SINGLE ADDITION
VS SUBTRACTION IDENTITY

The relation

b̂|�λ〉 =
√

λ â†|�λ〉 (A1)

originates from a commutation relation between the creation
or annihilation operators and the TMS when it acts on vacuum
(see Ref. [17]). Equation (A1) is a very powerful identity in
our concern. First, notice from the mode exchange invari-
ance of the TMSV state that it implies the corollary â|�λ〉 =√

λ b̂†|�λ〉. Now, observe that by using Eq. (A1) (and its
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FIG. 6. The three above schemes yield the same pure state |�〉
(after normalization). Each (orange) round-cornered box is a photon
addition or subtraction (ki, li ∈ Z). Using the TMS commutation
identity (A1), we can go from one scheme to the next or previous
one. With multiple uses of the identity, all the photon additions
or subtractions can be brought to mode 1 (or mode 2). This nat-
urally generalizes to an arbitrary number of photon additions or
subtractions.

corollary) an arbitrary number of times, it is always possible to
bring any concatenation of creation or annihilation operators
acting on both modes to a concatenation of creation or anni-
hilation operators acting on a single mode (with no operation
applied to the other mode). This is illustrated in Fig. 6.

APPENDIX B: PROOF OF THEOREM 4
(CONCATENABILITY)

Theorem 4(a). If F̂ , Ĝ are Fock preserving, then ĜF̂ is Fock
preserving.

Proof. When F̂ and Ĝ are Fock preserving, we can use
Eq. (16) to write F̂ |n〉 = ϕn|mn〉 and Ĝ|n〉 = γn|pn〉, where
m and p are vectors with nondecreasing integer components.
Using this, we compute the action of ĜF̂ onto Fock states as

ĜF̂ |n〉 = Ĝ ϕn|mn〉 = γmnϕn|pmn〉 = γmnϕn|qn〉,
where we have defined the vector q with components qn :=
pmn . Observe that both m and p are vectors with nondecreas-
ing integer components. Since a nondecreasing function of a
nondecreasing function is nondecreasing, it follows that the
vector q also has nondecreasing integer components. Thus,
F̂ Ĝ is Fock preserving. �

Theorem 4(b). If F̂ is Fock preserving and F̂ , Ĝ are Fock
orthogonal, then ĜF̂ is Fock orthogonal.

Proof. The operator F̂ is Fock preserving and Fock orthog-
onal, so that it acts on the Fock basis as F̂ |n〉 = ϕn|mn〉, where
the components of the vector m are strictly increasing (since
F̂ is Fock orthogonal). The operator Ĝ is Fock orthogonal, so
that it acts on the Fock basis as Ĝ|n〉 = γn|ψn〉, where {|ψn〉} is
an orthonormal set. Then, we compute the action of ĜF̂ onto
Fock states as

ĜF̂ |n〉 = Ĝ ϕn|mn〉 = γmnϕn|ψmn〉.

From the orthonormality of the set {|ψn〉} and the fact that the
components mn are strictly increasing, it follows that {|ψmn〉}
is also orthonormal. As a consequence, the operator ĜF̂ is
Fock orthogonal. �

Theorem 4(c). If F̂ is Fock preserving and F̂ , Ĝ are Fock
amplifying, then ĜF̂ is Fock amplifying.

Proof. The operator F̂ is Fock preserving and Fock am-
plifying, so that it acts on the Fock basis as F̂ |n〉 = ϕn|mn〉,
where |ϕn| � |ϕn+1| and mn � mn+1. The operator Ĝ is Fock
amplifying, so that it acts on the Fock basis as Ĝ|n〉 = γn|ψn〉,
where |γn| � |γn+1|. Then, we compute the action of ĜF̂ onto
Fock states as

ĜF̂ |n〉 = Ĝ ϕn|mn〉 = γmnϕn|ψmn〉.

Since mn � mn+1 and |γn| � |γn+1|, it follows that
γmn � γmn+1 . Then, since |ϕn| � |ϕn+1|, we have |γmnϕn| �
|γmn+1ϕn+1|, so that ĜF̂ is Fock amplifying. �

APPENDIX C: ENTROPY OF ENTANGLEMENT
FOR REALISTIC PHOTON ADDITION

AND SUBTRACTION

In Sec. IV, we interested ourselves in the case of re-
alistic photon addition and subtraction. We compared the
thermal state τ̂λ to the photon-subtracted thermal state σ̂k =
B̂k τ̂λB̂†

k/Tr[B̂k τ̂λB̂†
k] and investigated the regime of (λ, η)

where the majorization relation σ̂k ≺ τ̂λ holds. The region is
plotted from numerics in Fig. 4.

The majorization relation σ̂k ≺ τ̂λ ensures the existence of
a LOCC to transform the photon-subtracted TMSV into the
original TMSV, as per Nielsen’s theorem. It notably implies
that the entropy of entanglement of the photon-subtracted
TMSV is greater than the one of the original TMSV, i.e.,
S(σ̂k ) � S(τ̂λ) (where S(ρ̂ ) = −Tr[ρ̂ ln ρ̂] is the von Neu-
mann entropy of ρ̂). For reference, we display in Fig. 7 the
region where the relation S(σ̂k ) � S(τ̂λ) holds. The quantity
S(σ̂k ) − S(τ̂λ) corresponds to the increase of distillable en-
tanglement through the filtration process in the asymptotic
regime. Figure 7 should then be compared to Fig. 4, pictur-
ing the region where σ̂k ≺ τ̂λ holds. As expected, whenever
σ̂k ≺ τ̂λ, we have S(σ̂k ) � S(τ̂λ), but the latter condition
defines a wider region than the former condition as a conse-
quence of (asymptotic) regularization.

APPENDIX D: MAJORIZATION RELATIONS AMONG
DIFFERENT PHOTON-ADDED TMSV

Consider photon addition of k photons per mode on a
TMSV state. We denote the resulting state as |�k,k〉. We want
to compare the entanglement properties of the states |�k,k〉
and |�1,1〉 in terms of majorization relations between eigen-
values of the states σ̂ k,k and σ̂ 1,1, where σ̂ k,k is the state we
get by tracing out one of the modes of |�k,k〉.

We get

σ̂ k,k =
∞∑

n=0

q(kk)
n |n〉〈n|, (D1)
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FIG. 7. Each point on this graph corresponds to a couple (η, λ).
The parameter λ defines a thermal state τ̂λ, and the parameter η

defines a set of realistic photon-subtraction Kraus operators {B̂k}
[see Eq. (17)]. We then compute the von Neumann entropy of τ̂λ

and of σ̂k = B̂k τ̂λB̂†
k/Tr[B̂k τ̂λB̂†

k] for k ∈ {1, . . . , 6}. The color of the
point (η, λ) is related to the values of k above which the entropy
of entanglement has been increased after photon subtraction, i.e.,
S(σ̂k ) � S(τ̂λ). Note that the above graph only contains information
about the sign of S(σ̂k ) − S(τ̂λ), not its magnitude.

where

q(kk)
n = 1

Nkk
λn

(
n + k

k

)2

(D2)

consist the elements of a vector denoted as q(kk) and Nkk =∑∞
n=0 λn

(n+k
k

)2
is the normalization factor.

We can write

q(kk)
n+1 = 1

Nkk
λn+1

(
n + k + 1

k

)2

. (D3)

We write the following expansion:

(
n + k + 1

k

)2

=
n+1∑
i=0

c(kk)
n−i (i + 1)2, (D4)

assuming that such coefficients c(kk)
n−i exist. Then, using

Eq. (D2), Eq. (D3) can be written as

q(kk)
n+1 = λN11

Nkk

n+1∑
i=0

c(kk)
n−i (i + 1)2 λi

N11
λn−i (D5)

= λN11

Nkk

n+1∑
i=0

c(kk)
n−i q(11)

i λn−i. (D6)

Equation (D6) allows us to write

q(kk) = Dq(11), (D7)
where

D = λN11

Nkk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(kk)
−1 λ−1 0 0 0 . . .

c(kk)
0 c(kk)

−1 λ−1 0 0 . . .

c(kk)
1 λ c(kk)

0 c(kk)
−1 λ−1 c(kk)

0 . . .

c(kk)
2 λ2 c(kk)

1 λ c(kk)
0 c(kk)

−1 λ−1 . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., all columns have the same elements shifted one po-
sition down as we move from the left-hand side to the
right-hand side (D is a lower-triangular circulant matrix). The
nonzero elements of each column are given by the expansion
coefficients of(

λN11

Nkk

)−1

= 1

λ
+

∞∑
n=0

c(kk)
n λn, (D8)

where we have assigned the value

c(kk)
−1 = 1, (D9)

while the rest of the coefficients c(kk)
n are given as the Taylor

expansion coefficients of Nkk/(λN11) − 1/λ around λ → 0,
i.e.,

c(kk)
n = 1

n!
lim
λ→0

∂n

∂λn

[(
λN11

Nkk

)−1

− 1

λ

]
. (D10)

Equation (D10) can ensure the existence of the coefficients
c(kk)

n while always ensuring that each column sums to 1. How-
ever, to prove that the matrix in Eq. (D7) is column stochastic,
we need to prove that all its entries, i.e., all coefficients c(kk)

n ,
are non-negative.

We can work out Eq. (D10) some more to get

c(kk)
n = lim

λ→0

[
(−1)n+1

λn+1
+

n∑
m=0

(
k + m

m

)2 1

(n − m)!
2F1(k + m + 1, k + m + 1; m + 1; λ)

∂n−m

∂λn−m

(1 − λ)3

λ(1 + λ)

]
, (D11)

where 2F1(a, b; c; z) is the hypergeometric function.
For k = 2, we compare two-photon addition per mode

to single-photon addition per mode. For said case, utilizing
Eq. (D11), we find

c(22)
n = 3n + (−1)n

2
+ 9

2
, (D12)

which is non-negative for all n � 0, Therefore, the ma-
trix D in Eq. (D7) is rendered to column stochastic

and, consequently, we obtain the majorization relation
σ̂ 2,2 ≺ σ̂ 1,1.

By setting k = 3, we compare three-photon addition per
mode to single-photon addition per mode. For said case, uti-
lizing Eq. (D11), we find

c(33)
n = 5n3

3
+ 10n2 + 58n

3
+ 12, (D13)
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which is non-negative for all n � 0, Therefore, the matrix D in
Eq. (D7) is rendered to column stochastic and, consequently,
we obtain the majorization relation σ̂ 3,3 ≺ σ̂ 1,1.

For k = 4, we compare four-photon addition per mode
to single-photon addition per mode. For said case, utilizing
Eq. (D11), we find

c(44)
n = 7n5

24
+ 175n4

48
+ 425n3

24
+ 125n2

3

+ 95n

2
− 3(−1)n

32
+ 675

32
, (D14)

which is non-negative for all n � 0, Therefore, just as before,
the matrix D in Eq. (D7) is rendered to column stochastic and,
consequently, we obtain the majorization relation σ̂ 4,4 ≺ σ̂ 1,1.

For all of the cases we presented (and beyond, i.e., up
to k = 8), we find that allowing n = −1, the closed-form
Eqs. (D12)–(D14) (and similarly up to k = 8) give c(22)

−1 =
· · · = c(88)

−1 = 1, consistently with the value we assigned ear-
lier. Moreover, we have verified that the coefficients we have

derived using Eq. (D11) for k = 2, . . . , 8, are non-negative
and consistent with Eq. (D4). One can allow for k � 9 and
explore if the matrix D becomes column stochastic by proving
the non-negativity of the coefficients given by Eq. (D11). As k
grows, we observe the general trend that c(kk)

n becomes a poly-
nomial of increasing degree in n with mostly non-negative
terms. Although it is apparent for each computed instance of
k that the polynomial c(kk)

n is non-negative, it seems difficult
to analytically show that expression (D11) is non-negative for
every k � 9.

At this point, we conjecture the non-negativity of
Eq. (D11), i.e., we conjecture that the matrix D of Eq. (D7)
is column stochastic for all k � 2, implying the majorization
relation σ̂ k,k ≺ σ̂ 1,1. In case said conjecture is invalid, it does
not mean that σ̂ k,k and σ̂ 1,1 do not satisfy majorization rela-
tions; it would merely mean that the methods presented in this
Appendix (and main paper) fail to uncover them. Therefore,
our conjecture is stronger than just asserting σ̂ k,k ≺ σ̂ 1,1: we
conjecture that σ̂ k,k ≺ σ̂ 1,1 and that the column-stochastic
matrix is the one defined through Eqs. (D7) and (D11).
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