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In order to substantiate claims of quan-
tum computational advantage, it is crucial
to develop efficient methods for validat-
ing the experimental data. We propose a
test of the correct functioning of a boson
sampler with single-photon inputs that is
based on how photons distribute among
partitions of the output modes. Our
method is versatile and encompasses pre-
vious validation tests based on bunching
phenomena, marginal distributions, and
even some suppression laws. We show via
theoretical arguments and numerical sim-
ulations that binned-mode photon number
distributions can be used in practical sce-
narios to efficiently distinguish ideal bo-
son samplers from those affected by realis-
tic imperfections, especially partial distin-
guishability of the photons.

1 Introduction

An important milestone in the field of quantum
computing is the construction of a quantum de-
vice that can surpass even the most advanced
classical super-computers at a specific task [1, 2].
For the purposes of demonstrating quantum com-
putational advantage with near-term quantum
devices, one of the problems that has been in-
tensely investigated is that of Boson sampling. In
their seminal paper [3], Aaronson and Arkhipov
presented strong complexity theoretic arguments
showing that the task of sampling the output of a
linear interferometry process involving many sin-
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gle photons is likely to be intractable for classical
computers. Boson sampling sparked a great in-
terest over the last decade and various alternative
schemes were constructed, such as Scattershot
boson sampling, Gaussian Boson sampling and
others, in order to facilitate experimental imple-
mentations [4, 5, 6, 7]. These efforts culminated
in multiple claims of quantum computational ad-
vantage with Gaussian Boson sampling [8, 9, 10],
while standard boson sampling saw experimental
implementations with n = 20 photons in m = 60
modes [11]. Other experimental platforms than
photonics were also considered [12].

Crucially, experimental implementations are
unavoidably subject to different noise sources,
such as those induced by partial distinguishabil-
ity or particle loss, which may compromise claims
of quantum computational advantage. Indeed,
if the amount of noise is too large, then classi-
cal algorithms can sample from the outcome dis-
tribution efficiently [13, 14, 15, 16, 17, 18, 19].
Therefore, a thin line exists between the regime
of classical computational hardness and efficient
classical simulability.

It is therefore of highest importance to de-
velop efficient methods to discriminate an ideal
boson sampler from a noisy one. However, the
very formulation of the task at hand, which in-
volves sampling from an exponentially large set
of possibilities, makes the problem of verifying
that the device is working properly highly non-
trivial. Ideally, one would like to assert that the
experiment is generating samples from a distribu-
tion that is close enough to the ideal one simply
by post-processing the classical data generated
by the experiment. However, due to the flatness
of the boson sampling distribution, this requires
exponentially many samples [20]. Efficient veri-
fication schemes that guarantee closeness to the
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ideal distribution exist, but they require an active
control over the experiment via the ability to do
Gaussian measurements on the ouput states [21].
Upon reasonable physical assumptions about the
nature of noise [22, 23, 24, 25, 26, 27, 28, 29], and
forgetting about adversarial scenarios, we can re-
strict ourselves to the easier task of validation. It
consists of verifying that the experiment passes
some easy-to-check tests, which a boson sampler
working in the quantum supremacy regime is ex-
pected to pass. These tests should be sufficiently
sensitive to noise, so we can efficiently discrim-
inate an ideal boson sampler from a noisy one.
This is the main question we consider in this pa-
per.

In our work we propose a simple validation
scheme of boson sampling based on jointly count-
ing the number of photons in binned-together
output modes. We give numerical evidence that
these binned distributions are sensitive to typical
sources of noise such as photon distinguishabil-
ity, even for a small number of bins. At the same
time, for a fixed choice of binning with a constant
number of bins, we show that there is an effi-
cient classical algorithm that approximates the
corresponding binned distribution coming from
an ideal boson sampler (Theorem 1 in Sec. 2).
This way, it is possible to efficiently compare the
data coming from an experiment or a mock-up
sampler to that of an ideal sampler. This provides
an advantage over other validation tests such as,
for example, Bayesian approaches [30, 31, 32],
which require exponentially hard classical compu-
tations. Additionally, while other commonly used
validation tests based on correlators or marginal
distributions, which require only polynomial-time
classical computations, can be spoofed by classi-
cal algorithms [33], we argue that spoofing binned
distribution tests is much harder, since there are
exponentially many choices of bins and sufficient
variability between the distributions correspond-
ing to different possible choices. We leave as an
open question whether a clever efficient classi-
cal algorithm exists that can spoof the validation
method proposed in our work.

In what follows we introduce a list of desiderata
for scalable validation tests for boson sampling,
explaining how the validation scheme based on
binned output modes fulfills them and detailing
how the method stands in comparison with other
methods in the literature.

1.1 Validation of Boson Sampling

A plethora of validation tests for boson sam-
plers have been proposed which are able to
discriminate between ideal boson samplers and
other mock-up distributions, such as the uni-
form distribution, distributions generated by dis-
tinguishable input photon, or mean-field sam-
plers [34]. Techniques such as pattern recogni-
tion or machine learning [35, 36], Bayesian test-
ing [30], coarse-grained measurements [37, 38],
Heavy Output Generation [8], or the analysis
of marginal distributions have also been applied
[33]. Each method offers its own advantages and
disadvantages. A recent publication combined a
variety of the tests cited the above applied se-
quentially to come up with a single metric de-
scribing the quality of the experiment, the Pho-
tonic Quality Factor [39]. In the context of our
work, we put forward the following list of desider-
ata for a faithful validation test, focusing on sensi-
tivity to realistic noise sources and computational
efficiency. We would like a validation test to obey
the following criteria:

1. Generality: The interferometer in a boson
sampling experiment is drawn at random
from the Haar measure, so an important re-
quirement for a validation test is that it is
applicable to an arbitrary linear interferom-
eter.

2. Sensitivity to multiphoton interference:
High-order multiphoton interference is at
the core of the classical hardness of boson
sampling [19, 40]. Partial distinguishability
of the input photons is one of the most
important noise sources in boson sampling,
which may render the outcome probabilities
easy to approximate. Experiments with a
constant amount of photon distinguishabil-
ity may be simulated by considering only
k-photon interference terms, for some fixed
value of k [14, 41]. Hence, a validation test
should be sensitive to high-order multipho-
ton interference in order to discriminate an
ideal boson sampler from one with partially
distinguishable photons.

3. Sampling efficiency: Resources available for
validation are limited since, compared to the
exponentially large system size (domain of
the sampled distribution), only a moderate
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amount of samples are observed. For this
reason, we request that a validation test is
able to discriminate a noisy boson sampler
(with some fixed noise parameters) from an
ideal one by using a number of samples that
scales only polynomially in the system size.

4. Computational efficiency: A last require-
ment is efficiency in post-processing the clas-
sical data. Many validation tests that aim at
comparing the experiment to an ideal boson
sampler require the computation of outcome
probabilities, or the classical simulation of
ideal boson sampling, which takes exponen-
tial time. This becomes prohibitive as exper-
iments grow larger, which is why we restrict
ourselves to polynomial-time computations
in the system size.

Additionally, it is important to remark that, in
a realistic setting, photon loss also plays a promi-
nent role. Unlike partial distinguishability, the
amount of loss is easy to estimate from data com-
ing from the experiment (or even tests with clas-
sical light). We can assume that a lossy boson
sampling experiment that aims at demonstrat-
ing quantum computational advantage is able to
obtain high-enough output photon counts such
that, if the rest of the experiment was ideal, it
would still surpass the best classical simulation
algorithms. As most of the outcomes would cor-
respond to events with lost photons, it is impor-
tant that a validation test is able to use this data
in order to diagnose other sources of noise, such
as partial distinguishability, which may render
the experiment classically simulable. If valida-
tion required considering only postselected out-
comes with no lost photons, this would sharply
decrease the sampling rate of usable events, pos-
sibly making the validation unfeasible in a rea-
sonable amount of time. We shall come back to
this point later in this work.

1.2 Our contribution
We propose a validation scheme for Boson Sam-
pling which aims at fulfilling the list of require-
ments stated above. Our scheme (Sec. 2) is based
on a simple coarse-graining of the data coming
from the boson sampling device: we group the
output modes into different subsets and count
how many photons end up in each of them.
Our outcomes are thus given by a vector k =

(k1, . . . , kK), where kz is the number of photons
observed in subset Kz (see left panel of Fig. 1).
This binning of the output modes into different
subsets allows us to deal with a space of events
of much smaller size than the exponentially many
outcomes of the boson sampler. For a fixed num-
ber K of subsets, the number of possible configu-
rations of the photons in the bins is bounded by
(n+1)K , where n is the photon number. This im-
plies that some of the probabilities are relatively
large (of size 1/poly(n)), and thus a meaningful
estimation (i.e. up to relative error) of these large
probabilities can be obtained from a polynomial
number of experimental runs. Crucially, we show
that a classical algorithm exists that can also es-
timate these probabilities efficiently, not only for
ideal boson samplers but also noisy ones, involv-
ing partially distinguishable input photons as well
as loss.

The validation test we consider is based on
comparing these theoretically predicted probabil-
ities to the experimentally observed ones. We
provide analytical and numerical evidence that it
is possible to use binned output distributions to
efficiently discriminate between bosonic and clas-
sical input particles, as well as some models of
partial distinguishability. We also argue that this
way of validating boson samplers is sensitive to
partial distinguishability, even in the presence of
small amounts of loss.

1.3 Comparison to other existing methods

The versatility of the method we consider lies in
the fact that it can be used for any interferome-
ter and that the choice of the bins is completely
arbitrary. It can even be done after the experi-
ment – the same data can be tested using multiple
choices of subsets, possibly ones chosen randomly.
This versatility allows us to connect this method
to some important validation tests for standard
boson samplers that have been suggested in pre-
vious literature and even retrieve some of them
as particular cases.

1.3.1 Correlators and marginal distributions

One of the most common validation protocol for
boson samplers relies on low-order correlation
functions of the output mode counts n̂i [42, 43]
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Figure 1: (Left) Interferometric setup. Single photons are sent through the first n input modes of a m-mode
linear interferometer U . Each photon at input j carries internal degrees of freedom (polarization, arrival time, etc.)
described by an (internal) wavefunction |ϕj⟩. To validate the device we use the probability distribution obtained
by counting photons in binned-together output modes. In the figure, we represent in green the detectors that have
detected one photon and in red the detectors that did not click. In this example, we have 3 bins and the outcome
observed is k⃗ = (2, 1, 1) (the first subset K1 observes two photons, K2 observes a single photon, etc.). Such outcome
probabilities are sensitive to partial distinguishability of the input and can be used to discriminate an ideal boson
sampler from a noisy one. (Right) Virtual interferometer. The binned output mode probabilities can be obtained
from the characteristic function of this distribution. The latter can be interpreted as a probability amplitude in
a virtual interferometry process. More precisely, computing x(η) as described in Eq. (22) (through Eq. (15)) is
equivalent to computing the amplitude of the process where the input state of the boson sampler is left unchanged
while going through a virtual interferometer V built by sandwiching the physical interferometer U and its hermitian
conjugate U† with a diagonal matrix of phases, encoding the choice of partition (as defined in Eq. (17) to (19)).

such as

ci = ⟨ni⟩ (1)
cij = ⟨ninj⟩ − ⟨ni⟩⟨nj⟩ (2)

Correlations of order 3 and 4 have also been con-
sidered [44, 9].

A closely related validation method is that of
computing k-marginals of the boson sampling dis-
tributions of an ideal experiment – which results
from looking at the photon counts coming from
a constant number k of detectors – and com-
paring them to the experiment itself [33]. This
data can be used to estimate the correlators men-
tioned above. While marginals of fixed size and
low-order correlators can be computed in poly-
nomial time, they are known to be insensitive to
higher order multiphoton interferences. As previ-
ously mentioned, the latter are crucial to repro-
duce the boson sampling distribution to sufficient
precision [45]. In fact, it is possible to construct
efficient classical mock-up samplers that are con-
sistent with all marginals of order k [33]. There-
fore, this scheme alone cannot be used to justify
claims of quantum computational advantage.

We note that marginals distribution can be re-
covered as a particular case of our scheme, as it
corresponds to choosing K = k subsets with a
single output mode in each. Our scheme how-
ever can be adapted to be sensitive to higher or-
der interferences: if, for example, two equal-sized
subsets are chosen, the way photons distribute in

this partition of the output modes cannot be well
approximated by taking into account only few-
photon interference terms.

1.3.2 Full bunching

Shchesnovich presents an interesting scheme that
aims at fulfilling all the requirements stated in
Sec. 1.1 [46, 40]. It relies on observing full bunch-
ing in a subset of the output modes, i.e. all the
input photons are found in some chosen subset.
Equivalently, one can focus on observing no pho-
ton in the complementary subset [40].

Full bunching probabilities can be approxi-
mated efficiently and numerical simulations pre-
dict that, for Haar random matrices, this quan-
tity is maximized when photons are fully indistin-
guishable and decreases when they are partially
distinguishable. While explicit counter-examples
to this general rule of thumb were demonstrated
in [47], going against general physical intuition,
the method remains practical as it holds very well
on average, independently of which subset is cho-
sen.

While there is evidence that validation using
bunching probabilities ticks all the boxes of de-
sirable properties put forward in Sec. 1.1, we im-
prove on this method quantitatively. In fact, the
full bunching probability in a subset can be seen
as a particular outcome probability of our more
general scheme, which takes into account full pho-
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ton counting distribution in one or more subsets.
This allows for better distinguishing power, re-
quiring fewer experimental samples for the vali-
dation task.

1.3.3 Suppression laws

Certain validation tests rely on a specific choice
of optical network [48]. Symmetries in the uni-
tary matrix lead to suppression laws where many
outputs are prohibited [49, 50, 51]. These meth-
ods are interesting tools to diagnose noise in the
network or input state, but are restricted to only
a handful of networks, such as the Fourier or
Sylvester matrices. However, the arguments for
the hardness of boson sampling require the uni-
tary to be chosen randomly according the the
Haar measure [3]. If one can precisely tune a
reconfigurable network [10], then validation can
be executed first through suppression laws, and
then the network can be changed to a random
unitary to obtain samples. The main drawbacks
are that this method leaves the door open for er-
rors to appear in the samples when the circuit is
reconfigured and provides no way to validate the
final samples after circuit reconfiguration.

Nevertheless, interferometers possessing some
symmetries such as the Fourier interferometer
are interesting devices to test multiphoton in-
terference due these suppression laws and their
sensitivity to distinguishability of the photons.
We show in Sec. 3 that our formalism allows
us to compute analytically some binned output
distributions for Fourier interferometers, reveal-
ing striking differences between the behavior of
distinguishable particles and ideal bosons. We
also observe that some characteristic suppressions
observed for ideal bosons are inherited by the
binned output distribution, for an appropriate
choice of the bins.

1.3.4 Validation from coarse-grained measure-
ments

Other proposals exist to validate boson sam-
plers using coarse-grained data. In [37], the au-
thors classify observed events in bubbles in the
state space (unlike our binning of output spatial
modes). Bubbles are constructed iteratively and
are centered around high probability events. Nu-
merical evidence is given to show that this is a
good validation method against, for example, dis-

tinguishable input photons. However, with this
validation method, the comparison of the experi-
ment to an ideal boson sampler would still require
a classical simulator of the latter which would not
be efficient. A similar statement also applies to
pattern recognition techniques [35].

1.4 Structure of the paper

The core of our work is divided into three sec-
tions followed by a discussion section. In Sec. 2,
we explain in detail the mathematical techniques
to compute the binned output distribution gen-
erated by ideal or noisy boson samplers. We
focus on the analysis of the complexity of the
method, showing that efficient approximations of
the distribution can be obtained. In Sec. 3, we
present analytical results for binned distributions
in Fourier interferometers. This section may be
skipped entirely by a reader who is only interested
in our results regarding the validation of exper-
iments with Haar-random interferometers. The
latter are presented in our main results section
(Sec. 4). We conclude with a discussion section
containing open questions and perspectives for fu-
ture work.

2 Formalism

As previously mentioned, the boson sampling val-
idation method we consider in this work is based
on how photons distribute into subsets of output
modes, which we will also refer to as bins.

We consider the partition of M = {1, 2, . . . , m}
into K non-empty and mutually disjoint subsets
Kz ⊂ M with z ∈ {1, . . . , K}. If the photon
configuration at the output of a boson sampler is
s = (s1, s2, . . . , sm), the way photons distribute
in this partition denoted as K = {K1, . . . , KK} is
fully defined by a vector k of dimension K, whose
components are given by

kz =
∑

j∈Kz

sj . (3)

We are interested in computing the probabilities
P (k) of observing the different possible photon
number configurations in this partition. In this
section, we show a classical algorithm that, for an
experiment with n input photons and constant
number of subsets K, estimates the probabilities
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P (k) up to total variation distance β in polyno-
mial time O(n2K+2 log(n)β−2), given some theo-
retical model for the experiment which may in-
clude partial distinguishability between the pho-
tons as well as losses. Our derivation is based on
the approximation of the characteristic function
of the distribution P (k) and is inspired by a re-
sult of Arkhipov for approximating linear statis-
tics of ideal boson samplers [52]. The main idea
we use is that this characteristic function can be
interpreted as a probability amplitude of a virtual
interferometric process, as depicted in Fig. 1, and
thus it can be approximated via Gurvits random-
ized algorithm for permanent approximation [3].

2.1 Photon-counting probabilities in partitions
For a given partition K = {K1, . . . , KK}, the
probability of observing a certain photon number
configuration k can be obtained by summing the
probabilities of all outcomes of the boson sam-
pler that are consistent with it. However, this
is impractical – each outcome probability is hard
to compute (a tensor permanent if photons are
partially distinguishable [53]), and there can be
an exponentially large number of events that are
consistent with a given photon number configu-
ration in the partition.

A better way to compute these probabilities
P (k) is via the characteristic function associated
with this distribution, defined as

x(η) = E
k

[exp (iη · k)] (4)

=
∑

k∈ΩK

P (k) exp (iη · k) , (5)

with η ∈ RK . Here, we have defined the set

ΩK = {(k1, k2, . . . , kK) | kz ∈ Ω, ∀z ∈ {1, . . . , K}},
(6)

with Ω = {0, 1, . . . , n}. It can be seen that the
probabilities P (k) can be retrieved by evaluating
x(η) at (n+1)K points on a K-dimensional grid,
namely,

νl = 2πl

n + 1 , with lz ∈ Ω, ∀z ∈ {1, . . . , K} (7)

and taking the multidimensional Fourier trans-
form, i.e.

P (k) = 1
(n + 1)K

∑
l∈ΩK

x(νl) exp (−iνl · k) . (8)

To evaluate the characteristic function we con-
sider the usual boson sampling setting where n
photons are sent through a linear interferometer
of m modes, with one photon occupying each of
the first n input modes (a more general input,
with more than one photon per mode, is consid-
ered in Appendix A). In order to model partial
distinguishability between photons, we assume
the internal degrees of freedom of the photon en-
tering mode j, such as polarization or spectral
distribution, are described by an internal state
|ϕj⟩. The input state can then be written as

|Ψ⟩in =
n∏

j=1

(
â†

j,ϕj

)
|0⟩ (9)

where |0⟩ is the vacuum state and â†
j,ϕj

is the
creation operator corresponding to a photon in
mode j and internal state |ϕj⟩. We also define a
basis {|Φj⟩} for the internal Hilbert space of the
photons such that∑

j

⟨ϕk|Φj⟩ ⟨Φj |ϕk⟩ = 1, ∀k. (10)

Note that, even though the internal Hilbert space
of the photons may be of infinite dimension, we
only need at most n basis elements to span the
Hilbert space generated by the n states |ϕj⟩. In
addition, since the basis {|Φj⟩} is orthonormal,
the operators âi,Φj and â†

i,Φj
obey the usual com-

mutation relations [âi,Φj , â†
k,Φl

] = δikδjl. There-
fore, we can define the number operator, which
counts the number of photons in a spatial mode
independently of their internal states, as

n̂i =
∑

j

â†
i,Φj

âi,Φj . (11)

Following the formalism of [53, 54], we use the
standard assumption that the interferometer Û
acts only on the spatial modes, leaving the inter-
nal wavefunctions untouched. The relation be-
tween input and output modes is hence described
by an m × m unitary matrix U via the equation

â†
j,ϕj

→ b̂†
k,ϕj

with

â†
j,ϕj

= Û b̂†
j,ϕj

Û † =
m∑

k=1
Ujk b̂†

k,ϕj
. (12)

The operator which counts the number of photons
in a given subset of output spatial modes is then

N̂Kz =
∑

j∈Kz

n̂j =
∑

j∈Kz

∑
k

b̂†
j,Φk

b̂j,Φk
. (13)
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We demonstrate in Appendix A that the char-
acteristic function x(η) can be computed as the
quantum expectation value

x(η) = ⟨Ψout| eiη·N̂K |Ψout⟩ (14)

= ⟨Ψin| Û †eiη·N̂KÛ |Ψin⟩ , (15)

where we have used the notation

η · N̂K =
K∑

z=1
ηzN̂Kz . (16)

At this point, it is useful to note that V̂ (η) =
Û †eiη·N̂KÛ is a linear interferometer character-
ized by an m × m unitary matrix V (η) (see right
panel of Fig. 1). This matrix is constructed as

V (η) = U †Λ(η)U, (17)

where Λ(η) is a diagonal matrix given by a prod-
uct of diagonal matrices

Λ(η) =
K∏

z=1
D(z)(ηz), (18)

such that

D
(z)
ab (ηz) =


eiηz , if a = b and a ∈ Kz,

1, if a = b and a /∈ Kz,

0, if a ̸= b.

(19)

Using the results of Ref. [3], it can be shown
that in the ideal boson sampling scenario where
all photons are indistinguishable, the computa-
tion of the characteristic function is given by a
matrix permanent

x(η) = perm (Vn(η)) , (20)

where Vn corresponds to the n×n upper left sub-
matrix of the matrix V . In the more general case
where the input photons can have different inter-
nal wavefunctions (see Eq. (9)), this expression is
modified in a simple way. By defining the Gram
matrix

Sij = ⟨ϕi|ϕj⟩ (21)

of the overlaps of the internal states of the pho-
tons, the expression takes the form

x(η) = perm (S ⊙ Vn(η)) , (22)

where ⊙ is the Hadamard (elementwise) product:
(A ⊙ B)ij = AijBij . An explicit derivation of the
expression is done in Appendix A.

Figure 2: Lossy interferometer model. We use a
simple model of uniform loss: each photon has a goes
through a beam-splitter of transmissivity η before en-
tering the interferometer. If the photon is reflected, it
is sent into an environment mode, which simulates a
lost photon. The photon number distribution in binned
modes of a lossy boson sampler can be computed by
considering this larger lossless interferometer.

2.2 Loss and dark counts

We can accommodate photon loss at little extra
cost with this formalism. In general, a lossy linear
optical circuit can be described by first applying
a lossless linear interferometer W1, followed by
m parallel loss channels and a final lossless linear
interferometer W2 [16]. In turn, a loss channel
acting on a given optical mode can be modelled
in a unitary way, by introducing an ancillary en-
vironment mode in the vacuum state and apply-
ing a beam-splitter with a given transmissivity λi.
This implies that the output statistics of a lossy
boson sampler of m modes can be recovered by
considering a larger lossless interferometer of 2m
modes, described by a unitary matrix Ũ , where
only the first m modes are measured. In the case
of uniform loss, the scheme can be simplified by
considering an array of beam-splitters with the
environment modes before the interferometer de-
scribed by a unitary U = W1W2 (see Fig. 2).

Taking this into consideration, it is easy to
adapt the formalism from Sec. 2.1 to obtain the
photon-counting probabilities in a partition of
the output modes of a lossy interferometer. We
simply consider the distribution in a partition
of the larger interferometer {K1, . . . , KK , Kenv},
where the last subset contains all the environ-
ment modes. Note that the size of the matrix
whose permanent we need to compute in Eq. (22)
depends only on the number of input photons.
Hence, even for lossy interferometers, the charac-
teristic function of the photon number distribu-
tion in the binned output modes is still given by
a permanent of an n × n matrix (see Eqs. (15)
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and (22))), which in this case is a submatrix of a
2m × 2m unitary matrix.

Another source of experimental noise is dark
counts from the detectors. Even though we do
not consider explicitly this effect in our work we
note that the effect of dark counts can be in-
corporated in the calculation of the probabilities
P (k). Indeed, dark counts are a default of detec-
tors, and do not change the underlying physics of
the experiment. It suffices to add their statistical
contribution on top of the of the experiment with
no dark counts. For example, consider the simple
case of a uniform dark count probability genera-
tion pd ≪ 1, and a single subset of size K, the
probability of observing kd dark counts is given
by a binomial

q(kd) =
(

K

kd

)
pkd

d (1 − pd)K−kd (23)

The overall probability Pd(k) of observing k pho-
tons is thus the convolution of the original prob-
ability distribution P (k) with (23)

Pd(k) = (P ∗ q)(k) =
k∑

kd=0
q(kd)P (k − kd) (24)

This has a moderate effect in the complexity of
computing the probability distribution we are in-
terested in.

2.3 Complexity analysis
As shown in Eq. (8), the probabilities P (k) can
be evaluated by taking a multidimensional DFT
of the values of the characteristic function x(η).
Using fast methods to compute the multidimen-
sional DFT, the full distribution can be computed
in time

T = O(K(n + 1)K log(n + 1)Cx), (25)

where Cx is the cost of computing a single value
of x(η). Each quantity xη requires the evalua-
tion of a n × n permanent which can be com-
puted exactly using Ryser’s algorithm – the best
known classical algorithm for the exact computa-
tion of permanents – in time O(n2n). However,
in a practical scenario, the exact computation of
the probabilities is not necessary since the ex-
perimental estimation of these probabilities will
always carry an error due to the finite number of
samples. Precisely, we need O(1/ϵ2) samples to

estimate the probabilities Pexp.(k) up to an addi-
tive error ϵ. Hence, if we assume we can run the
experiment a polynomial number of times, we can
only estimate the probabilities to a polynomially
small error.

In what follows, we show that classical algo-
rithms can also efficiently obtain such polyno-
mially small additive error approximations due
to Gurvits’ permanent approximation algorithm
[55]. This algorithm allows for the approximation
of permanents of unitary matrices up to error ϵ
in time O(n2/ϵ2). Our result regarding the com-
putation of the approximate binned distribution
up to a fixed total variation distance β is the fol-
lowing.

Theorem 1. For a constant partition size K,
there is a classical algorithm that computes an
approximate distribution of probabilities P̃ (k)
such that ∑

k

|P̃ (k) − P (k)| ≤ β

in time O(n2K+2 log(n)β−2)

Proof. Consider an approximate distribution of
probabilities P̃ (k)

P̃ (k) = 1
(n + 1)K

∑
l∈ΩK

x̃(νl) exp (−iνl · k) ,

(26)

obtained from the Fourier transform of approxi-
mate values of the characteristic function

x̃(νl) = x(νl) + ϵl, (27)

where ϵl is an error term. It can be shown that

∑
k

|P̃ (k) − P (k)|2 =
∑
k

∣∣∣∣∣∑
l

ϵl
(n + 1)K

e−iνl·k
∣∣∣∣∣
2

(28)

=
∑

l |ϵl|2

(n + 1)K
,

where we have used Parseval’s theorem. By
defining ϵ = maxl ϵl, we can bound the ℓ2-norm
between the approximate and exact distribution
by √∑

k

|P̃ (k) − P (k)|2 ≤ ϵ. (29)

This implies that the ℓ1-norm is bounded by∑
k

|P̃ (k) − P (k)| ≤ (n + 1)K/2ϵ. (30)
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Therefore, in order to obtain an ℓ1-norm bounded
by some constant value β, we need to compute
the approximate values x̃(νl) up to an error ϵl ≤
ϵ ≤ β(n + 1)−K/2. The cost of evaluating each
of these values using Gurvits algorithm is Cx =
O(nK+2β−2). This can be seen as follows. For
any distinguishability matrix S, we can evaluate
x(η) up to error ϵ||S ⊙ Vn(η)||n in time O(n2/ϵ2)
[3]. Due to a theorem by Schur (see section of
Hadamard product from Ref. [56]), we have that

||S ⊙ Vn(η)|| ≤ (max
i

Sii) ||Vn(η)|| ≤ 1. (31)

Finally, the complexity of obtaining the full ap-
proximate probability distribution P̃ (k) can be
bounded using Eq. (25) by

T = O(n2K+2 log(n)β−2), (32)

where we considered K to be a constant indepen-
dent of n.

This shows that the photon counting probabil-
ities in the binned output modes can be approx-
imated efficiently (in polynomial time) for any
polynomially small additive error 1. While this
fact is practically irrelevant to efficiently estimate
usual boson sampling event probabilities (as they,
on average, decrease exponentially, hence requir-
ing ϵ to be exponentially small), it is relevant here
as the probabilities P (k) sum to one and that
there are only O((n + 1)K) of them.

2.3.1 Complexity of computing marginals

The formalism we presented also allows us to
compute marginal boson sampling distributions,
a commonly used validation test for boson sam-
pling experiments [33]. For example, if we are
interested in the distribution over the first K
modes, we take each subset to be a single mode,
i.e. Kz = {z}, for z ∈ {1, . . . , K}. It is known
that marginal distributions of ideal boson sam-
pler (with fully indistinguishable photons) can
be computed exactly in polynomial time [3, 57].
Here we show that the formalism we consider al-
lows us to recover this result and extend it to
any input (pure) state of partially distinguishable

1We ignore the complexity of computing the matrix
V (η), which is polynomial in m, the number of modes,
itself assumed to be polynomial in the number of photons
n in most use cases.

photons, as long as the internal states of the pho-
tons belong to a Hilbert space of constant size.
The latter is given by the rank of the S matrix
(see Eq. (21)), which we denote as rS .

To show this result, we follow very similar lines
to Ref. [57] and use on the existence of an efficient
algorithm to exactly compute the permanent of
n-dimensional square matrices of the form 1+ A,
where A has some constant rank rA. Precisely,
this takes time O(n2rA+1). In order to com-
pute the marginal distribution we now consider
the characteristic function (also called generating
function) given by

x(η) = ⟨Ψin| Û †e
i
∑r

j=1 ηj n̂j Û |Ψin⟩ (33)
= perm (Vn(η) ⊙ S) . (34)

In this case, we can write

Vn(η) ⊙ S = 1n + W (η) ⊙ S, (35)

where 1n is the identity matrix of dimension n
and

W (η) = U †(Λ(η) − 1n)U. (36)

It is possible to see that W (η) is a matrix of rank
r and thus rank(W (η) ⊙ S) ≤ KrS . This way,
we can bound the cost of exactly calculating the
generating function of the marginal distribution
corresponding to a subsystem of K output modes
by

Cx = O(n2KrS+1). (37)

This result can be of use to speed up computa-
tions of marginals, for example, when the main
source of partial distinguishability are perturba-
tions to the polarization state of the photons.

In more general scenarios though, the n inter-
nal states of the photons span a Hilbert space
of dimension at most n and so this result is
of limited use as W (η) can have a rank which
scales with the system size, implying that com-
puting the marginals exactly with this method
takes exponential time in the system size. In
this case, we can may use different approaches al-
lowing us to exploit partial distinguishability for
more efficient approximations of the characteris-
tic function. For example, using the techniques
from Refs. [14, 58], we may obtain approxima-
tions where the error scales as log(1/x), where x
represents a distinguishability parameter.
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3 Signatures of multiphoton interfer-
ence in Fourier interferometers
In this section, we give analytical evidence that
the photon distribution in binned output modes
contains important information about multipho-
ton interference. To do so, we focus on the Fourier
interferometer, defined by the unitary transfor-
mation

Fjk = 1√
m

e−2πi(j−1)(k−1)/m.

This interferometer that has been widely studied
in the context of validating multiphoton interfer-
ence. Due to its symmetries, it has been shown
that most of the outcome probabilities are sup-
pressed (that is, equal zero) if the inputs are fully
indistinguishable [48]. A violation of these sup-
pression laws can be used to test indistinguisha-
bility of the input photons.

Here we demonstrate that the formalism dis-
cussed in Sec. 2 can be used to obtain analytical
results about how photons distribute in subsets
of output modes of a Fourier interferometer. We
show that even considering a single subset, the
way indistinguishable photons behave is drasti-
cally different than distinguishable ones. We fo-
cus on two interesting examples, namely, the com-
putation of the single-mode density matrix and
on the photon-counting distribution on the odd
output modes. Our results go beyond suppression
laws as they allow us to predict the full distribu-
tion in these subsets and not only which events
are suppressed.

3.1 Single-mode density matrix
One of the simplest ways of looking for signa-
tures of multiphoton interference is by measuring
subsystems of the output state of the linear inter-
ferometer, i.e. the reduced state of a few output
modes. We focus here on the single-mode density
matrix of a Fourier interferometer, with a single-
photon in each of the input modes, i.e. n = m.
This in an interesting setting as it falls within the
scope of the results of Refs. [59, 60], which allows
us to predict that the asymptotics of the single-
mode density matrix is given by a thermal state
with average photon number ⟨n⟩ = 1.

To our knowledge, the exact form of the distri-
bution for finite-sized systems has not been shown
explicitly before. We show in Appendix B.2 that

Figure 3: Comparison of the probability of seeing k pho-
tons in the odd output modes of the Fourier interfer-
ometer with 1 particle per input mode. For bosons we
see a suppression of events with odd k, whereas the
events with even k follow a binomial distribution. For
distinguishable particles the probabilities follow a simple
binomial distribution.

the formalism of Sec. 2 allows us to obtain this
distribution analytically. The probability of ob-
serving k photons, if the input photons are fully
indistinguishable, is given by

P B
k =

n∑
a=k

(−1)k+a

(
a

k

)(
n

a

)
a!
na

. (38)

Although this distribution is well approximated
by the geometric distribution with a mean equal
to 1, it has some important differences. For ex-
ample, the probability of observing n−1 photons
is always 0, a fact that can also be predicted from
suppression laws [61]. In contrast, interference of
distinguishable photons results into a very dif-
ferent distribution. Using simple combinatorial
arguments, one can see that the probability of
observing k-photons in a single mode is given by
the binomial distribution

P D
k =

(
n

k

)
1

nk

(
1 − 1

n

)n−k

. (39)

Asymptotically, this tends to a Poisson distribu-
tion with a mean equal to 1. This shows that
photon distinguishability already plays a signifi-
cant role in the photocounting statistics of a sin-
gle detector.

3.2 Photon number distribution in larger sub-
sets

In the previous section, we have chosen to look at
a very simple subset of the output modes, given
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by a single mode. Our formalism, however, al-
lows us to look for signatures of multiphoton in-
terference by considering more general subsets.
If the interferometer has some particular symme-
tries, it is expected that choices of subsets that
reflect these symmetries should reveal larger dif-
ferences between the behavior of indistinguish-
able and distinguishable photons [62]. We give
a specific example in what follows. Let us con-
sider again the Fourier interferometer with a sin-
gle photon in each of the input modes and anal-
yse how many photons end up in the odd modes,
i.e. the set K = {1, 3, . . . , n − 1}, where we take
the number of modes n to be even. Using the
formalism of Sec. 2, we compute analytically the
photon-counting probabilities in this subset in the
two extreme cases of indistinguishable vs distin-
guishable photons, which we plot in Fig. 3 (see
Appendix B.3 for a detailed derivation). For ideal
bosons, we obtain

P B
k =

{
0 if k is odd,

1
2n/2

(n/2
k

)
if k is even.

(40)

Events with an odd number of photons are fully
suppressed, whereas the events with an even pho-
ton number follow a simple binomial distribution.
A sharp contrast is observed with respect to the
behavior of distinguishable photons, which fol-
lows a simple binomial distribution

P D
k = 1

2n

(
n

j

)
. (41)

This suggests that, in an experimental setting,
the analysis of photon distributions in properly
chosen subsets may be used to diagnose par-
tial distinguishability in the input photons. In
particular, it would be interesting to investigate
whether the measured statistical deviations to the
ideal distribution of Eq. (40) may be used to
bound the degree of genuine multiphoton indis-
tinguishability of the input state [63].

4 Validation of boson samplers
The main premise of our work is that, from the
way photons distribute in partitions of the out-
put modes of a boson sampler, it is possible to tell
whether we are in the presence of an ideal boson
sampler from a noisy one. In this section we jus-
tify this claim for Haar-random interferometers.

First, we introduce the models of noise we anal-
yse, namely partial distinguishability and photon
loss. Subsequently we give analytical and numer-
ical arguments showing the binned output distri-
butions are sensitive to partial distinguishability
and may be used for efficient validation tests. Fi-
nally, we stress that taking into account outcomes
with a few lost photons may significantly speed-
up validation tests as they still carry information
about photon distinguihability.

4.1 Noise models

Although the formalism of Sec. 2 is able to en-
compass arbitrary inputs of partially distinguish-
able photons, here we consider a specific model
of partial distinguishability, for the sake of per-
forming numerical simulations about the valida-
tion method we propose in this work. We assume
that the wave-functions describing the internal
degrees of freedom of any pair of photons have
an overlap given by a distinguishability param-
eter 0 ≤ x ≤ 1. The off-diagonal elements of
the distinguishability matrix S from Eq. (21) are
thus Sij = x whereas the diagonal elements are
one by definition. In this model, the distinguisha-
bility matrix is a convex interpolation of the dis-
tinguishability matrices of two extreme cases. At
x = 0, the photons behave as fully distinguishable
particles and the observed statistics corresponds
to the classical case (no interference), when each
one of the photons is sent at different times to the
interferometer. At x = 1, we recover the ideal bo-
son sampling case of linear interference between
fully indistinguishable bosons. This interpola-
tion model has been widely studied in works such
as Refs. [53, 54, 40, 14], both from the perspec-
tive of understanding interference phenomena in
the "quantum-to-classical" transition or with the
aim of providing efficient classical simulation al-
gorithms for noisy boson samplers.

Regarding photon loss, we restrict to the uni-
form loss model (Fig. 9). Each photon has a
probability 0 ≤ η ≤ 1 to go through the inter-
ferometer and thus lead to a detection. Mathe-
matically, this is equivalent to adding a beam-
splitter of transmissivity η at the end of each
output source, with the reflected branch of the
beam-splitter becoming an environment mode to
which the photon can be sent (and thus represent
a lost photon). We are interested in the photon
configuration in a partition of the first m modes,
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from which we can infer how many photons where
lost to the environment modes.

4.2 Comparison to asymptotic formulas
The results in Sec. 3 indicate that the photon-
counting statistics in output mode partitions can
reveal striking signatures of multiparticle inter-
ference in certain symmetric interferometers. It
is important to understand if this is also true in
the usual boson sampling scenario, where the uni-
tary characterizing the interferometer is drawn
at random from the Haar measure. This ques-
tion was addressed in the work of Shchesnovich
in Refs. [64, 62], with the derivation of asymp-
totic laws characterizing how photons distribute
in the binned output modes in large interferom-
eters. Using combinatorial arguments, it was
found that these photon-counting probabilities,
when averaged over the Haar-random interferom-
eters, are given by

pD(k) = n!∏K
z=1 kz!

K∏
z=1

qkz
z (42)

pB(k) = pD(k)
∏K

z=1(
∏kz−1

l=0 [1 + l/Kz])∏n−1
l=0 [1 + l/m]

(43)

where D signifies distinguishable particles, and
B fully indistinguishable (bosonic) ones. We also
define the bin size Kz = |Kz| as well as the rel-
ative bin size qz = Kz/m. Here, it is assumed
that the K bins span all the output modes, so
from particle number conservation we have that
kK = n−

∑K−1
z=1 kz. Assuming a constant relative

bin size qz, the asymptotic form of the previous
expressions, as n, m → ∞, is given by a multi-
variate Gaussian:

P σ(k⃗|K) =
exp{−n

∑K
z=1

(xz−qz)2

2(1+σρ)qz
}

(2π(1 + σρ)n)(K−1)/2∏K
z=1

√
qz

×
(

1 + O
(

ρδσ,+
n

))
, (44)

with xz = kz/m and σ = 1 for indistinguish-
able particles and 0 for distinguishable ones. The
difference between the behavior of these two ex-
treme cases shows up via the particle density
ρ = n/m which influences the standard deviation
of the Gaussian statistics when the input particles
are ideal bosons. For the technical details about
the validity regime of the asymptotic formula, as
well as the error of this approximation, we refer
to Ref. [62].

Figure 4: Effect of partial distinguishability on a sub-
set distribution. We consider the photon number dis-
tribution in a subset consisting of the first half of the
m = 14 output modes with n = 14. The probabili-
ties are averaged on 1000 Haar-random unitaries. Error
bars show one standard deviation. We see that they are
well approximated by a Gaussian distribution, with the
main difference between each case being the width of
the curve.

These results suggest that the probability dis-
tribution in binned output modes is sensitive
to partial distinguishability between the photons
even for Haar-random unitaries. To our knowl-
edge, there exist no explicit asymptotic formu-
lae in this scenario and so we resort to numeri-
cal simulations to confirm this hypothesis, using
the method detailed in Sec. 2. For simplicity, we
consider a bipartition of the output modes into
two sets of equal size and the partially distin-
guishability model introduced in Sec. 4.1, which
interpolates between distinguishable and indistin-
guishable particles via a indistinguishability pa-
rameter x. The observed distribution for 14 pho-
tons in 14 output modes for several values of x is
plotted in Fig. 4. The figure reveals significant
differences in the probabilities as the indistin-
guishability parameter is varied. The width of the
bell-shaped curve decreases as photons become
more and more distinguishable, as suggested by
the asymptotic formulas from Eqs. (42) and (43)
which describe the extremes. This indicates that
boson bunching effects play a role, since events
where a large fraction of the photons are observed
in the same bin are more likely as the photons be-
come more indistinguishable.

4.3 Distance between distributions

A standard quantity used to quantify the distance
between probability distributions is the total vari-
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ation distance (TVD), defined as

tvd(p, q) =
∑

j

|pj − qj |. (45)

This is an especially pertinent metric regarding
the problem of distinguishing two distributions
[65, 66] via sampling, since the number of sam-
ples ns needed to distinguish a distribution p from
another q scales as

ns = O(tvd(p, q)−2). (46)

In what follows, we analyse how the TVD varies
in different cases, depending on system size, par-
tial distinguishability and loss.

For the rest of this paper, and unless specified
otherwise, we will always select the bins to form
an equipartition, as defined in Appendix C.1.

Bosons vs. distinguishable particles First,
let us compare the two extreme cases of indistin-
guishable vs distinguishable particles. In Fig. 5,
we analyse how the TVD, averaged over Haar-
random unitaries, depends on the number of in-
put photons. We do so in two different scenarios:
when the density ρ = n/m is constant as well as
in the regime usually considered in boson sam-
pling, where the number of modes m = O(n2)
(and thus ρ = 1/n), which ensures that the prob-
ability of observing events with collisions is small
[3]. As suggested by the asymptotic formulae,
the density plays an important role. For constant
density the TVD remains constant independently
of the number of photons and consequently, the
number of samples needed to distinguish the two
distributions does not scale with the system size.
In contrast, the bottom curve in Fig. 5 suggests
an inverse polynomial decay for the TVD in the
collision-free regime. This implies that the two
distributions can still be distinguished efficiently,
i.e. with a polynomial number of samples. We
also remark the significant increase of the TVD if
we take a larger partition size. For example, we
observe that the TVD roughly doubles when we
compare K = 2 with K = 4, which implies we
need 4 times less samples to distinguish the two
distributions, according to Eq. (46).

Partial distinguishability As previously
mentioned, partial distinguishability between
the input photons is one of the main sources
of noise in boson samplers and may render

Figure 5: Evolution of the TVD with the system
size. Haar-averaged TVD between the binned output
distributions of bosonic and distinguishable inputs with
varying system size. We consider two equipartions of
size K = 2 and K = 3. In the top subplot, we consider
a sparse but constant density m = 5n, while in the
bottom subplot it is the no-collision regime m = n2.
The error bars represent the standard deviation when
averaged over 100 trials. Fluctuations come from the
intrinsic random Haar sampling, as well as the limited
batch size used in the averaging. It can be seen that
coefficient of variation decreases with increased system
size (see Appendix C). We also see a significant increase
of the TVD when we choose a larger partition size.

the experiment easy to simulate classically
[14, 41]. Hence, a good validation test should
be able to differentiate between an ideal boson
sampler from one with partially distinguishable
photons. To have a better understanding about
the sensitivity of our validation test to partial
distinguishability we again make use of the
the one-parameter model interpolating between
distinguishable and indistinguishable photons
(see Sec. 4.1). In Fig. 6 we compare the distance
between the photon-counting probabilities in the
partitions when the input photons are indistin-
guishable (x = 1) and when they are partially
distinguishable, as a function of the parameter x.
We see a sharp increase in the TVD as we move
away from the ideal case, suggesting that the
probability distributions can be distinguished in
practical scenarios.

Similarly, we have also analysed how the vari-
ation of the TVD between the distributions com-
ing from ideal bosons or partially distinguish-
able ones (with some fixed x) varies as a func-
tion of the system size. Interestingly, the behav-
ior follows the same trend as that that of Fig.
5: for constant densities the TVD remains con-
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Figure 6: Effect of partial distinguishability on TVD.
The TVD between the binned distributions correspond-
ing to ideal photons (x = 1) and partially distinguishable
ones is displayed as a function of the distinguishability
parameter x. In this figure we took m = n = 10 and
equipartitions of size K = 2, 3, 4.

stant whereas in the “collision free" regime it sug-
gests a polynomial decay. A specific example for
x = 0.9, can be found in Fig. 11 of Appendix C.
This numerical evidence strongly suggests that
the method of analysing photon-counting distri-
butions in subsets can efficiently distinguish ideal
boson samplers from ones with partially distin-
guishable inputs.

Dependency on photon density The previ-
ous results reaffirm the important role of photon
density in the efficiency of discriminating ideal
and noisy boson samplers. Although analytical
results about this dependency may be difficult to
obtain, we may use the numerical data to extract
power laws that approximately govern this behav-
ior. For different values of partial distinguishabil-
ity, and considering equipartitions with a small
number of subsets, the data suggests that TVD
between the ideal distribution and that coming
from partially distinguishable input photons with
a fixed x is approximately described by the fol-
lowing behavior

tvd(B, x) ≃ c(K, x)ρ. (47)

Here, ρ = n/m is the photon density and c(K, x)
is a numerical constant depending on the num-
ber of subsets K and the level of partial distin-
guishability x. More precisely, when fitting the
numerical data with an ansatz model tvd(B, x) ≃
c(K, x)ρr, we obtain a value of r ≈ 0.95, with
some small variability depending on the value of

partial distinguishability chosen, which may be
also due to the finite number of trials. Further
plots and details regarding the quality of the ap-
proximation are given in Appendix C. While not
formally proven, this approximate power law in
the regimes we explored further suggests the ef-
ficiency of the validation scheme, with a polyno-
mial decrease of the TVD between binned dis-
tributions when ρ decreases polynomially in the
number of photons.

4.4 Hypothesis testing
Given a collection of experimental samples and
two possible theoretical descriptions of the ex-
periment, the formalism of Bayesian hypothesis
testing allows us to predict how many samples
are needed to decide which one is more likely to
describe the observed data. This strategy has
been exploited in the context of boson sampling
in Refs. [30, 31, 32]. We may assume that one
of the hypothesis to describe the experiment is
an ideal boson sampler, with indistinguishable in-
put photons. We call this the null hypothesis H0,
which we would like to test against an alternative
description of the experiment Ha. The later could
be for example a boson sampler with distinguish-
able or partially distinguishable input photons.
Given an output sample s = (s1, s2, . . . , sm), we
can compute the ratio between the probability of
observing this sample assuming the null hypoth-
esis p(s|H0), and its counterpart assuming the
alternative hypothesis p(s|Ha). The product of
these ratios over the different samples give us the
Bayesian factor

χ =
ns∏

i=1

p(s(i)|H0)
p(s(i)|Ha)

, (48)

where s(i) refers to the i-th sample and ns to the
total number of samples. The confidence in the
hypothesis H0 can be computed from χ as

pnull = χ/(χ + 1). (49)

Although there is numerical evidence that this
method requires only a modest number of sam-
ples to validate an ideal boson sampler against
certain alternative hypothesis [30, 31, 32], the
main drawback is that the computation of the
confidence pnull is not efficient. Indeed, the
output probabilities of ideal boson samplers
p(s(i)|H0) are exponentially hard to approximate.
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Figure 7: Number of samples required to distinguish
the indistinguishable and distinguishable inputs. This
number of samples is determined by taking the aver-
age number of samples required to obtain a certainty of
pnull = 95% using the Bayesian approach laid out in the
main text, see (48). We numerically confirmed that this
quantity depends to a good approximation only from bo-
son density ρ in numerical trials, as is discussed in the
main text for the TVD. This specific figure was gener-
ated using parameters n = 10, m = 10, . . . , 300 and
each point is an average over 1000 Haar-random uni-
taries.

In this section, we consider as output sam-
ples the events k, corresponding to the photon
number distribution in K bins as discussed in
Sec. 2. We show that this simpler-to-compute
probability distribution can be used to validate
boson sampling experiments, instead of the full
outcome distribution. In particular, we are inter-
ested in the following question: how many sam-
ples do we need to reject the hypothesis that we
have an ideal boson sampler when we are in the
presence of a noisy one? To give an example, we
again focus on the interpolating model of partial
distinguishability discussed in Sec. 4.1. In Fig. 8,
we plot the number of samples needed to reject
the null hypothesis with a confidence of 95% if
the experiment is described by a boson sampler
whose input has a distinguishability parameter
x. We observe that for 10 photons in 10 modes
and a distinguishability parameter x = 0.8, a few
hundred samples are enough to reject the null
hypothesis even in the simplest case where we
choose two equal-sized bins. This is improved by
a factor of about one half if we bin the output
modes into three subsets, thus gaining more in-
formation about the full probability distribution.
We remark also that, as expected, the number of
samples to reject the null hypothesis sharply in-

Figure 8: Number of samples required to reject the null
hypothesis of having indistinguishable bosons when the
input is actually the one parameter interpolation with
indistinguishability 0.8 ≤ x ≤ 0.99. This number of
samples is determined by taking the average number of
samples required to obtain a certainty less than pnull =
5% using the Bayesian approach laid out in the main
text, see (48). This specific figure was generated using
parameters n = 10, m = 10 and each point is an average
over 1000 Haar-random unitaries.

creases as the noisy boson sampler becomes closer
to ideal, i.e. as x tends to one.

Numerical evidence also suggests that it is pos-
sible to extract approximate power laws, that al-
low us to predict the number of samples needed
as a function of the photon density, in analogy to
what was done for the TVD in Sec. 4.3. In the
case where the task is to differentiate between dis-
tinguishable vs. indistinguishable input photons,
we verify numerically that this dependence is well
described by the following power law

ns ≈ d(K)
ρ5/2 , (50)

which we extract from the data of Fig. 7. Here,
d(K) a constant depending on the choice of par-
tition and level of partial distinguishability. Sim-
ilar power laws may be extracted when the in-
put photons are partially distinguishable (more
details in Appendix C). Such extrapolations are
useful to predict the necessary sampling rates for
validate experiments when scaling up the system
size.

4.5 Validation in the presence of loss
Thus far, we have not yet considered the role of
loss in the validation task. The average num-
ber of photons that go through the linear opti-
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cal circuit decreases exponentially with the cir-
cuit depth [16], which is usually linear with the
number of modes. Hence, most of the experimen-
tal observations will be of lossy events and even
though postselection on "lossless" events is pos-
sible, it would lead to an exponential decrease of
the sampling rate. For this reason, it is inter-
esting to consider events with a few lost photons
for the task of validating an experiment trying
to demonstrate a quantum computational advan-
tage – this not only increases significantly the
sampling rate but also these experiments may still
be difficult to simulate with classical algorithms,
provided that the photons are fully indistinguish-
able from each other [28].

The question we address in this section is
whether such lossy events can be used to vali-
date the experiment faster, i.e. whether they con-
tain useful information about other sources of
noise affecting the experiment, namely photon
distinguishability, which may render the exper-
iment easy to simulate classically. Let us con-
sider again the hypothesis testing setting using
the data from how photons distribute in subsets
of output modes. Here we consider only a single
subset with half the modes for simplicity. We de-
fine the validation time as the time needed to dis-
tinguish between the ideal hypothesis H0 and an
alternative one Ha with some predetermined con-
fidence (say 95%), assuming a constant sampling
rate of the lossy boson sampler. As we will see,
using data with lost photons to test for photon
distinguishability, may lead to a significant speed-
up in the validation time. To give a concrete ex-
ample, we consider the task of validating a boson
sampler with 10 photons in 10 modes for different
loss parameters. We assume our boson sampler
has a partially distinguishable input state with
distinguishability parameter x = 0.9 (hypothesis
Ha) and the task is to test if it is an ideal one
with x = 1 (hypothesis H0). We define Tl as the
average validation time over Haar-random inter-
ferometers, if we take into account the data up to
l lost photons. In Fig. 9, we plot the ratio T0/Tl

as a function of the loss rate which we assume
to be uniform. This quantity reflects the aver-
age speed-up obtained by considering data with
lost photons. For a loss rate of 0.2, a speed-up
of around 40-fold is obtained when considering
all the data, independently of how many photons
were lost. Fig. 9 also reveals that, as expected,

Figure 9: Validation speed up using lost photons.
In this figure, we take a single subset of half the m =
10 output modes with n = 10 photons. We validate
that the observations are indistinguishable bosons versus
the one-parameter model with x = 0.9. We consider a
model of uniform loss, with single photon transmissivity
η. The reference curve shows validation with no lost
photons (y-coordinate is 1). Curves with l ≤ 1, . . . , 5
show that the including output data with up to l photons
lost gives significantly a faster validation scheme. This
speed up becomes less and less important as l increases.
The data is averaged over 100 Haar-random unitaries
and 1000 validation runs for each unitary.

events where more photons were lost contain less
information about the distinguishability of the in-
put. This is visible, for example, from the fact
that the speed-up obtained when taking the data
with up to five lost photons is very similar to
taking all the data. We have verified numerically
that this speed up tends to increase in larger sys-
tems, even for a fixed η.

5 Discussion
In this work, we have showed that a coarse-
graining of the boson sampling output distribu-
tion by grouping the output modes into bins, pro-
vides a simpler to analyse outcome distribution
and a natural validation test for boson samplers.
We demonstrate that, given a theoretical model
of the experiment, the binned output distribution
can be classically approximated as efficiently as
if we run the experiment itself. The main tech-
nique we use to obtain this result is the compu-
tation of the (discrete) characteristic function of
the binned distribution via Gurvits randomized
algorithm for permanent approximation [3].

Even for a small number of output bins, the
distribution reveals great sensitivity to photon
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distinguishability. Our numerical simulations us-
ing this validation test suggest that a polynomial
number of samples is sufficient to distinguish an
ideal boson sampler from one with partially dis-
tinguishable input photons. We also showed how
in realistic situations – where the experimental
data includes a vast majority of events where pho-
tons are lost – the outcomes with lost photons
contain useful information about partial distin-
guishability and that the effective use of this data
can greatly speed-up validation tests.

Multiple interesting research questions arise re-
lated to this validation test. If we do not trust
that the data is coming from an actual physi-
cal experiment, can we guarantee that no effi-
cient classical algorithm exists that may spoof
the test? An important property of the vali-
dation test we consider in our work is that the
subsets we choose to test the experimental data
can be chosen arbitrarily a posteriori. At first
sight, this makes the test harder to spoof: a po-
tential adversary trying to mimic the behavior
of an ideal boson sampler would have to gener-
ate samples such that they are consistent with
the correct coarse-grained photon-counting dis-
tributions for exponentially many possible subset
choices. However, one may wonder whether the
knowledge of the analytic form of the average over
Haar-random unitaries of the binned-output dis-
tribution (see Eq. (43) and Refs. [62, 64]) may
be used to spoof the test. We argue in Appendix
C.6 that the knowledge of the mean of the binned
distributions is not enough to spoof the test, be-
cause different partitions choices exhibit signifi-
cant fluctuations around the mean which should
be measurable with a polynomial number of sam-
ples.

Another interesting question is whether it is
possible to obtain analytical results corroborat-
ing our numerical evidence about the sample effi-
ciency of the method. Previous results on valida-
tion tests based on generalized bunching proba-
bilities from Ref. [46], which can be seen as a par-
ticular outcome of a binned distribution, suggest
that comparing bosonic and distinguishable par-
ticles can be done in a sample efficient way. How-
ever, the problem becomes more difficult when
different models of partial distinguishability come
into play.

Moreover, while we set our interest in us-
ing binned output probabilities as a validation

method, we also believe that it could be a useful
tool for probing partial distinguishability. Devi-
ations from the expected binned output distribu-
tions may possibly be used to quantify the degree
of indistinguishability of the input photons, spe-
cially in highly symmetric interferometers such as
the Fourier transform, where large differences be-
tween distinguishable and indistinguishable par-
ticles are observed.

Our work also opens up the question of whether
certain decision or function problems that can be
solved by boson samplers proposed in Refs. [67,
68], with potential cryptographic applications,
may actually be solved by efficient classical al-
gorithms. Some of these problems are also based
on questions related to probability distributions
obtained after certain binning of the boson sam-
pling data. Even though the binning procedure
is not directly equivalent to ours, it would be
worth investigating if the binned distributions
from Refs. [67, 68] may be approximated via a
similar formalism to that presented in Sec. 2.

During the completion of this work, we became
aware of the recent works from Refs. [69, 70, 71].
Ref. [69] develops an efficient classical algorithm
to approximate molecular vibronic spectra, using
a formalism similar to Sec. 2 based on approxi-
mating Fourier components of the target proba-
bility distribution using Gurvits algorithms. In
turn, Refs. [70, 71] consider photon-number dis-
tributions in binned output modes as validation
tests of Gaussian boson samplers. The authors
use phase space methods to approximate these
distributions, which are referred to as group-
count probabilities. In contrast, we focus on vali-
dation of standard boson samplers and develop a
different formalism to compute group-count prob-
abilities which does not involve phase space av-
erages. Another difference of our work is that,
while the authors of Refs. [70, 71] focus on noise
sources more likely to affect Gaussian boson sam-
plers, we focus on testing the sensitivity of the
method to photon distinguishability as this is one
of the main noise sources affecting standard bo-
son samplers. Overall, we believe our contribu-
tion, together with those previous works, suggests
that analysing how photons distribute in binned
output modes is a scalable and practical method
to use for validation of near-future experiments.

Note that, for the sake of conciseness and ease
of reading, we made the choice to limit the nu-
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merical analysis exposed in this paper to simple
noise models such as uniform partial distinguisha-
bility and loss. In Ref. [72], we provide tools that
allow for general noise models, see below.

Code availability
A complete Julia package, BosonSampling.jl,
and its related package, Permanents.jl, in-
cludes all the tools presented in this paper and
many more regarding boson sampling. They are
written in a user-friendly way and are aimed at
experimentalists wanting to use this work. This
package is already being used in boson sampling
experiments. The package is also focused on mak-
ing it easy to write new models (such as noisy
detectors, or new types of boson sampling) in an
easy to write manner while being as fast as low-
level languages such as C.

A related publication [72] regarding Boson-
Sampling.jl is available on the arxiv.

A complete tutorial and documentation are
provided and interested users are welcome to con-
tact the authors for possible extensions or specific
needs.

All available Figures and data found in this
article can be reproduced directly from the
/docs/publication/partition/ folder of the
package.
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A Transition amplitudes in the partially distinguishable case
A.1 Expression of the characteristic function as an amplitude
Let us first show that the characteristic function introduced in Eq. 4

x(η) = E
k

[exp (iη · k)] (51)

=
∑

k∈ΩK

P (k) exp (iη · k) (52)

can be expressed as through computing expectation values (also referred to as amplitudes)

x(η) =
〈

Ψout

∣∣∣∣ei
∑K

z=1 ηzN̂Kz

∣∣∣∣Ψout

〉
. (53)

Given an orthonormal basis for the internal states of the photons {|Φj⟩}, we can expand any n-photon
state with mode occupation numbers s = (s1, . . . , sm) into the following orthonormal basis:

|d(s), Φa⟩ = 1√
µ(s)

n∏
j=1

b̂†
dj(s),Φaj

|0⟩ . (54)

Here, d(s) is the mode assignment list, a vector of dimension n constructed as d(s) = ⊕n
j=1 ⊕sj

k=1 (j)
[73]. The component dj(s) reflects the spatial mode occupied by the jth particle and is formally
constructed by repeating sj times the mode number j. In turn, a is also a vector of dimension n,
whose indices aj define that the internal state of the jth particle is

∣∣∣Φaj

〉
. Moreover, we also define

µ(s) = s1! · · · sm!.
The output state of a boson sampler with partially distinguishable input photons can then be written

as
|Ψout⟩ =

∑
d(s),a

α(d(s), Φa) |d(s), Φa⟩ (55)

where

α(d(s), Φa) =
〈

n∏
j=1

b̂dj(s),Φaj

∣∣∣∣∣∣Ψout

〉
(56)

We can now expand part of the right side of Eq. (53) as

ei
∑K

z=1 ηzN̂Kz |Ψout⟩ (57)

= e
i
∑K

z=1 ηz

∑
j∈Kz

n̂j |Ψout⟩ (58)

=
∑

d(s),a
e

i
∑K

z=1 ηz

∑
j∈Kz

n̂j α(d(s), Φa) |d(s), Φa⟩ (59)

=
n∑

k1=0
· · ·

n∑
kK=0

ei
∑K

z=1 ηzkz
∑

d(s)|k,a

α(d(s), Φa) |d(s), Φa⟩ (60)

where d(s)|k is understood as the vectors s compatible with finding the partition output count k. By
applying ⟨Ψout|, we obtain

x(η) =
n∑

k1=0
· · ·

n∑
kK=0

ei
∑K

z=1 ηzkz
∑

d(s)|k,a

|α(d(s), Φa)|2 (61)

Remark that
P (k) =

∑
d(s)|k,a

|α(d(s), Φa)|2 (62)
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is the probability to find the photon count k, by construction, which proves that we recover Eq. (52).
Therefore, by simply applying a K-dimensional Fourier transform, we can obtain the binned output
probabilities from the values of the xη’s by computing:

P (k) = 1
(n + 1)K

n∑
l1=0

· · ·
n∑

lK=0
x

( 2πl

n + 1

)
e−2πil·k/(n+1) (63)

A.2 Computation of the amplitudes as permanents
Let us derive the expression for x(η) from Eq. (22). We recall that

x(η) = ⟨Ψout| eiη·N̂K |Ψout⟩ (64)

= ⟨Ψin| Û †eiη·N̂KÛ |Ψin⟩ (65)

Written in this form, x(η) can be interpreted as the amplitude of |Ψin⟩ staying intact through a virtual
interferometer

V̂ (η) = Û †eiη·N̂KÛ

To ease notation, we will denote V (η) as simply V . Even though in the main part of the paper
we consider an input state with one photon per mode, here we do a slightly more general derivation
encompassing states of more than one photon per input mode, with mode occupation numbers given
by a vector r. Using the standard trick of inserting V̂ V̂ † in between each creation operator, we obtain

x(η) = 1
µ(r)

〈
0

∣∣∣∣∣∣
n∏

j=1
âdj(r),ϕdj (r)

n∏
j=1

m∑
k=1

Vdj(r),kâ†
k,ϕdj (r)

∣∣∣∣∣∣0
〉

(66)

= 1
µ(r)

m∑
k1,...,kn=1

 n∏
j=1

Vdi(r),ki

〈0

∣∣∣∣∣∣
n∏

j=1
âdj(r),ϕdj (r) â

†
kj ,ϕdj (r)

∣∣∣∣∣∣0
〉

. (67)

(68)

Let’s now compute the quantity between brackets by expanding the internal degrees of freedom into a
basis

|ϕj⟩ =
m∑
α

cjα |Φα⟩ . (69)

As there are only n photons, we could stop the sum to n as the other coefficients will be zero, but to
ease the notation we keep the sum running up to m with the understanding that some coefficients are
zero by construction. Thus〈

0

∣∣∣∣∣∣
n∏

j=1
âdj(r),ϕdj (r) â

†
kj ,ϕdj (r)

∣∣∣∣∣∣0
〉

=
m∑

α1,...,αn,β1,...,βn=1
c∗

d1,α1 . . . c∗
dn,αn

cd1,β1 . . . cdn,βn (70)

×
〈

0

∣∣∣∣∣∣
n∏

j=1
âdj(r),Φαj

â†
kj ,Φβj

∣∣∣∣∣∣0
〉

(71)

This last quantity is given by〈
0

∣∣∣∣∣∣
n∏

j=1
âdj(r),Φαj

â†
kj ,Φβj

∣∣∣∣∣∣0
〉

=
∑

σ∈Sn

n∏
i=1

δdi(r),kσi
δαi,βσi

. (72)

Plugging into the expression for x(η) we obtain

x(η) = 1
µ(r)

m∑
α1,...,αn

∑
σ∈Sn

n∏
j=1

Vdi(r),d
σ−1

i

(r)c
∗
di,αi

cdi,ασ−1
i

(73)
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where we use the fact that if σ ∈ Sn then
∏n

i=1 Ai,σi =
∏n

i=1 Aσ−1
i ,i to rearrange the product. Next, we

eliminate the sums over α′s by recombining the coefficients cj,α into scalar products of the wavefunctions
of internal degrees of freedom as

⟨ϕi|ϕj⟩ =
∑

α

c∗
i,αcj,α ≡ Sij . (74)

This leads to the expression

x(η) = 1
µ(r)

∑
σ∈Sn

n∏
j=1

Vdi(r),d
σ−1

i

(r)Sdi(r),d
σ−1

i

(r) (75)

By defining, as is conventional, the following reduced matrices to lighten the notation

M̃ij = Vdi(r),dj(r) (76)
S̃ij = Sdi(r),dj(r) (77)

we recover a compact expression

x(η) = 1
µ(r)

∑
σ∈Sn

n∏
j=1

S̃i,σiM̃i,σi (78)

= 1
µ(r)perm

(
S̃ ⊙ M̃

)
(79)

involving a single n × n permanent of the elementwise (Hadamard) product between two matrices: the
first constructed from entries of the Gram matrix of the internal degrees of freedom and the second
from the interferometer V . When considering an input of photons occupying modes (1, . . . , n), this
reduces to the expression presented in the main text.

B Binned distributions of Fourier interferometers
B.1 Explicit probabilities for a single subset
In order to derive the expressions for the single-mode distributions obtained in Sec. 3.1, we first derive
a general expression for the photon-number distribution in a single subset of output modes which may
be of independent interest. First we note that we can write Eq. (17) as

V (η) =
(
1+ (eiη − 1)H

)
, (80)

where the matrix H is defined in terms of the interferometer U as

Ha,b =
∑
l∈K

U∗
l,aUl,b, (81)

for some subset of interest denoted as K. Let us define Hn as the n × n submatrix obtained from the
first n rows and columns of Hn and H ′

n = S ⊙ Hn. Using the fact that the diagonal elements of the S
matrix are Sii = 1 we can write

S ⊙ Vn(η) = S ⊙
(
1n + (eiη − 1)Hn

)
(82)

= 1n + (eiη − 1)H ′
n (83)

Using an identity from Minc [74] (Chapter 2.2 exercise 5), the expression for the amplitudes x(νl),
with νl = 2πl/(n + 1) can be expanded as follows

x(νl) = perm
(
1n + (eiνl − 1)H ′

n

)
(84)

= 1 +
n∑

a=1
ca(1 − eiνl)a. (85)
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The coefficients ca are given by

ca = (−1)a
∑

w̄∈Qa,n

perm
(
H ′

n[w̄]
)

, (86)

where Qa,n denotes the set of all strictly ordered subsets of w̄ ⊂ {1, 2, . . . , n} containing a elements.
Furthermore, H ′

n[w̄] denotes an a × a submatrix of H ′
n whose rows and columns are picked according

to w̄. Plugging in Eq. (85) into Eq. (8) we can obtain, after some manipulations, an explicit expression
for the probabilities of observing k photons in the subset K

P (k) = (−1)k
n∑

a=k

(
a

k

)
ca. (87)

This expression is of limited use since in general it is given by a sum of exponentially many permanents.
However, in some particular cases (such as the one in Sec. 3.1) it can be used to obtain analytical results
for the probabilities. Moreover, it can be used to recover some results that were previously obtained.
In particular, it can be seen from this expression that the probability that all photons end up in the
chosen subset, which can be seen as a generalized bunching probability, is given by

P (n) = perm
(
H ′

n

)
, (88)

retrieving the result derived in [46]. It is also possible to see from the probability of not observing any
photons in subset K is given by

P (0) = perm
(
1n − H ′

n

)
. (89)

The latter expression is consistent with the fact that this probability is the same as that of seeing n
photons in the complement of subset K and was considered in [40]. Therein, it was also shown that
this quantity can be used to distinguish certain efficient classical simulation algorithms from boson
samplers with partially distinguishable inputs for constant density ρ = n/m.

B.2 Single mode output distribution
We now apply our previous derivation to the problem of obtaining the photon number distribution in a
single detector of the Fourier interferometer. Without loss of generality we choose the subset K1 = {1}.
In this case, for an m-mode Fourier interferometer the H matrix takes the simple form

Hi,j = F ∗
1iF1j = 1

m
. (90)

For indistinguishable photons we have that H ′
n = Hn and the coefficients ca from Eq. (86) are given

by

ca = (−1)a
∑

w̄∈Qa,n

perm (Hn[w̄])

= (−1)a
∑

w̄∈Qa,n

a!
ma

= (−1)a

(
n

a

)
a!
ma

,

where we used the fact that the number of possible strictly order subsets from Qa,n is |Qa,n| =
(n

a

)
.

Plugging in Eq. (87), we obtain

P B
k =

n∑
a=k

(−1)k+a

(
a

k

)(
n

a

)
a!
ma

. (91)
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Although to our knowledge this expression has not been derived before, it is known from the general
results of Ref. [59] that the single mode density matrix converges to a thermal state with an average
number of photons n/m. In contrast, it can be seen that if we have fully distinguishable particles
at the input, the distribution P D

k is a binomial distribution. In this case, the probability that each
particle appears in the first output mode is 1/m and hence the probability of observing k particles in
this mode is

P D
k =

(
n

k

)
1

mk

(
1 − 1

m

)n−k

. (92)

In the regime of constant density ρ = n/m = const., this probability distribution tends to a Poisson
distribution with mean ρ. It can be seen that these two distributions are sufficiently far apart and that
it should be possible to distinguish them efficiently, i.e. with a number of samples growing polynomially
in n, both in the constant density regime and in the collision free regime m = n2.

B.3 Photon number distribution in the odd modes
We will now restrain ourselves to the case where the number of modes m is equal to the number of input
photons n and thus consider exactly one photon per input mode. We will show that for the choice
of a specific partition of the output modes, a striking difference exists between the distinguishable
and indistinguishable cases by computing analytically those probability density functions. Namely,
we will consider the special subset of the output modes consisting of the modes with odd numbers
K = {1, 3, 5, . . . , n − 1} and will restrict ourselves to n even. In this scenario, we show that if the input
are bosons the probability of seeing an odd number of photons in K is 0, whereas the probability of
seeing an even number of photons follows a simple binomial distribution. We start by computing

x(η) = perm
(
F †Λ(η)F

)
. (93)

We will first simplify the matrix product inside the permanent. We start by writing

Λ(η) = 1+
∑
j∈K

(
eiη − 1

)
|j⟩ ⟨j|

so that

(F †Λ(η)F )ab = δab +
(
eiη − 1

)∑
j∈K

F †
ajFjb

= δab +
(
eiη − 1

)∑
j∈K

1
n

exp
(2πi

n
(j − 1)(a − b)

)

= δab +
(
eiη − 1

) 1
n

n/2−1∑
k=0

exp
(4πi

n
k(a − b)

)

Now, let’s note that the sum is a geometric series
n/2−1∑

k=0
exp

(4πi

n
k(a − b)

)
=

=
{

n
2 , if |a − b| = 0 or n

2
0 otherwise

given that a, b are integers. Thus

(F †Λ(η)F )ab =


eiη+1

2 if a = b
eiη−1

2 if |a − b| = n
2

0 otherwise
(94)
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In other words,

V (η) = F †Λ(η)F = (95)

= circ

(
eiη + 1

2 , 0, . . . , 0,
eiη − 1

2 , 0, . . . , 0
)

(96)

where circ(v⃗) denotes the circulant matrix whose first row is v⃗. Now let’s see that this form allows us
to compute the permanent analytically. We have that

perm (V (η)) =
∑

σ∈Sn

∏
i

V (η)iσ(i). (97)

Due to the large number of zeros in V (ϕ) the sum over all permutations can be greatly simplified. In
fact, the only permutations that lead to a non-zero product

∏
i V (η)iσ(i) are those such that σ(i) = i

or σ(i) = i + n/2 (mod n). Such permutations can be written as a product of disjoint permutations

σ = γ1γ2 . . . γn/2 (98)

where γi ∈ {e, τi}, e is the identity permutation and τi is the transposition that switches elements i
with element i + n/2 (mod n). Hence we can write

perm (V (ϕ)) =
∑
γ1

∑
γ2

· · ·
∑
γn/2

n/2∏
i=1

V (η)i,γi(i)V (η) n
2 +i,γi( n

2 +i) (99)

=
n/2∏
i=1

∑
γi

V (η)i,γi(i)V (η) n
2 +i,γi( n

2 +i) (100)

=
n/2∏
i=1

(eiη + 1
2

)2

+
(

eiη − 1
2

)2
 (101)

=

(eiη + 1
2

)2

+
(

eiη − 1
2

)2
n/2

(102)

= 1
2n/2 (e2iη + 1)n/2 (103)

In the second step we used the fact that the γi’s are disjoint permutations to switch the product with
the sum. Finally, by applying Eq. (8) we obtain

P B
k =

{
0 if k is odd

1
2n/2

(n/2
k

)
if k is even

(104)

Comparatively, we can find the counterpart of this expression for distinguishable particles following
a simple statistical argument. For an unbiased interferometer (such as the Fourier interferometer), the
probability that a given particle falls into the partition A is q = |A|/m such that the probability to
find j photons inside the partition is given by the binomial distribution

P D
j =

(
n

j

)
qj(1 − q)n−j

which, in the case discussed above, reduces to

pD
j = 1

2n

(
n

j

)
.

The striking difference between the two cases is represented in Fig. 3. It is possible to see that the
TVD between these two probability distributions tends to a constant as n goes to infinity.
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C Further numerical investigations

In this appendix, we present extra numerical evidence to support the claims made in the main text.
All plots of this paper are reproducible by using the associated project, BosonSampling.jl which
contains the exact code needed for their execution. The package also allows to explore different
parameter ranges.

C.1 Default partition choice

Unless otherwise specified, the choice of partition is made as follows. We divide all physical output
modes m in K bins. For a lossy boson sampler, all the environment modes are always grouped
together in a single bin. If K divides m, each physical bin is contains m/K modes. Otherwise, we
can decompose m = p(K − 1) + q. Then the first K − 1 bins are of size p while the remaining one
of size q. We always take consecutive modes in building each bin. This choice is not very important
as we approximately obtain the Haar average value of the probabilities by computing them for several
Haar random unitaries. We remark that for the Haar averaged probabilities only the size of each bin
matters and not the specific choice of partitionas. Arbitrary arrangements for the bins, which may be
useful to test particular interferometers, can readily be simulated with the provided codes.

C.2 Variability of the TVD

In Fig. 10, we show the behaviour of the variance bars of Fig. 5, showing how the TVD converges to
its mean value.

Figure 10: Variability of the TVD with system size. We plot the same parameters as in Fig. 5 but instead of
looking at the TVD we display its coefficient of variation (CV), defined as the standard deviation divided by the mean.
To a good approximation, it follows a power law of form CV ∝ n−1 in all plots with a slightly varying prefactor of
order one.

C.3 TVD with partial distinguishability

In Fig. 11, we show here that the TVD decreases in a similar fashion than described in Fig. 5 when
comparing indistinguishable particles to nearly indistinguishable ones. This is an important observation
as this gives strong evidence for the scalability of our validation protocol even in real-world use cases.
In addition, the fact that the distance between distributions may allow for the estimation of the
distinguishability levels in the experiment, by finding the distinguishability parameter that gives the
highest agreement with the experimental data.
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Figure 11: TVD between bosonic and nearly indistinguishable particles. This figure shows that the results
shown in Fig. 5 hold even when comparing indistinguishable photons to nearly indistinguishable ones. All parameters
are identical to those from Fig. 5, except from the fact that we compare ideal bosons to partially distinguishable
ones with x = 0.9 (instead of x = 0). We confirmed this trend in multiple numerical trials with other values of
distinguishability parameter x.

C.4 The role of boson density

Our numerical investigations highlight the preponderant role of boson density ρ = n/m in the behavior
of the TVD between binned distributions of different types of input particles. This dependency is shown
in Fig. 12 for the TVD between distinguishable and indistinguishable photons. These power law fits at
low number of photons are useful to understand the scalability of the validation technique we consider
for larger experiments. Overall, we find that

tvd(B, x) ≈ c(K, x)ρ (105)

with c(2, 0) ≈ 0.41, c(3, 0) ≈ 0.67. We see how the above equation holds when using different values
of n in Fig. 13. While some slight variation is found in small sized systems, the power law seems to
become nearly independent of n in larger systems. Likewise, we also check that it holds to a good
approximation when comparing indistinguishable photons to some with partial distinguishability x in
Fig. 14.

Figure 12: Effect of boson density. The Haar-averaged TVD between bosonic and distinguishable particles (asymp-
totically) depends only on the boson density ρ, see (44). We show how it evolves in the example of n = 10 and
m = 10, . . . , 300 with a number of subsets K = 2, 3, 4. Real-world experiments typically have a high boson density,
for instance [11] has n = 20 and m = 60 thus ρ = 1/3. Note that the hardness of boson sampling is shown in a very
dilute case of m ∝ n6 and conjectured in the "no collision" regime m ∝ n2 [3].
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Figure 13: Validity of the power law. In Fig 12 we claim that the density is the prime factor modifying the TVD.
Here we provide a justification for this by looking at the power-law fit tvd(B, D) = c(K, 0)ρr with K the number of
subsets in the partition. We plot the coefficients for various values of n. The values of m are such that the density
ranges from 1, . . . , 0.03. 10 values of m are taken and are equally distributed in logarithm (such as seen on Fig. 12).
For each point, 100 iterations are performed.

Figure 14: Validity of the power law for various values of x.. We show the evolution of the coefficient c(2, x) as
well as the power r for n = 8 over various values of x. We see small variations in the r but the overall behaviour
seems to hold well. For each point, 100 iterations are performed. The last point on the right has value x = 0.99.

C.5 Dependency of number of samples on density

In this subsection, we give some details about Eq. 50. We use as ansatz the following equation
describing the dependence of the number of samples to validate the ideal boson sampler hypothesis
against a model with partial distinguishable photons:

ns ≈ d(K, x)
ρr

(106)

The value of d(K, x) depends on the partition size and the value of partial distinguishability. For
x = 0 we obtain d(2, 0) = 17.9 and the power fit gives an exponent of r = 2.53 when using n = 10
input photons. Our numerical evidence suggests that the fit becomes better and better as the density
decreases, as finite size/density effects may be at play. The same can be said for the number of input
photons. We also obtained preliminary evidence suggesting that the power law holds for other values
of partial distinguishability, although a complete analysis is out of the scope of the paper. More precise
numbers can be obtained using the publicly available codes (see Code Availability).
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C.6 Spoofing
An open question left by our work is whether an adversary can spoof the validation test based on
binned distributions and successfully pretend to generate samples from an ideal boson sampler, for
example, by constructing a clever mock-up sampler based on an efficient classical algorithm. In this
subsection, we study whether an adversary can easily reproduce the binned distributions obtained from
an ideal boson sampler, without the knowledge of the choice of partitions used to validate the sampler.
To do so, we quantify numerically in two different ways how much the binned distribution changes
over different random choices of the bins, showing there is a significant variability in the distributions
between different choices.

First we consider a unitary drawn at random according to the Haar measure and compute the total
variation distance between two random partitions with the same number of bins, but not necessarily
the same sizes for each bin. An example for m = 4 could be to consider subsets of modes {1, 2}, {3, 4}
for the first partition while taking {1}, {2, 3, 4} for the second. In Fig. 15 we plot the total variation
distance between two randomly picked distributions, averaging over random partition choices and Haar
random unitaries. The large values of the TVD observed are explained by the fact that there are large
differences of the distributions with different bin sizes, as can be seen from the asymptotic expression
in Eq. (43). For example, in a bin of size L we would expect to see on average Ln/m photons.

In our second example, we want to illustrate that even an adversary who is able to produce samples
that correctly reproduce the Haar averaged properties of the binned distributions (e.g. by exploiting
knowledge of Eq. (43)) would not be able to spoof the validation test. To do so, in Fig. 16, we compare
only binned distributions from randomly chosen subsets of fixed sizes. More precisely, in this second
case, we divide the m modes with K equally sized subsets (up to the remainder of m/K). In this case,
for m = 4 we could for instance choose {1, 2}, {3, 4} and {3, 2}, {1, 4} (but not {1}, {2, 3, 4} as the first
subset does not have the same size as {1, 2}). In each case, we compute the TVD between the binned
distributions resulting from these random bin choices, averaging over different random bin choices of
equal sizes and also over Haar random unitaries.

Even in this latter scenario, we see that the TVD between distribution decreases slowly with the
number of photons. This suggests that with a polynomial number of samples, one could identify
differences between a mock-up sampler that is able to reproduce the right Haar averaged properties
of binned distributions and an ideal boson sampler. It would be interesting to analytically prove a
polynomial decrease of the TVD in this scenario, a question we leave for future work.
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Figure 15: Distance between randomly selected partitions with subsets of possibly different sizes. The same
procedure is repeated 100 random bin choices for each unitary. We then average, for each value of n, over 100 Haar
random unitaries. Two scenarios are presented: a high density regime, where m = 2n and a no collision regime with
m = n2. For both cases, we study the effect of choosing 2 or 3 bins.

Figure 16: Total variation distance between randomly selected partitions containing subsets of equal sizes.
The same procedure is repeated 100 random bin choices for each unitary. We then average, for each value of n, over
100 Haar random unitaries. Two scenarios are presented: a high density regime, where m = 2n and a no collision
regime with m = n2. For both cases, we study the effect of choosing 2 or 3 bins.
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