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Probabilistic pure state conversion on the majorization lattice
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Entanglement is among the most fundamental—and at the same time puzzling—properties of quantum
physics. Its modern description relies on a resource-theoretical approach, which treats entangled systems as
a means to enable or accelerate certain informational tasks. Hence, it is of crucial importance to determine
whether—and how—different entangled states can be converted into each other under free operations (those
which do not create entanglement from nothing). Here, we show that the majorization lattice provides an efficient
framework in order to characterize the allowed transformations of pure entangled states under local operations
and classical communication. The underlying notions of meet ∧ and join ∨ in the majorization lattice lead
us to define, respectively, the optimal common resource and optimal common product states. Based on these
two states, we introduce two optimal probabilistic protocols for the (single-copy) conversion of incomparable
bipartite pure states, which we name greedy and thrifty. Both protocols reduce to Vidal’s protocol [G. Vidal,
Phys. Rev. Lett. 83, 1046 (1999)] if the initial and final states are comparable, but otherwise the thrifty protocol
can be shown to be superior to the greedy protocol as it yields a more entangled residual state when it fails (they
both yield the same entangled state with the same optimal probability when they succeed). Finally, we consider
the generalization of these protocols to entanglement transformations involving multiple initial or final states.
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I. INTRODUCTION

Quantum entanglement has long been recognized as a nec-
essary resource in many quantum information protocols [1–3]
and is often regarded as the paramount quantum resource
[4]. In this context, separable states are defined as resource-
free states and local operations supplemented with classical
communication (LOCC) are viewed as free operations, that
is, operations that map separable states onto separable states
(hence, do not create any resource). An important aspect of
such a resource theory of entanglement concerns the study
of allowed entanglement transformations, i.e., the conversions
between entangled states of a system shared between several
parties that can be achieved using LOCC only. Note that the
conversions of bipartite pure states are asymptotically (in the
limit of many copies) always allowed with some yield [5].
Instead, here, we focus on the case of single-copy transfor-
mations between bipartite pure states. The most notable result
on this subject, due to Nielsen [6], consists in a simple char-
acterization of deterministic bipartite pure-state conversions
using LOCC by means of majorization theory. A related re-
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sult, due to Vidal [7], further extends this characterization to
probabilistic transformations.

The theory of majorization allows one to compare proba-
bility distributions in terms of intrinsic disorder [8]. Given two
probability vectors p and q, we say that p is majorized by q,
written p ≺ q, if and only if

k∑
i=1

p↓
i �

k∑
i=1

q↓
i , ∀k ∈ [1, d − 1], (1)

k∑
i=1

p↓
i =

k∑
i=1

q↓
i , for k = d, (2)

where p↓
i (resp. q↓

i ) denotes the ith greatest component of p
(resp. q). Here, d is the number of nonzero components of
the longest vector between p and q (zeros are appended at
the end of the smallest vector if necessary); hence Eq. (2) is
obviously fulfilled due to probability normalization. Note that
majorization only defines a preorder relation on probability
vectors, meaning that two probability vectors may be incom-
parable under majorization. For example, (0.5, 0.4, 0.1) and
(0.6, 0.2, 0.2) do not fulfill Eq. (1) in either direction. On the
opposite, if Eq. (1) holds in both directions (p ≺ q and q ≺ p),
then the two vectors are said to be equivalent, which means
that they coincide up to a permutation.

Majorization relations have a central role in entanglement
theory, as implied by Nielsen’s theorem [6]. Consider two
parties, Alice and Bob, sharing a bipartite pure state |ψ〉. The

2643-1564/2024/6(2)/023156(10) 023156-1 Published by the American Physical Society

https://orcid.org/0009-0007-0869-9118
https://orcid.org/0000-0002-6144-9990
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023156&domain=pdf&date_stamp=2024-05-13
https://doi.org/10.1103/PhysRevLett.83.1046
https://doi.org/10.1103/PhysRevResearch.6.023156
https://creativecommons.org/licenses/by/4.0/


DESIDE, ARNHEM, GRIFFET, AND CERF PHYSICAL REVIEW RESEARCH 6, 023156 (2024)

Schmidt decomposition of |ψ〉 is written as

|ψ〉AB =
d∑

i=1

√
λ

(i)
ψ |i〉A |i〉B , (3)

where λψ = (λ(1)
ψ , · · · , λ

(d )
ψ ) is the Schmidt vector of |ψ〉

made with the eigenvalues of the reduced density matrix ρ̂A

(or ρ̂B), while {|i〉A} (resp. {|i〉B}) denotes the eigenbasis of ρ̂A

(resp. ρ̂B). If Alice and Bob wish to convert |ψ〉AB into another
pure state

|φ〉AB =
d∑

i=1

√
λ

(i)
φ |i〉A |i〉B , (4)

this entanglement transformation is possible with certainty
using LOCC if and only if

λψ ≺ λφ. (5)

Of course, two states are locally unitarily equivalent, i.e.,
interconvertible under local unitaries ÛA ⊗ ÛB, if and only
if they share the same Schmidt vector up to a permutation.
Hence, it is sufficient to consider Schmidt vectors sorted by
decreasing order in order to compare them with a majorization
relation. (In what follows, all Schmidt vectors will always be
assumed to be sorted decreasingly, that is, λ

(i)↓
ψ = λ

(i)
ψ , so we

will omit the arrow sign.)
An equivalent form of Nielsen’s theorem can be stated

by using a sufficiently large set of entanglement monotones
[9], i.e., functionals of the state |ψ〉 that cannot increase, on
average, under a LOCC transformation. By using Eqs. (1) and
(2), one can easily check that

El (ψ ) =
d∑

i=l

λ
(i)
ψ , ∀l ∈ [1, d], (6)

form a set of d entanglement monotones, which allow us to
reexpress Nielsen’s theorem as

|ψ〉 LOCC−→ |φ〉 ⇐⇒ El (ψ ) � El (φ), ∀l ∈ [1, d], (7)

where |ψ〉 LOCC−→ |φ〉 means that |ψ〉 can be deterministi-
cally converted into |φ〉 by using LOCC. Protocols achieving
such a transformation have been discussed, for example, in
Refs. [10,11]. The characterization of entanglement transfor-
mations via majorization relations has been generalized to
probabilistic LOCC transformations by Vidal in Ref. [7], and
an optimal protocol achieving the desired probabilistic trans-
formation was also provided (it will be detailed in Sec. III).
Optimality refers here to a protocol that reaches the exact state
|φ〉 with the highest possible success probability.

In this paper, we exploit the majorization lattice [12], a
notion recently shown to be relevant for addressing quan-
tum information questions [13–20], in order to revisit the
probabilistic entanglement transformations between bipartite
pure states. Our analysis builds upon two central elements
of a lattice theory, the so-called meet and join (see Fig. 1),
and yields two corresponding optimal protocols (see Fig. 2).
Considering an entanglement lattice, where each node is a
bipartite pure state and the lattice structure emerges from
majorization relations, we associate the meet and join to two

FIG. 1. Schematic representation of the majorization lattice. Let
p and q ∈ Pd , the meet p ∧ q is located at the intersection of the two
upper cones, whereas the join p ∨ q is located at the intersection of
the two lower cones. Since the upper cones contain more disordered
elements, the meet p ∧ q stands for the most ordered element among
those that are more disordered than both p and q. Conversely, since
the lower cones contain more ordered elements, the join p ∨ q stands
for the most disordered element among those that are more ordered
than both p and q.

specific states that we call, respectively, the optimal common
resource (OCR)1 and optimal common product (OCP) states.
We first build a protocol using the OCP state and show that
it is akin to Vidal’s optimal protocol. More interestingly, we
then build a second protocol making use of the OCR state and
prove that, while being again optimal, it better preserves aver-
age entanglement. Both protocols trivially reduce to Vidal’s in
the special case where |ψ〉 and |φ〉 are comparable states in the
sense of majorization theory, so we focus on the interesting
case of incomparable states.

The protocol based on the OCP state can be viewed as
a greedy protocol. In the context of optimization, a greedy
algorithm evolves towards the solution by choosing the local
optimal move at each stage. In analogy, our greedy protocol
favors the immediate gain of a deterministic move and post-
pones the probabilistic move (see red arrows in Fig. 2). Our
second protocol based on the OCR state can be understood, in
contrast, as a thrifty protocol. A thrifty optimization algorithm
prefers not to choose immediate gain at each stage. Here, our
thrifty protocol indeed tolerates starting with a probabilistic
move (see green arrows in Fig. 2). The main results of this
paper consist in Theorems 1 and 2, which prove, respectively,
the optimality and better average entanglement preservation
of the thrifty protocol.

The paper is organized as follows. In Sec. II, we first
introduce the majorization lattice and, specifically for bipartite
entanglement, the OCR and OCP states. Then, in Sec. III,
we present Vidal’s theorem for the probabilistic conversion
of bipartite pure states as well as the corresponding optimal

1This term was first coined in Ref. [21] but with no reference to the
majorization lattice.
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FIG. 2. Schematic representation of the majorization lattice ap-
plied to bipartite entanglement. Let |ψ〉 and |φ〉 be two bipartite
pure states that are assumed to be incomparable. Any state lying
in the upper cone of |ψ〉 is convertible into |ψ〉 via deterministic
LOCC, while any state in the lower cone of |ψ〉 is reachable from
|ψ〉 via deterministic LOCC (this is pictured with a collection of grey
arrows pointing downwards). The same holds true, of course, for the
cones associated with |φ〉. The OCR state |ψ ∧ φ〉 is located at the
intersection of the two upper cones and can be understood as the least
entangled state capable of deterministically producing either |ψ〉 or
|φ〉. In contrast, the OCP state |ψ ∨ φ〉 is located at the intersection
of the two lower cones and can be viewed as the most entangled state
that both |ψ〉 and |φ〉 are capable to produce deterministically. We
highlight the greedy (red) and thrifty (green) protocols as discussed
in Sec. IV for converting |ψ〉 into |φ〉 (bold arrows correspond to
deterministic LOCC transformations and dashed arrows to proba-
bilistic LOCC transformations). The greedy protocol (in red) starts
with a deterministic LOCC towards the OCP state and postpones the
probabilistic LOCC. In contrast, the thrifty protocol (in green) starts
with a probabilistic LOCC towards the OCR state before making the
deterministic LOCC.

protocol. This provides us with the tools for introducing the
greedy and thrifty protocols in Sec. IV. We further establish
in Sec. V the generalization of the greedy and thrifty protocols
to an arbitrary number of initial or final states. Finally, we give
our conclusions in Sec. VI.

II. MAJORIZATION LATTICE

Arising from order theory, the notion of lattice unveils a
partial order relation on the elements of a set. Hereafter, we
consider a specific lattice where the elements under com-
parison belong to the set of probability distributions sorted
decreasingly and where the partial order is given by the
majorization relation. More formally, the majorization lattice
[12] is a quadruple 〈Pd ,≺,∧,∨〉, where

(i) Pd is the set of discrete probability vectors sorted de-
creasingly with, at most, d nonzero coefficients, that is, Pd =
{(p1, · · · , pd ), s.t. p1 � · · · � pd � 0 and

∑d
i=1 pi = 1};

(ii) ≺ is the majorization relation;
(iii) ∧ denotes the so-called meet;
(iv) ∨ denotes the so-called join.

The meet of two elements p, q ∈ Pd , denoted p ∧ q, is
defined as the sole element of Pd such that, ∀r ∈ Pd with
r ≺ p and r ≺ q, we have r ≺ p ∧ q. Analogously, the join of
two elements p, q ∈ Pd , denoted p ∨ q, is defined as the sole
element of Pd such that, ∀r ∈ Pd with p ≺ r and q ≺ r, we
have p ∨ q ≺ r.

The following definition allows one to characterize mathe-
matically the meet of two vectors in Pd .

Definition 1. [12] Let p and q ∈ Pd , the meet of p and q,
denoted p ∧ q = (m1, m2, . . . , md ), can be expressed as

mi = min

⎧⎨
⎩

i∑
j=1

p j,

i∑
j=1

q j

⎫⎬
⎭ − min

⎧⎨
⎩

i−1∑
j=1

p j,

i−1∑
j=1

q j

⎫⎬
⎭, (8)

for all i ∈ [1, d], with the convention that
∑k

j=1 p j =∑k
j=1 q j = 0 when k = 0.
The determination of the join of two vectors in Pd is more

cumbersome. As we will not use it explicitly in the following,
we refer the interested reader to Ref. [12] for an algorithm
producing the join.

Figure 1 provides a useful visual insight into the majoriza-
tion lattice where, for each element x of the lattice, an upper
and a lower cone are defined. The elements xup of the upper
cone correspond to all elements that are majorized by x, i.e.,
xup ≺ x, while the elements xdown of the lower cone corre-
spond to all elements majorizing x, i.e., x ≺ xdown. In other
words, the upper cone comprises all the elements that are more
disordered than x, whereas the lower cone comprises all the
elements that are more ordered than x. Considering now two
elements p and q in the lattice, the meet p ∧ q can be viewed as
the most ordered element that remains more disordered than
both p and q. Conversely, the join p ∨ q corresponds to the
most disordered element that remains more ordered than both
p and q. It is worth mentioning that the meet and join are
useful notions only when the two probability vectors p and
q are incomparable under majorization (otherwise, if p ≺ q,
then p ∧ q = p and p ∨ q = q). We will thus be mostly con-
cerned with incomparable Schmidt vectors when developing
the greedy and thrifty protocols in Sec. IV.

In the following, we will consider an entanglement lattice
whose elements are bipartite pure states (Fig. 2). Since the
entanglement of a bipartite pure state is univocally charac-
terized by its Schmidt vector, we may equivalently view the
elements of the lattice as probability vectors in Pd . Hence,
according to Nielsen’s theorem, a state can be obtained from
any state belonging to its upper cone by using only determin-
istic LOCC. Conversely, a state can be converted into any
state of its lower cone by using only deterministic LOCC.
In other words, the lattice structure translates the allowed en-
tanglement transformations. Accordingly, the meet of two (or
more) states denotes the least entangled state that can still be
deterministically converted into any one of them. We refer to it
as the optimal common resource (OCR) state (see Footnote 1).
Reciprocally, the join of two (or more) states denotes the most
entangled state that can still be deterministically produced
from any one of them. We refer to it as the optimal common
product (OCP) state. The OCP and OCR states will be used in
Sec. IV in order to construct the greedy and thrifty protocols,
respectively, as pictured in Fig. 2.
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Instructively, the optimality of the OCP and OCR states can
be rephrased as follows. Considering two bipartite pure states
|ψ〉 and |φ〉, any state |τ 〉 that is majorized by both |ψ〉 and
|φ〉 (i.e., any state |τ 〉 lying inside the intersection of the two
upper cones emerging from |ψ〉 and |φ〉 in Fig. 2) must also
be majorized by the OCR state |ψ ∧ φ〉. Thus, according to
Nielsen’s theorem, all “resource states” (i.e., states |τ 〉 that are
convertible into either |ψ〉 or |φ〉 via a deterministic LOCC)
can also produce the OCR state |ψ ∧ φ〉. Since the latter is
itself convertible into either |ψ〉 or |φ〉, it is the resource state
that requires the lowest amount of resource. Conversely, any
state |σ 〉 that majorizes both |ψ〉 and |φ〉 (i.e., any state |σ 〉
lying inside the intersection of the two lower cones emerging
from |ψ〉 and |φ〉 in Fig. 2) must necessarily also majorize the
OCP state |ψ ∨ φ〉. This means that all “producible states”
(i.e., states |σ 〉 that can be deterministically produced with
LOCC either from |ψ〉 or from |φ〉) can also be produced from
the OCP state |ψ ∨ φ〉. Since the latter is itself obtainable
either from |ψ〉 or from |φ〉, it is the producible state that
contains the highest amount of resource.

III. PROBABILISTIC STATE CONVERSION PROTOCOL

When a deterministic state conversion is impossible ac-
cording to Nielsen’s theorem, the same transformation may
sometimes be achieved probabilistically. This is the content
of Vidal’s theorem [7], which we now present.

Let |ψ〉 be the initial state of a bipartite system shared by
Alice and Bob, and let |φ〉 be the target state they wish to
obtain using only LOCC. We suppose that it is possible to
perform the desired transformation from |ψ〉 to |φ〉 with non-
vanishing probability, i.e., the number of nonzero coefficients
of λψ must be at least as large as that of λφ (in the following,
we consider, without loss of generality, that they are equal).
Vidal’s theorem states that there exists a probabilistic proto-
col converting |ψ〉 into |φ〉 with probability p if and only if
El (ψ ) � p El (φ),∀l ∈ [1, d]. Thus, the optimal (maximum)
probability with which Alice and Bob can perform the desired
transformation is given by

pmax = min
l∈[1,d]

El (ψ )

El (φ)
. (9)

Note that pmax � 1 because when l = 1, we have E1(ψ ) =
E1(φ) = 1. Vidal described a protocol achieving this optimal
probability in Ref. [7], which we recall hereafter.

First, Alice and Bob apply a deterministic LOCC in order
to transform |ψ〉 into an intermediate state |χ〉, which max-
imizes the fidelity with respect to the target state |φ〉 while
being deterministically reachable from |ψ〉 using only LOCC
[22], namely,

|χ〉 = argmax
|α〉 : |ψ〉LOCC−→|α〉

|〈α|φ〉|2. (10)

Second, Alice performs a two-outcome measurement on
her share of the system, leading, with some probability pmax,
to the target state |φ〉 (in which case we say that the protocol
has succeeded) or, with probability 1 − pmax, to a state de-
noted as |ξ 〉 (in which case we say that the protocol has failed).
We show below that this residual state |ξ 〉 always possesses a
strictly smaller number of nonvanishing Schmidt coefficients

than |φ〉, hence the conversion from |ξ 〉 to |φ〉 is fully im-
possible, even probabilistically. Note that Vidal’s conversion
protocol, which we refer simply to as a probabilistic LOCC
transformation in the following, involves both a deterministic
step and a probabilistic step.

The construction of the intermediate state |χ〉 works as fol-
lows. We make use of the d entanglement monotones defined
in Eq. (6) in order to define a sequence of ratios r j’s. First,
we define r1, which corresponds to the maximum conversion
probability from |ψ〉 to |φ〉, as

r1 = min
l∈[1,d]

El (ψ )

El (φ)
≡ El1 (ψ )

El1 (φ)
, (11)

where l1 is the value of l that reaches the minimum (it is
chosen as the smallest value of l in case of several minima).
Then, we define the next ratios r j’s with j = 2, 3, · · · as
follows (each r j is associated with a corresponding l j):

r j = min
l∈[1,l j−1−1]

El (ψ ) − Elj−1 (ψ )

El (φ) − Elj−1 (φ)
≡ Elj (ψ ) − Elj−1 (ψ )

Elj (φ) − Elj−1 (φ)
,

(12)
until we find some value of j, which we call k, satisfying
lk = 1. Finally, we define l0 = d + 1. On a side note, it can
easily be shown that the sequences of r j’s and l j’s satisfy
0 < r1 < · · · < rk and l0 > l1 > · · · > lk = 1 [7].

From the ratios r j’s, we define the Schmidt coefficients of
the intermediate state

λ(i)
χ = r jλ

(i)
φ , if i ∈ [l j, l j−1 − 1], j ∈ [1, k], (13)

which, by construction, satisfies λψ ≺ λχ . Hence, |ψ〉 is con-
vertible to |χ〉 by using a deterministic LOCC.

The generalized measurement performed by Alice is de-
scribed by the two Kraus operators

M̂ =

⎛
⎜⎝

M̂k
. . .

M̂1

⎞
⎟⎠, (14)

N̂ =

⎛
⎜⎜⎜⎝

√
Î[lk−1−lk ] − M̂2

k
. . . √

Î[l0−l1] − M̂2
1

⎞
⎟⎟⎟⎠, (15)

with

M̂ j =
√

r1

r j
Î[l j−1−l j ], for j ∈ [1, k], (16)

where Î[l j−1−l j ] is the identity operator in a (l j−1 − l j )-
dimensional Hilbert space. We have, of course, the com-
pleteness relation M̂†M̂ + N̂†N̂ = Î[d]. If Alice obtains the
measurement outcome linked to M̂, she obtains the target state
|φ〉. This happens with probability r1 since we have

M̂ ⊗ Î |χ〉 = √
r1 |φ〉 . (17)

Otherwise, if she obtains the outcome linked to N̂ , she gets the
residual state |ξ 〉 such that

N̂ ⊗ Î |χ〉 =
√

1 − r1 |ξ 〉 . (18)

It is clear from Eq. (15) that N̂ possesses at least one
vanishing diagonal element, hence |ξ 〉 has strictly less non-
vanishing Schmidt coefficients than |φ〉. Therefore, it is
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FIG. 3. Diagrammatic representation of the greedy (red) and
thrifty (green) protocols converting |ψ〉 into |φ〉 on the majorization
lattice. The probabilistic LOCC transformation of both protocols is
itself split into two steps: a deterministic step (represented by a bold
arrow) towards an intermediate state (either |χ〉 or |ζ 〉) followed by
a purely probabilistic step (represented by a dashed arrow) involving
a local two-outcome measurement. If the conversion is successful,
the resulting state is majorized by (is more entangled than) the initial
state (|φ〉 ≺ |ψ ∨ φ〉 and |ψ ∧ φ〉 ≺ |ψ〉). The left inset represents
the residual states if the conversion has failed, emphasizing that the
residual state |ν〉 of the thrifty protocol is majorized by (hence, is
more entangled than) the residual state |ξ〉 of the greedy protocol.
Note also that |ζ 〉 ≺ |χ〉.

impossible for Alice and Bob to obtain state |φ〉 from |ξ 〉 by
using (even probabilistic) LOCC transformations.

Note that in the special case where λψ ≺ λφ , Vidal’s
protocol reduces to a deterministic (pmax = 1) protocol for
converting |ψ〉 into |φ〉, which exists as a consequence of
Nielsen’s theorem.

IV. GREEDY AND THRIFTY PROTOCOLS
ON THE MAJORIZATION LATTICE

We now introduce two optimal probabilistic state conver-
sion protocols, which take advantage of the notions of OCP
and OCR states on the majorization lattice (see Fig. 3 for
a precise diagrammatic representation of both protocols). As
usual, Alice and Bob initially share a pure bipartite state |ψ〉
that they wish to transform into a target state |φ〉 by using
only LOCC operations. Further, we assume that |ψ〉 and |φ〉
are incomparable. The protocol passing through the OCP state
works as follows. First, Alice and Bob transform |ψ〉 into
the OCP of the initial and target states, denoted as |ψ ∨ φ〉,
via a deterministic LOCC transformation. This conversion is
possible as a consequence of Nielsen’s theorem since, by defi-
nition, λψ ≺ λψ∨φ . Then, Alice and Bob apply to |ψ ∨ φ〉 the
probabilistic LOCC transformation2 presented in Sec. III in
order to obtain the target state |φ〉. This clearly cannot be done

2It consists of a deterministic step from |ψ ∨ φ〉 to the intermediate
state |χ〉, followed by a probabilistic step from |χ〉 to |φ〉.

deterministically since λψ∨φ ⊀ λφ (actually, λψ∨φ � λφ). We
name this protocol greedy because the deterministic (reward-
ing) LOCC transformation is given priority and precedes the
probabilistic (less rewarding) LOCC transformation.

Following a similar logic, we define another protocol us-
ing the OCR state instead. In this protocol, Alice and Bob
first transform |ψ〉 into the OCR of the initial and target
states, denoted as |ψ ∧ φ〉, using the probabilistic LOCC
transformation3 presented in Sec. III. This transformation can
only be made probabilistically because λψ ⊀ λψ∧φ (actually,
λψ � λψ∧φ). Then, the second phase consists in Alice and
Bob transforming |ψ ∧ φ〉 into |φ〉 via a deterministic LOCC
transformation, which is obviously possible because λψ∧φ ≺
λφ . We name this protocol thrifty because the deterministic
(rewarding) LOCC transformation is postponed after the prob-
abilistic (less rewarding) LOCC transformation.

Interestingly, we will prove that the greedy and thrifty
protocols both reach the optimal conversion probability [the
same as that of Vidal’s protocol, see Eq. (9)]. Furthermore,
we will show that the thrifty protocol better preserves entan-
glement, on average, than the greedy protocol. More precisely,
if the thrifty protocol fails, the residual state, which we call
|ν〉, is more entangled than the residual state of the greedy
protocol, called |ξ 〉, in the sense that λν ≺ λξ , or equivalently

|ν〉 LOCC−→ |ξ 〉.
Note that if |ψ〉 and |φ〉 were comparable instead of incom-

parable states, then the greedy and thrifty protocols would be
equal and would coincide with Vidal’s conversion protocol
from |ψ〉 to |φ〉 (which is probabilistic when λφ ≺ λψ , or
even deterministic when λψ ≺ λφ). Hence, we will only be
interested in the case of incomparable Schmidt vectors λψ and
λφ , i.e., situations where a deterministic LOCC conversion is
impossible in both directions, from |ψ〉 to |φ〉 as well as from
|φ〉 to |ψ〉.

Let us first consider the easiest case of the greedy protocol,
which can be brought to Vidal’s protocol simply by merging
the sequence of two deterministic steps |ψ〉 → |ψ ∨ φ〉 →
|χ〉 into a single deterministic step |ψ〉 → |χ〉. Indeed, in the
second phase of the greedy protocol (i.e., the probabilistic
LOCC transformation from |ψ ∨ φ〉 to |φ〉), the intermediate
state happens to be the same as the intermediate state |χ〉
of the transformation from |ψ〉 to |φ〉 in Vidal’s protocol,
defined in Eq. (13). This is true because this intermediate
state |χ〉 has been shown to belong to the lower cone of
|ψ ∨ φ〉 in Ref. [14], and is thus deterministically reachable
from |ψ〉. Since, by definition, the intermediate state is the
closest state to |φ〉 that is deterministically attainable from |ψ〉
[see Eq. (10)], both intermediate states coincide. Hence, the
greedy protocol is also optimal.

The rest of this section is devoted to the analysis of the
thrifty protocol, which is more involved. Before proving the
optimality of the thrifty protocol, let us prove the following
rather intuitive lemma.

Lemma 1. The entanglement monotone for the OCR of
two bipartite pure states |ψ〉 and |φ〉, El (ψ ∧ φ), is equal to

3It consists of a deterministic step from |ψ〉 to the intermediate state
|ζ 〉, followed by a probabilistic step from |ζ 〉 to |ψ ∧ φ〉.
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the maximum between the entanglement monotones of the
initial state El (ψ ) and target state El (φ), i.e.,

El (ψ ∧ φ) = max {El (ψ ), El (φ)}, ∀l ∈ [1, d]. (19)

Proof. We start from the definition of the lth entanglement
monotone for the OCR state,

El (ψ ∧ φ) =
d∑

i=l

λ
(i)
ψ∧φ, (20)

which can be rewritten, by means of Definition 1, as

El (ψ ∧ φ) =
d∑

i=l

⎛
⎝min

⎧⎨
⎩

i∑
j=1

λ
( j)
ψ ,

i∑
j=1

λ
( j)
φ

⎫⎬
⎭

−min

⎧⎨
⎩

i−1∑
j=1

λ
( j)
ψ ,

i−1∑
j=1

λ
( j)
φ

⎫⎬
⎭

⎞
⎠.

(21)

Since all terms cancel out two by two, except for the first and
last terms, we obtain

El (ψ ∧ φ) = 1 − min

⎧⎨
⎩

l−1∑
j=1

λ
( j)
ψ ,

l−1∑
j=1

λ
( j)
φ

⎫⎬
⎭, (22)

or equivalently,

El (ψ ∧ φ) = max

⎧⎨
⎩

d∑
j=l

λ
( j)
ψ ,

d∑
j=l

λ
( j)
φ

⎫⎬
⎭, (23)

= max {El (ψ ), El (φ)}, (24)

hence completing the proof, which holds ∀l ∈ [1, d]. �
We can now move to our first main result, namely the

optimality of the thrifty protocol. Since the second phase of
the thrifty protocol, converting |ψ ∧ φ〉 into |φ〉 (i.e., the third
green arrow in Fig. 3), is deterministic, all we need to consider
is the first phase, namely the probabilistic LOCC transforma-
tion from |ψ〉 to |ψ ∧ φ〉 (i.e., the two first green arrows in
Fig. 3). In the following theorem, we prove that the maximum
probability of achieving such a transformation from |ψ〉 to
|ψ ∧ φ〉 is equivalent to that of realizing the transformation
from |ψ〉 to |φ〉. In some sense, with this specific probability,
one may as well stop the thrifty protocol halfway in order to
produce the more entangled state |ψ ∧ φ〉 rather than |φ〉.

Theorem 1. Let |ψ〉 and |φ〉 be two bipartite pure states.
The optimal probability of conversion from |ψ〉 to |ψ ∧ φ〉,
which we name r1, is equal to that of the optimal conversion
from |ψ〉 to |φ〉, denoted as r1 in Eq. (11).

Proof. We need to show that r1 = r1, where r1 is given by
Eq. (11) and r1 is the optimal probability of conversion from
|ψ〉 to |ψ ∧ φ〉. We know that this probabilistic transformation
can be performed optimally using Vidal’s protocol, so r1 can
be calculated with Eq. (11), namely,

r1 = min
l∈[1,d]

El (ψ )

El (ψ ∧ φ)
≡ El1 (ψ )

El1 (ψ ∧ φ)
, (25)

where l1 is defined as the smallest l ∈ [1, d] minimiz-
ing El (ψ )/El (ψ ∧ φ). With the use of Lemma 1, we can

write

r1 = min
l∈[1,d]

El (ψ )

max {El (ψ ), El (φ)} , (26)

which is to be compared with r1. We obviously have

El (ψ )

max {El (ψ ), El (φ)} � El (ψ )

El (φ)
, ∀l ∈ [1, d]. (27)

For any value of l such that El (φ) < El (ψ ), we have

1 = El (ψ )

max {El (ψ ), El (φ)} <
El (ψ )

El (φ)
, (28)

implying that such a value of l can be disregarded in the
minimization over l that yields r1 in Eq. (11) or r1 in Eq. (26)
since, when l = 1, E1(ψ ) = E1(φ) = 1 so the minimum is
guaranteed not to exceed 1. Thus, we may restrict the min-
imization over the values of l such that El (φ) � El (ψ ), for
which

El (ψ )

max {El (ψ ), El (φ)} = El (ψ )

El (φ)
. (29)

This implies that we have equal conversion probabilities,

r1 = r1, (30)

hence we have proven that the thrifty protocol is also an
optimal probabilistic protocol. �

We now turn to our second main result, namely that entan-
glement is better preserved, on average, by the thrifty protocol
rather than by the greedy protocol. Let us first prove the
following lemma.

Lemma 2. For all x and y ∈ Pd such that x ≺ y and for
all decreasingly ordered vectors a ∈ Rd such that

∑d
i=1 aixi =∑d

i=1 aiyi = 1, we have

a � x ≺ a � y, (31)

where � denotes the Hadamard (elementwise) product.
Proof. The last equality [see Eq. (2)] in the majorization

relation, Eq. (31), is trivially fulfilled by hypothesis, so we
need to prove the d − 1 inequalities [see Eq. (1)]

k∑
i=1

ai(yi − xi ) � 0, ∀k ∈ [1, d − 1], (32)

given the majorization hypothesis x ≺ y, which reads as

k∑
i=1

(yi − xi ) � 0, ∀k ∈ [1, d − 1]. (33)

The decreasing rearrangement of vector a allows us to write
its components in the form

ai =
d∑

j=i

μ j, ∀i ∈ [1, d], (34)

where μ j � 0, for all j ∈ [1, d]. By plugging in Eq. (34) into
Eq. (32), we have to prove

k∑
i=1

(yi − xi )
d∑

j=i

μ j � 0, ∀k ∈ [1, d − 1], (35)
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which can be rewritten by interchanging the two summation
signs as

d∑
j=1

μ j

min(k, j)∑
i=1

(yi − xi ) � 0, ∀k ∈ [1, d − 1]. (36)

These inequalities are clearly satisfied given μ j � 0 and the
majorization hypothesis, Eq. (33), thereby completing the
proof. �

With this in mind, we can prove our second main result,
namely that the residual state |ν〉 of the thrifty protocol is
majorized by the residual state |ξ 〉 of the greedy protocol. This
is the content of the following theorem.

Theorem 2. Let |ψ〉 and |φ〉 be two bipartite pure states
and let |ξ 〉 be the residual state if the two-outcome proba-
bilistic protocol for converting |ψ〉 into |φ〉 fails and |ν〉 be
the residual state if the two-outcome probabilistic protocol
for converting |ψ〉 into |ψ ∧ φ〉 fails. Both residual states are
related via the majorization relation

λν ≺ λξ . (37)

Proof. To show this, we proceed in three steps. First, using
the definitions from Eq. (12), we characterize the sequence
of ratios r j’s (and corresponding values l j’s) associated with
the probabilistic conversion from |ψ〉 to |ψ ∧ φ〉 and prove
that r j = r j and l j = l j , ∀ j. Then, we express the interme-
diate state |ζ 〉 of this conversion and show that it satisfies
λζ ≺ λχ , where |χ〉 corresponds to the intermediate state of
the probabilistic conversion from |ψ〉 (or from |ψ ∨ φ〉) to
|φ〉, as shown in Fig. 3. Finally, we use λζ ≺ λχ in order to
prove the desired majorization relation λν ≺ λξ .

From Theorem 1, we already know that for j = 1, r1 = r1

and l1 = l1. In order to prove the same relations for higher
values of j, we proceed by iteration. We can write r2, by
means of Eq. (12), as

r2 = min
l∈[1,l1−1]

El (ψ ) − El1 (ψ )

El (ψ ∧ φ) − El1 (ψ ∧ φ)
,

≡ El2 (ψ ) − El1 (ψ )

El2 (ψ ∧ φ) − El1 (ψ ∧ φ)
, (38)

which can be reexpressed, using l1 = l1 and El1 (ψ ∧ φ) =
max{El1 (ψ ), El1 (φ)} = El1 (φ), as

r2 = min
l∈[1,l1−1]

El (ψ ) − El1 (ψ )

max {El (ψ ), El (φ)} − El1 (φ)
. (39)

We choose to rewrite this last expression as

r2 = min
l∈[1,l1−1]

r2,l . (40)

We now divide the values of l in two categories. Either
l ∈ L+ when max{El (ψ ), El (φ)} = El (ψ ), or l ∈ L− when
max{El (ψ ), El (φ)} = El (φ). It is possible to prove that there
always exists one value lmin ∈ L− such that r2,lmin � r2,l ,∀l ∈
L+ ∪ L−. Hence,

r2 = r2. (41)

Proceeding equivalently for each j, we show that

r j = r j and l j = l j, ∀ j ∈ [1, k]. (42)

This allows us to write the vector of Schmidt coefficients of
the intermediate state |ζ 〉 between |ψ〉 and |ψ ∧ φ〉 as

λ
(i)
ζ = r j λ

(i)
ψ∧φ, if i ∈ [l j, l j−1 − 1], j ∈ [1, k]. (43)

Thus, this vector can be expressed as a Hadamard product of
two vectors, namely,

λζ = r � λψ∧φ, (44)

where (r)i = r j , if i ∈ [l j, l j−1 − 1],∀i ∈ [1, d]. Similarly, in
view of Eq. (13), the vector of Schmidt coefficients of the
intermediate state |χ〉 between |ψ〉 (or |ψ ∨ φ〉) and |φ〉 can
be rewritten using this notation as

λχ = r � λφ. (45)

Now, we simply make use of Lemma 2. Since λψ∧φ ≺ λφ , the
majorization relation

λζ = r � λψ∧φ ≺ r � λφ = λχ, (46)

holds true provided the vector r is decreasingly ordered (by
increasing index i). This can be easily checked from the struc-
ture of this vector, namely,

r = (rk
↑
lk

. . . rk| . . . . . . |r2
↑
l2

. . . r2|r1
↑
l1

. . . r1), (47)

where each l j variable points to the index of the corresponding
element in r. Hence, λζ ≺ λχ , which means that the interme-
diate state |ζ 〉 of the thrifty protocol is more entangled than
the intermediate state |χ〉 of the greedy protocol, as can also
be seen in Fig. 3.

Finally, we deduce from Eq. (46) the fact that λν ≺ λξ ,
i.e., that if the protocol fails, the residual state of the thrifty
protocol is more entangled than the residual state of the greedy
protocol (see inset of Fig. 3). To do this, first notice that

N̂ ⊗ Î |χ〉 =
√

1 − r1 |ξ 〉 , (48)

and

N̂ ⊗ Î |ζ 〉 =
√

1 − r1 |ν〉 . (49)

Given that N̂ is diagonal [see Eq. (15)], we can rewrite
Eqs. (48) and (49) using vectors of Schmidt coefficients and
the Hadamard product as

λξ = n � λχ, (50)

λν = n � λζ , (51)

where (n)i = 〈i|N̂ |i〉/√1 − r1,∀i ∈ [1, d]. Finally, using
again Lemma 2, valid because of the fact that (n)i is a decreas-
ingly ordered vector and the fact that λζ ≺ λχ , we complete
the proof that λν ≺ λξ . �

V. GENERALIZATION TO A COLLECTION
OF INITIAL OR FINAL STATES

Let us first generalize Theorem 1 to a scenario involving
multiple final states. Imagine that Alice and Bob possess a
state |ψ〉 and that, instead of a single target state, there is a
collection of m possible target states {|φ j〉}m

j=1 from which
they will have to produce a single one (without knowing
which one beforehand). The idea is that they can first perform
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a probabilistic LOCC transformation to the OCR state of the
m + 1 states, denoted as

|ψ m∧
j=1

φ j〉 ≡ |ψ ∧ φ1 ∧ φ2 ∧ · · · ∧ φm〉 , (52)

extending the essence of the thrifty protocol. Once they pos-
sess the OCR state, they can wait until they learn which state
|φ j〉 they have to produce before performing the correspond-
ing deterministic LOCC transformation from the OCR state
to |φ j〉. Interestingly, the probabilistic LOCC from |ψ〉 to the
OCR state has an optimal probability that is equal to the min-
imum optimal probability of all individual conversions from
|ψ〉 to |φ j〉. In some sense, with this minimum probability
corresponding to the hardest-to-reach target state |φ j〉, we
may as well stop the protocol halfway to produce the more
entangled OCR state. This is the content of the following
theorem.

Theorem 3. Let |ψ〉 be a bipartite pure state and {|φ j〉}m
j=1

be a collection of m bipartite pure states. The optimal prob-
ability p[1]

max of conversion from |ψ〉 to the OCR state of

the m + 1 states |ψ m∧
j=1

φ j〉 is equal to the minimum optimal

probability among the m possible individual conversions from
|ψ〉 to |φ j〉, i.e.,

p[1]
max = min

j∈[1,m]
p[2]

max, j, (53)

where p[2]
max, j denotes the optimal probability of conversion

from |ψ〉 to |φ j〉.
Proof. From Eq. (9), we have

p[1]
max = min

l∈[1,d]

El (ψ )

El (ψ
m∧

j=1
φ j )

, (54)

as well as

p[2]
max, j = min

l∈[1,d]

El (ψ )

El (φ j )
, (55)

and we want to prove that

p[1]
max = min

j∈[1,m]
p[2]

max, j ≡ p[2]
max. (56)

In order to do so, we can use the straightforward general-
ization of Lemma 1, namely,

El

(
ψ

m∧
j=1

φ j

)
= max {El (ψ ), El (φ1), · · · , El (φm)}. (57)

Thus we have p[1]
max = min

l∈[1,d]
p[1]

max,l , where

p[1]
max,l = El (ψ )

max {El (ψ ), El (φ1), · · · , El (φm)} , (58)

and, by interchanging the minima, we can also write

p[2]
max = min

l∈[1,d]
p[2]

max,l , (59)

where

p[2]
max,l = min

j∈[1,m]

El (ψ )

El (φ j )
. (60)

Therefore, using Eqs. (58) and (60), it is easy to see
that p[2]

max,l � p[1]
max,l = 1 for any value of l such that

max{El (ψ ), El (φ1), · · · , El (φm)} = El (ψ ). These values of
l can thus be disregarded in the minimization over l since
the minimum cannot exceed 1 (indeed, p[2]

max,1 = p[1]
max,1 = 1

when l = 1). Thus, we only have to consider the values of
l such that max{El (ψ ), El (φ1), · · · , El (φm)} = El (φk ), k ∈
[1, m], implying p[2]

max,l = p[1]
max,l = El (ψ )/El (φk ). Hence, the

minimum over l yields p[1]
max = p[2]

max, which completes the
proof. �

In other words, as long as Alice and Bob do not know
which target state |φ j〉 they will have to reach, they may
anticipate the probabilistic step and move to the OCR, but
this can only be done with the minimum probability (corre-
sponding to the worst-case target state). The benefit of this
procedure is that once the target |φ j〉 is disclosed, the final step
is deterministic. Otherwise, Alice and Bob may wait until the
target |φ j〉 is disclosed and only then perform a probabilistic
transformation from |ψ〉 to |φ j〉, whose probability may be
higher (depending on which is the target state). In a nutshell,
a compromise can be made between doing the probabilistic
transformation at first (making the rest fully deterministic
regardless of the target state) or waiting to know which target
state is wanted before doing the actual probabilistic transfor-
mation (possibly with a higher success probability).

It is worth noting that the Procrustean method introduced
in Ref. [5] can be viewed as a special case of our thrifty
protocol in a scenario where the target state is a priori totally
arbitrary. The Procrustean method is a local filtering which
converts a single copy of a given partially entangled pure
state |ψ〉 into the maximally entangled state |
〉 of the same
dimension. Indeed, when considering the thrifty protocol with
the set of target states {|φ j〉} being the whole set of states
of the same dimension as the initial state, the OCR then
becomes the maximally entangled state |
〉. Hence, the thrifty
protocol starts with the probabilistic conversion of |ψ〉 into
|
〉, which is thus equivalent to the Procrustean method.4

Once the actual target state |φ j〉 is revealed, one may then
deterministically convert |
〉 into |φ j〉 (which is possible since
|
〉 ≺ |φ j〉, ∀ j). Of course, this Procrustean procedure be-
comes suboptimal in situations where the set of target states is
limited so the OCR is not maximally entangled, in which case
the thrifty protocol comes with a higher success probability.

It is also tempting to compare our multitarget-state thrifty
protocol to the protocol introduced in Ref. [23]. There, the
conversion into an ensemble of pure states with associated
probabilities is considered. Specifically, the conversion of |ψ〉
into the ensemble {q j, |φ j〉}m

j=1 is shown to be possible via a
LOCC transformation if and only if

λψ ≺
m∑

j=1

q jλφ j , (61)

which extends Eq. (5). The conversion starts with a deter-
ministic step towards an “average” pure state whose Schmidt
vector is equal to

∑m
j=1 q jλφ j , followed by a probabilistic

4This is a consequence of the fact that Vidal’s protocol itself can
be seen as a generalization of the Procrustean method when the
target state differs from the maximally entangled state of the same
dimension as the initial state.
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step yielding each state |φ j〉 with probability q j . Despite
the apparent similarity between such a protocol and our
multitarget thrifty protocol, the two have quite different pur-
poses. Indeed, our protocol has a specific probability of
succeeding, i.e., outputting the OCR, which is then determin-
istically converted into one of the desired target states |φ j〉
chosen at will. According to Theorem 3, the success probabil-
ity is the minimum of the probabilities associated with each
individual conversion (Vidal’s bound for each pair of initial
and target states). In contrast, the protocol of Ref. [23] is
designed as a source that randomly outputs a state |φ j〉 drawn
from a target ensemble. The weights qj in this ensemble can
be chosen freely but must satisfy Eq. (61) for any physically
realizable ensemble. In particular, each q j must still be upper
bounded by Vidal’s corresponding optimal conversion proba-
bility from |ψ〉 to |φ j〉.

To complete the picture, we may also consider a scenario
involving multiple initial states {|ψ j〉}m

j=1 and a single target
state |φ〉, generalizing the greedy protocol. This time, the
optimal probability of conversion p[1]

max from the OCP state of

the m + 1 states |φ m∨
j=1

ψ j〉5 to the target state |φ〉 is equiva-

lent to the minimum optimal probability between any of the
m possible individual conversions from |ψ j〉 to |φ〉. This is
immediately understood because, as proven in Ref. [14], the
intermediate state for the least probable of the m possible con-

versions is located in the lower cone of |φ m∨
j=1

ψ j〉. Therefore,

the transformation from the OCP state |φ m∨
j=1

ψ j〉 to |φ〉 cannot

be more probable than the least probable of the m possible
conversions from |ψ j〉 to |φ〉. Unlike the multitarget thrifty
protocol, this multi-initial-state generalization of the greedy
protocol does not have a straightforward practical meaning
since the deterministic transformation from some of the initial
states |ψ j〉 to the OCP state cannot be performed until the
actual |ψ j〉 is disclosed. However, it is relevant in a scenario
involving a catalyst state [24]. If one postpones the deter-
ministic step and, instead, borrows the OCP state, then it is
possible to implement the probabilistic step yielding |φ〉 from
the OCP state. Later on, once the actual |ψ j〉 is disclosed, it
can be deterministically converted into the OCP state, which is
returned and plays therefore the role of a catalyst. Here again,
there is a compromise between doing the probabilistic step at
first (postponing the subsequent deterministic step) or waiting
until the identity of the initial state is known before doing the
probabilistic transformation (possibly with a higher success
probability).

VI. CONCLUSIONS

The lattice structure of majorization uncovers two es-
sential states in the context of entanglement transfor-
mations between incomparable bipartite pure states |ψ〉
and |φ〉, namely the optimal common resource state (i.e.,
the meet |ψ ∧ φ〉 of the two states) and the optimal common

5In analogy with the OCR, the OCP of multiple states can be

understood as |φ m∨
j=1

ψ j〉 ≡ |φ ∨ ψ1 ∨ ψ2 ∨ · · · ∨ ψm〉.

product state (i.e., the join |ψ ∨ φ〉 of the two states). We
have shown that both states naturally appear when consid-
ering (single-copy) probabilistic LOCC transformations from
|ψ〉 to |φ〉. We have indeed defined two antipodal protocols,
namely the greedy protocol, passing through |ψ ∨ φ〉, and the
thrifty protocol, passing through |ψ ∧ φ〉. Both protocols can
be proven to be optimal (their success probability is maxi-
mum). However, while the greedy protocol is very similar to
Vidal’s protocol [7], the thrifty protocol is superior in that the
entanglement resource is better preserved on average (in case
of failure, its residual state is majorized by—hence, is more
entangled than—the residual state of the greedy protocol).
Note that in case |ψ〉 and |φ〉 are comparable, both the greedy
and thrifty protocols reduce to Vidal’s protocol, which reflects
that the incomparability between the states is an essential
ingredient here. Finally, we have shown that the greedy and
thrifty protocols can be generalized to scenarios involving an
arbitrary number of initial or final states. This underlines the
operational relevance of the majorization lattice in the scope
of quantum entanglement theory.

Overall, the current paper brings another perspective on the
resource theory of entanglement. Such a theory has proven
to be essential in numerous areas within quantum informa-
tion sciences. For example, the rapidly developing field of
quantum networks [25,26] relies on the ability to convert and
manipulate entanglement at the local scale so to establish
useful entanglement between distant nodes. Another notable
example is quantum thermodynamics [27–29], where the
resource-theoretical approach is well suited to describe the al-
lowed state transformations (here, thermo-majorization is the
condition that reflects the existence of thermal operations) and
where the notion of majorization lattice has already proven
its relevance [13,19]. Thus, plugging the resource theory of
entanglement into a majorization lattice, as we have sketched
here, can be expected to be a very promising research avenue.
We may conceive cryptographic or thermodynamic scenarios
where the convertibility (or nonconvertibility) from or towards
the meet or join state is crucial.

Finally, it would be interesting to extend the current paper
to multipartite settings [30,31]. To our knowledge, the notions
of optimal common resource or optimal common product have
never been explored for more than two parties. For example,
we know that true tripartite entanglement can be split into two
categories, namely GHZ-type and W-type states [32], but the
determination of an optimal common resource state or optimal
common product state within each class constitutes an open
problem. In another direction, extending the present analysis
to the conversion of mixed states and exploring the role of
incomparability in this context would, if possible, even further
broaden the applicability of this framework.
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