Supplementary material

Here, we provide details on the fermionic formalism (d) Fermionic phase-space distributions

and additional remarks for the interested reader.
. rionat 8 ' et 3 ' e The normalization of the Glauber P-distribution

(a) (Un)physical states | Da P(a) = Tr{p} = 1 is ensured by the normal-

e When allowing A # 0, the state in Eq. (1) is
still Gaussian, i.e., it can be written as p =
exp(—2(n)a'a + Aa + N\*a' + (n) — |\|?), but it
is neither thermal, nor physical (as we shall see, this
actually corresponds to a Gaussian state that is not
centered at the origin).

(b) Berezin integrals

e Berezin integrals are integrals over Grassmann-
valued variables, which are such that f dal =0 and
[ daa = 1, showing that integration is equivalent
to differentiation for Grassmann variables. Integrals
of all other powers vanish since o™ = 0 for n > 2.

(c) Fermionic coherent states

e Fermionic coherent states |a) are characterized by
Grassmann-valued displacements and thus are un-
physical unless a = 0, see also [1]. Indeed, using
Eq. (3) together with D(a) = 1 + a'a — a*a +
(% 1- aTa) aa™, we see that coherent states are
superpositions [a) = (1 + taa*)[0) — a|l). In
analogy to the bosonic case, fermionic coherent
states are eigenstates of the annihilation operator
ala) = ala).

e The decomposition of the identity in terms of
fermionic coherent states, namely 1 = [ Do |ar) (er],
can be checked by using |a) = £]0) — a|1) and
(a| = B* (0] — a* (1], with 8 =1 + aa*, together
with the fact that [Daaa* = [Daff* =1 as
well as [ Daaf* = [ Dapfa* =0.

e The expression for the trace in the fermionic coher-
ent basis, namely Tr{O} = [Da (a|O| — ), can
also be checked by using |—«) = 5|0) + a|1) and
(a| = B* (0] — a* (1], with 8 =1 + Jaa*, together
with the fact that [Da *f = [ Da(—a*)a =1 as
well as [ Daf*a = [Da(—a*)8 =0. We may eas-
ily verify that the minus sign in |—«) is needed by
applying the trace formula to the density operator
p. Indeed, we get Tr{p} = 1 whereas we would get
Tr{p} = 1—2(n) by (wrongly) replacing |—«) with
|a), so that the excited state would (wrongly) be
normalized to —1. This issue is intrinsically linked
to the fact that (n|a) and (a|n) anticommute for
n = 1 (whereas they commute for n = 0), so we
have to insert this minus sign when exchanging the
two matrix elements (this fixes the problem both
forn=0and n =1).

ized projector Tr{|a) (—a|} = {a|a) = 1, whereas
Tr{|a) {a|} = (—ala) = 1 — 2a*«. Analogously,
JDaQ(a) = Tr{p} = 1 is a consequence of the
minus sign appearing in the coherent-state trace
formula.

e The characteristic function of p is calculated us-
ing Tr{|0) (0| D(a)} = 1 + 3aa* as well as
Tr{|1) (1| D(a)} = 1 — Laa*, resulting in x(o) =
1+ (3 — (n))aa*. To get W(a), we perform the
Fourier transform of x(«) by exploiting the identity
e®P =B — 1 4 af* — Ba* + a* BB*. The expres-
sions of P(«a) and Q(«) are also straightforward to
derive by using the expansions of p and |a) in the
Fock basis.

e We observe all phase-space distributions to be
Grassmann-even. More generally, we argue that any
physical quantity has to be of definite Grassmann-
parity, that is, either fully commute or anti-commute
with any Grassmann variable, which we refer to as
Grassmann-even or Grassmann-odd, respectively
(see also [2]).

e In contrast to the bosonic case, where a complete
characterization of the set of Wigner-positive states
is an outstanding problem [3-5], the sign of the
single-mode fermionic Wigner W-distribution is en-
tirely determined by the particle number (n) and
thus by the sign of the temperature. Recall that
negative temperatures can occur for a Hamilto-
nian bounded from above when the occupation of
the excited states is more likely. In our case, this
amounts to (n) > 1/2. Also, the fermionic Glauber
P-distribution is always a real function, while its
bosonic counterpart can become distribution-valued
involving the Dirac d-distribution and its deriva-
tives.

(e) Majorization relations

e Without the condition f(0) = 0 both sides of the
majorization relation would diverge [6].

e Although the proofs of the majorizations relations
used the first derivative of f, we do not even have to
assume that f is analytic since all higher derivatives
of f are multiplied by zero. Further, the existence
of its first derivative f’ is guaranteed almost every-
where following Rademacher’s theorem for Lipschitz-
continuous functions, with the exceptions occurring
only at the boundary points.



e The equivalence between second-moment and ma-
jorization relations can be proven as follows. Any
physical distribution z;(«;) is related to another
distribution zs () by as — a1 = V"M as such that
zo(ag) = z1(a1) = M z9(a), where M = 2o 5/21 8
is a real number. Then, the majorization rela-
tion Eq. (8) can be rewritten as [Day f(z1) =
| Das f(M z3)/M > [ Das f(z2). (Note here that
a change of coordinates for Grassmann variables
is accompanied by the inverse Jacobian.) Since
f is concave and fulfills f(0) = 0, it is subad-
ditive. Thus, the latter relation is fulfilled if
0 < M < 1 which implies dety(z1) > (<) det y(z2)
when |z1 5| > (<)|#2,8]. The converse statement fol-
lows from transforming the left-hand side of Eq. (8)
instead.

(f) Moments in state space and phase space

e To relate quantities in state space and phase space,
we introduce the fermionic variant of the overlap for-
mula for two physical density operators, which reads
Tr{pip2} = [DaWi(a)Kz(a), where Wi(a) =
1/2—(n1)+aa* and Ko(a) = 1/24(1—2 (ng))aa™,
with (n1) ({(n2)) denoting the mean particle number
in p1 (p2).

e The mean fields of any physical state vanish
Tr{pa} = [DaW(a)a* = 0 and Tr{pal} =
J DaW (a)a = 0. Hence, physical states are Gaus-
sian states that are centered at the origin, see also
Eq. (2), and thus all second-order moments 7, (z)
are centered moments.

e By setting (ns) to either 0 or 1, the overlap formula
shows that the state’s covariance matrix defined
as ;5 (p) = Tr{p[§;,&;:]}/(2i), where £ = a and
& = al, agrees with the one of the Wigner W-
distribution, i.e., v(p) = v(W). More precisely, we
find for the off-diagonal elements Tr{p|a,a']} =
J DaW(a)la,a*], although similar relations do
not hold for the individual terms, consider, e.g.,
Tr{paa’} = [ DaW(a)(1/2 + aa*) =1 — (n).

e The covariance matrix is also often defined in
terms of the field quadratures. In contrast to
bosons, fermionic quadratures = = (a+a')/v/2 and
p = (a — a')/(v/2i), which are commonly referred
to as Majorana operators, anti-commute {z,p} =0
and square to a constant x> = p?> = 1/2. Not-
ing that [z, p] = i[a, a'] shows that the covariance
matrix takes the form v;; (p) = Tr{p[§;,&;/]}/2,
where now & = x and & = p. We note that the
diagonal elements are still zero since every oper-
ator commutes with itself. Hence, the variances
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defined via 02(z) = (x2) — (x)? (which are constant
o%(x) = o%(p) = 1/2) do not appear in the covari-
ance matrix. Instead, v(p) = io(x,p)o,, where
o(x,p) = ([, p]) /2 denotes the anti-symmetrized
covariance and oy, is the second Pauli matrix. Hence,

we have det 7(p) = 02(z,p) = (@, p])* /4.
(g) Entropies and entropic uncertainty relations

e Continuous-variable entropies of classical probabil-
ity distributions are commonly denoted by h(:).
Still, we choose the convention S(-) that is preferred
in the mathematical literature, see, e.g., [6-10].

e Defining entropies with an additional minus sign to
render them concave would make them lose their
meaning as uncertainty measures, since, e.g., S(W)
would then tend to —oo when approaching the max-
imally mixed state (n) — 1/2.

e For a comparison of the entropic uncertainty re-
lations to the bosonic case, we note that the cor-
responding inequalities for a bosonic mode read
S.(W) > (r — 1)7tlnr + In7 and S,.(Q) >
(r — 1)~"!lnr. Since the fermionic Wigner W-
distribution comes without the normalization factor
of 27 that prevails in the bosonic case, the cor-
rected bosonic lower bound on S,.(W) would read
(r—1)~!Inr —In2, which is precisely the fermionic
lower bound with an overall minus sign.
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