
Supplementary material

Here, we provide details on the fermionic formalism
and additional remarks for the interested reader.

(a) (Un)physical states

• When allowing λ ̸= 0, the state in Eq. (1) is
still Gaussian, i.e., it can be written as ρ =
exp(−2 ⟨n⟩a†a + λa + λ∗a† + ⟨n⟩ − |λ|2), but it
is neither thermal, nor physical (as we shall see, this
actually corresponds to a Gaussian state that is not
centered at the origin).

(b) Berezin integrals

• Berezin integrals are integrals over Grassmann-
valued variables, which are such that

∫
dα 1 = 0 and∫

dαα = 1, showing that integration is equivalent
to differentiation for Grassmann variables. Integrals
of all other powers vanish since αn = 0 for n ≥ 2.

(c) Fermionic coherent states

• Fermionic coherent states |α⟩ are characterized by
Grassmann-valued displacements and thus are un-
physical unless α = 0, see also [1]. Indeed, using
Eq. (3) together with D(α) = 1 + a†α − α∗a +(
1
2 1− a†a

)
αα∗, we see that coherent states are

superpositions |α⟩ = (1 + 1
2αα

∗) |0⟩ − α |1⟩. In
analogy to the bosonic case, fermionic coherent
states are eigenstates of the annihilation operator
a |α⟩ = α |α⟩.

• The decomposition of the identity in terms of
fermionic coherent states, namely 1 =

∫
Dα |α⟩ ⟨α|,

can be checked by using |α⟩ = β |0⟩ − α |1⟩ and
⟨α| = β∗ ⟨0| − α∗ ⟨1|, with β = 1 + 1

2αα
∗, together

with the fact that
∫
Dααα∗ =

∫
Dαββ∗ = 1 as

well as
∫
Dααβ∗ =

∫
Dαβα∗ = 0.

• The expression for the trace in the fermionic coher-
ent basis, namely Tr{O} =

∫
Dα ⟨α|O| − α⟩, can

also be checked by using |−α⟩ = β |0⟩ + α |1⟩ and
⟨α| = β∗ ⟨0| − α∗ ⟨1|, with β = 1 + 1

2αα
∗, together

with the fact that
∫
Dαβ∗β =

∫
Dα (−α∗)α = 1 as

well as
∫
Dαβ∗α =

∫
Dα (−α∗)β = 0. We may eas-

ily verify that the minus sign in |−α⟩ is needed by
applying the trace formula to the density operator
ρ. Indeed, we get Tr{ρ} = 1 whereas we would get
Tr{ρ} = 1−2 ⟨n⟩ by (wrongly) replacing |−α⟩ with
|α⟩, so that the excited state would (wrongly) be
normalized to −1. This issue is intrinsically linked
to the fact that ⟨n|α⟩ and ⟨α|n⟩ anticommute for
n = 1 (whereas they commute for n = 0), so we
have to insert this minus sign when exchanging the
two matrix elements (this fixes the problem both
for n = 0 and n = 1).

(d) Fermionic phase-space distributions

• The normalization of the Glauber P -distribution∫
DαP (α) = Tr{ρ} = 1 is ensured by the normal-

ized projector Tr{|α⟩ ⟨−α|} = ⟨α|α⟩ = 1, whereas
Tr{|α⟩ ⟨α|} = ⟨−α|α⟩ = 1 − 2α∗α. Analogously,∫
DαQ(α) = Tr{ρ} = 1 is a consequence of the

minus sign appearing in the coherent-state trace
formula.

• The characteristic function of ρ is calculated us-
ing Tr{|0⟩ ⟨0|D(α)} = 1 + 1

2αα
∗ as well as

Tr{|1⟩ ⟨1|D(α)} = 1− 1
2αα

∗, resulting in χ(α) =
1 + ( 12 − ⟨n⟩)αα∗. To get W (α), we perform the
Fourier transform of χ(α) by exploiting the identity
eαβ

∗−βα∗
= 1 + αβ∗ − βα∗ + αα∗ββ∗. The expres-

sions of P (α) and Q(α) are also straightforward to
derive by using the expansions of ρ and |α⟩ in the
Fock basis.

• We observe all phase-space distributions to be
Grassmann-even. More generally, we argue that any
physical quantity has to be of definite Grassmann-
parity, that is, either fully commute or anti-commute
with any Grassmann variable, which we refer to as
Grassmann-even or Grassmann-odd, respectively
(see also [2]).

• In contrast to the bosonic case, where a complete
characterization of the set of Wigner-positive states
is an outstanding problem [3–5], the sign of the
single-mode fermionic Wigner W -distribution is en-
tirely determined by the particle number ⟨n⟩ and
thus by the sign of the temperature. Recall that
negative temperatures can occur for a Hamilto-
nian bounded from above when the occupation of
the excited states is more likely. In our case, this
amounts to ⟨n⟩ > 1/2. Also, the fermionic Glauber
P -distribution is always a real function, while its
bosonic counterpart can become distribution-valued
involving the Dirac δ-distribution and its deriva-
tives.

(e) Majorization relations

• Without the condition f(0) = 0 both sides of the
majorization relation would diverge [6].

• Although the proofs of the majorizations relations
used the first derivative of f , we do not even have to
assume that f is analytic since all higher derivatives
of f are multiplied by zero. Further, the existence
of its first derivative f ′ is guaranteed almost every-
where following Rademacher’s theorem for Lipschitz-
continuous functions, with the exceptions occurring
only at the boundary points.
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• The equivalence between second-moment and ma-
jorization relations can be proven as follows. Any
physical distribution z1(α1) is related to another
distribution z2(α2) by α2 → α1 =

√
M α2 such that

z2(α2) → z1(α1) = M z2(α2), where M = z2,B/z1,B
is a real number. Then, the majorization rela-
tion Eq. (8) can be rewritten as

∫
Dα1 f(z1) =∫

Dα2 f(M z2)/M ≥
∫
Dα2 f(z2). (Note here that

a change of coordinates for Grassmann variables
is accompanied by the inverse Jacobian.) Since
f is concave and fulfills f(0) = 0, it is subad-
ditive. Thus, the latter relation is fulfilled if
0 ≤ M ≤ 1 which implies det γ(z1) ≥ (≤) det γ(z2)
when |z1,B| ≥ (≤)|z2,B|. The converse statement fol-
lows from transforming the left-hand side of Eq. (8)
instead.

(f) Moments in state space and phase space

• To relate quantities in state space and phase space,
we introduce the fermionic variant of the overlap for-
mula for two physical density operators, which reads
Tr{ρ1ρ2} =

∫
DαW1(α)K2(α), where W1(α) =

1/2−⟨n1⟩+αα∗ and K2(α) = 1/2+(1−2 ⟨n2⟩)αα∗,
with ⟨n1⟩ (⟨n2⟩) denoting the mean particle number
in ρ1 (ρ2).

• The mean fields of any physical state vanish
Tr{ρa} =

∫
DαW (α)α∗ = 0 and Tr{ρa†} =∫

DαW (α)α = 0. Hence, physical states are Gaus-
sian states that are centered at the origin, see also
Eq. (2), and thus all second-order moments γjj′(z)
are centered moments.

• By setting ⟨n2⟩ to either 0 or 1, the overlap formula
shows that the state’s covariance matrix defined
as γjj′(ρ) ≡ Tr{ρ[ξj , ξj′ ]}/(2i), where ξ1 = a and
ξ2 = a†, agrees with the one of the Wigner W -
distribution, i.e., γ(ρ) = γ(W ). More precisely, we
find for the off-diagonal elements Tr{ρ[a,a†]} =∫
DαW (α)[α, α∗], although similar relations do

not hold for the individual terms, consider, e.g.,
Tr{ρaa†} =

∫
DαW (α)(1/2 + αα∗) = 1− ⟨n⟩.

• The covariance matrix is also often defined in
terms of the field quadratures. In contrast to
bosons, fermionic quadratures x = (a+a†)/

√
2 and

p = (a− a†)/(
√
2i), which are commonly referred

to as Majorana operators, anti-commute {x,p} = 0
and square to a constant x2 = p2 = 1/2. Not-
ing that [x,p] = i[a,a†] shows that the covariance
matrix takes the form γjj′(ρ) = Tr{ρ[ξj , ξj′ ]}/2,
where now ξ1 = x and ξ2 = p. We note that the
diagonal elements are still zero since every oper-
ator commutes with itself. Hence, the variances

defined via σ2(x) ≡ ⟨x2⟩−⟨x⟩2 (which are constant
σ2(x) = σ2(p) = 1/2) do not appear in the covari-
ance matrix. Instead, γ(ρ) = iσ(x,p)σy, where
σ(x,p) ≡ ⟨[x,p]⟩ /2 denotes the anti-symmetrized
covariance and σy is the second Pauli matrix. Hence,
we have det γ(ρ) = σ2(x,p) = ⟨[x,p]⟩2 /4.

(g) Entropies and entropic uncertainty relations

• Continuous-variable entropies of classical probabil-
ity distributions are commonly denoted by h(·).
Still, we choose the convention S(·) that is preferred
in the mathematical literature, see, e.g., [6–10].

• Defining entropies with an additional minus sign to
render them concave would make them lose their
meaning as uncertainty measures, since, e.g., S(W )
would then tend to −∞ when approaching the max-
imally mixed state ⟨n⟩ → 1/2.

• For a comparison of the entropic uncertainty re-
lations to the bosonic case, we note that the cor-
responding inequalities for a bosonic mode read
Sr(W ) ≥ (r − 1)−1 ln r + lnπ and Sr(Q) ≥
(r − 1)−1 ln r. Since the fermionic Wigner W -
distribution comes without the normalization factor
of 2π that prevails in the bosonic case, the cor-
rected bosonic lower bound on Sr(W ) would read
(r− 1)−1 ln r− ln 2, which is precisely the fermionic
lower bound with an overall minus sign.
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