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We put forward several information-theoretic measures for analyzing the uncertainty of fermionic phase-
space distributions using the theory of supernumbers. In contrast to the bosonic case, the anticommuting
nature of Grassmann variables allows us to provide simple expressions for the Glauber P, Wigner W, and
Husimi Q distributions of the arbitrary state of a single fermionic mode. It appears that all physical states
are Gaussian and, thus, can be described by positive or negative thermal distributions (over Grassmann
variables). We then prove several fermionic uncertainty relations, including notably the fermionic analogs
of the (yet unproven) phase-space majorization andWigner entropy conjectures for a bosonic mode, as well
as the Lieb-Solovej theorem and the Wehrl-Lieb inequality. Our central point is that, although fermionic
phase-space distributions are Grassmann-valued and do not have a straightforward interpretation, the
corresponding uncertainty measures are expressed as Berezin integrals, which take on real values and are
physically relevant.

DOI: 10.1103/3qg7-r4mq

Introduction—Pioneered by Heisenberg almost a century
ago [1], the uncertainty principle for incompatible measure-
ments in quantum theory has been stated and refined in
various ways. Since the well-known second-moment uncer-
tainty relations [2–5] do not fully capture the uncertainty
encoded in a distribution, the uncertainty principle is
nowadays often expressed in terms of entropies instead
of variances; see Refs. [6–13] for discrete and [14–17]
for continuous-variable systems (see also Refs. [18–20] for
quantum fields). Entropic uncertainty relations are often
stronger than their variance-based counterparts and, hence,
are of great importance for many applications, e.g., to
construct strong entanglement witnesses [21–25] and to
test the security of quantum cryptography protocols
[11,26–30].
Recently, even more general formulations of uncertainty

relations in the framework of majorization theory have been
put forward; see Refs. [31–33] for discrete and [34–37] for
continuous-variable systems (see, e.g., Refs. [38–40] for
applications in entanglement theory). Intuitively speaking,
the theory of majorization imposes a preorder on the set of
probability distributions, and the uncertainty relations
pinpoint the distributions with least disorder. In such
formulations, entropic and second-moment relations are
implied by a more fundamental majorization relation,
highlighting the generality of this approach.
As phase-space representations hold complete informa-

tion about a given quantum state, it has been of particular

interest to formulate such order relations for quasiprob-
ability distributions covering phase space. So far, this has
been achieved only for the Husimi Q distribution—which
is the measurement distribution obtained when projecting
onto coherent states—for several degrees of freedom,
including, e.g., a single bosonic mode and a single
spin [34]. In contrast, majorization and entropic uncertainty
relations for the Wigner W distribution of a bosonic mode
remain open conjectures [17,37].
While much effort has been devoted to constructing

and analyzing information-theoretic measures in
phase space for bosonic modes [41,42] and finite-dimen-
sional systems [43,44], an information-theoretic descrip-
tion of fermionic modes, which are heavily constrained by
Pauli’s principle [45], is substantially less developed.
Although fermionic phase-space representations have
been analyzed in depth already two decades ago [46],
the recently rising interest in fermionic systems has
focused on Gaussian states [47] and their entanglement
properties [48–52] (also in field theories; see, e.g.,
Refs. [20,53–55]).
In this Letter, we explore various notions of uncertainty

measures for a single fermionic mode. After constructing
the sets of physical and coherent states, we show that all
physical phase-space distributions are Gaussian (i.e., ther-
mal states of positive or negative temperature). This radical
simplification, brought about by Pauli’s principle, allows us
to prove several uncertainty relations for the Glauber P,
Wigner W, and Husimi Q distributions, as well as a
complete set of majorization relations in fermionic phase
space. Although the P, W, and Q distributions are
Grassmann-valued, the associated uncertainty relations
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involve real-valued entropies and, hence, are meaningful.
For further remarks, see Ref. [56].
Notation—We use natural units ℏ ¼ kB ¼ 1 and write

quantum operators (classical variables) with bold (regular)
letters, e.g., O (O), respectively.
Single fermionic mode—We consider a single fermionic

mode described by Grassmann-valued mode operators
a and a† fulfilling the anticommutation relations
fa; a†g ¼ 1; fa; ag ¼ fa†; a†g ¼ 0. By Pauli’s principle,
the only two Fock states are the vacuum j0i and excited
state j1i, which form an orthonormal basis of the Hilbert
spaceH2 as hnjn0i ¼ δnn0 . The mode operators act as ladder
operators a†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1i, ajni ¼ ffiffiffi

n
p jn − 1i for

n∈ f0; 1g. Denoting by hni ¼ Trfρa†ag∈ ½0; 1� the total
particle number allows us to write the most general single-
mode fermionic density operator as

ρ ¼ ð1 − hniÞaa† þ λaþ λ�a† þ hnia†a: ð1Þ

with λ∈C and jλj ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihnið1 − hniÞp
to ensure ρ ≥ 0.

Physical states and Gaussianity—It has been argued that
any physical fermionic density operator is constrained by
an additional superselection rule, which can be motivated
by the spin-statistics theorem in relativistic quantum field
theories [50,51,57]: in Lorentz-invariant theories, fermions
carry half-integer spin, and, hence, spatial rotations by 2π
change a state with an odd (even) number of fermions by a
factor of −1 (þ1). Since the state needs to be invariant (up
to a global phase) under such a rotation, physical states
cannot contain superpositions of odd and even particle
numbers, which results in the requirement λ ¼ 0.
Interestingly, this immediately implies that all physical
states are thermal. Indeed, using the identity ya

†a ¼ 1þ
ðy − 1Þa†a for y ≥ 0, any physical state (λ ¼ 0) can be
written as [56] (a)

ρ ¼ ð1 − hniÞaa† þ hnia†a ¼ 1

1þ eν
eνa

†a; ð2Þ

with eν ¼ hni=ð1 − hniÞ. Thus, physical states are nothing
but (Gaussian) thermal states with ν ¼ −ϵ=T, where T
denotes the temperature and ϵ is the excitation energy.
It is instructive to describe physical states in terms of the

occupation number hni ¼ eν=ðeν þ 1Þ ¼ 1=ð1þ eϵ=TÞ,
which corresponds to the Fermi-Dirac distribution
(see Fig. 1). Note first that the purity of (2) is
Trfρ2g ¼ 1–2hnið1 − hniÞ, implying that the only two
pure states are the vacuum (hni ¼ 0) and excited state
ðhni ¼ 1Þ. The family of physical states can be divided into
positive- and negative-temperature thermal states. The two
branches are connected by the maximally mixed state with
hni ¼ 1=2, which requires an infinite temperature of
arbitrary sign T → ∞�. The vacuum and excited states
correspond to the zero-temperature limits T → 0þ and
T → 0−, respectively. They correspond to the extremal

points of the set of physical states, and we may expect their
uncertainty in phase space to play a special role, too.
Fermionic coherent states—Following [46], we intro-

duce the fermionic displacement operator DðαÞ ¼ ea
†α−α�a,

with α and α� being Grassmann-valued variables such that
fα; α�g ¼ fα; αg ¼ fα�; α�g ¼ 0, which also anticommute
with the Grassmann-valued mode operators a and a†,
namely, fα; ag ¼ fα; a†g ¼ fα�; ag ¼ fα�; a†g ¼ 0. It is
easy to check that DðαÞ is a unitary operator and
D†ðαÞ ¼ Dð−αÞ. Then, fermionic coherent states are
defined as displaced vacuum states

jαi ¼ DðαÞj0i; ð3Þ

with Grassmann-valued displacements α. Although they are
unphysical, the fermionic coherent states provide the right
tool to express quasiprobability distributions in phase space.
As in the bosonic case, the coherent state basis is over-
complete with the identity being represented as a Berezin
integral [56] (b), 1 ¼ R

Dαjαihαj, wherewe have chosen the
standard sign convention that the innermost integral is being
performed first, i.e.,

R
Dααα� ≡ R

dα�dααα� ≡þ1. This
also leads us to express the trace of an operator O in the
coherent-state basis as TrfOg ¼ R

DαhαjOj − αi. Note the
discrepancy (minus sign) with the analog formula for bosonic
coherent states. See also Ref. [56] (c) for more details.
Phase-space distributions and supernumbers—Apart

from further minus signs ensuring correct normalizations,
the phase-space distributions are defined analogously to the
bosonic case. Hence, the Glauber P distribution represents
the diagonal elements of the state in the coherent-state
basis, namely,

ρ ¼
Z

DαPðαÞjαih−αj; ð4Þ

FIG. 1. Physical single-mode fermionic states are thermal
Gaussian states characterized by the Fermi-Dirac distribution
hni ¼ 1=ð1þ eϵ=TÞ. The positive (blue) and negative (red)
temperatures are associated with hni < 1=2 and > 1=2, with
the extremal points j0i and j1i being reached in the limit T → 0þ
and T → 0−, respectively.
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and the Wigner W distribution is the Fourier transform of
the characteristic function χðαÞ ¼ TrfρDðαÞg, namely,

WðαÞ ¼
Z

Dβeαβ
�−βα�χðβÞ; ð5Þ

while the Husimi Q distribution is the outcome distribution
obtained when measuring ρ in the coherent-state basis, i.e.,

QðαÞ ¼ Trfρjαihαjg ¼ hαjρj − αi: ð6Þ

All three are Grassmann even for physical states and can be
computed analytically in full generality, which leads to the
simple Gaussian expressions

PðαÞ ¼ −hnie−αα�=hni ¼ −hni þ αα�;

WðαÞ ¼ ð1=2 − hniÞeαα�=ð1=2−hniÞ ¼ 1=2 − hni þ αα�;

QðαÞ ¼ ð1 − hniÞeαα�=ð1−hniÞ ¼ 1 − hni þ αα�: ð7Þ

Since the prefactor of the term αα� is one in all cases, the
phase-space distributions are normalized to unity with
respect to the Berezin integral measure

R
DαPðαÞ ¼R

DαWðαÞ ¼ R
DαQðαÞ ¼ Trfρg ¼ 1. Except for nor-

malization, neither PðαÞ nor WðαÞ nor QðαÞ has a
straightforward physical interpretation (unlike their
bosonic counterparts), since these are distributions over
Grassmann variables; see also Ref. [56] (d).
To provide a deeper understanding of expressions (7), we

make an excursion into the theory of supernumbers (see
Ref. [58]). Every Grassmann number z, i.e., every element
of the Grassmann algebra, is a supernumber and can be
decomposed linearly as z ¼ zB þ zS. Therein, the so-called
body zB ∈C is the ordinary scalar part, while the so-called
soul zS ¼ c1αþ c2α� þ c3αα� contains all Grassmann-
valued contributions with complex-valued coefficients
ci ∈C. A supernumber z is real if and only if z� ¼ z
and positive (negative) if and only if its body zB is positive
(negative). The latter implies an ordering relation for
supernumbers, namely, that z1 ≤ z2 if and only if z1;B ≤
z2;B and vice versa.
Thus, the three phase-space distributions in (7) are real

and have equal (Grassmann-even) souls PS ¼ WS ¼ QS ¼
αα� but different bodies PB ¼ −hni, WB ¼ 1=2 − hni, and
QB ¼ 1 − hni. Hence, the Husimi Q distribution is always
larger than the Wigner W distribution, which itself is
always larger than the Glauber P distribution; i.e., QðαÞ >
WðαÞ > PðαÞ for all α and hni, a relation which does not
exist in the bosonic case. Furthermore, the Glauber P
distribution (Husimi Q distribution) is always negative
(positive), since PB ≤ 0 (QB ≥ 0) for all hni, while the
Wigner W distribution is entirely positive (or entirely
negative) for 0 ≤ hni < 1=2 (or for 1=2 < hni ≤ 1), for
which we write Wþ and W−, respectively.

Majorization relations—We generalize the definition of
a majorization relation for a bosonic mode (see
Refs. [37,59]) straightforwardly: A phase-space distribu-
tion z1ðαÞ is said to be majorized by another distribution
z2ðαÞ, written as z1 ≺ z2, if

Z
Dαfðz1Þ ≥

Z
Dαfðz2Þ; ð8Þ

for all concave functions f∶ IðzBÞ → R with fð0Þ ¼ 0,
where IðzBÞ ⊂ R denotes the image of zB ¼ zBðhniÞ. For
the three phase-space distributions of interest, we shall
prove the fundamental majorization relations (here, the
index of P, W, or Q refers to the value of hni).
(1) Any Glauber P distribution is majorized by (majorizes)
the vacuum (excited) state:

P1 ≺ P ≺ P0: ð9Þ
(2) Any Wigner W distribution is majorized by (majorizes)
the vacuum (excited) state, with the maximally mixed state
being majorized by (majorizing) all Wigner-positive
(Wigner-negative) distributions:

W1 ≺ W− ≺ W1=2 ≺ Wþ ≺ W0: ð10Þ

(3) Any Husimi Q distribution is majorized by (majorizes)
the vacuum (excited) state:

Q1 ≺ Q ≺ Q0: ð11Þ

We stress that the rightmost majorization relations in
Eqs. (10) and (11) resemble the bosonic phase-space
majorization conjecture [37] and the Lieb-Solovej theorem
[34–36], respectively, while no bosonic analog of Eq. (9)
exists.
Their proofs rely on the central observation that concave

averages in fermionic phase space are real numbers, which
can be computed explicitly for all phase-space distributions
z ¼ P;Wþ;W−; Q of interest. To show this, we use
the notion of an analytic functional over a supernumber
z ¼ zB þ zS via its Taylor expansion [58]

fðzÞ ¼
X∞
j¼0

1

j!
fðjÞðzBÞzjS; ð12Þ

where fðjÞðzBÞ denotes the jth derivative of f evaluated at
the body zB. Using that the soul of all physical phase-space
distributions (7) is nilpotent, i.e., zjS ¼ ðαα�Þj ¼ 0 for all
j > 1, immediately implies

Z
DαfðzÞ ¼

Z
Dα½fðzBÞ þ f0ðzBÞαα�� ¼ f0ðzBÞ: ð13Þ

Since f is concave, its first derivative is a monotonically
decreasing function, i.e.,
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t1 ≤ t2 ⇒ f0ðt1Þ ≥ f0ðt2Þ; ð14Þ

for all t1; t2 ∈ I . Hence, if two phase-space distributions
z1ðαÞ and z2ðαÞ satisfy z1;B ≤ z2;B, then, using (8) and (13),
the fermionic phase-space majorization relation z1 ≺ z2
must hold. Thus, majorization relations are ultimately a
consequence of zB being bounded. More precisely, −1 ≤
PB ≤ 0 implies f0ð−1Þ ≥ f0ðPBÞ ≥ f0ð0Þ, from which (9)
follows, while −1=2 ≤ IðW−

BÞ ≤ 0 ≤ IðWþ
B Þ ≤ 1=2

implies f0ð−1=2Þ ≥ f0ðW−
BÞ ≥ f0ð0Þ ≥ f0ðWþ

B Þ ≥ f0ð1=2Þ,
which, in turn, implies (10). Analogously, 0 ≤ QB ≤ 1
implies f0ð0Þ ≥ f0ðQBÞ ≥ f0ð1Þ, leading to (11). See also
Ref. [56](e).
Second-moment uncertainty relations—We consider

now the fermionic covariance matrix associated with the
phase-space distribution zðαÞ, which we define as [47]

γjj0 ðzÞ ¼
1

2i

Z
DαzðαÞ½ξj; ξj0 � ¼ zBðσyÞjj0 ; ð15Þ

with j; j0 ¼ 1, 2 (we set ξ1 ≡ α and ξ2 ≡ α�) and σy being
the second Pauli matrix. For z ¼ W, this definition is
equivalent to the standard definition of the state’s covari-
ance, see Ref. [56] (f). Its determinant

det γðzÞ ¼ −z2B ð16Þ

is nontrivially bounded from below by the uncertainty
principle (just as for a bosonic mode). Indeed, the deter-
minants of the three covariance matrices read

det γðPÞ ¼ −hni2;
det γðWÞ ¼ −ð1=2 − hniÞ2;
det γðQÞ ¼ −ð1 − hniÞ2; ð17Þ

so we have the second-moment uncertainty relations

det γðP0Þ ≥ det γðPÞ ≥ det γðP1Þ ¼ −1;

det γðW1=2Þ ≥ det γðWÞ ≥ det γðWf0;1gÞ ¼ −1=4;

det γðQ1Þ ≥ det γðQÞ ≥ det γðQ0Þ ¼ −1; ð18Þ
respectively. The three determinants and their bounds are
shown in Fig. 2(a). Interestingly, det γðWÞ ≥ −1=4 and
det γðQÞ ≥ −1 resemble the Robertson-Schrödinger rela-
tion [3–5] and the uncertainty relation presented in Eq. (73)
of [24], respectively, up to an overall minus sign.
Entropic uncertainty relations—We define the Rényi

entropy of a fermionic phase-space distribution zðαÞ with
possibly negative body zB as

SrðzÞ≡ 1

1 − r
ln
Z

DαjzðαÞjr; ð19Þ

where r∈ ð0; 1Þ ∪ ð1;∞Þ denotes the entropic order. The
Shannon entropy SðzÞ≡ −

R
DαzðαÞ ln zðαÞ is recovered

in the limit r → 1. For zB ≥ 0, (19) reduces to the standard
definition, while, for zB < 0, SrðzÞ is basically defined as
the standard Rényi entropy of −z > 0. Importantly, the
entropies (19) are convex over distributions of the same
sign, a striking difference to the bosonic case.
Following (13) (or by using the nilpotency of zS), we

have that
R
DαjzðαÞjr ¼ rjzBjr−1, which allows us to

evaluate the Rényi entropy of the three phase-space
distributions explicitly as

SrðPÞ ¼
ln r
1 − r

− lnhni;

SrðWÞ ¼ ln r
1 − r

− ln j1=2 − hnij;

SrðQÞ ¼ ln r
1 − r

− ln ð1 − hniÞ: ð20Þ

(a) (b) (c)

FIG. 2. Measures of disorder in fermionic phase space and their lower bounds (black dashed lines) expressing the uncertainty principle
as functions of the particle number hni. (a) shows the three second-moment measures, det γðPÞ (purple line), det γðWÞ (petrol line), and
det γðQÞ (green line), while (b) displays their entropic analogs. The curves for theW and PðQÞ distributions intersect at hni ¼ 1=4 (3=4)
(triangles), while the P and Q distributions meet at hni ¼ 1=2 (diamonds), such that the P, W, and Q curves are the largest when
hni ≤ 1=4, 1=4 ≤ hni ≤ 3=4, and hni ≥ 3=4, respectively. The extension to Rényi entropies for various entropic orders r is presented in
(c) for the Wigner W distribution, showing that SrðzÞ is monotonically increasing in r.
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Therefore, the entropic uncertainty relations in fermionic
phase space are written as

SrðPÞ ≥ SrðP1Þ ¼
ln r
1 − r

;

SrðWÞ ≥ SrðWf0;1gÞ ¼
ln r
1 − r

þ ln 2;

SrðQÞ ≥ SrðQ0Þ ¼
ln r
1 − r

: ð21Þ

We analyze these entropies and their bounds in Figs. 2(b)
and 2(c). When taking the limit r → 1, the two uncertainty
relations SðWÞ ≥ −1þ ln 2 and SðQÞ ≥ −1 resemble the
bosonic Wigner entropy conjecture for Wigner-positive
states [17] and the Wehrl-Lieb inequality [60–62], respec-
tively, except for a minus sign. See Ref. [56] (g) for details.
Discussion—We have derived fermionic uncertainty

relations [Eqs. (18) and (21)] as well as fermionic majo-
rization relations [Eqs. (9)–(11)]. These relations are
fundamentally implied by Pauli’s principle, which states
that the vacuum (excited) state has the lowest (highest)
occupation. Since all physical states of a single fermionic
mode are Gaussian, the moment-based, entropy-based, and
majorization-based uncertainty relations are all equivalent
(for a given phase-space distribution z). First, it is simple to
see that SrðzÞ ¼ ln r=ð1 − rÞ − ð1=2Þ ln½− det γðzÞ� for all
Gaussian z; hence, (18) and (21) are equivalent. Second, the
equivalence between (18) and (9)–(11) is a consequence of
how the majorization relation (8) behaves under a change of
Grassmann-valued variables; see Ref. [56] (e). The
Gaussian nature of z is the key feature that enables our
exact derivation here, in sharp contrast to bosonic uncer-
tainty relations [17] and majorization relations [37], which
remain challenging problems.
With our analysis, we have paved the ground for

exploring quantum information problems in fermionic
systems. In [63], we discuss the implications of our
quantum informational approach to fermionic phase space
on quantum cloning and quantum fermionic channels: We
demonstrate that a single fermion can be cloned by showing
that the no-cloning uncertainty relations do not put any
constraints on the clones and discuss how the (in the single-
mode case most general) thermal loss channel—describing
Gaussian diffusion or a heat flow—increases disorder in
phase space. We envision further application in, e.g., the
context of entanglement theory and quantum cryptography.
Although the fermionic phase-space distributions are

themselves Grassmann-valued, all measures of disorder,
such as the entropy, are real-valued and, even more
importantly, measurable, as they can be computed from
the occupation numbers of the system. On the theoretical
side, it is of particular interest to extend our fermionic
uncertainty relations to arbitrary many modes [20], where
the set of physical states also contains non-Gaussian states.
The proposed methods herein are directly applicable to the

two-mode case, where the Wigner majorization relations
single out pure Gaussian states as the states of least disorder
in phase space. Furthermore, all entropic uncertainty
relations acquire an additional factor of 2, thereby sug-
gesting an extensive scaling of entropic bounds (just as in
the bosonic case) [64].
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End Matter

Appendix A: Cloning and the uncertainty principle—
The no-cloning theorem [65–67] does not constrain a
single fermion, as the only two physical pure states j0i
and j1i are orthogonal. Hence, a fermion can be perfectly
cloned by employing a trivial 1 → 2 cloning strategy.
Starting from a number state jmi, we measure its
occupation and prepare two independent fermions with
the same mode population. This results in the state-
independent average fidelity F ¼ P

1
n;m¼0 pðmÞFðn;mÞ ¼

ð1=2ÞP1
n¼0ðδn0 þ δn1Þ ¼ 1 for pðmÞ ¼ 1=2. The unit

fidelity for fermions is in stark contrast with other
physical systems. The same trivial measure-and-prepare
strategy yields F ¼ 2=3 for a single qubit (spin 1=2),
which can be increased up to the optimal value F ¼ 5=6
by utilizing the universal quantum cloning machine
proposed in [68], while the optimal Gaussian cloning
strategy for a boson exhibits F ¼ 2=3 [69,70]. More
generally, a single fermion described by some physical
density operator ρ can be broadcast, that is, copied to a
second mode in the sense that the total state ρAB ends up
with the marginals ρ ¼ TrAfρABg ¼ TrBfρABg. As every
physical state is diagonal in the Fock basis, it commutes
with any other physical state, thereby bypassing the no-
broadcasting theorem [71].
A simple implementation of a fermionic broadcasting

machine consists of the fermionic CNOT gate. Given
any physical input state ρA ¼ ð1 − hniÞaa† þ hnia†a on
mode A uncorrelated with the vacuum ρB ¼ bb† on
mode B, the CNOT gate flips the occupation of
mode B if mode A is populated and vice versa, which is
described by the nonlinear unitary U ¼ ðbþ b†Þa†aþ aa†.
The corresponding canonical transformations
a → aðbþ b†Þ and b → a†ab† þ aa†b conserve the anti-
commutation relations, leading to the two-mode output

ρAB ¼ ð1 − hniÞaa†bb† þ hnia†ab†b. The result is sym-
metric under the exchange of A and B and encodes the input
state in both modes.
Interestingly, a simple analog of the Gaussian cloning

machine for bosons [69,70] cannot exist for fermions. More
precisely, there is no linear transformation that is covariant
with respect to displacements, i.e., which conserves the
mean. This can be shown as follows. Let a ¼ ða1;…; aNÞT
denote the input modes with mode a1 carrying the state to be
cloned. The two clones shall appear in the output modes b1
and b2, with the output modes operators being described by
b ¼ θaþ λa†, where θ; λ∈C represent linear transforma-
tions. As the input state’s mean shall be conserved, the two
cloned output modes must read bj ¼ a1 þ

P
N
k¼2ðθjkak þ

λjka†Þ for j ¼ 1, 2. This, however, is impossible
if all input and output modes are considered fermionic
and independent, i.e., fulfill the anticommutation
relations faj; a†j0 g ¼ fbj; b†j0 g ¼ δjj01, as this results

in the contradiction fb1;b†1g¼fa1;a†1gþ
P

N
k¼2ðjθjkj2þ

jλjkj2Þfak;a†kg≠1 whenever θ, λ ≠ 0. For bosons, the
relative sign in the sum is a minus instead, and, hence,
θjk and λjk can be chosen such that the second term vanishes
(yielding a linear cloning transformation). The fermionic
CNOT gate implementing perfect cloning is not affected by
this no-go theorem, as it is a nonlinear transformation.
For bosons, the impossibility of perfect cloning is

expressed by the no-cloning uncertainty relations, which
provide lower bounds on the minimum noise that a cloning
machine adds to the (imperfect) clones [69,70]. We denote
by X ¼ xþ x̃ and P ¼ pþ p̃ the quadratures being mea-
sured on two separate clones stemming from the input
mode ðx; pÞ and independent noise ðx̃; p̃Þ. As the joint
measurement of ðX;PÞ is carried out over independent
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(bosonic) modes, we have ½X;P� ¼ 0, which implies
½x̃; p̃� ¼ −½x; p� ¼ −i1 since the noise is independent of
the input, that is, ½x; p̃� ¼ ½x̃; p� ¼ 0. As a consequence,
σ2ðx̃Þσ2ðp̃Þ ≥ 1=4. Assuming equal noise in both quad-
ratures, this shows that the minimum added noise to the
input quadratures ðx; pÞ is one unit of shot noise, i.e.,
σ2ðx̃Þ ¼ σ2ðp̃Þ ≥ 1=2. This implies that the measured out-
put quadratures ðX;PÞ are constrained by a relation of
Arthurs-Kelly type, i.e., σ2ðXÞσ2ðPÞ ≥ 1 [72], and, hence,
suffer from twice the shot noise compared to the input-
mode uncertainty. We remark that the Gaussian cloning
machine saturates all these inequalities.
The uncertainty relations derived in the main text

constrain the xp correlations via σ2ðx; pÞ ¼ det γðρÞ ¼
det γðWÞ ≥ −1=4; see also Ref. [56] (f). A joint measure-
ment over separate fermionic clones requires anticommut-
ing quadratures, i.e., fX;Pg ¼ 0, which implies fx̃; p̃g ¼ 0
since fx; p̃g ¼ fx̃; pg ¼ 0. At the same time, however, the
noise shall be independent of the input ½x; p̃� ¼ ½x̃; p� ¼ 0.
The resulting equations xp̃ ¼ p̃x ¼ x̃p ¼ px̃ ¼ 0 have non-
trivial solutions for ðx̃; p̃Þ only if their ranges fully lie in the
kernels of ðx; pÞ. The latter are empty sets over the
fermionic Hilbert space H2 ¼ fj0i; j1ig, implying
x̃ ¼ p̃ ¼ 0. Thus, the output quadratures are constrained
by the uncertainty principle in precisely the same way as
the input quadratures, that is, σ2ðX;PÞ ≥ −1=4. In particu-
lar, they do not suffer from additional noise—in accordance
with fermionic clones being perfect. Closely related is the
possibility of phase conjugation: The conservation of
anticommutation relations in a fermionic transformation
allows phase conjugation, a → a†. This transformation is
notoriously forbidden for bosons [73].
The situation changes drastically for two or more fer-

mions, as pure-state superpositions over various modes
cannot be cloned perfectly. Nonetheless, it is always
possible to separately clone all their single-mode marginals.

Appendix B: Fermionic channels in phase space—In
the continuous-variable quantum information formalism,
information and majorization theories play important
roles in characterizing Gaussian quantum channels.
[41,42]. Here, we sketch the situation for fermions.
Without loss of generality, we consider the single-mode
thermal loss channel, which represents a Gaussian
diffusion (or heat flow) process: Some (thermal) input
state ρin with mode number hnini is mixed with an
independent environmental mode ρenv carrying hnenvi
particles on a beam splitter of transmittivity τ∈ ½0; 1�,
i.e., ρin → ρout ¼ TrfUBSðρin ⊗ ρenvÞU†

BSg. Here,

UBS ¼
� ffiffiffi

τ
p ffiffiffiffiffiffiffiffiffiffi

1 − τ
p

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
−

ffiffiffi
τ

p
�

is the unitary matrix that describes the beam splitter trans-
formation on the two modes ðain; aenvÞ in phase space. It is

straightforward to check that the physical part of the
output state is of the standard thermal form
ρout ¼ ð1 − hnoutiÞaa† þ hnoutia†a, where hnouti ¼
τhnini þ ð1 − τÞhnenvi, which agrees with the bosonic
result (this is not at all evident given that the Pauli
exclusion principle forbids more than one fermion per
mode). Indeed, a careful calculation shows that hnouti ¼
τhninið1− hnenviÞ þ ð1− τÞhnenvið1− hniniÞ þ hninihnenvi.
Since the set of possible output states comprises all
physical states for any given input, any single-mode
fermionic channel can be written as a thermal loss channel.
In spite of the Grassmannian nature of the displacement

variable α (or, equivalently, of the x and p quadratures), it is
formally possible to transpose the notions of Gaussian
noise and modulation. Given any input phase space
distribution zinðαÞ, the thermal loss channel yields the
output distribution zoutðγÞ ¼

R
DαzinðαÞzτ;hnenviðγ − αÞ,

defined as a Grassmannian convolution. We determine
the channel’s kernel zτ;hnenviðαÞ using the Glauber P
representation. At the input, the state reads ρin ¼R
DαPinðαÞjαih−αj with PinðαÞ ¼ −hnini þ αα�, which

is a Gaussian-modulated coherent state. Similarly, the
environmental state reads ρenv ¼

R
DβPenvðβÞjβih−βj

with PenvðβÞ ¼ −hnenvi þ ββ�. At the output, the state
reads ρout¼

R
DαDβPinðαÞPenvðβÞjγih−γj, where γ ¼ffiffiffi

τ
p

αþ ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
β according to the beam splitter trans-

formation for (fermionic) coherent states. Substituting
β → γ and recalling that we must include the inverse of
the Jacobian J ¼ 1=ð1 − τÞ for Berezin integrals,
we obtain ρout ¼

R
DαDγJ−1PinðαÞPenv½γ=

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
−

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ=ð1 − τÞp �jγih−γj. Thus, comparing with the Glauber

P representation of the output state ρout ¼R
DγPoutðγÞjγih−γj implies that the kernel is

Pτ;hnenvi ¼ ð1 − τÞPenv½γ=
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
− α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ=ð1 − τÞp �, in accor-

dance with the bosonic case: Gaussian noise is added, while
coherent components are (unphysically) shifted.
It is instructive to notice that the relation between the

input and output occupation numbers that was derived in
the Fock basis can also be understood in phase
space. Starting from ρout ¼

R
DαDβð−hnini þ αα�Þ

ð−hnenvi þ ββ�Þjγih−γj, with γ ¼ ffiffiffi
τ

p
αþ ffiffiffiffiffiffiffiffiffiffi

1 − τ
p

β and
transforming β → γ, we may integrate over α, yielding
ρout ¼

R
Dγ½−τhnini − ð1 − τÞhnenvi þ γγ��jγih−γj, con-

firming the relation hnouti ¼ τhnini þ ð1 − τÞhnenvi. Thus,
the convolution between the Gaussian-modulated input and
Gaussian-distributed noise results in a Gaussian-distributed
output, in full analogy with the bosonic case (the coherent
states are unphysical, but their Gaussian mixture coincides
with a mixture of j0i and j1i).
Our fermionic majorization theory in phase-space

states that the disorder of a single fermionic mode grows
monotonically from the vacuum (least disorder) to the
excited state (most disorder). Indeed, when inserting
the vacuum, the thermal loss channel adds thermal noise
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(corresponding to an inflow of heat) and thus increases the
system’s disorder as hnouti ¼ ð1 − τÞhnenvi ≥ hnini ¼ 0.
More generally, some input distribution majorizes
its output distribution, i.e., zout ≺ zin, if the environment
is hotter than the input, i.e., hnenvi > hnini (vice versa
if the latter condition is reversed). This is also reflected by
the behavior of the Wehrl entropy (which extends the
classical Boltzmann entropy to the quantum level
and, as such, captures thermal properties [60]) when
considered as a function of τ and hnenvi. At the same
time, uncertainty increases as well. Note, however, that the
convenient measure for uncertainty—the Wigner covari-
ance matrix’ determinant—is monotonic in τ and hnenvi
only if considered separately over hnenvi ≥ ½2ð1 − τÞ�−1 or
the complementary region. The uncertainty measure attains
a global maximum when the latter inequality becomes
tight, which marks the point at which the output mode’s
temperature is either positive or negative.

A central question in the information-theoretic analysis
of communication concerns the (classical) capacity of a
channel, that is, its maximum communication rate and how
it can be reached. In the bosonic case, it is well known that
this is achieved by coherent-state inputs [74] (see also
Refs. [75,76]). This originates from the key fact that the
output von Neumann entropy attains its minimum when the
input state is coherent. When considering fermions, we
may equally work with the Wigner entropy, as it is
monotonically increasing (decreasing) for hni < ð>Þ1=2,
just as the von Neumann entropy. The output Wigner
entropy of a thermal loss channel is SðWoutÞ ¼
−1 − ln j1=2 − hnoutij. For given τ and hnenvi, the minimum
is always obtained for a pure input state (which also follows
from the Wigner entropy being convex over each temper-
ature branch). More precisely, the vacuum (excited state)
input is optimal when hnenvi < ð>Þ1=2.
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