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Abstract

In quantum mechanics, particles are classified as either bosons or fermions. These two families
exhibit fundamentally different behaviors: fermions, such as electrons, are governed by the Pauli
exclusion principle, which prevents them from occupying the same quantum state. Bosons, such
as photons, show the opposite tendency — they are more likely to “bunch” together in the same
state, a behavior that becomes particularly striking when particles are indistinguishable.

A famous example of boson bunching is the Hong-Ou-Mandel effect, where two identical photons
entering a beam splitter always exit together in the same output mode. This striking effect is a
hallmark of bosonic interference and forms the foundation of quantum optical technologies. But
what happens when more than two photons are involved or when their indistinguishability is
imperfect because of some discrepancy in their internal degrees of freedom, e.g., a polarization
mismatch? This question is at the heart of ongoing research in quantum optics.

The present master’s thesis is set in the context of this line of research, aiming at better under-
standing how partial distinguishability in the internal states of the photons affects their tendency
to bunch when sent through a linear optical interferometer — a device that splits and recombines
light using beam splitters and phase shifters. Understanding this behavior is crucial not only
for fundamental physics but also for practical applications such as quantum computing, quantum
metrology, and quantum communication, where photon interference plays a central role.

It is common knowledge that two partially distinguishable photons have a lower bunching prob-
ability than two perfectly indistinguishable photons; this is called the Hong-Ou-Mandel dip. In
an attempt to generalize this effect to scenarios involving many photons in many modes, a series
of conjectures have emerged in the scientific literature over time, formalizing the intuition that
“indistinguishable bosons always bunch the most”. It was suggested, for example, that the prob-
ability of all photons ending up in a subset of output modes of an arbitrary linear interferometer
is maximum when all photons are perfectly indistinguishable.

Quite unexpectedly, however, counterexamples were discovered as the complexity of the systems
increases. It was found that, in some rare cases, photons that are made distinguishable — by
modifying their internal state, such as their polarization or arrival time — could actually bunch
more than if they were fully indistinguishable. This refuted the above (strong) conjecture, which
was dubbed the “global maximum conjecture”. Subsequent work attempted to salvage this idea by
weakening the conjecture: if global optimality is false, perhaps local optimality remains true near
indistinguishable photons, meaning that perturbing indistinguishable photons would necessarily
decrease the bunching probability in an infinitesimal neighborhood of indistinguishable photons.
Yet this, too, was shown to be false through carefully constructed counterexamples.

This master’s thesis further investigates this research avenue by focusing on another, even weaker
conjecture — referred to as Pate’s conjecture in this work. It emerged as a purely mathematical
consequence of the now-disproven “local maximum conjecture”. A first outcome of the thesis
was to give Pate’s conjecture a clear physical interpretation, leading to the understanding of its
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connection with the previous bunching conjectures. As it turned out, Pate’s conjecture addresses
bunching in an extremely constrained setting: the internal states of only two photons are per-
turbed, with perturbations that are real-valued, equal in magnitude, and opposite in sign. This
can be thought of as the weakest possible bunching conjecture (since the considered perturbations
that might possibly lead to a violation are highly constrained), hence the conjecture that is the
most likely to hold.

To explore the validity of Pate’s conjecture, we have constructed a hierarchy of “intermediate
conjectures” by incrementally relaxing the constraints. These new conjectures span the logical
space between the (stronger) local maximum conjecture and (weaker) Pate’s conjecture. These in-
termediate conjectures pertain to different numbers of perturbed photons (from all photons down
to just two) and distinguish between real-valued and complex-valued perturbations. We have then
attempted a combination of analytical and numerical methods to test these conjectures. While full
analytical proofs or disproofs remained out of reach due to the computational complexity of the
matrix permanent (a quantity that is central to calculating bosonic interference probabilities), our
numerical simulations uncovered explicit counterexamples for several intermediate cases. Specif-
ically, we found violations of 2-mode bunching conjecture for complex perturbations affecting as
little as 5 photons out of 10 photons entering a specific linear interferometer. When additionally
enforcing perturbations to be real-valued, a counterexample was found for 17 photons, all being
perturbed. It must be stressed that the matrix permanent is known to be exponentially hard to
compute, even with efficient algorithms such as Ryser’s or the “incomplete rank” method. We
developed a two-step numerical strategy in order to find such counterexamples. First, global opti-
mization techniques were used to explore the space of photon perturbations; then, local methods
were used to refine these counterexamples to higher violations. In spite of an exhaustive search,
no violations were found for Pate’s conjecture or for complex-valued intermediate conjectures
with less than 5 perturbed photons, even when extending our search up to 22-photon systems.
Our results leave open Pate’s conjecture as well as a few other low-photon-number scenarios, but
significantly expand the family of photon bunching conjectures that are now proven to be false.

In conclusion, this master’s thesis signals potential implications for interferometric experiments
where achieving perfect photon indistinguishability is very challenging. It suggests that with care-
ful control over the photons’ internal states, one may deliberately engineer anomalous bunching
— producing interference effects even stronger than those arising from identical photons. This
opens a pathway toward obtaining higher bunching violations, potentially large enough to be
experimentally detectable. Such results may be of particular relevance in quantum optical se-
tups used in technologies like boson sampling, quantum communication, quantum computing, or
quantum-enhanced metrology, where fine-tuning photon interactions is essential. More broadly,
this master’s thesis points toward a novel approach in which distinguishability is not merely a
noise factor to suppress, but a parameter to exploit when designing quantum interference-based
devices. This should hopefully contribute to a deeper conceptual framework and better practical
tools for probing the complex interplay between distinguishability and interference in multi-photon
systems — a challenge at the heart of quantum optics and quantum technology.
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Léo Pioge. I am deeply grateful for their generous guidance, time, and insightful discussions.
Collaborating with them gave me a meaningful glimpse into the academic world — an experience
I will always cherish. I feel incredibly fortunate to have been surrounded by people who created
such a welcoming and understanding atmosphere. I was treated with warmth, openness, and
genuine appreciation for the effort I put in. That sense of being valued and included meant more
to me than I can fully express.

I would like to thank my family: my parents, for not only making this journey possible but also
supporting me unconditionally; and my friends, for believing in me, especially during difficult
times, and for giving me strength and encouragement. A special thanks goes to my mother,
whose persistence led me to take the special admission exam — a turning point without which
none of this would have happened. I am also grateful to my father, who, through trust and quiet
guidance, gave me the freedom to make my own choices — and in doing so, helped me grow.

I am also thankful to all the teachers I’ve had over the years. This journey has been worth every
effort, even for this culminating moment alone. In particular, I want to express my gratitude to
my former math teacher, Yves Delhaye — not only for encouraging me early on and giving me
the confidence to aim higher, but also for recommending that I pursue the same path he once
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Nomenclature

perm(A) Permanent of matrix A
det(A) Determinant of matrix A
A Complex conjugate of A
A† Hermitian adjoint (conjugate transpose) of matrix A
At Transpose of matrix A
A ≥ 0 Hermitian positive semidefinite matrix A
Hn Set of (n× n) Hermitian positive semidefinite matrices
Sn Symmetric group of n elements
[n] The set {1, . . . , n} (first n positive integers)
Ai,j Element (i, j) of matrix A
A[i1:i2],[j1:j2] Submatrix of A from rows i1 to i2 and columns j1 to j2
A\i,\j Submatrix of A without row i and column j
⊗ Tensor product
⊙ Hadamard (element-wise) product
1 Constant vector i.e. (1, . . . , 1)t

I Identity matrix i.e. Iij = δij ∀i, j
E Constant matrix i.e. Eij = 1 ∀i, j
P Probability
n Total number of input photons
m Total number of output modes
K Subset of output modes where all n photon bunch
r Size of the subset K, i.e. r = |K| ≤ m
k Number of perturbed photons, i.e. k ≤ n
f (k) Leading principal submatrix of F , i.e. f (k) = F[1:k],[1:k]

Û (m×m) Unitary operator representing an interferometer
M Restricted submatrix of U i.e. M = U[1:r],[1:n]

S Distinguishability matrix
v Perturbation vector
|ϕ0⟩ Internal (unperturbed) state of the photon
|ηi⟩ Perturbative state of the photon i
|ϕi⟩ Perturbed internal state of photon i
R Violation ratio
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Introduction

The Pauli exclusion principle states that identical fermions cannot occupy the same quantum state.
In contrast, bosons exhibit the opposite behavior: their tendency to bunch together increases
as they become more indistinguishable. This phenomenon arises from quantum superposition,
where the non-deterministic paths of particles in a linear interferometer — analogous to the
double-slit experiment — lead to both destructive and constructive interference. Crucially, this
gives rise to boson bunching (or fermion antibunching), which is further accentuated for perfectly
indistinguishable particles.

A striking manifestation of this is the Hong-Ou-Mandel effect [1], where two identical photons
entering a 50/50 beam splitter always exit in the same output mode. This one-mode bunching
effect lays the foundation for the broader concept of multimode bunching : the tendency of all
photons to cluster in a subset of the output modes of an interferometer. Experimentally, this
effect diminishes as photons become distinguishable — through differing polarizations, energy,
time bins, etc. In an attempt to generalize the Hong-Ou-Mandel interference to multi-photon and
multimode bunching, this sensitivity to distinguishability forms the basis of a fundamental con-
jecture in quantum optics: that the probability of multimode bunching is maximized for perfectly
indistinguishable photons.

Photon interference lies at the heart of modern quantum optics and is key resource in the devel-
opment of emerging quantum technologies. In quantum computing, it enables quantum bits to
be encoded in various physical systems. One optical encoding scheme involves using two optical
modes containing one photon, where quantum information is processed using only linear optical
elements — beam splitters and phase shifters. Remarkably, even without nonlinear interactions
(that is, no nonlinear coupling between optical modes is required), such a setup can achieve univer-
sal quantum computation [2] (paired with single photon sources and photo-detectors). Algorithms
like Shor’s prime factorization algorithm [3] exemplify the computational advantage that quantum
systems can offer over classical ones

Beyond computation, multi-photon interference underpins protocols like Boson Sampling [4],
where the output distributions of indistinguishable photons passing through a linear interferome-
ter cannot be efficiently simulated on classical machines. In quantum communication, it enables
Bell-state measurements — critical for entanglement swapping, and quantum teleportation [5].
Photon interference also plays a vital role in quantum-enhanced metrology, enabling measure-
ments of time, position, and phase with precision beyond classical limits such as sub-femtosecond
timing resolution [6], or minimal detectable phase enhanced by entangled photons [7].

Hence, understanding how distinguishability affects bunching is not merely an academic pursuit —
it has practical consequences for the scalability and robustness of quantum devices whose design
relies on multi-photon interference. This highlights the need to deepen our understanding of multi-
photon interference, and critically assess the assumption of the conjecture that indistinguishability
always optimizes interference-based bunching behavior.
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However, prior work [8] has shown that this conjecture does not always hold: photons made
partially distinguishable through individual perturbations of their internal states may — in rare
configurations — exhibit a higher bunching probability than fully indistinguishable photons. This
refuted the notion of a global maximum (in the sense of probability as a function of perturbations).
Later results went further, disproving even a local maximum [9]: increased bunching can still occur
for photons that are nearly — but not perfectly — indistinguishable. On a related note, the topic
of interference between non-identical photons remains an active area of research: for instance,
recent work [10] demonstrated a Hong-Ou-Mandel-like interference effect between two photons of
different colors.

In this work, we push this line of inquiry further. We aim to demonstrate whether a partial pertur-
bation, affecting only a subset of the photons, is sufficient to violate the local maximum conjecture.
This type of conjecture will naturally emerge as we study the intricate link between the above-
mentioned physical conjectures and some of the long-standing mathematical conjectures related
to permanents. The results would allow us thus not only to deepen our theoretical understanding
of interference and distinguishability but also signal potential implications for practical systems
where perfect indistinguishability is difficult to achieve. It also suggests how careful engineering
may lead to anomalous bunching, enhanced beyond that caused by identical photons, and how
one could possibly obtain higher violations, making them experimentally detectable, which is yet
not so common in practice.
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Theoretical Background
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Chapter 1

Prerequisites

We begin by reviewing the prerequisites for this work — first the necessary mathematics, then
the key physical ideas, and finally a few optical concepts.

1.1 Matrix Properties

The adjoint † of a matrix A is defined as:

A† = A
t

(1.1)

Where A denotes the complex conjugate of A, and t represents the transpose. A Hermitian matrix
is self-adjoint, that is:

A† = A (1.2)

A unitary matrix is defined as:
A† = A−1 (1.3)

It can be seen as an extension from the real R to the complex domain C of an orthogonal matrix
(which includes rotations, but also more general isometries such as reflections) which in turn is
defined as:

At = A−1 (1.4)

1.1.1 Positive Semi-Definiteness

We will define positive semi-definiteness (PSD) but any kind of definiteness (positive-definite,
negative-definite, negative semi-definite) can be defined analogously. Throughout this work, mul-
tiple equivalent definitions of a positive semi-definite Hermitian matrix A denoted A ≥ 0 (distinct
from positive elementwise aij ≥ 0), will be used, depending on the context. Let Hn denote the
set of n × n positive semi-definite Hermitian matrices. A matrix A ∈ Hn is Hermitian positive
semi-definite if and only if:

1. A is Hermitian A† = A, and at least one of the following conditions is satisfied:

� its eigenvalues are non-negative

λi ≥ 0 ∀i ∈ [n] (1.5)

where [n] ≡ {1, . . . , n}
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� its quadratic form is non-negative

x†Ax ≥ 0 ∀x ∈ Cn (1.6)

� its leading principal minors are non-negative (Sylvester’s criterion)

detA[1:i],[1:i] ≥ 0 ∀i ∈ [n] (1.7)

Where A[i1:i2],[j1:j2] is read as matrix A from row i1 to i2, and from column j1 to j2.

A principal submatrix a of a matrix A shares the same diagonal elements, more pre-
cisely: a matrix from which the deleted rows and columns share the same index. “Lead-
ing” enforces that each submatrix, from the lowest dimension (1× 1) until the highest
dimensions (n×n), is created starting from the first row and column: A[1:i],[1:i] ∀i ∈ [n].
Minor corresponds to the determinant of the matrix in question.

It is worth noting that, non-negative leading principal minors guarantee the non-
negativity of all the remaining (non-leading) principal minors.

2. A admits a decomposition, for some B ∈ Cn×n as:

A = B†B (1.8)

The first definition is arguably the most commonly used. The second and third definitions are
among the quickest ways to show that a matrix A is positive semi-definite without constructing
explicit vectors or computing its eigenvalues λi, Which will appear later in our proof. The fourth
definition is helpful for generating positive semi-definite Hermitian matrices from any given matrix
B

1.1.2 Rayleigh Quotient

We will be working with eigenvalues of matrices thus motivating the introduction of the Rayleigh
quotient RA(x) for a given complex matrix A ∈ Cn×n and a nonzero vector x ∈ Cn, is defined as:

RA(x) =
x†Ax

∥x∥2
(1.9)

The Rayleigh quotient RA(x) is majorized by the largest λ1(A) and minorized by the smallest
eigenvalue λn(A) of the corresponding matrix A.

λ1(A) ≥ RA(x) ≥ λn(A) (1.10)

1.2 Group Theory

This section introduces essential concepts from group theory that are necessary to define the
matrix functions that arise in the conjectures we investigate.

1.2.1 Symmetric Group

A set {1, . . . , n} can undergo a given permutation σ : {1, . . . , n} → {1, . . . , n} of its elements,
which can be viewed as a bijection mapping i→ σ(i) written as:

σ =

(
1 . . . n

σ(1) . . . σ(n)

)
(1.11)
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The identity permutation of a set {1, . . . , n}, written as ϵ, maps every element to itself.

ϵ =

(
1 . . . n
1 . . . n

)
(1.12)

Take the following permutation σ as an example

σ =

(
1 2 3
3 1 2

)
(1.13)

This is a cyclic permutation (each element sending onto the next one) more compactly written as
σ = (132), it reads as:

1 → σ(1) = 3, 3 → σ(3) = 2, 2 → σ(2) = 1

A transposition τ = (i, j) is a 2-cycle permutation (1-cycle permutations (i), which are identities
ϵ, are often omitted). The action of a composition (στ) of permutations σ and τ acting on an
element i is:

(στ)(i) = (σ(τ(i))) (1.14)

Any permutation σ can be decomposed as a composition of transpositions τ :

σ = τ1 . . . τk (1.15)

One can verify that (132) = (12)(23). The sign of such permutation σ is defined as

sgn(σ) = (−1)k (1.16)

The symmetric group Sn is the set of all n! possible permutations σ of {1, . . . , n}.

1.2.2 Immanents

For a subgroup G ⊆ Sn of the symmetric group, the character χ : G→ C is defined as

χ(σ) = tr(ρ(σ)) (1.17)

For a matrix A ∈ Cn×n, the permutation product dA(σ) : Sn → C is defined as

dA(σ) =
n∏
i

ai,σ(i) (1.18)

The (normalized) generalized matrix function fχ,G, also known as an immanent, extends both the
determinant and the permanent. It is defined for a matrix A ∈ Cn×n, a subgroup G ⊆ Sn of the
symmetric group, and a character χ : G→ C, and is written as:

fχ,G(A) =
1

χ(ϵ)

∑
σ∈G

χ(σ)dA(σ) (1.19)

As a reminder, ϵ is the identity permutation. When G = Sn, this formula recovers classical matrix
functions for specific χ:

� if χ is the principal character of G, that is when ρ = ρtriv, then fχ,Sn(A) is the permanent

perm(A) =
∑
σ∈Sn

dA(σ) (1.20)

� if χ is the alternating character of G, that is when ρ = ρalt, then fχ,Sn(A) becomes the
determinant

detA =
∑
σ∈Sn

sgn(σ)dA(σ) (1.21)
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Computational complexity of the permanent

Unlike determinant of a (n × n) matrix, which alternates signs and can be reduced to triangu-
lar form in O(n3) time by Gaussian elimination, the permanent keeps all n! terms positive, so
those cancellations never occur. A brute-force sum over all n! permutations would take O(n!n)
time. The best general-purpose deterministic approach we currently have is Ryser’s algorithm,
which evaluates it in O(n2n) time with O(n) memory use. Hence, even with Ryser’s algorithm,
permanents remain exponentially harder to compute than determinants.

1.3 Quantum states Formalisms

Having covered the necessary mathematical notions, we now turn to the key physical concepts.

1.3.1 Basis vectors

A set of vectors {|φi⟩} = {|φ1⟩ , . . . , |φn⟩} forms a basis of a Hilbert space if any vector in that
space can be written as a unique linear combination of that set {|φi⟩}.

In quantum mechanics, one almost always assumes the basis is orthonormal (which is not required),
which not only simplifies the calculations but also makes the physical interpretation of physical
quantities more straightforward.

⟨φi|φj⟩ = δij (1.22)

Where δij refers to the Kronecker delta defined as

δij =

{
1 if i = j

0 else
(1.23)

The basis kets |φi⟩ are then called basis states. They are the building blocks used to specify
quantum states. Common examples include:

1. Computational basis for a qubit1 {|0⟩ , |1⟩}.

2. Electron spin states {|↑⟩ , |↓⟩}.

3. Photon polarization states {|H⟩ , |V ⟩}.

1.3.2 First Quantization

A quantum system could be in a superposition, that is, a linear combination of those basis states
|φi⟩ weighted by their probability amplitudes ci ∈ C.

|ψ⟩ =
∑
i

ci |φi⟩ (1.24)

The probability P(|φi⟩) of measuring the system in a particular state |φi⟩ is given by projecting
the state onto the current state |ψ⟩ then taking the norm squared. Using orthonormality, this
yields the norm squared |ci|2 of the corresponding probability amplitude

P(|φi⟩) = | ⟨φi|ψ⟩ |2 = |ci|2 (1.25)

1In practice we implement a logical qubit by choosing one particular physical degree of freedom (spin, polariza-
tion, energy levels, ...) and mapping |0⟩ to one eigenstate, and |1⟩ to another.
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The following thus ensures that the total probability across all possible states adds up to 100%∑
i

|ci|2 = 1 (1.26)

Such a state |ψ⟩ is referred to as a pure state, as opposed to a mixed state, which is described by
a density operator ρ representing a convex combination of pure states |ψi⟩.

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , pi ∈ [0, 1] :
∑
i

pi = 1 (1.27)

For a system of two distinguishable particles A and B in non-entangled pure states |ψ⟩A and |ϕ⟩B,
the joint state is given by the tensor product ⊗:

|ψ⟩A ⊗ |ϕ⟩B = |ψ⟩A |ϕ⟩B (1.28)

Note, however, that a tensor product does not always imply two different particles. It can equally
well describe two distinct degrees of freedom of one and the same particle — for instance, the
spatial mode |j⟩ and the polarization |ϕj⟩ of a single photon. In such cases we still write |j⟩⊗|ϕj⟩.

Only states that factorize as a single tensor product (i.e. |ψ⟩A⊗|ϕ⟩B) are called separable (or non-
entangled). When the state cannot be written in such form, the subsystems exhibit entanglement :
measurement outcomes on A are statistically correlated with those on B in a way that exceeds
all classical explanations. The four Bell’s states are a textbook example, which maximize the
entanglement between two-qubits. One of them is:

|Φ+⟩ = 1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) (1.29)

We introduced entangled states here only to highlight the contrast with separable (non-entangled)
states. From Chapter 2 onward, we will work exclusively with photons in separable states, unless
explicitly stated otherwise.

This achieves a short description of first quantization: each particle is described by a wave-function
(state vector |ψ⟩) in a Hilbert space, and the number of particles is fixed.

1.3.3 Second Quantization

The first quantization could quickly become cumbersome for a significant number of particles.
When multiple indistinguishable particles occupy the same quantum state, it becomes more natu-
ral to switch to the occupation number basis. In this formalism, contrary to the first quantization,
the particle number can vary with the introduction of creation/annihilation operators. A Fock
state with k different quantum states |i⟩ is written as

|n1, . . . , nk⟩ (1.30)

with ni ∈ N particles occupying the state |i⟩. While Fock states are pure states, they belong to a
different formalism called second quantization. When no particles are present, the system is said
to be in the vacuum state denoted as

|0⟩ := |0, . . . , 0⟩ (1.31)

Annihilation âi and creation operators â†i act on Fock states by annihilating or creating a particle
in the state |i⟩. The action of â and â† are:

1√
n+ 1

â |n+ 1⟩ = |n⟩ (1.32)
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1√
n+ 1

â† |n⟩ = |n+ 1⟩ (1.33)

Where 1√
n+1

ensures that the states remain normalized due to the changing number of particles.

Thus a particle in a spatial mode |j⟩ of internal state |ϕ⟩j can be written in both first and second
quantization (respectively the left and right side of the equality):

|j⟩ ⊗ |ϕj⟩ = â†j,ϕj |0⟩ (1.34)

Lastly, we introduce the commutator [, ]:

[A,B] = AB −BA (1.35)

and the anticommutator {, }:
{A,B} = AB +BA (1.36)

So that now we can elegantly express the symmetry of bosons under particle exchange (with the
help of commutators):

[â†i , â
†
j] = 0 ∀i, j (1.37)

While the antisymmetry of fermions under particle exchange (using anticommutators) gives:

{â†i , â
†
j} = 0 ∀i, j (1.38)

The anticommutator for fermions gives when i = j:

(â†i )
2 = 0 (1.39)

Which reveals exactly the Pauli exclusion principle: forbidding the occupation of the same state
by identical fermions.

Furthermore, the commutator for fermions can be simplified using equation 1.38, thus becomes:

[â†i , â
†
j] = 2â†i â

†
j (1.40)

1.4 Fundamental Interferometer Components

We are now ready to introduce beam splitters — a fundamental optical element that will recur
throughout this work.

For completeness we will first define phase shifters, because any interferometer (and, in fact, any
linear-optical circuit) can be built solely from beam splitters and phase shifters. Together they
constitute a universal set for realizing arbitrary linear optical transformations [11].

Phase shifter

A photon acquires a phase δ ∈ R when passing through a phase shifter (indicated by the arrow
→):

â† → exp(iδ)â† (1.41)
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Beam splitter

A beam splitter is an optical device that splits an incident light beam into two (or more) output
beams. It is described by a unitary matrix Û and acts exclusively on the spatial mode |j⟩, without
affecting the internal state |ϕj⟩ of the photon.

Û (|j⟩ ⊗ |ϕj⟩) = Û |j⟩ ⊗ I |ϕj⟩ (1.42)

For an m-mode beam splitter (with the same number of input and output ports); see Figure 1.1, a
single photon creation operator â†j,ϕj — which creates one photon in spatial mode j with internal

state |ϕj⟩ — transforms according to the (m×m) beam splitter unitary Û as follows (with input
→ output):

â†j,ϕj → Û â†j,ϕj Û
† =

m∑
k=1

Ukj â
†
j,ϕj

(1.43)

This will be explained in details later in Section 2.1.1. We choose the convention where the first

Figure 1.1: Evolution of the creation operator â†j,ϕj under the action of a two-mode beam-splitter

input mode continues along the same spatial path as the first output mode, and similarly for other
modes. That is, the labeling (such as i in â†i ) preserves the physical propagation direction through
the beam splitter. Under this convention, the most general form of the beam splitter unitary
matrix Û is:

Û =

( √
T eiϕ

√
R

−e−iϕ
√
R

√
T

)
(1.44)

Where T = |t|2 is the transmittance and R = |r|2 is the reflectance, that is, the probability
of transmission and reflection respectively. Both can be expressed using the transmission and
reflection amplitudes t, r ∈ C. Since the particle is inevitably either transmitted or reflected,
these probabilities must satisfy

T +R = 1 (1.45)
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One of the possible (but not unique) beam splitter matrix Û is

Û =
1√
2

(
1 i
i 1

)
The reflected beam acquires a ei

π
2 = i phase shift in the reflection process, and the states must be

normalized by 1√
2
due to the beam splitter being 50/50. Both come from the satisfaction of the

unitary matrix condition:
Û Û † = I (1.46)

Where I designates the identity matrix.

1.5 Two-Particle Interference

Suppose a 50/50 beam splitter (T = R = 1
2
) with two input and two output ports. We will explore

a range of interactions, beginning with distinguishable particles, followed by indistinguishable
particles. Specifically, we will consider the case of fermions, then bosons (which includes the
well-known Hong-Ou-Mandel effect), and conclude with partially distinguishable particles.

We define two characteristic output patterns:

Definition 1. bunching : the tendency of identical bosons to occupy the same spatial mode.

Definition 2. antibunching : the complementary behavior to bosonic bunching, for which identical
fermions occupy distinct spatial modes.

1.5.1 Distinguishable Particles

First let us consider two completely distinguishable particles, such as two photons with different
polarizations: one horizontal |H⟩ one vertical |V ⟩; or two electrons with different spins: one up
|↑⟩, and the other down |↓⟩. In this case, the particles are non-interacting and remain independent
and uncorrelated. If we count the number of particles obtained in the output modes, then either
we find:

� one particle in each output mode P(|1, 1⟩) — which is exactly antibunching — occuring
when both particles are transmitted T 2 or reflected R2,

P(|1, 1⟩) = T 2 +R2 =
1

2
(1.47)

� both particles in the same output mode P(|2, 0⟩) or P(|0, 2⟩) — corresponding to bunching
— occuring when one of the particles is transmitted and the other reflected:

P(|2, 0⟩) = P(|0, 2⟩) = TR =
1

4
(1.48)

1.5.2 Indistinguishable Particles

The creation operator for a single photon entering the first input mode â†1, using (1.43), evolves
as:

â†1 →
1√
2
(â†1 + iâ†2) (1.49)

When two particles enter the beam splitter, again using (1.43), the operators become

â†1â
†
2 →

1

2
(â†1 + iâ†2)(iâ

†
1 + â†2) (1.50)

=
i

2

[
(â†1)

2 + (â†2)
2
]
+

1

2
[â†1, â

†
2] (1.51)
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Fermions

In the case of fermions, we simplify using equation 1.38 and equation 1.39. Thus, equation (1.51)
becomes:

â†1â
†
2 → â†1a

†
2 (1.52)

We can then deduce the final state |ϕ⟩out

|ϕ⟩out = â†1â
†
2 |0⟩ = |1, 1⟩ (1.53)

It follows that the probability of finding one fermion in each output mode is

P(|1, 1⟩) = |⟨1, 1 |ϕ⟩out |
2 = 1 (1.54)

It is worth noting that particles are correlated: obtaining information about one of them imme-
diately reveals the state of the other. That is, if one fermion is found in a given output mode,
the other must inevtiably be in the other output mode. We exclusively have an antibunching
phenomenon for identical fermions.

Bosons

As for bosons, by applying recursively (1.33) we get (â1)
2 |0⟩ =

√
2 |2, 0⟩, similarly for (â†2)

2 |0⟩ =√
2 |0, 2⟩. Additionally we can use equation 1.37 to get the final state |ψ⟩out becomes

|ψ⟩out =
i

2
((â†1)

2 + (â†2)
2) |0⟩ = i√

2
(|2, 0⟩+ |0, 2⟩) (1.55)

Therefore, both bosons are guaranteed to bunch together in one of either output modes

P(|2, 0⟩) = |⟨2, 0 |ψ⟩out |
2 =

1

2
(1.56)

One similarly obtains P(|0, 2⟩) = 1
2
. The particles are again correlated: if one boson is detected

in a particular output mode, the other is necessarily found in the same mode. This is known as
the Hong-Ou-Mandel effect.

1.5.3 Partially and Near Indistinguishable Particles

Let the initial state be described by one photon in the input mode 1 of internal state φ, different
from the second photon in the input mode 2 of internal state ψ. Such state evolves through the
beam-splitter as:

â†1φâ
†
2ψ |0⟩ → Û â†1φâ

†
2ψ |0⟩ (1.57)

Let us expand the second photon’s state |ψ⟩ in the subspace spanned by |φ⟩ and a state |φ⊥⟩
orthogonal to it:

â2ψ |0⟩ = |ψ⟩ (1.58)

= α |φ⟩+ β |φ⊥⟩ (1.59)

= α |φ⟩+ exp(iθ)
√

1− |α|2 |φ⊥⟩ (1.60)

= (αâ†2φ +
√

1− |α|2â†
2φ⊥) |0⟩ (1.61)

Using the orthonormality between |φ⟩ and |φ⊥⟩, we expressed β in terms of α up to a global phase
exp(iθ) for some θ ∈ [0, 2π[.

|β|2 = 1− |α|2 (1.62)
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β = exp(iθ)
√
1− |α|2 (1.63)

The overall global phase of any state |ψ⟩ is physically irrelevant. In particular, we got rid of the
global phase for |φ⊥⟩

exp(iθ) |ψ⟩ = |ψ⟩ ∀ |ψ⟩ (1.64)

The final state becomes, again using equation 1.43:

Û â†1φâ
†
2ψ |0⟩ = Û â†1φ(αâ

†
2φ +

√
1− |α|2â†

2φ⊥) |0⟩ (1.65)

= αÛâ†1φâ
†
2φ |0⟩+

√
1− |α|2Û â†1φâ

†
2φ⊥ |0⟩ (1.66)

= α(Û â†1φÛ
†)(Û â†2φÛ

†) |0⟩+
√

1− |α|2(Û â†1φÛ †)(Û â†
2φ⊥Û

†) |0⟩ (1.67)

=
α

2
(â†1φ + iâ†2φ)(iâ

†
1φ + â†2φ) |0⟩+

√
1− |α|2
2

(â†1φ + iâ†2φ)(iâ
†
1φ⊥ + â†

2φ⊥) |0⟩ (1.68)

=
α

2

(
[â†1φ, â

†
2φ] + i

[
(â†2φ)

2 + (â†1φ)
2
])

|0⟩ (1.69)

+

√
1− |α|2
2

(
â†1φâ

†
2φ⊥ − â†2φâ

†
1φ⊥ + i

[
â†2φâ

†
2φ⊥ + â†1φâ

†
1φ⊥

])
|0⟩ (1.70)

The first term is exactly the same as for two indistinguishable particles, scaled by a factor α. The
second term corresponds to two distinguishable particles weighted by a factor

√
1− |α|2.

Let us now restrict to the case of (not identical) bosons, we can use equation 1.37 to get:

Û â†1φâ
†
2ψ |0⟩ =

iα

2

[
(â†2φ)

2 + (â†1φ)
2
]
|0⟩ (1.71)

+

√
1− |α|2
2

(
â†1φâ

†
2φ⊥ − â†2φâ

†
1φ⊥ + i

[
â†2φâ

†
2φ⊥ + â†1φâ

†
1φ⊥

])
|0⟩ (1.72)

Using equation 1.33, the only terms that contribute to bunching into mode 1 are:

iα

2

√
2 |2, 0⟩+ i

√
1− |α|2
2

â†1φâ
†
1φ⊥ |0⟩ (1.73)

Thus the probability of bunching into mode 1 is:

P =

∣∣∣∣iα2 √
2

∣∣∣∣2 +
∣∣∣∣∣
√

1− |α|2
2

∣∣∣∣∣
2

=
1 + |α|2

4
(1.74)

Here |α| qualifies the indistinguishability: as |α| increases, photons bunch more. Therefore, the
more indistinguishable the photons are, the more they bunch.

Notice that — similarly for bunching into mode 2 — this probability of bunching into mode 1 is
maximized when α → 1 (i.e. for identical bosons):

argmax
α
P = 1 (1.75)

The probability of bunching into either mode is thus guaranteed

P =
1 + |α|2

2

α→1−→ 1 (1.76)

After studying two-particle interactions, we conclude that the bunching probability is maximized
for identical bosons. Additionally, as the photons become more distinguishable, the bunching
probability decreases. A natural question arises: if the bunching probability is maximized for two
indistinguishable photons, could this behavior be generalized to n indistinguishable photons?
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Chapter 2

Multimode boson bunching

In practice, physical systems become more interesting when they involve more than two photons
and spatial modes. We therefore extend the concepts introduced earlier to larger number of
photons and modes. First, we lay out the necessary fundamentals; we then survey the present-day
state of the art on multiple bosons bunching into a subset of output modes.

This chapter is greatly inspired by the works Refs [8] and [9]. The ideas developed there are essen-
tial for understanding the second part of this thesis, which can be viewed as a direct continuation
of those studies.

2.1 Preliminaries

The photon j enters the m-mode interferometer (cf. Figure 2.11) in the state:

|ψj⟩ = |j⟩ ⊗ |ϕj⟩ = â†j,ϕj |0⟩ (2.1)

Where:

� |j⟩ is the spatial state of the photon (corresponding to the spatial modes of the interferom-
eter)

� |ϕj⟩ is the internal state which excludes the spatial mode (e.g. polarization, time-bin, fre-
quency, or other degrees of freedom)

It is important to note that Û acts only on spatial modes

Û (|j⟩ ⊗ |ϕj⟩) = Û |j⟩ ⊗ I |ϕj⟩ (2.2)

It will be shown in the following section 2.1.1 that each photon exits in a superposition of spatial
modes while its internal state |ϕj⟩ remains unchanged.

Although the interferometer has m input and m output modes, we inject n photons with only one
photon per occupied input mode and allow n ≤ m. Hence, m is best viewed as the total number
of output modes (since the remaining unoccupied input modes are irrelevant). Throughout this
work the input state is a product of pure, non-entangled single-photon states.

1The interferometer in this figure is represented as an integrated photonic circuit rather than a free-space
(bulk-optic) system. The former integrates optical components (waveguides, beam splitters, phase shifters) as
a monolithic (single-substrate) chip which offers robustness and scalability — ideal for practical applications in
technologies (telecommunications, quantum computing etc...). In contrast, free-space systems use discrete optical
elements components (mirrors, beam splitters...) aligned in air (or sometimes in vacuum) on an optical table,
making them reconfigurable thus well-suited for experiments.
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Figure 2.1: Interferometer Û in which n photons enter the first n ≤ m input modes then bunch
into a subset K of the m output modes, with |K| = r ≤ m, and |j⟩ |ϕj⟩ describing the spatial
mode |j⟩ and internal state |ϕj⟩ of the photon j.

Our focus is the probability Pn of all n photons bunching into a subset K of the output modes2,
where |K| = r ≤ m.

2.1.1 Multimode interferometer

We will derive the relation between the input and output states of a multimode interferometer.

Consider n input photons (n ≤ m), each in a distinct spatial mode |j⟩ with internal state |ϕj⟩.
The beam-splitter acts only on the spatial mode |j⟩ (and not on the internal state |ϕj⟩) via the

(m×m) unitary Û with matrix elements Ukj = ⟨k| Û |j⟩.

Beam splitter matrix

First, let us express the beam splitter matrix Û . Using the closure relation I =
∑

j |j⟩ ⟨j|, we can
write the operator Û in terms of its matrix elements Uk,j = ⟨k| Û |j⟩. Where we have m input
spatial modes |j⟩ and m output spatial modes |k⟩:

Û = I · Û · I =
m∑
k=1

|k⟩ ⟨k| Û
m∑
j=1

|j⟩ ⟨j| =
m∑
k=1

m∑
j=1

Ukj |k⟩ ⟨j| (2.3)

2Although from this point onward the specific convention for labeling spatial modes will no longer play a
crucial role, it is helpful to clarify the difference in approach. In the case of a simple two-mode beam splitter
(Figure 1.1), we previously used a convention where the output mode index was determined by the physical
outcome — that is, a particle transmitted through the beam splitter retained the same mode number as its input.
However, in more complex interferometric setups such as the multimode interferometer depicted in Figure 2.1, it is
mathematically more convenient to adopt a different convention: we label the input and output modes according
to their visual continuity in the diagram. That is, the i-th input mode connects directly to the i-th output mode
via an uninterrupted path depicted as a line. In short, in Figure 2.1, the input/output are numbered in the same
order(e.g. from top to bottom). This indexing simplifies calculations in practice.
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Let us consider how the m-mode interferometer acts on one spatial mode |j⟩ occupied by one
input photon j:

|j⟩ → Û |j⟩ =
m∑
k=1

m∑
l=1

Ukl |k⟩ ⟨l|j⟩︸︷︷︸
δlj

=
m∑
k=1

Ukj |k⟩ (2.4)

This indicates that the term Ukj could be interpreted as the contribution (probability amplitude)
of the input spatial mode |j⟩ to the output spatial mode |k⟩. Additionally, we notice that the
photon exits in a superposition of output modes |k⟩.

One input photon

Consider m spatial output modes |k⟩ but only one photon in the spatial input mode |j⟩ of internal
state |ϕj⟩ created by the creation operator â†j,ϕj from the vacuum state |0⟩. Then, a beam splitter

acts (indicated by →) on such a state via the unitary operator Û as:

â†j,ϕj |0⟩ → Û â†j,ϕj |0⟩ (2.5)

Now the last result Û â†j,ϕj |0⟩ could be simplified in two ways:

� On one hand, using equation 2.2 then equation 2.4, we get:

Û â†j,ϕj |0⟩ =
(
Û |j⟩ ⊗ |ϕj⟩

)
=

(
m∑
k=1

Ukj |k⟩

)
⊗ |ϕj⟩ =

m∑
k=1

Ukj â
†
k,ϕj

|0⟩ (2.6)

Where we have rewritten the output state as: |k⟩ ⊗ |ϕj⟩ = â†k,ϕj |0⟩.

� On the other hand we could rewrite Û â†j,ϕj |0⟩ using the fact that Û is unitary Û−1 = Û †

and that it does not influence the vacuum state Û |0⟩ = |0⟩

Û â†j,ϕj |0⟩ = Û â†j,ϕj Û
†Û |0⟩ = Û â†j,ϕj Û

† |0⟩ (2.7)

Equating both expressions for Û â†j,ϕj |0⟩ gives:

Û â†j,ϕj Û
† =

m∑
k=1

Ukj â
†
k,ϕj

∀j, ϕj (2.8)

Multiple input photons

Finally now treating n input photons (one per mode): the input state is a pure non-entangled
state

∏n
j=1 â

†
j,ϕj

|0⟩. The annihilation operator â†j,ϕj creates a photon in the spatial mode |j⟩ of

internal state |ϕj⟩. The state evolves under the transformation of the beam splitter Û as:

n∏
j=1

â†j,ϕj |0⟩ → Û

n∏
j=1

â†j,ϕj |0⟩

We can express Û inside the product using again the same mathematical trick then replace with
the previously obtained expression in equation 2.8:

Û

n∏
j=1

â†j,ϕj |0⟩ = Û â†1,ϕ1Û
†Û â†2,ϕ2Û

† . . . Û â†n,ϕnÛ
†Û |0⟩ (2.9)

=
n∏
j=1

Û â†j,ϕj Û
† |0⟩ =

n∏
j=1

m∑
k=1

Ukj â
†
k,ϕj

|0⟩ (2.10)
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For a specific photon j one thus gets:

â†j,ϕj → Û â†j,ϕj Û
† =

m∑
k=1

Ukj â
†
k,ϕj

(2.11)

Which was the original beam-splitter relation stated in equation 1.43.

2.1.2 Multimode Bunching Probability

We will now return to bunching and derive an explicit formula for the multimode bunching prob-
ability Pn. Let us first define:

Definition 3. multimode bunching: event in which all n input photons emerge from the interfer-
ometer Û exclusively in a fixed subset K of the m output modes, with |K| = r ≤ m; every output
port outside K remains unoccupied.

For a given set of vectors {|ϕi⟩ : i ∈ [n]} The overlap between internal states can be analyzed via
the Gram matrix S ∈ Hn called the distinguishability matrix, defined as:

Sij = ⟨ϕi|ϕj⟩ ∀i, j ∈ [n] (2.12)

Note that it is always possible to choose a set of normalized vectors ⟨ϕi|ϕi⟩ = 1 to simplify the
Gram matrix to Sii = 1 ∀i ∈ [n]. The (n × n) positive semidefinite Hermitian matrix H ∈ Hn,
can be seen as its correspondence for the spatial modes embodied by the linear interferometer Û
and the subset K of output modes, which is defined as:

Hij =
∑
k∈K

Uk,iUk,j ∀i, j ∈ [n] (2.13)

In practice, for a total of m output modes, the (m×m) matrix Û describing the whole interefer-
ometer is not relevant. Only its restriction to the subset K of output modes is useful, and will be
denoted as a (r × n) matrix M as opposed to the (m×m) operator Û .

M = Û[1:r],[1:n] (2.14)

Notice that in such case, the matrix H can be simply redefined in terms of M as:

H =M †M (2.15)

The multimode boson bunching probability Pn, that is, the probability of finding all n photons in
a subset K of the interferometer output modes, can be obtained by projecting the output state
of the interferometer

∏n
j=1 â

†
j |0⟩ → Û

∏n
j=1 â

†
j |0⟩ onto the subspace where all the photons occupy

the subset K. Such probability Pn is expressed as follows:

Pn(S) = perm(H ⊙ S) (2.16)

Where ⊙ denotes the Hadamard product (A⊙B)ij = AijBij

2.2 Global Maximum Conjecture

The Hong-Ou-Mandel effect described in Section 1.5.2 begs the question whether n indistinguish-
able bosons do maximize the bunching probability in a given subset K of output modes.
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The opposite statement about fermions is true: indistinguishable fermions always maximize the
multimode antibunching probabilities.

Finally, this physical conjecture for bosons is, as will be explained in this section, equivalent to
a mathematical conjecture which in turn is implied by a conjeture permanent-on-top proven for
n ≤ 3 (later seen in details in section 2.4.2).

We define:

Definition 4. partial distinguishability : characteristic of two (normalized) internal states |ψ⟩
and |ϕ⟩ whose overlap ⟨·|·⟩ is

0 < | ⟨ϕ|ψ⟩ | < 1 (2.17)

For example, the state of two partially distinguishable photons could be: |ψ⟩ = |H⟩ and |ϕ⟩ =
1√
2
(|H⟩+ |V ⟩)

Definition 5. anomalous bunching: phenomenon in which the probability that partially distin-
guishable bosons exceeds the corresponding bunching probability for completely indistinguishable
bosons.

Now we can properly introduce the physical conjecture P1 about multimode boson bunching [12],
motivated by the above mentioned observations. The authors stated it in Ref [9] as follows:

Conjecture P1. (Shchesnovich 2016) [9] Consider any linear interferometer Û and any subset
K of output modes. Among all possible separable input states of n classically correlated photons,
the probability that all output photons bunch into K reaches its global maximum if the photons are
perfectly indistinguishable.

It could be verified that this conjecture holds for single-mode bunching |K| = 1. Let us define a
(n× n) matrix E as:

Eij = 1 ∀i, j ∈ [n] (2.18)

Since S = E if all photons are perfectly indistinguishable, and since perm(H ⊙ E) = perm(H),
the conjecture P1 can be written using equation (2.16) as:

perm(H ⊙ S) ≤ perm(H) (2.19)

Coincidentally this physical Conjecture P1 can be linked by equivalence with the mathematical
Conjecture M1 by Bapat and Sunder from Ref [13], which is the following:

Conjecture M1. (Bapat, Sunder 1985) Let A,B ∈ Hn then

perm(A⊙B) ≤ perm(A)
n∏
i=1

Bii (2.20)

Without loss of generality [14], B can be restricted to a Gram matrix with

Bii = 1 ∀i ∈ [n] (2.21)

Thus making equation (2.20) equivalent to equation (2.19). Intuitively, and given the long-standing
mathematical conjecture, one would naturally expect the conjecture P2 for the global maximum
to be true.
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Counterexample

Against all expectations, for the first time there are partially distinguishable bosons that bunch
more than indistinguishable bosons. The counterexample to Conjecture M1 was found by Drury
[15] in 2016, with the lowest-dimensional (2× 7) matrix, physically corresponding to n = 7 input
photons that bunch into |K| = 2. It is more useful to provide its decomposition instead H =M †M
(possible for any Hermitian positive-semi definite matrices [16]):

M =
1√
2

(√
2 0 1 1 1 1 1

0
√
2 1 ω ω2 ω3 ω4

)
(2.22)

Where ω = exp(i2π
q
) with q = n − 2. From this mathematical counterexample, several instances

of interferometers were found by the authors in Ref [8], one depicted in Figure 2.2 — the source
of this Figure is also from Ref [8], to disprove conjecture P1.

Note that the currently defined H is in accordance with the definition of the matrix H in equation
2.13. Meanwhile M , as defined in equation 2.14, does not directly correspond to Û (representing
the whole interferometer), but rather to its restricted dimension from m total output modes down
to |K| output modes (in which all the photons bunch). The rank r of the matrix M is equal to
r = |K| = 2. To summarize, to find a counterexample matrix Û , one only needs to work with its
(r× n) submatrix M (thus of rank r) representing n photons, one per input mode, bunching into
r output modes (out of m in total).

This explicit counterexample clearly proves the surprising fact: there is an interferometer config-
uration (as described by the matrix M), for which anomalous bunching takes place, i.e. partially
distinguishable photons present a higher multimode bunching probability than perfectly indistin-
guishable photons.
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Figure 2.2: The image is from Ref [8] displaying an optical set up: 7-mode interferometer found
by authors in Ref [8] corresponding to the mathematical counterexample of the Conjecture M1
from Ref [15] found by Drury. Seven photons with specifically prepared polarization states bunch
into the first two output modes (depicted by green light detectors) with a higher probability than
if they all shared the same polarization (which would effectively make them indistinguishable).
Below, their polarizations are represented on a Bloch sphere. As described by the authors [8], the
setup can be generalized to n modes with q = n − 2 (here q = 5) photons specifically prepared
with polarization states |ϕj⟩ = 1√

2
(|H⟩ + ωj |V ⟩) ∀j = 0, . . . , q − 1 in the q = 5 mode discrete

Fourier transform Ujk =
1√
q
ωjk ∀j, k = 0, . . . , q−1 whose two modes are sent respectively to two

beam splitters of equal transmittance 2
n
to interfere with the remaining n − q = 2 vertically and

horizontally polarized photons.

2.3 Local Maximum Conjecture

We have concluded the previous section with a counterexample to the global maximum Conjecture
P1. This naturally leads to a new question: is the multimode bunching probability at least locally
maximized by perfectly indistinguishable bosons, even if not globally?

Moreover, the stationarity result from Theorem 1 (proven in Ref [9]), shows that the multimode
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bunching probability Pn(S) is unaffected by first order perturbations. The vanishing of the first
derivative is a necessary condition for local maximum; the second condition is that the second
derivative must be negative.

Theorem 1. (Pioge et al. 2023). Consider any linear interferometer Û and any (nontrivial) sub-
set K of output modes. For an arbitrary choice of the perturbation parameters vi and (normalized)
perturbation state |ηi⟩, the multimode bunching probability Pn into K is stationary i.e.

∂Pn(S)

∂ϵ
= 0 (2.23)

Finally, it has been observed out that the counterexamples to Conjecture P1 are, in a certain sense,
far from indistinguishability. More precisely, any total system state |Ψ⟩ = |ϕ1⟩ . . . |ϕn⟩ contains
a permutationally symmetric component, whose weight is quantified by the indistinguishability
measure d(S):

d(S) =
perm(S)

n!
(2.24)

This measure takes the value d(E) = 1 for perfectly indistinguishable photons, but is significantly
smaller in Drury’s counterexample to Conjecture M1.

To properly introduce the local maximum conjecture. We must first define:

Definition 6. separable infinitesimal perturbation: perturbation |ηi⟩ proportional by a factor ϵvi
applied to the internal state |ϕ0⟩ of the photon i. Its perturbed internal state reads as (with a
normalization constant αi):

|ϕi⟩ =
1

αi
(|ϕ0⟩+ ϵvi |ηi⟩) (2.25)

Definition 7. near indistinguishability: characteristic of two (normalized) internal states |ψ⟩ and
|ϕ⟩ whose overlap ⟨·|·⟩ is

⟨ϕ|ψ⟩ = 1 +O(ϵ2) (2.26)

An example of two nearly indistinguishable bosons is one in a horizontally polarized state, while the
other experiences an infinitesimal perturbation in the direction of an orthogonal state: |ψ⟩ = |H⟩
and |ϕ⟩ = 1

αi
(|H⟩ + ϵvi |V ⟩). This scenario will be used explicitly in section 2.3.1). Notice that

near indistinguishability is a special case of partial distinguishability.

All these observations naturally lead to a conjecture P2 regarding the local maximum as stated
in Ref [9] by the authors:

Conjecture P2. [9] (Pioge et al. 2023) Consider any linear interferometer Û and any subset K
of output modes. Starting from the state of n indistinguishable photons, the probability that all
output photons bunch into K can only decrease if a separable infinitesimal perturbation is applied
to the internal state of the photons, making them slightly distinguishable.

The validity of the conjecture P1 would in turn, imply the validity of Conjecture P2. Interestingly,
this latter conjecture appears to be coincidentally linked to another mathematical Conjecture M2,
originally proposed by Bapat and Sunder in Ref [17]. More specifically, Conjecture P2 implies
Conjecture M2 (cf. section 2.3.1) but the converse is not true: there is no equivalence as it was
the case between Conjecture P1 and Conjecture M1.

Let A\i,\j denote the matrix A without the row i and column j. We define a new matrix F whose
(i, j) entry is:

Fi,j = Ai,j perm(A\i,\j) (2.27)
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Conjecture M2, stated by Bapat and Sunder in Ref [17] in terms of the matrix F (as defined in
equation 2.27), is as follows:

Conjecture M2. (Bapat, Sunder 1986) Let F be the matrix associated to A ∈ Hn then perm(A)
is the largest eigenvalue of F .

This conjecture could alternatively be written as: let A ∈ Hn then

λ1(F ) = perm(A) (2.28)

Note thatA ∈ Hn implies F ∈ Hn [17] thus its eigenvalues are non negative. Additionally, perm(A)
is always an eigenvalue of F since by using the Laplace expansion for permanents (equation 2.98)
one gets

F1 = perm(A)1 ⇔
∑
j

Fi,j = perm(A) (2.29)

Where 1 is the constant vector 1 = (1, . . . , 1)t. However, the conjecture states that the perm(A)
is the largest eigenvalue. The determinant analogue to this conjecture can be proven to be true,
that is: the smallest eigenvalue of F is det(A) where F this time is defined as Fij = aij det(A\i,\j).

Counterexample

The counterexample to conjecture M2 was found by Drury [18] in 2018, this time of dimension
(2× 8) thus physically corresponding to n = 8 photons sent in each input mode but still bunching
in |K| = 2 output modes. The matrix is H =M †M where

M =

(
−7 + 4i 9− 3i −6 + 2i 3 + 4i 7 + 6i 4− 4i i 5− 8i
4− 5i 1 + 4i −8− 2i −7 + 4i 1− 4i 1− 8i 8− 6i 1− 3i

)
(2.30)

For which the largest eigenvalue λ1(F ) of F surpasses perm(H) = 2′977′257′622′144′118′400 by
λ1(F )/ perm(H) ≈ 1.01956

This provides another instance of anomalous bunching — but now with nearly indistinguishable
photons, an even stricter condition than partially distinguishable photons. As in the global maxi-
mum counterexample, one can build a physical interferometer corresponding to the mathematical
counterexampleM . For that device, the two-mode bunching probability is not maximized by fully
indistinguishable bosons; instead, it is still exceeded by nearly indistinguishable bosons.

2.3.1 Perturbation Analysis

We will now analyze the implication between the physical conjecture P2 and the mathematical
conjecture M2 for the global maximum. In this section, the exact perturbation analysis was done
in Ref [9], here we restrict ourselves to an even more specific case of photon’s internal state (cf.
equation 2.35) which will be explained in details in the following paragraphs.

We analyze how a small perturbation, proportional to a (normalized) state |ηi⟩, applied to the
internal state |ϕ0⟩ (shared by all photons) affects the bunching probability Pn(S). Let ϵ > 0
denote the overall magnitude of the perturbation, and let vi be the i-th component of a normalized
complex vector v ∈ Cn.

Note that ϵ and vi represent distinct quantities: ϵ controls the global strength of the perturbation
whereas vi scales the contribution of the perturbation for photon i. Since v is normalized, the
rescaling required during normalization, namely v → v/∥v∥, can be absorbed into ϵ, effectively
transforming it as ϵ→ ∥v∥ϵ.
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In summary, each photon is initially in the internal state |ϕ0⟩. A small perturbation is then applied
individually to each photon, modifying its internal state by an amount ϵvi |ηi⟩. As a result, the
photon i enters the interferometer in the state:

|ϕi⟩ =
1

αi
(|ϕ0⟩+ ϵvi |ηi⟩) ∀i ∈ [n] (2.31)

Here αi is a normalization factor ensuring ⟨ϕi|ϕi⟩ = 1

αi =
√

1 + 2ϵℜ[vi ⟨ηi|ϕ0⟩] + ϵ2|vi|2 (2.32)

The stationarity of Pn [9], opens up the possibility of it being a potential local maximum. However,
to verify if it is indeed a local maximum, we must continue with the calculation for the second
order. Its second order expansion is particularly interesting to study because it will reveal how
Conjecture P2 and Conjecture M2 are linked.

Second Order Perturbation

We now present a detailed account of the second order perturbation of the internal state of photons.
The following derivations are taken directly from Ref [9], and are reproduced here.

Let us assume that the internal state |ϕ0⟩ is orthogonal to the perturbation state |ηi⟩ for each
photon:

⟨ηi|ϕ0⟩ = 0 ∀i ∈ [n] (2.33)

Additionally, let us assume that the perturbed internal state of every photon is spanned by the
same two orthogonal vectors: for example a horizontal polarization state |H⟩ and vertical |V ⟩.
Thus equation 2.31 becomes:

|ϕi⟩ =
1

αi
(|H⟩+ ϵvi |V ⟩) ∀i ∈ [n] (2.34)

⟨H|V ⟩ = 0, ⟨H|H⟩ = ⟨V |V ⟩ = 1 (2.35)

These two assumptions alone, equation 2.31 and equation 2.33, restrict our Conjecture P2 down to
specific cases, which will be relevant to understand the relation to its mathematical counterpart.

In the second order (the perturbation magnitude converges as ϵ→ 0), using the McLaurin expan-

sion (1 + x)n
x→0−→ 1 + nx, the normalization constant αi becomes:

1

αi
= (1 + ϵ2|vi|2)−1/2 = 1− 1

2
ϵ2|vi|2 (2.36)

and their product can be simplified to:

1

αiαj
= 1− 1

2
ϵ2(|vi|2 + |vj|2) +O(ϵ4) (2.37)

using the orthonormality in equation 2.35, the projection of the perturbed internal state of the
photon i into photon j is:

(⟨H|+ ϵvi ⟨V |) (|H⟩+ ϵvj |V ⟩) = 1 + ϵ2vivj (2.38)

Using the last two equations, the distinguishability matrix S as defined in equation 2.12 becomes:

Sij = ⟨ϕi|ϕj⟩ (2.39)

= 1 + ϵ2[vivj −
1

2
(|vi|2 + |vj|2)] +O(ϵ4) (2.40)

= 1 + ϵ2Xij +O(ϵ4) (2.41)
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Where we defined the matrix X:

Xij = vivj −
1

2
(|vi|2 + |vj|2) (2.42)

Let us remind the Hadamard product (a ⊙ b)i,j = ai,jbi,j, and use the matrix E as previously
defined in equation 2.18. The multimode bunching probability Pn(S) is:

Pn(S) = perm(H ⊙ S) (2.43)

= perm(H ⊙ E+H ⊙ ϵ2X) +O(ϵ4) (2.44)

= perm(B + A) +O(ϵ4) (2.45)

Where we defined B = H ⊙E = H and A = H ⊙ ϵ2X. The permanent of the sum is given by the
Minc’s formula:

perm(A+B) =
∑
i,j⊆[n]
|i|=|j|

perm(Ai,j) perm(B\i,\j) (2.46)

(2.47)

Where the sum involves i, j which are all subsets of [n] such that their size are the same i.e.
|i| = |j|: the sum goes over all possibilities of zero columns and rows, then one column and row,
and so on and so forth until n columns and rows.

We decompose the sum in the Minc’s formula into three parts based on the choice of subsets i
and j:

1. empty set: this corresponds to i = j = ∅, in that case this simplifies to∑
i,j

i=j=∅

perm(Ai,j) perm(B\i,\j) = perm(A∅,∅) perm(B) = perm(H) (2.48)

2. singleton subsets: this corresponds to subset i consisting of a single element from n, that is
|i| = 1, likewise for |j| = 1. The sum over all such possible i and j subsets simplifies to:∑

i,j⊆[n]
|i|=|j|=1

perm(Ai,j) perm(B\i,\j) =
∑
i,j⊆[n]

|i|=|j|=1

perm((H ⊙ ϵ2X)i,j) perm(H\i,\j) (2.49)

=
∑
i,j⊆[n]

|i|=|j|=1

(H ⊙ ϵ2X)i,j perm(H\i,\j) (2.50)

= ϵ2
∑
i,j⊆[n]

|i|=|j|=1

(F ⊙X)i,j (2.51)

3. remaining sets: all the remaining subsets consisting of more than one element from [n] create
a matrix Ai,j of two or more rows and column whose permanent result in terms containing
O(ϵ4)

Therefore the bunching probability Pn(S) becomes:

Pn(S) = perm(H) + ϵ2
∑
i,j

(F ⊙X)i,j +O(ϵ4) (2.52)
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The increase of bunching probability δPn(S) in slightly perturbed bosons compared to indistin-
guishable ones is:

δPn = perm(H ⊙ S)− perm(H) (2.53)

= ϵ2
∑
i,j

(F ⊙X)i,j +O(ϵ4) (2.54)

= ϵ2
∑
i,j

[viFi,jvj −
1

2
(|vi|2Fi,j + |vj|2Fi,j)] +O(ϵ4) (2.55)

= ϵ2[v†Fv − perm(H)] +O(ϵ4) (2.56)

Where for the first term, we used ∑
i,j

viFi,jvj = v†Fv (2.57)

Additionally, using Laplace expansion formula for the permanent∑
i

Fi,j =
∑
j

Fi,j = perm(H) (2.58)

and for a normalized vector ∥v∥2 = 1, the remaining terms simplify as:∑
i,j

|vi|2Fi,j =
∑
i

|vi|2
∑
j

Fi,j = perm(H)
∑
i

|vi|2 = perm(H) (2.59)

Conjecture 2 claims that δPn ≤ 0 for all perturbations v. In particular, for vmax eigenvector of
the maximum eigenvalue λ1(F ). Now we can majorize δPn(S) using equation 1.10

δPn ≤ max
v

δPn = ϵ2[λ1(F )− perm(H)] +O(ϵ4) (2.60)

Or equivalently:
λ1(F ) ≤ perm(H) (2.61)

But by definition of the maximum eigenvalue, and since perm(H) is also an eigenvalue, we have:

perm(H) ≤ λ1(F ) (2.62)

In other words, equation 2.61 implies exactly Conjecture M2:

λ1(F ) = perm(H) (2.63)

As mentioned previously, Conjecture M2 is a special case of conjecture P2 because of assuming
a specific perturbation described in equation 2.31, paired with the condition in equation 2.33.
Therefore it is only true that the validity of Conjecture P2 implies the validity of Conjecture M2,
and not the converse.

2.4 Permanent-on-Top Conjecture

The Permanent-on-Top conjecture M3 serves as a foundation from which emerged the main con-
jectures M1 and M2 investigated in this work. The goal of this section is to demonstrate that
there is no possible anomalous bunching for n = 3 photons (or less) by proving the validity of
the permanent-on-top conjecture for the dimension n = 3.
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2.4.1 Schur Power Matrix

First let us define the (n! × n!) Schur power matrix π(A) associated to the (n × n) matrix A,
indexed by permutations σ, τ ∈ Sn defined as follows:

(π(A))σ,τ =
n∏
i=1

aτ(i),σ(i) (2.64)

Positive semi-definite Hermitianity conservation

It is worth noting that it conserves positve definite Hermitianity, that is, A ∈ Hn implies π(A) ∈
Hn! since it is the principal submatrix of the n-fold Kronecker product ⊗nA.

Equivalency in left regular representation

The Schur power matrix π(A) can also be described using the left regular representation ρreg on
an n!-dimensional inner product space V spanned by the orthonormal basis V = {eσ : σ ∈ Sn}

π(A) =
∑
σ∈Sn

dA(σ)ρreg(σ) (2.65)

One can verify this by computing its matrix element (σ, τ) using equation (A.2)

(π(A))σ,τ =
∑
α∈Sn

dA(α) ⟨eσ| ρreg(α) |eτ ⟩︸ ︷︷ ︸
|eατ ⟩

(2.66)

since the scalar product is nonzero only when σ = ατ ⇔ στ−1 = α

(π(A))σ,τ = dA(στ
−1) =

∏
i

ai,στ−1(i) (2.67)

Since στ−1(i) = σ(τ−1(i)), by substituting j = τ−1(i) ⇔ τ(j) = i one finally gets

(π(A))σ,τ =
∏
j

aτ(j),σ(j) (2.68)

Generalized matrix function as eigenvalues

It can be shown [17] that the Schur power matrix π(A) admits the generalized matrix function
fχ,G(A) as eigenvalue for any character χ(σ) of a subgroup G ⊆ Sn of the symmetric group. In
particular, for π(A) operator on V = {eσ : σ ∈ Sn} associated to the n × n matrix A, one can
verify that indeed it admits both det(A) and perm(A) as eigenvalues but only the former det(A)
has been proven (implicitly) by Schur to be the lowest.{

π(A)vperm = perm(A)vperm, vperm :=
∑

σ eσ

π(A)vdet = det(A)vdet, vdet :=
∑

σ sgn(σ)eσ
(2.69)

2.4.2 Conjecture

Schur in Ref [19] implicitly showed that the smallest eigenvalue of the operator π(A) associated
to the matrix A ≥ 0 is det(A). This motivated the introduction of a conjecture counterpart for
permanents, introduced by Soules [20], referred as permanent-on-top in this work, and was stated
in Ref [17] as follows:

Conjecture M3. (Soules 1983) Let A ≥ 0, then is the largest eigenvalue of the Schur power
matrix π(A) associated to the matrix A equal to the permanent of A.
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Equivalent inequality

One way to describe the Conjecture M3 is the following:

π(A) ≤ perm(A)I (2.70)

This inequality could be rewritten by explicitly writing the eigenvalues of π(A) as being majorized
by perm(A). For π(A) ∈ Hn!, it is Hermitian and positive semi-definite, and hence admits a
spectral decomposition:

π(A) = V ΛV † (2.71)

Where V is a matrix whose columns are orthonormal eigenvectors of π(A). The matrix Λ =
diag(λ1, . . . , λn!) containing the eigenvalues is diagonal. This implies

V †π(A)V = Λ (2.72)

Moreoever, since the permanent is invariant under unitary transformation

V †(perm(A)I)V = perm(A)I (2.73)

therefore the inequality (2.70) becomes

Λ ≤ perm(A)I (2.74)

This holds if and only if perm(A) is the greatest eigenvalue of π(A) and thus is equivalent to
equation (2.70). One could write it even more directly:

λ1(π(A)) = perm(A) (2.75)

Where we denote the i-th greatest eigenvalue λi(X) of the (n×n) matrix X sorted in descending
order

λ1 ≥ · · · ≥ λn (2.76)

Proof

The conjecture M3 has been proven by Bapat and Sunder for n ≤ 3 in Ref [17]. The proof is the
following.

Proof. For n = 1 it is trivial. For n = 2, π(A) ∈ Hn if A ∈ Hn therefore it can be decomposed as
π(A) = V ΛV † as explained in equation (2.69), that is:

V =
1√
2

(
1 1
1 −1

)
; Λ =

(
perm(A) 0

0 det(A)

)
(2.77)

Additionally, ∀A ≥ 0 : perm(A) ≥ detA which concludes the proof for n=2.

For n = 3, since the Schur power matrix π(A) can be written using equation (2.65) in the left
regular representation ρreg, and since A ≥ 0, the inequality (2.70) is equivalent to: ∀x ∈ V = {eσ :
σ ∈ Sn} ∑

σ∈Sn

dA(σ) ⟨x| ρreg(σ) |x⟩ ≤ perm(A) ⟨x|x⟩ (2.78)

As mentioned in equation (A.14), since the left regular representation ρreg can be decomposed as
a direct sum of irreducible representations ρ(σ) of Sn, inequality (2.78) is equivalent to:

α :=
∑
σ∈Sn

dA(σ)ρ(σ) ≤ perm(A)I (2.79)
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S3 only has 3 irreducible representations: ρtriv, ρalt, and ρstd. The latter being a restriction of
the natural representation ρnat to the subspace V = {v ∈ C3} ⊥ |1⟩ orthogonal to the constant
vector |1⟩ = (1, 1, 1)t as described in equation (A.11). It suffices to show the particular case of the
representation ρ(σ) = ρnat(σ). The (i, j) entry of the operator α becomes:

αi,j =
∑
σ∈Sn

dA(σ) ⟨ej| ρnat(σ) |ei⟩︸ ︷︷ ︸
|eσ(i)⟩

(2.80)

Using equation (A.4), and noting that the scalar product is nonzero only when j = σ(i), this
reduces down to

αi,j =
∑
j=σ(i)

dA(σ) = Fi,j (2.81)

Where the entry (i, j) of the newly defined matrix F is given by:

Fi,j := Ai,j perm(A\i,\j) (2.82)

Here, A\i,\j denotes the matrix A without the row i and column j. Note again that A ∈ Hn

implies F ∈ Hn. The inequality to prove becomes

F ≤ perm(A)I (2.83)

Which is equivalent to checking the semi definite-positiveness of the matrix G defined as:

G = perm(A)I− F ≥ 0 (2.84)

In an attempt to further simplify the matrix A by reducing the number of working entries ai,j.
Observe that, for a specific diagonal matrix D = diag(λ1, . . . , λn) the inequality (2.70) remains
invariant when A undergoes the following transformation

A→ DAD† (2.85)

Thus for any matrix A it is always possible to choose D such that after transformation, A has a
normalized diagonal. Additionally, since A ≥ 0 we get:

A =

1 d e

d 1 f

e f 1

 (2.86)

The diagonally normalized matrix A→ DAD† can be without loss of generality further simplified
[17]: its element f remains complex, while it is sufficient for d, e ≥ 0 to be real non-negative.
Intuitively, this matrix A can be treated similarly to the indistuighisbality matrix Si,j = ⟨ϕi|ϕj⟩
whose elements are also equivalent up to global phase. Indeed, the latter is also normalized
diagonally because of orthonormal states |ϕi⟩. Since the quantum state |ϕi⟩ is physically equivalent
to exp(iθi) |ϕi⟩ we can redefine

|ϕi⟩ → exp(iθi) |ϕi⟩ (2.87)

Under this transformation, the entries are equivalent up to a global phase exp(i(θj − θi))

⟨ϕi|ϕj⟩ → exp(i(θj − θi)) ⟨ϕi|ϕj⟩ (2.88)

Let us eliminate the phase for d and e

d = exp(iα)|d| → exp(i(θ2 − θ1))d = |d| (2.89)
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e = exp(iβ)|e| → exp(i(θ3 − θ1))e = |e| (2.90)

This fixes (θ3 − θ2) = (α− β) thus f transforms as:

f = exp(iγ)|f | → exp(i(α− β))f = exp(i(α− β + γ))|f | (2.91)

Thus f remains the only complex entry after cancelling the global phase for d and e effectively
making them real entries. Let us rename:

|d| → d ≥ 0 (2.92)

|e| → e ≥ 0 (2.93)

exp(i(α− β + γ))|f | → f ∈ C (2.94)

The matrix A becomes:

A =

1 d e
d 1 f

e f 1

 (2.95)

From this one can construct the matrix G from equation (2.84)

G =

α + β −α −β
−α α + γ −γ
−β −γ β + γ

 (2.96)

Where α = d2 + def , β = e2 + def , γ = |f |2 + def . Now we will use equation (1.7) to prove that
G ≥ 0. First notice: detG = 0 because G |1⟩ = 0. The two remaining leading principal minors
are: G1,1 and det(G[1;2],[1:2]). The first one is positive, using the definition (2.84)

G1,1 = perm(A)− F1,1 =
∑
j ̸=1

F1j ≥ 0 (2.97)

Where we used the Laplace expansion formula for the permanent equation 2.58:

perm(A) =
∑
i

Fi,j =
∑
j

Fi,j = Fjj +
∑
j ̸=i

Fi,j (2.98)

and the fact that both perm(A) ≥ 0 and Fjj ≥ 0 (since F ∈ Hn is implied by A ∈ Hn) are non
negative real, implying that

∑
j ̸=i Fi,j ≥ 0 must be as well. The second leading principal minor is:

det(G[1;2],[1:2]) =

∣∣∣∣α + β −α
−α α + γ

∣∣∣∣ = αγ + βγ + αβ (2.99)

After substiting α, β, γ then for f = a+ ib this becomes:

αγ + βγ + αβ = (de)2(1 + |f |2) + (d2 + e2)|f |2 + de(ℜ[f ])2 + 2deℜ[f ](d2 + e2 + |f |2) (2.100)

= 3(dea)2 + (d2 + e2 + 2dea)b2 (2.101)

+ 2dea(d2 + e2 + a2) (2.102)

The first term is positive
3(dea)2 ≥ 0 (2.103)

The second term can be simplified using A ≥ 0 ⇒ det(A[2:3],[2:3]) ≥ 0 ⇔ |f |2 < 1 and |a| ≤ |f |

d2 + e2 + 2dea ≥ d2 + e2 − 2|dea| (2.104)

≥ d2 + e2 − 2de = (d− e)2 ≥ 0 (2.105)
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The third term can be expressed as a quadratic form of a newly defined matrix C evaluated at a
specific vector v

2dea(d2 + e2 + a2) = v†Cv (2.106)

Where

C =

1 a e
a 1 d
e d 1− b2

 , v =

eada
de

 (2.107)

Note that C is Hermitian thus it suffices to prove C ≥ 0 using equation (1.7). The first principal
minor is trivial. As for the second, since a2 ≤ |f |2 < 1

det(C[1:2],[1:2]) = 1− a2 ≥ 1− |f |2 > 0 (2.108)

Finally, the last leading principal minor after simplification becomes

detC = detA+ (ab)2 ≥ detA > 0 (2.109)

This proves C ≥ 0 which is equivalent to equation (1.6). Now since

x†Cx ≥ 0 ∀x ∈ C3 (2.110)

In particular it is true for x = v which concludes the proof.

To conclude, this proof has the following physical implication: there is no anomalous bunching
for n ≤ 3.

An attempt was made to extend the proof for n = 4 (instead of n = 3) by computing all terms
explicitly starting from a matrix A with this time (n − 1)(n − 2)/2 = 3 instead of 1 complex
entries. Although this approach is, in principle, analytically feasible, the sheer number of terms
soon became unmanageable and the attempt was ultimately unsuccessful. For example, this time
the matrix F would have as entries, a permanent of dimension (n−1) = 3 with (n−1)! = 3! terms
instead of 2!. This would lead to the second principal minor of G (to be proven det(G[1:2],[1:2]) ≥ 0)
to have ((n − 1)2 − 1)((n − 1)!)2 = 288 terms3 instead of 12. The third principal minor and the
determinant of G would naturally have even more terms.

Counterexample

Shchesnovich [21] found a n = 5 dimensional counterexample A = M †M to conjecture M3 using
numerical search where:

M =

(
4− 2i 2 + 3i −4 + 4i −3− 4i 1
2 + 4i 3i 2 + 4i 3i −5 + 7i

)
(2.111)

Indeed, the largest eigenvalue λ1(π(A)) = 320(2′185′775 +
√
160′600′333′345) of π(A) is bigger

than its permanent perm(A) = 814′016′640.

Soules showed that disproving conjecture M3 for real matrices implies that the smallest order for
which it fails must be a singular counterexample. It was proven by Drury that conjecture M3 did
fail for real matrices.

Despite the conjecture M3 being proven for n ≤ 3 but failing for n ≥ 5, the case of n = 4 still
remains unkown.

3(n− 1)2 comes from the product of diagonal entries of G, one diagonal entry having (n− 1) entries of F ,
The substraction of −1 from (n− 1)2 comes from a simplification that happens similarly as in equation 2.99
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As for the physical implication [12], the permanent-on-top conjecture M3 differs from the global
maximum conjecture M1 by the constraint on the internal states of the input photons: the former
allows for the internal states to be entangled (non-separable) while the latter restricts to only
non-entangled states. Therefore, this counterexample proves that anomalous bunching is possible
for n = 5 entangled (internal state) particles.

38



Part II

Results
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Chapter 3

Analytical Investigations

Previously, in section 2.3, the local maximum conjecture M2 has been falsified. However, there
exists another conjecture M4 implied by conjecture M2. Hence, the main objective of this master
thesis is to find a physical interpretation, that is, to construct a physical conjecture P3 corre-
sponding to its mathematical counterpart — conjecture M4. A secondary objective would be to
verify the validity of conjecture M4.

3.1 Pate Conjecture

The local maximum Conjecture M2 implies a new conjecture M4 in Ref [22], which, unlike the
former, has not yet been disproven. This conjecture is from Ref [23] and is the following:

Conjecture M4.
F11 − F12 − F21 + F22

2
≤ perm(A) (3.1)

This conjecture was the original focus of our investigation, which later shifted toward a broader
set of conjectures that lie between Conjecture M2 and Conjecture M4. To understand this shift,
it is necessary to explain why Conjecture M4 turns out to be a special case of Conjecture M2, a
relationship that will be discussed in detail in this section.

3.1.1 Conjecture Derivation

We start with Conjecture M2 that is equation 2.28, where A ∈ Hn

λ1(F ) = perm(A) (3.2)

Using equation 1.10, it majorizes the Rayleigh Quotient RF (v) for any vector v ∈ Cn

RF (v) =
v†Fv

v†v
≤ max

v
RF (v) = λ1(F ) = perm(A) (3.3)

Since the only entries of F appearing in equation 3.1 are the first two columns and rows, equation
3.3 is a fortiori true for redefined v with only first two nonzero components:

v =


v1
v2
0
...
0

 (3.4)
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Thus the numerator of the left hand side inequality simplifies to

v†Fv = |v1|2F11 + v1v2F12 + v1v2F21 + |v2|2F22 (3.5)

Which satisfies equation 3.1 when |v1|2 = |v2|2 = 1 and v1v2 = v1v2 = −1 and v†v = |v1|2+ |v2|2 =
2, that is:

v1 = exp(iθ) ∀θ ∈ [0, 2π[ (3.6)

v2 = −v1 (3.7)

This can be interpreted as follows: let the internal state |H⟩ of the boson i be perturbed by ϵvi |V ⟩
so that:

|ϕi⟩ =
1

αi
(|H⟩+ ϵvi |V ⟩) (3.8)

This setup suggests that Conjecture M4 is a special case of Conjecture M2. Specifically, it imposes
the following additional conditions:

1. Only two bosons are perturbed: vi = 0 ∀i ∈ [n]\{1, 2}

2. The perturbation of one boson is exactly opposite in phase to that of the other: v2 =
−v1, with both having the same magnitude: |v1| = |v2|, regardless of the perturbation’s
orientation: v1 = exp(iθ) ∀θ ∈ [0, 2π[

We can associate a physical Conjecture P3 to the mathematical conjecture M4:

Conjecture P3. Consider any linear interferometer Û and any subset K of output modes. Start-
ing from the state of n indistinguishable photons, the probability that all output photons bunch into
K can only decrease if a separable infinitesimal perturbation, equal in magnitude but opposite
in phase, is applied to the internal state of two photons.

3.2 Intermediate Conjectures

Regarding the first previously stated requirement (that only two photons are perturbed): the
first two columns and rows are clearly chosen arbitrarily, since the matrix F can be permuted by
rearranging its columns and rows.

A more precise and general formulation would refer not the submatrix F[1:2],[1:2], but rather to
an arbitrary (2 × 2) principal submatrix f (2) of F . This is equivalent to having a perturbation
vector v with exactly two nonzero components, corresponding to two perturbed photons, while
the remaining (n− 2) photons remain unperturbed.

Let us now generalize the first requirement from k = 2 perturbed photons to any k perturbed
photons among n. Moreover, we will drop the second requirement, which imposes a specific
structure on the perturbation vector v. This allows us to define a family of conjectures ∀k ∈
[n]\{1} (excluding the case of a single perturbed photon) which interpolate between Conjecture
M4 and Conjecture M2. More specifically, each member of this family is described as follows:

Conjecture M5. Let f (k) be any (k × k) principal submatrix of F associated to A ∈ Hn then
perm(A) is the largest eigenvalue of f (k)

Again, one of the possible inequalities for this conjecture (using the notation of eigenvalues in
descending order) would be:

λ1(f
(k)) = perm(A) (3.9)

It is worth noting that the validity of the Conjecture M5 for any given k, starting with k = n
(which corresponds exactly to Conjecture M2), implies the validity of the conjecture for (k − 1),
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and so on, down to k = 2. Indeed, Conjecture M2 implies Conjecture M5 because the former
applies to any perturbation vector v, and in particular, one may choose v with only k nonzero
components, yielding a matrix F whose relevant block is precisely f (k).

As previously discussed, the case k = 2 in this family of conjectures implies conjecture M4.
The latter, however, adds further constraint: the perturbation vector v must satisfy the specific
condition described in the second requirement above. Note that such perturbation vector is also
a real vector.

The physical Conjecture P4 that can be attributed to the mathematical Conjecture M5 is:

Conjecture P4. Consider any linear interferometer Û and any subset K of output modes. Start-
ing from the state of n indistinguishable photons, the probability that all output photons bunch into
K can only decrease if a separable infinitesimal perturbation is applied to the internal state of k
photons (among n).

3.3 Real Intermediate Conjectures

It is important to note that conjecture M5 does not impose the eigenvector vmax ∈ Cn, associated
with the largest eigenvalue λ1(f

(k)), to be real. This contrasts with Conjecture M4, which does
require real perturbation vectors.

Therefore, we can define a related set of Conjectures M6, which are real-valued counterparts of
Conjectures M5. In these versions, we restrict to real eigenvectors v ∈ Rn.

Restricting to real eigenvectors of a Hermitian positive semi-definite matrix F ∈ Hn, is in the
context of Rayleigh quotientRF (v), equivalent to considering its real part ℜ[F ]: if F is decomposed
into its real ℜ[F ] and imaginary ℑ[F ] part then:

v†Fv = v†ℜ[F ]v + iv†ℑ[F ]v (3.10)

However, since F ≥ 0 is positive semi-definite and we restrict ourselves to real vectors v ∈ Rn, it
implies that:

v†Fv = v†ℜ[F ]v ∀v ∈ Rn (3.11)

Conjecture M6. Let f (k) be any (k × k) principal submatrix of ℜ[F ] associated to A ∈ Hn then
perm(A) is the largest eigenvalue of f (k)

The physical Conjectures P5 implying the mathematical Conjectures M6 are as follows:

Conjecture P5. Consider any linear interferometer Û and any subset K of output modes. Start-
ing from the state of n indistinguishable photons, the probability that all output photons bunch into
K can only decrease if a separable infinitesimal real perturbation is applied to the internal state
of k photons (among n).

The only known counterexample to the local maximum conjecture M2 has a perturbation vector
v with:

� no nonzero components — all photons are infinitesimally perturbed (and not just their
subset) vi ̸= 0 ∀i, thus we don’t know if the set of conjectures M5 is true.

� no complex components, hence the validity of the real counterpart of conjectures M5, that
is conjecture M6, is still undetermined.

Every previously presented physical conjecture, along with its relationship to its mathematical
counterpart, is summarized in Table 3.1.
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Figure 3.1: Tree of conjectures representing the relationship between physical (left) and math-
ematical (right) conjectures. The dotted blue lines represent a continuation (initiated by three
dots ‘...’) of a statement (ended with three dots ‘...’). For example, statement found in P4 is a
continuation of P1 not P2. New contributions from this work, such as conjectures and the math-
ematical implications, are represented by the color red. Note that some implications were already
known, such as M2 implying M4.
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Chapter 4

Numerical Experiments

Analytically proving the conjectures is unfortunately quite challenging. As illustrated by the ex-
ample discussed at the end of the proof in Section 2.4.2. Therefore, we now turn to a numerical
approach, aiming to explicitly construct counterexamples that could potentially falsify the in-
termediate conjectures M5 (where only a subset of photons is perturbed), their real counterpart
— conjectures M6, or even ultimately the special case of two oppositely yet equal in magnitude
perturbed bosons, that is conjecture M4.

We will be studying specific (n, r, k) cases where:

� n is the number of photons

� r is the size |K| = r of the subset K of the m output modes into which all n photons bunch,
with r ≤ m

� k is the number of perturbed photons among n, with k ≤ n

Those parameters play the following role in the numerical search: n and r define the size (r×n) of
the matrix M from which not F but its principal matrix f (k) is calculated, which as the notation
suggests, is determined by the parameter k.

4.1 Problem Statement

Let us first properly define the problem to be solved numerically. The numerical search consists of
maximizing a function to optimize fct(x) by varying a vector x (initiated as x0 for the algorithms
that would require initiation) which ends up as x′ afterwards:

x′ = argmax
x

fct(x) (4.1)

In our particular case, the function to be maximized is

fct(x) =
λ1(f

(k)(x))

perm(H(x))
(4.2)

The principal submatrix f (k) is constructed from F as:

f (k) = F[1:k],[1:k] (4.3)

Of course F is being created from H as:

Fij = Hij perm(H\i,\j) (4.4)
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Which in turn A is guaranteed to be positive semi-definite since it is generated from U as:

A = H =M †M (4.5)

Where the (r× n) matrix M is the (n× n) interferometer Û limited to a subset K output modes
corresponding to a total number of r modes into which all n photons bunch.

M = U[1:r],[1:n] (4.6)

To integrate with the code, the (r × n) matrix M must instead be represented as a (2rn)-
dimensional real vector x ∈ R2rn, where the factor 2 accounts for the complex entries of M
being decomposed into two real components in x.

x =

 x1
...

x2rn

⇒M =

 x1 + ix2 . . . x2r(n−1)+1 + ix2r(n−1)+2
...

. . .
...

x2r−1 + ix2r . . . x2rn−1 + ix2rn

 (4.7)

The code then operates by varying each component of x to maximize the function fct(x). A
counterexample to the intermediate Conjecture M5 is found if fct(x) > 1 for a given x. By
contrapositive reasoning, since Conjecture P4 implies M4, such counterexample would also refute
Conjecture P4.

4.2 Methods

4.2.1 Optimizers type

Optimizers can be roughly categorized in 2: local and global optimizers. The former is generally
preferred since it aims to “exploit” already given information and thus is more certain to converge.
However local optimizers generally get trapped in a local minimum. Exactness in local optimizers
is sacrificed for flexibility: by making use first of exploration before exploitation, which is what
global optimizers do. Their state of the art, relies on a sort of metaheuristic algorithm which can
be broken down to a “guided randomness”:

1. the initial solution is generated often at random (but could be set manually)

2. the solution space is explored through randomness or some sort of probabilistic decision to
escape local minima

3. the search is kept broad to avoid premature convergence again via randomness

4.2.2 Convergence failsafe

In order to limit the convergence temporally in the case of an optimizer being stuck, or simply
taking too much time for any reason, generally a time limit tmax is put.

An additional stop method is a limit on the maximum number of calls fcallmax on the function to
be optimized, which in essence, is more suitable when working with varying matrix sizes (reusing
optimizer for n = 8, then n = 9...) since for an increased dimension, the time limit tmax would
have to bet increased accordingly as well contrary to fcallmax which would remain constant.

However, one should consider the following as a disclaimer: the maximum function calls fcallmax
should be adjusted to each algorithm accordingly, and is not at all representative of the time or
computational effort, that is, it serves only as a metric measure within the same algorithm, but
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should not be used at all to compare two different algorithms. For example, one algorithm may
take much more time than another despite having a lower fcallmax. The former, being only one
of the hard coded output (of the algorithm) by the programmer.

Another constraint required by some optimizers consists of an additional predefined domain in
which entries are allowed to work: xi ∈ [a, b] ∀i. Whenever such search range was required, for
any optimizer, the given input range was always chosen the same, which is [−50,+50].

4.2.3 Differentiation

As mentioned, some optimizers are derivative based. Differentiations compute explicitly the
derivatives at a given point, just like evaluating a function. By default, the method of finite
differences is used since it doesn’t require any explicit formula for the derivative. However, the
drawback is that it is very slow paced because of function evaluations. For example, one typr of
finite difference is central difference, where the error term is proportional to the square of the step
O(h2)

∂xf(x) =
f(a+)− f(a−)

a+ − a−
+O(h2), a± = x± h (4.8)

However a much more preferred way is Automatic Differentiation. It is used within measures,
that is, if the analytical derivatives of the function are known. However, the derivative of our
optimizing function is not supported. In such case, to use Automatic Differentiation, one would
need to manually program it.

There are two kinds of automatic differentiation:

� forward: Rm → Rn where each input i is evaluated separately giving Jacobian column Ji
thus requiring m passes (1 per input) which is especially efficient when m < n

Ji =

∂xif1. . .
∂xifn

 , J =
(
J1 . . . Jm

)
(4.9)

� backward: Rm → R where all inputs are evaluated together. It is only applicable for scalar
function for which it is much more efficient than forward differentiation. Which is the case of
our optimizing function (under the condition that its derivative would be explicitly manually
programmed)

Ji =
(
∂xif

)
, J =

(
J1 . . . Jm

)
(4.10)

4.2.4 Optimizers testing

In the first place, different optimization algorithms have been tested from mainly two julia pack-
ages: Optim.jl 1 and Optimization.jl2. Both serve as a framework to keep a uniform syntax. The
latter may require additional packages such as:

� Metaheuristics.jl3

� NOMAD.jl4

� Evolutionary.jl5

1https://julianlsolvers.github.io/Optim.jl/stable/
2https://docs.sciml.ai/Optimization/stable/
3https://github.com/jmejia8/Metaheuristics.jl
4https://github.com/bbopt/NOMAD.jl
5https://github.com/wildart/Evolutionary.jl
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� CMAEvolutionStrategy.jl6

� GCMAE.jl7

The former, Optim.jl, does not require any additional packages. An additional third package Black-
BoxOptim.jl8 has been used exclusively for BlackBoxOptimization (BBO). Finally, one exclusive
package has been used, that is also external to Optim.jl and Optimization.jl : NaturalES.jl9.

The list of optimizers is summarized in the following Table 4.1. The same named algorithm
could be used from different packages, such as CMAES10. Thus to avoid confusion, by default the
algorithms will be instead referred by their acronym (when mentioned in the tables) unless not
explicitly written. The table 4.2 and table 4.3 are examples for the specific case (n, r, k) = (8, 2, 8)
as defined in the beginning of this chapter 4. Note that these tables are not representative and
only serve as an example for one specific (n, r, k) case.

Optimizer Acronym Framework Original Package
Black Box Optimization BBO BlackBoxOptim.jl
LBFGS LBFGS Optim.jl
Nelder Mead Optim.jl
GradientDescent GD Optim.jl
ConjugateGradient CG Optim.jl
Particle Swarm PS Optim.jl
Newton Optim.jl
IPNewton Optim.jl
SAMIN Optim.jl
Evolutionary Centers Algorithm ECA Optimization.jl Metaheuristics.jl
Simulated Annealing SA Optimization.jl Metaheuristics.jl
NOMADOpt Optimization.jl NOMAD.jl
Whale Optimization Algorithm WOA Optimization.jl Metaheuristics.jl
Gravitational Search Algorithm CGSA Optimization.jl Metaheuristics.jl
Artificial Bee Colony ABC Optimization.jl Metaheuristics.jl
Particle Swarm Optimization PSO Optimization.jl Metaheuristics.jl
Differential Evolution DE Optimization.jl Evolutionary.jl
Genetic Algorithm GA Optimization.jl Evolutionary.jl
Evolutionary Strategy Algorithm ES Optimization.jl Evolutionary.jl
CMAES CMAES Optimization.jl Evolutionary.jl
CMAEvolutionStrategyOpt CMAE Optimization.jl CMAEvolutionStrategy.jl
GCMAES GCMAES Optimization.jl GCMAES.jl
NaturalES NaturalES.jl

Table 4.1: Listed optimizers used for testing

To keep numerical search within limits of realizable computations, we will limit ourselves to a
constant r = 2 (except explicit mentions) corresponding to the matrixM of rank 2, that is, limited
to bunching in r = 2 output modes. More specifically, in order to save up time. The testings were
performed on the smallest dimension n = 8, which was the only known counterexample, proven
by Drury, to the local maximum Conjecture M2 — that is (n, r, k) = (8, 2, 8).

6https://github.com/jbrea/CMAEvolutionStrategy.jl
7https://github.com/AStupidBear/GCMAES.jl
8https://github.com/robertfeldt/BlackBoxOptim.jl
9https://github.com/francescoalemanno/NaturalES.jl

10CMAES stands for Covariance Matrix Adaptation Evolution Strategy
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Optimizer Time [s] Ratio
Nelder Mead 0.261 1.019 31
LBFGS 2.759 1.019 56
PS 6.179 1.019 56
CG 6.281 1.019 56
GD 9.928 1.019 56
IPNewton 23.148 1.019 56
BBO 26.737 1.019 56
GD 31.673 1.019 54
SAMIN 44.854 1.019 56
Newton 454.187 1.019 56

Table 4.2: Example of (n, r, k) = (8, 2, 8) with tested optimizers from Optim.jl with Ratio
λ1(f

(k))(perm(H))−1. The best time-wise local optimizer is Nelder Mead, if one wants to have a
more refined ratio, LBFGS emerges at the top, although taking significantly more time. The first
two global optimizers are PS (particle swarm) and BBO (black box optimization) however the
former has a lower success rate of finding counterexamples (not explicitly seen in this table).

Optimizer Time [s] Ratio
SA 77.143 1.019 45
BBO 78.239 1.019 56
ECA 78.322 1.019 56
PS 120.223 1.019 48
DE 76.483 1.007 72
ABC 150.226 1.002 76
ES 0.25 1.0
GA 0.283 1.0
CMAES 2.94 1.0
CMAE 4.918 1.0
NOMADOpt 8.023 1.0
GCMAESOpt 10.729 1.0
NaturalES 20.294 1.0
PSO 77.27 1.0
CGSA 120.808 1.0
WOA 120.906 1.0

Table 4.3: Example for (n, r, k) = (8, 2, 8) of tested optimizers from Optimization.jl with Ratio
λ1(f

(k))(perm(H))−1 with time limit set to 120s. The emerging global optimizers are SA (simulated
annealing) and BBO (black box optimization), however the former — just like PS (particle swarm)
— presents a lower success rate of finding counterexamples (not seen explicitly in this table).

Local Optimizers

It has been noted that, gradient based optimizers (i.e. LBFGS, GD) but not exclusive (IPNewton
uses second derivative as well) find a counterexample x given an initial guess x0 only if x0 is
relatively close to x. That is, each entry i of the initial guess (x0)i is updated to xi within a
predefined maximum function calls fcall.

The Table 4.2 and Table 4.3 display what is typically found when running (8, 2, 8) with random
initial guesses (to avoid bias). Note that the result might sometimes differ for some initial guess.
For example, LBFGS could be stuck for a specific x0 unlike Nelder Mead (or vice versa). However,
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in most randomly selected x0, the first local optimizer that came out on top was Nelder Mead
time wise, and LBFGS, if one values accuracy in highest achieved optimization instead (cf. Table
4.2).

Although not being derivative based, Nelder Mead, also known as Simplex Search Algorithm,
is best known for multidimensional unconstrained optimization. Its unreliance on derivatives
greatly speeds up the process of optimization which could be put to great use. Although it was
considerably faster than LBFGS, it did not manage to optimize the function any better.

This comparison between LBFGS and Nelder Mead can be summarized from the results in Table
4.4, and was done as follows. First BBO solves for random initial guess x0 and returns x′:

x′ = argmax
x

fct(x) (initial guess x0) (4.11)

We repeat the process until we have 20 different x′ satisfying

fct(x′) = λ1(x
′)/ perm(H(x′)) > 1 (4.12)

The first x′ is given to both LBFGS and Nelder Mead. They return an optimized x′′:

x′′ = argmax
x

fct(x) (initial guess x′) (4.13)

The time, ratio fct(x′′), and number of function calls fcall are measured. This is repeated for all
x′ (cf. Table 4.4).

µ± σ LBFGS Nelder Mead
time[s] 2.113± 0.464 0.338± 0.025
ratio 1.01956± 0 1.01924± 0.00048
fcall 166.21± 36.05 1745.74± 132.54

Table 4.4: Comparison of LBFGS vs Nelder Mead in terms of the average µ and standard deviation
σ for time of the maximization, their achieved ratio λ1/ perm(H), and the required total number
of function calls fcall for 20 different samples (given identical to both LBFGS and Nelder Mead)
initial guesses that already satisfied the ratio surpassing 1

However, local optimizers have a lower success rate starting with a random initial guess x0 than
global optimizers. They are especially useful if one prioritizes the optimization of the ratio
λ1(f

(k))(perm(H))−1, given x0 for which the ratio is already surpassing 1 (thus is guaranteed
to be a counterexample). For such cases, another variation has been also tested where, first, the
faster solver has been used — Nelder Mead — then to increase the ratio even further, the slower
but more precise optimizer has been used — LBFGS. However, this did not significantly speed up
the time of the process, compared to solely using LBFGS.

Global Optimizers

To find such correct initial guess — which satisfies a ratio surpassing 1 without necessarily being
further optimized — a higher success rate is achieved with global optimizers.

Although the top global optimizer was PS (particle swarm) in Table 4.2, its success rate on average
was lower than the second top optimizer in that table — BBO. However, SA (simulated annealing)
was found to have an even lower success rate than PS, despite seeming to be faster than BBO in
Table 4.3.
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The optimizer that managed to find counterexamples globally with the highest success rate was
BBO (black box optimization), which requires no finetunning of hyperparameters. Particle Swarm
required generally (with some x0 exceptions) a bigger time whose result greatly varied with its
hyperparameter (number of particles generated) but still performed on average more poorly than
BBO. The only global optimizer that managed to have a similar success rate as BBO was ECA.
However, it also did require parameters tuning (contrary to BBO).

4.2.5 Chosen Optimizers

Since our goal was to find counterexamples to conjectures, attempting to maximize the ratio
beyond 1 is optional (unless that is explicitly the given objective): a counterexample is immediately
found for a given x which results with the ratio λ1/ perm(H) > 1.

For that purpose BBO was chosen: the global optimizer, with the highest success rate found
for (8, 2, 8). It will be the mainly used optimizer, unless explicitly stated otherwise. The stop
condition will simply consist of either achieving fcallmax or a ratio λ1(f

(k))(perm(H))−1 > 1.

If the objective is to further attempt to find a higher ratio: we will choose a specific counterexample
x′ resulting from BBO, and use it with LBFGS as initial guess to converge further possibly leading
to a higher ratio. It turns out that no matter which initial guess x′ is chosen for LBFGS (such
that λ1/ perm(H) > 1), the maximum attained ratio (at least by LBFGS) always resulted in the
same one. This will be convenient for later, when comparing different (n, r, k) cases, since each
one of them will only have one found maximal ratio attained by LBFGS, no matter its initial
guess.

4.2.6 Incrementations and Trace Method

As the search time increases exponentially with n, in an attempt to reduce it, it was suggested to
use the resulting x′ already solved by the optimizer for (n, r, k) = (8, 2, 8) as seed. From this seed
one would try to make use of it by further propagating to other dimensions such as (n + 1, r, k)
or (n, r, k − 1) or even (n, r + 1, k).

An example of the n incrementing is as follows: for (n, r, k) = (8, 2, 8) let the optimizer solve the
problem starting from initial guess x0, and as its best fit, it returns x′:

x′ = argmax
x

fct(x) (initial guess x0) (4.14)

This x′ counts as seed, that is, as initial guess to solve for (n+ 1, r, k) = (9, 2, 8) and returns x′′

x′′ = argmax
x

fct(x) (initial guess x′) (4.15)

To be more precise, the incrementation methods work by either: incrementing n → n + 1 or
decrementing k → k − 1

f (k) → f (k−1) (4.16)

In the former case n→ n+ 1, the matrix M gets an additional column ϵ→ 0

M =

M11 . . . M1n 0
...

. . .
...

...
Mr1 . . . Mrn 0

 (4.17)

The same could be done with rows if this time we increment r → r + 1.
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A final attempt consisted of changing into a potentially simpler function to optimize, where instead
of maximizing only the biggest eigenvalue λ1(f

(k)), the two biggest eigenvalues are maximized but
normalized by the sum of eigenvalues. The latter being exactly equal to the trace of the matrix

tr(f (k)) =
∑
i

λi(f
(k)) (4.18)

thus the name trace method fcttr:

fcttr =
λ1(f

(k)) + λ2(f
(k))

tr(f (k))
(4.19)

The point would be to first optimize using this new function, starting with initial guess x0

x′ = argmax
x

fcttr(x) (initial guess x0) (4.20)

Then to follow this up with BBO:

x′′ = argmax
x

fct(x) (initial guess x′) (4.21)

4.2.7 Sample Evaluation

For each (n, r, k) search, a sample size of 60 trials is planned, with a predefined maximum number
of function calls fcallmax = 3 · 104 which both of course should be preferably maximized within
the possible limits to increase the chance of discovery of new counterexamples. However, one such
search for big dimensions such as (n, r, k) = (22, 2, 8) takes about 2.5 days. A subsequent search
with LBFGS for just only 1 among 60 optimized x′ (outputs of BBO), would also take in the
order of days. Note that the time taken could greatly vary depending on the technical equipment.

Additionally, to monitor each (n, r, k) cases, a distribution of the total fcall of each sample is
plotted, that is, it either converges to a stopping condition which is to terminate once fct =
λ1/ perm(H) > 1, in that case fcall < fcallmax, or the algorithm simply exits after achieving the
maximum number of function calls threshold fcall = fcallmax which usually ends up with a ratio
very close but just below 1 that is fct < 1. Note that this only serves the purpose to monitor how
well the current algorithm BBO is doing for each (n, r, k). The results of the fcall distributions
are not perfectably replicable since:

� the seed initial guess is chosen randomly

� the algorithm is a meta heuristic optimization thus partially probabilistic

� the results also vary depending on the total number of taken samples (in this case 60)

� the limit in the search of each sample that is, the bigger the threshold fcallmax = 3 · 104, is
chosen arbitrarily

The fcall distribution also allows to verify if the fcallmax limit is not set too low, in which case,
all the function calls of each sample would end up thresholding at fcall = fcallmax However, as
shall be discusedd in section Relaxation and Restriction, the fact of seeing an accumulation
in the distribution near the fcallmax limit could be due to other reasons, just as it is the case for
(17, 2, 5) depicted in Figure 4.1.
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Figure 4.1: Distribution of fcall for 60 samples in the case (n, r, k) = (17, 2, 5) may not directly
result from a too low set limit fcallmax. The success hit rate of reaching fct = λ1/ perm(H) > 1
is 48.33%

Coming back to the counterexamples for intermediate Conjectures M5. To avoid spending time
on futile calculations. A safe approach would consist of finding counterexamples to the set of
intermediate Conjectures M5 by progressively approaching k = 2 starting from k = n − 1 = 7.
The idea is to look for k first with the lowest possible n, which is n = 8 bounded by the previously
found counterexample (8, 2, 8). Only if this fails, then n would be incremented by 1, which of
course would be best to avoid since this considerably increases the computational cost (mainly
due to permanent).

4.2.8 Permanent Computation Method

Two methods when calculating the permanent were used based on tests with varying matrix
dimension n: the incomplete rank algorithm 11 — introduced in Ref [barvinok1994] — outpaced
Ryser’s algorithm [24] from n ≥ 17 (cf. Figure 4.2). This is to be expected since the former,
is specifically adapted to work with matrices of low rank, which was our case r = 2. Thus the
method of calculating the permanent was adapted accordingly for each (n, r, k) cases.

11https://github.com/benoitseron/Permanents.jl/tree/incomplete rank
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Figure 4.2: Comparison of two methods to compute the permanent: Ryser’s versus the incomplete
rank method, by measuring the time [s] taken to calculate the ratio λ1(F )/ perm(H) of varying
matrix dimension n

4.3 Numerical search

4.3.1 Counterexamples

Local maximum conjecture

After having chosen an optimal optimizer by testing out on the solved case k = 8 = n, it was
attempted to find a lower dimensional case, that is with lower n, that would satisfy n = k
Conjecture M2. Unfortunately, no such counterexamples have been found for 4 ≤ n < 8 for 60
samples.

Intermediate conjectures

Coincidentally, for the same n = 8, a counterexample has been found for k = 7 and k = 6, although
the latter with very low success rate 3.33% for 60 samples cf. Table 4.5. As for k = 5, the lowest
dimensional counterexample found was n = 10 with an even lower success rate 1.67%. No further
counterexamples have been found for k ≤ 4, where the search range for n was n ∈ [16, 22].
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n\k 8 7 6 5 4

8 31.67 93.33 3.33 0

9 100 100 78.33 0

10 100 100 100 1.67

11 100 100 100 11.67

12 100 100 100 18.33

13 100 100 100 31.66

14 100 100 100 45

15 100 100 100 50

16 100 100 100 58.33 0

17 48.33 0

18 51.67 0

19 53.33 0

20 45 0

21 50 0

22 100 46.67 0

Table 4.5: Success rates (in percent, without %) of reaching fct = λ1/ perm(H) > 1 for 60 samples
for each (n, k) pair with r = 2 specifically (using BBO fcallmax = 3·104). It is clear that restricting
to lower k and lower n has a restrictive effect numerically (for the optimizer to find a violation).
Interestingly, it stagnates for the column k = 5 perturbed photons despite increasing to higher
dimensions up to n = 22 photons in total. It could be that, despite the number of counterexamples
increasing (with increasing n or k), and thus should be leading to higher success rates, the search
space (i.e. elements of matrix M to maximize the ratio) could be increasing even “faster” (due to
increased matrix M dimension of n× r) which would explain the stagnation around 50% success
rate for k = 5 : 14 ≤ n ≤ 22.

As mentioned previously in section 4.2.4 (subsection Local optimizers), interestingly once BBO has
found a counterexample, that is, returning x′ such that the ratio fct = λ1/ perm(H) is bigger than
1, then for any such tested counterexamples, the ratio further maximized by LBFGS (by taking x′

as initial guess) always ended up the same. This is why all the (n, r, k) cases could be summarized
in the following Table 4.6 with ratio expressed in per mille12 as: 10−3(λ1(f

(k))/ perm(H) − 1).
Note that, LBFGS was not used to maximize ratio in column k = 4 of Table 4.6 since BBO did
not find counterexamples for k = 4 (cf. Table 4.5). The maximal ratio achieved by LBFGS is also
illustrated in Figure 4.3 where each row of the Table 4.6 — corresponding to a constant dimension
n = cte — is plotted as a separate line.

For the specific k = 5 (see column where k = 5 in Table 4.6), there was a search of 60 samples
for n ∈ [8, 22] using BBO. This search was continued with LBFGS to maximize the ratio only for

n ≤ 16 and for n = 22, the skip from n = 16 to n = 22 was indicated by vertical dots
... in the

Table 4.6. The highest achieved ratio pursued with LBFGS (after BBO) for (n, r, k) = (22, 2, 5)
is:

10−3

(
λ1(f

(5))

perm(H)
− 1

)
= 106.261 for (n, r, k) = (22, 2, 5) (4.22)

12Since the Table 4.6 only displays maximum ratios, they are always above 1. Thus it can be omitted by
substracting 1 and displaying in per mille to save more space for decimals.
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n\k 8 7 6 5 4
8 19.561 17.983 9.660
9 66.601 53.894 36.564
10 104.119 83.158 58.056 18.969
11 134.581 107.847 76.052 34.257
12 159.914 129.023 91.931 47.218
13 181.354 147.039 107.119 57.895
14 199.806 162.414 119.897 66.803
15 215.921 175.775 131.069 74.353
16 228.181 187.582 140.918 80.835

...
22 290.426 106.261

Table 4.6: Maximized ratio (λ1(f
(k))/ perm(H) − 1)h (in permil without h) by LBFGS, with

initial guess optimized by BBO for each (n, k) pair with r = 2 specifically. Note that LBFGS
was only used for (n, k) pairs that had at least one found counterexample via BBO which was
not the case for k = 5 : n = 8, 9 and k = 4 : 16 ≤ n ≤ 22 thus left as blank. The only known
counterexample before this thesis was (n, r, k) = (8, 2, 8) found by Drury [18] corresponding to
ratio 19.561 (cf. eq 2.30). Every other (n, k) pair is newly found in this thesis. Thus, after this
work, it is still unkown whether k < 5 (less than 5 perturbed photons) could lead to a violation
of intermediate conjectures M5, or Pate’s conjecture M4.

It is also interesting to see what is the highest possible ratio to achieve overall. Of course the
highest corresponds to the most relaxed case which, in the range n ≤ 22, is (n, r, k) = (22, 2, 8)

10−3

(
λ1(f

(5))

perm(H)
− 1

)
= 290.426 for (n, r, k) = (22, 2, 8) (4.23)

The lowest n dimensional counterexamples for each k — considering having a low ratio close to 1
— could turn out to be a numerical error due to the accumulation of the floating point errors. To
check if this is not the case, it is relevant, beyond just checking the ratio fct = λ1/ perm(H), to
also check individually either λ1 or perm(H). This is represented in the Table 4.7 together with
their corresponding matrices M found in Appendix B.

In Table 4.7, the row (20, 20) serves as a more relaxed numerically counterexample to maximize
the ratio which yielded 487.51. The last row (17, 17) is a counterexample for real intermediate
conjectures M6 with lowest n = k dimension found discussed in more details later in section “Real
intermediate conjectures”, all the other (n, k) are counterexamples to complex intermediate
conjectures M5 (less tight than their real counterpart).

Let us compare the eigenvalues in Table 4.7. Indeed we have λ1(f
(k)) > perm(H). Notice that

perm(H) = λ2(F ). The eigenvalue interlacing theorem (for leading principal submatrix f (k) of
Hermitian F = f (n)) — a corollary of Courant-Fischer theorem — states that

λi(f
(n)) ≥ λi(f

(k)) ≥ λi+(n−k)(f
(n)) ∀i ∈ [m] (4.24)

Which indeed is verified here for all (n, k) pairs we have:

λ1(f
(n)) = λ1(F ) ≥ λ1(f

(k)) ≥ λ1+(n−k)(f
(n)) (4.25)

We even have a stronger condition met here:

λ1(f
(k)) ≥ λ2(F ) = perm(H) ≥ λ1+(n−k)(f

(k)) (4.26)

55



Figure 4.3: Graphical representation of the ratio
(

λ1
perm(H)

− 1
)
h (in per mille) versus k perturbed

photons (among n input photons). The dots are real data from Table 4.6 but the continuous line
has been added only for visibility reasons: the maximum ratio for each (n, r, k) has not been
continuously computed.

(n, k) v type ratio [h] λ1(f
(k)) λ2(f

(k)) λ1(F ) λ2(F ) perm(H)
(8,8) C8 19.56 276.08 270.79 276.08 270.79 270.79
(8,7) C7 17.98 277.09 240.32 277.25 272.20 272.20
(8,6) C6 9.66 294.28 224.12 294.79 291.46 291.46
(10,5) C5 18.97 9188.69 5428.30 9438.16 9017.63 9017.63
(20,20) C20 487.51 8.80× 1011 5.92× 1011 8.80× 1011 5.92× 1011 5.92× 1011

(17,17) R17 37.36 1.34× 109 1.29× 109 1.34× 109 1.29× 109 1.29× 109

Table 4.7: Maximized ratio = (λ1(f
(k))/ perm(H) − 1)h (with r = 2 specifically) by LBFGS

(exceptionally (17, 17) only by Nelder Mead) with initial guess optimized by BBO. The first 5
rows are counterexamples for each k with lowest dimension n, paired with the first two largest
eigenvalues λ1, λ2 of matrix F = f (n) and its submatrix f (k). A ratio consisting of very similar
but small numerator and denominator could indicate a false positive, just like in the case of big
values (possibly due to accumulated floating-point errors). This could be additionally verified with
the violation ratio (discussed in future sections). Note that the eigenvalue interlacing theorem is
verified. Notice that λ2(F ) = perm(H).

Time constraint

The used algorithm — BBO — being nondeterministic, the results are not definitive but only
reflect the amount of search that has been carried out (60 samples for each (n, k) pair with
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r = 2) for which the hit rate of finding counterexamples to k ≤ 4 has been 0%. One could
potentially find such counterexamples (for k ≤ 4) by: increasing the sample size past 60, increasing
the maximum number of calls beyond the current fcallmax = 3 · 104 for BBO (unique for each
optimizer), increasing the domain search beyond x ∈ [−50, 50], increasing n, increasing r. The
main constraint was the time complexity of permanents, especially as n increased. For example,
for n = 22, a 60 sample search takes around 2.5 days while for n = 8 it only takes several seconds.
To further maximize the ratio using LBFGS for only one counterexample (among 60), it will take
another 2.5 days for dimension n = 22

Methods Comparison

When it comes to comparing the incremental methods with direct methods, see Table 4.8: the
incrementation of n, and decrementation of k did see slight not significant benefit compared the
direct method when it comes to increasing the success rate of finding counterexamples. Note that
this is not certain and could be due simply to randomness. A more indepth statement whether
n incrementation or k decrementation does present benefits relative to the direct method, could
require a much bigger sample size than 60, and the behavior might vary with n or/and k.

For a search of 30 samples, trying to find counterexamples by direct method for (8, 3, 7) leads to
0% success rate. This was drastically improved by the r incrementation method to 93.33% success
rate, this could be seen as a transfer of the solutions from the seed (8, 2, 7) having the same success
rate. However, using this for a case where there are no initially found counterexamples (for a r
before being incremented), or for cases with little to no counterexamples, such as (8, 2, 6), did not
increase the success rate. In short, it is easier to numerically find anomalous bunching into two
modes r = 2 than three.

Finally, when it comes to choosing another function to optimize, that is the trace method: this
one delivered no result hitting a 0% success rate for the simplest case (8, 2, 8). This could indicate
that counterexamples are not nearby the point in space for which both first two eigenvalues are
high relative to the rest, but rather only the first one.

The results are displayed in Table 4.8 by comparing the success rate of achieving a higher ratio
λ1(F )/ perm(H) than 1 (using BBO and 60 samples). Note that the last column “seed” represents
the success ratio of the method’s corresponding seed, e.g. the fourth line in Table 4.8 reads as k
decrementation for (8, 2, 6), the seed thus being (8, 2, 6− 1).

Relaxation and Restriction

With help of the fcall distribution for each (n, r, k) case, one can see the success rate, but also
compute their average and standard deviation. Obviously, the standard deviation would be biased
towards 0 when, say the fcallmax is too low, resulting in not enough given fcall (thus time) for
the search to converge, but this also results in a guaranteed 0% success rate.

It is worth noticing that the success rate decreases for constant n as k decreases as illustrated in
Table 4.5.

This is natural since decreasing k restricts to a more particular case of lower number of perturbed
photons, and thus has a restricting effect. Similarly, for constant k, as n increases, the success rate
increases as well. It has a relaxing effect making the counterexamples being easier to find hence
when the relaxation effect on the interferometer configuration outweights the restricting effects of
the increased k, this is when another counterexample is found.

Interestingly it can be noticed for k = 5 that the success rate has trouble surpassing 60%. This
could be again explained similarly as with the argument of increased r: even though it has
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(n, r, k) direct n r k seed
(8, 3, 6) 0 1.67 1.67
(8, 3, 7) 0 93.33 93.33
(8, 3, 8) 0 33.33 33.33
(8, 2, 6) 1.67 0 93.33
(8, 2, 7) 86.67 93.33 31.67
(10, 2, 5) 1.67 5 100
(13, 2, 6) 100 100 100
(15, 2, 6) 98.33 98.33 100
(14, 2, 7) 100 100 100
(16, 2, 7) 98.33 100 100
(20, 2, 5) 40 45 53.33

Table 4.8: Comparison of methods: direct; n, r incrementation, and k decrementation (resp. “n”,
“r”, “k”) by the success rate of ratio λ1(f

(k))/ perm(H) surpassing 1, for 60 samples fcallmax =
3 · 104 using BBO. The column “seed” stands for the success ratio of the seed (n, r, k) case
corresponding to their respective incrementation method

analytically a relaxing effect, the number of variables has been increased considerably expanding
the search domain to beyond the capabilities of the used optimizer making it in practice more
restrictive numerically due to the total number of possible choices.

Real intermediate conjectures

Finally adressing the intermediate conjectures but their real counterpart that is, Conjectures
M6, maximizing λ1/ perm(H) this time while restricting v to only real vectors. This is equiv-
alent to taking the real part of the matrix F before calculating the eigenvalue λ1. For this,
no counterexamples have been found for the easiest case that is (8, 2, 8). However, by taking
a much more relaxed case n = k, a counterexample has been found for (17, 2, 17) with a ratio
(λ1/ perm(H)−1)h = 37.36h found by BBO and only optimized by Nelder Mead (non-optimized
by LBFGS).

No thorough search was conducted for real counterexamples. A search of 60 samples was executed
for only n = k ≤ 12 A separate 1-2 samples per (n, r, k) case was initiated starting with n = k = 20
until n = k = 17, which were fruitful, a counterexample has been found. No counterexamples
were found for the subsequent search n = k = 16 among 15 samples. Although a quick search
found a real perturbation counterexample for n = k = 17 (the explicit M matrix can be found in
Appendix B), a more detailed search could prove to be useful in hopes of finding an even lower
dimensional counterexample. The search was not continued due to the limited time. As mentioned
before, due to the low ratio (non optimized by LBFGS), it could be due to accumulated floating
point errors. In the next section, a new violation ratio will be introduced that will additionally
help us verify such sensitive counterexamples.

4.3.2 Violation Ratio

It is interesting to point out that even for the global maximum conjecture P1, there were previously
no known counterexamples of anomalous bunching where only k photons are partially perturbed
and the remaining (n− k) photons are perfectly indistinguishable.

One can study such violations with respect to the magnitude of such perturbations. Those coun-
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terexamples where the function to be maximized was

fct =
λ1(f

(k))

perm(H)
(4.27)

are only valid to approximate the curvature of the bunching probability near indistinguishability.
The found counterexample M (which maximizes fct), not only provides the direct description of
the interferometer but also the exact perturbation vector vmax, corresponding to the eigenvector
associated to the highest eigenvalue λ1 as explained in Section 4.1

f (k)vmax = λ1vmax (4.28)

whose i-th component (vmax)i indicates by how much each photon i should be perturbed. As a
reminder, Conjecture M2 was developped as a specific case of Conjecture P2 for a two dimensional
space spanned by orthogonal vectors {|ψ0⟩ , |ηi⟩} (|ηi⟩ being the same for every photon i). We can
naturally choose, just as in equation 2.34, the following state for each photon i:

|ψi⟩ =
1

αi
(|H⟩+ ϵ(vmax)i |V ⟩) (4.29)

Since this is known for every photon, one can compute the distinguishability matrix Si,j = ⟨ψi|ψj⟩.
Finally we define a new ratio, called the violation ratio R(ϵ), that quantifies by how much the
bunching probability overshoots for a specific counterexample found perm(H ⊙ S), compared to
the one of fully indistinguishable bosons perm(H).

R(ϵ) =
perm(H ⊙ S)

perm(H)
(4.30)

Note that this ratio R(ϵ) is not to be confused with the previously used ratio λ1(f
(k))(perm(H))−1

which is, in the local approximation, the curvature (second order) of R(ϵ) around ϵ → 0 for
v = vmax. Using the calculations found in equation 2.60 we get:

Pn(S) = perm(H ⊙ S) = perm(H) + ϵ2[v†
maxFvmax − perm(H)] +O(ϵ4) (4.31)

= perm(H) + ϵ2[λ1 − perm(H)] +O(ϵ4) (4.32)

R(ϵ) =
perm(H ⊙ S)

perm(H)

ϵ→0−→ 1 + ϵ2
[

λ1
perm(H)

− 1

]
+O(ϵ4) (4.33)

One can extend the violation ratio R(ϵ) beyond the local analytical approximation by evaluating
it numerically for a given perturbation vector v as a function of ϵ. In the case (n, r, k) = (8, 2, 8),
the eigenvctor vmax that maximizes λ1(perm(H))−1 yields the violation ratio R(ϵ) shown in Figure
4.4a. Its second order approximation near ϵ→ 0 is:

R(ϵ)
ϵ→0−→ 1 + ϵ2

[
λ1

perm(H)
− 1

]
+O(ϵ4) = 1 + 0.0196ϵ2 +O(ϵ4) (4.34)

The ratio R(ϵ) reaches its maximum value Rmax = 1.0231 at some finite ϵmax = 1.2416, where:

Rmax ≡ max
ϵ
R(ϵ) = R(ϵmax = 1.2416) = 1.0231 (4.35)

Similarly the violation ratio is depicted for the cases (n, r, k) = (8, 2, 7) in Figure 4.4b, (8, 2, 6) in
Figure 4.4c, (12, 2, 5) in Figure 4.4d, (16, 2, 5) in Figure 4.4e and (22, 2, 8) in Figure 4.4f.

Coming back to our real perturbation counterexample (17, 2, 17), the exact plot in Figure 4.5a
confirms that it is not due to accumulated floating point errors: indeed the exact violation ratio
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depicted in blue, does surpass 1 and even goes beyond the non maximized curvature of the red
line (which is only an approximation for small ϵ).

It is also interesting to obtain a highest possible violation ratio, by choosing a more relaxed (n, r, k)
case, i.e. easier to numerically optimize, which was chosen here to be (20, 2, 20) for a complex
perturbation vector (cf. Figure 4.5b) whose ratio λ1/ perm(H) was optimized by LBFGS, we get
a violation ratio of R(ϵ) = 6.0174.
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(a) (n, r, k) = (8, 2, 8); R(ϵ) ≈ 1 + 0.0196ϵ2

(ϵmax;Rmax) = (1.2416; 1.0231)
(b) (n, r, k) = (8, 2, 7); R(ϵ) ≈ 1 + 0.018ϵ2

(ϵmax;Rmax) = (1.2275; 1.0206)

(c) (n, r, k) = (8, 2, 6); R(ϵ) ≈ 1 + ϵ29.66h
(ϵmax;Rmax) = (1.0801; 1.0097)

(d) (n, r, k) = (10, 2, 5); R(ϵ) ≈ 1 + ϵ218.969h
(ϵmax;Rmax) = (1.0233; 1.0135)

(e) (n, r, k) = (16, 2, 5); R(ϵ) ≈ 1 + ϵ280.83h
(ϵmax;Rmax) = (1.3597; 1.0755)

(f) (n, r, k) = (22, 2, 8); R(ϵ) ≈ 1 + ϵ2290.43h
(ϵmax;Rmax) = (2.3552; 1.7471)

Figure 4.4: Numerically computed violation ratio R(ϵ) (blue line) and its second-order approxi-
mation in ϵ2 (dotted red line) for various (n, r, k) parameter sets.
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(a) Numerically computed violation ratio R(ϵ) for
the real perturbation counterexample (n, r, k) =
(17, 2, 17); R(ϵ) ≈ 1 + ϵ237.36h (ϵmax;Rmax) =
(2.0777; 1.1016)

(b) Numerically computed violation ratio R(ϵ)
for the complex perturbation counterexample
(n, r, k) = (20, 2, 20); R(ϵ) ≈ 1 + ϵ2487.51h
(ϵmax;Rmax) = (4.1215; 6.0174)
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Conclusion

In the first part of this work, we introduced the notion of bunching, a characteristic property of
bosonic particles, which becomes particularly pronounced as they approach indistinguishability.
We then explored a sequence of physical conjectures that naturally arise when attempting to
describe this phenomenon. These were subsequently linked to mathematical conjectures, revealing
a deep connection to the theory of matrix permanents.

As one conjecture was disproved — typically by constructing explicit counterexamples — it became
necessary to refine the scope of these statements. Each new conjecture was crafted by restricting
the previously failed one to more specific or constrained cases.

For instance, the initial conjecture claimed that the bunching probability is globally maximized
when photons are perfectly indistinguishable (and possibly entangled), meaning it exceeds that of
any partially distinguishable photons. This evolved first to the non-entangled case, which was later
restricted to near indistinguishable photons (cf. Figure 3.1), where the conjecture became one of a
local maximum: indistinguishable photons outperform only those subject to separable infinitesimal
perturbations to each photon. From there, the conjectures evolved further by limiting the number
of perturbed photons, considering only a perturbed subset rather than all. Among these, one final
refinement involved real-valued perturbations, which, when applied specifically to two photons
with equal magnitude but opposite direction, yielded the most constrained version studied, hence
the loosest conjecture (the one that is the most likely to hold).

Since all conjectures up to and including the local maximum case were disproven, the second part
of this work focused on the remaining conjectures. These were tested numerically for specific cases,
but have not yet been (dis)proven analytically for every case. In particular when only considering
two-mode bunching r = 2, the cases involving perturbation subsets with k = 8, 7, 6, 5 photons
were numerically disproven (cf. Table 4.6). They required a system of n = 8, 8, 8, 10 respectively.
However, the search yielded no counterexamples for a perturbed subset of k = 4 photons, despite
searching for as high as n = 22. Additionally, a real perturbation counterexample has been found
for a relaxed case n = k = 17.

The current state of knowledge about anomalous bunching can be summarized as follows (see also
Table 4.9 for a schematic view):

� There is no anomalous bunching for a single perturbed photon, i.e. it is always holds that

λ1(f
(1)) = F11 = H11 perm(H\1,\1) ≤ perm(H) ∀H ∈ Hn ∀H ∈ Hn (4.36)

This result follows from Corollary 1 in Ref [22].

� Complex perturbation vectors:

– It is unknown whether anomalous bunching can occur when perturbing only a subset
of 2 to 4 photons.
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– Anomalous bunching has been found when perturbing a subset of 5 or more photons,
up to all photons involved. In systems with 8 photons, anomalous bunching has been
found for subsets of 6,7 or 8 perturbed photons. When perturbing as few as 5 photons,
at least a 10-photon system was required to obtain anomalous bunching.

� Real perturbation vectors:

– It remains open whether anomalous bunching can occur when perturbing only a subset
of photons.

– If all photons are perturbed, anomalous bunching has been found in systems with 17
photons. The case of 16 photons or fewer remains open.

conjecture type v ∈ Ck v ∈ Rk

k = n : n ≥ 17 × ×
k < n : 17 > k ≥ 5 × ?
k < n : 5 > k ≥ 2 ? ?
k < n : k = 2, v2 = −v1 ? ?
k < n : k = 1 ✓ ✓

Table 4.9: Entries indicate the status of conjectures: “×” indicates that the conjecture is falsified,
“✓” indicates that the conjecture has been verified, “?” is used when no counterexample has
been found so far. In the first column, n = k refers to the local maximum conjecture M2 while
intermediate conjectures M5 are expressed by k < n. The case of k = 2 : v2 = −v1 refers to
Pate’s conjecture M4, notice that both columns Ck and Rk refer to the same conjecture (since
when looking for v2 = −v1 for v ∈ C2 it becomes inevitably real).

These numerical limits were largely due to the exponential complexity of computing permanents,
even when using the most well-known general-purpose algorithm — Ryser’s method. Beyond
n = 17, we found that the incomplete-rank method — tailored to matrices of rank r = 2 (corre-
sponding to two-mode bunching subset) — outperformed Ryser’s algorithm. Our most effective
numerical strategy involved first applying a global optimizer (such as BBO) to find potential
counterexamples, followed by a local optimizer to refine the solution and potentially increase the
violation. Different optimizers trade off precision and runtime, so chaining them — first fast (like
Nelder Mead), then accurate (such as LBFGS) — proved beneficial, although the gains were not
significant.

A natural direction for further research would be to improve optimization performance by explicitly
deriving the gradient (and possibly the hessian) of the function to be optimized. This would
accelerate numerical counterexample discovery. On the analytical side, it would be valuable to
verify the permanent-on-top conjecture for the only remaining unkown dimension n = 4, or for
the yet-to-be-(dis)proven intermediate conjectures with perturbed subsets k = 4 or smaller.

Another avenue for exploration stems from the observation that the matrix L = perm(A)I − F
resembles a graph Laplacian. While F does not fit the standard definition of an adjacency matrix
— since it may have nonzero diagonal elements, and off-diagonal elements differing from 1 and 0 —
it can be interpreted as a weighted adjacency matrix of a generalized graph with self loops. More-
over, since F is Hermitian (and not just symmetric), it may represent a bidirectional structure. In
this analogy, perm(A)I plays the role of the degree matrix, as it satisfies (perm(A)I)ii =

∑
j Fij.

This viewpoint, although nonstandard, might illuminate structural properties of the permanent
and help import tools from graph theory into the study of bosonic interference.

Finally, a broader shift in focus might also prove fruitful. Rather than seeking ever more re-
strictive conjectures with decreasing perturbed subsets of k photons, one could instead look for
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higher violations — counterexamples involving the larger number of photons n, with all photons
perturbed (i.e. k = n), thus much easier to find numerically. Such was the objective for a case
involving n = k = 20 photons, all perturbed, whose violation ratio reached R(ϵ) = 6 (cf. Figure
4.5b). This could guide the design of real experimental setups capable of detecting anomalous
bunching, otherwise difficult to observe in practice due to the small violations.
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Appendix A

Additional Definitions

Those definitions are relevant for the proof of the Permanent-on-Top conjecture for n ≤ 3 in
section 2.4.2.

A.1 Representations

A representation ρ of a group G is a homomorphism from G to the group of invertible matrices
acting on a vector space V . To ensure the group operation being mirrored by the matrices, the
homomorphism condition must be satisfied:

ρ(στ) = ρ(σ)ρ(τ) ∀σ, τ ∈ G (A.1)

A.1.1 Left regular representation

We will introduce the left regular representation for the a specific group being the symmetric group
Sn. To each permutation σ ∈ Sn in the symmetric group Sn we associate a vector eσ indexed by
the corresponding permutation σ. Let V be a complex vector space of dimension n! with basis
{eσ : σ ∈ Sn}. The left regular representation ρreg of the symmetric group Sn is a map from Sn
to the space of linear operators on V that acts on the basis vectors as follows:

ρreg(σ)eτ = eστ ∀σ, τ ∈ Sn (A.2)

This means that each element σ ∈ Sn is associated with a linear operator ρreg(σ) on V , which
permutes the basis vector eτ by left multiplication eστ .

Let us denote by {τi : i ∈ [n!]} the set of all possible permutations in the symmetric group Sn.
The entry (i, j) of ρreg(σ) is

(ρreg(σ))i,j =

{
1 if τi = στj

0 else
(A.3)

A.1.2 Natural representation

Let V be a complex vector space this time of dimension n with standard basis {ei : i ∈ [n]}. The
natural representation ρnat is a map from Sn to the space of linear operators on V and acts on the
basis vectors by permuting them as:

ρnat(σ)ei = eσ(i) ∀i = [n] (A.4)
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For any vector v ∈ V , it is often abbreviated as ρnat(σ)v = σ · v, and is understood as the
permutation of the components of v. More specifically, the action of σ on the component i of the
vector v is:

σ · vi = vσ−1(i) ∀i = [n] (A.5)

As an example, the representation for σ = (132) in S3 is

ρnat((132)) =

0 1 0
0 0 1
1 0 0

 (A.6)

A.1.3 Irreducible Representation

However, the natural representation ρnat can be decomposed into a direct sum of irreducible
representations. More precisely, a representation ρ is called irreducible if the only subspaces that
remain invariant under the action of all group elements (i.e. any vector in the subspace is mapped
to another vector within that same subspace) are the trivial ones: the zero vector space {0} and
the whole space V itself. That is,

∀v ∈ V,∀σ ∈ G : ρ(σ)v ∈ V (A.7)

Since each permutation σ can be expressed as a composition of cycles, it can also be categorized
by a partition λ, which records the length of each cycle in descending order. For S3, the n! = 3!
permutations σ fall into 3 such partitions as depicted in Table A.1. The number of irreducible

Partition λ Permutations σ
(1)(1)(1) ϵ = (1)(2)(3)
(2)(1) (12), (13), (23)
(3) (123), (132)

Table A.1: Partitions λ of permutations σ in S3

representations for Sn equals the number of partition p(n) of n. For S3, we have p(3) = 3
irreducible representations, which can be defined generally for any n dimensional symmetric group
Sn as follows:

1. the trivial representation ρtriv: every group element acts as the identity transformation on
a 1 dimensional subspace V

ρtriv(σ)v = v ∀v ∈ V, ∀σ ∈ Sn (A.8)

This vector space V is typically spanned by the constant vector 1 ∈ Cn defined as:

1 ≡

1
...
1

 (A.9)

Thus, ρtriv(σ) = 1 is a (1× 1) identity matrix I.

2. the alternating representation ρalt also acts on a 1 dimensional subspace but distinguishes
permutations by their sign

ρalt(σ)v = sgn(σ)v (A.10)

The representation ρalt(σ) = sgn(σ) is also a (1× 1) but signed matrix.
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3. the standard representation ρstd is the restriction of the natural representation ρnat to the
(n− 1) dimensional subspace V which is orthogonal to the trivial representation ρtriv vector
subspace 1

V = {v ∈ Cn : 1†v = 0} (A.11)

For example in S3 the basis {v1 = (1,−1, 0)t,v2 = (1, 1,−2)t} satisfies condition (A.11),
then a given permutation σ = (12) acts as the following:

σ · v1 = (−1, 1, 0)t = −v1, σ · v2 = (1, 1,−2)t = v2 (A.12)

Note that we have used the natural representation ρnat(σ)v = σ ·v acting on v ∈ C3 however,
the representation itself ρstd((12))

ρstd((12)) =

(
−1 0
0 1

)
(A.13)

is a (2× 2) matrix acting on the 2 dimensional subspace V ⊥ 1 not on C3 itself.

A.1.4 Direct Sum Decomposition

The natural representation ρnat decomposes as a direct sum of ρtriv and ρstd. The left regular
representation ρreg decomposes into a direct sum of all irreducible representations ρi of the group,
each appearing with multiplicity di equal to its dimension:

ρreg ∼=
p(n)⊕
i=1

diρi (A.14)

Since the irreducible components act on invariant and mutually orthogonal subspaces, an inequal-
ity, or operator property involving ρreg can be verified separately on each irreducible component.
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Appendix B

Counterexample Matrices

The following matrices are presented with values specified to at least 14 decimal places, consistent
with 64-bit double precision floating-point representation (which provides approximately 15-17
significant decimal digits), reflecting the raw output of our numerical optimization. Note that this
formatting does not imply 16-digit accuracy; floating-point error accumulation typically yields
fewer significant digits in practice. However, truncating to an insufficient number of digits could
potentially degrade the violation ratio, justifying this representation.

B.1 Intermediate Conjectures

For complex perturbation vectors, the (n×r) matrixM † = ℜ[M †]+iℑ[M †] of the counterexamples
for each k (starting with k = 8), with the lowest dimensional n, as mentioned in Table 4.7 and
yielding violation ratios displayed in Figure 4.4, is written here explicitly.

For (n, r, k) = (8, 2, 8):

ℜ[M †] =



−19.27973998905716 24.512422508995286
22.40138556143034 −10.02868763374688
−13.30844385583821 −29.248767684153986
23.407372605925325 −34.454504121262424
31.778411040349255 16.906151001676
−36.30859114520126 −5.87958203044978
−6.902277478759458 48.95580487502791
21.994108273071195 −10.76957920872963


(B.1)

ℑ[M †] =



−15.383247811712959 1.3550781218063954
13.061567317606574 29.669737394624317
−53.463247986301724 3.802685571345312
−27.476897157061707 4.944864320806435
−12.630027482869336 −50.79651437617374
−42.18655345610969 −21.746101859795033
13.907436379945949 −34.45090195317378
42.13199141347784 −6.348960299447917


(B.2)
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For (n, r, k) = (8, 2, 7):

ℜ[M †] =



−33.026763960672774 −50.16684213066005
−40.6755966142037 5.630973827465017
−55.93331391031506 6.463978613725208
−1.0682981491067614 −28.52471679613835
51.2843422261179 −47.89679849529764
14.925717757971404 43.33760267859043
−21.982309516842857 54.210827809067275
−0.22400618997379143 39.79910184184562


(B.3)

ℑ[M †] =



−31.155126752434967 −40.83043012475833
−37.91136985466681 28.8111644863626
−22.67788780222025 −9.062272050970382
−0.1092117821575023 −2.6106434665392415
2.7603853854041076 22.226853624520707
40.93018229233945 −0.5213681553916506
−40.84463715229701 −28.929234979928836
31.108881506343657 −47.993580965427704


(B.4)

For (n, r, k) = (8, 2, 6):

ℜ[M †] =



−20.340960180844508 16.388260643704754
28.14403065215319 −4.1677202619718114
−35.00529737592378 −4.5903395182711
−15.305518480718558 −16.187014292861218
−32.702675456929 11.331494673390504

−30.252760086663383 25.61803860566624
0.7359880628821807 30.014430279874585
0.7084379341529433 13.093502236308575


(B.5)

ℑ[M †] =



−21.300418940954856 −22.37247773777849
−21.686790752035627 −7.6688596377204705
12.539694053350313 39.63532280239014
42.66834880750554 36.768332457804775

−16.815858390448295 41.467576417004395
7.531856340005444 −23.752369070799226
−6.64009153217154 −38.47240277208332

−0.037813115291300416 34.88496564263725


(B.6)

For (n, r, k) = (10, 2, 5):

ℜ[M †] =



12.724087157697031 11.019125503365544
23.934098806525675 −29.471170065235818
7.058545937333791 −4.019375150031794
−20.0541661502745 18.900716379844614
27.400182150392745 18.79358932278734
−34.41482917956147 3.9399148920108593
12.908497963524834 −16.75948865379304
3.7846573878857805 −46.73885326709621
20.155187144667256 44.36384399841827
−8.147853826544226 −21.823305673824606


(B.7)
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ℑ[M †] =



−46.33990512010141 −15.622266404370444
9.587928139512249 24.448073230810582

−29.811804634545183 4.031145355193529
−29.529461316940885 28.735917681804352
6.332360986428548 34.21883824818084
17.807842406886017 44.37172970647607
−28.187539406980658 −41.37945060722293
−37.92599226080596 −3.299300410320387
12.754362081226537 −48.45265967706525
−5.046010530617657 43.95393795310394


(B.8)

The counterexample M † with a more numerically relaxed case (n, r, k) : (20, 2, 20) to obtain a
much bigger violation ratio as displayed in Figure 4.5b, is:

ℜ[M †] =



−11.608084974123337 −50.884401995545254
19.327659784763746 42.28501364727814
16.025167376900818 −47.98468848715327
20.400591585453018 21.359479580831938
32.87359928098447 −27.222094831723584
−46.57288856350903 −37.0131786899834
35.2244243120546 10.007624649941382

−43.64195339807457 12.462027262653208
1.410700364745222 −30.869516826973317
22.794141406792075 38.711366990881565
−48.512230214443186 −24.184715567805753
55.26349358414746 −0.42551957705115195
−60.82380788850235 20.920719208460184
23.04721345984038 −10.459118845986376

−11.977190514630701 −53.221893222026324
−6.6745726747647245 30.461256430032215
39.38354212419131 31.251054838153273
35.09352300750899 38.22425656460953
−42.45410360044216 18.73422069007815
−45.048652653322215 38.47170095963702



(B.9)
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ℑ[M †] =



−16.28931526741547 36.69360614445305
16.951064583887426 −1.43405829928676
7.817389074503644 42.56284804360472

−22.830216244984086 25.246243820345097
38.593960415099815 −47.4022337226595
13.667698324153438 −19.166499316880753
49.206372049899855 23.49689980177754
−35.02159970662092 −23.218910291418872
34.10099661409676 −38.43235746407254
−30.75393701633848 −37.14817232871657
−35.95906627610786 9.144856732938317
9.82492539721687 0.9872977654142935
11.310051465351735 29.345062589090013
18.68122536229227 51.30542989200656
−9.090609499679013 −48.8399822190716
20.229125082773464 −50.151507208772365
23.08845998872662 −33.312576042468244
36.80373572515839 17.06170560874865

−0.3332365510084254 −18.819692898117236
5.337010621925767 48.28155628847052



(B.10)

B.2 Real Intermediate Conjectures

For (n, r, k) = (17, 2, 17) the counterexample for a real perturbation vector — yielding a violation
ratio shown in Figure 4.5a — is:

ℜ[M †] =



44.737878390903546 −18.423381189686705
−18.738937868577334 −8.676902970401017
7.813233814523968 26.92957857212379

−28.573502691903556 10.59110315437202
32.214666059533386 20.176038986476378
−6.263218656723517 1.7045294342386288
34.1721422479508 −21.779445882978173

−12.159162379384409 −44.61334706422904
−35.83427663822305 −2.810639451740424
51.58005762024606 −12.930080685999464
14.353998255447413 −23.753905443206815
11.71495690935856 48.22942255273919
−32.1575616388388 −12.241669154823242
−19.419832256334704 −40.13714771194084
−21.836522611358326 1.431427900055775
−19.223130870028804 −23.246458096866313
−11.208488130958438 −44.73638926415173



(B.11)
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ℑ[M †] =



31.92076032033974 3.9446466351508875
28.75331090425896 −21.195989993958893
25.805070508006942 3.6376442146807415
−3.622674046200489 19.86419014832973
5.399979995071319 46.52620590670907
−9.032636256679115 40.5492567809099
17.53129971019158 −46.77584375181678
3.909942771446728 35.121842846046874
−3.81496956482659 24.076563488705705
31.76935692267677 45.25567856034303
11.161690903630472 0.6533520799479308
−29.524111616369147 53.93153453940263
−12.768738633535053 −14.470849910369743
−6.102844820279533 −29.885677184494334
−23.827680560414215 −6.1039489967498195
−25.286443647139336 −24.667814625288074
−23.507062716646683 18.829897840191418



(B.12)
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