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Abstract

“Majorization relations and quantum entanglement” by Serge Deside, for
the degree of Master of Science in Physical Engineering, 2021-2022.

The theory of majorization has long been recognized as a powerful formalism in prob-
ability theory, providing appropriate mathematical tools in order to compare random
variables. More recently, it has been realized to have equally prominent applications
in quantum information sciences, especially in relation with quantum entanglement
theory. Notably, in 1999, Nielsen exhibited the relevance of majorization theory for
comparing quantum entangled states. He proved that the deterministic conversion
between two bipartite pure states using only local operations and classical communi-
cation is linked to a majorization relation between the Schmidt coefficients of both
states. While this finding has led to numerous ramifications over the last 20 years,
the quantum significance of several more refined notions of majorization theory has
remained mostly unexplored as of today. The objective of this Ms thesis is to fill
this gap and explore in particular the notions of weak (sub or super) majorization
as well as majorization lattice in the context of entanglement theory. First, we have
conjectured (and partly proven) a necessary condition on the deterministic conversion
between two bipartite pure states based on a weak majorization relation connecting
the operator Schmidt decomposition of their corresponding density operators. Then,
we have shown that this weak majorization relation also yields a sufficient condition
when considering certain probabilistic (instead of deterministic) conversion protocols.
Such protocols led us to understand the role of a weak majorization condition be-
tween bipartite mixed states of a specific form, which opens the way to a possible
extension of Nielsen’s theorem to mixed states by exploiting the operator Schmidt
decomposition. Next, we have investigated the potential quantum applications of
the lattice structure induced by majorization displayed by a collection of random
variables. Turning to the quantum counterpart of this notion, we have analyzed the
optimal common resource and common product entangled states, elaborating on the
so-called “join” and “meet” probabilities in the lattice. Finally, we have exploited
the optimal common resource state to define a new protocol for bipartite state con-
versions that performs as well as the optimal probabilistic protocol. This strongly
suggests that the majorization lattice formalism is a most promising avenue for better
understanding the resource of quantum entanglement.

Keywords: Weak majorization, quantum entanglement, operator Schmidt decom-
position, deterministic and probabilistic conversions, majorization lattice.
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Introduction

Quantum entanglement has troubled physicists for almost a century. From the semi-
nal paper of Einstein, Podolsky and Rosen [1] concluding that the quantum mechan-
ical description of physical reality could not be considered complete, to the confir-
mation by Bell [2] that non-local properties of quantum mechanics were necessary
for the theory to hold, the notion of entanglement has been at the center of many
philosophical debates about Nature and, as such, still constitutes one of the most
puzzling features of quantum mechanics.

On the other hand, in quantum information theory, entanglement is seen as a
resource rather than an anomaly. In fact, many significant protocols, such as quantum
teleportation [3] or dense coding [4], rely on the use of maximally-entangled states. It
is in this context that, in 1999, Nielsen developed a necessary and sufficient condition
for the entanglement transformation of bipartite pure states under the constraint of
using only local operations and classical communication (LOCC) for the two remote
parties [5]. Interestingly enough, such condition is simply expressed in terms of a
majorization relation between the eigenvalues of the initial and final reduced states.
Soon after, Vidal generalized Nielsen’s theorem to the class of probabilistic LOCC
transformations [6].

The theory of majorization is a well-known mathematical field [7] which gives a
preorder on probability distributions. In an informational context, the majorization
relation is connected to a strong measure of disorder as it implies an inequality on the
Shannon entropy [8] as well as on all Rényi entropies [9] of both distributions under
comparison.

Furthermore, in 2002, Cicalese and Vaccaro combined majorization with the con-
cept of lattice [10]. Applied to quantum information [11, 12], the majorization lattice
enables the definition of an optimal common resource (OCR), i.e., a state that can be
used as a “minimal entanglement” resource for a given set of states, and its counter-
part, an optimal common product (OCP), i.e., a state with “maximum entanglement”
that can be produced from any one of the states in the set.

In this Ms thesis, we investigate quantum information applications of some more
refined notions of majorization, namely weak majorization and the majorization lat-
tice. Especially, we address the possibility of extending Nielsen’s theorem to mixed
states. Such states being ubiquitous in realistic conditions, this problem is of great
importance. However, finding a necessary and sufficient condition for the conversion
of bipartite mixed states is known to be hard, hence we don’t propose a full solution
but rather explore some leads in that direction. At first, we exploit the operator
Schmidt (OS) decomposition of bipartite mixed states, recently studied at QuIC [13],
to the set of bipartite pure states. Indeed, pure states being a special case of mixed
states, we begin by exploring how Nielsen’s theorem would translate in the OS de-
composition language. It turns out that, by doing so, distributions associated to pure
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states are now non-normalized, hence we have to make use of an extension of ma-
jorization, namely weak majorization. Overall, the relation we propose is studied in
regards to Nielsen’s and Vidal’s theorems and also in the context of the majorization
lattice. Finally, we explore quantum information applications of the majorization
lattice, notably by proposing a protocol for the probabilistic conversion of bipartite
pure states equivalent to the optimal one presented by Vidal in [6] and exploiting the
majorization lattice notion of OCR.

This Ms thesis is divided in two parts. The first one (Chapters 1-3) introduces the
theoretical background, while the second one (Chapters 4-6) presents original results.
In Chapter 1, we review the main quantum mechanical ingredients used in the rest
of the Ms thesis. In Chapter 2, we present the mathematical theory of majorization,
which is then applied, in Chapter 3, to entanglement transformations for Nielsen’s
and Vidal’s theorems. Thereafter, in Chapter 4, we propose a conjecture linking
weak majorization on the OS coefficients and Nielsen’s theorem, i.e., deterministic
LOCC transformations. Similarly, in Chapter 5, we prove a theorem linking weak
majorization on the OS coefficients and Vidal’s theorem, i.e., probabilistic LOCC
transformations. Moreover, at the end of the chapter, we make a first incursion into
the realm of mixed states by proposing a criterion for specific LOCC transformations,
linked to Vidal’s theorem, involving an initial pure state and a final mixed state. Fi-
nally, in Chapter 6, we introduce the theory of majorization lattice, allowing us to
showcase in a unified picture the conjecture and the theorem coming from Chapters
4 and 5. Then, we present some applications of majorization lattice to entangle-
ment transformations. Elaborating on this, we conclude by proposing an alternative
protocol to Vidal’s [6] making use of the OCR.
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Part I

Theoretical Background
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Chapter 1

Basics of quantum mechanics

This first chapter introduces the fundamental notions and notations of quantum me-
chanics that will be used throughout the entirety of this report.

In Section 1.1, we introduce the two classes of states used to describe quantum
systems, the pure states and the mixed states. Then, in Section 1.2, we present the
theory of bipartite systems, where states are shared between two, possibly distant,
parties. Finally, in Section 1.3, we give a brief overview of the concept of measurement
in quantum mechanics.

Unless otherwise stated, the content of this chapter follows [14] and [15].

1.1 States in quantum mechanics

The quantum mechanical description of states can be classified into two parts, the
pure states and the mixed states. On the one hand, a pure state constitutes the ideal
case, with the state of the system well defined. On the other hand, a mixed state
constitutes the realistic case, the system being considered as a statistical mixture of
pure states. Obviously, pure states arise as special cases of mixed states, when the
system contains no statistical uncertainty.

1.1.1 Pure states

In the Dirac notation, a pure state is described as an element of a complex vector
space, called the Hilbert space, which we denote

|ψ⟩ ∈ H. (1.1)

An important feature of quantum mechanics, which distinguishes it from classical
mechanics, is the superposition principle. This means that the state of a system
can be constructed as the sum of other states, e.g., |ψ⟩ = a1 |ψ1⟩ + a2 |ψ2⟩1, with
a1, a2 ∈ C. This peculiarity implies that, although the state is fixed, an appropriate
measurement will lead to either measuring the system in the state |ψ1⟩ or in the state
|ψ2⟩. Hence, uncertainties lie at the heart of quantum mechanics.

In order to describe elements of a vector space, a basis must be chosen. In quantum
information, analogously to the classical bits, quantum bits (qubits) are defined as

1States must be normalized, hence |a1|2 + |a2|2 = 1.
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elements of a 2-dimensional Hilbert space and the often used basis is the set {|0⟩ , |1⟩},
called the computational basis. A general state under this basis can be written

|ψ⟩ = a0 |0⟩+ a1 |1⟩ = a0

(
1
0

)
+ a1

(
0
1

)
=

(
a0
a1

)
, (1.2)

where the two last equalities are used to emphasize the vector representation of states.

1.1.2 Mixed states

We have seen that quantum mechanical states exhibit fundamental uncertainties but,
in a more general case, classical uncertainties are often also part of the system. When
there are, we say that the system is in a statistical mixture of pure states or simply,
in a mixed state.

In the Dirac notation, a mixed state is described by means of an operator, the
so-called density operator2.

A density operator has to fulfill three conditions :

• ρ̂ = ρ̂†, i.e., the operator is hermitian (thus, its eigenvalues are real).

• ρ̂ ≥ 0, i.e., the operator is positive semi-definite (thus, its eigenvalues are non-
negative).

• Tr(ρ̂) = 1, meaning that the state is normalized (its eigenvalues sum to 1).

Because pure states are a special case of mixed states, the density operator for-
malism can also be used to describe such states, hence we begin by their description.

1.1.2.a Density operator for pure states

Let |ψ⟩ be the state of the system, the density operator derived from |ψ⟩ is

ρ̂ = |ψ⟩ ⟨ψ| , (1.3)

where ⟨ψ| is an element of the dual space H∗. As such, it can be seen as the complex
conjugate transpose of |ψ⟩ in a vector representation.

For qubits, the general form of a density operator for a pure state using the com-
putational basis (1.2) is as follows

ρ̂ = (a0 |0⟩+ a1 |1⟩)(a∗0 ⟨0|+ a∗1 ⟨1|), (1.4)

= |a0|2 |0⟩ ⟨0|+ a0a
∗
1 |0⟩ ⟨1|+ a1a

∗
0 |1⟩ ⟨0|+ |a1|2 |1⟩ ⟨1| , (1.5)

=

(
|a0|2 a0a∗1
a1a

∗
0 |a1|2

)
, (1.6)

which is obviously a specific form of density operator that not all density operators

fulfill, e.g., ρ̂ =

(
1
2

0
0 1

2

)
. This last state corresponds in fact to a maximally mixed

state.

2While it could seem much more complex to use operators, it turns out to be one of the simpler
ways to treat such states.
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1.1.2.b Density operator for mixed states

Let a system be described by an ensemble of pure states {pi, |ψi⟩}. This means that
the system is in state |ψi⟩ with a probability pi. The density operator of the system
can be written

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| . (1.7)

Note the important remark that the states |ψi⟩ need not be orthogonal to one another.
Furthermore, there exist several realizations3 of ρ̂ depending on the basis used. An
important one is the eigenbasis decomposition {λi, |χi⟩}, with λi the eigenvalues of ρ̂
and |χi⟩ the corresponding eigenvectors:

ρ̂ =
∑
i

λi |χi⟩ ⟨χi| . (1.8)

Obviously, because we used the eigenbasis for this realization, the states are now
orthogonal to one another. Note that Equation 1.8 is deduced from the spectral
theorem which states that any hermitian operator is diagonal in its eigenbasis.

1.1.2.c Distinguishing pure states from mixed states

As the density operator formalism allows to treat both classes of states, a criterion
to distinguish them is of great importance.

We first define the notion of trace of an operator in the Dirac notation. This
is essentially the sum of the diagonal elements of the matrix representation of the
operator.

Definition 1.1 (Trace). Let Â be an operator, then the trace of Â is defined as

Tr
(
Â
)

=
∑
i

⟨i|Â|i⟩ , (1.9)

where {|i⟩} is any orthonormal basis.

Therefore, we can introduce the concept of purity, allowing to distinguish pure
states from mixed states.

Definition 1.2 (Purity). The purity of a state ρ̂ is defined as γ = Tr(ρ̂2).

The following theorem allows, when given a state ρ̂, to determine whether it is
pure or not.

Theorem 1.1. Let ρ̂ be a density operator, ρ̂ is a pure state if and only if its purity
equals one.

Note that the purity of a mixed state is always strictly smaller than one.

3Synonym of ensemble of pure states.
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1.2 Composite systems

Communication, which is central in this report, needs two or more distant parties
interacting with each other, hence the need to formalise the description of composite
quantum systems. In our case, we will consider communication between two parties.
As it is commonly used in quantum information, the first system will be associated
to Alice’s laboratory, while the second to Bob’s.

Conventionally, a bipartite system is described by means of a tensor product. The
state space of the whole system (HAB) is built up from the state spaces of Alice and
Bob (HA and HB respectively), denoted

HAB = HA ⊗HB. (1.10)

1.2.1 Bipartite pure states

Suppose that Alice possesses a qubit in the state |ψ⟩A = a0 |0⟩ + a1 |1⟩ and Bob a
qubit in the state |ψ⟩B = b0 |0⟩+ b1 |1⟩. The state of the total system can be written

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B , (1.11)

= (a0 |0⟩+ a1 |1⟩)⊗ (b0 |0⟩+ b1 |1⟩), (1.12)

= a0b0 |0⟩ ⊗ |0⟩+ a0b1 |0⟩ ⊗ |1⟩+ a1b0 |1⟩ ⊗ |0⟩+ a1b1 |1⟩ ⊗ |1⟩ , (1.13)

= a0b0 |00⟩+ a0b1 |01⟩+ a1b0 |10⟩+ a1b1 |11⟩ , (1.14)

where the last line is a common convention to compress notation.
This simple calculation has been performed to show that not all bipartite pure

states can be written in the form |ψ⟩A⊗|ψ⟩B, for example the state |ϕ+⟩AB = 1√
2
(|00⟩+

|11⟩) cannot be written in the form of (1.14). Such states are nonetheless physical,
they are said to be entangled and constitute one of the most peculiar feature of
quantum mechanics which we will extensively exploit throughout the rest of this
report.

We define hereafter the notion of separability for pure states, which is the antonymi-
cal notion of the entanglement.

Definition 1.3 (Separability for pure states). A bipartite pure state is separable
if and only if it can be written in the form

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B , (1.15)

otherwise it is entangled.

Separable bipartite pure states are also called product states because they are
written as a tensor product between the state of each party.

1.2.2 Bipartite mixed state

Suppose that Alice’s qubit is described by the density operator ρ̂A and Bob’s qubit
by ρ̂B. Therefore, the total system can be written

ρ̂AB = ρ̂A ⊗ ρ̂B. (1.16)

However, such as for pure states, this decomposition is not general for bipartite mixed
states and there exist states that cannot be written in that form.

7



As for pure states, the particular form of (1.16) is called a product state. However,
it is a special case of separable mixed states. In general, separability for mixed states
can be defined as follows.

Definition 1.4 (Separability for mixed states). A bipartite mixed state is sepa-
rable if and only if it can be written

ρ̂AB =
∑
i

piρ̂
A
i ⊗ ρ̂Bi , with {pi} a probability distribution, (1.17)

otherwise it is entangled.

1.2.3 Reduced density operator

We have seen that it is not always possible to describe the total state of a bipartite
system as a product state, hence we may wonder how to describe the state of Alice’s
or Bob’s qubit. It turns out that the density operator formalism allows to do so for
both pure and mixed bipartite systems by means of the so-called reduced density
operator. We simply define the local state of Alice as

ρ̂A = TrB(ρ̂AB), (1.18)

where TrB is the partial trace over Bob’s system defined as

TrB(ρ̂AB) =
∑
iB

⟨iB|ρ̂AB|iB⟩ , (1.19)

with {iB} any orthonormal basis of Bob’s Hilbert space.
To illustrate this new tool, we take again the pure state |ϕ+⟩AB = 1√

2
(|00⟩+ |11⟩).

The state of Alice’s system is described by ρ̂A = 1
2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1|, which is a mixed

state4! This means that, while the state of the total system is pure, locally, each
subsystem5 is described by a statistical mixture of pure states. This remarkable
result emphasizes again the peculiarity of entanglement in quantum mechanics.

1.2.4 Schmidt decomposition

Now that we have described both single party and bipartite systems of qubits, we
generalize the latter to qudits, which are systems living in a d-dimensional Hilbert
space and whose basis can be written {|0⟩ , ..., |d− 1⟩}.

A very convenient and usual way of writing pure states of bipartite systems is the
Schmidt decomposition, which can be stated as follows.

4It is easy to show that Tr
(
(ρ̂A)2

)
= 1/2 < 1.

5Bob’s system is also described by 1
2 |0⟩ ⟨0|+

1
2 |1⟩ ⟨1|.
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Definition 1.5 (Schmidt decomposition). Let |ψ⟩6 be a bipartite pure state of a
(d×d) system shared between Alice and Bob. Then, there exists an orthonormal basis
of Alice’s system, written {|iA⟩}, and an orthonormal basis of Bob’s system, written
{|iB⟩}, such that,

|ψ⟩ =
d∑
i=1

√
λi |iA⟩ |iB⟩ , (1.20)

with
∑d

i=1 λi = 1 and λi ≥ 0,∀i. The λi are unique and are called the Schmidt
coefficients (SC) of |ψ⟩.

Because the SC are unique for a given state, we often characterize the state only
by stating its vector of SC. Furthermore, the number of non-zero SC is called the
Schmidt rank.

Example 1:

Let us consider the state |ϕ⟩ = 1√
2
(|00⟩+ |10⟩), which we can rewrite

|ϕ⟩ =
1√
2

(|0⟩+ |1⟩)⊗ |0⟩ , (1.21)

showing by the way that the state is separable because it is in the form of (1.15).
By choosing the basis {|+⟩ , |−⟩} = { 1√

2
(|0⟩ + |1⟩), 1√

2
(|0⟩ − |1⟩)} for Alice

and the computational basis for Bob, the Schmidt decomposition of the state is
finally given by

|ϕ⟩ = |+⟩ |0⟩ . (1.22)

In this case, there is only one SC, which is 1, thus the Schmidt rank of |ϕ⟩ equals
one.

The following property relates the SC to the eigenvalues of the reduced density
operators.

Property 1.1. Let |ψ⟩ have the Schmidt decomposition |ψ⟩ =
∑d

i=1

√
λi |iA⟩ |iB⟩,

then {λi} is the set of eigenvalues of the reduced density operator of both Alice and
Bob.

Proof. If |ψ⟩AB =
∑d

i=1

√
λi |iA⟩ |iB⟩ is a bipartite pure state, its density matrix can

be written

ρ̂AB =

(
d∑
i=1

√
λi |iA⟩ ⊗ |iB⟩

)(
d∑
j=1

√
λj ⟨jA| ⊗ ⟨jB|

)
, (1.23)

=
d∑
i=1

d∑
j=1

√
λiλj |iA⟩ ⟨jA| ⊗ |iB⟩ ⟨jB| . (1.24)

6Because this report will always consider bipartite states, we will omit the subscript AB from
now on.
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By tracing out Bob’s system, the partial system of Alice can be written

ρ̂A = TrB(ρ̂AB), (1.25)

=
d∑
i=1

d∑
j=1

√
λiλj |iA⟩ ⟨jA| Tr(|iB⟩ ⟨jB|)︸ ︷︷ ︸

δij

, (1.26)

=
d∑
i=1

λi |iA⟩ ⟨iA| , (1.27)

and the same for the partial system of Bob

ρ̂B = TrA(ρ̂AB), (1.28)

=
d∑
i=1

d∑
j=1

√
λiλj Tr(|iA⟩ ⟨jA|)︸ ︷︷ ︸

δij

|iB⟩ ⟨jB| , (1.29)

=
d∑
i=1

λi |iB⟩ ⟨iB| , (1.30)

which ends the proof. Thus, we can observe that both partial states have same
purity.

1.2.4.a Separability

Finally, we express the separability definition for pure states using the Schmidt de-
composition.

Theorem 1.2. A bipartite pure state is separable if and only if its Schmidt rank is
equal to one, otherwise it is entangled.

This is quite obvious because states having a single non-zero SC are product states.

1.2.5 Operator Schmidt decomposition

There exists an equivalent to the Schmidt decomposition for mixed states, the so-
called operator Schmidt (OS) decomposition [16, 13], which can be defined as

Definition 1.6 (Operator Schmidt decomposition). Let ρ be a bipartite mixed
state of a (d × d) system shared between Alice and Bob. Then, there exists an or-
thonormal basis of the operator space of Alice’s system {Âi} (orthogonality meaning

that Tr
(
Â†
i Âi′

)
= δii′), and an orthonormal basis of the operator space of Bob’s system

{B̂i}, such that,

ρ̂ =
d2∑
i=1

λOSi Âi ⊗ B̂i, (1.31)

with λOSi ≥ 0,∀i. The λOSi are unique and are called the operator Schmidt coefficients
(OSC) of ρ̂.

Notice a major difference with the pure state case because now there is no condition

on
∑d2

i=1 λ
OS
i . As for pure states, the vector of OSC completely characterizes the state.
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1.2.5.a Operator Schmidt decomposition of a pure state

Let |ψ⟩ =
∑d

i=1

√
λi |iA⟩ |iB⟩ be a bipartite pure state. As before, we write its density

matrix

ρ̂ =
d∑
i=1

d∑
j=1

√
λiλj |iA⟩ ⟨jA| ⊗ |iB⟩ ⟨jB| . (1.32)

This expression can be compressed using the following substitutions λOSij =
√
λiλj,

Âij = |iA⟩ ⟨jA| and B̂ij = |iB⟩ ⟨jB| that give

ρ̂ =
d∑
i=1

d∑
j=1

λOSij Âij ⊗ B̂ij. (1.33)

Note that Âij satisfies Tr
(
Âij

)
= δij and Tr

(
Â†
ijÂi′j′

)
= δii′δjj′ , the same for B̂ij.

Now, rather than summing on i from 1 to d and on j from 1 to d, we sum on k
from 1 to d2 and obtain, by labelling k = (i, j),

ρ̂ =
d2∑
k=1

λOSk Âk ⊗ B̂k. (1.34)

By changing the indices, we have made implicit the relation Tr
(
Âij

)
= Tr

(
B̂ij

)
= δij.

However, the relation Tr
(
Â†
ijÂi′j′

)
= Tr

(
B̂†
ijB̂i′j′

)
= δii′δjj′ now becomes Tr

(
Â†
kÂ

′
k

)
=

Tr
(
B̂†
kB̂

′
k

)
= δkk′ , which ensures that (1.34) is a proper OS decomposition for pure

states.
For a general bipartite pure state of a d-dimensional system, its vector of OSC can

be written in terms of the SC as

(λ1,
√
λ1λ2,

√
λ2λ1, λ2, ...,

√
λiλj, ..., λd), where 1 ≤ i ≤ d and 1 ≤ j ≤ d. (1.35)

Example 2:

Let us consider the following state |ϕ⟩ = 1√
3
(
√

2 |00⟩ + |11⟩), its vector of SC is

(λ1, λ2) = (2/3, 1/3). Using (1.32), its density matrix can be expressed as

ρ̂ =
2

3
|00⟩ ⟨00|+

√
2

3
|00⟩ ⟨11|+

√
2

3
|11⟩ ⟨00|+ 1

3
|11⟩ ⟨11| , (1.36)

=
2

3
Â1 ⊗ B̂1 +

√
2

3
Â2 ⊗ B̂2 +

√
2

3
Â3 ⊗ B̂3 +

1

3
Â4 ⊗ B̂4. (1.37)

Its vector of OSC is(
λ1,
√
λ1λ2,

√
λ1λ2, λ2

)
=

(
2

3
,

√
2

3
,

√
2

3
,
1

3

)
. (1.38)
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We can verify that the state is pure by calculating its purity

Tr
(
ρ̂2
)

=

(
2

3

)2

+

(√
2

3

)2

+

(√
2

3

)2

+

(
1

3

)2

, (1.39)

=
4

9
+

2

9
+

2

9
+

1

9
= 1. (1.40)

1.2.5.b Separability criterion

Finally, although rather weak, the following simple criterion allows to get closer to a
separability criterion using the OS decomposition [13].

Theorem 1.3. If the sum of the OSC of a state is strictly greater than one, then the
state is entangled.

As can be observed from the general form of the vector of OSC for a pure state
(1.35), we have

d2∑
i=1

λOSi ≥
d∑
i=1

λi = 1, (1.41)

with
∑d2

i=1 λ
OS
i > 1 if and only if the Schmidt rank of the pure state is strictly greater

than one. This allows to make the connection with Theorem 1.2.

1.3 Measurements

One of the major differences between quantum mechanics and classical physics lies
in the measurement of a system. While classically the measure of a system doesn’t
affect its state, quantum mechanically, the state is generally modified after the mea-
surement. Furthermore, in classical physics, measurements give deterministic results,
in contrast with quantum mechanics where random results are generally obtained7.

In order to describe measurements in quantum mechanics, we make use of operators
that are applied to the quantum state of the system we want to measure. Let {M̂m}
be a set of measurement operators, where the index m is a label of the measurement
outcome, and |ψ⟩ a pure state being measured. The probability to obtain outcome
m is given by

p(m) = ⟨ψ|M̂ †
mM̂m|ψ⟩ , (1.42)

and the system is left in the state

|ψm⟩ =
M̂m |ψ⟩√
p(m)

, (1.43)

where the denominator is necessary for the state to be normalized.
The only constraint a measurement set needs to obey is the following completeness

relation ∑
m

M̂ †
mM̂m = Î , (1.44)

7In the sense that if several copies of the same state are measured, different results can generally
be obtained.
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where Î is the identity operator. This relation essentially reflects that probabilities
in (1.42) sum to one.

Now, if the measured state ρ̂ is a mixed state, the probability to obtain outcome
m is given by

p(m) = Tr
(
M̂ †

mM̂mρ̂
)
, (1.45)

and the system is left in the state

ρ̂m =
M̂mρ̂M̂

†
m

p(m)
, (1.46)

where the denominator is also used for normalization.
However, if we imagine for instance that we lost track of the result of the mea-

surement, we can view the system as in a statistical mixture of the possible post-
measurement states ρ̂m, with corresponding probabilities p(m), i.e.,

ρ̂ =
∑
m

p(m)ρ̂m, (1.47)

=
∑
m

M̂mρ̂M̂
†
m. (1.48)

The choice of one or the other post-measurement mixed state of the system depends
on the application.

1.3.1 Projective measurements

Projective measurements correspond to a special class of measurements. As their
name suggests, the operators are now projectors. An operator P̂m is a projector if
and only if it is both idem-potent (P̂m = P̂ 2

m) and hermitian (P̂m = P̂ †
m). Therefore, all

statements of the previous section can be simplified by making use of these properties.
For example, the probability to obtain outcome m when measuring a pure state

|ψ⟩ (1.42) using the set of projectors {P̂m} is now p(m) = ⟨ψ|P̂m|ψ⟩, with the com-
pleteness relation (1.44) that becomes

∑
m P̂m = Î.

Example 3:

Let us consider an arbitrary pure state of a qubit |ψ⟩ = a0 |0⟩ + a1 |1⟩ (1.2)
and a set of projective measurements onto the computational basis, i.e., {P0 =
|0⟩ ⟨0| , P1 = |1⟩ ⟨1|}. With the restatement of the probability of outcome (1.42)
for projective measurements, we get the following probabilities of measuring 0
or 1,

p(0) = ⟨ψ|P̂0|ψ⟩ =
(
a∗0 ⟨0|+ a∗1 ⟨1|

)
|0⟩ ⟨0|

(
a0 |0⟩+ a1 |1⟩

)
= a∗0a0 = |a0|2,

(1.49)

p(1) = ⟨ψ|P̂1|ψ⟩ =
(
a∗0 ⟨0|+ a∗1 ⟨1|

)
|1⟩ ⟨1|

(
a0 |0⟩+ a1 |1⟩

)
= a∗1a1 = |a1|2.

(1.50)

Because we measure either 0 or 1, p(0) + p(1) = 1. This explains why the state
must be normalized (|a0|2 + |a1|2 = 1).
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1.3.2 POVM measurements

When the post-measurement state is not useful for a certain application, the general
measurement formalism seen above can be simplified. This is the purpose of the
POVM8 formalism.

In this picture, we simply define

Êm = M̂ †
mM̂m, (1.51)

and say that the {Êm} constitute a set of POVM elements.
From the definition of Êm, it is obvious that the probability to obtain the outcome

m is simplified to p(m) = ⟨ψ|Êm|ψ⟩ for pure states (1.42) and to p(m) = Tr
(
Êmρ̂

)
for mixed states (1.45). However, the resulting state ((1.43) and (1.46)) cannot be
re-expressed in terms of the Êm only, hence the usefulness of the formalism when the
post-measurement state is not needed.

8Positive Operator-Valued Measure.
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Chapter 2

Theory of majorization

The theory of majorization is a well known mathematical theory, of which [7] provides
a thorough description. In the field of quantum information sciences, majorization
is used for numerous different applications, e.g., in the study of bosonic systems
[17, 18], separability criteria [19], uncertainty relations [20] or even in the field of
quantum thermodynamics [21]. In our case, we will study majorization in regards to
the already broad field of quantum entanglement transformations.

In Section 2.1, we introduce the (strong) majorization1 framework, which allows to
compare vectors of the same absolute norm, hence probability distributions. Then, in
Section 2.2, we present an extended framework allowing to compare non-normalized
distributions, namely weak majorization.

In the present report, we only focus on discrete distributions. However, the theory
can be extended to continuous distributions [7, 22].

2.1 Strong majorization relations

As a first introduction to majorization, we choose to present it in an intuitive ap-
proach. The following example comes from the field of econometrics, emphasizing
that this tool applies to numerous domains.

Consider 2 given income distributions x = (1
d
, ..., 1

d
) and y = (1

2
, 1
4
, ..., (1

2
)d) over a

certain population of size d, majorization relations give an order on the most even (or
spread out) distribution between x and y, which is obviously x. Hence, we say that x
is majorized by y, written x ≺ y. We can observe that the left-hand side is a “more
even, or disordered, distribution” than the right-hand side. Therefore, majorization
relations are often used to quantify disorder.

2.1.1 Definition with inequalities

There exist many ways to define majorization. One of the most intuitive is by using
a set of inequalities, hence we will mainly use it in this report and begin this chapter
by introducing it.

1Often simply called majorization.
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2.1.1.a Cumulative sums

The definition of majorization relations involves reordered probability vectors, either
in decreasing or increasing order. Hence, we define the cumulative sums, one for each
of the two choices of ordering, as follows.

Definition 2.1 (Cumulative sums). The decreasing cumulative sum S↓
k(x) of a

vector x ∈ Rd represents the sum of the k largest components of x, i.e.,

S↓
k(x) =

k∑
i=1

x↓i , (2.1)

where x↓i indicates the ith largest component of x.
The increasing cumulative sum S↑

k(x) of a vector x ∈ Rd represents the sum of the
k smallest components of x, i.e.,

S↑
k(x) =

k∑
i=1

x↑i , (2.2)

where x↑i indicates the ith smallest component of x.

In other words, in the following, we will always consider reordered vectors. When
computing S↓

k(x), the vector’s components are reordered in decreasing order, whereas

for S↑
k(x), the vector’s components are reordered in increasing order.

2.1.1.b Majorization inequalities

The definitions of cumulative sums allow us to define majorization inequalities [7] in
a compact way.

Definition 2.2 (Majorization). Let x and y be two d-dimensional2 vectors. We
say that x is majorized by y, written x ≺ y, if and only if :

S↓
k(x) ≤ S↓

k(y) for k = 1, ..., d− 1,

S↓
d(x) = S↓

d(y).

(2.3)

First, remark that the equality of the last relation means that the sum of all
components of x is equal to the sum of all components of y, which is obviously
necessary when comparing probability distributions. Second, because we will always
compare probability distributions in later chapters, all vector’s components will be
considered non-negative from now on.

Even though majorization relations are usually expressed with the vector’s compo-
nents in decreasing order, it is equivalent to write them with the vector’s components
in increasing order as follows.

2If the two vectors don’t have the same dimension, we simply append zeros at the end of the one
with the smaller dimension.
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Definition 2.3 (Majorization). Let x and y be two d-dimensional vectors. We say
that x is majorized by y, written x ≺ y, if and only if :

S↑
k(x) ≥ S↑

k(y) for k = 1, ..., d− 1,

S↑
d(x) = S↑

d(y).

(2.4)

These last inequalities are evidently complementary to the ones of (2.3). It is also
meaningful to note that the number of non-zero components of x should always be
greater or equal to the number of non-zero components of y to satisfy the above
relations. Indeed, otherwise the first majorization relation S↑

1(x) ≥ S↑
1(y) would

already be unsatisfied because 0 ≱ y1, if y1 ̸= 0. The importance of this remark
will become clearer when applying majorization to entanglement transformations of
states in Chapter 3.

In the rest of this report, we will always arrange vectors in decreasing order, hence
use (2.3) to unfold majorization relations.

Remark that for any probability distribution x of size d, we have(
1

d
, ...,

1

d

)
≺ x ≺ (1, 0, ..., 0), (2.5)

which can be intuitively understood because
(
1
d
, ..., 1

d

)
is the most disordered distri-

bution and (1, 0, ..., 0) the most ordered one.

2.1.1.c Lorenz curves

In order to visualize the majorization inequalities of (2.3), we present a convenient
graphical representation of the cumulative sums, the so-called Lorenz curves [7,
23]. Such curves are obtained by linear interpolation between the points of the set{(
k, S↓

k(x)
)}d

k=0
(or

{(
k, S↑

k(x)
)}d

k=0
), with the convention that S↓

0(x) = 0, and

they are denoted L↓
x(ω) (or L↑

x(ω)), where ω ∈ [0, d].
For example, Figure 2.1 shows the Lorenz curves L↓

x(ω) and L↓
y(ω) of the two

extreme distributions x =
(
1
d
, ..., 1

d

)
and y = (1, 0, ..., 0) for d = 5. We see that the

most disordered distribution corresponds to a straight line and the most ordered one
almost to a step.

Note already that L↓
x(ω) corresponds to a concave polygonal curve, whereas L↑

x(ω)
corresponds to a convex polygonal curve3. In the following, we will omit the term
“polygonal” and say that Lorenz curves L↓

x(ω) are concave curves.

2.1.1.d Examples

In this section, we take the time to showcase examples of majorization relations
between probability distributions.

As a first example, we present the typical case of a majorization relation between
two distributions4, as well as their Lorenz curves.

3See Section 2.1.3 of this chapter for definitions of convex and concave functions.
4Example 5 shows that it is not always the case.
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Figure 2.1: Lorenz curves L↓
x(ω) and L↓

y(ω) associated to x = (1/5, 1/5, 1/5, 1/5,
1/5) and y = (1, 0, 0, 0, 0). Any other distribution possesses a Lorenz curve in
between those two curves. Note that the vertical axis is called “cumulative sum” to
recall that integer values of ω correspond to values of the (in this case decreasing)
cumulative sums.

Example 4:

Let x = (0.5, 0.3, 0.2) and y = (0.7, 0.2, 0.1), it is easy to show that x ≺ y :
0.5 ≤ 0.7,

0.5 + 0.3 ≤ 0.7 + 0.2,

0.5 + 0.3 + 0.2 = 0.7 + 0.2 + 0.1.

Moreover, in order to understand these relations better, we make use of the
Lorenz curves. As can be seen on Figure 2.2a, x is majorized by y means that
L↓
x(ω) is always below L↓

y(ω). They can overlapa, as long as L↓
x(ω) is never

strictly above L↓
y(ω).

aWhich they must at ω = d because they reach the same value (see last relation of (2.3)).

It is important to stress that majorization relations only define a partial order
on reordered probability distributions, hence some pairs of distributions are incom-
parable under majorization. A simple example of this remark is given by the next
example.

Example 5:

Let x = (0.5, 0.25, 0.25) and y = (0.4, 0.4, 0.2). It is easy to show that x and y
are incomparable under majorization. In terms of Lorenz curves, it means that
the two curves intersect as can be seen on Figure 2.2b.
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(a) Lorenz curves associated to x = (0.5,
0.3, 0.2) and y = (0.7, 0.2, 0.1), x ≺ y

means that the graph of L↓
x(ω) is below

the graph of L↓
y(ω), except at ω = 3

where they both equal 1 because of the
equality of their absolute norms.

(b) Lorenz curves associated to x = (0.5,
0.25, 0.25) and y = (0.4, 0.4, 0.2), x ⊀ y

and x ⊁ y means that the graph of L↓
x(ω)

and the graph of L↓
y(ω) intersect.

Figure 2.2: Lorenz curves for Examples 4 and 5.

2.1.2 Definition with matrices

For some applications, majorization relations as stated in (2.2) and (2.3) can be
somewhat heavy. We present here another definition based on matrices rather than
inequalities.

We first define the notion of a permutation matrix, which essentially permutes the
components of a vector.

Definition 2.4 (Permutation matrix). A square matrix P ∈ Rd×d is a permutation
matrix if and only if it contains exactly one 1 per line and exactly one 1 per column,
all other coefficients being equal to 0.

Now, the central notion needed when defining majorization with matrices is a more
general family of matrices called doubly stochastic matrices [7], which can be defined
as follows

Definition 2.5 (Doubly stochastic matrix). A square matrix D ∈ Rd×d is doubly
stochastic (or bistochastic) if and only if all its entries are non-negative, each row
sums to 1 and each column sums to 1, i.e.,

Dij ≥ 0,
d∑

k=1

Dkj =
d∑
l=1

Dil = 1, where 1 ≤ i, j ≤ d. (2.6)

Permutation matrices and doubly stochastic matrices are linked by the following
theorem [7].

Theorem 2.1. A square matrix D ∈ Rd×d is doubly stochastic if and only if D can
be written as a convex combination of permutation matrices Pj, i.e.,

D =
∑
j

pjPj, (2.7)

with {pj} a probability distribution.
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In its core, Theorem 2.1 expresses the fact that permutation matrices are the
extremal points of a convex set whose internal points are doubly stochastic matrices.

We finally make the link with majorization by means of the following simple the-
orem [7].

Theorem 2.2. Let x and y be two d-dimensional vectors, x ≺ y if and only if there
exists a doubly stochastic matrix D ∈ Rd×d such that x = Dy.

This theorem, with the help of Theorem 2.1, means that x ≺ y is equivalent to
saying that x can be obtained by stochastically5 permuting components of y.

Finally, we close this section by presenting an example of application of Theorem
2.2.

Example 6:

Let x = (1
2
, 1
4
, 1
4
) and y = (3

4
, 1
8
, 1
8
). We can easily check that x ≺ y using (2.3).

Hence, by means of Theorem 2.2, there exists a doubly stochastic matrix D such
that x = Dy. For example,

x = Dy ⇔

1/2
1/4
1/4

 =

3/5 −3/5 1
1/5 4/5 0
1/5 4/5 0

3/4
1/8
1/8

 . (2.8)

However, in general, this matrix is not unique. In our case, another doubly
stochastic candidate could be the following matrix

D
′

=

3/5 2/5 0
1/5 −1/5 1
1/5 4/5 0

 . (2.9)

2.1.3 Majorization order preserving functions

In this section, we present classes of functions that preserve the (partial) order defined
by majorization relations, namely Schur-convex and Schur-concave functions.

We give first the definition of a convex set [24].

Definition 2.6 (Convex set). A subset A ⊆ Rd is said to be convex if and only if
for all x, y ∈ A and for all t ∈ [0, 1], we have

tx+ (1− t)y ∈ A, (2.10)

which means that a straight line linking any x and y of A is entirely contained in A.
We can now define the notion of convex (and concave) functions [7].

Definition 2.7 (Convex function). Let A ⊆ Rd be a convex set. A function
f : A → R is said to be convex if and only if for all x, y ∈ A and for all t ∈ [0, 1], we
have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (2.11)

5In the sense that each permutation Pi acts with a certain weight pi.
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On the contrary, a function f is said to be concave on A if and only if (−f) is
convex on A, hence the inequality in (2.11) would be reversed.

We are now able to give the definition of the majorization order preserving func-
tions [7], that are more general cases of convex functions as will be seen on Lemma
2.1.

Definition 2.8 (Schur-convex function). Let A ⊆ Rd be a convex set. A function
ϕ : A ⊆ Rd → R is said to be Schur-convex on A if and only if

x ≺ y on A ⇒ ϕ(x) ≤ ϕ(y). (2.12)

Conversely, a function ϕ is said to be Schur-concave on A if and only if (−ϕ) is
Schur-convex on A, which means that the inequality in (2.12) would be reversed.

A notable example of a Schur-concave function is the informational notion of en-
tropy defined by Shannon [8] as follows

H(p) = −
d∑
i=1

pi log2(pi), (2.13)

where p is a d-dimensional probability distribution.
To show that this function is indeed Schur-concave, we make use of the following

lemma [10].

Lemma 2.1. If a function ϕ : A ⊆ Rd → R is both symmetric (invariant regarding
any permutation of its inputs) and convex (resp. concave), then ϕ is Schur-convex
(resp. Schur-concave) on A.

Note that the condition is only sufficient. Indeed, there exist Schur-convex (resp.
Schur-concave) functions that are not convex (resp. concave). Nevertheless, all must
be symmetric. In the case of the Shannon entropy, it is obviously symmetric and
concavity is proven in [25], hence it is Schur-concave.

In essence, Shannon entropy is a measure of the uncertainty content of a random
variable distributed along the probability p. Intuitively, the most uncertain random
variable is one that is uniformly distributed, whereas the less uncertain one is dis-
tributed along (1, 0, ..., 0).

Being Schur-concave, Shannon entropy fulfills

x ≺ y ⇒ H(x) ≥ H(y). (2.14)

This allows to understand what we meant when we said that majorization relations
give a certain measure of disorder, in the sense that “x is more disordered than y” is
a necessary condition of x ≺ y, as (2.14) states.

The notion of Shannon entropy constitutes one the foundations of information
theory and is therefore a very useful resource in quantum information theory (as we
will see in Chapter 3).
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2.2 Weak majorization relations

By replacing the equality condition in the majorization relation (see (2.3) and (2.4))
by an inequality, we obtain the framework of weak majorization. Those relations are
split into two different weaker versions of majorization, namely sub-majorization and
super-majorization. However, because we compare now vectors of different norms, it
is not possible anymore to intuitively understand those relations in terms of disorder.

We will present this section with the same structure as the one on strong majoriza-
tion, making links between the two easier to follow for the reader.

2.2.1 Definition with inequalities

As for strong majorization, there exist multiple ways to define weak majorization
relations. However, using inequalities is again quite easy both conceptually and prac-
tically, hence it will also be the main definition used in this report.

2.2.1.a Sub-majorization

First, we present sub-majorization, also called weak majorization from below. The
relation “x is sub-majorized by y” holds the constraint that x has a smaller absolute
norm than y6. Formally, sub-majorization is defined as follows [7].

Definition 2.9 (Sub-majorization). Let x and y be two d-dimensional vectors.
We say that x is sub-majorized by y, written x ≺w y, if and only if :

S↓
k(x) ≤ S↓

k(y) for k = 1, ..., d. (2.15)

Let us emphasize the difference between sub-majorization and strong majorization.
In fact, the last relation of (2.3), an equality, has been replaced by an inequality, hence
we understand why sub-majorization relations are weaker than strong majorization
relations.

2.2.1.b Super-majorization

Second, we present super-majorization, also called weak majorization from above.
The relation “x is super-majorized by y” holds this time the constraint that x has a
greater absolute norm than y7. Formally, super-majorization is defined as follows [7].

Definition 2.10 (Super-majorization). Let x and y be two d-dimensional vectors.
We say that x is super-majorized by y, written x ≺w y, if and only if :

S↑
k(x) ≥ S↑

k(y) for k = 1, ..., d. (2.16)

Similarly as for sub-majorization, the equality of (2.4) has been replaced by an
inequality, allowing us to understand why super-majorization is weaker than strong
majorization. However, note that this time, contrary to sub-majorization that uses
decreasing cumulative sums, we make use of increasing cumulative sums in the defi-
nition.

6Which explains why we call it “weak majorization from below”.
7Which explains why we call it “weak majorization from above”.
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Let us now state a few remarks. First, if both x ≺w y and x ≺w y relations hold,
we recover the strong majorization relation x ≺ y. This can be understood by looking
at the d-th inequality of (2.15) and (2.16). Indeed, if we have both S↓

d(x) ≤ S↓
d(y) and

S↑
d(x) ≥ S↑

d(y), then it must be that Sd(x) = Sd(y)8. Second, even if both vectors
under comparison must not have the same absolute norm anymore, two vectors can
be incomparable in terms of sub-majorization and/or in terms of super-majorization.

2.2.1.c Examples

In this section, we showcase an example of both sub- and super-majorization relations
as well as their intuitive graphical approach by means of the Lorenz curves already
presented in Section 2.1.1.c.

Example 7:

Let x = (0.6, 0.5, 0.3, 0.1) and y = (0.8, 0.6, 0.3, 0.3). With (2.15), we show easily
that x ≺w y : 

0.6 ≤ 0.8,

0.6 + 0.5 ≤ 0.8 + 0.6,

0.6 + 0.5 + 0.3 ≤ 0.8 + 0.6 + 0.3,

0.6 + 0.5 + 0.3 + 0.1 ≤ 0.8 + 0.6 + 0.3 + 0.3.

Furthermore, we also show with (2.16) that y ≺w x :
0.3 ≥ 0.1,

0.3 + 0.3 ≥ 0.1 + 0.3,

0.3 + 0.3 + 0.6 ≥ 0.1 + 0.3 + 0.5,

0.3 + 0.3 + 0.6 + 0.8 ≥ 0.1 + 0.3 + 0.5 + 0.6.

As previously, both relations can be understood by means of Lorenz curves (see
Figure 2.3). The only difference between weak and strong majorization lies in the
(possibly) different absolute norms of the vectors compared. In terms of Lorenz
curves, it translates into the two curves not reaching the same value at ω = d
(see Figure 2.3).

8We have dropped the arrow sign because, when summing all vector components, the order
doesn’t matter anymore, hence S↓

d(x) = S↑
d(x) = Sd(x).
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(a) Lorenz curves associated to x = (0.6,
0.5, 0.3, 0.1) and y = (0.8, 0.6, 0.3, 0.3),

x ≺w y means that the graph of L↓
x(ω)

is below the graph of L↓
y(ω).

(b) Lorenz curves associated with x =
(0.1, 0.3, 0.5, 0.6) and y = (0.3, 0.3, 0.6,
0.8), y ≺w x means that the graph of

L↑
y(ω) is above the graph of L↑

x(ω).

Figure 2.3: Lorenz curves of Example 7.

2.2.2 Definition with matrices

Again, as for strong majorization, weak majorization relations can be formulated
using matrices [7], hence we begin this section by defining two types of matrices that
will be used to formulate sub- and super-majorization relations.

Definition 2.11 (Doubly sub-stochastic matrix). A square matrix P ∈ Rd×d is
doubly sub-stochastic if and only if there exists a doubly stochastic matrix D ∈ Rd×d

such that, for all i, j ∈ [1, d], 0 ≤ Pij ≤ Dij.

Definition 2.12 (Doubly super-stochastic matrix). A square matrix P ∈ Rd×d is
doubly super-stochastic if and only if there exists a doubly stochastic matrix D ∈ Rd×d

such that, for all i, j ∈ [1, d], Pij ≥ Dij.

With these definitions, it is clear that any doubly stochastic matrix D can be used
to generate sub- and super-stochastic matrices, provided the matrix elements of D
are multiplied by certain parameters αij ∈ [0, 1] for doubly sub-stochastic matrices
or βij ∈ [1,∞) for doubly super-stochastic matrices.

Finally, in a very similar way to Theorem 2.2, the next theorem links weak ma-
jorization to sub- and super-stochastic matrices.

Theorem 2.3. Let x and y be two d-dimensional vectors, x ≺w y (resp. x ≺w y)
if and only if there exists a doubly sub-stochastic (resp. super-stochastic) matrix
D ∈ Rd×d such that x = Dy.

We choose to call this last statement and Theorem 2.2 “theorems” because the
basic definitions of majorization relations in this report are stated using inequalities.
However, they could very well be called “definitions” as is done in [7] for example.
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Chapter 3

Entanglement transformations

In this chapter, we present one of the major applications of majorization theory
to quantum information theory, namely the field of entanglement transformations
between bipartite systems. For a full review of the use of entanglement in quantum
information, see [26].

In Section 3.1, we study the type of state transformations allowed in all the proto-
cols we will consider, called Local Operations and Classical Communication (LOCC)
[27]. Then, in Section 3.2, we come to the central theorem of this report, which states
that bipartite pure state transformations are feasible with certainty using only LOCC
if and only if a specific majorization relation between their vectors of SC is obeyed [5].
Finally, we study probabilistic bipartite pure state transformations in Section 3.3.

3.1 Local Operations and Classical Communica-

tion

Quantum information communication protocols include two different cases, namely
classical communication and quantum communication. By classical communication,
we mean the transmission of classical bits of information between different parties.
Whereas by quantum communication, we mean the transmission of qudits1 between
them. However, quantum communication is quite hard to perform in practice (notably
because of the decoherence time of quantum states [28], or due to loss in the quantum
channel used [29]) and classical communication, if possible, is often preferable.

In this report, we restrict ourselves to protocols involving only two parties (Alice
and Bob) that perform local operations (i.e., each party acts only on its subsystem)
and use classical communication [30]. We call this the class of LOCC transformations.
For example, a famous protocol of quantum information involving only LOCC is the
so-called quantum teleportation [3].

We use LOCC to transform the state of a bipartite system into another state,
which we denote

|ψ⟩ LOCC−−−→ |ϕ⟩ , (3.1)

if |ψ⟩ is the initial state and |ϕ⟩ the final state.

A general protocol to apply the transformation |ψ⟩ LOCC−−−→ |ϕ⟩ is composed of the
following cycle [27]. First, Alice performs a measurement on her qudit. Then she

1For the sake of generality, we will always refer to d-dimensional systems, rather than the usual
qubits which are states of a 2-dimensional system.
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sends classical information (generally depending on the result she obtained) to Bob
who performs a measurement on his qudit and sends classical information back to
Alice who performs a measurement on her qudit, etc. They can also apply unitary
operations on their respective qudits at any point of the protocol. Note that the
number of rounds during the protocol depends on the two states and is of order d.

However, the following result allows to show that this long two-way communication
protocol can be simulated by a much more simple protocol involving only one-way
communication protocol [27].

Proposition 3.1. Let |ψ⟩ and |ϕ⟩ be two bipartite pure states shared between Alice

and Bob and suppose |ψ⟩ LOCC−−−→ |ϕ⟩, then the next protocol allows to apply such
transformation. First, Alice performs a single measurement described by measurement
operatorsMA

j , then she can perform a unitary transformation described by the unitary
operators UA

j conditional on the result she obtained. Second, she sends her result (j) to
Bob who can also perform a unitary transformation described by the unitary operators
UB
j conditional on the result he received.

In other words, any measurement performed by Bob can be simulated by a mea-
surement performed by Alice and both, eventually, applying unitary operations.

Example 8:

This example is inspired from [14]. Let us suppose that Alice and Bob initially
share the state |ψ⟩ = 1√

2
(|00⟩+ |11⟩) which they want to transform into any state

|ϕ⟩ =
√
a |00⟩+

√
1− a |11⟩ with a ≥ 1/2a.

First, Alice performs a measurement on her qubit using the general measure-
ment {M̂1, M̂2} with

M̂1 =
√
a |0⟩ ⟨0|+

√
1− a |1⟩ ⟨1| , (3.2)

M̂2 =
√

1− a |0⟩ ⟨0|+
√
a |1⟩ ⟨1| . (3.3)

One can easily check that the completeness relation (1.44) is fulfilled, hence it
constitutes a proper measurement set.

The state after the measurement is either |ψ1⟩ =
√
a |00⟩ +

√
1− a |11⟩ or

|ψ2⟩ =
√

1− a |00⟩ +
√
a |11⟩ by using (1.43). Hence, if she measured M̂1, she

applies no unitary operatorb, communicates classically her result to Bob who also
applies no unitary because they already have obtained the desired state |ϕ⟩.

However, if the state after Alice’s measurement is |ψ2⟩, Alice applies the uni-
tary Û = |0⟩ ⟨1|+ |1⟩ ⟨0| (a NOT gate), hence she obtains |ψ′

2⟩ = (Û ⊗ Î) |ψ2⟩ =√
1− a |10⟩ +

√
a |01⟩. She communicates it to Bob, who can in turn apply

the same unitary on his qubit to get the desired state |ϕ⟩ = (Î ⊗ Û) |ψ′
2⟩ =√

1− a |11⟩+
√
a |00⟩.

aNote that this condition includes all states. Indeed, for example |ϕ1⟩ =
√
0.3 |00⟩+

√
0.7 |11⟩

is equivalent (up to unitary transformations) to |ϕ2⟩ =
√
0.7 |00⟩ +

√
0.3 |11⟩ because |ϕ1⟩ =

(Û ⊗ Û) |ϕ2⟩, where Û = |0⟩ ⟨1|+ |1⟩ ⟨0|.
bOr we could say the identity operator.
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3.2 Deterministic convertibility using LOCC

3.2.1 Nielsen’s theorem

In this section, we review the theorem at the origin of the motivation of our contri-
bution. This theorem is due to Nielsen [5, 14] and links the theory of majorization
to the transformation of bipartite pure states using only LOCC.

Theorem 3.1 (Nielsen). 2 Let |ψ⟩ and |ϕ⟩ be two bipartite pure states, with λ the
vector of Schmidt coefficients (SC) of |ψ⟩ and η the vector of SC of |ϕ⟩. Then, |ψ⟩
is convertible with certainty into |ϕ⟩ using only LOCC if and only if the vector of SC
of |ψ⟩ is majorized by that of |ϕ⟩, i.e.,

|ψ⟩ LOCC−−−→ |ϕ⟩ ⇐⇒ λ ≺ η. (3.4)

This is a very strong statement because the feasibility of a LOCC transformation
can be checked only by verifying a rather simple mathematical relation, the ma-
jorization relation (2.3), between the vectors of SC (Definition 1.5) of both states.
We understand now why we announced, in Chapter 2, that we would only consider
probability distributions for strong majorization relations. Indeed, as seen on Chap-
ter 1, the vector of SC of a state is only made of non-negative values which sum to
one.

Example 9:

This is a simple application of Example 4 to the conversion of bipartite pure
states. Let us consider the Schmidt decompositions of two states |ψ⟩ and |ϕ⟩
to be |ψ⟩ =

∑3
i=1

√
λi |iA⟩ |iB⟩ =

√
0.5 |00⟩ +

√
0.3 |11⟩ +

√
0.2 |22⟩ and |ϕ⟩ =∑3

i=1

√
ηi |iA⟩ |iB⟩ =

√
0.7 |00⟩+

√
0.2 |11⟩+

√
0.1 |22⟩.

By Theorem 3.1, because we have λ ≺ η, this implies that |ψ⟩ LOCC−−−→ |ϕ⟩ is
possible, i.e., there exists a protocola transforming with certainty |ψ⟩ into |ϕ⟩
using only LOCC.

aSuch protocol is described in the next section.

In the rest of this report, unless otherwise stated, all vectors of SC are arranged
in decreasing order, meaning that they are all of the form

v = (v1, v2, ..., vd) with v1 ≥ v2 ≥ ... ≥ vd. (3.5)

This is in no way restrictive because permutations (special case of unitary operations,
hence allowed during LOCC transformations) can be applied in order to reorder the
SC of the state.

3.2.2 Nielsen’s protocol

In this section, we detail the protocol that Alice and Bob can follow in order to apply

the transformation |ψ⟩ LOCC−−−→ |ϕ⟩ (as introduced in [31]).

2Proof can be found in Appendix A.
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Let |ψ⟩ =
∑d

i=1

√
λi |iA⟩ |iB⟩ be the initial bipartite pure state shared between

Alice and Bob that they want to transform into |ϕ⟩ =
∑d

i=1

√
ηi |iA⟩ |iB⟩. Obviously,

we suppose that Nielsen’s theorem (3.4) is obeyed, i.e., λ ≺ η. It can be shown [31]
that, if λ ≺ η, we can write the final state

|ϕ⟩ =
d∑
i=1

√
λi |ψiA⟩ |iB⟩ , (3.6)

with {|ψiA⟩} a set of (possibly) non-orthogonal states of Alice’s system3.
We define the following operators on Alice’s side

M̂j =
d∑
i=1

ωijd |ψi⟩ ⟨i| , with ωd =
e

2πi
d

√
d
. (3.7)

To correspond to general measurement operators, the operators have to fulfill the
completeness relation (1.44). We quickly show that this is the case.∑

j

M̂ †
j M̂j =

∑
j

∑
ii′

ω−ij
d |i⟩ ⟨ψi|ω

i′j
d |ψi′⟩ ⟨i

′| , (3.8)

=
∑
ii′

∑
j

ω
(i′−i)j
d︸ ︷︷ ︸

δii′

⟨ψi|ψi′⟩ |i′⟩ ⟨i| , (3.9)

=
∑
i

|i⟩ ⟨i| , (3.10)

= Î . (3.11)

Hence, after measuring using the operators {M̂j}, by (1.43), the system is left in
the state

|ψ′⟩ = (M̂j ⊗ Î) |ψ⟩ =
d∑
i=1

√
λiω

ij
d |ψi⟩ |i⟩ . (3.12)

Now, to obtain the desired state (3.6), the phase ωijd of (3.12) needs to disappear,

which Alice cannot do. Hence, Bob must apply the following unitary operator Ûj =∑d
i=1 ω

−ij
d |i⟩ ⟨i| to his qudit, resulting finally in |ϕ⟩,

(Î ⊗ Ûj) |ψ′⟩ =
d∑
i=1

√
λiω

ij
d |ψi⟩ω

−ij |i⟩ , (3.13)

=
d∑
i=1

√
λi |ψi⟩ |i⟩ , (3.14)

= |ϕ⟩ . (3.15)

3.2.3 Resource theory of entanglement

Until now, we have not referred to the term “entanglement” of the title of this chapter.
Nonetheless, we have exploited it implicitly from the beginning. Indeed, any pure

3We omit the subscripts A and B in the following.
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state having more than one non-zero SC is entangled (1.2), hence all non-trivial state
transformations involve entanglement. This gives the intuition why entanglement can
be seen as a resource in quantum information. We formalise this notion of resource
in the following.

Originating from economic principles, a resource theory [32] comprises two central
notions, free states and free operations. The former representing the states where no
resource can be extracted from, in our case separable states (i.e., states with Schmidt
rank equal to one), the latter representing physical operations that do not create any
resource4, LOCC transformations in our case. Then, one defines resource monotones,
which are functions that measure the amount of resource contained in a state.

It turns out that the Shannon entropy (2.13) of the vector of SC of a state corre-
sponds to such resource monotone because it decreases during an LOCC transforma-
tion. Indeed, being a Schur-concave function (see Section 2.1.3 of Chapter 2), we can
write

|ψ⟩ LOCC−−−→ |ϕ⟩ ⇒ H(λ) ≥ H(η). (3.16)

This means that, for a state transformation to be possible under LOCC, it is
necessary that the Shannon entropy of the vector of SC of the initial state is greater
than the one of the final state.

This is in correspondence with the name “maximally-entangled states” for d-
dimensional states having vectors of SC of the form (1

d
, ..., 1

d
). Indeed such vectors

have a maximum Shannon entropy and hence contain the most entanglement resource.
Therefore, they can be transformed using LOCC into any other d-dimensional5 state
(e.g., in Example 8, the initial state is a 2-dimensional maximally-entangled state,
hence why it can be transformed into any other 2-dimensional state).

3.2.4 Catalytic convertibility using LOCC

Sometimes, when two states are incomparable under majorization, meaning that
Nielsen’s theorem does not apply, a LOCC transformation is nonetheless possible
by appealing to a so-called catalyst state [33]. We call it a catalyst because, as in
chemistry, the state is not consumed during the transformation. This broader range
of state transformations is called ELOCC, for entanglement-assisted LOCC, in the
sense that the catalyst state constitutes an entanglement resource that has assisted
the transformation.

More formally, let us suppose that there exists a catalyst |c⟩ allowing the transfor-
mation of |ψ⟩ into |ϕ⟩ to happen, i.e.,

|ψ⟩ ̸LOCC−−−→ |ϕ⟩ but |ψ⟩ ⊗ |c⟩ LOCC−−−→ |ϕ⟩ ⊗ |c⟩ . (3.17)

Then, we can write

|ψ⟩ ELOCC−−−−→ |ϕ⟩ . (3.18)

It is important to stress that this kind of transformation can only be performed if
both states |ψ⟩ and |ϕ⟩ are incomparable.

Now, practically, imagine Alice and Bob cannot perform a certain LOCC transfor-
mation because the initial and final states are incomparable under majorization. It
may happen that there exists some catalyst state they can borrow to a “bank state”,

4They can decrease the resource.
5Or less than d.
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each party taking one qudit of the entangled state, in order to apply the desired
LOCC transformation. Then, they can return the catalyst state6 to the “bank state”
to complete the protocol.

3.3 Probabilistic convertibility using LOCC

In this section, we present an extension of Nielsen’s theorem (Theorem 3.1) to prob-
abilistic conversions between bipartite pure states.

3.3.1 Vidal’s theorem

The following theorem is due to Vidal [6, 31] and allows to check if, given an initial
bipartite pure state |ψ⟩, a final state |ϕ⟩ and a certain probability of conversion p,
the probabilistic transformation from |ψ⟩ to |ϕ⟩ is possible or not, using only LOCC.

Theorem 3.2 (Vidal). Let |ψ⟩ and |ϕ⟩ be two bipartite pure states, with λ the
vector of Schmidt coefficients (SC) of |ψ⟩ and η the vector of SC of |ϕ⟩. Then, |ψ⟩
is convertible with probability p into |ϕ⟩ using only LOCC if and only if λ ≺w pη.

Note that the use of a super-majorization relation can be understood from the fact
that, by multiplying the second vector by p < 1, the two vectors do not have the
same absolute norm anymore (the absolute norm of the second one being smaller).

The following theorem [6] allows us to answer the question “Given two bipartite
pure states, what is the probability to convert one into the other by means of LOCC
transformations only ?”.

Theorem 3.3. Let |ψ⟩ and |ϕ⟩ be two bipartite pure states, with λ the vector of
Schmidt coefficients (SC) of |ψ⟩ and η the vector of SC of |ϕ⟩ (both are d-dimensional

vectors). Then, the maximal probability with which the conversion |ψ⟩ LOCC−−−→ |ϕ⟩ is
possible is

pmax = min
l∈[1,d]

S↑
l (λ)

S↑
l (η)

. (3.19)

This theorem is a direct consequence of Theorem 3.2. Indeed, let us suppose that
λ ≺w pη for a maximum probability pmax and let us find this probability. We can
develop the super-majorization relation as follows (2.16)

S↑
1(λ) ≥ pS↑

1(η),

...

S↑
l (λ) ≥ pS↑

l (η),

...

S↑
d(λ) ≥ pS↑

d(η),

which is true for all values of p obeying p ≤ S↑
l (λ)

S↑
l (η)

,∀l ∈ [1, d]. Hence if we take the

largest value such that all these relations are obeyed, we get the maximal probability
pmax (3.19).

6The catalyst state only helped perform the conversion and remained untouched, hence its name.
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Example 10:

Let us analyze qubits examples.

• Separable state to entangled state via LOCC

Let us find the probability with which a separable state with a vector of
SC (1, 0) can be transformed into any state with a vector of SC (a, 1 −
a) with a ≥ 1/2 via LOCC. In some sense, this is the complementary
problem to Example 8 where we saw that maximally-entangled states could
be transformed into any other state.

Now, by making use of (3.19), we find that pmax = 0, hence it will never be
possible to achieve this transformation.

This is in correspondence with the fact that separable states are free states
(which do not contain any entanglement resource) and LOCC transforma-
tions, free operations (which can never create entanglement). Mathemati-
cally, this translates into the fact that any (possibly probabilistic) LOCC
transformation is achievable only if the Schmidt rank of the initial state is
greater (or equal) to the Schmidt rank of the final state.

• Less entangled state to more entangled state via LOCC

Let us find now the probability with which a state with a vector of SC
(3/4, 1/4) can be transformed into a maximally-entangled state, hence with
a vector of SC (1/2, 1/2). Surprisingly, the transformation is possible with
a maximum probability pmax = 1/2.

While it could seem to negate what we said about LOCC transformations
that cannot increase the entanglement, it should be stressed that it is deter-
ministic LOCC transformations that are concerned, whereas no restriction
is put on probabilistic LOCC transformations.

3.3.2 Vidal’s protocol

In order to understand Vidal’s probabilistic protocol [6], we give the intuition behind
it, while the explicit conversion strategy can be found in Appendix B. Note that the
protocol presented here is shown to be optimal for probabilistic conversions.

The probabilistic transformation of a bipartite pure state |ψ⟩ into any other bipar-
tite pure state |ϕ⟩ goes as follows. First, Alice and Bob transform their shared state
into a specific7 intermediary state, which we will call |χ⟩, using Nielsen’s theorem, i.e.,

|ψ⟩ LOCC−−−−→ |χ⟩. Then, Alice (or Bob) performs a specific7 two-outcome measurement
outputting state |ϕ⟩ with probability pmax (3.19) and outputting another bipartite
pure state, let us call it |ξ⟩, with probability (1− pmax).

In the special case where the vector of SC of |ψ⟩ is majorized by that of |ϕ⟩, the
probability to perform the transformation is 1 and the intermediary state is already
|ϕ⟩, completing the protocol. Hence, this probabilistic conversion scheme is a more
general one than the deterministic scheme seen on Section 3.2.

7Its construction is detailed in Appendix B.
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Part II

Results
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Chapter 4

Weak majorization and
deterministic convertibility

One of the objectives of this report is to explore the possibility of extending Nielsen’s
theorem for bipartite pure states (Theorem 3.1) to bipartite mixed states. As a
first step in that direction, we have chosen to exploit the operator Schmidt (OS)
decomposition (see Definition 1.6) because it can be used to describe both pure and
mixed states.

In fact, this allows us to present a (conjectured) necessary condition for the con-
vertibility of bipartite pure states now based on the OS decomposition rather than on
the Schmidt decomposition (as Theorem 3.1 does). We do so because, in order for a
condition to be valid for mixed states, it is first necessary to be valid for pure states.

In Section 4.1, we state the (conjectured) OS based condition. Then, the rest of
the section is devoted to the proof of the condition for qubits (Section 4.1.1), the
explanation of the difficulties of a complete proof (Section 4.1.2), the partial proof for
qudits (Section 4.1.3). Finally, in Section 4.2, we present numerical evidences that
strongly suggest the validity of the conjectured condition.

4.1 Condition based on the OS decomposition

The following conjecture links majorization over the Schmidt decomposition to weak
majorization, more specifically super-majorization, over the OS decomposition for
bipartite pure states.

Conjecture 4.1. Let |ψ⟩ and |ϕ⟩ be two bipartite pure states, with λ (resp. η) the
vector of Schmidt coefficients (SC) of |ψ⟩ (resp. |ϕ⟩) and λOS (resp. ηOS) the vector
of operator Schmidt coefficients (OSC) of |ψ⟩ ⟨ψ| (resp. |ϕ⟩ ⟨ϕ|). Then,

λ ≺ η ⇒ λOS ≺w ηOS. (4.1)

Remember that if a vector of SC λ has a number of non-zero components equal to
d, its corresponding vector of OSC λOS has a number of non-zero components equal
to d2, hence this conjecture is not trivial as λ ≺ η ⇒ λ ≺w η would be.

In the following, if not mentioned, the vector of SC of the initial state is denoted
by λ while the vector of SC of the final state is denoted by η. Furthermore, as before,
all vectors are arranged in decreasing order.
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First, we give two examples to understand better Conjecture 4.1, the first one
shows an application of it, the second one shows that the implication sign of (4.1)
cannot be an equivalence sign1.

Example 11:

• Majorization on the SC implies super-majorization on the OSC

Let λ = (1/3, 1/3, 1/3) (vector of SC of a 3-dimensional maximally-
entangled state) and η = (5/10, 3/10, 2/10). One can easily check using
(2.3)a that λ ≺ η.

Now, according to (1.35), we have λOS = (1/3, ..., 1/3)︸ ︷︷ ︸
9 times

and ηOS = (5/10,

√
15/10,

√
15/10,

√
10/10,

√
10/10, 3/10,

√
6/10,

√
6/10, 2/10). Again,

one can check, using (2.16) now, that we have λOS ≺w ηOS. To see this
more immediately, Lorenz curves corresponding to both relations (λ ≺ η
and λOS ≺w ηOS) are drawn in Figure 4.1.

• Super-majorization on the OSC does not imply majorization on the SC

Let λ = (5/10, 3/10, 2/10) and η = (13/30, 13/30, 4/30). Again, by using
(1.35), we can find the vector of OSC of both states and, by means of (2.3)
and (2.16), it can be shown that λ ⊀ η while λOS ≺w ηOS. The Lorenz
curves of both relations are drawn in Figure 4.2.

This counter-example proves that the relation λOS ≺w ηOS is not sufficient
to deduce λ ≺ η, hence the implication sign can only go one way in (4.1).

aOr just by using the fact that λ corresponds to a maximally-entangled state, i.e., a resource
state that can be transformed into any other qudit, with d ≤ 3.

(a) Lorenz curves associated to λ = (1/3,
1/3, 1/3) and η = (0.5, 0.3, 0.2), the

graph of L↓
λ(ω) is below the graph of

L↓
η(ω), hence λ ≺ η.

(b) Lorenz curves associated to the vector
of OSC of λ = (1/3, 1/3, 1/3) and to the
vector of OSC of η = (0.5, 0.3, 0.2), the

graph of L↑
λOS (ω) is above the graph of

L↑
ηOS (ω), hence λOS ≺w ηOS .

Figure 4.1: Lorenz curves for the first point of Example 11.

1Except for qubits, see Section 4.1.1.
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(a) Lorenz curves associated to λ = (0.5,
0.3, 0.2) and η = (13/30, 13/30, 4/30),

the graph of L↓
λ(ω) intersects the graph of

L↓
η(ω), hence λ and η are incomparable

under majorization.

(b) Lorenz curves associated to the vec-
tor of OSC of λ = (0.5, 0.3, 0.2) and to
the vector of OSC of η = (13/30, 13/30,

4/30), the graph of L↑
λOS (ω) is above the

graph of L↑
ηOS (ω), hence λOS ≺w ηOS .

Figure 4.2: Lorenz curves for the second point of Example 11.

4.1.1 Proof for qubits

In this section, we prove Conjecture 4.1 for qubits, i.e., for 2-dimensional bipartite
systems. Moreover, we show that the implication goes in both direction in that case,
i.e., λ ≺ η ⇔ λOS ≺w ηOS.

Proof. Let λ = (λ1, λ2) and η = (η1, η2) be such that λ ≺ η. Now, let us write
the corresponding vectors of OSC as λOS = (λ1,

√
λ1λ2,

√
λ1λ2, λ2) and ηOS =

(η1,
√
η1η2,

√
η1η2, η2) and show that we have indeed λOS ≺w ηOS.

To do so, let us expand both majorization relations. First, by means of (2.3),
λ ≺ η can be written {

λ1 ≤ η1,

λ1 + λ2 = η1 + η2.

(4.2a)

(4.2b)

Second, using (2.16), λOS ≺w ηOS can be written

λ2 ≥ η2,

λ2 +
√
λ1λ2 ≥ η2 +

√
η1η2,

λ2 + 2
√
λ1λ2 ≥ η2 + 2

√
η1η2,

λ2 + 2
√
λ1λ2 + λ1 ≥ η2 + 2

√
η1η2 + η1.

(4.3a)

(4.3b)

(4.3c)

(4.3d)

Let us now prove that each inequality of (4.3) is implied by (4.2).

• 4.3a : This inequality is trivially verified because

λ1 ≤ η1 and λ1 + λ2 = η1 + η2 ⇐⇒ λ2 ≥ η2. (4.4)

• 4.3d : We first prove the last inequality because, as we shall see, the proofs of
(4.3b) and (4.3c) will therefore be straightforward.
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Let us first rewrite (4.3d), by making use of the equality (4.2b), in a simpler
form

λ2 + 2
√
λ1λ2 + λ1 ≥ η2 + 2

√
η1η2 + η1 ⇔

√
λ1λ2 ≥

√
η1η2, (4.5)

⇔
√
λ1(1− λ1) ≥

√
η1(1− η1), (4.6)

⇒ λ1(1− λ1) ≥ η1(1− η1). (4.7)

Now, because of (4.2a) and the fact that λ1 + λ2 = η1 + η2 = 1 due to the
definition of the Schmidt decomposition and because both λ and η are arranged
in decreasing order, we have 1/2 ≤ λ1 ≤ η1 ≤ 1. Hence, it suffices to show that
the function f(x) = x(1−x) is decreasing in the interval [1/2, 1] to prove (4.7).

This is indeed the case because d
dx

(f(x)) = 1− 2x, thus we have proved (4.3d).

• (4.3b) and (4.3c) : Having proved (4.3a) and the second inequality of (4.5)
immediately proves both relations.

Now, to prove the converse statement, i.e., that the inequalities of (4.3) imply the
relations of (4.2), we simply make use of the definition of the Schmidt decomposition
(the sum of all SC equals one) to prove that λ1 +λ2 = η1 + η2. Then, by also making
use of (4.3a), (4.2a) is immediately proved, completing the proof of this converse
statement.

4.1.2 Difficulties encountered for qudits (d > 2)

One of the main challenges in proving Conjecture 4.1 for qudits (with d > 2) lies in
the non-fixed ordering of the OSC. Indeed, for a qubit with a vector of SC λ = (λ1, λ2)
with the usual ordering λ1 ≥ λ2, it was clear that the decreasingly ordered vector of
OSC should always be written λOS = (λ1,

√
λ1λ2,

√
λ1λ2, λ2), because λ1 ≥

√
λ1λ2 ≥

λ2 then. Therefore, the order was fixed for the vector of OSC of a qubit.
However, it is not the case for d > 2. For example, let us consider a qutrit (d = 3)

with a vector of SC λ = (λ1, λ2, λ3) with the usual ordering λ1 ≥ λ2 ≥ λ3. Its
decreasingly ordered vector of OSC can be written in 2 different ways, depending on
the values of λ1, λ2 and λ3, i.e., by means of(1.35),

• if λ2 ≥
√
λ1λ3

λOS = (λ1,
√
λ1λ2,

√
λ1λ2, λ2,

√
λ1λ3,

√
λ1λ3,

√
λ2λ3,

√
λ2λ3, λ3). (4.8)

• if
√
λ1λ3 ≥ λ2

λOS = (λ1,
√
λ1λ2,

√
λ1λ2,

√
λ1λ3,

√
λ1λ3, λ2,

√
λ2λ3,

√
λ2λ3, λ3). (4.9)

Furthermore, if we wanted to make a proof similar to the one of Section 4.1.1 for
qutrits, it would require to prove nine (= d2) super-majorization inequalities with
four different possible orderings, two for the ordering of λ and two for the ordering
of η. We clearly see that this method is unpractical for arbitrary high values of d,
hence we need to find a different approach.
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4.1.2.a Majorization using matrices

A possible idea would be to use the definitions of majorization and super-majorization
in terms of matrices (see Sections 2.1.2 and 2.2.2 of Chapter 2). However, although
possible again for qubits, it turns out to be hard to construct systematically the
matrix elements of a d2 × d2 doubly super-stochastic matrix based on the knowledge
of a d× d doubly stochastic matrix. Therefore, this direction has not been pursued
further.

4.1.2.b Catalytic convertibility

Another way that could be explored is the ELOCC convertibility (see Section 3.2.4
of Chapter 3). Indeed, the idea would be that the super-majorization over the OSC
could be weaker because it encompasses the pairs of states convertible under ELOCC.
However, the following lemma [33] immediately forbids us to pursue in that direction.

Lemma 4.1. Let |ψ⟩ and |ϕ⟩ be two d-dimensional bipartite pure states, with λ (resp.

η) the vector of SC of |ψ⟩ (resp. |ϕ⟩). Then, |ψ⟩ ELOCC−−−−→ |ϕ⟩ only if both

λ1 ≤ η1 and λd ≥ ηd. (4.10)

For example, the second point of Example 11 showcases a pair of states such that
λOS ≺w ηOS while λ ⊀ η. Nonetheless, one cannot hope to transform |ψ⟩ into |ϕ⟩
using ELOCC because λ1 = 5/10 ≥ η1 = 13/30 in that case.

4.1.3 Partial proof for qudits

In the preceding section, we have seen that the non-fixed ordering of the OSC for
qudits with d > 2 greatly complicates the analytical treatment of the proof in terms
of majorization inequalities. However, the first and the last inequality of the super-
majorization relation over the OSC are always of the same form because they don’t
depend on the specific ordering, hence they can be more easily proved.

The first super-majorization inequality (see Definition 2.16 of Chapter 2) writes

λd ≥ ηd. (4.11)

This is obviously true because of the definition of strong majorization in increasing
order (see Definition 2.4 of Chapter 2 where the first inequality for d-dimensional
vectors is already simply (4.11)).

Now, the last super-majorization inequality consists in the sum of all the OSC for
both vectors (1.35) and can be formulated as(

d∑
i=1

√
λi

)2

≥

(
d∑
i=1

√
ηi

)2

. (4.12)
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Proving this inequality is more tedious and requires the notion of Schur-concavity
(see Section 2.1.3 of Chapter 2). Indeed, if we show that the function f : Rd → R :

x 7→
(∑d

i=1

√
xi
)2

is Schur-concave, then, by definition of the Schur-concavity, we
have

λ ≺ η ⇒ f(λ) ≥ f(η), (4.13)

⇒

(
d∑
i=1

√
λi

)2

≥

(
d∑
i=1

√
ηi

)2

, (4.14)

hence the last super-majorization inequality over the OSC is proved because λ ≺ η
is an hypothesis.

Theorem 4.1. The function f : Rd → R : x 7→
(∑d

i=1

√
xi
)2

is Schur-concave.

Proof. To prove that f is Schur-concave, we make use of Lemma 2.1 of Chapter 2,
hence we need to prove that f is both symmetric and concave.

The invariance of f regarding any permutation of its input is obvious, thus we only
need to prove that f is concave.

We first recall the definition of a concave function (see Definition 2.11 of Chapter
2), f is concave if and only if

f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y), ∀t ∈ [0, 1]. (4.15)

With our definition of f , let us show that (4.15) is true. First, expanding both terms
gives(√

tx1 + (1− t)y1 + ...+
√
txd + (1− t)yd

)2
≥

t (
√
x1 + ...+

√
xd)

2
+ (1− t) (

√
y1 + ...+

√
yd)

2 . (4.16)

By developing the squares in both terms, we obtain

t(x1 + ...+ xd) + (1− t)(y1 + ...+ yd) + 2
d∑
i=1

∑
j<i

√
(txi + (1− t)yi)(txj + (1− t)yj)

≥ t(x1 + ...+ xd) + (1− t)(y1 + ...+ yd) + 2
d∑
i=1

∑
j<i

(t
√
xixj + (1− t)√yiyj),

(4.17)

which simplifies into

d∑
i=1

∑
j<i

√
(txi + (1− t)yi)(txj + (1− t)yj) ≥

d∑
i=1

∑
j<i

(t
√
xixj + (1− t)√yiyj).

(4.18)

Finally, by doubly distributing under the square root of the first term, we get

d∑
i=1

∑
j<i

√
t2xixj + (1− t)2yiyj + t(1− t)(xiyj + xjyi) ≥

d∑
i=1

∑
j<i

(t
√
xixj + (1− t)√yiyj).

(4.19)
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We will show now that√
t2xixj + (1− t)2yiyj + t(1− t)(xiyj + xjyi) ≥ (t

√
xixj + (1− t)√yiyj) (4.20)

is true for all i, j, directly proving that (4.19) is true. First, we square both positive
terms of (4.20)

t2xixj + (1− t)2yiyj + t(1− t)(xiyj + xjyi) ≥ t2xixj + (1− t)2yiyj + 2t(1− t)√xixjyiyj,
(4.21)

which simplifies into2

(xiyj + xjyi) ≥ 2
√
xixjyiyj. (4.22)

Again, both terms being positive, we square them to obtain

x2i y
2
j + x2jy

2
i + 2xixjyiyj ≥ 4xixjyiyj, (4.23)

giving the following remarkable identity

(xiyj − xjyi)2 ≥ 0, (4.24)

which is obviously always true. Therefore, f is concave. Moreover, because of its
symmetry, it is Schur-concave.

Note that this proof has an important implication, namely that sub-majorization
(see Definition 2.15 of Chapter 2) over the OSC is never3 possible when λ ≺ η.
Indeed, the last sub-majorization inequality would simply be(

d∑
i=1

√
λi

)2

≤

(
d∑
i=1

√
ηi

)2

, (4.25)

which we have proved is never3 possible if λ ≺ η because of Theorem 4.1.

4.2 Numerical evidences

Although no analytical proof of Conjecture 4.1 has been found, numerical evidences
strongly seem to indicate that the conjecture is true.

Numerical tests for qudits are performed in the following way

• Two d-dimensional vectors of SC, λ and η, are randomly generated.

• λ and η are compared under strong majorization and a counter, let us call it
majo_cnt, is incremented if they are comparable

• The associated vectors of OSC, λOS and ηOS, are deduced for both vectors.

• λOS and ηOS are compared under super- and sub-majorization. If they are com-
parable under super-majorization, a counter super_majo_cnt is incremented.
If they are comparable under sub-majorization, a counter sub_majo_cnt is in-
cremented.

2We suppose that t ̸= 0 and 1, otherwise (4.21) is already trivially true.
3Unless (4.12) is an equality, which would be a trivial case.
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In the following figure, for each dimension d ∈ [2, 15], 5000 loops of the preceding
procedure have been performed.

Figure 4.3: Numerical evidence of Conjecture 4.1. In blue, the number of (randomly
generated) vectors of SC that are comparable under strong majorization. In (or-
ange+blue), the number of associated vectors of OSC that are comparable under
super-majorization.

First, remark that for d = 2, all vectors of SC are comparable under majorization,
which can be easily analytically shown4. Furthermore, still for d = 2, all vectors of
OSC are also comparable under super-majorization, this is in correspondence with
the proof of Section 4.1.1 where we have shown that λ ≺ η ⇔ λOS ≺w ηOS.

Second, for d > 2, not all vectors of SC are comparable under majorization, which
is consistent with Example 5 and some vectors of OSC are comparable under super-
majorization while the corresponding vectors of SC are not comparable under strong
majorization. Note the important remark that, while not made explicit in Figure 4.3,
all counts of majo_cnt are well present in super_majo_cnt.

Third, as proved at the end of Section 4.1.3, vectors of OSC can never be com-
parable under sub-majorization if their corresponding vectors of SC are comparable
under majorization. Moreover, we observe that no vectors of OSC are comparable
under sub-majorization, even if their corresponding vectors of SC are incomparable
under majorization.

4Let λ = (λ1, λ2) and η = (η1, η2). If λ1 ≤ η1, then λ ≺ η. Else, if η1 ≤ λ1, then η ≺ λ, hence
they are always comparable under strong majorization.
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Chapter 5

Weak majorization and
probabilistic convertibility

In the preceding chapter, we have conjectured (and partly proved) a necessary con-
dition for the deterministic conversion of bipartite pure states involving the OS de-
composition.

In this chapter, we prove a sufficient condition for the probabilistic conversion of
bipartite pure states using the OS decomposition in Section 5.1. Then, in Section
5.2, we propose an abstract representation to summarize the (conjectured) result of
the previous chapter with the result of Section 5.1 of the present chapter.

Finally, in Section 5.3, we make a first incursion into the realm of mixed states by
exploring a connection between the super-majorization relation and the probabilistic
protocol of Vidal (see Section 3.3.2 of Chapter 3). Note that this is quite important
because we finally use the OS decomposition for mixed states.

5.1 Condition based on the OS decomposition

In this section, we present a theorem allowing one to know with what probability a
conversion between two bipartite pure states whose OSC are comparable under super-
majorization is, at least, possible. Although rather weak, because the condition is
only sufficient, it is nonetheless a link made between probabilistic conversion and
super-majorization on the OSC.

Theorem 5.1. Let |ψ⟩ and |ϕ⟩ be two d-dimensional bipartite pure states, with λ
(resp. η) the vector of Schmidt coefficients (SC) of |ψ⟩ (resp. |ϕ⟩) and λOS (resp.
ηOS) the vector of operator Schmidt coefficients (OSC) of |ψ⟩ ⟨ψ| (resp. |ϕ⟩ ⟨ϕ|).

If λOS ≺w ηOS, then λ ≺w pη, with

p ≤ psuper = min

{
1, min

k∈[1,d−1]

{
1− 2∑d

i=k ηi

∑
i ̸=j

i+j≥2k

(
√
λiλj −

√
ηiηj)

}}
, (5.1)

which implies, by means of Theorem 3.2, that |ψ⟩ is convertible into |ϕ⟩ using only
LOCC with probability p ≤ psuper.

Proof. We prove the theorem for qutrits, the generalization following naturally after-
wards.
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On the one hand, using (2.16), we first develop1 the super-majorization relation
λOS ≺w ηOS.

λ3 ≥ η3, (5.2)

λ3 +
√
λ2λ3 ≥ η3 +

√
η2η3, (5.3)

λ3 + 2
√
λ2λ3 ≥ η3 + 2

√
η2η3, (5.4)

λ3 + 2
√
λ2λ3+? ≥ η3 + 2

√
η2η3+?, (5.5)

λ3 + 2
√
λ2λ3+? ≥ η3 + 2

√
η2η3+?, (5.6)

λ3 + 2
√
λ2λ3 + 2

√
λ1λ3 + λ2 ≥ η3 + 2

√
η2η3 + 2

√
η1η3 + η2, (5.7)

λ3 + 2
√
λ2λ3 + 2

√
λ1λ3 + λ2+? ≥ η3 + 2

√
η2η3 + 2

√
η1η3 + η2+?,

(5.8)

λ3 + 2
√
λ2λ3 + 2

√
λ1λ3 + λ2+? ≥ η3 + 2

√
η2η3 + 2

√
η1η3 + η2+?,

(5.9)

λ3 + 2
√
λ2λ3 + 2

√
λ1λ3 + λ2 + 2

√
λ1λ2 + λ1 ≥ η3 + 2

√
η2η3 + 2

√
η1η3 + η2 + 2

√
η1η2 + η1.

(5.10)

Remember that, as seen on Section 4.1.2 of Chapter 4, the non-fixed ordering of
the OSC depending on the values of the SC implies that there is no general form for
(5.5), (5.6), (5.8) and (5.9), whence the questions marks in those inequalities.

However, blue inequalities are present whatever the variable ordering in the de-
creasingly ordered vectors of OSC, thus we will make use of some inequalities belong-
ing to the blue subset of inequalities, namely those where the simple terms (λ1, λ2, λ3
and η1, η2, η3) appear for the first time, i.e., (5.2), (5.7) and (5.10) in our case.

Those three inequalities can be rewritten in the following way2

λ3
η3
≥ 1, (5.11)

λ2 + λ3
η2 + η3

≥ 1− 1

η2 + η3

(
2
√
λ2λ3 + 2

√
λ1λ3 − 2

√
η2η3 − 2

√
η1η3

)
, (5.12)

λ1 + λ2 + λ3
η1 + η2 + η3

≥ 1− 1

η1 + η2 + η3

(
2
√
λ2λ3 + 2

√
λ1λ3 + 2

√
λ1λ2

− 2
√
η2η3 − 2

√
η1η3 − 2

√
η1η2

)
. (5.13)

On the other hand, using (2.16), we develop now the super-majorization relation
λ ≺w pη

λ3 ≥ pη3, (5.14)

λ2 + λ3 ≥ p(η2 + η3), (5.15)

λ1 + λ2 + λ3 ≥ p(η1 + η2 + η3), (5.16)

(5.17)

1As always, vectors are decreasingly ordered, hence λ1 ≥ λ2 ≥ λ3 and η1 ≥ η2 ≥ η3.
2We suppose that η3 and η2 are different from 0, otherwise the inequalities (5.2) and (5.7) are

trivially satisfied.
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which can be rewritten in a similar way to (5.11), (5.12) and (5.13)3

λ3
η3
≥ p, (5.18)

λ2 + λ3
η2 + η3

≥ p, (5.19)

λ1 + λ2 + λ3
η1 + η2 + η3

≥ p. (5.20)

Thus, we see that, if p ≤ psuper = min

{
1, 1− 1

η2+η3

(
2
√
λ2λ3 + 2

√
λ1λ3 − 2

√
η2η3 −

2
√
η1η3

)
, 1− 1

η1+η2+η3

(
2
√
λ2λ3 + 2

√
λ1λ3 + 2

√
λ1λ2− 2

√
η2η3− 2

√
η1η3− 2

√
η1η2

)}
,

then, inequalities (5.18), (5.19) and (5.20) are all satisfied, meaning that λ ≺w pη for
p ≤ psuper.

However, in general, there may exist higher values of p such that the conversion
is still possible. This can be understood because of the following inequality that can
easily be shown,

psuper ≤ pmax, (5.21)

where pmax corresponds to the optimal conversion probability (see Theorem 3.3).
The following two examples showcase (i) a typical application of Theorem 5.1 and

(ii) an example why the theorem can only be sufficient.

Example 12:

• λOS ≺w ηOS ⇒ λ ≺w pη, with p ≤ psuper

Let us reuse the second point of Example 11, with λ = (5/10, 3/10, 2/10)
and η = (13/30, 13/30, 4/30). We had shown that λOS ≺w ηOS, while
λ ⊀ η. Now, by Theorem 5.1, we can calculate, from the components of
λOS and ηOS, the value of psuper

psuper ≃ min{1, 0.716, 0.872} = 0.716, (5.22)

which implies that λ ≺w pη for p ≤ 0.716.

In order to see that both super-majorization relations are fulfilled, we draw
the associated Lorenz curves in Figure 5.1.

Note that, by (3.19), pmax = 15/17 ≃ 0.882 which is higher than psuper as
expected.

• λ ≺w pη, with p ≤ psuper ̸⇒ λOS ≺w ηOS

Let us choose now λ = (5/10, 3/10, 2/10) and η = (44/100, 39/100,
17/100). If we calculate psuper with the use of (5.1), we have

psuper ≃ min{1, 0.892, 0.994} = 0.892, (5.23)

3Again, assuming that η3 and η2 are different from 0.
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which we show allows λ ≺w pη for p ≤ 0.892 (see Figure 5.2a).

However, we can show that λOS ⊀w ηOS, implying that the implication
sign of Theorem 5.1 can only go one way.

Again, we make use of Lorenz curves to verify that λ ≺w pη for p ≤ 0.892,
while λOS ⊀w ηOS (see Figure 5.2).

(a) Lorenz curves associated to the vec-
tor of OSC of λ = (0.5, 0.3, 0.2) and to
the vector of OSC of η = (13/30, 13/30,

4/30), the graph of L↑
λOS (ω) is above the

graph of L↑
ηOS (ω), hence λOS ≺w ηOS .

(b) Lorenz curves associated to λ = (0.5,
0.3, 0.2) and psuperη = (0.716×13/30,
0.716×13/30, 0.716×4/30), the graph of

L↑
λ(ω) is above the graph of L↑

psuperη(ω),
hence λ ≺w psuperη.

Figure 5.1: Lorenz curves for the first point of Example 12.

(a) Lorenz curves associated to λ = (0.5,
0.3, 0.2) and psuperη = (0.892×44/100,
0.892×39/100, 0.892×17/100), the

graph of L↑
λ(ω) is above the graph of

L↑
psuperη(ω), hence λ ≺w psuperη.

(b) Lorenz curves associated to the vector
of OSC of λ = (0.5, 0.3, 0.2) and to the
vector of OSC of η = (44/100, 39/100,

17/100), the graph of L↑
λOS (ω) intersects

the graph of L↑
ηOS (ω) (see the interval

ω ∈ [5, 8]), hence λOS ⊀w ηOS .

Figure 5.2: Lorenz curves for the second point of Example 12.
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5.2 Diagrammatic representation

In this section, we bring together Conjecture 4.1 of the previous chapter and Theorem
5.1 of this present chapter. This allows to better identify where the super-majorization
relation on the OSC stands compared to the majorization relation on the SC of
Nielsen’s theorem (3.4) and the super-majorization relation on the SC of Theorem
3.2.

The following figure displays, for a fixed vector of SC λ, the vectors of SC η such
that, λ ≺ η (inside of the green ellispe), λOS ≺w ηOS (inside of the red circle) and
λ ≺w pη with p ∈ [0, psuper] (inside of the blue ellipse).

Figure 5.3: For a fixed vector of SC λ, diagrammatic representation of the sets of
vectors of SC η such that, (i) inside the green ellipse, λ ≺ η, i.e., by Theorem 3.1, the
states with vectors of SC η that can be deterministically transformed to, by LOCC,
from the state of SC λ, (ii) inside the red circle, λOS ≺w ηOS, (iii), inside the blue
ellipse, λ ≺w pη with p ∈ [0, psuper], i.e., by Theorem 3.2, the states with vectors of
SC η that can be probabilistically transformed to, by LOCC, from the state of SC λ,
with probability belonging at least to [0, psuper], where psuper can be calculated from
(5.1).

Firstly, the inclusion of the green ellipse in the red circle reflects the result of
Conjecture 4.1, i.e., λ ≺ η ⇒ λOS ≺w ηOS. Secondly, the inclusion of the red circle
in the blue ellipse reflects the result of Theorem 5.1.

Finally, unless we consider qubits4 or specific values of λ such as (1/d, ..., 1/d) or
(1, 0, ..., 0), the inclusions between the three sets are strict. This has been shown by
the counter-examples presented in Example 11 (see its second point) and in Example
12 (see its second point).

4In this case the green and red ensembles have been shown to be equal in Section 4.1.1 of Chapter
4. Furthermore, the blue set can also be shown to be equal to the green and red ones.
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5.3 Application of super-majorization to mixed states

In this section, we make a first connection between weak majorization, more specifi-
cally super-majorization, on the OSC and mixed states.

Let us consider Vidal’s protocol (see Section 3.3.2 of Chapter 3), the goal being to
transform a bipartite pure state |ψ⟩ into another bipartite pure state |ϕ⟩ (possibly)
probabilistically using only LOCC.

Recall that, if the conversion cannot be made deterministically, an intermediate
state |χ⟩ is first reached by deterministic conversion. Then, by performing a proper
measurement, this state is transformed into |ϕ⟩ with probability pmax (3.19). Other-
wise, it is transformed into another state |ξ⟩ with probability 1− pmax.

However, we can choose to look at the final state of the system rather in a statistical
mixture of the two possible outcomes (1.47), i.e.,

σ̂ = pmax |ϕ⟩ ⟨ϕ|+ (1− pmax) |ξ⟩ ⟨ξ| . (5.24)

In the rest of this chapter, we will prove for qubits, and conjecture for qudits, that
the following relation is obeyed between the vector of OSC γOS of the intermediary
state |χ⟩ and the vector of OSC ςOS of σ̂,

γOS ≺w ςOS, (5.25)

where ςOS is now the vector of OSC of a mixed state.

5.3.1 Case of qubits

First, let us consider the case of qubits and assume that |ψ⟩ cannot be transformed
deterministically into |ϕ⟩, otherwise the problem would be trivial because we would
have pmax = 1. Because of these two assumptions, we can show5 that the interme-
diary state is the initial state |ψ⟩, meaning that no LOCC is performed before the
measurement performed by Alice (or Bob).

By construction, we can show that |ξ⟩, the unwanted outcome state of the mea-
surement, has a strictly lower Schmidt rank than |ϕ⟩5. Hence, because we consider
qubits, it has a Schmidt rank equal to 1, meaning that |ξ⟩ = |00⟩. This allows to
simply write the vector of OSC of σ̂ as follows6

ςOS = pmax


η1√
η1η2√
η1η2
η2

+ (1− pmax)


1
0
0
0

 =


1− pmaxη2
pmax
√
η1η2

pmax
√
η1η2

pmaxη2

 , (5.26)

where we made use of the fact that η2 = 1− η1.
We can replace pmax by its value in terms of the SC of λ and η (3.19), i.e., pmax =

λ2/η2, allowing to rewrite ςOS as (λ1, λ2
√
η1/η2, λ2

√
η1/η2, λ2).

5See Appendix B.
6As always, λ is the vector of SC of |ψ⟩ and η the vector of SC of |ϕ⟩, both vectors being

decreasingly reordered.
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Now, we will show that we have λOS ≺w ςOS. By unraveling the super-majorization
relation using (2.16), we get

λ2 ≥ λ2,

λ2 +
√
λ1λ2 ≥ λ2 + λ2

√
η1
η2
,

λ2 + 2
√
λ1λ2 ≥ λ2 + 2λ2

√
η1
η2
,

λ2 + 2
√
λ1λ2 + λ1 ≥ λ2 + 2λ2

√
η1
η2

+ λ1,

hence it suffices to show that
√
λ1λ2 ≥ λ2

√
η1
η2

to prove that the set of inequality is

satisfied. First, let us rewrite the latter inequality as λ1
η1
≥ λ2

η2
. To show that it is true,

recall that we have assumed that λ ⊀ η. Therefore, for qubits, η ≺ λ, i.e., η1 ≤ λ1
and η2 ≥ λ2, implying immediately that λ1

η1
≥ λ2

η2
.

This allows us to conclude that we indeed have λOS ≺w ςOS.

5.3.2 Case of qudits

The generalization of the previous proof to any dimension d is quite cumbersome.
Indeed, the intermediary state |χ⟩ is now, in general, different from |ψ⟩ and its

structure depends on the values of the SC of |ψ⟩ and |ϕ⟩7. As a matter of fact, the
analytical proof brings up several different cases, whose number is growing exponen-
tially with d.

Furthermore, in each case, we have to prove a super-majorization relation, i.e., d2

inequalities, which have already proved to be difficult to treat analytically in another
context (see Section 4.1.2 of Chapter 4).

Nonetheless, once again, a large number of numerical tests have been performed8

and no counter-example has been encountered, giving us the strong intuition that the
super-majorization between the vector of OSC of |χ⟩ and the one of σ̂ should hold.

7See Appendix B.
8For values of d < 16.
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Chapter 6

Majorization lattice in quantum
entanglement theory

This last chapter is devoted to the particular subject of the majorization lattice,
first introduced in [10]. As of now, this mathematical field remains rarely applied to
quantum information and only few recent papers exploit it, see e.g., [12, 34]. However,
it turns out to be a very convenient tool in entanglement transformations as we will
see throughout this chapter.

At first, Section 6.1 exposes the theory of majorization lattice by introducing
mathematical concepts and terminology. Then, Section 6.2 presents Conjecture 4.1
and Theorem 5.1 in a unified picture, as was done in Section 5.2 of Chapter 5, using
the majorization lattice formalism. Next, in Section 6.3, we interpret and apply the
notions of majorization lattice to quantum information. Finally, in Section 6.4, we
explore a link between the majorization lattice and Vidal’s protocol (see Section 3.3.2
of Chapter 3), emphasizing the possible applications of majorization lattice notions
to quantum information protocols.

6.1 Theory of majorization lattice

The majorization lattice is an application of the order theory notion of “lattice” to
the theory of majorization. In this report, we focus only on the majorization lattice
definition while the general concept of lattice is detailed in-depth in [35].

6.1.1 Definition

The majorization lattice is defined in [10] as a quadruple ⟨Pd,≺,∧,∨⟩, where

• Pd is the set of all decreasingly ordered d-dimensional (or less) probability distri-
butions, i.e., Pd = {p = (p1, ..., pd) such that p1 ≥ ... ≥ pd ≥ 0 and

∑d
i=1 pi = 1}.

• ≺ is the (partial) order relation of majorization.

• ∧ defines a unique greatest lower bound, called the meet.

• ∨ defines a unique least upper bound, called the join.

As such, Pd constitutes the set of the lattice elements and ≺ the relation in which
they are ordered.
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Now, the meet of λ, η ∈ Pd is denoted λ∧ η and is defined as the unique element
of Pd such that

∀α ∈ Pd with α ≺ λ and α ≺ η, we have α ≺ λ ∧ η, (6.1)

which implies obviously that λ ∧ η ≺ λ and λ ∧ η ≺ η. Therefore, the meet can
be understood as the only distribution majorized by λ and η that majorizes all
distributions majorized by both λ and η, hence the name greatest lower bound.

Analogously, the join of λ, η ∈ Pd is denoted λ ∨ η and is defined as the unique
element of Pd such that

∀β ∈ Pd with λ ≺ β and η ≺ β, we have λ ∨ η ≺ β, (6.2)

which implies obviously that λ ≺ λ ∨ η and η ≺ λ ∨ η. Therefore, the join can
be understood as the only distribution majorizing λ and η that is majorized by all
distributions majorizing both λ and η, hence the name least upper bound.

Note already that these notions of meet and join are of real interest only if both
distributions are incomparable under majorization. Indeed, if they are comparable,
e.g., if λ ≺ η, then the meet λ ∧ η = λ and the join λ ∨ η = η. This remark will
be clearer when representing graphically the majorization lattice in Section 6.1.2 and
when using Lorenz curves to describe the meet and the join in Section 6.1.3.

6.1.2 Abstract representation

Before detailing how the meet and the join can be determined analytically, we present
an abstract representation [36] of the majorization lattice in Figure 6.1. This repre-
sentation should be kept in mind all along the rest of this chapter.

Figure 6.1: Abstract representation of the majorization lattice. λ,η ∈ Pd are in-
comparable under majorization. The meet of λ and η, λ ∧ η, is situated at the
intersection of the upper cones of both distributions, while the join of λ and η, λ∨η,
is situated at the intersection of the lower cones of both distributions.

Let us now describe the elements of Figure 6.1. First, all elements of Pd are
represented by points.

Second, by convention, the higher a distribution is in the lattice, the more it
possesses entropy (2.13). This implies that the highest distribution is the uniform
distribution, corresponding to the vector of SC of the maximally-entangled state,
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while the lowest distribution is (1, 0, ..., 0), corresponding to the vector of SC of the
separable state.

Third, each distribution of the lattice, e.g., λ, possesses an upper and a lower
cone1. The upper cone of λ corresponds to all distributions majorized by λ, i.e., all
γ ∈ Pd such that γ ≺ λ, while the lower cone of λ corresponds to all distributions
majorizing λ, i.e., all δ ∈ Pd such that λ ≺ δ.

Finally, when two upper cones intersect, it corresponds to the meet λ ∧ η of both
distributions, i.e., the distribution with the smallest entropy that is majorized by
both distributions. Conversely, when two lower cones intersect, it corresponds to the
join λ ∨ η of both distributions, i.e., the distribution with the greatest entropy that
majorizes both distributions.

In the special case where the two distributions are comparable under majorization,
it is obvious from Figure 6.1 that the intersection of the upper cones, the meet,
happens immediately on the uppermost distribution on the lattice and conversely for
the join.

6.1.3 Determination of the meet and the join

The analytical construction of the meet and the join is based on Lorenz curves (see
Section 2.1.1.c of Chapter 2). Thus, for the analytical result to be clearer, we first
construct Lorenz curves for both and then detail their analytical form.

6.1.3.a Meet

In order to construct the Lorenz curve of the meet of two distributions, it suffices to
build the unique curve that is below the Lorenz curves of both distributions and such
that all other Lorenz curves below both distributions are also below the Lorenz curve
of the meet. Figure 6.2 displays such example.

(a) Let λ = (0.6, 0.15, 0.15, 0.1) and η =
(0.5, 0.25, 0.20, 0.05) be two distributions
∈ P4. Because the two Lorenz curves
L↓
λ(ω) and L↓

η(ω) intersect, the two dis-
tributions are incomparable under ma-
jorization, making this example a non-
trivial one.

(b) The Lorenz curve of the meet of λ and

η, L↓
λ∧η(ω), consists in the union of all

the lowest segments of L↓
λ(ω) and L

↓
η(ω).

It can be calculated that λ ∧ η = (0.5,
0.25, 0.15, 0.1).

Figure 6.2: Example of the Lorenz curve for the meet of two distributions.

1Except the two extreme points, i.e., the uniform distribution and the peaked distribution.
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Now, we can detail the analytical construction of the meet of two distributions [10]
using decreasing cumulative sums (2.1).

Theorem 6.1 (Meet). For all λ,η ∈ Pd, the meet λ ∧ η = (a1, a2, ..., ad) is such
that,

ak = min

{
S↓
k(λ), S↓

k(η)

}
−min

{
S↓
k−1(λ), S↓

k−1(η)

}
for k ∈ [1, d], (6.3)

with the convention that S↓
0(λ) = S↓

0(η) = 0.

This theorem essentially translates analytically the construction procedure based
on Lorenz curves that we have exhibited in Figure 6.2.

6.1.3.b Join

Contrary to the notion of meet, the join of two distributions is more complicated
to determine (a full calculation can be found in [10]). This originates from the fact
that if we build a curve that is just above the Lorenz curves of both distributions,
analogously to what we did for the meet, this curve will not be concave anymore (see
Figure 6.3a), meaning that it is not a decreasingly ordered distribution, thus not ∈ Pd
and therefore not the join.

At first sight, one could think that by reordering the distribution the join can be
obtained, let us call this new distribution the postulated join. In fact, now the curve
is concave by construction. However, this postulated join is not the join because, in
general, there exist other concave polygonal curves above the Lorenz curves of both
distributions but below the Lorenz curve of this postulated join, hence it cannot be
the join.

The solution is therefore to perform a certain algorithm to straighten the non-
concave curve of Figure 6.3a “just enough” so that the curve is concave and such
that no other Lorenz curve above the Lorenz curves of both distributions is below
this straightened curve. Figure 6.3 displays such procedure where we have reused the
example already presented in Figure 6.2a.

6.1.3.c Extension to more than two distributions

The notions of meet and join can be extended to more than two distributions [23].
As a matter of fact, because of the algebraic properties of the majorization lattice,
the meet of n elements {λj}nj=1 belonging to Pd is defined as

∧{λj}nj=1 = λ1 ∧ λ2 ∧ ... ∧ λn−1 ∧ λn = λ1 ∧ (λ2 ∧ ... ∧ (λn−1 ∧ λn )...)︸︷︷︸
n−2

, (6.4)

hence, it suffices to calculate the meet between λn−1 and λn, then between λn−2 and
(λn−1 ∧ λn), and so on.

Analogously, the join of n elements {λj}nj=1 belonging to Pd is defined as

∨{λj}nj=1 = λ1 ∨ λ2 ∨ ... ∨ λn−1 ∨ λn = λ1 ∨ (λ2 ∨ ... ∨ (λn−1 ∨ λn )...)︸︷︷︸
n−2

. (6.5)
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(a) Let λ = (0.6, 0.15, 0.15, 0.1) and η =
(0.5, 0.25, 0.20, 0.05) be two distributions
∈ P4. The union of all the highest seg-
ments of L↓

λ(ω) and L
↓
η(ω) does not con-

stitute a concave polygonal curve, hence
the red curve is not the join of λ and η.

(b) The Lorenz curve of the join of λ and

η, L↓
λ∨η(ω), consists in the straighten-

ing of the red curve of Figure 6.3a such
that the curve is now a concave polygonal
curve. It can be calculated that λ ∨ η =
(0.6, 0.175, 0.175, 0.05).

Figure 6.3: Example of the difficulty encountered when searching the Lorenz curve
for the join of two distributions.

6.2 Weak majorization and 3-dimensional majoriza-

tion lattice

In this section, we introduce two new lattices involving weak majorization, in par-
ticular, super-majorization. The first one is based on Conjecture 4.1 and is denoted
⟨Pd, “ ≺w OS”,∧,∨⟩, where “ ≺w OS” is a shortcut for the “super-majorization on
the OSC” ordering relation. The second one is based on Theorem 5.1 and is denoted
⟨Pd, “ ≺w psuper”,∧,∨⟩, where “ ≺w psuper” is a shortcut for the “super-majorization
on the SC with factor psuper (5.1) on the right-hand side” ordering relation. The no-
tions of ∧ and ∨ are defined the same way as in Section 6.1.1 for each order relation.

In order to make a graphical representation of the three majorization lattices, the
first non-trivial set to consider is P3

2. Therefore, we display in Figure 6.4 those three
majorization lattices for 3-dimensional distributions. However, to be able to represent
the three lattices in one graph is tedious, hence we only represent the upper and lower
cones for one fixed distribution (λ = (0.5, 0.3, 0.2)) associated to each of the three
lattices. Moreover, a 2-dimensional graph is enough to fully represent 3-dimensional
distributions because of the constraint on the absolute norm (λ1 + λ2 + λ3 = 1), thus
we make use of the following convenient parametrization

λ = (λ1, λ2, λ3) =

(
1

3
+ y + x, y, x

)
, (6.6)

where y = 1/3− λ2 and x = 1/3− λ3 are the axes of Figure 6.4.
Note that dots represent 3-dimensional distributions in the graph and their colour

denotes which of the three majorization lattices they belong to. As a matter of fact,
this graph is simply the reproduction of the abstract Figure 5.3 using the majorization
lattice formalism for 3-dimensional lattices.

Let us now analyze each part of the graph.

2Because all distributions are comparable in P2.
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First, at the leftmost edge of the graph is situated the uniform distribution, i.e.,
the distribution associated to a maximally-entangled state (1/3, 1/3, 1/3), whereas at
the rightmost upper edge is situated the distribution associated to a separable state
(1, 0, 0).

Second, the upper and lower cones of the usual majorization lattice ⟨P3,≺,∧,∨⟩
contain all the green dots. Remark that the lower cone of λ, i.e., the distributions
η ∈ P3 such that λ ≺ η, is situated to the right of λ, while the upper cone of λ, i.e.,
the distributions δ ∈ P3 such that δ ≺ λ, is situated to its left.

Third, the upper and lower cones (resp. at the left and at the right of λ) of
⟨P3, “ ≺w OS”,∧,∨⟩ contain all the red and green dots, which makes explicit why
Conjecture 4.1 is a sufficient (but not necessary) condition for the super-majorization
on the OSC. Indeed, if a distribution is green, we know that super-majorization on
the SC is fulfilled while the converse is not true.

Fourth, the upper and lower cones (resp. at the left and at the right of λ) of
⟨P3, “ ≺w psuper”,∧,∨⟩ contain all the blue, red and green dots, which makes ex-
plicit why Theorem 5.1 is a necessary (but not sufficient) condition for the super-
majorization on the OSC.

Figure 6.4: For a loop on 100,000 random 3-dimensional distributions, in blue, all
distributions comparable with λ = (0.5, 0.3, 0.2) under “ ≺w psuper”, in red, all dis-
tributions comparable with λ under “ ≺w psuper” and “ ≺w OS” and, in green, all
distributions comparable with λ under “ ≺w psuper”, “ ≺w OS” and ≺.
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6.3 Entanglement transformations

In the context of quantum information, and in our case in the study of entanglement
transformations, distributions in the lattice correspond obviously to the vectors of
SC of d-dimensional bipartite pure states. In the following, we will make the abuse
of language that elements of the lattice are bipartite pure states, whereas, rigorously
speaking, the elements of the lattice are the vectors of SC of such states3.

In this section, we present the quantum informational notion of the meet, called
optimal common resource (OCR), first introduced in [11]. Similarly, we propose a
quantum informational notion of the join, which we call optimal common product
(OCP), never introduced before to our knowledge. Building on those concepts, we
propose a theoretical scenario making use of both OCR and OCP of multiple states.

6.3.1 Optimal common resource/product

In this context, the meet of two bipartite pure states |ψ⟩ and |ϕ⟩ is the state |ψ ∧ ϕ⟩
such that both following conditions are fulfilled

• It can be deterministically transformed using LOCC (because of Theorem 3.1)
into any of the two states |ψ⟩ or |ϕ⟩.

• Among all possible states from the first point, its entropy4 is minimal, hence it
has a minimal amount of resource of entanglement.

In other words, the meet is the state with the minimal entanglement resource that
can still nonetheless be transformed into both states using LOCC. As such, it can be
seen as an optimal common resource [11, 23].

Naturally, the notion of join of two bipartite pure states |ψ⟩ and |ϕ⟩ is defined
analogously. The join |ψ ∨ ϕ⟩ is the state such that both following conditions are
fulfilled

• It can be deterministically obtained, from |ψ⟩ or |ϕ⟩, using LOCC (because of
Theorem 3.1).

• Among all possible states from the first point, its entropy4 is maximal, hence it
has a maximal amount of resource of entanglement.

In other words, the join is the state with the maximal entanglement resource that
any of both states can be transformed into using LOCC. As such, it can be seen as
an optimal common product.

Note that both definitions can be understood in the light of Figure 6.1. Indeed,
the amount of entanglement resource is higher for states with more entropy4, e.g., the
maximally-entangled state is the highest one in the lattice, hence the amount of en-
tanglement increases while going up in the lattice. Therefore, LOCC transformations
are only allowed if going down in the lattice.

Finally, the notion of OCR and OCP can be extended to a set of n states, as was
done for distributions in Section 6.1.3.c of this chapter.

3Because there is a one-to-one correspondence, up to unitary operations, between the vector of
SC of a state and the state itself, this abuse of language seems reasonable.

4More precisely, the von Neumann entropy of its reduced density matrix, or equivalently, the
Shannon entropy of its vector of SC.
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6.3.2 Scenario involving multiple states

Let us now consider the following quantum information scenario making use of the
OCR and the OCP.

Assume that Alice and Bob are far apart and wish to perform later on a specific
quantum information protocol involving one of n different bipartite entangled pure
states, i.e., a state of {|ψi⟩}ni=1. However, at this time, we suppose that they don’t
know what state they will need. Furthermore, the only moment they have access
to quantum communication is now, meaning that, when the protocol will begin, no
quantum communication will be allowed for them and they will only be able to apply
operations on their respective subsystems and communicate classically, hence to apply
LOCC transformations.

Facing this problem, Alice and Bob decide to make use of the notions of OCR and
OCP they recently discovered reading this report. To do so, each of them chooses
to enter in communication with a “bank state”. Such bank owns bipartite entangled
pure states and can lend one qubit to each of the two requesting parties and, after
some time, needs to recover each qubit, even if their state has changed. Furthermore,
the loan price, that has to be paid to the bank, depends on the entanglement resource
of the requested state and on the entanglement resource of the returned state, in the
sense that the more entangled a requested state is, the more expensive its loan is and,
conversely, the less entangled a returned state is, the more expensive its loan was. In
order for the bank to be as organized as possible, they need the loaners to tell them,
at the time of the loan, what state they want to loan and what state they will return.

In the case we are considering here, Alice and Bob request to the bank the OCR
of the n different bipartite pure states because they wish to acquire a state that can
be transformed using LOCC into any of those n states while possessing as less as
possible entanglement, so that they minimize their loan price. Conversely, they tell
the bank that they will return the OCP of the m different final5 bipartite pure states
{|ϕi⟩}mi=1 because they are sure that they will be able to transform their state into
this OCP and they want the state they return to be as entangled as possible, in order,
again, to minimize their loan price.

6.4 Probabilistic conversion of entanglement

In this section, we propose an alternative protocol to Vidal’s optimal protocol (see
Section 3.3.2 of Chapter 3) for converting probabilistically a state |ψ⟩ into a state |ϕ⟩
using LOCC. Our protocol involves the OCR between |ψ⟩ and |ϕ⟩ and is shown, in
Theorem 6.2, to be equivalent in terms of probability to Vidal’s protocol.6

6.4.1 Alternative protocol involving the OCR state

Before describing our protocol, we present how Vidal’s protocol to convert |ψ⟩ into |ϕ⟩
can be represented on the majorization lattice (see the green arrows in Figure 6.5).
Let us consider the non-trivial case of |ψ⟩ and |ϕ⟩ with vectors of SC incomparable

5We suppose that they know, in advance, what state they will recover after using one of the n
different states

∣∣ψi
〉
for the protocol, that for each of the n states.

6On a side note, we have found a criterion for the maximum conversion probability of a given
state into any other state. Statement and proof can be found in Appendix C and won’t be used in
the following.

55



under majorization, hence with a conversion probability strictly less than one. |ψ⟩ is
first deterministically converted into |χ1⟩7 using LOCC. Note that the state |χ1⟩ is
situated in the lower cone of |ψ⟩ because we have seen that deterministic conversions
are only allowed to states situated in the lower cone of the initial state8. Moreover,
it is proved in [34] that |χ1⟩ must be in the lower cone of the join state |ψ ∨ ϕ⟩. Now,
from |χ1⟩, Alice (or Bob) can perform a specific two-outcome measurement leading

with probability p
(1)
max (3.19) to |ϕ⟩, completing the protocol.

Figure 6.5: For two incomparable states under majorization |ψ⟩ and |ϕ⟩, lattice rep-
resentation of the conversions involved in Vidal’s protocol (green arrows) and the
conversions involved in the protocol using the OCR |ψ ∧ ϕ⟩ (blue arrows).

The protocol we propose (see the blue arrows in Figure 6.5) involves, as a sub-
routine, Vidal’s protocol but this time between |ψ⟩ and |ψ ∧ ϕ⟩. Indeed, we show

in Theorem 6.2 that the probability p
(2)
max to perform this conversion is equal to the

conversion probability between |ψ⟩ and |ϕ⟩, p(1)max.
Let us now describe our protocol. First, |ψ⟩ is deterministically converted into

|χ2⟩. Note that, this time, |χ2⟩ has the only constraint to be situated in the lower
cone of |ψ⟩ [34] because the join of |ψ⟩ and |ψ ∧ ϕ⟩ is immediately |ψ⟩. Then, Alice (or

Bob) performs a specific two-outcome measurement leading, with probability p
(2)
max, to

state |ψ ∧ ϕ⟩. Finally, to complete the protocol, it suffices to perform a deterministic
conversion from |ψ ∧ ϕ⟩ to |ϕ⟩, which is allowed because |ϕ⟩ is situated in the lower
cone of |ψ ∧ ϕ⟩.

Although the protocol we propose may seem useless compared to Vidal’s protocol,
its usefulness resides in the fact that it is the first protocol, to our knowledge, involving
the OCR between states. It is also quite surprising to be equally probable to reach
an incomparable state (|ϕ⟩ in Figure 6.5) than to reach a state majorizing the initial
state (|ψ ∧ ϕ⟩ in Figure 6.5), i.e., a state situated in the upper cone of the initial
state.

7
∣∣χ1
〉
̸= |ψ⟩ and

∣∣χ1
〉
̸= |ϕ⟩ because of the incomparability assumption.

8Because the Shannon entropy of the vector of SC must decrease during deterministic LOCC
transformations (3.16).
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6.4.2 Equivalence with Vidal’s protocol

Finally, we present the theorem showing that it is equivalent, in terms of probability,
to convert a state |ψ⟩ into a state |ϕ⟩ using Vidal’s protocol or using the protocol we
propose involving the OCR.

Theorem 6.2. Let |ψ⟩ and |ϕ⟩ be two d-dimensional bipartite pure states. Let us call

p
(1)
max the optimal probability (3.19) with which |ψ⟩ can be transformed using LOCC

into |ϕ⟩ and let us call p
(2)
max the optimal probability with which |ψ⟩ can be transformed

using LOCC into |ψ ∧ ϕ⟩. Then, both transformations are equiprobable, i.e.,

p(1)max = p(2)max. (6.7)

Proof. As always, let λ be the vector of SC of |ψ⟩ and η the vector of SC of |ϕ⟩.
By means of (3.19), the expressions of p

(1)
max and p

(2)
max are

p(1)max = min
i∈[1,d]

S↑
i (λ)

S↑
i (η)

and p(2)max = min
i∈[1,d]

S↑
i (λ)

S↑
i (λ ∧ η)

, (6.8)

where λ ∧ η is the vector of SC of |ψ ∧ ϕ⟩, whose components will be written
(a1, a2, ..., ad) with a1 ≥ a2 ≥ ... ≥ ad.

The term S↑
i (λ∧η) of p

(2)
max is the sum of the ith smallest components of λ∧η, i.e.,

S↑
i (λ∧ η) = ad + ad−1 + ...+ ad−i+1. (6.9)

By using Theorem 6.1, the components of the meet λ ∧ η can be expended as

S↑
i (λ∧ η) = min

{
S↓
d(λ), S↓

d(η)

}
−min

{
S↓
d−1(λ), S↓

d−1(η)

}
+ min

{
S↓
d−1(λ), S↓

d−1(η)

}
−min

{
S↓
d−2(λ), S↓

d−2(η)

}
+ ...

+ min

{
S↓
d−i+1(λ), S↓

d−i+1(η)

}
−min

{
S↓
d−i(λ), S↓

d−i(η)

}
, (6.10)

hence, all terms cancel out two by two except the first term and the last term, i.e.,

S↑
i (λ∧ η) = min

{
S↓
d(λ), S↓

d(η)

}
−min

{
S↓
d−i(λ), S↓

d−i(η)

}
. (6.11)

Now, because S↓
d(λ) (resp. S↓

d(η)) is the sum of all components of λ (resp. η), it
is equal to 1 (see Definition 1.5), giving

S↑
i (λ∧ η) = 1−min

{
S↓
d−i(λ), S↓

d−i(η)

}
. (6.12)

This last relation is obviously equivalent to the following relation

S↑
i (λ∧ η) = max

{
S↑
i (λ), S↑

i (η)

}
, (6.13)

where we now make use of increasing cumulative sums.
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Therefore, p
(2)
max (6.8) can be rewritten

p(2)max = min
i∈[1,d]

S↑
i (λ)

max

{
S↑
i (λ), S↑

i (η)

} . (6.14)

To prove now that p
(1)
max = p

(2)
max, we first rewrite both probabilities ((6.8) and (6.14))

as p
(1)
max = min

i∈[1,d]
p
(1)
max,i and p

(2)
max = min

i∈[1,d]
p
(2)
max,i and analyze each of the two possible cases,

either S↑
i (λ) ≥ S↑

i (η) or S↑
i (λ) ≤ S↑

i (η), for each i ∈ [1, d].

• For i ∈ [1, d], if S↑
i (λ) ≥ S↑

i (η) :

p
(1)
max,i =

S↑
i (λ)

S↑
i (η)

≥ 1, (6.15)

hence, it does not have any influence on p
(1)
max because p

(1)
max,d = 1 ≤ p

(1)
max,i.

For p
(2)
max, we have max

{
S↑
i (λ), S↑

i (η)

}
= S↑

i (λ), implying that

p
(2)
max,i =

S↑
i (λ)

S↑
i (λ)

= 1, (6.16)

which, again, does not have any influence on p
(2)
max because p

(2)
max,d = 1 = p

(2)
max,i.

• For i ∈ [1, d], if S↑
i (λ) ≤ S↑

i (η) :

p
(1)
max,i =

S↑
i (λ)

S↑
i (η)

≤ 1. (6.17)

For p
(2)
max, we have max

{
S↑
i (λ), S↑

i (η)

}
= S↑

i (η), implying that

p
(2)
max,i =

S↑
i (λ)

S↑
i (η)

≤ 1, (6.18)

which is the same expression as p
(1)
max,i.

Therefore, by taking the minimum over i for both p
(1)
max,i and p

(2)
max,i, we show that

both probabilities p
(1)
max and p

(2)
max are equal, completing the proof.

Consequently, we have found another optimal probabilistic protocol than the one
Vidal proposed in [6], this time involving the OCR between states.

To sum up, in this chapter we have used the theory of majorization lattice to inter-
pret results obtained in previous chapters and we have proposed a protocol making
use of lattice notions, which we have proved to be equivalent to the seminal optimal
probabilistic protocol of Vidal.
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Conclusion

In this Ms thesis, we have mainly investigated a way of extending Nielsen’s theorem
to mixed states (a problem known to be hard) based on weak majorization and the
operator Schmidt (OS) decomposition, an approach which had never been conducted
until now to our knowledge. Let alone a brief use of mixed states in the end of
Chapter 5, we only focused on pure states because, in order for a general criterion
to be valid for mixed states, it is first necessary to hold for the special case of pure
states. Nevertheless, some interesting results lead us to believe that the study of these
concepts should be pursued further.

First, we conjectured in Chapter 4 a necessary condition for the deterministic
conversion between bipartite pure states using weak-majorization, more specifically
super-majorization, on the OS coefficients of both states. The first part of the chapter
was devoted to the proof for qubits and the partial proof for qudits, as well as the ex-
position of difficulties encountered in the attempt of proving such relation. Then, the
second part of the chapter was dedicated to numerical evidences strongly suggesting
the validity of the above conjecture.

Building on this, we proposed in Chapter 5, in a similar approach to Chapter 4, a
sufficient condition for probabilistic conversion still based on the OS decomposition.
This led us to better identify the position of our super-majorization relation on the OS
coefficients for pure states in regards to conditions on deterministic and probabilistic
conversions already described by Nielsen’s and Vidal’s theorems. At the end of the
chapter, we first used the OS decomposition for mixed states involved in Vidal’s
probabilistic protocol and showed the usefulness of super-majorization in this context.

Finally, in Chapter 6, we introduced the mathematical notion of majorization lat-
tice which generates a graphical representation of distributions according to how they
compare with one another under majorization. Thereafter, we presented in a unified
picture the conjecture proposed in Chapter 4 and the theorem proposed in Chapter 5
by means of a numerical representation of the majorization lattice for qutrits. Then,
the important lattice concepts of meet and join have been connected to entanglement
transformations by interpreting the meet as an optimal common resource (OCR) state
and the join as an optimal common product (OCP) state for such transformations.
This enabled us to propose a theoretical quantum information scenario involving
both states in order to understand one of many possible applications they could have.
Lastly, we presented a specific protocol for bipartite state conversions making use of
the OCR between two states and proved its equivalence with Vidal’s probabilistic
protocol, leading us to believe that the OCR and OCP have deep properties still to
be found in entanglement transformations.

In conclusion, we have seen in this Ms thesis applications of weak majorization and
majorization lattice to entanglement transformations, hinting at us that using the
theory of majorization in entanglement theory remains relevant for future research.
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Appendix A

Proof of Nielsen’s theorem

This proof is based on [14]. First, we recall the statement of Theorem 3.1.

Theorem A.1 (Nielsen). Let |ψ⟩ and |ϕ⟩ be two bipartite pure states, with λ the
vector of Schmidt coefficients of |ψ⟩ and η the vector of Schmidt coefficients of |ϕ⟩.
Then, |ψ⟩ is convertible with certainty into |ϕ⟩ using only LOCC if and only if the
vector of Schmidt coefficients of |ψ⟩ is majorized by that of |ϕ⟩, i.e.

|ψ⟩ LOCC−−−→ |ϕ⟩ ⇐⇒ λ ≺ η. (A.1)

Proof. To begin, assume |ψ⟩ LOCC−−−→ |ϕ⟩. Therefore, |ψ⟩ can be transformed into |ϕ⟩ by
letting first Alice perform a measurement on her system described by the measurement
operators MA

j . Then, by transmitting to Bob the result j she obtained, he can apply
a unitary operation described by operators UB

j to complete the transformation.
Now, from Alice’s point of view, her system was first in state ρ̂Aψ and finally in

state ρ̂Aϕ because of her measurement. Therefore, by making use of the postulate on
the measure (1.46), we write

ρ̂Aϕ =
M̂A

j ρ̂
A
ψM̂

A
j

†

Tr
(
M̂A

m
†M̂A

mρ̂
A
ψ

) , (A.2)

where Tr
(
M̂A

m
†M̂A

mρ̂
A
ψ

)
is simply the probability of the outcome j, which we will

denote as pj. Furthermore, because all the reasoning is made on Alice’s side, we will
omit the superscript A in the following. Thus, we rewrite

ρ̂ϕ =
M̂j ρ̂ψM̂

†
j

pj
. (A.3)

Next, we make use of the polar decomposition of a matrix which allows to write,
for any matrix A,

A =
√
AA†U, (A.4)

where U is some unitary matrix.
Polar decomposing M̂j

√
ρ̂ψ, we get

M̂j

√
ρ̂ψ =

√
M̂j

√
ρ̂ψ
√
ρ̂ψM̂

†
j V̂j, (A.5)

=
√
M̂j ρ̂ψM̂

†
j V̂j, (A.6)

A.3
=
√
pj ρ̂ϕV̂j, (A.7)
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where V̂j is some unitary operator.
Now, by left multiplying the last equation by its adjoint, we get√

ρ̂ψM̂
†
j M̂j

√
ρ̂ψ = pjV̂

†
j ρ̂ϕV̂j. (A.8)

Finally, summing on j and using the completeness relation for measurement operators∑
j M̂

†
j M̂j = Î (1.44),

ρ̂ψ =
∑
j

pjV̂
†
j ρ̂ϕV̂j, (A.9)

which is nothing but λ ≺ η because of the following theorem [14] and Property (1.1).

Theorem A.2 (Uhlmann). A ≺ B if and only if there exists a set of unitary
matrices {Ui} and probabilities pi such that A =

∑
i piUiBU

†
i .

Let us now prove the converse statement. Assume λ ≺ η, hence ρ̂ψ ≺ ρ̂ϕ. Again,
using Theorem A.2, we can say that there exist probabilities pj and unitary operators

Ûj such that ρ̂ψ =
∑

j pjÛ
†
j ρ̂ϕÛj.

Then, we define Alice’s measurement operators M̂j such that

M̂j

√
ρ̂ψ =

√
pj ρ̂ϕÛj. (A.10)

To check that these operators are measurement operators, we verify the completeness
relation (1.44). Let us first left multiply the previous equation by its adjoint, then
sum on j to obtain ∑

j

√
ρ̂ψM̂

†
j M̂j

√
ρ̂ψ =

∑
j

pjÛj ρ̂ϕÛ
†
j = ρ̂ψ, (A.11)

which is obviously true if and only if
∑

j M̂
†
j M̂j = Î.

If now Alice performs a measurement with those operators M̂j, the outcome she
gets is

ρ̂j ∝ M̂j ρ̂ψM̂
†
j
A.10
= pj ρ̂ϕ, (A.12)

implying that ρ̂j = ρ̂ϕ because states are normalized.
Finally, by means of the following lemma [14], we find that Bob can retrieve state

|ϕ⟩ by applying a certain unitary operator V̂j.

Lemma A.1. Let |AR1⟩ =
∑

i

√
pi |iA⟩ |iR1⟩ and |AR2⟩ =

∑
i

√
pi |iA⟩ |iR2⟩ be two

purifications of a state ρ̂A =
∑

i pi |iA⟩ ⟨iA| to a composite system AR. Then, there

exists a unitary transformation ÛR acting on system R such that

|AR1⟩ = (Î ⊗ ÛR) |AR2⟩ . (A.13)

We can show that ÛR =
∑

i |iR1⟩ ⟨iR2| .
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Appendix B

Vidal’s explicit conversion strategy

In this appendix, we detail Vidal’s probabilistic protocol [6].
The strategy of probabilistically transforming |ψ⟩ into |ϕ⟩ via LOCC transforma-

tions can be split into two stages. First, the deterministic conversion of |ψ⟩ to an
intermediary state |χ⟩. Then, the local two-outcome measurement of |χ⟩ leading to
|ϕ⟩ with a certain probability pmax (3.19).

Without loss of generality, let us suppose that |ψ⟩ is a bipartite state (with a vector
of SC λ) living in a (d×d)-dimensional system and that |ϕ⟩ is a bipartite state (with
a vector of SC η) living in a (d′ × d′)-dimensional system with d ≥ d′. Indeed, it
can easily be shown with (3.19) that, if d < d′, then the probability of success of the
conversion is 0.

B.1 Intermediate state

We first describe the construction of the intermediary state |χ⟩. The strategy goes
iteratively as follows.

Let t0 = 0 and construct some values ri (i = 1 in the first iteration),

ri = min
t∈[ti−1+1,d]

S↑
t (λ)

S↑
t (η)

=
S↑
ti(λ)

S↑
ti(η)

. (B.1)

As long ti ̸= d, repeat the above procedure for i← i+ 1. Finally, when ti = d, call
this last i, “k”. Thus, we have obtained a k + 1 series 0 = t0 < t1 < ... < tk = d and
a k series 0 < r1 < ... < rk.

Hence, we can now construct the following vector
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γ =



rk

 λ↑tk
...

λ↑tk−1+1


...

r2

 λ↑t2
...

λ↑t1+1



r1

 λ↑t1
...

λ↑t0+1





. (B.2)

This will be the vector of SC of the intermediary state |χ⟩. One can check that,

by construction, λ ≺ γ, hence |ψ⟩ LOCC−−−−→ |χ⟩ by Theorem 3.1.

B.2 Measurement

Now that Alice and Bob possess the state |χ⟩, one of them will perform a two-outcome
measurement described by operators {M̂, N̂}. We will construct M̂ such that if it is
measured, the state is left in the desired state |ϕ⟩.
M̂ is structured as follows

M̂ =


M̂k

. . .

M̂2

M̂1

 = M̂ †, (B.3)

where

M̂j =

√
r1
rj
Î[tj−tj−1] with 1 ≤ j ≤ k, (B.4)

is an operator proportional to a [tj − tj−1]-dimensional identity operator, hence M̂ is
diagonal.

Then, N̂ is defined as N̂ =
√

1− M̂2 such that the two operators {M̂, N̂} form a
generalized measurement set1.

Finally, one can show that if one party, let’s say Alice, measures M̂ , the final state
is indeed |ϕ⟩ with probability r1, i.e.

M̂ ⊗ Î
√
r1

= |ϕ⟩ . (B.5)

Furthermore, this allows to prove the value of the conversion probability of Theo-
rem 3.3 because r1 = pmax.

1by construction of N̂ , the completeness relation (1.44) is obeyed.
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One last observation that can be made is the fact that if, on the contrary, Alice
measures N̂ , the final state, let us call it |ξ⟩, has a Schmidt rank strictly lower than
|ϕ⟩. Therefore, one cannot hope to find a way to use LOCC to transform |ξ⟩ into |ϕ⟩,
hence the conversion has failed.
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Appendix C

Optimal probability for any
conversion

The following theorem allows one to determine the optimal conversion probability
with which a fixed initial d-dimensional bipartite pure state can be converted any
d-dimensional (or less) bipartite pure state.

Theorem C.1. Let |ψ⟩ be a d-dimensional bipartite pure state, with λ its vector of
Schmidt coefficients (SC). Then, |ψ⟩ is convertible using only LOCC into any other
d-dimensional bipartite pure state |ϕ⟩ (vector of SC η) with maximum probability
pmax = dλd, i.e.

λ ≺w pη, ∀η ⇐⇒ p ≤ pmax = dλd. (C.1)

Proof. In order for |ψ⟩ to be able to be LOCC transformed into any other d-dimensional
state |ϕ⟩, it is necessary and sufficient that it can be transformed into the maximally-
entangled state |α⟩, with vector of SC α = (1

d
, ..., 1

d
). Hence, we show what is the

maximum probability for which the probabilistic conversion of |ψ⟩ into |α⟩ using
LOCC is possible, i.e. what is the maximum value p may take in λ ≺w pα.

The latter super-majorization relation can be developed using (2.16),

S↑
i (λ) ≥ pi

1

d
, ∀i ∈ [1, d], (C.2)

which can be rewritten

p ≤ dS↑
i (λ)

i
, ∀i ∈ [1, d]. (C.3)

Because λd ≤ λd−1 ≤ ... ≤ λ1, we obtain

p ≤ dS↑
1(λ) = dλd =

d

2
(λd + λd) ≤

d

2
(λd + λd−1) =

dS↑
2(λ)

2
, (C.4)

meaning that satisfying (C.3) for i = 1 immediately satisfies (C.3) for i = 2.
This can be generalized to any other value i ∈ [1, d]

p ≤ dS↑
1(λ) = dλd =

d

i
(λd + ...+ λd)︸ ︷︷ ︸

i times

≤ d

i
(λd +λd−1 + ...+λd−i+1) =

dS↑
i (λ)

i
, (C.5)

completing the proof by taking the value pmax = dλd.

68


	Introduction
	I Theoretical Background
	Basics of quantum mechanics
	States in quantum mechanics
	Pure states
	Mixed states

	Composite systems
	Bipartite pure states
	Bipartite mixed state
	Reduced density operator
	Schmidt decomposition
	Operator Schmidt decomposition

	Measurements
	Projective measurements
	POVM measurements


	Theory of majorization
	Strong majorization relations
	Definition with inequalities
	Definition with matrices
	Majorization order preserving functions

	Weak majorization relations
	Definition with inequalities
	Definition with matrices


	Entanglement transformations
	Local Operations and Classical Communication
	Deterministic convertibility using LOCC
	Nielsen's theorem
	Nielsen's protocol
	Resource theory of entanglement
	Catalytic convertibility using LOCC

	Probabilistic convertibility using LOCC
	Vidal's theorem
	Vidal's protocol



	II Results
	Weak majorization and deterministic convertibility
	Condition based on the OS decomposition
	Proof for qubits
	Difficulties encountered for qudits (d > 2)
	Partial proof for qudits

	Numerical evidences

	Weak majorization and probabilistic convertibility
	Condition based on the OS decomposition
	Diagrammatic representation
	Application of super-majorization to mixed states
	Case of qubits
	Case of qudits


	Majorization lattice in quantum entanglement theory
	Theory of majorization lattice
	Definition
	Abstract representation
	Determination of the meet and the join

	Weak majorization and 3-dimensional majorization lattice
	Entanglement transformations
	Optimal common resource/product
	Scenario involving multiple states

	Probabilistic conversion of entanglement
	Alternative protocol involving the OCR state
	Equivalence with Vidal's protocol


	Conclusion
	Proof of Nielsen's theorem
	Vidal's explicit conversion strategy
	Intermediate state
	Measurement

	Optimal probability for any conversion


