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Abstract

In this Thesis, I will apply to an illustrative toy model a framework which is a group theoretic
generalisation that derives reversible transformations between quantum reference frames that
hold for general groups. We start by examining the three fundamental characteristics of a
quantum reference frame according to this framework. First, a particle that obeys quantum
laws can not serve as a quantum reference frame to measure both position and momentum.
Second, quantum observers who do not have access to an external reference frame, have
access to invariant quantities under a given transformation which live on a so-called invariant
subspace. And finally, there exists an “extra-particle” that is part of this invariant subspace
and which is necessary to make the quantum reference frame transformations reversible. The
main objectives are the following: first, we will investigate the situation when the quantum
reference frame is part of the interaction (hence non-inertial). This is the first time this study
is being done within this framework. Second, we will study the covariance of the dynamics in
this scenario. Finally, we will study the role of this extra particle in the relative Hamiltonian
description of the system for the translation, boost, and Galilei groups. In particular, we will
study the role of the extra-particle in the relative description of both an inertial and a non-
inertial quantum reference frame. To do so, we will start from the perspective of an external
massive observer and we will apply appropriate quantum reference frame transformations
to get to one frame or another. We will then compare the results between the different
groups considered, and we will link our approach with the classical Hamiltonian mechanics
one. We will see that this extra-particle can be interpreted as being fundamentally linked
to properties of the centre of mass of the system. This link may lead, in future research,
to Quantum Gravity implications. Finally, we will also discuss the nature of the concept of
quantum reference frame.



Abstract

Dans cette thèse, j’appliquerai à un modèle simple un cadre théorique qui est une généralisation,
sur base de la théorie des groupes, des transformations réversibles entre des systèmes de
référence quantiques. Ce cadre théorique s’applique à des groupes généraux. Nous com-
mencerons par examiner les trois caractéristiques fondamentales d’un système de référence
quantique selon ce cadre. Premièrement, une particule qui obéit aux lois quantiques ne peut
pas servir de système de référence quantique pour mesurer simultanément la position et la
quantité de mouvement. Deuxièmement, les observateurs quantiques qui n’ont pas accès
à un système de référence externe ont accès à des quantités qui sont invariantes pour une
transformation donnée. Ces quantités vivent dans ce que l’on appelle un sous-espace invari-
ant. Enfin, il existe une “particule supplémentaire” qui fait partie de ce sous-espace invariant
et qui est nécessaire pour rendre les transformations entre systèmes de référence quantiques
réversibles. Les principaux objectifs sont les suivants : premièrement, nous étudierons la
situation où le système de référence quantique fait partie de l’interaction (donc lorsqu’il est
un système de référence non inertiel). C’est la première fois que cette étude est réalisée
pour ce cadre théorique. Ensuite, nous étudierons la covariance de la dynamique du système
dans ce scénario. Enfin, nous étudierons le rôle de cette particule supplémentaire dans la
description hamiltonienne relative du système pour les groupes de translation, d’impulsion
et de Galilée. En particulier, nous étudierons le rôle de la particule supplémentaire dans
la description relative d’un système de référence quantique inertiel et non inertiel. Pour ce
faire, nous partirons du point de vue d’un observateur massif externe et nous appliquerons
les transformations appropriées pour se positionner sur un système de référence quantique
ou un autre. Nous comparerons ensuite les résultats entre les différents groupes considérés et
nous ferons un lien entre notre approche et celle de la Mécanique Hamiltonienne classique.
Nous verrons que cette particule supplémentaire peut être interprétée comme étant fonda-
mentalement liée aux propriétés du centre de masse du système. Ce lien pourrait conduire,
dans de futures recherches, à des implications en Gravité Quantique. Enfin, nous discuterons
également de la nature du concept de système de référence quantique.
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Chapter 1

Introduction

The 20th century was an era of great theoretical physics development where both of the most
solid scientific theories have been formalised: General Relativity in 1916 [1] and quantum
mechanics for there are still many fundamental questions to be understood. The former
studies the universe and how matter interacts at a large scale whereas the latter focuses on
subatomic scales of matter and how quantum systems interact with each other. Both theo-
ries have made predictions that have been verified over and over and have shown resilience
over the ages against refutation attempts.

Moreover scientific research in physics has always been driven by the willingness of unifying
concepts to put them in a coherent broader conceptual frame whether it was James Clark
Maxwell’s unification of light, magnetism, and electricity during the 19th century with the
electromagnetism spectrum [2] and one single formalism (the Electromagnetism theory) or
Albert Einstein’s unification of space and time in 1905 with the Special Relativity theory [3].
Now because General Relativity and Quantum Mechanics seem to be the best candidate to
describe reality, numerous attempts to “unify” them (i.e. how to include quantum mechani-
cal effects into gravity on all distances and especially under the Planck length [4]) have been
proposed such as Quantum Gravity [5], String theory [4] and many other more.

Reference frame is a central notion in physics and appears almost everywhere. Even in
quantum mechanics, the use of it is quite implicit but is necessary if we want for instance to
make sense of the position of a wave function. However, in some cases, the typical notion of
reference frame as we understand it seems to be not sufficient to describe what we observe
experimentally.

For that let’s give an example which should motivate the study of such types of more general
reference frames. The example relates to an issue regarding the spin in Special Relativity,
and it will show that a reference frame with quantum properties may be required to make
sense of the situation. The spin S of a particle in Special Relativity is defined as the total
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angular momentum J in the rest frame of the particle. Indeed, by definition, J = L + S
where L is the orbital part, and in the frame where the particle is at rest, L = 0 and by
performing the Stern-Gerlach experiment, we could indeed observe and make sense of the
spin and treat the latter as a qubit, which could be useful if one would work on Quantum
Information Theory. However, a problem arises if this particle is in a state such that its
momentum is not properly defined i.e. if it is in a superposition of states where for exam-
ple the particle is propagating along two different directions. How would we then choose a
reference frame in which the particle is at rest? If in that case, a reference frame was in a
superposition of momenta, then we could jump into that frame for which the particle would
be at rest and for which we could properly define the spin [6] [7].

Now, however, we can underline the fact that in quantum mechanics, some issues seem to
appear whenever we start considering an observer at the quantum level. Indeed, let’s imag-
ine two classical observers Alice and Bob. Alice wants to measure Bob’s characteristics, she
can and may measure all kinds of quantities like Bob’s position, momentum, etc. because
she has her own position and momentum relative to Bob.

Moreover, if we suppose that Alice and Bob are quantum particles and if Alice wants to mea-
sure Bob, we will see that several problems will occur. First of all, Alice is the observer and
is considered to be quantum, hence she obeys quantum laws and according to the Heisenberg
uncertainty principle, a particle can not have both a well-defined position and a well-defined
momentum at the same time [8]. So if a measurement is relative, and her characteristics
are not well defined, proper measurement can not be done. Hence to remove this problem
regarding this quantum observer, it is implicitly suggested in quantum mechanics that the
observer or the measurement apparatus is sufficiently heavy [9] such that it can be treated as
a classical object for which this uncertainty regarding its position and momentum is small [8].

A second issue called the “paradox of the measuring device” related to this highly massive
observer (which is well explained in [9]) stipulates that because of the Heisenberg principle
again, it has been known that if a measurement is done on a system from an observer with a
certain mass, an uncertain and unpredictable interaction occurs between the object and the
observer which acts on the observer and makes its position and momentum unknown again
(even though it may have been known initially).

These fundamental issues regarding the observation of a quantum system from a quantum
observer motivate the study of quantum reference frames.

In addition to this fundamental interest, the study of quantum reference frames has actually
a wide range of potential applications in various domains [10]. Some are related to Thermo-
dynamics [11], quantum interferometry [12] or quantum communication [13], while others
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are more Computer Science related (and in particular in Quantum Information Process-
ing [14]) where quantum reference frames are used for quantum computations and quantum
algorithms [15] or even cryptography [16].

There is a way that has been adopted by [17] which solves the issues raised by [8] [9]
but at the same time raises fundamental questions regarding the foundations of quantum
mechanics. This approach consists in considering that one reference frame can not be used
to measure both position and momentum since there seems to be some evidence that those
are fundamentally independent variables. This approach will be used in Section 4 and it will
in particular be discussed in Section 6. Moreover, this Thesis will explore the consequences
of the model introduced by [17] by analyzing the relative Hamiltonian dynamics of a simple
system with non-accelerating and accelerating particles.
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Chapter 2

Basic theoretical background

In this section, we will briefly introduce some fundamental concepts in quantum mechanics
and Group theory (relevant to this work) to help the reader get better insights into this
work. This reminder does not aim and has no purpose in being exhaustive.

2.1 Quantum Mechanics

From the first postulate we know that “at each instant the state of a physical system is
represented by a ket |ψ⟩ in the space of states” [18] i.e. a complex Hilbert space H on which
is defined inner product. The latter associates a complex number to two states |ψ⟩, |ϕ⟩ ∈
H [19] as such : ⟨ϕ|ψ⟩ =

∫
ϕ∗(x)ψ(x)dx where ϕ∗(x) is the complex conjugate of ϕ(x).

From this first postulate, we can also introduce the superposition principle which states that
if |ψ1⟩, |ψ2⟩ ∈ H then λ1|ψ1⟩ + λ2|ψ2⟩ ∈ H [19].

The second postulate states that “every observable attribute of a physical system is described
by an operator that acts on the kets that describe the system” [18]. An operator acting on
a state |ψ⟩ is conventionally defined as: Â : |ψ⟩ → |ψ⟩′ = Â|ψ⟩.
We also know that “acting with an operator on a state in general changes the state” [18].

For every operator Â, there are states |ψ⟩ for which the action of Â is such that Â|ψ⟩ = a|ψ⟩.
These states are called the eigenstates and the a are the corresponding eigenvalues of the
operator Â [18].

The operators for which eigenvalues are real are hermitian. The eigenstates of hermitian
operators are orthogonal (the inner product of two states gives the Kronecker or Dirac delta
whether it is a discrete or continuous basis) and because they span the associated Hilbert
space in which they are defined they form a basis [18]. An arbitrary state |ψ⟩ can be ex-
pressed in the |x⟩ basis as |ψ⟩ =

∫
dxψ(x)|x⟩.
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As we already said, the states of one given system A are defined on a Hilbert space HA.
Consider now a second system B, the associated states corresponding to the latter are de-
fined on a second Hilbert space HB. The associated Hilbert space HAB of the combined
system is defined as: HAB = HA ⊗ HB (where ⊗ is called a tensor product) such that for
states |ψA⟩ ∈ HA and |ψB⟩ ∈ HB the combined state |ψAB⟩(∈ HAB) can be written as
|ψAB⟩ = |ψA⟩ ⊗ |ψB⟩ or even simpler as |ψAB⟩ = |ψA⟩|ψB⟩ [19].

One of quantum mechanics postulates also defines how a state |ψ⟩ evolves in time according
to Schrödinger’s equation which can be written as such: i h̄ d

dt |ψ⟩ = Ĥ|ψ⟩ with Ĥ being a
hermitian operator (and a Hamiltonian). This operator is the total energy observable. The
solution to this equation gives the evolution of the state as: |ψ(t)⟩ = e−i Ĥt

h̄ |ψ(0)⟩ [20] where
e−i Ĥt

h̄ is the time evolution operator which can be seen as a translation in time [21] (we will
come back to transformations as such). And for an isolated system i.e. a time-independent
Hamiltonian, we can write this in the eigenbasis of Ĥ as: Ĥ|ψn⟩ = En|ψn⟩ with En being
the associated eigenvalues of Ĥ and which correspond to the possible energies the system
can take [19].

For some cases, the state |ψ⟩ does not provide a complete description of the system. That
is why a more general object called the density operator was introduced. It is defined as
ρ̂ : |ψ⟩ → |ψ⟩⟨ψ| and it follows an evolution according to the following Schrödinger’s equa-
tion (also called the quantum Liouville equation) i h̄ d

dt ρ̂ = [Ĥ, ρ̂] [22]. This density operator
as defined above corresponds to a pure state. However, it is possible to have a probabilistic
mixture of pure states |ψk⟩ each associated with a probability pk (0 ≤ pk ≤ 1, ∑

k pk = 1).
This notion of mixture is called a mixed state and is also captured by the density operator
as such ρ̂ = ∑

k pk |ψk⟩⟨ψk|︸ ︷︷ ︸
=ρ̂k

[22].

Group theory (which we will develop in the next section) also plays an important role in
quantum mechanics. It is in fact impossible to fully formulate quantum mechanics with
references to symmetry. In physics, we are interested in how the groups act on physical
systems [23]. Group theory led to major symmetry tools that helped the development (and
are still widely used today) of the latter such as parity, energy, and momentum conservation.
We can define a symmetry group as such [21]: “Finite or infinite set of symmetry operations
with an associative composition law, involving a neutral element (identity operation I) and
an inverse S−1 for each operation S (SS−1 = S−1S = I).” Moreover, a symmetry group is
a “Commutative or abelian group ⇐⇒ it satisfies the commutative law.” We can think of
discrete (parity or permutation groups) or continuous groups (such as translation, boost, or
fixed axis rotations) [21].

Furthermore, to any symmetry operation, S corresponds an operator S defined as S : |ψ⟩ →
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|ψS⟩ = S|ψ⟩. This operator has several properties such as the following: it is generally sup-
posed unitary i.e. scalar product preserving. This can be written as S†S = SS† = 1 ⇐⇒
⟨ϕS |ψS⟩ = ⟨ϕ|S†S|ψ⟩ = ⟨ϕ|ψ⟩ ∀|ϕ⟩, |ψ⟩ ∈ H [21].

Up to now we have been talking about what we call Schrödinger’s perspective where “The
state vector changes with time, but the operator remains constant with time” which is to
be distinguished from the Heisenberg’s perspective where “The operator changes with time,
while the state vector remains constant with time” [20]. These perspectives are represented
(in a more general way) in the following Figure 2.1 where the unitary transformation S
may correspond to the time evolution operator. In the rest of this work, we will choose (as
shown in the following Figure 2.1) the convention of an operator transformation by S as
AS = S†AS, A being the operator.

Figure 2.1: Schrödinger vs Heisenberg’s picture [21]

2.2 Group theory

Group theory is a broad, technical and abstract field of mathematics. Hence, to improve the
readability of this Section, we will display and list in an explicit and formal way the relevant
definitions, lemma and theorem. These concepts will provide us the basis on which we will
explain in Section 3.2 the framework developed in [17].

Compared to what we have done in the reminder of quantum mechanics, let us now define
more formally the group as follows [23]:
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Definition 1. A group is a set G equipped with a binary operation (i.e. a direct mapping)
called the group multiplication ◦ : G×G → G, such that the following holds

1. Closure: if a & b ∈ G, then so is a ◦ b ∈ G,

2. Associative: (a ◦ b) ◦ c = a ◦ (b ◦ c), ∀a, b, c ∈ G,

3. Identity element: ∃ an element e such that: a ◦ e = a, ∀a ∈ G,

4. Inverses: ∀a ∈ G : ∃ an element a−1 ∈ G known as the inverse of a such that
a ◦ a−1 ∈ G.

Now that we have defined what a group G is, another important concept we should define
is the notion of Abelian group. Indeed [23]:

Definition 2. If all the elements of G commute, then G is Abelian.

We will also need the definition of subgroups [23]:

Definition 3. Suppose G is a group and H ⊂ G such that H forms a group under the same
multiplication of G. Then H is a subgroup (which verifies the four properties of a group and
in particular it has the same identity element).

Now, to make sure we are dealing with non-trivial things, we will define the notion of proper
subgroups. Indeed [23]:

Definition 4. Both {e} & G are trivially subgroups. Such groups are known to be improper
subgroups. If H ⊂ G but H ̸= {e} and H ̸= G, then we say H is a proper subgroup.

Let us now introduce the concept of group homomorphisms and isomorphisms which will be
needed for the quantum reference frame transformation. We have [23]:

Definition 5. A group homomorphism f between two groups G1 and G2 is a map f: G1 → G2

which preserves the group structure i.e. such that ∀a, b ∈ G1: f(a · b) = f(a) · f(b). If it is
a one-to-one map, this mapping becomes an isomorphism.

Let us also redefine more formally what we have called previously a symmetry group. Sup-
pose we have a set of n objects (in n places). Hence, this set can have n! configurations. We
define the symmetry group Sn as follows [24]:

Definition 6. A symmetry group Sn is the group of all permutations of n objects.
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Let us introduce the concept of conjugate elements relevant for future definitions as follows:

Definition 7. Two elements a & b of a group G are conjugate to each other if there exists
some element g (not necessarily unique) such that a = g · b · g−1. g is called the conjugating
element.

Is is also useful to define the direct product of groups [25]:

Definition 8. A group G is said to be the direct product of two subgroups A & B i.e. A⊗B

if:

1. All elements of A commute with all elements of B

2. Every element of G can be written in a unique way as g = a · b with a ∈ A, b ∈ B.

Moreover, it will be useful to also define the direct sum of groups [26]:

Definition 9. Suppose that V is a vector space with two subspaces U and W such that for
every v ∈ V ,

1. There exists vectors u ∈ U ,w ∈ W such that: v = u+w

2. If v = u1 + w1 and v = u2 + w2 where u1,u2 ∈ U ,w1,w2 ∈ W then u1 = u2 and
w1 = w2.

Then V is the direct sum of U and W and we write V = U
⊕
W .

Now, in quantum mechanics we are interested in how states evolve under some symmetry
transformations. These states are actually vectors, and according to Representation theory,
these symmetry transformations are represented by linear operators or finite-dimensional
matrices [25]. The set of operators associated with a symmetry group is called the represen-
tation of the group [21]. More formally, a representation is defined as follows [27]:

Definition 10. If GL(n,C) is the group of n × n matrices with complex entries and non-
zero determinant, then a representation of the group G is defined as the homomorphism D:
G → GL(n,C) such that the group structure is preserved i.e. if g1, g2 ∈ G: D(g1g2) =
D(g1)D(g2).

Furthermore, let us introduce the concept of reducibility of representations [27]:
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Definition 11. A representation D (of a group G) of dimension n+m is said to be reducible

if D(g) takes the form: D(g) =
A(g) C(g)

0 B(g)

 ∀g ∈ G, where A, B and C are n × n, n ×

m & m × m matrices respectively. If a representation is not reducible, then we say that the
representation is an irreducible representation.

Moreover, how can we go further without mentioning the famous Schur’s lemma [27]:

Lemma 1. If D is an irreducible representation of a group G and B is a matrix such that
[B, D(g)] = 0 ∀g ∈ G, then B = λ1 i.e. B is proportional to the identity matrix.

We say a representation is irreducible if there is no subspace of that representation which is
also invariant under all symmetry operations of the group [21]. For example, an irreducible
representation of dimension 1 corresponds to a single state which will always be sent onto
itself under all symmetry operations of a given group [21].

Just before we introduce a fundamental group theory theorem for mathematical physics, let
us just briefly introduce some relevant properties: an operator is unitary if its inverse is
equal to its adjoint [19]. Moreover, we can define an anti-linear operator as follows [28]:

Definition 12. An operator θ acting on a complex-linear space is called “antilinear” if for
any two vectors ϕ1,ϕ2 and complex numbers c1, c2 we have:

θ(c1ϕ1 + c2ϕ2) = c∗1θ(ϕ1) + c∗2θ(ϕ2). (2.1)

Now because we consider quantum mechanics, let us state one of the fundamental Theorem
that links it with Group theory, which has been demonstrated by Wigner [27]:

Theorem 1. The group of symmetries of a quantum system is represented by linear, unitary
or anti-unitary (unitary+anti-linear) operators acting on a Hilbert space.

Finally, to finish our (brief!) introduction on group theory relevant to our work, let us now
introduce Lie groups, Lie Algebras and associated useful notions such as the left/right reg-
ular representations [29]:

Definition 13. A Lie group G is a group which is also a manifold. There are continuous
parameters labelling the group elements and these parameters are coordinates on some curved
space. In addition to the group structure G×G → G, a Lie group inherits all the additional
structure of a manifold such as continuity and differentiability.

11



Before we continue, let us also define an algebra (more precisely an algebra over a field) which
is according to [30] “a vector space with a bilinear multiplication” which is “not necessarily
associative.”

Let us now establish the link between the Lie group and the Lie Algebras [29]:

Definition 14. An element of a Lie group is also a point on the same manifold. We can
parametrise these elements by the coordinates αi, i = 1, ...,n, on the manifold: g = g(α⃗),
where α⃗ is an n-tuple.

We can choose the coordinates/a parametrisation such that g(α⃗)|α⃗=0⃗= e and such that the
corresponding irreducible representation is Dn(g(α⃗))|α⃗=0⃗= 1n. We can also show that the
form of a finite element of the Lie group is eiαiXi for small δαi around e and where the Xi

are the generators for α⃗ = 0⃗ [29].

We could also show [29] that for a general group element eiθiXi the form of the algebra
satisfied by {Xi} is [Xi,Xj ] = ifk

ijXk (i.e. the commutator of two generators must be pro-
portional to another generator) where fk

ij is called the structure constant. Hence, the Lie
algebra captures the non-commutative nature of the Lie group multiplication in the neigh-
bourhood of e [29].

To conclude this part, we can say that on a Lie group G, there is a natural notion of vector
field [29].

Definition 15. We can define the left action (or left regular representation) as follows:

f : G → G : g → fh(g) = hg, (2.2)

and the right action (or right regular representation) as follows

f ′ : G → G : g → f ′
h(g) = gh−1 (2.3)
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Chapter 3

State-of-the-art

The field of study of quantum reference frames is a relatively recent subject in the study
of quantum mechanics. This state-of-the-art will provide us with a better overview of the
current problems with which the scientific community is confronted. Indeed, this field of
research has already been treated in a lot of articles, we can mention [31] which underlines
the need for taking into account internal degrees of freedom, [32] which proposes a symmetry-
based approach by studying a translational-invariant toy model of three free particles. Some
other previous works have also treated the case of non-inertial quantum reference frames
[33] [34] [35]. Also, a broad amount of work already exists on quantum reference frames
transformations such as for translations [36] [37] [38] [39], boosts [36] [38] [39] and for the
Galilei group [38] [40] [41]. Here, however, we will make a particular focus on two recent
works [17] [42].

3.1 Current limitations in literature

In this section we will focus on a fundamental distinction between previous approaches such
as [17] and [42]. One of the former’s limitation is that this model seems to be restricted only
to a vanishing total momentum. In particular, to be able to derive reversible transformations
between two QRFs, previous approaches required that their description contained the whole
universe. This non-locality of the description (that what we observe locally should depend
on all objects of the universe) is what motivated the approach taken by [17].

Let’s describe the problem we might encounter using this internal approach of [42]. Let’s
consider 2 particles A and B. Initially let us say we’re in A perspective and A measures B
(which is in a superposition of 2 states B and B’ with position x1 and x2 respectively). This
situation is represented in Figure 3.1 and mathematically this state can be written as the
following linear combination:

(3.1)|x⟩B|A = (α|x1⟩B + β|x2⟩B)|0⟩A.
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x
x1 x20

A B B’

Figure 3.1: Particle B in a superposition of two states observed from a localised particle A

If we now go to B’s perspective, by applying a translation towards each of those tight packets
B and B’ as they would do in [42] (naturally this is possible since A particle is localised),
we observe an A which is now in a superposition of states. This new state can be written as
the following superposition:

(3.2)|x⟩A|B = (α′|−x1⟩A + β′|−x2⟩A)|0⟩B.

The problem occurs when we have a new particle C (cf paradox of the third particle [43] [37]).
Indeed, let us say that A and C are localised and are separated with a distance x3.

x
x1 x20 x3

A B CB’

Figure 3.2: Particle B in a superposition of two states and a localised particle C observed
from a localised particle A

Again, let us say we observe the situation from A’s perspective, we have the following:

(3.3)|x⟩BC|A = |0⟩A(α|x1⟩B + β|x2⟩B)|x3⟩C .

But now if we jump according to [42] to B’s perspective, we get

(3.4)|x⟩AC|B = |0⟩B(α′|−x1⟩A|−x1 + x3⟩C + β′|−x2⟩A|−x2 + x3⟩C).

When we go from a description of a pure state to one which is in a mixed state, we get
descriptions of pure states which are now entangled i.e. if we trace out C (by taking the
partial trace over C of the quantum state of this bipartite system AC we actually discard
C), we see that A is mixed [22] i.e. A and B are not related by a reversible transformation
(i.e there is a loss of information going from one RF to the other [44]).
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Which is in contradiction with the computation when you don’t have C. The argument used
in [42] is that we should have considered C initially. However, if we extrapolate this reason-
ing, we must argue that this frame holds only if we had initially considered all other particles
in the rest of the universe.

The framework obtained in [42] using only internal reference frames switching is actually
derivable from [17] when the total momentum of the system vanishes (cf. Subsection 3.3.2)
and this would correspond to a system (= all objects in the universe) that is infinitely spread
according to Heisenberg’s principle [19].

The model derived in [17] starts from an external perspective E looking at a given system
composed of observers A and B and a particle S. From there, we can jump to A’s perspec-
tive internally to the system and then the internal transformations are self-sufficient as the
model introduces the concept of this extra particle to keep track of additional information
such that the transformations between all reference frames are reversible. We could see [42]
as a framework in which this extra particle is 0. It is worth underlying again that the model
developed in [17] does not depend and is not based on this initial external frame since what is
observed in the system could be true for any external observer. The internal transformations
thus become sufficient.

In addition because of this internal treatment at some point in [42] they consider 3 free
particles A, B, and C and assume that from C’s perspective, the Hamiltonian is given by
ĤAB|C = ĤA + ĤB. However, this result is only true if the reference frame C is infinitely
heavy because there is no trace of this C’s mass. But then they switch RF and the mass of
C suddenly appears because they consider finite mass particles. So using their assumption
of the relative Hamiltonian ĤAB|C = ĤA + ĤB they actually get to a contradiction.

Hence this Thesis is a direct and original application of [17] to a simple system considered
for the translation, boost, and Galilei groups which correspond to translations in space, mo-
mentum, and combination of the two respectively. This system will allow us to study the
situation when: the quantum reference frame is interacting with a part of the system, when
the quantum reference frame is a composed system of both inertial and non-inertial for the
Galilei group (we will have both an x̂-frame and p̂-frame).

In Section 3.2 we will expose and explain the important concepts of the framework in which
our analysis will be made. All following explanations come from [17] from which we will
recover the same notations and [6].
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3.2 The Quantum reference frame transformation model

First of all, let us already say that [17] is a group theoretic generalisation that derives re-
versible transformations between quantum reference frames that hold for general groups [17]
[6].

Let us now define a group G with its corresponding group elements g. We can define a
regular representation as the following, it is a representation of the group where elements of
the group are labelled by kets. And in that context, we define a reference frame as a system
characterised by a Hilbert space that carries the regular representation of a group. So for
example, a position operator x̂ which lives on the Hilbert space of the reference frame can be
seen as a parameter of the translation group symmetry i.e. it labels group elements because
each group element g can be obtained by a translation. In particular, the regular representa-
tion of a group is such that all group elements g, h ∈ G are orthogonal i.e. ⟨g|h⟩ = δ(g−1h).
In other words, if we take a state |x⟩ and we translate it by α those states are orthogonal
to one another i.e. ⟨x|x+ α⟩ = 0 i.e. we say that they break the symmetry maximally
which means that they are perfectly distinguishable. When a quantum reference frame can
be prepared in a basis of states which break the symmetry maximally of the group, we say
that this quantum reference frame is perfect [17] [6].

Furthermore let us consider the context with which this model was developed, for that we
will consider 2 observers and 1 system: A (Alice), B (Bob), and S (the system). We say
that A and B carry a regular representation of the group G and S carries some unitary
representation US of G. If A serves as a quantum reference frame, then its Hilbert space
HA is the span of a fully distinguishable basis of states that are labelled by group ele-
ments |g⟩A Let us also define what we call the left regular representation which acts as
LA(g)|h⟩A = |gh⟩A and right regular representation which acts as RA(g)|h⟩A = |gh−1⟩A.
We say that HA carries both regular representations. The same holds for B of course [17] [6].

Let us also assume an external observer E (Eve) which observes the full Hilbert space
i.e. her description of the composite system lies in the following Hilbert space HABS|E =
HA|E ⊗ HB|E ⊗ HS|E where we introduce the notation |E which corresponds to the per-
spective of Eve. HA|E for example is the Hilbert space of A relative to E. We also state
that Eve sees what Alice sees. However, the main assumption is that Alice and Bob do not
have access to what Eve sees (they can not access this reference frame). We say that Alice
and Bob only have access to (i.e. they can only measure) invariant observables under the
group. For example, Alice and Bob both have access to momenta measurement under the
translation group since |p⟩ is invariant under translations [17] [6].

There comes the link between [42] and [17]. In the former we have a rather internal descrip-
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tion, whereas in the latter we start from Eve which has a quantum mechanical description
of A, B, and S. However according to [17] both approaches agree when projecting into the
invariant subspace of pure states |ψ⟩ which is defined as U(g)|ψ⟩ = |ψ⟩ ∀g ∈ G where U
is the global action of G on the total Hilbert space (i.e. HABS|E here). It is the subspace
where we apply a global transformation to the global system composed of A, B, and S. In
the case of [42] they actually restrict to the trivial subspace where the global state has a
total momentum = 0 as we will see in 3.3.2 [17] [6].

As it is reminded in Section 2.1, we know that the density operator ρ̂ is a more general
concept than |ψ⟩, hence it can be easily seen than the approach taken by [17] is a less re-
strictive one than [42] since in the former, observers that do not have access to the external
observer Eve have access to the invariant density operators which are invariant under the
action group G i.e. the ρ̂ such that U †(g)ρU(g) = ρ (according to the convention chosen in
2.1). In particular, this allows for [17] framework to not even have to precise the value of the
total momentum in the case of the translation group. In fact, the latter is (in more general
group theory terms) what they call in [17] the “total charge” and is a GLOBAL invariant
quantity 1. As we will see the transformations which have been derived in [17] are indeed
consistent with [42] for the restricted case where we consider a vanishing total momentum
(i.e a zero charge sector) as in Section 3.3.

For the sake of completeness, we can also mention the use of the G-twirl operation on an
operator T that lives on HA|E ⊗ HB|E ⊗ HS|E . Indeed for such operators T, as we already
said, A and B only have access to their invariant part hence, to remove all the redundant
part i.e. the part which is not invariant, we apply on T the G-twirl defined as such:

(3.5)G[T ] :=
∫
dgV †(g) T V (g),

where V (g) = LA(g)⊗LB(g)⊗US(g) with respectively the left regular representation of A
and B and the representation of S [17] [6].

Now that we have introduced some of the key concepts of [17] let us now associate rather
algebraic concepts to what we have seen. For that, we can simplify our initial configuration
and consider only one observer A, and a system S, both being observed by an external
observer E. If Alice measures an observable T (whether it is the position, momentum, or
anything else) of the system S, she applies to the system the operator TS|A. These operators
form an algebra We said earlier that Eve observes Alice and the system but also sees what
Alice sees, hence we can express in the perspective of Eve this operator TS|A which is:

(3.6)T(S|A)|E =
∫
dg|g⟩⟨g|A ⊗ U †

S(g)TS|AUS(g).

1Global invariant quantities under the group are accessible from other external observers E, E’, etc. This
is to be distinguished with local invariant quantities of S accessible by A and B. This is just to show that
the principle is consistent no matter the system for which we consider the invariant subspace.
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These operators can be written more easily as the following (by dropping the |E but also
the |A for the operator in the integral, however, TS does not lose its initial meaning)

(3.7)TS|A =
∫
dg|g⟩⟨g|A ⊗ U †

S(g)TSUS(g).

These operators TS|A (previously T(S|A)|E) form an algebra called S|A [17] [6].

Let us now state an important concept which is illustrated in Figure 3.4 and which we will
show right now: A quantum reference frame corresponds to a certain tensor factorisation
of the invariant subspace and a quantum reference frame transformation corresponds to a
change of the factorisation. To show this, let us come back to the Hilbert space of Alice and
the system S relative to Eve and let us drop the |E (as we did with 3.6) we have: HAS =
HA ⊗HS . As we said previously, HA carries both right and left regular representation hence
we can rewrite the Hilbert space relative to E as:

(3.8)HAS = [
⊕

q
H(q)

AL
⊗ H(q)

AR
] ⊗ HS .

In the above expression, we have a direct sum over q which labels a specific irreducible rep-
resentation and is called the charge. Then we have those H(q)

AL
and H(q)

AR
which correspond to

the Hilbert space carrying the left and right regular representation of the group respectively.
The former is analog to the centre of mass (and is called colour) whereas the latter is analog
to the relative coordinates between the things that compose the regular representation (and
is called the flavour). H(q)

AR
does not transform under the action of the group on the system

(Alice+S) indeed for example: if E translates the full system composed of A and S, the
center of mass will move but not the relative coordinates i.e. the group acts only on H(q)

AL

and HS . In other words, the subsystem on which the group acts are composed of operators
of the form ⊕

q T
(q)
AL

⊗1
(q)
AR

⊗TS . And because these transform under the group, they are the
redundant part of the full Hilbert space i.e. there are not part of the GLOBAL INVARIANT
subspace. However, operators of the form ⊕

q 1
(q)
AL

⊗ T
(q)
AR

⊗ 1S (which describe the relative
degrees of freedom) are invariant under the action of the group on the global system. Hence,
3.7 (which is a relative observable) is invariant under a global transformation i.e. using 3.5
with V (g) = LA(g) ⊗ US(g) we have: G[TS|A] = TS|A. Moreover, we can say that H(q)

AL
is

the commutant of H(q)
AR

(intuitively, if we have H(q)
AR

, then H(q)
AL

is the “rest” of HA). And
as H(q)

AR
is the invariant part, we call its commutant the gauge subsystem [17] [6].

Now we want to define an operator/a reference frame transformation that will change the
factorisation of the Hilbert space. Indeed, 3.8 is a factorisation that is natural to Eve but
one may ask: what does a tensor product factorisation natural to Eve would look like if
we wanted to write things with respect to Alice? For her, it is natural that what she calls
the system S relative to her occupies a given tensor factor in the full Hilbert space 2. Thus

2Note that this tensor factor HS|A overlaps the invariant subspace but the latter is actually bigger than
the former [17]
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we can define an operator (analog to 3.7) which allows us to perform this change of tensor
product factorisation of the Hilbert space seen from E i.e. a rearrangement of this Hilbert
space to make it natural to A [17] [6]:

(3.9)U †
S(ĝA) =

∫
dg|g⟩⟨g|A ⊗ U †

S(gA).

To make things more concrete, we can give the example of the Translation Group (which we
will further study in Section 4.2.1) where if we were to translate from Eve to Alice we would
simply replace all the g by x 3. So if I take an operator which is ∈ HAS (tensor factorisation
natural to E) as defined in 3.8 and I apply the following isomorphic transformation :

(3.10)VE →A : TAS|E → V †
E→ATAS|EVE→A,

where VE→A = FE→A ◦U †
S(ĝA) and FE→A|g⟩A|E |α⟩S|E = |g⟩C |α⟩S|A we obtain an operator

which is now natural to A’s perspective. In particular, we could now write 3.8 as:

HAS
∼= HC,S|A := HC ⊗ HS|A. (3.11)

To make things clear: 3.9 makes the transformation and FE→A relabels the indices.

Now because U †
S(ĝA) is a unitary operator on HAS , HS|A carries a unitary representation

US|A of G [17] and HC (where C is what we call the commutant of algebra S|A) carries the
left and right regular representation of G [17] we can rewrite 3.11 as

(3.12)HC,S|A = [
⊕

q
H(q)

CL
⊗ H(q)

CR
] ⊗ HS|A.

What is interesting here is that we know there are redundancies in the operators that live
on HC,S|A. Indeed [17] shows that we can map the gauge subsystem to HCL

. Hence we
conclude that CR and S|A form together the complete invariant algebra. The invariant
operators (the only ones measurable by Alice) can be written as [17] [6]:

(3.13)Tinv =
⊕

q
1
(q)
CL

⊗ T
(q)
CR,S|A.

Because CR is the complement of S|A in the full invariant subspace of HC,S|A (which we
define as Binv(HC,S|A)), we define CR as S|A such that [17] [6]

(3.14)Binv(HC,S|A) = S|A⊗ S|A.

This algebra S|A is called the extra-particle [17] [6]. This algebra contains information
that is necessary for the unitarity of the quantum reference frame transformations between
quantum observers observing a quantum system.

3An important comment to make is that 3.9 has to be seen as a controlled transformation from E to
A. In other words, we make the transformation of group parameter ĝA (it is controlled in this sense) but
we have not yet jumped in that quantum reference frame. This will be taken care of by the isomorphic
relabelling FE→A which will be defined just after 3.10.
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Going back to the previous configuration with an additional observer Bob, we can derive an
analogous procedure to get to the same conclusions for him. And using back the transfor-
mation we have used to go from E to A 3.10, we can actually define a Quantum Reference
Transformation that allows us to go from A to B as the following:

(3.15)SA →B = VE→A ◦ V†
E→B,

where V†
E→B where is defined in the same way as 3.10.

Figure 3.3 shows an intuitive picture of what we have been discussing in this Section. As
we see, we have an external observer, Eve, our two observers Alice and Bob, and a system
S. The transformation that allows us to go from Eve to Alice is 3.10 (corresponding to
the grey arrow). If we would like to change from Alice to Bob’s perspective, we apply the
transformation 3.15 (the big arrow) which is a composition of a transformation going from
Alice to Eve and from Eve to Bob’s perspective.

Figure 3.3: The situation in practice

On Figure 3.4 [17] is represented how this change of quantum reference frame perspectives
corresponds to a tensor factorisation change. In particular, the green lattices correspond to
Bob’s perspective, whereas the orange ones correspond to Alice’s. As we see, the algebras
S|A and S|B partially overlap, as well as BS|A and AS|B do too. However, those are not
equal to one another i.e. they are not unitarily related. This is why we need the extra
particle for each quantum reference frame. Indeed, for example, SB|A needs to be there
to complete the full invariant subsystem with S and B relative to A. Hence, it will provide
us the remaining information to make the quantum reference transformations unitary. This
Figure 3.4 shows a configuration for two observers, but it can be extended for an arbitrary
number of quantum reference frames.
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Figure 3.4: Hilbert space seen from the perspective of A and B with the extra particles
required to get a unitary relation from A to B’s factorisation [17]

Sections 3.4.1 and 3.4.2 will allow us to identify some important points from [42] on which
this Thesis will not rely and on which it will actually disagree. Sections 3.3 and 3.3.2 will
allow us to compare articles [17], [42], and [45]. In particular, Sections 3.3 and 3.3.2 will
show how the transformations derived in [17] are consistent with the transformations of two
other previous works provided we restrict [17]’s framework in the zero charge sector (i.e. a
vanishing total momentum in the case of the Translation group).

We will now recover results from [42], [45], and [17]. This will allow us to show how [42]
and [45] are particular cases of [17].

3.3 Link between different works

3.3.1 Transformations from one observer to another using three
distinct approaches

1. First, let us see how [45] has achieved the change of reference frame in [42].

Consider 3 particles A, B, and C and the corresponding state of the joint system on R

relative to A is [45]:

|ψ⟩ABC = |0⟩ ⊗
∫
dx

∫
dy ψ(x, y)|x⟩B ⊗

∫
dy |y⟩C . (3.16)

If the reference system is not explicitly included in the state of the joint system: then the
state equivalent to |ψ⟩ABC is:
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|ψ⟩BC =
∫
dx

∫
dy ψ(x, y)|x⟩B ⊗

∫
dy |y⟩C . (3.17)

To go from A’s point of view to B’s we apply the transformation:

ŜA→B = P̂ABe
i
h̄ xB p̂C . (3.18)

Thus, we have

|ψ⟩AC = ŜA→B|ψ⟩BC =
∫
dx

∫
dy ψ(x, y)|−x⟩A ⊗ |y − x⟩C . (3.19)

2. We will now consider a change of reference frame in [45].

To go from A’s point of view to B’s, we apply the operator [45]

UA→B = SWAPA,B ◦
∫
dxdy|−x⟩⟨x|B ⊗ 1A ⊗ |y − x⟩⟨y|C (3.20)

to the ket |ψ⟩ABC (here the reference system A is explicitly included in the joint system
state) i.e.

UA→B|ψ⟩ABC = SWAPA,B ◦ (|0⟩A

∫
dx′dy′dxdyψ(x, y)

〈
−x′|x′

〉
|x⟩|y′ − x′⟩

〈
y′|y

〉
)

= |0⟩B

∫
dx

∫
dyψ(x, y)|−x⟩A ⊗ |y − x⟩C

=⇒ |ψ⟩AC =
∫
dx

∫
dy ψ(x, y)|−x⟩A ⊗ |y − x⟩C . (3.21)

Hence we see that transformation 3.20 is equivalent to 3.18.

3. Now we will show how [17] makes a change of reference frame for states in the zero charge
sector.

Consider 2 quantum reference frames A and B and a system S. The total Hilbert space
decomposes into a sum of charge sectors cf. Subsection 3.2. Consider |ψ⟩ in the zero charge
sector such that

LA(g) ⊗LB(g) ⊗US(g)|ψ⟩ = |ψ⟩ ∀g ∈ G, (3.22)

with the left-regular representation LA, acting as defined in Subsection 3.2.

The quantum state |ψ⟩ can be obtained as such:

=⇒ |ψ⟩ =
∫
dgLA(g) ⊗LB(g) ⊗US(g)|ϕ⟩, (3.23)

where |ϕ⟩ is an arbitrary state defined as
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|ϕ⟩ =
∫
dgAdgB|gA⟩A ⊗ |gB⟩B ⊗ |ϕ(gA, gB)⟩S . (3.24)

In the tensor factorisation natural to A, this state can be written as:

FE→AU
†
BS(ĝA)|ψ⟩ = |Ω⟩C ⊗

∫
dg L†

B|A(g) ⊗U †
S|A(g)|ϕ(g)⟩B|A,S|A, (3.25)

where C is the commutant of BS|A, |Ω⟩ =
∫
dg|g⟩, |ϕ(g)⟩B|A,S|A =

∫
dg′|g′⟩B|A ⊗ |ϕ(g, g′)⟩S|A

and
∫
dg L†

B|A(g) ⊗ U †
S|A(g)|ϕ(g)⟩B|A,S|A is the state of B and S relative to A. Now to go

from A to B’s perspective we apply

SA→B = U †
AS(ĝB)UBS(ĝA) (3.26)

to the joint system state seen from A i.e. U †
BS(ĝA)|ψ⟩ i.e.

(3.27)SA →BU
†
BS(ĝA)|ψ⟩ = U †

AS(ĝB)|ψ⟩

=
∫
dgdg′LA|B(g)

† ⊗1D ⊗U †
B|S(g)|g

′⟩A|B ⊗ |Ω⟩D ⊗ |ϕ(g′, g)⟩S|B

where D is the commutant of AS|B. Now we will show that applying SA→B to U †
BS(ĝA)|ψ⟩

is equivalent to the transformation done in [45] with UA→B. Indeed [17] has defined the
operator

D̂ = SWAPAB ◦ 1C ⊗
∫
dh|h−1⟩⟨h|B|A ⊗U †

S|A(h), (3.28)

which is the operator found in [45] up to an arbitrary exchange of the roles between the left
and the right regular representations and where SWAPAB is the operator that swaps A and
B’s Hilbert spaces. Furthermore, it has been shown that:

SA→BU
†
BS(ĝA)|ψ⟩ = D̂U †

BS(ĝA)|ψ⟩, (3.29)

hence SA→B and D̂ coincide in the zero charge subspace. So SA→B = U †
AS(ĝB)UBS(ĝA)

applied to states in the zero charge subspace is equivalent to D̂ in [45] which is itself equivalent
to ŜA→B in [42].

3.3.2 Vanishing total momentum and the zero charge sector

In [42] they have an internal treatment, they allow a jump from a quantum reference frame to
another without using an external observer. Moreover, they treat separately 1D translations
and Galilean boosts which correspond to specific quantum reference frame transformations.
Indeed they use a single particle model i.e. a single particle of finite mass m can be a perfect
reference frame for the translation group or for Galilean boosts but not for both simultane-
ously.

Whereas in [17], they consider that in a fixed mass sector m there is a system of 2 particles
for which one could be used as a perfect quantum reference frame for position and the other
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for momentum. In the limit of mass sector m → ∞, a single particle can be used as a
perfect QRF for both position and velocity as we will see for the external reference frame in
Subsection 4.2.1 (cf. Section 6 for additional discussions on this topic).

Hence if we introduce in the latter model an external reference frame for momentum which
is aligned with the momentum of centre-of-mass we get:

p̂CM |ψ⟩ = 0. (3.30)

In this equation, the constraint state |ψ⟩ can be interpreted as a state whose centre-of-mass
momentum vanishes when seen from the external observer. So there are N+1 particles,
the N+1th particle is used for the momentum reference frame and the 1st is the position
reference frame. So if the extra particle is ignored (as in [42]) and the total momentum of
the N particles is assumed to be 0 with respect to the particle N+1, then we get the special
case corresponding to article [42].

3.4 Small digression regarding covariance

This Section is about a small discussion regarding a result obtained in [42] where they
suppose that the transformation that allows to go from one perspective to another is time
dependent.

3.4.1 Schrödinger’s equation in the case of a change in reference
frames: Consequence for the Hamiltonian

Consider 3 particles A, B and C and let us consider the QRF unitary transformation that
allows us to move from C’s perspective to A’s [42]:

ŜC→A : HA|C ⊗ HB|C → HB|A ⊗ HC|A. (3.31)

We also know the Schrödinger’s equation for the density matrix [22] in C’s perspective is the
following:

i h̄
dρ̂AB|C
dt

= [ĤAB|C , ρ̂AB|C ]. (3.32)

When applying the transformation

ρ̂BC|A = Ŝ†
C→Aρ̂AB|C ŜC→A, (3.33)

we obtain the following Schrödinger equation relative to the quantum reference frame A:

i h̄
dρ̂BC|A
dt

= [ĤBC|A, ρ̂BC|A], (3.34)
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where the new Hamiltonian is expressed as an expected term and an inhomogeneous term
[42]:

ĤBC|A = ŜC→AĤAB|C Ŝ
†
C→A + i h̄

dŜC→A

dt
Ŝ†

C→A. (3.35)

This is a result which has been considered in [42] for which the proof is given in Appendix 8.1.
However, in the context of the model introduced in Subsection 3.2, we will use a quantum
reference frame transformation that does not depend on time.

3.4.2 Explanation for why operator Ŝ is generally time dependant

According to [42], if we consider a system with two moving potential observers A and B and
a system S, then the transformation that allows us to go from one observer to another is time
dependent because the distance between the two observers evolves in time. The following
reasoning comes from [42] and tries to justify the time dependency of S in (3.35), however
as mentioned at the end of the previous section and as we will show at the end, this thesis
will use a different approach. Let us define a symmetry transformation as a map that leaves
the functional form of the Hamiltonian H invariant i.e. H of A and B is the same function
of operators as H of C and B i.e.

Ĥ({mi, q̂i, π̂i}i=B,C) = i h̄
dŜ

dt
Ŝ† + ŜĤ({mi, x̂i, p̂i}i=A,B)Ŝ

†, (3.36)

where the position and parity operators and the mass of A are replaced by the ones of C. If
3.20 is satisfied, then Ŝ allows to define a map between dynamical conserved quantities in
RF C to the ones in RF A such that they keep the same form.

To go from one RF to the other (when they are considered abstract (as defined in [45])) we
apply the transformation

Ûi =
∏
n
e

i
h̄ fn(t)Ôn

B , (3.37)

where fn(t) is a function which links the first RF to the second. It depends on the dis-
placement X(t) between the two and its time derivatives. The number n is the number of
observables and the operator Ôn

B acting on states from HB. A general transformation cannot
always be decomposed into the product of a function of A and an operator of B and thus
we have the product ∏

n and we can replace the functions fn(t) into operators f̂ (n)A (t). This
transformation is defined in A’s operators i.e. we’re considering Heisenberg’s point of view
where transformations are applied to observables. As such, we establish a clear distinction
between the approach of [42] and [17].

However we want to apply the transformation Ŝ to states of A and B at time t to obtain
states B and C at time t. So we want an expression which corresponds to Schrödinger’s
point of view where transformations are applied to states. Hence, we have:
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Ŝ = e− i
h̄ ĤCtP̂ (i)

AC

∏
n
e

i
h̄ f̂

(n)
A (t)Ôn

Be
i
h̄ ĤAt, (3.38)

which corresponds to in order of application (from right to left):

1. the mapping of A’s state to Heisenberg picture by evolving towards the past with ĤA,

2. the application of a classical transformation’s generalisation using operators f̂ (n)A (t),

3. the application of the “generalised parity operator” P̂ (i)
AC to switch equations of motion

of A and C,

4. the mapping of C’s state back to Schrödinger’s picture by evolving towards the future
via ĤC ,

To summarize according to [42] displacement X(t) between 2 reference frames which evolve
differently will vary over time and as the transformation that leads from one to another
depends on this displacement, it also depends on time. However, even though, the framework
developed in [42] seems coherent regarding this time dependency of the quantum reference
frame Transformation, the framework developed in [17] as shown in Subsection 3.2 does not
seem to make this time dependency explicit. Rather this time dependency seems to “appear”
in the equation of motions as we express velocity and acceleration in Section 4. We have
not found a reason for why precisely there is no time dependency in [17]. But we suspect it
may simply be linked to the fact that in [17] they are using Schrödinger’s perspective rather
than Heinsenberg’s.

3.5 Covered topics

The purpose of this work is to study the Hamiltonian dynamics of a system under change of
different quantum reference frames and interpret the resulting consequences. In particular,
the main objective is to understand: how to apply pragmatically Oreshkov’s model [17] to
a simple system for Translation, Boost, and Galilei groups transformations using this new
formalism to switch reference frames, to see the differences in results between an inertial and
a non-inertial reference frame and to seek for a link between the fictitious force obtained in
the non-inertial reference frame and the extra particle. The latter point is of fundamental
interest since it would provide for example some hints of quantum gravitation implications.
More generally, the purpose of this Thesis is to gain a deeper understanding of this extra-
particle’s role in practice for the different groups.

26



Chapter 4

Non-inertial quantum reference
frames and the covariance under three
different groups

This Section corresponds to the core of this work where we will apply on a concrete system
(cf. Figure 4.1) the model developed in [17] and which was explained in Subsection 3.2. The
chosen system is relevant for the study of quantum reference frames because it involves the
use of a free particle but also accelerating ones. Hence, it will allow us to write equations
of motion relative to both an inertial and non-inertial quantum reference frames. This
Section will be structured as follows, first, we will have a brief introduction to fundamental
principles in physics that lead to great discoveries, we will then study our system of interest
under the framework of [17] for Translation, Boost, and Galilei groups. We will leave our
interpretations of the results for Section 5.

4.1 Reminder of some important concepts

What is covariance and invariance and why do those matter?

In theoretical physics, covariance corresponds to the invariance of the form of physics laws
under arbitrary coordinate transformations [46].

Invariance however, designates the fact that a quantity (or an observable in quantum me-
chanics) remains the same under a certain operation. In particular, in quantum mechanics,
we say that an operator A is invariant for a given symmetry operation S (with its corre-
sponding operator S) ⇐⇒ [A,S] = 0 ⇐⇒ S†AS = A. This property is particularly
important because it can lead to conservation laws [21].

Now because this Thesis attempts to describe a system that is composed of both non-
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accelerating and accelerating objects which will be used as reference frames, it is therefore
relevant to remind ourselves of another important concept.

What is an inertial and a non-inertial reference frame?

An inertial reference frame is simply a frame which is not accelerating and where according
to Newton: “The Laws of Physics are the same in all inertial frames of reference”. Whereas,
a non-inertial one is accelerating. When someone places themselves in an accelerating frame,
all observed bodies will appear to experience a “fictitious acceleration” of equal magnitude
to the observer’s but with opposite direction.

4.2 A toy model with interacting quantum reference
frames

Consider a quantum system consisting of three particles A (Alice), B (Bob), and C (Char-
lie). Both of the denominations shall be used in this Thesis without losing meaning. We
know Charlie is inertial whereas Alice and Bob are accelerating each other because of the
spring linking them. The whole configuration is observed by an external inertial observer E
as shown in Figure 4.1.

x
0

xA
xB

xC

E A B C

k

Figure 4.1: The system composed of a mass C and a two mass-spring seen from an external
observer E

We will now describe this system using [17]. The interest of this system is to study the
behaviour of the configuration from perspectives of both inertial and non-inertial quantum
reference frames. Indeed, in the latter, we should expect that a fictitious force appears in the
equations as we have in classical mechanics. Hence, we shall proceed to a study of relative
Hamiltonians such that we satisfy the principle of covariance. One of the expectations of
this study is to understand the link between this fictitious force and the extra-particle.

It is important to note that we will be considering quantum reference frames associated to
Groups as mentioned in Subsection 3.2. In particular, we will consider quantum reference
frames for Translation, Boost, and the Galilei groups. As such, we will consider the following:
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one particle can serve as a quantum reference frame only for position or momentum. It can
not measure both at the same time. This is a consequence of the fact that the Hilbert space of
one quantum reference frame carries the regular representation of one group. Furthermore, if
one quantum observer measures both the position and momentum, the commutation relation
[x̂, p̂] = i h̄ would not be satisfied. This is a fundamentally interesting topic that has been
discussed in [17] and which will be further elaborated in Section 6.

4.2.1 Quantum reference frames for translations

As we said, we will start our study with quantum reference frames translations. From E’s
perspective, the Hamiltonian of the quantum system can be written as such:

ĤABC|E =
p̂2

A|E
2mA

+
p̂2

B|E
2mB

+
p̂2

C|E
2mC

+
1
2k(x̂B|E − x̂A|E)

2, (4.1)

where we have introduced subscripts to the relational observables for mass i: i|E refers to the
measurement of the observable relative to Eve. For the latter, we may simplify the notation
to i as we did in Section 3.2, hence (4.1) becomes

ĤABC = p̂2
A

2mA
+

p̂2
B

2mB
+

p̂2
C

2mC
+

1
2k(x̂B − x̂A)

2. (4.2)

Indeed, as Eve is an external observer cf Figure 3.3 (for example: a laboratory Frame), we
may actually suppose that it is infinitely heavy. This statement allows us to see Eve as
a classical observer observing quantum systems. As a classical observer, Eve can measure
every observables of the system (whether it is x̂, p̂ or others) she wants and from her perspec-
tive the commutation relation [x̂, p̂] = i h̄ is satisfied. Hence in this case the Hamiltonian of
ABC is written as (4.2).

However, in the case where we apply a translation (in position space) towards C, then the
frame of C would only be used as a quantum reference frame for position (from which Charlie
would only be able to measure positions). We may call this an x̂-frame. And in parallel Eve
would then be measuring momenta. In that case, the Hamiltonian of A and B relative to C
would be written with an (x̂) as an upper index as such: Ĥ(x̂)

AB|C . If however we had applied a
boost (so a translation in momentum space), we would have ended up in a quantum reference
frame for momentum (from which we would only be able to measure momenta). We may
call this a p̂-frame. And in parallel Eve would then be measuring positions. In that case,
the Hamiltonian of A and B relative to C would be written with a (p̂) as an upper index as
such: Ĥ(p̂)

AB|C .

To ease the reading of this work, this subsection will be structured as follows, we will first
compute the Hamiltonian of Alice and Bob relative to Charlie (as a position quantum refer-

29



ence frame) and then we will be able to compute Alice and Bob’s associated relative velocity
and acceleration. After that, we will jump from Charlie to Alice’s quantum reference frame
(for position), from which we will get the Hamiltonian of Bob and Charlie relative to her.
From there, we may be able to compute Bob and Charlie’s associated relative velocity and
acceleration.

Relative to Charlie

Let us now switch to Charlie’s position reference frame. This transformation is done in two
steps (as described in Subsection 3.2): first, the translation, then, the relabelling. When
we speak of a translation, it has to be seen as a “controlled translation” relative to Eve
of parameter xC . Whereas the relabelling is really about jumping into the perspective of
Charlie. Hence we will first apply the transformation Û †

AB(x̂C) so by definition (3.9) we
have:

Û †
AB(x̂C)ĤABCÛAB(x̂C) = eix̂C p̂SĤABCe

−ix̂C p̂S (4.3)

where p̂S is the momentum of the system we’ll be looking at from the perspective of C i.e.
p̂S = p̂A + p̂B.
To evaluate the above transformation, we need to use the following identity for operators
(demonstrated in Appendix 8.2):

eiÂf(B̂)e−iÂ = f(B̂ + i[Â, B̂]). (4.4)

Hence, we can write 4.3 as:

(4.5)
eix̂C p̂SĤABCe

−ix̂C p̂S = 1
2mA

(p̂A + i[x̂C p̂S , p̂A])
2 +

1
2mB

(p̂B + i[x̂C p̂S , p̂B ])
2

+
1

2mC
(p̂C + i[x̂C p̂S , p̂C ])

2 +
1
2k(x̂B − x̂A + i[x̂C p̂S , x̂B − x̂A])

2.

Furthermore, by applying the following property for commutators [19] :

[ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ], (4.6)

and since positions and momenta which live on different Hilbert spaces commute, (4.5)
becomes:

eix̂C p̂SĤABCe
−ix̂C p̂S = 1

2mA
(p̂A + i [x̂C p̂S , p̂A]︸ ︷︷ ︸

=0

)2 +
1

2mB
(p̂B + i [x̂C p̂S , p̂B ]︸ ︷︷ ︸

=0

)2

+
1

2mC
(p̂C + i[x̂C p̂S , p̂C ])

2 +
1
2k(x̂B − x̂A + i [x̂C p̂S , x̂B − x̂A]︸ ︷︷ ︸

=0

)2

= 1
2mA

p̂2
A +

1
2mB

p̂2
B +

1
2mC

(p̂C − p̂S)
2 +

1
2k(x̂B − x̂A)

2.

(4.7)
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The transformation is not yet complete and without the relabelling defined in Subsection
3.2, it would make no sense because we would have a new tensor factorisation of the full
Hilbert space but we would have kept the old labels, and this is not correct. Thus, the
next step in the quantum reference frame transformation is to make the direct mapping
FE→C |g⟩C ⊗ |α⟩B → |g⟩D ⊗ |α⟩B|C . This allows us to have this new tensor factorisation of
the full Hilbert space that includes a Hilbert subspace on which operators that make sense
from Charlie’s perspective live. By doing so we make the observable corresponding to the
extra particle appear such that (4.7) becomes:

Ĥ
(x̂)
AB|C = 1

2mA
p̂2

A|C +
1

2mB
p̂2

B|C +
1

2mC
(p̂D − p̂A|C − p̂B|C)

2 +
1
2k(x̂B|C − x̂A|C)

2, (4.8)

where the momenta are measured from Eve and the positions from Charlie. This is tricky
because we say that momenta are measured relative to Eve (because we have applied a trans-
lation hence we are in an x̂-frame), but we write the momenta in (4.8) with the subscript |C
as if they were measured relative to C. Actually, this ambiguous notation, in the Quantum
Reference Transformation procedure, is necessary to get the correct equations of motion (or
at least the same as in classical mechanics). Indeed, as such, when we compute velocity or
acceleration, it is as if x̂A|C and p̂A|C , for example, lived on the same Hilbert space and we
could apply the commutation relation [x̂A|C , p̂A|C ] = i (if we consider the convention h̄ = 1).
This may be trivial, as it may be interesting to further dig into this peculiarity in future
research. We also see the extra particle p̂D appearing however we will discuss and interpret
the results in Section 5.

From ĤAB|C , we can then obtain the velocity and the acceleration of Alice and Bob relative
to Charlie. Indeed we have these formulas (which are demonstrated in Appendix 8.4) for
which h̄ = 1:

˙̂x(t) = 1
i
[x̂(t), Ĥ(x̂)], (4.9)

and
¨̂x(t) = 1

i
[ ˙̂x(t), Ĥ(x̂)]. (4.10)

Let us start by considering these quantities for Alice and to simplify notations let’s define
˙̂x(t) := ˙̂x. We have:

˙̂xA|C = 1
i
[x̂A|C , ĤAB|C ] = 1

2imA
[x̂A|C , p̂2

A|C ] +
1

2imC
[x̂A|C , −2p̂Dp̂A|C + p̂2

A|C + 2p̂A|C p̂B|C ],

(4.11)

which gives us the velocity:

(4.12)˙̂xA|C = 1
mA

p̂A|C +
1
mC

(p̂A|C + p̂B|C − p̂D).
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Furthermore, we obtain the acceleration:

(4.13)
¨̂xA|C = 1

i
[ ˙̂xA|C , ĤAB|C ]

= 1
i
[
p̂A|C
mA

+
p̂A|C + p̂B|C − p̂D

mC
, k2 (x̂B|C − x̂A|C)

2].

In the last expression, we only kept the terms of the Hamiltonian that depend on position
since all momenta commute with each other. From there, we deduce that:

(4.14)¨̂xA|C = k

2{2( 1
mA

+
1
mC

)(x̂B|C − x̂A|C) − 1
mC

2(x̂B|C − x̂A|C)},

where the 1
mC

terms simplify. Hence, we obtain:

¨̂xA|C = 1
i
[ ˙̂xA|C , ĤAB|C ] = k

mA
(−x̂A|C + x̂B|C). (4.15)

Moreover, it is easy to see that the velocity and the acceleration of Bob are symmetric with
respect to the ones of Alice.

Relative to Alice

We can now switch to Alice’s quantum reference frame (for position). When we went from
Eve to Charlie we applied the transformation Û †

AB(x̂C)ĤABCÛAB(x̂C) as in (4.3). If we
now want to go to Alice, we must apply the opposite transformation to (4.3) to do C → E

i.e. ÛAB(x̂C)ĤAB|CÛ
†
AB(x̂C), composed with another one which allows us to do E → A

which is the transformation Û †
BC(x̂A)ĤABCÛBC(x̂A). Hence let us now switch from Charlie

to Alice’s perspective as such:

Û †
BC(x̂A)ĤABCÛBC(x̂A) = eix̂Ap̂SĤABCe

−ix̂′
Ap̂S

= 1
2mA

(p̂A + i[x̂Ap̂S , p̂A])
2 +

1
2mB

(p̂B + i[x̂Ap̂S , p̂B ])
2

+
1

2mC
(p̂C + i[x̂Ap̂S , p̂C ])

2 +
1
2k(x̂B − x̂A + i[x̂Ap̂S , x̂B − x̂A])

2

= 1
2mA

(p̂A − p̂B − p̂C)
2 +

1
2mB

p̂2
B +

1
2mC

p̂2
C +

1
2kx̂

2
B

(4.16)

since p̂S = p̂B + p̂C .
After applying the direct mapping, we can write the Hamiltonian of Bob and Charlie relative
to Alice as:

Ĥ
(x̂)
BC|A = 1

2mA
(p̂D − p̂B|A − p̂C|A)

2 +
1

2mB
p̂2

B|A +
1

2mC
p̂2

C|A +
1
2kx̂

2
B|A. (4.17)

We can now compute Bob’s and Charlie’s velocities and accelerations relative to Alice as we
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did for the case relative to Charlie. Hence the velocity of Bob relative to Alice gives us:

˙̂xB|A = 1
i
[x̂B|A, ĤBC|A] = 1

mB
p̂B|A +

1
mC

(p̂B|A + p̂C|A − p̂D), (4.18)

and for the acceleration we get:

¨̂xB|A = 1
i
[ ˙̂xB|A, ĤBC|A] = − k

mA
x̂B|A − k

mB
x̂B|A = −kx̂B|A(

1
mA

+
1
mB

) (4.19)

Now, following the same reasoning as previously we obtain for Charlie’s velocity and accel-
eration the following:

˙̂xC|A = 1
i
[x̂C|A, ĤBC|A] = 1

mA
(p̂B|A + p̂C|A − p̂D) +

1
mC

p̂C|A, (4.20)

and

¨̂xC|A = 1
i
[ ˙̂xC|A, ĤBC|A] = − k

mA
x̂B|A. (4.21)

4.2.2 Quantum reference frames for boosts

After having considered the quantum reference frames for translations, we will now study
quantum reference frames for boosts. Our approach will remain the same, except that now,
the group elements will be labelled by momenta and will be related to one another by boosts.
Let us start back from Equation (4.2) which is reminded here:

ĤABC = p̂2
A

2mA
+

p̂2
B

2mB
+

p̂2
C

2mC
+

1
2k(x̂B − x̂A)

2. (4.22)

Now, according to [17] [42] [48] [49] we know that a general transformation for the Galilean
Group is

U(a, v) = e−i(ap̂+vk̂). (4.23)

Indeed we can distinguish two separate parts in (4.23), one corresponding to a translation:
e−iap̂ and the other to a boost e−ivk̂ but as we only consider a boost transformation, we will
remove the translation part hence, (4.23) becomes:

U(v) = e−ivk̂, (4.24)

where k̂ = p̂t−mx̂. The operator k̂ characterises the observed system. Furthermore, the
framework developed in [17] uses Schrödinger’s picture i.e. the operator does not have a
time dependency. Hence, as this Thesis applies this framework, we can simplify the operator
4.24 by stating that t=0 such that:
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U(v) = eivmx̂, (4.25)

where mx̂ can be seen as the position of the center of mass times the mass of the observed
system (for example: if we are in Charlie’s perspective mx̂ = mABx̂AB=mAx̂A +mBx̂B).

Let us make a small reminder of Section 4.2 and Subsection 4.2.1: now that we will use
boosts as quantum reference frame transformations i.e. a translation in momentum space,
we will end up in a quantum reference frame for momentum from which we will only be able
to measure momenta. This is what we call a p̂-frame. And in parallel, Eve will be mea-
suring positions. We will also do as for the translation case, where we will first jump into
Charlie’s perspective from which we will deduce the relative Hamiltonian and the correspond-
ing equations of motion. We will then do the same but from an inertial perspective i.e. Alice.

Relative to Charlie

Now, if we want to apply a boost to get to Charlie’s quantum reference frame, we will follow
the same reasoning as we did for translations (cf Subsection 4.2.1). In particular we will
apply an analogous transformation as (4.3), and according to the identity (3.9) our general
boost transformation becomes:

(4.26)

Û †
AB(v̂C)Ĥ

(p̂)
ABCÛAB(v̂C) = e−iv̂CmAB x̂AB ĤABC eiv̂CmAB x̂AB

= 1
2mA

(p̂A + i[−v̂CmABx̂AB, p̂A])
2

+
1

2mB
(p̂B + i[−v̂CmABx̂AB, p̂B ])

2

+
1

2mC
(p̂C + i [−v̂CmABx̂AB, p̂C ]︸ ︷︷ ︸

=0

)2

+
1
2k(x̂B − x̂A + i [−v̂CmABx̂AB, x̂B − x̂A]︸ ︷︷ ︸

=0

)2,

with
mABx̂AB = mAx̂A +mBx̂B (4.27)

and where we have used the same argument as in Subsection 4.2.1 regarding the commuta-
tors that vanish.

From 4.26 we can deduce :

(4.28)
Ĥ

(p̂)
AB|C = 1

2mA
(p̂A +mAv̂C)

2

+
1

2mB
(p̂B +mB v̂C)

2 +
p̂2

C

2mC
+

1
2k(x̂B − x̂A)

2.
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However, the transformation is not finished as it weren’t for (4.7). Indeed we have only
applied the controlled boost of parameter v̂C yet. There are still two things to be done:
first, we will make sense of this v̂C which has appeared in our Hamiltonian, then we will
apply the direct mapping we had seen in Subsection 4.2.1 to finish the quantum reference
frame boost.

Let us now use the definition of the velocity (cf. 4.9) for Charlie relative to the classical
and external observer Eve. The Hamiltonian ĤC for a free moving particle C is given by
ĤC = p̂2

C
2mC

. Hence, we can say that

(4.29)
v̂C = 1

i
[x̂C , ĤC ]

= p̂C

mC
.

We can thus rewrite the Hamiltonian (4.28) as:

(4.30)
Ĥ

(p̂)
AB|C = 1

2mA
(p̂A +

mA

mC
p̂C)

2

+
1

2mB
(p̂B +

mB

mC
p̂C)

2 +
p̂2

C

2mC
+

1
2k(x̂B − x̂A)

2.

And if now use the direct mapping defined in Subsection 4.2.1, we get:

(4.31)
Ĥ

(p̂)
AB|C = 1

2mA
(p̂A|C +

mA

mC
p̂D)2

+
1

2mB
(p̂B|C +

mB

mC
p̂D)2 +

p̂2
D

2mC
+

1
2k(x̂B|C − x̂A|C)

2

where the positions are actually measured from Eve and the momenta from Charlie. Again
we have to be careful with this ambiguous notation. Here we have applied a boost from Eve
to Charlie. This means that Charlies serves as a p̂-frame and indeed we see the momenta
with a subscript |C. The momenta ARE measured relative to Charlie. However, the posi-
tions are also written with the subscript |C as if they were also measured by Charlie. This
is not the case, they are in fact measured relative to Eve. But this notation is necessary to
make sure we get the correct equations of motion (in the sense that they are the same as
in classical mechanics). As such we treat x̂A|C and p̂A|C for example as if they lived on the
same Hilbert space such that the commutation relation [x̂A|C , p̂A|C ] = i are satisfied (if we
consider the convention h̄ = 1).

This being said, in a momentum frame we can only measure p̂A|C , hence there are no
calculations to be made for the “velocity”. We can only make sense of an acceleration
defined relative to this p̂-frame which is: ˙̂pA|C . We will compute the latter using the same
type of definition as (4.10) (except here we will be using momenta observables):
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(4.32)˙̂pA|C = 1
i
[p̂A|C , Ĥ(p̂)

AB|C ].

As previously, we have considered the h̄ = 1 convention. We can thus compute the acceler-
ation of Alice relative to Charlie which gives us:

(4.33)˙̂pA|C = k(x̂B|C − x̂A|C).

To make things clearer, we may define the operator âA|C :=
˙̂pA|C
mA

so that we can write:

âA|C = k

mA
(x̂B|C − x̂A|C). (4.34)

We can follow an analogous reasoning for Bob and derive:

âB|C = k

mB
(x̂A|C − x̂B|C). (4.35)

Now that we have considered the perspective of the quantum reference frame Charlie, will
now apply a quantum reference frame boost towards Alice following an analogous reasoning
as in Subsection 4.2.1 i.e. going from C → E → A.

Relative to Alice

As we want Alice’s perspective, we can start from (4.2) and simply apply the following boost
towards Alice’s p̂-frame:

Û †
BC(v̂A) = eiv̂AmBC x̂BC , (4.36)

where

mBC x̂BC = mBx̂B +mC x̂C . (4.37)

We thus get the following:

(4.38)

Û †
BC(v̂A)ĤABCÛBC(v̂A)

= 1
2mA

(p̂A + i [−v̂AmBC x̂BC , p̂A]︸ ︷︷ ︸
=0

)2 +
1

2mB
(p̂B + i [−v̂AmBC x̂BC , p̂B ]︸ ︷︷ ︸

*

)2

+
1

2mC
(p̂C + i [−v̂AmBC x̂BC , p̂C ]︸ ︷︷ ︸

**

)2

+
1
2k(x̂B − x̂A + i [−v̂AmBC x̂BC , x̂B − x̂A]︸ ︷︷ ︸

***

)2,
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where
∗ = −imB

mA
p̂A,

∗∗ = −imC

mA
p̂A,

∗ ∗ ∗ = mBC x̂BC [− v̂A︸︷︷︸
1
i [x̂A,ĤA]= p̂A

mA

, −x̂A]

= −imBC

mA
x̂BC .

Here we have used the fact that, in general, the moving particle A can be described as a
Hamiltonian cf. (4.39), which has a kinetic term and a potential term that only depends on
the position of Bob relative to Alice:

ĤA = p̂2
A

2mA
+ V̂ (x̂B − x̂A). (4.39)

As this relative position commute with x̂A we get 1
i [x̂A, ĤA] = p̂A

mA
. Hence, we obtain from

the above that:
∗ ∗ ∗ = −imBx̂B +mC x̂C

mA
. (4.40)

Thus, we can deduce that equation (4.38) gives us:

(4.41)

Û †
BC(v̂A)Ĥ

(p̂)
ABCÛBC(v̂A) = 1

2mA
p̂2

A +
1

2mB
(p̂B +

mB

mA
p̂A)

2

+
1

2mC
(p̂C +

mC

mA
p̂A)

2

+
1
2k(x̂B − x̂A +

mBx̂B +mC x̂C

mA
)2.

And by applying the direct mapping/the relabeling FE→A|g⟩A ⊗ |α⟩B → |g⟩D ⊗ |α⟩B|A, the
previous expression becomes:

(4.42)
Ĥ

(p̂)
BC|A = p̂2

D

2mA
+

1
2mB

(p̂B|A +
mB

mA
p̂D)2 +

1
2mC

(p̂C|A +
mC

mA
p̂D)2

+
1
2k(x̂B|A − x̂D +

mBx̂B|A +mC x̂C|A
mA

)2.

Again here, the notation is ambiguous. However as previously, momenta are measured rel-
ative to Alice, whereas positions are measured relative to Eve. We can already notice that
the extra particle has appeared in the expression of the Hamiltonian. As a reminder, we will
be focusing on the interpretation of the results in Section 5.

Let us now derive the expressions for the accelerations of Bob and Charlie relative to A i.e.
p̂B|A and p̂C|A. We have by definition:

(4.43)˙̂pC|A = 1
i
[p̂C|A, Ĥ(p̂)

BC|A],
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and because all momenta commute, we only consider the commutator between p̂C|A and
1
2k(x̂B|A − x̂D +

mB x̂B|A+mC x̂C|A
mA

)2. This gives us:

(4.44)˙̂pC|A = −mC

mA
k(x̂B|A − x̂D +

mB

mA
x̂B|A +

mC

mA
x̂C|A).

As previously, and to make things clearer, we may define the operator âC|A :=
˙̂pC|A
mC

so that
we can write:

âC|A = − k

mA
(x̂B|A − x̂D +

mB

mA
x̂B|A +

mC

mA
x̂C|A). (4.45)

Now that we have obtained the acceleration of C relative to A for the boosts, let us now
apply an analogous reasoning to get ˙̂pB|A. By definition, we have:

(4.46)˙̂pB|A = 1
i
[p̂B|A, Ĥ(p̂)

BC|A],

which gives us:

(4.47)˙̂pB|A = −(1 +
mB

mA
)k(x̂B|A − x̂D +

mB

mA
x̂B|A +

mC

mA
x̂C|A).

Again, by defining an operator âB|A :=
˙̂pB|A
mB

we can write (4.47) as:

âB|A = −(
1
mA

+
1
mB

)k(x̂B|A − x̂D +
mB

mA
x̂B|A +

mC

mA
x̂C|A). (4.48)

As we see, the accelerations obtained (4.45) and (4.48) are quite laborious. However we will
show in Section 5 that with an appropriate choice for the extra particle, we retrieve the
correct form for the equations of motion.

Now, let us explore quantum reference frame transformations for a combination of transla-
tions and boosts i.e. for the Galilei group.

4.2.3 Quantum reference frame for Galilei group

We can now combine the results we have obtained for translation and boost groups and use
them to explore the consequences for the Galilei group. Indeed the composition rule of the
latter (a’,v’)·(a,v) = (a’+a, v’+v) [17]. Now let’s analyze the original (and quite exotic!)
case where we apply a translation to a particle 1 followed by a boost towards a particle
2. That means we place a reference frame for position on particle 1 and a reference frame
for momentum on particle 2. Let us start back from the initial Hamiltonian seen from an

38



external observer:

ĤABC = p̂2
A

2mA
+

p̂2
B

2mB
+

p̂2
C

2mC
+

1
2k(x̂B − x̂A)

2 (4.49)

A translation towards Alice followed by a boost towards Charlie

Now, we can apply a translation towards Alice. We naturally get back 4.17. From there,
we can apply a boost towards Charlie using a similar reasoning as in 4.26 with the same
transformation. As such that we obtain:

(4.50)
ĤBC|A(x̂),AB|C(p̂) = 1

2mA
(p̂D − p̂B|A − p̂C|A − mB

mC
p̂F )

2

+
1

2mB
(p̂B|C +

mB

mC
p̂F )

2 +
p̂2

F

2mC
+

1
2kx̂

2
B|A.

We observe two different extra-particles which corresponds to the two different transforma-
tions.

Now, we can compute the velocities and the accelerations. If we consider the quantum
reference frame of Alice, as it measures positions, we should, in principle, use the definitions
(4.9) and (4.10) for velocities and accelerations of Bob and Charlie. Let us start with Charlie,
and as we did in Section 4.2.1, we obtain:

˙̂xC|A = − 1
mA

(p̂D − p̂B|A − p̂C|A − mB

mC
p̂F ). (4.51)

We can take this result, and inject it in (4.10) from which we get:

¨̂xC|A = − k

mA
x̂B|A. (4.52)

Now, we can do the same type of reasoning for Bob such that we obtain:

˙̂xB|A = − 1
mA

(p̂D − p̂B|A − p̂C|A − mB

mC
p̂F ). (4.53)

Once gain, we can take this result and inject it in (4.10), from which we get:

¨̂xB|A = − k

mA
x̂B|A. (4.54)
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Here we have considered Alice’s perspective, but let us now consider Charlie’s which measures
momenta. Because we are now in a p̂-frame, we will consider an acceleration as previously
defined (4.32). We easily see that:

˙̂pA|C = 0. (4.55)

This acceleration is quite surprising. But we will further comment on this in Section 5.

Now, let us try the case where we will translate towards Charlie and boost towards Alice.

A translation towards Charlie followed by a boost towards Alice

By first applying a translation towards Charlie, we get back 4.8. We can then apply a boost
towards Alice as we did in 4.38 such that we obtain:

(4.56)
ĤAB|C(x̂),BC|A(p̂) = p̂2

F

2mA
+

1
2mB

(p̂B|A +
mB

mA
p̂F )

2

+
1

2mC
(p̂D − p̂A|C − p̂B|C − mB

mA
p̂F )

2 +
1
2k(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

)2

where the positions are relative to C and the momenta are relative to A. Again we observe
two different extra-particles that correspond to the two different transformations.

Now we can compute the velocities and the accelerations. First, we consider the quantum
reference frame Charlie, and as it measures positions, we will use the definitions (4.9) and
(4.10) for the velocities and accelerations of Alice and Bob. As we did in Subsection 4.2.1,
let us first compute Alice’s velocity as such:

˙̂xA|C = − 1
mC

(p̂D − p̂A|C − p̂B|C − mB

mA
p̂F ). (4.57)

We can take this result, and inject it in (4.10) from which we get:

¨̂xA|C = 0. (4.58)

An analogous reasoning holds for Bob.

Let us now consider Alice as a p̂-frame and compute the accelerations for Bob and Charlie.
Using (4.32), we have for Bob :

˙̂pB|A = −mB

mA
k(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

), (4.59)
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where if we define the operator âB|A =
˙̂pB|A
mB

, we can write the acceleration of Bob as the
following:

âB|A = − k

mA
(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

). (4.60)

Now, for Charlie we make an analogous reasoning such that we obtain:

˙̂pC|A = −mC

mA
k(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

), (4.61)

and thus,

âC|A = − k

mA
(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

). (4.62)
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Chapter 5

Discussions

In this section, we will interpret and discuss the physical meaning of the results obtained in
the previous section. For each group, we will: summarise our results, compare them to what
we would have in classical mechanics, compare them with one another, and discuss the role
of the extra particle regarding the covariance of our results. As in the previous section, we
will start with the quantum reference frames translations.

5.1 Translation case

Let us first recover and summarize our findings from Charlie’s perspective.

Relative to Charlie

These are the results we have obtained in summary:

¨̂xA|C = k

mA
(x̂B|C − x̂A|C),

¨̂xB|C = k

mB
(x̂A|C − x̂B|C),

Ĥ
(x̂)
AB|C = 1

2mA
p̂2

A|C +
1

2mB
p̂2

B|C +
1

2mC
(p̂D − p̂A|C − p̂B|C)

2 +
1
2k(x̂B|C − x̂A|C)

2.

As Charlie is not subject to any external forces, it is, by definition, an inertial quantum ref-
erence frame. That means that no fictitious force should appear in the equations of motion,
and the accelerations of Alice and Bob should only depend on their relative position between
one another. This is indeed what we have obtained, and this result is consistent with the
classical case.

Here, the extra-particle appears only in a kinetic term of the Hamiltonian as p̂D. In particu-
lar, we see that p̂C is replaced by p̂D − p̂A|C − p̂B|C . As previously mentioned in the section
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on translations, momenta are measured from Eve’s perspective despite the ambiguous no-
tation. Also, as we saw in Section 3.2, the extra particle is part of the invariant algebra
under translation. However, applying a quantum reference frame translation corresponds to
refactorise the whole Hilbert space relative to E, which means that this extra particle must
contain information that is: invariant under translation and concerns the whole system. The
corresponding quantity is the total momentum.

Before we continue, let us open a small parenthesis regarding Hamiltonian mechanics. In
the latter, it is well known that the Hamiltonian H which characterises the energy of a
system is sufficient to get the equations of motion for the system. The latter are obtained
by applying the so-called Poisson Brackets {, } which are equivalent to the commutator in
quantum mechanics. In particular, if we call x the position of an object, the velocity, and
the acceleration can be obtained as follows ẋ = {x,H} and ṗ = {p,H} respectively [47].
And equivalently, as p = mẋ, the acceleration could also be obtained using ẍ = {ẋ,H}. In
other words, whether we use the velocity obtained using the position ẋ or the momentum p,
the result of the acceleration is the same. Therefore, we could be tempted to suppose this
situation would be the same in quantum mechanics (using the commutator). And we can
show that it is for an inertial quantum reference frame. We showed, however, that there is
a clear discrepancy in a non-inertial frame. As we are still considering Charlie, let us start
there and compute now ˙̂pA|C = 1

i [p̂A|C , Ĥ(x̂)
AB|C ] and this gives us ˙̂pA|C = k(−x̂A|C + x̂B|C),

which is the same as (4.15) if we define the following operator:
˙̂pA|C
mA

.

Let us now analyse the results we have obtained from the non-inertial quantum reference
frame Alice for translations. But first, let us remind ourselves what we had obtained in the
previous section.

Relative to Alice

These are the results we get in summary:

¨̂xB|A = −kx̂B|A(
1
mA

+
1
mB

),

¨̂xC|A = − k

mA
x̂B|A,

Ĥ
(x̂)
BC|A = 1

2mA
(p̂D − p̂B|A − p̂C|A)

2 +
1

2mB
p̂2

B|A +
1

2mC
p̂2

C|A +
1
2kx̂

2
B|A.

Now, from Alice’s perspective, we observe both an acceleration of Charlie and an additional
term in the acceleration of Bob. These terms are fictitious accelerations that apply on Bob
and Charlie, and they correspond to the acceleration Alice feels. This is consistent with
what we observe in classical mechanics where this fictitious force appears as an ad-hoc po-
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tential term in the Hamiltonian. Indeed, we have obtained the correct accelerations without
having to introduce this additional potential in the Hamiltonian as we usually do in classical
mechanics.

The same interpretation, as the one provided for the case relative to Charlie, holds for the
extra particle.

An important conclusion is that those Hamiltonians remain invariant under translation
whether we are in an inertial or a non-inertial reference frame since all momenta are ob-
served externally, and the potential term has its variables changed, but not its value. Hence
according to Subsection 3.2, any x̂-frame observers who do not have access to the external
frame, will have access to the full Hamiltonian since it is invariant under translation. And
as we will see now, this is not necessarily the case for boosts.

Now, before we get to boosts, let us make this parallel with classical mechanics as we did
in the final paragraph of Charlie’s perspective. By following an analogous reasoning, we can
compute ˙̂pC|A = 1

i [p̂C|A, Ĥ(x̂)
BC|A] and ˙̂pB|A = 1

i [p̂B|A, Ĥ(x̂)
BC|A]. For the former, we clearly

see that we obtain ˙̂pC|A = 0, whereas for the latter we get ˙̂pB|A = −kx̂B|A. Again, if we

define the operator
˙̂pB|A
mB

, we find back (4.21). Interestingly, we see that when we consider
quantum reference frames for translations in a non-inertial frame and if we compute the
accelerations in a way that uses the x̂ variable we get a result that does take into account
the acceleration of the frame as in 4.19 and 4.21. However, if we compute the accelerations
using the p̂ variable, then we obtain a result that does not take into account the fact that
the frame is accelerating. This would not be the case in classical mechanics: as we have dis-
cussed in the previous page, this would not be the case if we don’t distinguish translation and
boost frame in classical mechanics. We will see that the opposite conclusion holds for boosts.

5.2 Boost case

First, let us summarize our findings for boosts from Charlie’s perspective.

Relative to Charlie

These are the results we have obtained in summary:
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âA|C = k

mA
(x̂B|C − x̂A|C),

âB|C = k

mB
(x̂A|C − x̂B|C),

Ĥ
(p̂)
AB|C = 1

2mA
(p̂A|C +

mA

mC
p̂D)2 +

1
2mB

(p̂B|C +
mB

mC
p̂D)2 +

p̂2
D

2mC
+

1
2k(x̂B|C − x̂A|C)

2.

As for the translation case, we get back results in the perspective of an inertial quantum
reference frame consistent with the classical case. We can conclude that the equations of
motion are independent of the type of reference frame chosen. This is true even though we
are in a p̂-frame i.e. the accelerations of Alice and Bob depend on relative positions relative
to Eve. That means that relative to an inertial frame, the accelerations of Alice and Bob
are both invariant under translations and boosts.

Furthermore, as we see here, the extra-particle which appears in the Hamiltonian as p̂D can
be interpreted as Charlie’s momentum measured relative to Eve.

As we did for translations, we can now make a parallel to classical mechanics. For that, in-
stead of computing the accelerations as we did using (4.32), let us rather compute them with
the definition for x̂-variable (4.9) and (4.10). As for the translation case, because Charlie
is an inertial quantum reference frame, we should get the same result as (4.32). And as for
the translations, this will not be the case when relative to a non-inertial quantum reference
frame. So indeed, using (4.9) we have ˙̂xA|C = [x̂A|C , Ĥ(p̂)

AB|C ] we obtain ˙̂xA|C = p̂A|C
mA

+ p̂D
mC

.
Now with with (4.10) we can compute the acceleration: ¨̂xA|C = [ ˙̂xA|C , Ĥ(p̂)

AB|C ], because p̂D

commutes with all the terms we get that ¨̂xA|C = k
mA

(x̂B|C − x̂A|C). As expected, we get
back (4.34). The same holds for the acceleration of Bob.

Let us now express the results from the non-inertial quantum reference frame Alice for boost.

Relative to Alice

These are the results we have obtained in summary:
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âB|A = −k(x̂B|A − x̂D +
mB

mA
x̂B|A +

mC

mA
x̂C|A)(

1
mA

+
1
mB

),

âC|A = − k

mA
(x̂B|A − x̂D +

mB

mA
x̂B|A +

mC

mA
x̂C|A),

Ĥ
(p̂)
BC|A = p̂2

D

2mA
+

1
2mB

(p̂B|A +
mB

mA
p̂D)2 +

1
2mC

(p̂C|A +
mC

mA
p̂D)2

+
1
2k(x̂B|A − x̂D +

mBx̂B|A +mC x̂C|A
mA

)2.

Here, we will first start by understanding the role of the extra particle quantities x̂D and p̂D.
As for Charlie’s perspective, p̂D also plays the role of the momentum of Alice relative to Eve.
Furthermore, this x̂D has appeared since Alice is a non-inertial quantum reference frame.
So the question is: what could it be? We want to recover invariant accelerations. Indeed the
value of accelerations should not depend on the type of reference frames we choose. Hence
to act according to this, we want to find back the same accelerations as we had for the
translation group from Alice’s perspective. To do so, we can choose the value of this extra
particle x̂D as follows:

(5.1)x̂D = mAx̂A +mBx̂B +mC x̂C

mA
,

we actually do get back to the accelerations obtained for translation. In other words, we
retrieve:

âB|A = −kx̂B|A(
1
mA

+
1
mB

),

âC|A = − k

mA
x̂B|A,

Ĥ
(p̂)
BC|A = p̂2

D

2mA
+

1
2mB

(p̂B|A +
mB

mA
p̂D)2 +

1
2mC

(p̂C|A +
mC

mA
p̂D)2 +

1
2kx̂

2
B|A.

These results are consistent with the translation group and the classical case. However, we
can also say that the Hamiltonian is not invariant nor covariant under boost. Or at least
there is a part of it that is not. In particular, the potential does remain unchanged. That
means that if Alice does not have access to Eve, then she will not fully observe this Hamil-
tonian.

Hence, to obtain these results, we had to choose the extra particle as (5.1). This can be inter-
preted as the center of mass of the system relative to E modulated by the ratio of masses mtot

mA
.

Finally, let us make this parallel with classical mechanics again. We can first calculate the
velocities of Charlie and Bob as such: ˙̂xC|A = [x̂C|A, Ĥ(p̂)

BC|A] and ˙̂xB|A = [x̂B|A, Ĥ(p̂)
BC|A]. We

get respectively: ˙̂xC|A = p̂C|A
mC

+ p̂D
mA

and ˙̂xB|A = p̂B|A
mB

+ p̂D
mA

. From there, we can derive the
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accelerations as such: ¨̂xC|A = [ ˙̂xC|A, Ĥ(p̂)
BC|A] and ¨̂xB|A = [ ˙̂xB|A, Ĥ(p̂)

BC|A]. And this leads to
Charlie’s and Bob’s respectively: ¨̂xC|A = 0 and ¨̂xB|A = − k

mA
x̂B|A. As previously said in the

translation case, the reverse conclusion holds here. Indeed for boosts i.e. p̂-frames, when
we compute the accelerations using p̂ variables, we get a result that considers the frame’s
acceleration. Whereas, when we use x̂ variables to compute accelerations, the fictitious ac-
celeration does not appear in the equations of motion of the observed system. However, this
is not what we experience in reality, nor is it what we get in classical mechanics, where in
the latter, both methods (using either x or p variables) lead to the correct results.

Let us now proceed with a discussion on the Galilei case.

5.3 Galilei group case

For the Galilei group case, as we will see we get surprising results which disagree with the one
we have obtained for translation and boost cases. This suggests that there was probably a
mistake in the calculations after doing the translation. Nevertheless, we will still analyse the
results we have obtained and remain critical regarding them. Let us first remind ourselves
of those results we have obtained for the case of a translation towards Alice, followed by a
boost towards Charlie.

A translation towards Alice followed by a boost towards Charlie

In summary, we have the following:

(5.2)

˙̂pA|C = 0,

¨̂xB|A = − k

mA
x̂B|A,

¨̂xC|A = − k

mA
x̂B|A,

ĤBC|A(x̂),AB|C(p̂) = 1
2mA

(p̂D − p̂B|A − p̂C|A − mB

mC
p̂F )

2

+
1

2mB
(p̂B|C +

mB

mC
p̂F )

2 +
p̂2

F

2mC
+

1
2kx̂

2
B|A.

These results display surprising characteristics. First of all, we see that the only relative
acceleration which provides a result equivalent to the one obtained in classical mechanics (as
well as with the translation and boost groups), is the acceleration of Charlie relative to Alice.
On the other hand, the acceleration of Bob relative to Alice solely takes into account the
fictitious force due to the acceleration of Alice. However, it does not capture the “intrinsic”
acceleration of Bob due to its relative movement of Alice. Also, we have to mention that in
the perspective of Charlie which serves as an x̂-frame, the acceleration of Alice is 0. This
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appears, naturally, when we compute the commutator of p̂A|C with the Hamiltonian since
the former commute with every observable in the Hamiltonian, but in practice, this is not
what we measure. However, we would see the correct acceleration for Alice (and Bob) if we
had computed it using the Hamiltonian just after we had jumped into Charlie’s perspective
using boosts. More research is needed to investigate the discrepancies between observed
results and theoretical predictions for this group. Indeed there is no clear reason why we
should not be able to obtain all correct accelerations from the final Hamiltonian.

Moreover, we can make an additional comment on the Hamiltonian where two extra-particles
appear, each of those corresponding to one transformation: p̂D and p̂F due to the translation
and boost respectively. As previously mentioned, we could argue that the former should be
interpreted as the total momentum for the same reason we have used in the translation case.
However, in this case, both extra-particles appear in the same kinetic term, which could
lead one to believe in some link between the two. This is an intriguing feature that could
benefit from further examination in future research. Moreover, we notice the absence of an
extra-particle position as we had in the boost case when we considered Alice as the p̂-frame.
As we will later see, for the case where we first translate to Charlie’s point of view and then
boost to Alice’s, we will obtain additional positions in the potential term.

As we did for the translation and boost cases, let us link what we did with classical me-
chanics where we could either use (4.9) or (4.32) (with the Poisson brackets), we would
get the same result. Let us check this for the Galilei group with Ĥ being the Hamilto-
nian 4.50. To do so, we will compute the accelerations as follows: ˙̂pC|A = 1

i [p̂C|A, Ĥ ] = 0,
˙̂pB|A = 1

i [p̂B|A, Ĥ ] = −kx̂B|A. Furthermore, if we define the operator âB|A =
˙̂pB|A
mB

we get
that âB|A = − k

mB
x̂B|A, and finally ẍA|C = 1

i [
˙̂xA|C , Ĥ ] = 0 since ẋA|C = 1

i [x̂A|C , Ĥ ] = 0.

Let us now discuss what happens when we first translate towards Charlie and then boost
towards Alice.

A translation towards Charlie followed by a boost towards Alice

Here are the results we have obtained in summary:
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(5.3)

¨̂xA|C = 0,

âB|A = − k

mA
(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

),

âC|A = − k

mA
(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

),

ĤAB|C(x̂),BC|A(p̂) = p̂2
F

2mA
+

1
2mB

(p̂B|A +
mB

mA
p̂F )

2

+
1

2mC
(p̂D − p̂A|C − p̂B|C − mB

mA
p̂F )

2

+
1
2k(x̂B|C − x̂A|C +

mBx̂B|A +mC x̂C|A
mA

)2.

First, let us comment on the acceleration terms. The acceleration of Alice relative to Charlie
does not correspond to what we observe in practice. However (and as in the previous case
for the Galilei group) we would find the correct acceleration if we had calculated Alice’s
(and Bob’s) accelerations using the Hamiltonian we obtained after doing the translation.
But again, future research on this should be done since there are no clear reasons why we
should not obtain the correct accelerations using the final Hamiltonian. Now regarding the
accelerations relative to Alice, both of them have this relative distance term in them which
again corresponds to this fictitious force because Alice accelerates. This is something we
have observed in the previous case for the Galilei group. However, they also have this center
of mass term which vanishes in the boost case for a proper choice of the extra-particle. But
here there a no extra particle in the potential term of the Hamiltonian.

And as usual, we can check if the property we have in classical mechanics with the Pois-
son brackets also prevails in the quantum case. In other words, if Ĥ is 4.56, let us com-
pute ˙̂pA|C = 1

i [p̂A|C , Ĥ ] = k(x̂B|C − x̂A|C +
mB x̂B|A+mC x̂C|A

mA
) and ˙̂pB|C = 1

i [p̂B|C , Ĥ ] =

k(x̂A|C − x̂B|C − mB x̂B|A+mC x̂C|A
mA

). We can also define the following operators âA|C =
˙̂pA|C
mA

and âB|C =
˙̂pB|C
mB

so that the 2 previous results become respectively âA|C = k
mA

(x̂B|C −
x̂A|C +

mB x̂B|A+mC x̂C|A
mA

) and âB|C = k
mB

(x̂B|C − x̂A|C +
mB x̂B|A+mC x̂C|A

mA
). We can finally

also compute ¨̂xC|A = 1
i [

˙̂xC|A, Ĥ ] = 0 since ˙̂xC|A = 1
i [x̂C|A, Ĥ ] = 0.

In [17] it has been stated that in the case of the Galilei group: the full Hilbert space of N
particles decomposes as a tensor product of the degrees of freedom (whether it is the position
or the momentum) of the Centre of mass of the system (which is a 1-particle Hilbert space)
and another Hilbert space which is invariant. The latter can be decomposed as a tensor
product of the relative degrees of freedom of the observed particles and the extra particle
necessary for a reversible transformation between observers.

Here, as we have said initially, according to the results, we may suspect that there was a
mistake in the calculations. However, if we had the correct Hamiltonian with certainty, even
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though the Hamiltonian we obtained is not fully Galilei invariant (because it is not invariant
under boosts), we could expect (according to the previous paragraph) that the Hamiltonian
split nicely into two parts. First, a kinetic term for the centre of mass, plus an additional
term that should be possible to express entirely in terms of invariant quantities and therefore
acts entirely on the invariant subsystem. If this is true, it would mean that the centre of
mass and the invariant subsystem evolve independently, each driven by its own Hamilto-
nian, without interaction between the two. Then, an observer who does not have access to
an external frame for the Galilei group would still be able to fully describe the evolution of
the invariant degrees of freedom. This, however, is to be left for future studies on this subject.
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Chapter 6

Additional discussions regarding
quantum foundations

Let us initiate a small discussion regarding why we use a reference frame for both position
and momentum in this model. This discussion regards quantum mechanics foundations and
wants to express several hints that seem to indicate that in quantum mechanics, the quan-
tities x̂ and p̂ seem to be purely independent. This whole discussion directly comes from
discussions Prof. Oreshkov and Dr. Lin-Qing Chen in Prof. Oreshkov’s office and by mail
exchanges.

In classical mechanics, it is common sense that velocity is derivable from positions. Indeed
if we have two positions corresponding to two instants in time, all classical mechanics books
will say that ẋ = ∆x

∆t . From there, we can thus define the kinetic momentum as p = mẋ

where m is the mass of the system we observe.

1. Kinetic vs. Canonical Momentum

However, in quantum mechanics, the situation is not the same. First, there is no definition
of kinetic momentum as in the classical case. In fact, quantum mechanics requires that
the fundamental commutation relation [x̂, p̂] = i is satisfied (from which the Heisenberg
uncertainty principle is derived) [19] where x̂ and p̂ are canonical quantities. In quantum
mechanics, this canonical relation is postulated in the context of canonical quantization [50]
and leads to theoretical results which can be observed in reality [51] (such as Heisenberg’s
uncertainty principle).

For this to be true, there is a choice we must make regarding x̂ and p̂. There is for instance
this typical choice and definition of p̂ = −i h̄ ∂

∂x [19]. This definition would require first to
define a Hilbert space on which we define a |x⟩ as a basis (since this p̂ depends on this basis).
But a priori, this choice for momentum is not unique. Indeed, it is easy to show that for a
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given position basis |x⟩, the choice p̂ = −i ∂
∂x will allow us to get back to [x̂, p̂] = i [52]. In

fact, by definition, [x̂, p̂] = i is true for any pair of canonically conjugate operators x̂ and p̂.
Hence, it is also easy to show that any choice p̂ = −i ∂

∂x + constant will also give the correct
commutation relation.

In particular, if the Hilbert space of one particle is assumed given, and if we also had the
position operator x̂ of a particle A relative to C in that single-particle Hilbert space, for
example, the momentum p̂A|C is uniquely defined merely from the canonical commutation
relation. However, this cannot help us single out a choice for the operator p̂A|C in our case,
because we do not know the Hilbert space of the relative particle A|C. Indeed we have
only been given the position operator x̂A|C i.e. x̂A|C ⊗ 1rest which is also equal to x̂A − x̂C .
So we know that p̂A|C should be a tensor factor of the full Hilbert space of A and C, but
we do not know which one. There are indeed many candidates for p̂A|C ⊗ 1rest that would
satisfy the correct commutation with it, and each choice of such operator defines a different
factorisation of the full Hilbert space of A and C into A|C and “rest”.

Furthermore, suppose that, ultimately, classical mechanics should be derivable from quan-
tum mechanics as some sort of approximation of the latter. From that supposition, it is
thus possible that the use of kinetic momentum in classical mechanics implicitly restricts
the scope of the study. Therefore, it might be safer to generalize kinetic momentum to the
canonical momentum. We think that these remarks should be worth exploring in future work.

2. Position vs. Momentum reference frames

Let us now show an example of how given two different changes of coordinates for positions
we get two different choices of momenta. And in the light of the framework in which this
Thesis is, we will show that only one of these momentum seems to be the most appropriate.

In classical mechanics, to properly say what the canonical/generalised momentum should
be, one has to appeal to a Lagrangian L and derive it from there i.e. ∂L

∂q̇k
corresponding to

the coordinate qk [53] [54]. We could use the Hamiltonian but since the two perspectives are
equivalent we will allow us to change for this section.

Let us consider the same situation as in 4.1 but this time with classical particles. We can
start by writing the Lagrangian of Alice, Bob, and Charlie relative to Eve:

L = mA

2 ẋ2
A +

mB

2 ẋ2
B +

mC

2 ẋ2
C +

k

2 (xB − xA)
2, (6.1)

and we can perform a (reversible) change of coordinates towards Alice.

52



a) Let us make for example the following change of coordinates: x̃A = xA, x̃B = xB − xA

and x̃C = xC − xA such that we get
xA = x̃A

xB = x̃A + x̃B

xC = x̃A + x̃C

. (6.2)

Like that, we can write the new Lagrangian L∗ as:

(6.3)L∗ = mA

2
˙̃x2
A +

mB

2 ( ˙̃x2
B + 2 ˙̃xB ˙̃xA + ˙̃x2

A) +
mC

2 ( ˙̃x2
C + 2 ˙̃xC ˙̃xA + ˙̃x2

A) +
k

2 x̃
2
B.

Now, if we compute the canonical momentum of B for example, we get:

p̃B = ∂L∗

∂ ˙̃xB
= mB ˙̃xB +mB ˙̃xA, (6.4)

which if expressed in terms of the old variables gives us: p̃B = mBẋB = pB. This momentum
is canonically conjugate to x̃B by construction.

b) Now, we will see that if we apply another change of coordinates, this will lead us to a
different value for the momentum of B. Nevertheless, it will be, by construction, canonically
conjugate to x̃B. This time, let us make, for example, the following change of coordinates:
x̃A = mAxA+mBxB+mCxC

mA+mB+mC
, x̃B = xB − xA and x̃C = xC − xA where we define M = mA +

mB +mC . As such, we get:
xA = x̃A − mB

M x̃B − mC
M x̃C

xB = x̃A + (1 − mB
M )x̃B − mC

M x̃C

xC = x̃A − mB
M x̃B + (1 − mC

M )x̃C

. (6.5)

Like that, we can write the new Lagrangian L∗∗ as:

(6.6)
L∗∗ = mA

2 ( ˙̃xA − mB

M
˙̃xB − mC

M
˙̃xC)

2 +
mB

2 ( ˙̃xA + (1 − mB

M
) ˙̃xB − mC

M
˙̃xC)

2

+
mC

2 ( ˙̃xA − mB

M
˙̃xB + (1 − mC

M
) ˙̃xC)

2 +
k

2 x̃
2
B,

Now, if we compute the canonical momentum of B for example, we get:

(6.7)

p̃B = ∂L∗∗

∂ ˙̃xB

= mA( ˙̃xA − mB

M
˙̃xB − mC

M
˙̃xC)(−

mB

M
)

+mB( ˙̃xA + (1 − mB

M
) ˙̃xB − mC

M
˙̃xC)(1 − mB

M
)

+mC( ˙̃xA − mB

M
˙̃xB + (1 − mC

M
) ˙̃xC)(−

mB

M
),
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and if we express this momentum in the old coordinates and we define ptot = pA + pB + pC

we obtain the following:

(6.8)
p̃B = mAẋA(−

mB

M
) +mBẋB(1 − mB

M
) +mC ẋC(−

mB

M
)

= mBẋB − mB

M
ptot,

hence p̃B = mB(ẋB − ptot
M ). This momentum is also canonically conjugate to x̃B by con-

struction.

Both options for the position variable x̃A, whether it is xA in scenario ’a’ or the center of
mass in scenario ’b’, yield a momentum p̃B that is canonically conjugate to x̃B. Our choice
of the position variable x̃A effectively determines what we consider as a distinct system from
particles B and C. In scenario ’a’, we observe that the canonical momentum of B is equiv-
alent to the kinetic momentum pB relative to an external momentum frame, in complete
accordance with our quantum prescription [55].

Conversely, in scenario ’b’, we derive p̃B = mB(ẋB − ptot
M ), which also possesses the math-

ematical characteristics of kinetic momentum, though with respect to the center of mass
momentum. Nevertheless, the center of mass is not a distinct system from A when both A
and the center of mass are viewed externally. Hence, this momentum cannot be construed
as a kinetic momentum relative to any momentum frame [55].

Hence, we must contemplate the following question: Why does our quantum prescription [17]
advocate for the initial choice of defining relative particle positions as x̃B = xB − xA and
x̃C = xC − xA, and the momenta as pB and pC (which we would easily obtain by computing
the canonical momentum of C in scenario ’a’ as ∂L∗

∂ ˙̃xC
)? What justifies this preference over

alternative choices, such as those in scenario ’b’ or other possibilities [55]?

We might present the following argument: When we examine the definition of the position
and momentum of the relative particle C|A in [17], they represent the controlled-translated
x̂A and p̂A, where the control is determined by the position of the reference particle A.
Importantly, due to the invariance of momentum under translation in quantum mechanics,
the controlled translation of p̂C remains equivalent to the original p̂C , while x̂C undergoes a
transformation to (x̂C − x̂A). The same reasoning holds for B also. And this reasoning har-
monizes with the well-accepted classical reference frame transformations applied to quantum
systems [21] [55].

However, a valid inquiry surfaces: What justifies the standard definition of translation as the
correct one? Why do we represent translation by an amount x on an operator T using the
formula eixp̂Te−ixp̂? While this formula holds a firm position in traditional quantum the-
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ory [21], it becomes a natural question given our quest to study the foundations of quantum
theory. Specifically, couldn’t we potentially define translation by employing the established
formula followed with what is conventionally acknowledged as a boost operation? [55].

Let’s consider a practical example: say we, assuming that we have the role of a classical ref-
erence frame, observe a quantum system and decide to hop onto a particle in motion within
that system. One might naturally think that the momentum of the remaining particles, as
perceived from our now-moving perspective, would undergo changes due to the fact that
their velocities are measured relative to our frame of reference. This intuitive expectation
arises because we’ve essentially shifted our viewpoint. This is a natural thought since this
is what would happen ”classically”. Intriguingly, when we implement this additional boost
operation, the position variable remains unaffected, as position operators commute with the
boost generator. However, it’s essential to highlight that under this boost, the momentum of
particle C does indeed experience modifications. This outcome mirrors the scenario outlined
at the beginning of the paragraph [55].

Consequently, the thought-provoking query that emerges is the following: What justifies the
standard definition of translation as being the correct one? [55]

3. On the instantaneity of momentum

Our standpoint revolves around the fundamental separation and independence of momentum
from position. This perspective finds resonance in Hamiltonian mechanics, where position
and momentum are treated as a priori independent coordinates. It also extends to quantum
mechanics, where momentum is regarded as an observable quantity, akin to position, that
can be measured at a specific moment in time. There is a conceptual distinction between
the observable quantity ”momentum” and the mass times velocity, where velocity is under-
stood as a difference in positions at two different times (in the limit where two times become
infinitesimally close). If we look at velocity as a difference of positions at different times, it
cannot be measured in a single instant [55].

While this differentiation might not be apparent in the classical scenario, it becomes much
more significant when we consider the quantum ones. Indeed, in the quantum context, con-
sider the operator ˙̂x in the Heisenberg picture, which can be interpreted as velocity derived
from the evolution of the operator x̂(t) in the Heisenberg picture (defined as 4.9 and demon-
strated in Appendix 8.4). For instance, in the case of a freely moving particle with mass
’m’ governed by Ĥ = p̂2

2m , the commutation relation [x̂, p̂] = i h̄ leads to ˙̂x = p̂
m . However,

it’s important to note that we cannot measure this operator by conducting quantum mea-
surements on the system at consecutive time points. In practice, frequent measurements of
the operator x̂ forces the system to remain in its initial state at each measurement instance,
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illustrating the quantum Zeno effect [55] [56].

The concept can be summarized as follows: Momentum is an instantaneous property that
does not entail processes akin to measuring positions at various points in time. To illustrate,
consider the time-of-flight experiment, where a quantum particle traverses a narrow slit.
In this setup, momentum can be deduced from the apparatus’s geometry and the timing
recorded upon the particle’s impact on a screen, as discussed in [51]. Consequently, if we
choose to align ourselves with a particle as our reference for position, the velocity at which
that particle is moving should have no bearing on the outcome [55].

Moreover, in the context of quantum mechanics, where position and momentum are per-
ceived as independent entities at a specific moment in time, it logically follows to define pure
translation as an operation that solely alters position without affecting momentum. This
concept bears resemblance to the scenario where, in two-dimensional orthogonal coordinates,
a pure translation in one coordinate (e.g., x) does not induce changes in the other (e.g., y).
Notably, this perspective aligns seamlessly with the treatment of the Galilei group detailed
in [17], which delineates the reference frame into two distinct components: one dedicated to
position and the other dedicated to velocity, with velocity defined in terms of momentum
rather than the derivative of position [55].

4. Non-infinitely heavy reference frames

Let us add a final remark regarding classical reference frames. In classical mechanics, when
we consider one single reference frame Eve that describes the position and the momentum
of a particle A and if we consider the kinetic momentum p = mv, the only way for which
x and p satisfy the commutation relation under the Poisson brackets is that the mass of
the observer is implicitly infinite. Indeed, if we use the definition of the relative kinetic
momentum, we have:

(6.9)

{xA|E , pA|E} = {xA − xE ,mA(vA − vE)}

= {xA − xE , pA − mA

mE
pE)}

= {xA, pA} − {xE , pA}︸ ︷︷ ︸
=0

− {xA, mA

mE
pE}︸ ︷︷ ︸

=0

+{xE , mA

mE
pE}

= 1 +
mA

mE
mE→∞→ 1

As quantum mechanics is a theory of the infinitesimally small, classical mechanics should
be, in principle, derivable from quantum mechanics such that the former may be seen as an
approximation of the latter. And indeed, the fact that we suppose that the observer’s mass
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is infinite in the classical case is a strong hypothesis and should not be a prerequisite to get
a satisfied commutation relation.
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Chapter 7

Conclusions

We have studied a quantum system that allows for both an inertial and a non-inertial quan-
tum reference frame. We further studied the cases where we “jumped” on this non-inertial
quantum reference frame, either using a translation (a translation in position space) and us-
ing a boost (a translation in momentum space). Each of these cases corresponded either to an
x̂-frame (a frame that measures position) or a p̂-frame (a frame that measures momentum).
For both cases, when we transform to a non-inertial frame (without “artificially” adding a
potential term to the Hamiltonian that creates the fictitious force), we have obtained the
correct relative acceleration observables through quantum reference frame transformations.

Furthermore, we have studied the role that this extra-particle played in the covariance of
the equations of motion, and we have discussed its interpretation in light of the invariant
subspace of observables.

We have also made a link with classical mechanics when we computed the laws of motion
corresponding to the relative Hamiltonians, and we have underlined the discrepancies be-
tween the classical and the quantum cases being due to the nature of the reference frame
used. Indeed, in the quantum case, we have x̂ and p̂-frames for which the velocities and the
accelerations are computed using only the commutators with the corresponding variables.
Whereas, in the classical case, the nature of the reference frame does not matter and the
mass of the reference frame is assumed infinite. In that case, the velocities and the acceler-
ations can be computed using the Poisson brackets regardless of the variable (x or p) used.

Finally, we have discussed the results we have obtained to get a better understanding of the
link that seems to exist between the extra-particle and the fictitious force which appears in
the equations of motion when considered relative to a non-inertial quantum reference frame.

Even though this work has shown the coherence of the framework for the studied system
under translation and boost transformations, it also raised several questions that should be
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worth exploring in future research. Indeed, for example, it is easy to show (cf. Appendix
8.5) that the system which has been studied has a center of mass that does not accelerate.
It would thus be interesting to study one which features the same characteristics for which
the center-of-mass does accelerate relatively to the external reference frame. Another future
study could also focus on a more complicated system where for example the three masses
are linked together or have additional degrees of freedom.

We have also well studied the cases for translation and boost. However, it could be insightful
to further study the consequences of having simultaneously one quantum reference frame for
the position and another for momentum. In particular, for the Galilei group, what are the
consequences of having two extra-particles in terms of Hilbert spaces? Would those two
extra-particles interfere with one another, for example? And how is the covariance of the
dynamics would be expressed when we have a mixture of inertial and non-inertial quantum
reference frames simultaneously? Indeed these types of questions are particularly relevant
since they correspond to a genuinely new situation compared to what we have in classical
mechanics.

In regards to what has been in the introduction, we could also mention that future research
should focus on studying interacting and non-inertial quantum reference frames in gravity
and get a more in-depth understanding of the general covariance of gravity in the quantum
context.

Finally, future studies should also try to see how would this framework apply under the
Lorentz and the Poincaré groups.
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Chapter 8

Appendices

8.1 Appendix A: Proof of 3.35

Proof. Let us first start by developing the first member of Equation (3.34) using (3.33). To
simplify notation, let us consider that :

ŜC→A := Ŝ. (8.1)

This allows us to get:

i h̄
dρ̂BC|A
dt

= i h̄
dŜ

dt
ρ̂AB|C Ŝ

† + i h̄Ŝ
dρ̂AB|C
dt

Ŝ† + i h̄Ŝρ̂AB|C
dŜ†

dt
. (8.2)

In addition, we know that Ŝ is unitary and using (3.33) we can write Equation (8.2) as:

i h̄
dρ̂BC|A
dt

= i h̄
dŜ

dt
Ŝ†ρ̂BC|A + i h̄Ŝ

dρ̂AB|C
dt

Ŝ† + i h̄ρ̂BC|AŜ
dŜ†

dt
. (8.3)

Furthermore we use the following property of an unitary operator:

d(ŜŜ†)

dt
= d(Ŝ†Ŝ)

dt
= 0, (8.4)

which allows us to get:

⇐⇒ dŜ

dt
Ŝ† = −Ŝ dŜ

†

dt
. (8.5)

Using this property, Equation (8.3) can be written as:

i h̄
dρ̂BC|A
dt

= i h̄
dŜ

dt
Ŝ†ρ̂BC|A + i h̄Ŝ

dρ̂AB|C
dt

Ŝ† − i h̄ρ̂BC|AŜ
†dŜ

dt
. (8.6)

Now, by using (3.32), we can write (8.6) as:

i h̄
dρ̂BC|A
dt

= i h̄
dŜ

dt
Ŝ†ρ̂BC|A − i h̄ρ̂BC|AŜ

†dŜ

dt
+ ŜĤAB|C ρ̂AB|C Ŝ

† − Ŝρ̂AB|CĤAB|C Ŝ
†. (8.7)
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Hence, by using the unitarity of Ŝ and (3.33) we obtain:

i h̄
dρ̂BC|A
dt

= (i h̄
dŜ

dt
Ŝ† + ŜĤAB|C Ŝ

†)ρ̂BC|A − ρ̂BC|A(i h̄Ŝ
†dŜ

dt
+ ŜĤAB|C Ŝ

†), (8.8)

where we recover the definition of the commutator [ĤBC|A,ρ̂BC|A]. As such we conclude:

ĤBC|A = i h̄
dŜ

dt
Ŝ† + ŜĤAB|C Ŝ

† (8.9)

This concludes the proof.

8.2 Appendix B: Proof of 4.4

Proof. Let us first make a Taylor expansion of the exponentials. By gathering the terms
together we obtain:

eiÂf(B̂)e−iÂ = f(B̂) + i[Â, f(B̂)] + ... (8.10)

Now by using the property (8.11) which we will be demonstrated in Appendix 8.3:

[Â, f(B̂)] = f ′(B̂)[Â, B̂]. (8.11)

Using 8.11, we can now write (8.10) as:

f(B̂) + i[Â, f(B̂)] = f(B̂) + i[Â, B̂]f ′(B̂), (8.12)

which is by definition the Taylor expansion of f(B̂ + i[Â, B̂]) [21]. Hence, we can write:

eiÂf(B̂)e−iÂ = f(B̂ + i[Â, B̂]). (8.13)

This concludes the proof.

8.3 Appendix C: Proof of 8.11

Proof. First let us follow a similar reasoning as in [57] to demonstrate by induction this
property:

[Â, B̂n] = nB̂n−1[Â, B̂], (8.14)

under the assumption [[Â, B̂], B̂] = 0.

We know the above is true for n = 0, 1. Let us suppose it is true for n− 1, we will now show
it is correct ∀n. Hence for any operator Â, B̂ we have by definition:
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(8.15)

[Â, B̂n] = ÂB̂n − B̂nÂ

= ÂB̂n−1B̂ − B̂n−1B̂Â+ B̂n−1ÂB̂ − B̂n−1ÂB̂︸ ︷︷ ︸
=0

= [Â, B̂n−1]B̂ + B̂n−1[Â, B̂]
hyp= (n− 1)B̂n−2[Â, B̂]B̂ + B̂n−1[Â, B̂]
hyp= (n− 1)B̂n−2B̂[Â, B̂] + B̂n−1[Â, B̂]
= nB̂n−1[Â, B̂]

Proof. So if now we express a function f(B̂) as a series:

f(B̂) =
∑
n
cnB̂

n, (8.16)

we can write the commutator [Â, f(B̂)] as follows:

(8.17)
[Â, f(B̂)] = [Â,

∑
n
cnB̂

n]

=
∑
n
cn[Â, B̂n].

If we now use the result obtained in the first proof of this Appendix and the fact that
f ′(B̂) = ∑

n ncnB̂
n−1, we naturally get:

(8.18)
[Â, f(B̂)] =

∑
n
ncnB̂

n[Â, B̂n−1]

= f ′(B̂)[Â, B̂].

This concludes the proof.

8.4 Appendix D: Proofs of 4.9 and 4.10

Proof. By definition of the evolution in time of the position observable x̂ we have:

x̂(t) = ei Ĥ
h̄ tx̂e−i Ĥ

h̄ t (8.19)

Hence if we want to compute the velocity we have

(8.20)

˙̂x(t) = d

dt
x̂(t)

= d

dt
(ei Ĥ

h̄ t)x̂e−i Ĥ
h̄ t + ei Ĥ

h̄ tx̂
d

dt
(e−i Ĥ

h̄ t)

= i
Ĥ

h̄
ei Ĥ

h̄ tx̂e−i Ĥ
h̄ t − i

1
h̄
ei Ĥ

h̄ tx̂Ĥe−i Ĥ
h̄ t
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because Ĥ commute with itself we get

(8.21)

˙̂x(t) = i
Ĥ

h̄
ei Ĥ

h̄ tx̂e−i Ĥ
h̄ t − i

1
h̄
ei Ĥ

h̄ tx̂e−i Ĥ
h̄ tĤ

= i

h̄
[Ĥ, x̂(t)]

= 1
i h̄

[x̂(t), Ĥ ]

For ¨̂x(t) we just derive the previous expression and we get

(8.22)¨̂x(t) = 1
i h̄

[ ˙̂x(t), Ĥ ]

This concludes the proof.

8.5 Appendix E: Non accelerating center of mass

In this Appendix we will simply show in classical mechanics that the study we have done
restricts itself to a system ABC for which the center of mass does not accelerate.

Proof. Indeed for that let us define the position of the center of mass of the system ABC.
With mtot = mA +mB +mC we have:

xCM |E = 1
mtot

(mAxA|E +mBxB|E +mCxC|E). (8.23)

Thus by simply deriving this position and by removing the “| E” without loss of meaning
we get [58]:

vCM = 1
mtot

(mAvA +mBvB +mCvC). (8.24)

If we now derive this equation again, we get the following:

aCM = 1
mtot

(mAaA +mBaB +mCaC). (8.25)

If we now use the fact that for this system the accelerations of each particle are given by:

aA = 1
mA

(xB − xA),

aB = 1
mB

(xA − xB),

aC = 0,

we obtain that aCM = 0 which closes the demonstration.
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[50] MIT Quantum Theory Notes: Supplementary Notes for MIT’s Quantum Theory Se-
quence, Canonical Quantization and Application to the Quantum Mechanics of a Charged
Particle in a Magnetic Field. 2007. Course given by R. L. Jaffe at MIT.

[51] Freericks, J. K. 2023. “How to measure the momentum of single quanta”.

[52] Position and momentum in quantum mechanics. 2011. Lectures notes from the course
given by D. E. Soper at University of Oregon.
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