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Abstract

Phase space is an essential mathematical tool for the study of dynamical systems
in classical mechanics. This abstract space, whose coordinates are the dynamical
variables of a system, can also be exploited for the characterization of systems in
quantum physics, and more particularly in quantum optics. However, while the
state of a moving particle in classical mechanics at a given time is represented by a
point in phase space, the state of a photonic system in quantum optics is much more
involved and must be represented by a quasi-probability distribution, such as the
Wigner function. Compared to a pointlike distribution, this spreading accounts for
the quantum nature of the system and originates from the Heisenberg uncertainty
principle. Another specificity of quantum phase space that has no classical analogue
lies in that a quasi-probability distribution may admit negative values or may not
even be expressible as a regular function.
The representation of the state of the electromagnetic field in quantum optics is com-
monly based on quasi-probability distributions in quantum phase space. Here, the
dynamical variables that are considered are the (x, p) quadratures of the electromag-
netic field. Such a phase-space representation allows a visualization of the state and
is an alternative to a description in terms of its density matrix. Importantly, there is
generally no simple equivalence between the characteristics of the quasi-probability
distribution and the properties of the corresponding quantum state. For example,
the fact that the Wigner function admits negative values is a sufficient (but not neces-
sary) condition for the non-classicality of the corresponding state (i.e., its incompat-
ibility with a mixture of coherent states). Quantum phase space thus offers a wide
playground for formulating interesting problems in quantum optics and quantum
information.
In this thesis, we use the quantum phase space representation as the general con-
text in order to investigate three distinct topics. First, we establish a protocol for
estimating continuous parameters encoded in coherent states, focusing on the (x, p)
quadratures of the field. Second, we define a new separability criterion that is suited
to continuous-variable systems and propose an experimental implementation that
relies on homodyne measurements. Finally, we put forward a new method in order
to evaluate non-classicality criteria in phase space that is based on multicopy observ-
ables. We consider a few possible experimental implementations that make use of
several identical copies of the quantum state under investigation.

xi



xii CHAPTER 0. ABSTRACT

In the first part of the thesis centered on quantum parameter estimation, we prove
that our protocol for estimating quadrature pairs (x, p) encoded in coherent states
is optimal, in the sense that it saturates the quantum Cramér-Rao bound based on
the Fisher information for the estimation of each parameter. This then allows us to
look into an effect observed by S. Iblisdir and N. J. Cerf in 2001 [4] namely that more
information can be extracted about two variables encoded in two phase-conjugate
coherent states rather than in two identical coherent states. We demonstrated the op-
timality of this phase-conjugate protocol and develop a general protocol for encoding
and optimally estimating an arbitrary number of continuous parameters in the same
number of coherent states.
In the second part of the thesis centered on entanglement, we start from the so-called
realignment criterion for separability established by O. Rudolph in 2005 [5]. We de-
fine a variant, coined the weak realignment criterion, which is based on the same
mathematics, namely the greatest cross norm, but offers the advantage that it admits
a physical implementation allowing us to directly test the criterion without the need
to access the whole density matrix of the state. In a next step, we improve the perfor-
mance of this new criterion by supplementing it with a filtration stage through the
optimized application of a so-called noiseless attenuator. This results in an improved
weak realignment criterion, which may even surpass the original realignment crite-
rion while keeping the implementation advantage.
In the third part of the thesis centered on non-classicality, we apply a multi-copy tech-
nique based on the assumption that we have several identical copies of the quantum
state at our disposal. Following on a multicopy approach to uncertainty relations by
A. Hertz et al. in 2019 [6], we turn to non-classicality criteria built on minors (i.e., de-
terminants of sub-matrices) of some matrix of moments of the electromagnetic field
in phase space. We first compare the performance of the criteria associated with
different minors when considering known non-classical states and then develop the
corresponding multicopy nonclassicality observables. Finally, we analyze the prop-
erties of these novel non-classicality criteria and propose experimental implementa-
tions for the most interesting ones.



Titre

Détection de la non-classicalité et estimation de paramètres dans l’espace des phases

xiii



xiv CHAPTER 0. ABSTRACT



Résumé

L’espace des phases est un outil mathématique essentiel pour l’étude des systèmes
dynamiques en mécanique classique. Cet espace abstrait, dont les coordonnées sont
les variables dynamiques d’un système, peut également être exploité pour la carac-
térisation des systèmes en physique quantique, et plus particulièrement en optique
quantique. Cependant, alors que l’état d’une particule en mouvement en mécanique
classique à un instant donné est représenté par un point dans l’espace des phases,
l’état d’un système photonique en optique quantique est beaucoup plus complexe et
doit être représenté par une distribution de quasi-probabilité, telle que la fonction de
Wigner. Par rapport à une distribution ponctuelle, cette répartition rend compte de
la nature quantique du système et trouve son origine dans le principe d’incertitude
d’Heisenberg. Une autre spécificité de l’espace des phases quantique qui n’a pas
d’analogue classique réside dans le fait qu’une distribution de quasi-probabilité peut
admettre des valeurs négatives ou même ne pas être exprimable comme une fonction
régulière.

La représentation de l’état du champ électromagnétique en optique quantique est
généralement basée sur des distributions de quasi-probabilité dans l’espace des phases
quantique. Ici, les variables dynamiques qui sont considérées sont les quadratures
(x, p) du champ électromagnétique. Une telle représentation de l’espace des phases
permet de visualiser l’état et constitue une alternative à une description en termes de
matrice densité. Il est important de noter qu’il n’existe généralement pas d’équivalence
simple entre les caractéristiques de la distribution de quasi-probabilité et les pro-
priétés de l’état quantique correspondant. Par exemple, le fait que la fonction de
Wigner admette des valeurs négatives est une condition suffisante (mais non néces-
saire) pour la non-classicalité de l’état correspondant (c’est-à-dire son incompatibil-
ité avec un mélange d’états cohérents). L’espace des phases quantique offre donc un
vaste terrain de jeu pour formuler des problèmes intéressants en optique quantique
et en information quantique.

Dans cette thèse, nous utilisons la représentation de l’espace des phases quantique
comme contexte général afin d’étudier trois sujets distincts. Premièrement, nous
établissons un protocole pour l’estimation de paramètres continus encodés dans des
états cohérents, en nous concentrant sur les quadratures (x, p) du champ electro-
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magnétique. Deuxièmement, nous définissons un nouveau critère de séparabilité
adapté aux systèmes à variables continues et proposons une mise en œuvre expéri-
mentale qui repose sur des mesures homodynes. Enfin, nous proposons une nouvelle
méthode d’évaluation des critères de non-classicalité dans l’espace des phases, basée
sur des observables multicopies. Nous considérons quelques implémentations ex-
périmentales possibles qui utilisent plusieurs copies identiques de l’état quantique
étudié.

Dans la première partie de la thèse centrée sur l’estimation des paramètres quan-
tiques, nous prouvons que notre protocole d’estimation des paires de quadrature
(x, p) codées dans des états cohérents est optimal, dans le sens où il sature la borne de
Cramér-Rao quantique basée sur l’information de Fisher pour l’estimation de chaque
paramètre. Ceci nous permet alors d’étudier un effet observé par S. Iblisdir et N. J.
Cerf en 2001 [4], à savoir que l’on peut extraire plus d’informations sur deux vari-
ables encodées dans deux états cohérents de phase conjuguée plutôt que dans deux
états cohérents identiques. Nous avons démontré l’optimalité de ce protocole à phase
conjuguée et développé un protocole général pour encoder et estimer de manière
optimale un nombre arbitraire de paramètres continus dans le même nombre d’états
cohérents.

Dans la deuxième partie de la thèse centrée sur l’intrication, nous partons du critère
dit de réalignement pour la séparabilité établi par O. Rudolph en 2005 [5]. Nous
définissons une variante, appelée le critère de réalignement faible, qui est basée sur
les mêmes outils mathématiques, à savoir la plus grande norme croisée, mais qui
présente l’avantage d’admettre une implémentation physique nous permettant de
tester directement le critère sans avoir besoin d’accéder à la matrice densité com-
plète de l’état. Dans une seconde étape, nous améliorons les performances de ce
nouveau critère en le complétant par une étape de filtration grâce à l’application op-
timisée d’un atténuateur sans bruit. Il en résulte un critère de réalignement faible
amélioré, qui peut même surpasser le critère de réalignement original tout en con-
servant l’avantage de l’implémentation.

Dans la troisième partie de la thèse centrée sur la non-classicalité, nous appliquons
une technique multicopie basée sur l’hypothèse que nous avons plusieurs copies
identiques de l’état quantique à notre disposition. Suite à une approche multicopie
des relations d’incertitude par A. Hertz et al. en 2019 [6], nous nous tournons vers des
critères de non-classicalité construits sur des mineurs (c’est-à-dire des déterminants
de sous-matrices) d’une certaine matrice de moments du champ électromagnétique
dans l’espace des phases. Nous comparons d’abord les performances des critères
associés à différents mineurs en considérant des états non-classiques connus, puis
nous développons les observables de non-classicalité multicopies correspondantes.
Enfin, nous analysons les propriétés de ces nouveaux critères de non-classicalité et
proposons des implémentations expérimentales pour les plus intéressants.
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1 | Introduction

Concerning a historical point of view toward the advent of quantum mechanics.
1

The 20th century has seen the advent of two major revolution in physics : relativity
on one side and quantum mechanics on the other side. Both of these theories had a
deep impact on the way we understand fundamental notions such as space, time and
events. However, these two theories are not independent since they arose from the
same brains. Indeed, people like A. Einstein, W. Wien, H. Lorentz, H. Poincaré or M.
Planck played a key role in the development of the theory of relativity. On the other
side, the quantum theory was formalised by people like A. Einstein, E. Schrodinger,
W. Heisenberg, N. Bohr, M. Born, G. Gamow, L. de Broglie, P. Dirac, E. Majorana, W.
Pauli or M. Planck. Hence, these two circles of people are strongly overlapping.

However, if one goes back to the roots of quantum mechanics, one finds himself
taken back to the 19th century thermodynamics and the central notion of entropy S
that avoids a physical system to be, in its future, in a state it has been in its past.
Indeed, quantum mechanics might find its historical roots in the different conceptual
status of this notion of entropy that was debated during the late 19th century.

On one side, L. Boltzmann was defending the idea of atoms 2 and had a statistical
interpretation of the entropy. His interpretation is summarized in the equation :

S = kB log(W), (1.1)

where kB = 1.38 10−23 J/K is the so-called Boltzmann constant and W is the number
of possible microstates of a system of a ideal gas constituted of identical particles.
The number of microstates in agreement with the macrostate of the system involves
combinatorial counting of the microstates. Hence, for L. Boltzmann, the entropy is
an emerging notion from the statistics of the gas consituting particles.

On the other side, M. Planck in 1878, defended his PhD thesis entitled Über den

1in reference to [7].
2The existence of atoms has been accepted by the scientific community in 1906 after the work of J.

Perrin.
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CHAPTER 1. INTRODUCTION

zweiten Hauptsatz der mechanischen Wärmetheorie 3 where he defended that entropy
is a fundamental concept. Hence, M. Planck and L. Boltzmann interpretation of en-
tropy are rather distinct but M. Planck still needs to explain the mechanism of the
irreversibility of events while L. Boltzmann’s interpretation gives a statistical origin
to irreversibility. M. Planck believes that the origin of irreversibility lies in the interac-
tion between light and matter and hence, decide to consider the study of black body
and black body radiation as a use-case. After weeks of work, M. Planck could suc-
cessfully find an analytical expression for the black-body radiation (called Planck’s
law[8]) but at the expense of interpreting the vibrational energy of the oscillators 4 of
the wall of the black body not as a continuous, infinitely divisible quantity, but as a discrete
quantity composed of an integral number of finite equal parts where each such quantized
energy writes :

ϵ = hν, (1.2)

where h is the Planck’s constant and ν is the frequency of the oscillator. Hence, he had
to admit that energy exchanges between matter and radiation in a black body were
discrete and composed of quanta of value ϵ = hν.

In 1905, A. Einstein put his hands on the black-body radiation and published a paper
[7] where he introduced the photo-electric effect. In the introduction of the paper, he
states that5 the energy of a light ray spreading out from a point source is not continuously
distributed over an increasing space but consists of a finite number of energy quanta which
are localized at points in space, which move without dividing, and which can only be produced
and absorbed as complete units. Hence, A. Einstein supported that not only matter and
light exchange energy in quanta but light itself is constituted of quanta of energy.
Finally, the spread of the Planck constant in physics reaches the fundamental concept
of matter in 1913 when N. Bohr introduce his atom model, called shell model where
electrons orbit around the nucleon on fixed and discretized orbits and can jump from
an orbit to another by only emitting or absorbing a discrete number of energy quanta.

The quanta crisis is now total since the Planck constant is involved to describe matter
and radiation. Hence, there was a need for the leading scientists of the beginning of
the 20th century to formalise what will become the theory of quantum mechanics.
This has been possible since W. Nernst asked the Belgian industrialist and science
enthousiast E. Solvay to organise and finance a conference in Brussels on the subject
of Radiation and the quanta. E. Solvay accepted and found the first Solvay Conference
that took place in the Metropole Hotel in Brussels with H. Lorentz as chairman. Dur-
ing this conference, major European physicists of that time such as W. Nernst, M.
Brillouin, H. Lorentz, J. Perrin, W. Wien, M. Curie, H. Poincaré, M. Planck, A. Som-
merfeld, M. de Broglie, J. H. Jeans, E. Rutherford, A. Eistein, P. Langevin and others
could meet and exchange ideas about the quanta. This conference was later followed

3in english On the second law of thermodynamics
4or the atoms as we would say
5translated from German in [9]
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by other Solvay conference in Brussels in 1913, 1921, 1924 and 1927 chaired by H.
Lorentz. It was during the fifth Solvay conference in 1925 that A. Einstein said his
now famous quote "God does not play dice" when expressing his scepticism about a
probabilistic interpretation of quantum mechanics. During this fifth conference, rep-
resentatives of the younger generation such as W. Heisenberg, N. Bohr, P. Dirac or W.
Pauli where present. Hence, Brussels, as an international city in the heart of Europe
in the early 20th century, might arguably be considered as the birth place of quantum
mechanics.

The first quantum revolution. In the middle of the 20th century, quantum theory
has been proven usefull for explaining many phenomena. Moreover, it has allowed
to understand the structure of atoms as it provided a complete description of the
orbitals of the hydrogen atom and light. Later, in 1963, R. J. Glauber established
the foundation of the theory of quantum optics [10] that explains the coherence of
a laser beam, a technology that was in development at that time. Today, lasers are
at the center of all optical fiber communication systems and crucial for the internet’s
exchange of information between continents.

On the other side, in 1932, A. Wilson, after studying the application of quantum me-
chanics to conduction of electricity with W. Heisenberg, establish a theory explaining
how energy bands for electrons allows a material to be conducting or an electrical
insulator. Moreover, he witnessed another type of material called semi-conductor.
This new type of material, that could be described as an insulator with a small en-
ergy gap, will lead J. Bardeen, W. Shockley and W. Brattain to discover the transistor,
an electronic component at the earth of today’s current information technology as
computers are made of hundreds of billion of transistors.

Finally, it is possible to monitor the frequency of radiation of atoms in order to en-
gineer atomic clocks. These atomic clocks allowed for a very accurate timekeeping
capabilities and are essential for the navigation of satellites and the positioning tech-
nologies as the Global Positioning System (GPS).

The first quantum technological revolution allowed the creation and rise of essential
technologies in our modern societies. However, they use the quantum description
of matter and light but do not use directly the essential features and characteristics
of quantum theory. Indeed, quantum exclusive properties such as entanglement was
not used in the technological developments of the first quantum revolution.

The second quantum revolution. Since the early days of the Age of information, a
significant effort has been made to build technological devices, such as computers,
at smaller scales. Indeed, modern central processing units (CPU) contain tens of bil-
lions of transistor that have to fit in hundreds of mm2. This device downsizing will

3



CHAPTER 1. INTRODUCTION

ultimately reach the boundary of the quantum physical world where a genuine quan-
tum treatment is needed. Unexpectedly, using quantum physics in order to achieve
informational objectives may even offer solutions with significantly improved per-
formances compared to classical computers.

However, such quantum advantages come at the condition of a precise engineering
of matter and light at the quantum scale. Hence, we may consider that the foun-
dation of the Quantum Technology era started in the beginning of the 1980’s with the
first tests of Bell’s theorem by J. Clauser [11] and A. Aspect [12]. It appeared that
nonlocal, entangled and nonclassical correlation could be experimentally oberved in
accordance with the predictions of A. Einstein, B. Podoslky and N. Rosen in their fa-
mous paper of 1935 [13] 6. The second quantum revolution (or quantum information
revolution) started later, in the 1990’s, when multiple experiments and propositions
where made showing how a proper use of quantum resources might have invaluable
impacts on cryptography[14, 15], computational power[16, 17] and metrology [18].
These are now very active fields of research and have lead to a few first technologi-
cal breakthrough such as quantum teleportation through satellites, gravitational field
interferometers (such as LIGO) and secure quantum key distribution over 4600 km
[19].

Numerous applications of quantum information technology require genuine quan-
tum resources to be enabled, such as nonclassical states (e.g., Fock states or cat states)
and entangled states (e.g., EPR states). Hence, there is a need for reliable criteria that
can unambiguously certify the nonclassical or entangled nature of the states pro-
duced in the laboratory. Some work in this thesis is aimed at addressing this chal-
lenge.

Original contribution of the present thesis. The work presented in this thesis lies
in the context of quantum optics. For this reason, the manuscript starts by reviewing
some of the most important notions of quantum optics and phase-space representa-
tion. Also, we introduce the notations that will be used throughout the thesis for the
quantum states and operation that we use. This in the content of Part I of the present
thesis.

The following three parts (Part II, III, and IV) concern the three specific areas that we
have contributed to in this thesis. We start each of these parts with an introduction
where we review the tools and techniques that are specific to the associated fields and
present the state of the art that is relevant to our original contribution. The details
of our contributions are then developed in the subsequent section within each part.
The order of Part II, III and IV simply follows the chronology of our contributions.

6Note that the first objective of this paper was to prove quantum mechanics was either an incomplete
theory or non-local. Non-locality was not acceptable for Einstein, hence he concluded that the theory
of quantum mechanics had to be completed by hidden variables.
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Part II concerns the parameter estimation of continuous parameters encoded in co-
herent states. We demonstrate a conjecture stated by N. J. Cerf and S. Iblisdir in 2001
and we further generalize it with an optimal encoding and decoding strategy for en-
capsulating N continuous, real-valued parameters into N coherent states. This work
uses the mathematical tools of quantum parameter estimation theory based on the
quantum Cramér-Rao bound and Fisher information. Our original contribution is
developed in more details in Chapter 4.

In Part III, we focus on a fundamental resource in quantum information theory,
namely quantum entanglement. As it is generally difficult to assess if a quantum
system is entangled or not (in which case it is called separable), an important en-
deavour consists in developing entanglement or separability criteria. We introduce
a new separability criterion, called the weak realignment criterion, which enables a
physical implementation in order to detect entanglement without the need for full
state tomography. This new criterion is strengthened by a filtration procedure and
benchmarked on Gaussian states. This original contribution is developed in more
details in Chapter 6.

Finally, in Part IV, we focus on the notion of optical nonclassicality and on how to de-
tect nonclassical quantum states, i.e., states that admit no classical counterpart (they
cannot be expressed as convex mixtures of coherent states). We study the perfor-
mance of nonclassicality criteria that can be derived from the matrix of moments of
the electromagnetic field and design novel optical-nonclassicality observables that
act on several replicas of a quantum state and whose expectation value coincides
with the determinant of these matrices, hence providing witnesses of optical non-
classicality. These multicopy obervables are used to construct a family of physically
implementable schemes using only linear optical operations and photon number de-
tectors. This original contribution is developed in more details in Chapter 8.

5



CHAPTER 1. INTRODUCTION

6



Part I | Basics of quantum optics
in phase space
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2 | Quantum optics in phase space

2.1 Quantization of the electromagnetic field

The solution of the Maxwell’s equations for the electric field E(r, t) can be written
as a decomposition in the different eigenfunctions, or mode functions, solving the
Maxwell’s equations as:

E(r, t) = ∑
k,λ

Ekeλ
k

[
αk,λ ei(kr−ωkt) + α∗

k,λ e−i(kr−ωkt)
]

, (2.1)

where k denotes the spatial mode number and λ the polarization.

The quantization of the electromagnetic field is done by replacing the complex di-
mensionless amplitudes αk and α∗

k by the mutually adjoint operators â and â† respec-
tively:

αk → âk,

α∗
k → â†

k ,
(2.2)

where k stands for both the spatial mode and polarization mode. The operators âk

and â†
k are called the annihilation and creation operators respectively (or ladder operators)

because, as it will be detailed later, they will allow to annihilate and create particles
associated with the electromagnetic field: photons. Hence, since photons are bosonic
particles, the annihilation and creation operators â and â† do need to respect the
bosonic commutation relations:

[âk, âk′ ] = 0,[
â†

k , â†
k′

]
= 0,[

âk, â†
k′

]
= δk,k′ ,

(2.3)

where δk,k′ is the Kronecker symbol. These commutation relations can be written in
a more compact form by defining the vectorial operator a := (â1, â†

1, â2, â†
2, ..., ân, â†

n)
T

composed of the creation and annihilation operators âk and â†
k in each mode k and

9
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the symplectic form matrix:
Ω := ⊕n

k=1ω, (2.4)

where:

ω :=

(
0 1
−1 0

)
, (2.5)

is called the symplectic matrix. Hence, the bosonic commutation relations (2.3) be-
come: [

ai, aj
]
= Ωij, (2.6)

where the labels i and j refer to the components of the vectorial operator a and not to
the different modes.

Through the quantization of the electromagnetic field (2.2), the Hamiltonian of the
electromagnetic field can be rewritten in terms of the ladder operators as 1:

Ĥ = ∑
k
(â†

k âk +
1
2
), (2.7)

which is expressed in natural dimension where the reduced Planck constant h̄ = 1
and the mode frequency ωk = 1. Hence, the Hamiltonian is the sum of the photon
number in each mode multiplied by the individual energy of a photon in that mode
h̄ωk that is normalized to 1 in our convention.

The eigenstates of (2.7) are the so-called Fock states (see section 2.4.1 for more details)
and are written in the Dirac bra-ket notation as |nk⟩. Hence, one can rewrite the
Hamiltonian (2.7) as:

Ĥ = ∑
k
(n̂k +

1
2
), (2.8)

where n̂ = â†
k âk is the number operator (or photon number operator). Consequently,

the Fock states are the eigenvectors of the number operator of eigenvalue nk as:

n̂k|nk⟩ = nk|nk⟩. (2.9)

The eigenvalues nk are natural numbers as the Fock state basis forms a complete
discrete basis of the Hilbert space. Indeed, by applying the ladder operators one can
travel, step by step, in the Fock states basis as:

â|n⟩ =
√

n |n − 1⟩,

â†|n⟩ =
√

n + 1 |n + 1⟩.
(2.10)

with the constraint that:
â|0⟩ = 0, (2.11)

1As it will be pointed later, the Hamiltonian of the electromagnetic field is the same as for an har-
monic oscillator. Hence, in what follows, a mode k will be understood as an harmonic oscillator.
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2.1. QUANTIZATION OF THE ELECTROMAGNETIC FIELD

where |0⟩ is called the vacuum state. Hence, one can construct the Fock state |n⟩ from
the vacuum state |0⟩ by applying the creation operator n times as follows:

|n⟩ = â†n
√

n!
|0⟩. (2.12)

It is also possible to define, from the single mode annihilation and creation operators
â and â†, the quadrature operators of the electromagnetic field as:

x̂ =
â + â†
√

2
,

p̂ =
â − â†
√

2i
.

(2.13)

These quadrature operators (2.13) do play an analogous role as, respectively, the po-
sition and the momentum operators of the harmonic oscillator. The commutation
relations between the quadrature operators is:

[x̂, p̂] = i. (2.14)

Hence, the uncertainty relation for quadratures writes:

σ2
x σ2

p ≥ 1
4

, (2.15)

where σ2
x = ⟨x̂2⟩ − ⟨x̂⟩2 is the variance in the quadrature x and σ2

x = ⟨ p̂2⟩ − ⟨ p̂⟩2 is
the variance in the quadrature p. The eigenstates vectors of the quadrature operators
are such that:

x̂|x⟩ = x|x⟩,

p̂|p⟩ = p|p⟩,
(2.16)

where x, p are real numbers. Therefore, we remark that, in contrast to the number
operator n̂, the quadrature operators admit a continuous spectrum. Moreover, the
continuous sets of vectors {|x⟩} and {|p⟩} form an orthogonal basis of the Hilbert
space since:

⟨x|x′⟩ = δxx′ = δ(x − x′),

⟨p|p′⟩ = δpp′ = δ(p − p′),
(2.17)

where δ is the Dirac delta distribution. These basis are also complete:∫ ∞

−∞
dx |x⟩⟨x| = 1,∫ ∞

−∞
dp |p⟩⟨p| = 1.

(2.18)

The eigenbasis of the quadrature operators are related to each other through Fourier

11
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transform:

|x⟩ = 1
2π

∫ ∞

−∞
dp e−ixp|p⟩,

|p⟩ = 1
2π

∫ ∞

−∞
dx eixp|x⟩.

(2.19)

Hence, the quadrature basis will be central in the study of the so-called continuous
variable systems or CV-systems. These systems are a collection of n harmonic oscil-
lators, each of them being described by an infinite-dimensional Hilbert space. In the
case when they are described by operators with a continuous spectrum (such as the
quadrature operators for the electromagnetic fields or the position and momentum
operators), these systems are called continuous variable systems. Hence, a single
harmonic oscillator can be described by infinite dimensional basis that is either the
Fock-state discrete basis or the quadrature-state continuous basis and it will be pos-
sible to go from the discrete description to the continuous description.

2.2 Phase space representation

The phase space representation was introduced in classical mechanics in order to
represent the dynamics of a system. Indeed, each degree of freedom of the system is
an axis in the phase space representation. For an harmonic oscillator, the axis are the
position and the momentum of the particle.

In quantum mechanics, the position and momentum of a particle are conjugate vari-
ables and the associated operators do not commute (2.14). Hence, the statistics of
these variables have to satisfy uncertainty relations like the Heisenberg uncertainty
relation and it has the effect that a quantum state cannot be represented on phase
space as a single point like classical point masses. Therefore, they need to be repre-
sented by functions that share properties of probability distributions but not neces-
sarily all of them. These functions are hence called quasi-probability distributions. In
the following section, we present three of them : the Wigner function, the Glauber-
Sudarshan P-function and the Husimi Q-function.

These quasi-probability functions are widely used in continuous variable quantum
optics and information. They are related by convolution product with a Gaussian
distribution. However, they differ from a classical probability density by different
properties. For example, the Wigner function accept negative values. Therefore,
these different properties lead to different criteria for detecting interesting quantum
properties of the state represented by each of these functions.

12
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2.2.1 Wigner function

Let us start with the Wigner function as it is the most common function used to
represent a quantum state in phase space. Indeed, the Wigner function is not singular
like the Glauber-Sudarshan P-function and admits negative values which is a good
and visible witness of nonclassicality (the Husimi Q function is always positive).

The definition of the Wigner function of a state is based on the notion of characteristic
function. Indeed, any state ρ can be represented by its characteristic function:

χ(γ) = Tr[D̂(γ)ρ], (2.20)

where D̂(γ) is the Weyl displacement operator (2.55) and γ ∈ C. By taking the
Fourier transform of the characteristic function, one finds the single mode Wigner
function of the state ρ:

W(α) =
1

π2

∫ ∞

−∞
dγ eγ∗α−γα∗χ(γ). (2.21)

The multimode Wigner function is defined as

W(x, p) =
1

(2π)n

∫ ∞

−∞
dy e−p.y⟨x + y

2
|ρ|x − y

2
⟩, (2.22)

and W(x, p) = W̃(x, p)/(2π)n where W̃(x, p) is the Weyl transform of the multimode
state ρ. The Weyl transform Ã(x, p) of the operator Â is defined as:

Ã(x, p) =
∫

dy e−p.y⟨x + y
2
|ÂS|x −

y
2
⟩, (2.23)

where ÂS is the symmetric order form of Â operator2.

The Wigner function is normalized to one:∫ ∞

−∞
dxdp W(x, p) = 1, (2.24)

which is a desired property for the Wigner function to represent a physical quantum
state since Tr(ρ̂) = 1.

The marginals of the Wigner function are:

W(x) =
∫ ∞

−∞
dp W(x, p) = ⟨x|ρ|x⟩, (2.25)

2For example, the symmetric order form of x̂ p̂ is x̂ p̂+ p̂x̂
2

13



CHAPTER 2. QUANTUM OPTICS IN PHASE SPACE

W(p) =
∫ ∞

−∞
dx W(x, p) = ⟨p|ρ|p⟩. (2.26)

At the origin of phase space, i.e. for x = 0 and p = 0, the value of the Wigner function
writes:

W(0, 0) =
1
π

Tr[ρΠ̂], (2.27)

where Π = (−1)â† â is the parity operator.

One can use the Wigner function to evaluate the mean value of an operator Â as:

⟨Â⟩ = Tr[ρÂ] =
∫ ∞

−∞
dxdpW(x, p)Ã(x, p), (2.28)

2.2.2 Glauber-Sudarshan P-function

Any density operator ρ̂ representing the quantum state of a single oscillator (bosonic)
mode can be represented in a diagonal form in the coherent state basis |α⟩, namely

ρ̂ =
∫

P(α)|α⟩⟨α|d2α, (2.29)

where P(α) is the Glauber-Sudarshan P-function. Note that P(α) completely defines
state ρ̂ and is normalized since Tr(ρ̂) = 1. A state ρ̂ is said to be classical if its as-
sociated P-function behaves as a probability distribution P(α) = Pcl(α), hence it is
non-negative. Any convex mixture of coherent states |α⟩ is thus classical by defini-
tion. Conversely, a quantum state ρ̂ is considered to be nonclassical if it cannot be
written as a mixture of coherent states, i.e., if P(α) ̸= Pcl(α). Simple examples of
nonclassical states include Fock states or squeezed states, whose P-functions are not
regular (their expressions involve derivatives of Dirac δ-functions).

The expectation value of any normally-ordered operator function : g(â, â†) : of the
annihilation â and creation â† operators can be expressed using the P-function as

⟨ :g(â, â†): ⟩ =
∫

d2α P(α) g(α, α∗). (2.30)

In this expression, the colon indicates normal ordering, which means that all cre-
ation operators must be placed on the left of annihilation operators. Hence, if the
P-function P(α) admits negative values, then Eq. (7.2) can be negative for some well
chosen function g(â, â†), witnessing the nonclassicality of state ρ̂. This suggests a
close connection between the expectation values of normally-ordered functions and
the nonclassical character of the P-function. Indeed, as observed in Ref. [20], any
operator of the form : f̂ † f̂ : is an Hermitian operator that yields a sufficient condition
of nonclassicality (see Part IV).
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2.2. PHASE SPACE REPRESENTATION

2.2.3 Husimi Q-function

Finally, another function that is used to represent a quantum state ρ is the Husimi
Q-function defined as the diagonal matrix elements of the density operator in a pure
coherent state |α⟩ :

Q(α) =
⟨α|ρ|α⟩

π
≥ 0. (2.31)

The Husimi function is bounded:

Q(α) ≤ 1
π

. (2.32)

The relation between the Husimi function Q(α) and the Glauber-Sudarshan function
P(β) is:

Q(α) =
⟨α|ρ|α⟩

π
=

1
π

∫
P(β) |⟨α|β⟩|2 d2β =

1
π

∫
P(β) e−|α−β|2 d2β. (2.33)

Hence, the Husimi Q-Function is a Gaussian convolution of the Glauber-Sudarshan
P-function. The Husimi Q-function is best suited for evaluating the anti-normally
ordered operators3 since:

⟨ân â†m⟩ =
∫

αnα∗m Q(α, α∗) d2α. (2.34)

2.2.4 Unitary and symplectic transformations

The phase space representation of quantum systems is described by an associated
algebra, called symplectic formalism, for expressing the unitary transformation of
quantum states that we will review in this section.

Let us start by recalling how quantum states evolve under an unitary operator:

U = eiH, (2.35)

where H is the Hamiltonian describing the evolution of the state and needs to be
hermitian H = H†. Hence, the operator U is obviously unitary U†U = e−iHeiH = 1.
The state ρ evolves under unitary transformation as:

ρ → UρU†. (2.36)

An important class of unitary transformation are the Gaussian transformations which
preserve the Gaussian character when applied to Gaussian states. These are the uni-
tary operators which Hamiltonian is at most quadratic in the annihilation and cre-

3which means that all annihilation operators must be placed on the left of creation operators.
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ation operators:
HG = â†α + â†Fâ + â†Gâ† + h.c. (2.37)

where α is a complex number and F and G are symmetric and complex n× n matrices
(and h.c. stands for hermitian conjugate). These Gaussian unitaries do preserve the
Gaussian properties of the transformed states. This means that Gaussian unitaries
transform Gaussian states into Gaussian states.

The unitary transformations can further be discriminated in two categories: the pas-
sive and the active unitary transformations. Passive transformations preserve the
mean number of photons of the state ⟨n̂⟩ρ after the transformation while the active
transformations do change the mean number of photons of the state. Hence, unitary
transformations can be characterized as Gaussian or non-Gaussian transformations
and as passive or active transformations. We will see that the family of Gaussian uni-
tary transformations is divided into the passive Gaussian unitary transformations
(containing the phase shift transformation and the beam splitter transformation) and
the active Gaussian unitary transformations (containing the squeezing operation).

In the Heisenberg picture, the Gaussian unitary transformations on the bosonic an-
nihilation and creation operators correspond to Bogoliubov transformations :

â → U† âU = Aâ + Bâ† + α, (2.38)

where α is a complex number and A and B are n × n matrices that need to satisfy
ABT = BAT and AAT = BBT + 1 in order to preserve the bosonic commutation
relations after the transformation.

Now, when we consider the continuous variable description of quantum states in
terms of the quadrature operators, Gaussian unitary transformations write:

r̂ → Sr̂ + d. (2.39)

where r̂ is the vector (x̂1, p̂1, x̂2, p̂2, ...) and S is a symplectic matrix. In order to pre-
serve the commutation relation after the transformation, the matrix S has to be sym-
plectic which means that it has to satisfy:

SΩST = Ω, (2.40)

where Ω is the symplectic matrix (2.4).

The symplectic Gaussian operations will be explicitly described in section 2.5.
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2.3 Gaussian states

An important class of quantum states in continuous variable quantum optics are the
Gaussian states. A state can be called Gaussian if its Wigner function (2.22) is a Gaus-
sian distribution. Hence, a Gaussian state is completely characterized by its moments
of order 1 and 2, namely its mean value vector ⟨r⟩ (also named displacement vector) and
its covariance matrix γ that we introduce in this section. Therefore, the Wigner func-
tion of a Gaussian state can always be written as:

WG(x, p) =
1

(2π)n
√

det γ
e−

1
2 (r−⟨r⟩)Tγ−1(r−⟨r⟩). (2.41)

where x = {x1, x2, ..., xn} and p = {p1, p2, ..., pn} are respectively the x- and p-vectors
and the mean value vector is defined as:

⟨r⟩ = Tr(rρ), (2.42)

where r = {x̂1, p̂1, x̂2, p̂2, ..., x̂n, p̂n} is the 2n−dimensional quadratures vector.

In the particular case of a 1-mode state, the covariance matrix writes:

γ =

(
σ2

x σxp

σpx σ2
p

)
, (2.43)

where the diagonal entries are the variance of the quadrature variables (sometimes
written σ2

x = ∆x2 and σ2
p = ∆p2) and the off-diagonal elements are the covariance

of the quadrature variables. More generally, the covariance matrix elements can be
written in terms of the quadrature vectors as:

γij =
1
2
⟨{r̂i, r̂j}⟩ − ⟨r̂i⟩⟨r̂j⟩. (2.44)

Since the Wigner function for Gaussian states (2.41) is completely determined by the
mean value vector and the covariance matrix, we will only give, in the following
examples of Gaussian states, their mean value vector and covariance matrix.

It must be noted that all covariance matrix γ do not represent physical quantum
systems. Indeed, they must, at least, satisfy the well known Heisenberg uncertainty
relation:

σ2
x σ2

p ≥ 1
4

. (2.45)

However, the issue with the Heisenberg uncertainty relation is that it is not invariant
under rotation in phase space. To overcome this problem, Schrödinger and Robert-
son proposed a more general uncertainty relation, usually called the Schrödinger-

17



CHAPTER 2. QUANTUM OPTICS IN PHASE SPACE

Robertson uncertainty relation, which writes:

det(γ) ≥ 1
4

, (2.46)

when applied to quadrature operators. This relation inherits from the nice proper-
ties of the determinant and is hence obviously invariant under all symplectic trans-
formation since the determinant of symplectic matrices is equal to 1. Therefore, all
pure Gaussian states (as the coherent and squeezed states introduced below) saturate
the Schrödinger-Robertson relation (2.46) which was not necessarily the case for the
Heisenberg uncertainty relation.

In the two-mode case, it is always possible by applying symplectic transformations
S to transform the covariance matrix into its standard forms [21]. There exists two
different standard forms.

The first type of standard form, noted standard form I, is the following:

γ =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 , (2.47)

where the elements a, b needs to satisfy a, b ≥ 1/2 in order for the covariance matrix
γ to satisfy the Heisenberg uncertainty relation. Moreover, as the covariance matrix
is positive semi-definite, this imposes that c2, d2 ≤ ab. Finally, the last physicality
condition is that the symplectic values of the covariance matrix γ needs to satisfy :
ν± ≥ 1/2 4

The second type of standard form, noted standard form II, is the following:

γI I =


n1 0 c1 0
0 n2 0 c2

c1 0 m1 0
0 c2 0 m2

 , (2.48)

where the ni, mi and ci satisfy the following equalities:

n1 − 1
m1 − 1

=
n2 − 1
m2 − 1

,

|c1| − |c2| =
√
(n1 − 1)(m1 − 1)−

√
(n2 − 1)(m2 − 1).

(2.49)

Another decomposition of the covariance matrix is given by the Williamson’s theo-
rem. This theorem states that there exists a symplectic transformation S that trans-

4The symplectic values of the covariance matrix can be found by searching the eigenvalues of iΩγ
where Ω is the symplectic matrix (2.4).
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forms the covariance matrix in a diagonal form as:

γ = Sγ⊕ST, (2.50)

where:
γ⊕ = ⊕n

k=1νk12×2, (2.51)

and the diagonal elements appear in pairs of the so-called symplectic values νk. In the
case of Gaussian states, the Williamson’s theorem can be applied to the covariance
matrix such that any Gaussian state can be constructed through Gaussian unitaries
from a collection of thermal product states where νk = 1/(n̄+ 1) where n̄ is the mean
number of thermal photons 5.

2.3.1 Coherent states

x

p

Figure 2.1: a) Phase space representation of a coherent state |α⟩. The norm |α| and
the phase θ is represented and the green area correspond to the variance ∆x2

θ = 1/2.
b) Three-dimensional phase space representation of a centered coherent state, i.e. the
vacuum state.

Coherent states are the states produced by a laser. The laser technology is very-
well mastered and coherent states are hence easy to produce in a laboratory. While
described in quantum optics by the means of non-commuting observables, they are
usually considered as classical states since their Glauber-Sudarshan P-function is a
Dirac delta. Coherent states show no quantum advantage for some quantum tasks
such as quantum parameter estimation interferometry [22] or quantum computation
[23]. However, they can be used for quantum key distribution protocols [24, 25] in
quantum cryptography.

Mathematically, they are the eigenstates of the annihilation operator :

â|α⟩ = α|α⟩, (2.52)

where the eigenvalue α is a complex number and his polar decomposition is α =

5see (2.80) for the definition of n̄
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|α|eiθ (see Fig. 2.1).

As we will see, they can be generated by the means of the Weyl displacement operator
defined as :

D̂(α) = eαâ†−α∗ â. (2.53)

The Weyl displacement operator is an unitary operator and its inverse can be found
simply by taking the opposite sign of the variable α as :

D̂†(α) = D̂−1(α) = D̂(−α). (2.54)

The application of the displacement operator on the creation and annihilation oper-
ators is given by the following transformation :

D̂†(α)âD̂(α) = â + α and D̂†(α)âD̂†(α) = â† + α∗. (2.55)

From the equations (2.52) and (2.55) , we can now see that coherent states can be
produced by applying the displacement operator on the vacuum state |0⟩. The de-
composition of the coherent state in the Fock basis {|n⟩} is :

|α⟩ = D̂(α)|0⟩ = e−
|α|
2

∞

∑
n=0

αn
√

n!
|n⟩. (2.56)

The coherent states are not orthogonal since :

⟨β|α⟩ = e
|β−α|2

2 . (2.57)

However they form an over-complete basis of the Hilbert space, meaning that :

1
π

∫
d2α|α⟩⟨α| = 1. (2.58)

The photon number statistics can be calculated from equation (2.56) and follow a
Poisson distribution :

P(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
. (2.59)

Moreover, a property of Poisson distributed statistics is that its variance σ2
n = ⟨∆(n̂)2⟩ =

⟨n̂2⟩ − ⟨n̂⟩2 is equal to its mean value ⟨n̂⟩. This is indeed the case for coherent states
since :

σ2
n = ⟨n̂⟩ = |α|. (2.60)

The Poissonian character of the number distribution of the coherent states is also
confirmed by evaluating the so-called Mandel Q parameter defined as :

Q =
⟨∆(n̂)2⟩ − ⟨n̂⟩

⟨n̂⟩ . (2.61)
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The Mandel Q parameter was introduced by Leonard Mandel in 1979 [26] and eval-
uates how much an occupation number distribution is distant from a Poisson distri-
bution. The value of the Mandel Q parameter for a Poisson distribution is Q = 0.
Obviously, the Mandel Q parameter for coherent states is : Q|α⟩ = 0. A negative
value for the Mandel Q parameter is a signature of nonclassicality and the minimal
value is : Qmin = −1 and is realised for Fock states.

Finally, the effect of the displacement operator on the quadrature operators is :

D̂†(α)x̂D̂(α) = x̂ +
√

2ℜ(α) and D̂†(α) p̂D̂†(α) = p̂† +
√

2ℑ(α), (2.62)

where ℜ(α) and ℑ(α) stand for the real and imaginary part of the complex number
α. From equation (2.62), we can evaluate the first and second order moment of the
coherent states. These moments are summarized in the displacement vector r and
the covariance matrix γ :

r =

(√
2ℜ(α)√
2ℑ(α)

)
and γ =

1
2

1. (2.63)

Hence, we see that the action of the displacement operator is to displace the vacuum
states in phase space. Therefore, the coherent state and the vacuum state share the
same covariance matrix γ|α⟩ = γvac. Finally, coherent states are states that saturate
the Heisenberg uncertainty relation 2.45 with equal variances σ2

x = σ2
y = 1/2 in

agreement with equation (2.63).

2.3.2 Squeezed states

The Gaussian operator for squeezing is:

S(ξ) = e
ξ â†2−ξ∗ â2

2 , (2.64)

with ξ = reiϕ, where r is a real number called the squeezing factor and ϕ is the squeezing
angle and takes values in the set [0, π]. The squeezing operator is an unitary operator
and its inverse can be found by taking the opposite sign of the variable ξ:

S†(ξ) = S−1(ξ) = S(−ξ). (2.65)

The application of the squeezing operator on the creation and annihilation operators
is given by the following transformations:

Ŝ†(ξ)âŜ(ξ) = cosh(r)â − eiϕ sinh(r)â†

Ŝ†(ξ)âŜ†(ξ) = cosh(r)â† − e−iϕ sinh(r)â.
(2.66)

In order to create a vacuum squeezed state, one has to apply the squeezing operator
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x

p

Figure 2.2: a) Phase space representation of a squeezed state |ξ⟩ (in green). The
state is squeezed in the x-quadrature. Indeed, the variance in the x-quadrature is
∆x2 = e−2r/2 while the variance in the p-quadrature is ∆p2 = e2r/2. The yellow
dashed disc is the phase space representation of the vacuum state. Note that the
area of the yellow and green ellipses is equal. b) Three-dimensional phase space
representation of a squeezed state.

to the vacuum state as follows (see Fig. 2.2):

|ξ⟩ = S(ξ)|0⟩. (2.67)

As the Hamiltonian of the squeezing operator in equation (2.64) is quadratic in the
creation and annihilation operators, the decomposition of a squeezed vacuum state
in the Fock basis involve only the even Fock states :

|ξ⟩ = 1√
cosh(r)

∞

∑
n=0

√
(2n)!

2nn!
einϕ(tanh(r))n|2n⟩. (2.68)

In general, a squeezed state might be displaced in phase space. This state is then
described by the following state :

|α, ξ⟩ = D(α)S(ξ)|0⟩. (2.69)

Note that squeezing and displacement operator do not commute D(α)S(ξ) ̸= S(ξ)D(α).
However, the following relation holds:

D(α)S(ξ) = S(ξ)D(cosh(r)α + eiϕ sinh(r)α∗). (2.70)

Hence, one can first act with a well calibrated displacement operator and then ap-
ply a squeezing operation to the displaced state in order to generate the displaced
squeezed state |α, ξ⟩ given by equation (2.69).
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Let us focus on the effect of squeezing on the quadrature operators. For the purpose
of clarity, we will fix the squeezing angle to ϕ = 0 such that ξ = r. Then, we can write
the following transformation of the quadrature operators under the application of the
squeezing operator:

Ŝ†(ξ)x̂Ŝ(ξ) = e−r x̂ and Ŝ†(ξ) p̂Ŝ†(ξ) = er p̂. (2.71)

By squeezing a vacuum state |0⟩, it can be seen from equation (2.71) that the first
moments ⟨x̂⟩ and ⟨ p̂⟩ are unchanged and remain equal to 0. In order to displace
a squeezed vacuum state, obtained by applying the squeezing operator Ŝ(ξ) to the
vacuum state, in phase space, one has to further apply a displacement operator to it.

Nevertheless, from the equations (2.71), we can calculate the second order moment of
a squeezed state (displaced or not). These moments are summarized in the following
covariance matrix γ:

γ =
1
2

(
e−2r 0

0 e2r

)
. (2.72)

This means that by applying a squeezing operator of squeezing parameter ξ = r
(with r > 0), the state is squeezed in the x-quadrature and is anti squeezed in the
p-parameter.

Finally, we give some moments of the creation and annihilation operators up to order
4:

⟨â† â⟩S = sinh2(r),

⟨â†2⟩S = ⟨â2⟩S =− sinh(r) cosh(r),

⟨â†2 â2⟩S = sinh2(r)(cosh2(r) + 2 sinh2(r)),

⟨â†3 â⟩S = ⟨â† â3⟩S =− 3 sinh3(r) cosh(r),

⟨â†4⟩S = ⟨â4⟩S = 3 sinh2(r) cosh2(r).

(2.73)

These results are used in section 8.1 to calculate the different determinants of princi-
pal submatrices taken from matrix of moments (Eq. 7.23) for squeezed states.

2.3.3 Two-mode squeezed vacuum state

The two-mode squeezing operator (TMSO) is a two-mode Gaussian unitary that writes:

UTMS = e
r
2 (â1 â2−â†

1 â†
2), (2.74)

where r is the squeezing parameter. Indeed, by sending two orthogonal squeezed
states on a balanced beam splitter (see section 2.5.2), one generates a two-mode squeezed
vacuum (TMSV):

|TMSV⟩ = U50:50
BS |ξ,−ξ⟩. (2.75)
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Equivalently, the TMSV can be generated by applying the TMSO on the vacuum
state:

|TMSV⟩ = UTMS|0⟩. (2.76)

The physical implementation of the TMSO will be given in section 2.5.4.

The TMSV is a two-mode entangled Gaussian state and its decomposition in the Fock
basis is the following:

|TMSV⟩ = 1
cosh(r)

∞

∑
n=0

(tanh(r))n|n, n⟩. (2.77)

Hence, the TMSV state has perfect photon number correlation. An alternative nota-
tion that can be encountered in the literature is:

|TMSV⟩ =
√

1 − λ
∞

∑
n=0

λn|n, n⟩, (2.78)

where λ = tanh(r).

The covariance matrix of the TMSV state is given by:

γ =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (2.79)

The standard TMSV state has correlation between the x̂-quadratures of both modes
and anti-correlations between the p̂-quadratures. In the (unphysical) limit of infinite
squeezing, r → ∞, we tend to the EPR state were the correlations and anti-correlation
are perfect. Finally, it is worth to mention that the EPR state is the common eigenstate
of the operators x̂1 − x̂2 and p̂1 + p̂2.

2.3.4 Thermal states

The thermal state is a one-mode mixed Gaussian state. Its decomposition in the Fock
basis is:

ρth =
∞

∑
n=0

nn

(n + 1)n+1 |n⟩⟨n|, (2.80)

where n = ⟨n̂⟩th is the mean number of photons of a thermal state also known as the
number of thermal photons.

Interestingly, thermal states can be obtained by tracing out one mode of the TMSV
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x

p

Figure 2.3: a) Phase space representation of a thermal state |n⟩ (in green).The variance
in the x-quadrature is equal to the variance in the p-quadrature ∆x2 = ∆p2 = n +
1/2. The yellow dashed disc is the phase space representation of the vacuum state
and its variances are ∆x2 = ∆p2 = 1/2. b) Three-dimensional representation of a
centered thermal state.

state (2.77), one finds:

ρth = Tr2(|TMSV⟩⟨TMSV|) = 1
(cosh(r))2

∞

∑
n=0

(tanh(r))2|n⟩⟨n|, (2.81)

which actually corresponds to a thermal state as it can be seen by taking n = sinh2(r)
in the definition (2.80).

The covariance matrix of a thermal state is:

γ =

(
n + 1

2 0
0 n + 1

2

)
. (2.82)

Hence, thermal states have a larger variance that the coherent states (see Fig. 2.3 for
the phase space representation of a centered thermal state) and do not saturate the
Heisenberg uncertainty relation. However, the variance is the same in both x- and
p-quadratures.

The importance of thermal states comes from the fact that the symplectic diagonal
form of a covariance matrix can be interpreted as the covariance matrix of a tensor
product of thermal states. Indeed, the diagonal elements of the symplectic diagonal
form of a covariance matrix, i.e. its symplectic values νi, can be expressed through
the mean number of photons of the thermal state : νi = n + 1/2.
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2.4 Non-Gaussian states

2.4.1 Fock states

The Fock states have already been introduced in section 2.1 and used in the previ-
ous section. However, as they are an important example of non-Gaussian states, we
describe here some more properties of these states that have not been introduced yet.

Fock states are important non-Gaussian pure states. They are the eigenstate of the
number operator n̂ = â† â. Indeed,

n̂|n⟩ = n|n⟩. (2.83)

Note that the number operator is an observable. Hence, Fock states are the eigen-
states of an observable. For n = 0, the associated Fock state |0⟩ is the vacuum state.

They form an orthonormal basis of states since :

⟨n|m⟩ = δn,m. (2.84)

Hence, they are commonly used as a basis for the decomposition of states.

Fock state of n photons can be obtained by applying the creation operator â† on the
vacuum state:

|n⟩ = (â†)n
√

n!
|0⟩. (2.85)

Since Fock states are non Gaussian states, we give their Wigner function:

Wn(x, p) =
(−1)n

π
e−(x2+p2)Ln(2(x2 + p2), (2.86)

where Ln(x) is the n-th Laguerre polynomial.

2.4.2 Cat states

Another interesting family of non-Gaussian states are the even and odd optical cat
states, written |c+⟩ and |c−⟩ respectively . They are defined as superposition of co-
herent states with opposite phases as follows :

|cβ
+⟩ =

1√
N+

(|β⟩+ | − β⟩), (2.87)

|cβ
−⟩ =

1√
N−

(|β⟩ − | − β⟩), (2.88)
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where N+ and N− are normalization constants equal to N± =
√

2
(
1 ± e−2|β|2). Re-

markably, odd cat states are orthogonal to even cat states : ⟨cα
±|c

β
∓⟩ = 0. Moreover,

applying the annihilation operator to an odd cat states gives a state proportional to
an even cat states and vice-versa. Indeed :

â|cβ
±⟩ =

1√
N±

(β|β⟩+ (−β)| − β⟩) = β

√
N∓
N±

|cβ
∓⟩. (2.89)

We give here some of the non-zero moments up to k + l = 4:

⟨â† â⟩c± =
N∓
N±

|β|2,

⟨â2⟩c± = ⟨â†2⟩∗c± =β2,

⟨â†2 â2⟩c± =|β|4,

⟨â† â3⟩c± = ⟨â†3 â⟩∗c± =
N∓
N±

β2|β|2,

⟨â4⟩c± = ⟨â†4⟩∗c± = β4.

(2.90)

These results are used in section 8.1 to calculate the different determinants of princi-
pal submatrices taken from matrix of moments (Eq. 7.23) for even and odd cat states.

2.5 Passive and active Gaussian unitaries in interferometry

2.5.1 Phase-shift operator

The phase shift operator corresponds a rotation of angle ϕ in phase space. It is a
passive Gaussian unitary as it preserves the number of photons and the Gaussian
character of the state. It is described by the free evolution unitary of an harmonic
oscillator:

R(ϕ) = e−iϕâ† â = e−iϕn̂. (2.91)

The associated Bogoliubov transformation consists in the multiplication of the anni-
hilation operator by a phase of angle ϕ:

â → e−iϕ â. (2.92)

Hence, the effect of a phase shift operation on the quadratures writes:

x̂ → cos(ϕ)x̂ + sin(ϕ) p̂,

p̂ → − sin(ϕ)x̂ + cos(ϕ) p̂,
(2.93)
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and the associated symplectic matrix for the phase shift writes:

R(ϕ) =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
, (2.94)

which correspond to a rotation matrix. Indeed, The effect of a phase shift on the
Wigner function is:

W(x, p) → W(cos(ϕ) x + sin(ϕ) p,− sin(ϕ) x + cos(ϕ) p), (2.95)

and the phase shift appears to act as a rotation of angle ϕ in phase space.

2.5.2 Beam splitter

The beam splitter is a semi-transparent mirror that has two input modes and two
output modes. It is very important in quantum optics since it can generate entangle-
ment between two modes. It is also used to model losses in a mode by taking the
vacuum state as the input of the ancillary mode. Then, it model a pure-loss channel
where the transmissivity is proportional to the beam splitter transmittance τ. The
unitary operation of the beam splitter is written:

B(τ) = eθ(â† b̂−âb̂†), (2.96)

where τ = cos2(θ) is the transmittance of the beam splitter. Indeed, from the conser-
vation of the number of photons, the transmittance τ and the reflectance r = sin2(θ)

need to satisfy:
τ + r = cos2(θ) + sin2(θ) = 1. (2.97)

Therefore, we can identify r = 1 − τ. Hence, the beam splitter can be expressed in
terms of the transmittance only.

The transformation of the operators, when considered in the Heisenberg picture,
through the beam splitter writes:(

â
b̂

)
→
( √

τ
√

1 − τ

−
√

1 − τ
√

τ

)(
â
b̂

)
. (2.98)

Other definition does exist in the literature. They are typically equivalent to this one
up to a phase shift. In terms of the quadratures operators r̂ = (x̂, p̂)T, the beam
splitter transformation writes:(

r̂1

r̂2

)
→
( √

τ1
√

1 − τ1

−
√

1 − τ1
√

τ1

)(
r̂1

r̂2

)
. (2.99)

These expressions will be widely used in the calculations present in this thesis.
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The beam splitter and the phase shift are the only tools necessary to implement pas-
sive interferometry where the total number of photons of the input and the output
states is conserved.

2.5.3 One-mode squeezer

The single mode squeezer is the simplest example of an active unitary transformation.
Indeed, it consists of a non-linear medium that is pumped with an intense laser. The
corresponding Hamiltonian writes:

H =
1
2
(ξ∗ â2 − ξ â†2), (2.100)

where ξ = reiϕ is the complex squeezing parameter and can be decomposed as the
multiplication of the real squeezing factor r and the real squeezing angle ϕ. The
Hamiltonian is composed of the terms â2 and â†2 which generate the pairs of photons.
Hence, in the case of the squeezed vacuum, the decomposition in the Fock state basis
(2.68) involves only the even Fock states elements. The action of the single mode
squeezing operation on the annihilation and creation operators in the Heisenberg
picture is: (

â
â†

)
→
(

cosh(r) −eiϕ sinh(r)
−e−iϕ sinh(r) cosh(r)

)(
â
â†

)
. (2.101)

In the specific case of ϕ = 0, the effect of the squeezing operator on the quadrature
operators is the following: (

x̂
p̂

)
→
(

e−r 0
0 er

)(
x̂
p̂

)
, (2.102)

which has the effect of squeezing the state along the x-axis and anti-squeezing it
along the p-axis as expected. This effect is better seen in terms of the covariance
matrix in (2.72). In order to achieve an arbitrary squeezing operation S(ξ), one can
first apply a phase shift P(−ϕ), then a squeezing operation along the x-axis S(r) and
then a final phase shift P(ϕ). This justifies the use for the variable notation ϕ for both
the phase shift and the squeezing operations.

2.5.4 Two-mode squeezer

The two-mode squeezer is the last Gaussian unitary we will cover in this introduc-
tion. The Hamiltonian of the two-mode squeezing operator (2.74) is Gaussian.
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The action of the TMSO on the quadratures writes:
x̂1

p̂1

x̂2

p̂2

→


cosh(r) 0 sinh(r) 0

0 cosh(r) 0 − sinh(r)
sinh(r) 0 cosh(r) 0

0 − sinh(r) 0 cosh(r)




x̂1

p̂1

x̂2

p̂2

 (2.103)

Hence the TMSO shows correlation between the x-quadratures and anti-correlations
between the p-quadratures of the two-modes. This can be seen by noticing that the
superposition of the quadratures X̂ = x̂1 − x̂2 and P̂ = p̂1 + p̂2

6 are squeezed and
x̂1 + x̂2 and p̂1 − p̂2 are anti-squeezed. Therefore, by applying the TMSO in the limit
of infinite squeezing (r → ∞) to vacuum states, the correlation in the x-quadratures
of the two modes are perfectly correlated (x̂1 = x̂2) and the p-quadratures of the two
modes are perfectly anti-correlated (p̂1 = − p̂2). Hence, in that limit, we recover the
famous EPR entangled state that was introduced by Einstein, Podolsky and Rosen
in 1932 [13]. Therefore, the nomenclature EPR state is sometimes used to refer to the
two-mode squeezed state, even for a finite value of the squeezing factor r.

The TMSO can be decomposed by first applying a balanced beam splitter followed
by two single mode squeezing of opposite squeezing parameter on each mode and
finally by applying a second balanced beam splitter.

2.6 Discrete and Continuous variable measurements

2.6.1 Discrete variable measurements

The main discrete variable that is used in measurement is the number of quanta of
the electromagnetic fields, namely the number of photons. Therefore, this type of mea-
surements are called photo-detectors.

Photon number resolving detection

A perfect measurement of the number of photons detected in a photo-detector is
represented in theory by perfect projective operators P̂n that project the measured
states into the subspace of the associated Fock state, where:

P̂n = |n⟩⟨n|. (2.104)

6Note that the operators X̂ and P̂ commute.
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Hence the photon statistic of the state ρ is derived as:

pn = Tr(ρP̂n), (2.105)

which becomes pn = ⟨ψ|(|n⟩⟨n|)|ψ⟩ = |⟨ψ|n⟩|, in the case of a pure state ρψ = |ψ⟩⟨ψ|.
These perfect projectors on Fock states are called photon number resolving detector
(PNR).

However, ideal photon number resolving detectors are not practically achievable.
The current experimental record can resolve up to 24 photons [27]. The limitations
comes form the inefficiencies of the detector and the dark counts. Hence, real photo-
counting techniques involve a finite number of POVM elements instead of projective
measurements that span the entire Hilbert space (as for (2.104)).

On-Off detection

One of the simplest detector one can imagine is the one that detects the presence or
absence of light. This is the purpose of the ON-OFF detectors. The POVM elements
representing the action of the ON-OFF detectors are:

Π̂off = |0⟩⟨0|,

Π̂on = 1 − |0⟩⟨0|.
(2.106)

These correspond to the detection of some light Π̂on or no light Π̂off . This ON-OFF
detection is realised by the avalanche photo-detectors (APD).

Real APD detectors are affected by some inefficiency η, which takes into account the
photon losses. This is modeled by adding a beam splitter of transmittance η equal to
the inefficiency of the detector followed by an ideal ON-OFF detector. In the case of
no losses, η = 1. The real APD POVM elements are:

Π̂off = ∑
m
(1 − η)m|m⟩⟨m|,

Π̂on = 1 − Π̂off ,
(2.107)

where the Π̂off takes into account the fact that the detector clicks "off" while there was
some photon present in the state initially but were lost.

As an example, let us consider the case of the Fock state ρn = |n⟩⟨n|. In this case, the
outcomes of the real ON-OFF detectors are:

poff = Tr
(
Π̂off |n⟩⟨n|

)
= ⟨n|Π̂off |n⟩ = (1 − η)n,

pon = Tr
(
Π̂on|n⟩⟨n|

)
= ⟨n|Π̂on|n⟩ = 1 − (1 − η)n,

(2.108)

Hence, in the case of a very efficient detector, i.e. η = 1 − ϵ, we have that the proba-
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bility that "off" clicks is poff = ϵn and that "on" clicks is pon = 1 − ϵn.

Another interesting example is to consider a coherent state |α⟩ with a very small
amplitude |α| ≪ 1. In this case, the probability of having "on" as an outcome is:

pon = 1 − poff = 1 − ∑
m

pm(α)(1 − η)n, (2.109)

where pm(α) = |⟨α|n⟩|. In the case we truncate the Hilbert space and take only into
account the vacuum and first Fock state, we have that p0(α) + p1(α) ≈ 1 and hence:

pon ≈ p1(α). (2.110)

Therefore, ON-OFF detectors can evaluate the single photon component of a coherent
state with very small amplitude.

2.6.2 Continuous variable measurements

The continuous variable measurements techniques are measurement whose spectrum
of outcomes is continuous. As it is showed in the next section, it involves natu-
rally the quadratures operators x̂ and p̂ since they have continuous spectra. Hence,
since the quadrature operators are associated with the notion of fields, the contin-
uous variable measurement techniques in quantum optics need an interferometric
measurement. We will describe in the following sections two common interferomet-
ric measurements : the homodyne and heterodyne (also called double-homodyne)
detection.

Homodyne detection

The homodyne detection allows to measure one of the quadratures of the electromag-
netic field. It works as follows. First, the target mode ât is combined with an intense
local oscillator αLO into a balanced beam splitter. After this, photodetectors measure
the intensity of the fields in each output mode and are subtracted afterwards. The
difference between the field intensities being proportional to the number of photons
in each mode, we can access to information about a quadrature of the target state.

More specifically, the Bogolioubov transformation associated to the balanced beam
splitter transformation are:

â1 =
1√
2
(ât + âLO),

â2 =
1√
2
(ât − âLO).

(2.111)

Hence, the difference of photon number from each output mode writes in terms of
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the input modes:
∆n̂ = n̂1 − n̂2 = â†

t âLO + â†
LO ât. (2.112)

The local oscillator can be understood as a coherent state |αLO⟩with high amplitude
|αLO| ≫ 1. Therefore, by using (2.112) in the case of a pure target state |ψt⟩, we have:

⟨αLO|⟨ψt| ∆n̂ |αLO⟩|ψt⟩ = ⟨αLO|⟨ψt| (â†
t âLO + â†

LO ât)|αLO⟩|ψt⟩,

= |αLO|⟨ψt| eiϕLO â†
t + e−iϕLO ât |ψt⟩,

=
√

2 |αLO| ⟨x̂t(ϕLO)⟩ϕt .

(2.113)

The measurement of any quadrature is possible through homodyne detection by tun-
ing the phase of the local oscillator (ϕLO = 0 correspond to the measurement of the x̂
quadrature and ϕLO = π/2 correspond to the p̂ quadrature). The factor

√
2 |αLO| can

be easily removed since the local oscillator is bright and can be considered classical.
Indeed, the noise contribution from the local oscillator field can be neglected as the
variance of the difference of the photon number is:

∆(n̂1 − n̂2)
2 = 2 |αLO|2 ∆x̂2

t (ϕLO). (2.114)

The homodyne detection allows one to measure any quadrature of the target states
and hence to fully characterize the state via the reconstruction of the Wigner function
W(x, p) of the state.

Heterodyne detection

Heterodyne detection, or double-homodyne detection, is a continuous variable mea-
surement that is described by a Gaussian POVM:

H(α) =
1
π
|α⟩⟨α|, (2.115)

consisting in a projection onto coherent states. In practice, it consist of the target state
being combined with a vacuum ancillary mode into a balanced beam splitter [28].
After this, each of the output modes are measured through homodyne detection of
each of the quadratures respectively. This enables to access both quadrature of the
states at the expense of an extra vacuum noise ∆x0 = ∆p0 = 1/2 coming from the
ancillary input mode.

The probability density at the output of a heterodyne detection of some state ρ is:

Tr(H(α)ρ) =
1
π
⟨α|ρ|α⟩ = Q(α), (2.116)

where Q(α) is the Husimi Q-function (2.31). Hence, the Husimi Q-function is usually
used to represented the results of heterodyne detection. This is coherent with the
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observation that the Husimi Q-function is non negative.
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parameter estimation
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3 | Introduction to quantum
parameter estimation

3.1 Introduction

In the framework of quantum parameter estimation, the goal is to estimate some
unknown parameter of interest, usually noted θ taking values in [−ϵ, ϵ], on which
depends a state ρ(θ). We assume the state ρ(θ) depends on the parameter θ through
some unitary operator:

ρ(θ) = e−iθĜρ0eiθĜ, (3.1)

where Ĝ is called the generator of the parameter and ρ0 = ρ(0). Let us now discuss
how we can estimate the value of θ from ρ(θ).

In order to accomplish this task, we allow ourself to make some measurements on the
state ρ(θ) from which we will have to infer an estimator θ̃ of the parameter. The brute
force technique is to allow us to make full tomography of the state and then infer the
value of θ by inverting the dependence of ρ(θ) on the parameter. However, this is
expensive in terms of time and the parameter might be time dependent. In order to
overcome this caveat, we can think about a more direct strategy by building up an
observable Ôθ which is optimized on estimating the parameter θ. In this situation,
by measuring the observable Ôθ we get some function of θ:

⟨Ôθ⟩ρ(θ) = Tr(ρ(θ)Ôθ) = f (θ), (3.2)

from which we can infer the value of θ by taking the inverse of f :

θ = f−1
(
⟨Ôθ⟩ρ(θ)

)
. (3.3)

The observable Ôθ is called an unbiased estimator of θ if:

⟨Ôθ⟩ρ(θ) = Tr(Ôθ ρ(θ)) = θ, (3.4)

for all possible values of θ. Demanding that Ôθ is an unbiased estimator is a strong
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requirement on Ôθ . A weaker requirement, is that Ôθ is asked to be a locally unbiased
estimator which is the case if:

∂

∂θ
Tr
(
Ôθ ρ(θ)

)
|θ=0 = 1. (3.5)

Obviously, any unbiased estimator is also a locally unbiased estimator. Indeed, by
Taylor development, a locally unbiased estimator can be written as:

⟨Ôθ⟩ρ(θ) ≈ θ + O(θ2). (3.6)

A useful figure of merit to assess how good an unbiased estimator Ôθ does estimate
the parameter θ is given by the variance:

∆2
θÔθ = Tr

(
Ô2

θ ρ(θ)
)
− Tr

(
Ôθ ρ(θ)

)2
. (3.7)

Indeed, the variance is one of the most used measure of spread of a statistical distri-
bution. Hence, an estimator Ôθ that has a low variance ∆2

θÔθ is expected to converge
quicker towards the values of the parameter θ. Hence, a natural question that arises
is : what is the minimal value of the variance of a given estimator ∆2

θÔθ ? The answer
to this question is given by the so-called quantum Cramér–Rao bound (QCRB) which is
the subject of the following sections.

3.2 Cramér–Rao bound and Fisher information

3.2.1 Classical Cramér–Rao bound and Fisher information

Let us take a step back and review the notions of Cramér–Rao bound and Fisher
information in the context of classical parameter estimation theory, where the locally
unbiased estimator1 of the parameter θ is a function θ̃ = θ̃(x1, x2, ...) of the outputs of
a set of measurement outcomes xi.

In this classical case, the Cramér–Rao bound (or CR bound) provides a lower bound
on the variance ∆2θ̃ of any unbiased estimator θ̃ of the parameter θ:

∆2θ̃ ≥ 1
NFC(θ)

, (3.8)

where N is the number of measurement outcomes and FC(θ) is the classical Fisher

1the locally unbiased estimator in classical parameter estimation is defined similarly as in (3.5): it
needs to satisfy ∂θ θ̃|θ=0 = 1 where ∂θ is the partial derivative with respect to θ. Similarly, a classical
unbiased estimator needs to satisfy ⟨θ̃⟩ = θ.
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information defined as:

FC(θ) =
∫

dxp(x|θ)
(

∂

∂θ
ln(p(x|θ))

)2

=
∫

dx
1

p(x|θ)

(
∂

∂θ
p(x|θ)

)2

, (3.9)

where p(x|θ) is the conditional probability of obtaining the outcome x given that the
parameter takes the value θ and ∂

∂θ ln(p(x|θ)) is called the score function.

For identical and independently distributed samples, the Cramér–Rao bound (3.8) is
asymptotically saturated by the maximum-likelihood estimator 2 for N → ∞.

3.2.2 Quantum Cramér–Rao bound and Fisher information

The transition from the classical definition (3.9) to the quantum version of the Fisher
information is made through the Born rule :

p(x|θ) = Tr(Πxρ(θ)), (3.10)

where Πx are the elements of a positive operator-valued measure (POVM).

For a state ρ(θ), the quantum Fisher information (QFI) is defined through the symmetric
logarithmic derivative (SLD) Lθ , which is the selfadjoint operator satisfying the follow-
ing Lyapunov equation [18]:

∂ρ

∂θ
=

Lθρ + ρLθ

2
. (3.11)

This enables us to express the classical Fisher information in terms of POVM elements
and SLD as:

FC(θ) =
∫

dx
1

p(x|θ)

(
∂

∂θ
p(x|θ)

)2

,

=
∫

dx
(Tr(Πx∂θρ(θ)))2

Tr(Πxρ(θ))
,

=
∫

dx
ℜ (Tr(ΠxLθρ(θ)))2

Tr(Πxρ(θ))
,

(3.12)

2the maximum-likelihood estimator is an estimator built from finding the maximum of the likeli-
hood function L(x|θ), i.e. from the condition ∂θL(x|θ) = 0.
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where the last equality comes from

Tr(Πx∂θρ(θ)) =
1
2

Tr(ΠxLθρ + ρLθ),

=
1
2

Tr(ΠxLθρ + (Lθρ)†),

=
1
2

(
Tr(ΠxLθρ) + Tr(Πx(Lθρ)†)

)
,

=
1
2
(Tr(ΠxLθρ) + Tr(ΠxLθρ)∗) ,

= ℜ(Tr(ΠxLθρ(θ)).

(3.13)

The definition (3.12) is not yet the quantum version of the Fisher information. Indeed,
it still depends on the POVM {Πx} that is used to measure the state ρ(θ). In order
to find the ultimate quantum Cramér–Rao bound, we need to maximize the Fisher
information (3.12) over all possible POVM’s [29]:

FC(θ) =
∫

dx
ℜ (Tr(ΠxLθρ(θ)))2

Tr(Πxρ(θ))
,

≤
∫

dx
∣∣∣∣Tr(ΠxLθρ(θ))

Tr(Πxρ(θ))

∣∣∣∣2 ,

=
∫

dx

∣∣∣∣∣Tr

( √
ρ(θ)

√
Πx√

Tr(Πxρ(θ))

√
ΠxLθ

√
ρ(θ)

)∣∣∣∣∣
2

,

≤
∫

dx Tr(ΠxLθρ(θ)Lθ),

= Tr(Lθρ(θ)Lθ),

= Tr(ρ(θ)L2
θ),

(3.14)

where the second inequality results from the Schwartz inequality Tr(A†B) ≤ Tr(A† A)Tr(B†B)
with A† =

√
ρ(θ)

√
Πx/

√
Tr(Πxρ(θ)) and B =

√
ΠxLθ

√
ρ(θ).

We can now define the quantum Fisher information (QFI) as:

FQ(θ) = Tr(ρ(θ)L2
θ). (3.15)

As expected, the QFI only depends on the state ρ(θ) and the associated SLD Lθ and
is independent of the quantum measurement POVM {Πx}. Let us remember the
following inequality between the classical and quantum Fisher information:

FC(θ) ≤ FQ(θ), (3.16)

and that the classical Cramér–Rao bound (3.8) can always be saturated, asymptoti-
cally in the number of repetition of the experiment.
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Hence, the quantum Cramér–Rao bound reads:

∆2θ̃ ≥ 1
NFC(θ)

≥ 1
NFQ(θ)

, (3.17)

and gives a lower bound for any estimator of the parameter θ of the state ρθ . Hence,
it is also a lower bound for the estimator Ôθ :

∆2Ôθ ≥
1

NFQ(θ)
, (3.18)

where ∆2Ôθ is defined in (3.7). The saturation of the QCRB is possible by choosing
the POVM to be the eigenvectors of the SLD Lθ [29].

3.3 Quantum Cramér–Rao bound for multiple parameters

In quantum metrology, the parameters encoded in some quantum carrier are usually
taken to be phases Θ = (θ1, θ2, ..., θn). The optimization goal is to lower the variance
of the estimators as much as possible. However, the lowest possible variance on each
(unbiased) estimator θ̃i is limited by the Quantum Cramér–Rao Bound (QCRB) [29, 30],
namely

∆2θ̃i ≥
(F−1(Θ))ii

N
, (3.19)

where F(Θ) is the so-called quantum Fisher information matrix (QFIM) and N is the
number of repetitions of the scheme. If a measurement scheme saturates the QCRB,
it is called optimal since no other scheme can do better. Note that since the right hand
side in (3.19) involves the inverse of the QFIM, it is needed to for the QFIM to be
invertible.

Similarly to the definition of QFI for single parameter (3.15), for a state ρ, the QFIM
is defined through the symmetric logarithmic derivatives (SLDs) Lθi for i = 1, 2, ..., n,
which is the selfadjoint operator satisfying the following Lyapunov equation [18]:

∂ρ

∂θi
=

Lθi ρ + ρLθi

2
. (3.20)

The matrix elements of the QFIM are then defined in terms of the SLDs as Fij(Θ) =

ℜ
[
Tr
(

ρLθi Lθj

)]
, where symbol ℜ denotes the real part of the expression since the

QFIM is real.

In the case of a pure state ρ = |ψ⟩⟨ψ|, simple expressions can be found for both the
SLDs and the QFIM in [31]. The SLD for a pure state is written as

Lθi = |ψ⟩⟨∂iψ|+ |∂iψ⟩⟨ψ|, (3.21)
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and the matrix elements of the QFIM are given by

Fij(Θ) = 4 ℜ
[
⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩

]
, (3.22)

where ∂i denotes partial derivative with respect to the ith parameter θi in both Equa-
tions (3.21) and (3.22). We remark that the QFIM depends on the states but is not
depending on the measurement being performed since it gives a bound on the best
measurement.

3.4 Attainability of the quantum Cramér–Rao bound

In general, when dealing with multiple parameters Θ, it is not always possible to
saturate the multiple parameter Cramér–Rao bound (3.19). The origin of this effect
comes from the fact that, for unitary encoded parameters, the generators Ĝi of the
different parameters θi do not necessarily commute. Hence, a strong necessary con-
dition for the QCRB (3.19) to be saturated, called the strong commutation relation, is
that the parameters generators commute:

[
Ĝi, Ĝj

]
= 0. (3.23)

However, even in the case where all generators of the different parameters do not
commute, it is possible to saturate the inequality (3.19). For example, in the case
when all the SLD’s Lθi do commute, the attainability of the QCRB is assured. Nev-
ertheless, it is possible that the SLD’s do not commute. This last scenario is less
conclusive and needs further development (see [32]).

For pure states ρψ = |ψ⟩⟨ψ|, a necessary and sufficient condition for the attainabil-
ity of the QCRB does exist and was introduced by Matsumoto [33]. This condition,
which was referred to as the weak commutation condition in [32] is expressed as

Tr(ρψ(θ)[Lθi , Lθj ]) = 0, (3.24)

which is the expectation value of the commutator between the SLDs operator on
the state ρψ(θ) that is asked to vanish. This weak commutation relation can also be
expressed more explicitly for pure state ρψ = |ψ⟩⟨ψ| by replacing the SLDs in (3.24)
by their expression (3.21) :

ℑ(|∂θi ψ⟩⟨∂θj ψ|) = 0, ∀i, j = 1, ..., n. (3.25)

The weak commutation condition is a necessary and sufficient condition for the exis-
tence of some pair of SLDs of which commutes and which common eigenbasis is an
optimal measurement for estimating the parameters θi and θj. Hence, it is possible to
saturate the QCRB (3.19) for both parameters simultaneously.
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Figure 3.1: Mach-Zehnder interferometer implementation. We first apply a balanced
beam-splitter (transmittance τ = 1/2), after a phase shift of an unknown phase θ
to be estimated is applied in one of the arms of the interferometer. Finally a second
balanced beam-splitter is applied and both modes are measured.

3.5 Optical implementations and performances

3.5.1 Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a standard interferometric setup studied in the
context of quantum parameter estimation theory. It is composed of two balanced
beam splitter and photodetectors, ideally photon number resolving detectors, at the
output to measure the intensities of the output modes. The path of the interferometer
are usually assumed to have the same length. In one of the path of the interferometer
lies a phase shifter whose phase shift ϕ is usually unknown and is the parameter to
be estimated.

Hence, the output mode field operators write in terms of the input mode field oper-
ators as: (

b̂1

b̂2

)
=

1√
2

(
1 1
1 −1

)(
1 0
0 e−iϕ

)
1√
2

(
1 1
1 −1

)(
â1

â2

)
, (3.26)

=
1
2

(
1 + e−iϕ 1 − e−iϕ

1 + e−iϕ 1 + e−iϕ

)(
â1

â2

)
, (3.27)

such that if ϕ = 0, we have that b̂1 = â1 and b̂2 = â2.

In particular, if the second input mode is in the vacuum state, then one would observe
the following statistics from the output photodetectors:

⟨b̂†
1 b̂1⟩ = cos2

(
ϕ

2

)
⟨â†

1 â1⟩,

⟨b̂†
2 b̂2⟩ = sin2

(
ϕ

2

)
⟨â†

1 â1⟩.
(3.28)

From this interference pattern, the value of ϕ can be inferred.
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3.5.2 Standard quantum limit

Estimating the precision with which one can estimate a parameter ϕ is central in
quantum parameter estimation. More precisely, the question of how does the preci-
sion scale with the number of particles or photons used during the experiment. The
classical limit, i.e. achievable with classical light such as coherent states, is called the
standard quantum limit and scales as the square root of the number of particles:

∆ϕ ∼ 1√
N

, (3.29)

where N is the number of photons used in the interferometer. This limit is not fun-
damental as it can be beaten by quantum resource states such as squeezed states or
entangled states.

3.5.3 Heisenberg limit

The fundamental limit on the precision one can estimate a parameter ϕ with N par-
ticles is the Heisenberg limit. It shows a quadratic enhancement toward the standard
quantum limit as:

∆ϕ ∼ 1
N

. (3.30)

The Heisenberg limit can be, in theory, achievable by means of entanglement (NOON
states for example [34, 35]) but is in general not achievable in experiment due to
decoherence effects [36].
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4 | Optimal estimation of param-
eters encoded in coherent states
quadratures

The content of this chapter is mainly based on the article "Optimal Estimation of Parame-
ters Encoded in Quantum Coherent State Quadratures" that I have published with Evgueni
Karpov and Nicolas Cerf as co-authors [1].

4.1 Introduction

Quantum estimation theory as introduced by Helstrom [18] in the 1960s sets fun-
damental bounds on the extraction of classical parameters encoded in quantum sys-
tems. Since then, a large body of work has been devoted to the estimation of parame-
ters, especially phases encoded in quantum optical states (see, e.g., [37, 38, 39, 40, 41]
for recent works on multiparameter phase estimation and [42, 43, 44, 45, 46, 47] for
the problem of estimation of parameters induced by non-commuting generators). We
recommend to the interested reader the review by Demkowicz-Dobrzański et al. [48].
In most of these studies, it is usually assumed that we have no control on the value
of the parameters being estimated. In this chapter, we consider a communication
protocol between Alice and Bob where Alice can choose the values of the parameters
she wants to send and how she encodes these parameters in a collection of coherent
states she has at her disposal.

More precisely, we consider the problem of encoding and estimating classical pa-
rameters in canonically conjugate quantum variables, such as the quadrature com-
ponents of coherent states of light. We derive the quantum Cramèr–Rao bounds
(QCRB) for an arbitrary linear encoding of two classical parameters into the quadra-
tures of two coherent states. Furthermore, we present an encoding and estimation
protocol that achieves the QCRB for the simultaneous estimation of the two param-
eters. Finally, we generalize our protocol to encode a set of n classical parameters
into the tensor product of n coherent states so that one can always simultaneously
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estimate all parameters optimally, using a measurement technique involving linear
optics components followed by homodyne measurements.

A corollary of this work is the proof of optimality of the scheme based on phase-
conjugate coherent states proposed by Cerf and Iblisdir [4] in 2001, which was left as
an open problem in [49].

This chapter is organized as follows. In Section 4.2, we introduce the parameter com-
munication problem that we address and explicitly write the encoding of two classi-
cal parameters in the quadratures of two coherent states. In Section 4.3, we review
the quantum Cramér–Rao bound, which provides a lower bound on the variance
of any (unbiased) estimator of the classical parameters encoded into the quantum
states. This bound, which is valid for any measurement, relies on the quantum Fisher
information. We thus calculate the quantum Fisher information with respect to the
parameters encoded into the coherent states in the considered schemes, and write
conditions on the attainability of the corresponding quantum Cramér–Rao bound. In
Section 4.4, we show that the variances obtained in the Cerf–Iblisdir scheme based on
phase-conjugate coherent states [4] saturate the quantum Cramér–Rao bound, hence
proving the optimality of the scheme. More generally, we characterize a family of en-
coding schemes of two variables into a pair of coherent states which all saturate the
quantum Cramér–Rao bound. Within this family, the Cerf–Iblisdir scheme provides
the highest precision enhancement achieved by a joint measurement in comparison
with local measurements. In Section 4.5, we further generalize the scheme to n vari-
ables encoded into n states, while we conclude in Section 4.6.

4.2 Two-mode coherent-state parameter communication scheme
with linear encoding

Usually, a parameter estimation problem can be divided into three stages: the first
stage consists in preparing a probe state, which, in the second stage, acquires some
unknown parameters (often phases) by interacting with the probed media. The probe
state is then measured in the third stage and the parameters are inferred from the
measurement outcomes. The goal is of course to estimate the unknown parameters
as precisely as possible, that is, to minimize the variance of each parameter estimator.

In this Chapter, we adopt a variant of this procedure, more suitable for parameter
communication purposes. We consider the first two stages of the above scheme to
be performed by the sender, Alice, who prepares the states and encodes some pa-
rameters into them. The third stage is then performed by the receiver, Bob, who is
allowed to use linear optics and homodyne measurements. Moreover, we authorize
Alice and Bob to exchange prior messages on the measurement settings with the re-
striction that no relevant information about the unknown parameters can be inferred
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from these messages.

Specifically, we consider the following parameter communication scheme. To send
Bob a complex number z = (a + ib)/

√
2 through an optical channel, Alice generates

two coherent states |α1⟩ ⊗ |α2⟩ at her choice, encoding the real numbers a and b.
Coherent states can be regarded as resulting from the action of the displacement
operator on the vacuum state |0⟩, namely

|α⟩ = exp(ipx̂ − ixp̂)|0⟩, (4.1)

where x and p are the displacement parameters and x̂ and p̂ are the quadrature op-
erators. In this way, the state |α1⟩ ⊗ |α2⟩ is characterized by the quadrature vector
r = (x1, p1, x2, p2). The commutation relations between the quadrature operators are[
x̂i, p̂j

]
= iδij in natural units (h̄ = 1) for i, j = 1, 2. A natural condition, which we

impose on these coherent states, is some total energy constraint on the input state:

x2
1 + p2

1 + x2
2 + p2

2 = 2(a2 + b2). (4.2)

This constraint means that average energy per mode is equal to some “signal energy”
a2 + b2. Bob, on his side, has only passive linear optics (beam splitters and phase
shifters) and homodyne detectors in order to build a measurement apparatus for
estimating parameters a and b. The goal for Bob is to estimate optimally both a and
b knowing that they are encoded linearly in the quadratures of the coherent states
|α1⟩ ⊗ |α2⟩.

The most general linear encoding of the real parameters a and b in the quadratures
of a two-mode coherent state system is

x1 =ϵx1a + ηx1b,

p1 =ϵp1a + ηp1b,

x2 =ϵx2a + ηx2b,

p2 =ϵp2a + ηp2b.

(4.3)

Thus, Alice has to choose eight real constants (ϵk,l , ηk,l), where k = x, p and l = 1, 2,
in a way that allows Bob to optimally retrieve the encoded parameters a and b. In the
next section, optimality is defined as the attainability of the quantum Cramér–Rao
bound on the variance of both estimators of classical parameters a and b. As we will
show, attaining this bound imposes several constraints on the eight constants.
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4.3 Parameter estimation

4.3.1 Optimal lower bound

Here, the parameters a, b are encoded into the x and p quadratures of the input prod-
uct coherent state |ψ⟩ = |α1⟩ ⊗ |α2⟩, which justifies the use of homodyne detection in
the optimal measurement scheme in Section 4.4. To find the quantum Cramér–Rao
bound on the variances ∆2 ã and ∆2b̃ of the estimators of a and b, we use the additiv-
ity of the QFIM. It implies that the QFIM for the product state |ψ⟩ = |α1⟩ ⊗ |α2⟩ is the
sum of the QFIM of the individual states |α1⟩ and |α2⟩, namely

F(α1α2)
Q = F(α1)

Q + F(α2)
Q . (4.4)

Thus, we simply need to express the individual QFIM for each of the two coherent
states. First, we calculate the derivatives with respect to a and b of the individual
coherent states

∂a|αj⟩ = i
(

ϵpj x̂j − ϵxj p̂j + 2ϵxjϵpj +
3ϵxjηpj + ϵpjηxj

2
b
)
|αj⟩,

∂b|αj⟩ = i
(

ηpj x̂j − ηxj p̂j + 2ηxjηpj +
3ηxjϵpj + ηpjϵxj

2
b
)
|αj⟩,

(4.5)

where j = 1, 2 indicates the mode number. By using (4.5) and the definition in (3.22)
with θi = a, b, we obtain the QFIM for each mode

F
(αj)

Q = 2

(
ϵ2

xj + ϵ2
pj ϵpjηpj + ϵxjηxj

ϵpjηpj + ϵxjηxj η2
xj + η2

pj

)
. (4.6)

It is worth noting that the single-mode QFIM in (4.6) is not in general an invertible
matrix, which originates from the non-commutativity of the quadrature operators x̂
and p̂ and is a manifestation of the Heisenberg uncertainty principle. It means that
it is in general not possible to extract the two parameters optimally from a single
mode, that is, one cannot reach the variance

(
F(αj)ii

)−1 /N simultaneously for both
parameter estimators.

As a consequence of this non-invertibility, one cannot use the QFIM in (4.6) to calcu-
late the QCRB on the estimator of a and b. However, the QFIM becomes invertible
when applied to two coherent states |α1⟩ ⊗ |α2⟩, namely

F(α1α2)
Q = 2

(
A C
C B

)
. (4.7)
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where

A = ϵ2
x1 + ϵ2

p1 + ϵ2
x2 + ϵ2

p2,

B = η2
x1 + η2

p1 + η2
x2 + η2

p2,

C = ϵp1ηp1 + ϵx1ηx1 + ϵp2ηp2 + ϵx2ηx2.

(4.8)

Its eigenvalues are given by

λ± =
A + B ±

√
(A + B)2 + 4(C2 − AB)

2
. (4.9)

We want to estimate both classical parameters a and b with the same precision since
they are equally important in order to estimate the complex number z = (a+ ib)/

√
2.

This equal precision condition imposes that both eigenvalues of (4.7) should be equal
λ+ = λ− 1, which implies the condition

(A − B)2 = −4C2. (4.10)

According to (3.22), A, B and C should be real numbers, hence the only solution of
(4.10) is expressed by two conditions

A = B, C = 0. (4.11)

Furthermore, we can rewrite the energy constraint of (4.2) in terms of the QFIM pa-
rameters (4.8) as

(A − 2)(a2 + b2) = 0. (4.12)

This equation should be satisfied for all real a and b, since they can be chosen ar-
bitrarily by Alice, so that we only have the condition A = 2. Hence, by using the
energy constraint in (4.12) together with the equal precision condition in (4.11), we
obtain a simple expression for the QFIM associated with estimating the parameters a
and b from the state |α1⟩ ⊗ |α2⟩, namely

F(α1α2)
Q =

(
4 0
0 4

)
. (4.13)

This imposes three conditions on the eight encoding constants (ϵk,l , ηk,l).

From the QFIM in(4.13), one can deduce the QCRB on the variance of the estimators
ã and b̃ of the classical parameters a and b for a pair of input coherent states

∆2 ã ≥ 1/4, ∆2b̃ ≥ 1/4. (4.14)

1In this case, the QFIM matrix (4.7) will be proportional to the identity matrix and both both param-
eters ã and b̃ can be estimated with the same precision.
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Before we find an encoding and estimation strategy such that Bob can optimally es-
timate both a and b (see Section 4.4), let us discuss the attainability of the QCRB.

4.3.2 Proof of the attainability of the Quantum Cramér–Rao Bound

The commutation condition (3.24) translates into a condition on our encoding con-
stants (ϵi,j, ηi,j), as we show below.

The SLDs for a two-mode coherent state ρ12 = |α1⟩⟨α1| ⊗ |α2⟩⟨α2| in which the clas-
sical parameters a and b are encoded with the linear encoding strategy in (4.3) are
given by

La = i[ϵp1 (x̂1ρ12 − ρ12 x̂1) + ϵp2 (x̂2ρ12 − ρ12 x̂2)

−ϵx1 ( p̂1ρ12 − ρ12 p̂1) − ϵx2 ( p̂2ρ12 − ρ12 p̂2)],
Lb = i[ηp1 (x̂1ρ12 − ρ12 x̂1) + ηp2 (x̂2ρ12 − ρ12 x̂2)

−ηx1 ( p̂1ρ12 − ρ12 p̂1) − ηx2 ( p̂2ρ12 − ρ12 p̂2)],

(4.15)

where we have plugged Equation (4.5) into the formulas of the SLDs for pure states
in (3.21) where θi = a, b. Inserting Equation (4.15) into (3.24), we observe that the
only surviving terms are those involving the commutator [x̂i, p̂i], which leads to

Tr(ρ12[La, Lb]) = i⟨α1|(ϵp1ηx1 − ϵx1ηp1)[x̂1, p̂1]|α1⟩+ i⟨α2|(ϵp2ηx2 − ϵx2ηp2)[x̂2, p̂2]|α2⟩,
= −ϵp1ηx1 + ϵx1ηp1 − ϵp2ηx2 + ϵx2ηp2.

(4.16)

As a result, we obtain the attainability condition on the encoding constants

ϵp1ηx1 − ϵx1ηp1 + ϵp2ηx2 − ϵx2ηp2 = 0. (4.17)

Together with the energy constraint in (4.2) and equal precision conditions in Equa-
tion (4.11), the attainability condition in (4.17) gives rise to a system of four equations
that an optimal encoding strategy must satisfy, namely

ϵ2
x1 + ϵ2

p1 + ϵ2
x2 + ϵ2

p2 = 2,

η2
x1 + η2

p1 + η2
x2 + η2

p2 = 2,

ϵp1ηp1 + ϵx1ηx1 + ϵp2ηp2 + ϵx2ηx2 = 0,
ϵp1ηx1 − ϵx1ηp1 + ϵp2ηx2 − ϵx2ηp2 = 0.

(4.18)

As we only have four constraints for eight real constants (ϵi,j, ηi,j), there is no unique
solution to this system. The most general linear encoding corresponds to the one
that can be optimally decoded by using the most general two-mode passive Gaussian
unitaries composed of three local phases and one beam splitter. Therefore, the most
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general two-mode encoding can be written in the following way:

ϵx1 =
√

2T cos(θ), ηx1 =
√

2(1 − T) (sin(θ) sin(ψ)− cos(θ) cos(ψ)) ,
ϵp1 =

√
2T sin(θ), ηp1 = −

√
2(1 − T) (sin(θ) cos(ψ) + cos(θ) sin(ψ)) ,

ϵx2 =
√

2(1 − T) cos(ϕ), ηx2 =
√

2T (cos(ϕ) cos(ψ)− sin(ϕ) sin(ψ)) ,
ϵp2 =

√
2(1 − T) sin(ϕ), ηp2 =

√
2T (cos(ϕ) sin(ψ) + cos(ϕ) sin(ψ)) .

(4.19)

On the decoding side (see Figure 4.1), Bob should first apply two local phase rotations
of angles θ and ϕ, followed by a beam splitter of transmittance T , then a local rotation
on the second mode of angle ψ and finally measure the x-quadrature on both modes.
This general solution satisfies all four constraints given by (4.18). In the next Section,
we discuss two families of encoding strategies, one naive guess that is shown to be
not optimal, and a one-parameter family of optimal encodings, for which we describe
the estimation strategy saturating the QCRB. This last family encompasses the Cerf–
Iblisdir scheme [4].

Figure 4.1: Optimal joint estimation scheme for two modes using a beam splitter of
transmittance T and two homodyne detectors. The phases are all set to zero in (4.23).

4.4 Two-mode encoding and estimation schemes

4.4.1 Twin-states encoding

First, consider a “naive” protocol, where Alice encodes her classical real parameters a
and b into two identical coherent states (such that α1 = α2, see Fig. 4.2). This imposes
the following constraints on the parameters of linear encoding:

ϵx1 = ϵx2, ϵp1 = ϵp2,
ηx1 = ηx2, ηp1 = ηp2,

(4.20)

where at least ϵx1 or ϵp1 and ηx1 or ηp2 are not equal to zero. Let us show that this
protocol cannot be optimal since it does not satisfy the two last conditions in (4.18).
In fact, by plugging Equation (4.20) into Equations (4.18), we have

ϵp1ηp1 + ϵx1ηx1 = 0,
ϵp1ηx1 − ϵx1ηp1 = 0.

(4.21)
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x

p

x

p

Figure 4.2: Phase space representation of the identical encoding where x1 = x2 = a
and p1 = p2 = b. a) is the identical encoding representation in phase in Alice’s lab.
b) is the representation in phase space of the system after Bob has applied a balanced
beam splitter. All the information about the parameters a and b is concentrated in
one of the modes.

Note that the left-hand side of the second equation of (4.21), which also corresponds
to the attainability condition for a single-mode coherent state, is equal to the square
root of the determinant of the single-mode QFIM (4.6); hence, the inversibility of the
single-mode QFIM in (4.6) and the attainability condition for a single-mode coherent
state are incompatible conditions. Without loss of generality, we consider ϵx1 and ηp1

to be non-zero, so that we have

ϵp1 = − ϵx1ηx1
ηp1

, −η2
x1 = η2

p1, (4.22)

where the second equation shows a contradiction since ηp1 is non-zero and all encod-
ing constants (ϵi,j, ηi,j) are real numbers. Hence, there exists no protocol which uses
identical encoding and saturates the QCRB for both parameters a and b simultane-
ously.

4.4.2 Conjugate-states encoding

As we show now, an optimal encoding and estimation scheme attaining the QCRB
can be obtained by selecting two appropriate input coherent states |α1⟩ and |α2⟩ and
realizing a joint measurement, processing them through a beam splitter of transmit-
tance T followed by two homodyne measurements, as shown in Figure 4.1.

To realize this optimal measurement, we choose a particular solution of (4.18) of the
form

ϵx1 =
√

2T, ϵp1 = 0,
ϵx2 =

√
2(1 − T), ϵp2 = 0,

ηx1 = 0, ηp1 =
√

2(1 − T),
ηx2 = 0, ηp2 = −

√
2T,

(4.23)
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x

p

x

p

Figure 4.3: Phase space representation of the phase conjugated encoding where x1 =
x2 = a and p1 = −p2 = b and T = 1/2. a) is the phase conjugated encoding
representation in phase in/ Alice’s lab. b) is the representation in phase space of the
system after Bob has applied a balanced beam splitter. All the information about
the parameter a is encoded in the coherent state aligned on the x-quadrature and the
parameter b is fully encoded in the coherent state aligned on the p-quadrature .

which corresponds to the following encoding of the classical parameters a and b into
the quadratures of the two input coherent states

xin
1 =

√
2T a, pin

1 =
√

2(1 − T) b,
xin

2 =
√

2(1 − T) a, pin
2 = −

√
2T b,

(4.24)

that is, Alice sends the state |ψ⟩ = |α1⟩⊗ |α2⟩ =
∣∣∣√T a + i

√
1 − T b

〉
⊗
∣∣∣√1 − T a − i

√
T b
〉

.
At the output of Bob’s beam splitter, the quadratures are

xout
1 =

√
2 a, pout

1 = 0,
xout

2 = 0, pout
2 =

√
2 b,

(4.25)

regardless of the value of the transmittance T (see Fig. 4.3 the case of T = 1/2 is
showed. This case, correspond to the initial phase conjugated encoding as initially
proposed in [4]). It is then easy to see that the homodyne detection of the two output
modes (measuring x̂ on mode 1 and p̂ on mode 2) provides estimates of the param-
eters a and b with variances ∆2 ã = ∆2b̃ = 1/4 saturating the QCRB in (4.14). The
optimal encoding and decoding protocol is thus physically implementable with lin-
ear optics.

4.4.3 Phase conjugation and noise

Let us now emphasize on the impossibility to transform two identical copies of a co-
herent state into a pair of phase conjugate coherent state without adding noise. This
shows that the identical encoding strategy is not unitarily equivalent to the phase-
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conjugated strategy. The following argument follows the steps developped in [4].

The action of the phase conjugation operator Ĉ on a single mode annihilation opera-
tor â is the following :

ĈâĈ† =
Ĉx̂Ĉ† + iĈ p̂Ĉ†

√
2

=
x̂ − i p̂√

2
= â†, (4.26)

as the conjugation operation invert the sign of the p-quadrature operator but does
not change the x-quadrature operator. Hence, the phase conjugation operation does
not conserve the bosonic commutation relation between the annihilation and creation
operators. Indeed, let us write the phase conjugated operator b̂ = ĈâĈ† = â†. Then,
we have that: [

b̂, b̂†
]
=
[

â†, â
]

,

= −
[

â, â†
]

,

= −1,

(4.27)

and not +1 as it is the case for Bogoliubov transformations.

In order to find a lower bound on the noise that is needed to achieve an imperfect
phase conjugation operations, we consider the case of an EPR state:

|EPR⟩ = 1
2π

∫
dp |p,−p⟩ =

∫
dx |x, x⟩, (4.28)

for which the relative "position" between the two modes X̂ = x̂1 − x̂2 and the sum of
the "impulsion" P̂ = p̂1 + p̂2 does commute:

[
X̂, P̂

]
= 0. (4.29)

Let us know define the operators X̂′ = (1 ⊗ Ĉ)X̂(1 ⊗ Ĉ†) and P̂′ = (1 ⊗ Ĉ)P̂(1 ⊗ Ĉ†)

which are the new operators after the application of the phase conjugation operator
on the second mode. Hence, in terms of the position and momentum operators (or
equivalently quadratures operators), these operators writes :

X̂′ ≡ x̂′1 − x̂′2 = x̂1 − x̂2,

P̂′ ≡ p̂′1 + p̂′2 = p̂1 − p̂2.
(4.30)

Hence, the operators X̂′ and P̂′ do not commute as:

[
X̂′, P̂′] = 2i. (4.31)

Therefore, the operators X̂′ and P̂′ have to satisfy the following Heisenberg uncer-
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tainty relation:

∆X̂′∆P̂′ ≥ 1
2
|⟨
[
X̂′, P̂′]⟩| = |2i|

2
= 1. (4.32)

This relation set the minimal noise that a phase conjugation process would introduce.
Let us now suppose that the mode 2 suffers, after the phase conjugation operation of
some phase insensitive and unbiased noise, such that:

x̂′2 = x̂2 + nx,

p̂′2 = p̂2 + np,
(4.33)

where ⟨nx⟩ = ⟨np⟩ = 0 and ⟨n2
x⟩ = ⟨n2

p⟩ = σ2 in order to satisfy the unbiased
and phase insensitive hypothesis. Therefore, the variance of the resulting operators
X̂′ = X̂ − nx and P̂′ = P̂ − np is:

∆X̂′2 = ∆P̂′2 = σ2. (4.34)

Hence, in order to satisfy the Heisenberg uncertainty relation (4.32), we find that
the variance of the noise added after the phase conjugation operation is bounded by
below:

σ2 ≥ 1, (4.35)

by an amount equal to the double of the variance of a quadrature of the vacuum
state: ∆x2

0 = 1/2.

In order to construct a transformation realising this imperfect phase conjugation
transformation, Cerf and Iblisdir [4] consider a two-mode system where â2 is the in-
put mode and â3 is the ancilla mode that is coupled by some unitary transformation
with output modes b̂i where i = 2, 3. The transformation can generally be written in
the form:

b̂i = ∑
j

Mij âj + Lij â†
j , (4.36)

where i, j = 2, 3 and b̂2 is the phase conjugator output and b̂3 is the ancilla that will
be traced out. Now, conditions are imposed on the eight complex coefficient Mij and
Lij:

• Phase invariance : M2j and L2j can always be real and positive by applying
some phase transformations;

• Phase conjugator definition : ⟨b̂2⟩ = ⟨â†
2⟩;

• Input ancillary mode is the vacuum state by default : ⟨â3⟩ = ⟨â2
3⟩ = 0;

• The phase conjugator is phase-insensitive, which means that the input and out-
put states have phase insensitive noise : ⟨â2

2⟩ = ⟨â2⟩2 and ⟨b̂2
2⟩ = ⟨b̂2⟩2;

• Commutation rules are conserved by the transformation (4.36) :
[
b̂i, b̂†

j

]
= δij.
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All these conditions impose constraints on the parameters Mij and Lij such that the
approximate phase conjugation transformation writes:

b̂2 = â†
2 +

√
2â3,

b̂3 =
√

2â2 + â†
3.

(4.37)

Let us check that this phase conjugation operation is optimal, in the sense that the
noise added by the phase conjugator saturates the inequality (4.35). Indeed, by con-
sidering that the input mode to be in a coherent state, we find that the output mode
variances are: (

∆x̂2)
b2
=
(
∆ p̂2)

b2
= ∆x̂2

0 + 2∆x̂2
0 = 3/2, (4.38)

which saturate the condition (4.35) since the added noise by the phase conjugator is
indeed twice the vacuum noise ∆x̂2

0 = 1/2.

This process adds the same amount of noise as the standard process of applying
an heterodyne measurement on the input mode and then preparing the phase con-
jugated state by taking the opposite value for the p-quadrature from the heterodyne
measurement output. Indeed, heterodyne measurement also adds a noise term equal
to twice the vacuum noise as the measured input mode in mixed with the vacuum
on a balanced beam-splitter.

4.4.4 Performance of the global strategy over the local strategies

To shed light on the feature that makes the protocol described in section 4.4.2 inter-
esting, let us compare it with individual measurements of the quadratures of the two
modes (eliminating the beam splitter) for the whole range of values of T ∈ [0, 1]. Indi-
vidual homodyne measurements of two coherent states encoded according to Equa-
tion (4.24) achieve smaller relative errors when measuring xin

1 and pin
2 for T ≥ 1/2, or

xin
2 and pin

1 for T ≤ 1/2. Thus, when comparing with the joint measurement protocol
(including the beam splitter), we need to consider the individual measurements of
xin

1 and pin
2 for T ≥ 1/2 and xin

2 and pin
1 for T ≤ 1/2.

Interestingly, we note that, for T = 1/2, the encoding rin
1/2 = (a, b, a,−b) given by

(4.24) reduces to a scheme based on phase-conjugate coherent states introduced by
Cerf and Iblisdir in 2001 [4]. In their paper, Cerf and Iblisdir noted that this partic-
ular encoding (α2 = α∗

1) provides an enhancement of the measurement precision by
reducing the error variances of the quadratures by a factor 2 compared to individ-
ual measurements. Nevertheless, no proof of optimality of the Cerf–Iblisdir scheme
had been found in a further work investigating the superiority of joint measurements
over local strategies for the estimation of product coherent states [49]. As we show
below, this particular optimal scheme is the one which shows the best improvement
when comparing it with individual measurements (see Figure 4.4).
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A natural question is indeed to compare this improvement with the one exhibited
by the other optimal protocols in this family (with other values of the beam splitter
transmittance T). Observing first the limiting trivial cases T = 1 and T = 0, we see
that the corresponding encodings rin

1 = (
√

2a, 0, 0,−
√

2b) and rin
0 = (0,

√
2a,

√
2b, 0)

are already in optimal configurations, so that the variances of the estimators ob-
tained by individual homodyne measurement of the input quadratures already sat-
urate QCRB. Thus, for T = 1 or T = 0, a joint measurement cannot provide any
enhancement of the measurement precision. For other values of T, we have a con-
tinuous evolution of the precision enhancement with respect to individual measure-
ments ranging between 2 (maximum enhancement) and 1 (no enhancement at all).
To see this, let us compare the error variances of the estimators of the encoded pa-
rameters a and b obtained by the optimal joint or optimal individual measurement.
The variances of the joint measurement saturate the QCRB by construction, namely
∆ã2

QCRB = ∆b̃2
QCRB = 1/4. As already mentioned, the optimal individual measure-

ment consists in measuring x̂1 and p̂2 for T ≥ 1/2, or x̂2 and p̂1 for T ≤ 1/2, so we
may deduce from Equation (4.24) the corresponding variances of the estimators

∆ã2
ind(T) =

∆x̂2
i

1 + |1 − 2T| =
1

2 + |2 − 4T| , (4.39)

∆b̃2
ind(T) =

∆ p̂2
3−i

1 + |1 − 2T| =
1

2 + |2 − 4T| , (4.40)

i =

 1, (T > 1/2),

2, (T < 1/2),
(4.41)

where we have made the dependence on T explicit. Due to this dependence, the
enhancement in the measurement precision can be expressed in terms of the ratio
between the error variance on the estimators obtained by individual and joint mea-
surements as a function of T:

∆ã2
ind(T)

∆ã2
QCRB

=
∆b̃2

ind(T)
∆b̃2

QCRB

=
2

1 + |1 − 2T| . (4.42)

As shown in Figure 4.4, the precision enhancement attains its maximum value 2 at
T = 1/2 and its minimum value 1 at T = 0 or 1.

Given a and b, the beam splitter transmittance T defines a family of points (xi, pi)

in phase space–hence, a family of pairs of coherent states–which allow an optimal
encoding as defined by Equation (4.24). From this equation, it is easy to deduce that
these points belong to an elliptic curve determined by the classical parameters a and
b

x2
i

a2 +
p2

i
b2 = 2, i = 1, 2. (4.43)
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T

Figure 4.4: Enhancement of the measurement precision of the joint (compared to
individual) measurement as a function of the beam splitter transmittance T. This is
calculated as the reduction of the error variance for the joint measurement attaining
the QCRB with respect to the error variance of the optimal individual measurements.

Therefore, the general encoding protocol implies the generation of two coherent
states determined by the parameters a and b to be transmitted (as shown in Figure
4.5) and a measurement setting T, which has to be specified before the measurement.
We note that, by allowing local phase rotations of the input states and by suitably
choosing phase angles θ and ϕ, one can use any pair of coherent states for encoding
two classical parameters a and b (satisfying the energy constraint), which can be fur-
ther optimally extracted by joint measurement including a beam splitter with a suit-
able transmittance T followed by homodyne measurements on two output modes.
The corresponding protocol is described in section 4.4.5.

4.4.5 Explicit optimal protocol for two modes

Here, we present a protocol which allows Alice, given two optical modes in arbitrary
chosen coherent states |α1⟩|α2⟩, to provide Bob with measurement settings {T, θ, ϕ}
she has chosen in order to encode the real parameters a and b such that he can op-
timally extracts by homodyne measurement these two real parameters a and b. The
only conditions Alice has to satisfy are an energy condition (4.2), an attainability con-
dition (4.17) in order for Bob to be able to optimally estimate the parameters and an
equal precision condition (4.10) which assures that both parameters can be estimate
with the same variance.

1. Alice chooses real a, b, and 0 ≤ T ≤ 1 by imposing that energies of the “optimal
input states” given by Equation (4.24) are equal to the energies of the given
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1 2 3 4 5
x

-1.5

-1.0
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0.5

1.0

1.5

p

Figure 4.5: Family of optimal encoding schemes. For a given value of the parameters
a and b (here, a = 2 and b = 1), each optimal encoding consists of preparing two co-
herent states (see two black points, two yellow points, two red points, etc.) according
to (4.24).

coherent states in corresponding modes. This leads to the following equations:{
x2

1 + p2
1 = 2Ta2 + 2(1 − T)b2,

x2
2 + p2

2 = 2(1 − T)a2 + 2Tb2.
(4.44)

The two equations contain three unknown variables, a, b, and T. Although a
and b are related by the energy conservation in (4.2), it is linearly dependent on
the two equations above. Indeed, the above system is obviously equivalent to{

x2
1 + p2

1 + x2
2 + p2

2 = 2(a2 + b2),

x2
1 + p2

1 − x2
2 − p2

2 = 2(2T − 1)(a2 − b2).
(4.45)

where the first equation is, in fact, the energy constraint (4.2). Let us know
consider two cases.

In the first case, we consider that the energies of the given coherent states 1
and 2 are equal, then T = 1/2 satisfies the second equation and we are free to
choose any a and b on the circle determined by the first equation. Another valid
option is to choose a2 = b2 = (x2

1 + p2
1 + x2

2 + p2
2)/4 and take an arbitrary T.

In the second case, we consider that the energies of the given coherent states
are not equal. Hence, we can replace the second equation by

x2
1 + p2

1 − x2
2 − p2

2
a2 − b2 = 2(2T − 1), (4.46)

so that T becomes a function of the ratio between the differences of the number
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of photon in the input and output modes. Equation (4.46) further limits the
choice of x and p because |2T − 1| ≤ 1, meaning that

2|a2 − b2| ≥ |x2
1 + p2

1 − x2
2 − p2

2|. (4.47)

Once x and p are chosen, T becomes

T =
1
2

(
x2

1 + p2
1 − x2

2 − p2
2

2(a2 − b2)
+ 1
)

. (4.48)

2. In both cases considered above, Equation (4.24) determines the parameters of
two input states, which would provide the desired optimal measurement,

x(opt)
1 = x

√
x2

1 + p2
1 − x2

2 − p2
2

2(a2 − b2)
+ 1,

p(opt)
1 = p

√
x2

1 + p2
1 − x2

2 − p2
2

2(a2 − b2)
− 1,

x(opt)
2 = x

√
x2

1 + p2
1 − x2

2 − p2
2

2(a2 − b2)
− 1,

p(opt)
2 = −p

√
x2

1 + p2
1 − x2

2 − p2
2

2(a2 − b2)
+ 1.

(4.49)

By our construction, the energies of the optimal input states are equal to the
energies of the given states in corresponding input modes. Then, the given and
optimal input states are related by simple rotation in phase space by angles θ

and ϕ, which can be easily found from the vector algebra

cos θi =
x(opt)

i xi + p(opt)
i pi

x2
i + p2

i
. (4.50)

where θ1 = θ and θ2 = ϕ.

3. After performing the calculations described above, Alice provides to Bob with
the measurement settings {T, θ, ϕ} and the given coherent states. Note that the
measurement settings {T, θ, ϕ} do not carry any information about the param-
eters a and b.

4. Upon receiving the measurement settings, Bob applies local rotations to the in-
put modes followed by the beam splitter transformation and homodyne mea-
surements in the output modes, thus realizing an optimal extraction of encoded
x and p variable.

Finally, let us make an interesting observation coming from Equation (4.46). Recall
that, following Equation (4.42), the precision gain monotonously increases when |1−
2T| tends to zero. Hence, when choosing a, b, and T, we are interested in attaining
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the minimal possible value of the right hand side of Equation (4.46) compatible with
all the constraints. This can be done by maximizing the denominator on the left hand
side of this equation because the numerator there is constant. Due to the energy
constraint in (4.2), the maximum is achieved when

a2 =
1
2
(x2

1 + p2
1 + x2

2 + p2
2),

b2 = 0.
(4.51)

With these values for x and p the first equation of (4.44) gives us

T =
x2

1 + p2
1

x2
1 + p2

1 + x2
2 + p2

2
, (4.52)

which equalizes the transmittance to the proportion of the number of photons in
state 1 with respect to the total photon number in both given states. Here, an unfor-
tunate aspect comes to play. Although this choice provides the better enhancement
of the precision of the optimal joint measurement with respect to the individual mea-
surement, it provides an additional constraint that removes any choice of the real
parameters that Alice can transmit. Indeed, according to Equation (4.51), a becomes
equal to the mean value of the total number of input photons and b becomes zero.
Now, if Bob knows that Alice used this “optimal” encoding, then he does not need
to know the measurement settings because a becomes directly accessible by the mea-
surement of the intensity of the given states and b does not carry any information be-
ing always zero. Therefore, to exploit the protocol in applications using modulation
of transmitted parameters, one cannot always choose the transmission coefficient,
which provides the maximal enhancement of precision.

4.5 Arbitrary number of modes

Let us now extend the scheme presented in Section 4.4 to an arbitrary number n of
input coherent states and same number of real classical parameters to be encoded.
First, observe that one can always split a 2n-mode input system of coherent states
into n two-mode subsystems and use, for each subsystem, the optimal measurement
scheme described in Section 4.4. Since the quantum Fisher information is additive,
the optimal measurement scheme for 2n modes is realized by the optimal two-mode
measurement scheme individually applied to each pair of modes. However, for
2n + 1-mode systems, the application of the optimal scheme to n pairs cannot realize
the overall optimal strategy since neither heterodyne nor homodyne measurement
applied to the last single mode is optimal. However, as we show in Section 4.5.1,
it is possible to develop an optimal (joint) strategy for a three-mode input coherent
state. Then, for any larger odd number of modes, the optimal scheme applied to
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the first n − 1 pairs supplemented with this three-mode strategy provides an optimal
measurement for all 2n + 1 modes.

4.5.1 Three-mode encoding and estimation scheme

In the three-mode case, a natural guess for the optimal estimation is to concatenate
two times the scheme proposed in Section 4.4 in a way that the second output mode
of the first scheme will serve as an input for the second scheme (see Figure 4.6).
Notice that, being an output of the first “optimal” scheme, the state in the second
mode after the first beam splitter always has some fixed phase determined by the
first scheme (see Equation (4.25)). Then, to bring the state into the form of an optimal
input for the second scheme, a local rotation by some angle ϕ may be required, as
depicted in Figure 4.6. The full transformation of the quadrature operators of the in-
put modes into those of the output modes is written as r̂′ = B(T2)U(ϕ)B(T1)r̂, where
U(ϕ) is a rotation in phase space by angle ϕ and the two beam splitter transforma-
tions are characterized by transmissivities T1 and T2.

Figure 4.6: Optimal joint estimation scheme for three modes using two beam splitters
of transmittance T1 and T2 and a phase shifter of angle ϕ.

Denoting as a, b, and c the three real parameters that are encoded into the three
coherent states, we choose the final output state to be in a similar form as (4.25),
namely rout = (

√
2a, 0,

√
2b, 0, 0,

√
2c), which allows us to recover these parameters

by homodyne measurement of the output quadratures with the same error variances
as in the optimal two-mode scheme, hence saturating the QCRB. Using the relation
between the mean value of the input and output quadratures, which is given by the
same transformation r′ = B(T2)U(ϕ)B(T1)r, we obtain the parameters of the optimal
input states for the three-mode scheme

x(opt)
1 =

√
2T1 a,

p(opt)
1 =

√
2(1 − T1) d(T2, b, c),

x(opt)
2 =

√
2(1 − T1) a,

p(opt)
2 = −

√
2T1 d(T2, b, c),

x(opt)
3 =

√
2(1 − T2) b,

p(opt)
3 = −

√
2T2 c,

(4.53)
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where
d(T2, b, c) =

(
T2b2 + (1 − T2)c2)1/2

, (4.54)

and

tan(ϕ) =
b
c

(
T2

1 − T2

)1/2

. (4.55)

This encoding and estimation setting enables the optimal retrieval of the three un-
known parameters a, b, and c with variances saturating the QCRB ∆2 ã = ∆2b̃ =

∆2c̃ = 1/4. Moreover, the encoding strategy in (4.53) satisfies the three-mode exten-
sion of (4.2), which is the energy condition: x2

1 + p2
1 + x2

2 + p2
2 + x2

3 + p2
3 = 2(a2 + b2 +

c2).

For a n-mode encoding strategy, the energy condition is

n

∑
i=1

(x2
i + p2

i ) = 2
n

∑
i=1

a2
i , (4.56)

where the ai’s are the n real parameters to be encoded and estimated. The energy
constraint on all the n modes given by (4.56) can always be divided in a system of
⌊ n

2 ⌋ equations corresponding to the two- and three-mode energy constraints. Hence,
a combination of two- and three-mode optimal schemes allows one to encode and
retrieve optimally an arbitrary number n of classical parameters encoded in n coher-
ent states. Note that optimal combinations are not necessarily unique. For example,
for six modes, three pairwise optimal measurements work as well as two three-mode
optimal measurements.

4.5.2 n-mode extension

Finally, we can also generalize the constraints derived for two-mode systems to the
problem of estimating optimally n parameters encoded in n coherent states. The
derivation of these constraints follows the same reasoning as for the two-mode con-
straints explained in (4.18). To keep the expressions concise, we use the following
notation for the linear encoding constants:

E (j)
i =

ϵ
(j)
xi + i ϵ

(j)
pi√

2
, (4.57)

where i denotes the mode number and j is the parameter number. For example, for
two modes, E (1)

i = ϵxi + i ϵpi and E (2)
i = ηxi + i ηpi, for i = 1, 2. (4.3) then generalizes

as

αi =
xi + i pi√

2
=

n

∑
j
E (j)

i aj, i = 1, ..., n, (4.58)
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where, again, (a1, a2, ..., an) denotes the vector of real parameters. Based on (4.15), we
generalize the expression for the SLD as

L(j) = i ℑ
(

n

∑
i
E (j)

i

[
â†

i , ρ̂
])

, (4.59)

where ℑ denotes the imaginary part. Using this notation, the Fisher information
matrix elements can be written in a compact form as

F(n)
jk = 4 ℜ

[
n

∑
i
E (j)∗

i E (k)
i

]
, (4.60)

which generalizes (4.6). Following the same reasoning as for the derivation of the
two-mode constraints, we can establish the n-mode constraints:

n

∑
i
|E (j)

i | = 1 ∀j,

ℜ
(

n

∑
i
E (j)∗

i E (k)
i

)
= 0 ∀j, k s.t. j ̸= k,

ℑ
(

n

∑
i
E (j)∗

i E (k)
i

)
= 0 ∀j, k s.t. j ̸= k,

(4.61)

corresponding to the energy, equal precision and attainability conditions. This sys-
tem of equations forms a set of n2 constraints imposed on the set of 2n2 encoding
constants. Moreover, the equal precision and attainability conditions together im-
pose that the matrix E (j)

i composed of all linear encoding constants is a unitary ma-
trix. Any optimal n-mode scheme can be constructed as follows: Alice encodes the
n parameters ai in the x-quadrature of the ith coherent states. She applies a passive
Gaussian unitary on her system and sends the output to Bob. Bob applies the in-
verse of the passive Gaussian unitary used by Alice and, finally, he uses homodyne
detection on the x-quadratures to optimally estimate the n parameters ai.

4.6 Conclusions

We have proved the optimality of the parameter encoding/estimation scheme based
on phase-conjugate coherent states proposed by Cerf and Iblisdir [4] by showing that
it saturates the quantum Cramér–Rao bound. This can be viewed as a consequence of
the fact that using phase-conjugate coherent states cancels the off-diagonal terms of
the QFIM matrix (4.6) and allows to simultaneously satisfy the attainability condition
in Equation (4.17). We have also demonstrated that this scheme is a special case of
a larger family of optimal two-mode schemes in which the decoding only requires
linear optics (a single beam splitter) followed by homodyne measurement. Then, by
exploiting the additivity of the quantum Fisher Information matrix for the product
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of states, we have further generalized this optimal encoding/estimation scheme to
an arbitrary number n of modes. The resulting scheme combines optimal two-mode
and three-mode schemes in order to encompass even and odd n’s.

An interesting question left for future study concerns the optimality of the considered
schemes for other usual quantum states of light, e.g., squeezed states. Furthermore, it
may be interesting to explore whether these parameter communication schemes may
be used in order to achieve some cryptographic tasks, such as public key distribution
or secret sharing (where, for example, the set of parameters to be estimated might be
considered as the secret key 2).

2One may consider a scenario where Alice challenges Eve to reproduce the system of phase conju-
gated states Alice has prepared. In this scenario, it is assumed that Eve only has access to individual
attacks on one of the two mode of the system prepared by Alice and sent to Bob.
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5 | Introduction to separability cri-
teria

5.1 Separability and entanglement for bipartite states

The quantum states of a shared physical system between two parties, namely Alice
and Bob or A and B, are described by a density matrix ρAB living in the Hilbert space
H = HA ⊗HB . These states are called bipartite states since they are shared between
two parties. The bipartite states are divided in two classes : separable and entangled
states. As pointed by Einstein, Podolsky and Rosen in their famous paper [13], en-
tangled states are specific to the quantum description of the world. The importance
of entangled states towards separable states comes from the fact that they serve as re-
sources for certain quantum tasks such as quantum teleportation [50, 51] or quantum
cryptography [52].

The more straightforward example of a separable state is the product state. Its math-
ematical description is given in the following definition.

Definition 1 (Product state). A bipartite state ρAB is said to be a product state if it can
be written as

ρAB = ρA ⊗ ρB. (5.1)

We can understand that product states are separable in the sense that if one party, let
say Alice, applies a local unitary operation on her part ρA of a product state ρAB, it
does not affect the reduced state in Bob’s laboratory ρB. If Bob applies a measure on
the reduced state in his laboratory, the outcome will be independent of the operation
applied by Alice. Hence, all states that are convex combinations of product states will
also have this "separability" property. The general definition for a separable state is
the following :

Definition 2 (Separable state). A bipartite state ρAB is said to be separable or unentan-
gled if it can be written as

ρAB = ∑
i

piρ
A
i ⊗ ρB

i , (5.2)
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where pi ≥ 0 and ∑i pi = 1. If no such convex linear combination of product states exists
for a given state ρAB, then the state is called entangled.

In the following, we will use the notation σAB for separable states.

Separable states can be seen as states prepared in a local or classical way. More for-
mally, this means that the bipartite states generated from the most general procedure,
employing only local operations and classical communication (LOCC) on a product
state is a separable state. Another way to state this is to say that no entangled state
can be generated from a separable state by the only means of LOCC operations.

5.2 Detection of entangled states

In order to detect entangled states (i.e. non-separable states), there are different tools
that one can use. Indeed, one can write down a mathematical criterion, called separa-
bility criterion, that gives necessary and/or sufficient conditions for separability. Note
that these criteria do not necessarily need to be associated with quantum observables.
Calculating such entanglement criteria usually assume to have access to the density
matrix of the state under consideration. In order to use these criteria in practice, one
then needs to do the expensive full tomography of the state and after that apply the
operations to the density matrix in order to calculate the criteria. Hence, there is
space for other, less demanding methods that avoid the need for full tomography.
One interesting tool available is the so-called entanglement witness that is defined as
follows :

Definition 3 (Entanglement witness). An entanglement witness is an operator W that
needs to satisfy the following conditions :

1. W is hermitian;

2. W has positive expectation values with respect to all separable states : Tr(WσAB) ≥ 0;

3. W has negative expectation value for, at least, one entangled state : Tr(WρAB) < 0
where ρAB is entangled.

Hence, entanglement witnesses are associated with measurable observables Wi which
are very useful since they are experimentally accessible. Moreover, entanglement
witnesses have a geometric meaning. Indeed, for each witness Wi, the equality
Tr (WiρAB) = 0 defines an hyperplane in the set of states (see Fig. 5.1). From this
geometric approach, it is possible to proof the following theorem (see [53]) :

Theorem 1 (Completeness of witnesses). For each entangled state ρAB there exists an
entanglement witness detecting it.
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eSeparable

Entangled

W’
W

Figure 5.1: The convex sets of separable and entangled states are represented. The
black lines, labelled W and W’, shows possible entanglement witnesses hyperplanes
defined by Tr(Wρ) = 0 and Tr(W ′ρ) = 0. The entanglement witness W’ is finer than
W since W’ detects all states detected by W and some more entangled states.

Hence, the whole set of entanglement witnesses define a necessary and sufficient
condition of separability of states even if a single entanglement witness fail to detect
all entangled states.

Finally, it is also possible to quantify how much entanglement does a state possess. En-
tanglement measures E(ρ) (or entanglement monotones) do quantify the amount of
entanglement of a state. In order to build a proper entanglement measure, it should
satisfy, at least, the following conditions :

1. If ρ is separable, then E(ρ) = 0.

2. E(ρLOCC) ≤ E(ρ) which means that since entanglement cannot be created by
LOCC operations, the entanglement witness should never increase under LOCC.

Entanglement measures are central to the description of resource theory for entan-
glement (see [54] for a review on quantum resource theories).

5.3 Discrete-variable separability criteria

5.3.1 Separability of pure states

Despite the compact definition of a separable state (Def. 2), deciding whether a state
is separable or entangled is, in general, a non-trivial task (see [55]). However, in the
case of pure states, there exists an easy criterion to check the separability of the state.
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Indeed, a pure state is separable if and only if ρAB = ρA ⊗ ρB where ρA,B are the
reduced density matrix defined as ρA = TrB(ρAB) and ρB = TrA(ρAB). Moreover, it
is well-known that any pure bipartite state can be decomposed on an orthonormal
basis, |iA⟩ and |iB⟩ for subsystem A and B respectively. This is known as the Schmidt
decomposition of a pure state and is defined as follows :

Definition 4 (Schmidt-decomposition). Any pure bipartite state |ψAB⟩ ∈ HA ⊗ HB

can be decomposed on an orthonormal basis |iA⟩ ∈ HA and |iB⟩ ∈ HB as

|ψAB⟩ =
rs

∑
i=1

si|iA⟩|iB⟩, (5.3)

where rs is the Schmidt-rank and the non-zero si’s are the Schmidt coefficients which satisfy
si ≥ 0 and ∑rs

i=1 s2
i = 1.

Hence, a pure state is separable if and only if it has a Schmidt-rank of 1 exactly.
Interestingly, the Schmidt rank of a pure state cannot be increased by LOCC trans-
formations [56].

One can see that the reduced state ρA = |ψA⟩⟨ψA| can be written |ρA⟩ = ∑rs
i s2

i |iA⟩⟨iA|.
Hence, for rs = 2 or more, the state ρA is mixed. This is a signature of the entangle-
ment of ρAB = |ψAB⟩⟨ψAB|. From there, one can find a measure of entanglement by
considering the von Neumann entropy [57] of the reduced state ρA. The von Neumann
entropy of a quantum system, described by the state ρ, is defined as

S(ρ) = −Tr(ρ log ρ), (5.4)

where the log is considered in base 2. The definition of the von Neumann entropy
can be re-expressed by considering the eigenvalues ex of the quantum state ρ as

S(ρ) = −∑
x

ex log ex. (5.5)

A remarkable property of the von Neumann entropy is that it is equal to zero for pure
states. Hence, from the Schmidt decomposition of ρA, we see that the von Neumann
entropy is

S(ρA) = −Tr(s2
i log(s2

i )). (5.6)

Hence, it will be equal to zero only if the Schmidt-rank of ρAB is exactly one. There-
fore, S(ρA) > 0 is a clear signature and measure of entanglement of ρAB.

For mixed states on the other hand, the story is longer and more complex. The next
section is dedicated to a review of some of the known criteria.
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5.3.2 Separability of mixed states

The PPT criterion

When considering mixed states, the most used criterion for separability is certainely
the so-called PPT criterion (for Positive Partial Tranpose) introduced by Peres and
Horodecki [58, 53]. This criterion involve the map of partial transpose TA,B on one
of the parties A or B respectively, in the case the partial transpose in applied on B,
we will use the following notation : (1 ⊗ TB)ρAB = (ρAB)

TB . The PPT criterion is a
necessary condition for the separability of a state ρAB. It is stated as :

Theorem 2 (PPT criterion). Let ρAB be a bipartite separable state. Then ρAB is PPT, which
means that (ρAB)

TB ≥ 0.

The proof is very short and is based on the definition of separability. Indeed, since
any separable state can be written as Eq. (2), we have σAB = (ρAB)

TB = ∑i piρ
A
i ⊗

(ρB
i )

T and since ρB
i are valid density matrices, so are the (ρB

i )
T = (ρB

i )
∗ and hence,

none of the eigenvalues of σAB are negative. Separable states ρAB are "positive under
partial transpose".

The PPT criterion is a strong 1 and easy to calculate separability criterion. Indeed,
if one has access to the density matrix of a bipartite states, one can apply the partial
transposition operator to it and calculate the spectrum of the partially transposed
matrix. If one of the eigenvalues is negative, then he can conclude that the state is
entangled. If not, the criterion is not conclusive. However, the PPT criterion be-
comes necessary and sufficient in the low dimensional systems 2 × 2 and 2 × 3 [55].
This means that the PPT criterion completely characterizes the entanglement in a
two-qubit-system and is therefore a very useful tool to investigate entanglement of
bipartite qubit systems. In higher dimensional systems there might exist bound entan-
gled states which are entangled states from which entanglement can not be distilled.
Since all entangled states that are PPT [59] are bound entangled states, it implies that
other separability criteria than PPT are needed to detect these bound entangled states
as non-separable [60].

The entropic and reduction criteria

The entropic criterion was introduced in [53, 61]. It is stated in terms of the von
Neumann conditional entropy:

S(A|B) ≡ −Tr
[
ρAB log2 ρA|B

]
= S(AB)− S(B), (5.7)

1The PPT criterion is a necessary and sufficient separability criterion for systems composed of 2
qubits or 2-mode Gaussian states.
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where ρA|B = 2−σAB with σAB = 1A × log2(ρB)− log2(ρAB)
2, S(AB) = −Tr [ρAB log2 ρAB]

is the joint von Neumann entropy and S(B) = −TrB [ρB log2 ρB] is the von Neumann
entropy of system B. The von Neumann conditional entropy S(A|B) is always posi-
tive for separable states but can be negative for some entangled states [61].

The reduction criterion is a separability criterion based on a positive (but not com-
pletely positive) map ΛR described in [62, 63]. The map acts on one system σ as

ΛR(σ) = 1 Tr(σ)− σ. (5.8)

Hence, separable states ρAB have to satisfy the following equality:

(1A × ΛR)(ρAB) = (1A × (1B TrB − 1B)) (ρAB) = ρA × 1B − ρAB, (5.9)

where ρA = TrB(ρAB) is the reduction of the state ρAB. Finally, the reduction criterion
writes:

(ρA × 1B)− ρAB ≥ 0. (5.10)

This criterion is in general weaker that the PPT criterion. However, all states violating
the reduction criterion can be distilled [62].

The majorization criterion

In 2001, Nielsen and Kempe published a famous article named "Separable states are
more disordered globally than locally" [64]. Indeed, the notion of disorder of a quantum
state is often given in terms of the von Neumann entropy. As we saw in section 5.3.1,
the von Neumann entropy can be used to build an entropic separability criterion
stating that if a state ρAB is separable, then the von Neumann entropy of the global
state S(ρAB) is greater than the von Neumann entropy of his marginals S(ρA) and
S(ρB). However, Nielsen and Kempe use a more sophisticated notion of disorder,
majorization, in order to give a stronger separability criterion. Indeed, by considering
the majorization relation between the eigenvalues λ of a bipartite state ρAB and his
marginals ρA and ρB, they derive the following necessary condition for separability :

Theorem 3 (Majorization criterion for separability [64]). If ρAB is separable, then
λ(ρAB) ≺ λ(ρA) and λ(ρAB) ≺ λ(ρB).

The majorization criterion is strictly stronger than the entropic criterion based on the
von Neumann entropy since the von Neumann entropy is a Schur-concave function
and is hence implied by the majorization criterion (see [65] for a reference on the
theory of majorization).

2Note that ρA|B is not a density operator as its eigenvalues can have values greater than 1. This is
the origin of the violation of the entropic criterion for separability.
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5.4 Continuous-variable separability criteria

Some of the separability criteria introduced in section 5.3 have a counterpart in con-
tinuous variables. For Gaussian states, we know that the displacement operation
does not affect the entanglement of states since it is an invertible operation. Hence,
most of the the continuous variable criteria for Gaussian states are based on the co-
variance matrix of the state. We review some of them in this section.

5.4.1 Duan and Simon criterion

The Duan et al. [21] and Simon [66] criteria is of major importance since, as showed
by Simon in [66], it is the PPT criterion adapted to the continuous-variables frame-
work. Indeed, the partial transpose operation can be easily interpreted in terms of
the Wigner function (2.22) in phase space. For a bipartite quantum state, the Wigner
function writes W(x1, x2, p1, p2) and by applying the partial transpose operation on
the second party, the Wigner function is transformed to W(x1, x2, p1,−p2).

ρ → (1 ⊗ TB)(ρ) ⇔ W(x1, x2, p1, p2) → W(x1, x2, p1,−p2). (5.11)

Hence, the action of the partial transpose TB on the density matrix is equivalent
to change the sign of the momentum of the second subsystems: ξ → Λξ where
ξ = (x1, p1, x2, p2) and Λ = diag(1, 1, 1,−1). This can be interpreted as a local time re-
versal operation on the second subsystem. Another geometrical interpretation given
by Simon [66] is to see the partial transpose as a mirror reflection in phase space.

Simon’s argument starts from the uncertainty principle expressed for the covariance
matrix V:

γ +
i
2

Ω ≥ 0, (5.12)

where Ω is the symplectic 4 × 4 antisymmetric bloc matrix (2.4). The action of the
partial transpose on the covariance matrix writes:

γ → γ̃ = ΛγΛ. (5.13)

Similarly to the argument of Peres-Horodecki reminded in section 5.3.2, if a state ρ is
separable, then by taking its partial transpose, it should remain a bona fide density
matrix, hence it should satisfy the uncertainty principle Eq. (5.12), leading to the
necessary condition for separability:

γ̃ +
i
2

Ω ≥ 0. (5.14)

A more explicit version of the Simon separability criterion Eq. (5.14) can be written
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when the covariance matrix γ is considered in its standard form γ0 (2.47):

4(ab − c2
1)(ab − c2

2) ≥ (a2 + b2) + 2|c1c2| −
1
4

. (5.15)

When considering the particular case of Gaussian states, the Duan and Simon crite-
rion appears to be a necessary and sufficient criterion of separability.

As an example, we consider the case of two-mode squeezed vacuum (TMSV) states
with added Gaussian noise on one of the two modes. For this type of states, the
covariance matrix writes:

γnoise
TMSV =


cosh(2r)

2 + V 0 sinh(2r)
2 0

0 cosh(2r)
2 + V 0 − sinh(2r)

2
sinh(2r)

2 0 cosh(2r)
2 0

0 − sinh(2r)
2 0 cosh(2r)

2

 . (5.16)

Hence, applying the criterion derived by Simon on the covariance matrix Eq. (5.16) ,
Eq. (5.14) reads:

4
(

cosh(2r)2

4
+

V cosh(2r)
2

− sinh(2r)2

4

)2

≥
(

cosh(2r)
2

+ V
)2

+

(
cosh(2r)

2

)2

+
sinh(2r)2

2
− 1

4
,

(5.17)

which can be further simplified to:

sinh(2r)2(V2 − 1) ≥ 0, (5.18)

by using the well-known relation of hyperbolic functions : cosh(x)2 − sinh(x)2 = 1
and sinh(x)2 + cosh(x)2 = 2 cosh(x) − 1. From Eq. (5.18), it is now clear that the
TMSV states with added Gaussian noise is entangled when V < 1 and becomes
separable for V ≥ 1. This example will be used in the section 6.5.1.

On the other hand, Duan et al. [21] introduced simultaneously an inseparability cri-
terion for CV systems. The criterion is based on a bound of the total variance of a
pair of Einstein-Podolski-Rosen (EPR) type operators of form:

û = |a|x̂1 +
1
a

x̂2,

v̂ = |a| p̂1 −
1
a

p̂2,
(5.19)

where a ∈ R0. By evaluating the EPR-like operators of Eq. (5.19) on separable states,
Duan et al. proved the following theorem :
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Theorem 4 (Duan et al. sufficient criterion for separability). For any separable state
ρ, the total variance of a pair of EPR-like operators defined by Eq.(5.19) with commutators
[x̂n, p̂m] = iδnm (n, m = 1, 2) satisfies the inequality

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥ a2 +
1
a2 . (5.20)

Remarkably, the theorem 4 by Duan et al. and the Simon necessary criterion for
separability Eq. (5.14) are equivalent. Hence, the Duan et al. criterion also becomes
necessary and sufficient for Gaussian states ρG.

Indeed, when the covariance matrix is written in its standard form (II) (2.48):

γI I =


n1 0 c1 0
0 n2 0 c2

c1 0 m1 0
0 c2 0 m2

 , (5.21)

where the ni, mi and ci satisfy the following equalities:

n1 − 1
m1 − 1

=
n2 − 1
m2 − 1

,

|c1| − |c2| =
√
(n1 − 1)(m1 − 1)−

√
(n2 − 1)(m2 − 1),

(5.22)

then the Duan et al. theorem for Gaussian states writes:

Theorem 5 (Duan et al. necessary and sufficient criterion for Gaussian states). A
Gaussian state ρG is separable if and only if, when expressed in its standard form II, the
following inequality is satisfied:

a2
0

n1 + n2

2
+

m1 + m2

2a2
0

− |c1| − |c2| ≥ a2
0 +

1
a2

0
, (5.23)

where a2
0 =

√
m1−1
n1−1 =

√
m2−1
n2−1 .

The equation (5.23) is derived by applying the Duan et al. theorem with the operators:

û = a0 x̂1 +
c1

|c1|
1
a0

x̂2,

v̂ = a0 p̂1 −
c2

|c2|
1
a0

p̂2.
(5.24)

Finally, the Duan and Simon criterion is a necessary and sufficient criterion for the
separability of bipartite 1 × n [67] and n × m bisymmetric [68] Gaussian states. In-
deed, it can be further generalized for N + M Gaussian systems [69].
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5.4.2 Continuous-variable realignment criterion

Some entangled states are PPT. Hence, they cannot be detected by the PPT crite-
rion. This is the case in higher dimensional systems where the PPT criterion is only
a necessary criterion for separability. Another criterion is available and more effi-
cient for detecting these entangled PPT states, namely the bound entangled states :
the realignment criterion. An equivalent criterion to the realignment criterion for CV
exists. It has been developped by Zhang et al. in [70]. Given the importance of the
realignment map and criterion in the present thesis, these notions are developed in
details in the dedicated section 5.5.

5.5 Realignment criterion and realignment map

The content of this section is mainly based on the article "Realignment separability criterion
assisted with filtration for detecting continuous-variable entanglement" that I have published
with Anaelle Hertz, Ali Asadian and Nicolas Cerf as co-authors [2].

5.5.1 Operator Schmidt decomposition

It is well known that any bipartite pure state |ψ⟩AB can be decomposed according to
the Schmidt decomposition Eq. (5.3). An analogous Schmidt decomposition can also
be defined for mixed states [71]. Let ρ be a mixed quantum state of a bipartite system
AB, then it can be written in its operator Schmidt decomposition as

ρ =
r

∑
i=1

λi Ai ⊗ Bi, (5.25)

with the Schmidt coefficients λi being some non-negative real numbers, the Schmidt
rank r satisfying 1 ≤ r ≤ min{dim A, dim B}, and with {Ai} and {Bi} forming
orthonormal bases3 of the operator spaces for subsystems A and B with respect to
the Hilbert-Schmidt inner product, i.e., Tr(A†

i Aj) = Tr(B†
i Bj) = δij. The Schmidt

coefficients λi are unique for a bipartite state ρ and reveal some of its characteristic
features. For example, the purity of ρ can be expressed as Tr ρ2 = ∑r

i=1 λ2
i . Hence,

the λi should satisfy the following inequality to describe a valid quantum state :

∑r
i=1 λ2

i < 1.

3If the operator is Hermitian (such as ρ), then the operators Ai and Bi can be chosen Hermitian too.
But the Schmidt decomposition is not unique and there exist other possible Schmidt decompositions of
an Hermitian operator with non-Hermitian operators Ai and Bi.
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5.5.2 Computable cross norm criterion

Similarly as for pure states, the operator Schmidt decomposition can be employed
as an entanglement criterion for mixed bipartite states; this is called the computable
cross norm criterion and is defined as follows.

Theorem 6 (Computable cross norm criterion [60]). Let ρ be a state with the operator
Schmidt decomposition ρ = ∑r

i=1 λi Ai ⊗ Bi. If ρ is separable, then ∑r
i=1 λi ≤ 1. Conversely,

if ∑r
i=1 λi > 1, then ρ is entangled.

Proof. We give here the proof of Theorem 6. Let us construct an entanglement witness
W , that is, an observable with a positive expectation value on all separable states.
Let us define W = 1− ∑r

i Ai ⊗ Bi and let us check that Tr(ρsepW) ≥ 0 where ρsep =

(|a⟩ ⊗ |b⟩)(⟨a| ⊗ ⟨b|) is a separable (product) state. First we remark that

Tr(ρsepW) = (⟨a| ⊗ ⟨b|)W(|a⟩ ⊗ |b⟩), (5.26)

= 1 −
r

∑
i
⟨a|Ai|a⟩⟨b|Bi|b⟩,

≥ 1 −
√

r

∑
i
|⟨a|Ai|a⟩|2

√
r

∑
i
|⟨b|Bi|b⟩|2,

where we used the Cauchy-Schwarz inequality in the last step. Now, since the {Ai}
form a basis, we can write |a⟩⟨a| = ∑j αj Aj where αj = ⟨a|Aj|a⟩, and similarly for
|b⟩⟨b|. This allows us to write

1 = ∥ |a⟩⟨a| ∥2= Tr(|a⟩⟨a|(|a⟩⟨a|)†) = Tr(∑
ij

αi Aiα
∗
j A†

j ),

= ∑
ij

αiα
∗
j Tr(Ai A†

j ) = ∑
i
|αi|2 = ∑

i
|⟨a|Ai|a⟩|2, (5.27)

and similarly ∑i |⟨b|Bi|b⟩|2 = 1 so that Tr(ρsepW) ≥ 0. Thus, W is indeed an entan-
glement witness as any separable state is expressed as a convex mixture of states of
the form ρsep. Let us now check under which condition entanglement is detected. In
other words, what is the condition to have Tr(ρW) < 0 ? Consider a state ρ written
in its operator Schmidt decomposition. Then,

Tr(ρW) = 1 − Tr

(
r

∑
ij

λi Ai Aj ⊗ BiBj

)
,

= 1 −
r

∑
ij

λiTr(Ai Aj)Tr(BiBj),

= 1 −
r

∑
i

λi. (5.28)

Remember that in the operator Schmidt decomposition, the operators Ai and Bi are
not unique and can be chosen hermitian in the decomposition of the hermitian den-
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sity matrix ρ. Entanglement is thus detected when ∑r
i λi > 1 which completes the

proof.

For example, one could consider the operator-Schmidt decomposition of the Bell
state |Ψ+⟩⟨Ψ+| = 1/2(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|). The operator-Schmidt
decomposition writes :

|Ψ+⟩⟨Ψ+| =
4

∑
i=1

1
4

Ai ⊗ Bi, (5.29)

where Ai = Bi for all i = 1, 2, 3, 4 and A1 = |0⟩⟨0|, A2 = |0⟩⟨1|, A3 = |1⟩⟨0| and
A4 = |1⟩⟨1|. The rank of the Bell state is maximal r = 4 Hence, by applying the
computable cross norm criterion, one finds that :

4

∑
i=1

λi =
1
2
+

1
2
+

1
2
+

1
2
= 2, (5.30)

which shows that the computable cross norm detects the entanglement of the Bell
state |Ψ+⟩⟨Ψ+|.

5.5.3 The realignment map

There exists an alternative formulation of the computable cross norm criterion which,
as we will see, turns out to be more convenient when considering continuous-variable
states. This reformulation is done by defining a linear map R called realignment map,
whose action on the tensor product of matrices A = ∑ij aij|i⟩⟨j| and B = ∑kl bkl |k⟩⟨l|
is

R
(

A ⊗ B
)
= ∑

ijkl
aijbkl |i⟩|j⟩⟨k|⟨l|. (5.31)

Since, any bipartite state ρ can be decomposed into A ⊗ B products according to
Eq. (5.25), one can easily express its realignment R(ρ) based on definition (5.31).
Thus, the realignment map simply interchanges the bra-vector ⟨j| of the first sub-
system with the ket-vector |k⟩ of the second subsystem. Note that the map R is
basis-dependent, namely, it depends on the basis in which the matrix elements aij

and bkl are expressed. When we will study the application of the realignment R to
continuous-variable states in Secs. 5.5.5 and more generally in 6, we will always as-
sume that |i⟩, |j⟩, |k⟩, and |l⟩ are Fock states, so that Eq. (5.31) must be understood in
the Fock basis.

Using the state-operator correspondence implied by the Choi-Jamiolkowski isomor-
phism [72, 73], we can identify matrices with vectors living in the tensor-product ket
space, namely |A⟩=∑ij aij|i⟩|j⟩ and |B⟩=∑kl bkl |k⟩|l⟩. Their corresponding dual vec-
tors are noted ⟨A| = ∑ij a∗ij⟨i|⟨j| and ⟨B| = ∑kl b∗kl⟨k|⟨l|, living in the tensor-product
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bra space. Hence, the above map can be reexpressed as

R
(

A ⊗ B
)
= |A⟩⟨B∗|, (5.32)

where complex conjugation is also applied in the preferred basis. Using the fact that
(A ⊗ 1)|Ω⟩ = ∑ij aij(|i⟩⟨j| ⊗ 1)∑k |k⟩|k⟩ = ∑ij aij|i⟩|j⟩, we can write the following
useful equations:

|A⟩ = ∑
ij

aij|i⟩|j⟩ = (A ⊗ 1)|Ω⟩,

and

⟨B∗| = ∑
ij

bij⟨i|⟨j| = ⟨Ω|(BT ⊗ 1), (5.33)

where |Ω⟩ = ∑i |i⟩|i⟩ is the (unnormalized4) maximally entangled state and 1 =

∑i |i⟩⟨i| is the identity matrix, one can also rewrite the realignment map as

R(A ⊗ B) = (A ⊗ 1)|Ω⟩⟨Ω|(BT ⊗ 1),

= (A ⊗ 1)|Ω⟩⟨Ω|(1⊗ B). (5.34)

which will happen to be useful when considering the optical realization of the sepa-
rability criterion.

It is obvious that R(R(ρ)) = ρ, so that definition (5.32) can also be restated as

R
(
|A⟩⟨B|

)
= A ⊗ B∗. (5.35)

Note the special cases

R(1⊗ 1) = |Ω⟩⟨Ω|,

R(|Ω⟩⟨Ω|) = 1⊗ 1, (5.36)

which are trivial consequences of |1⟩ = |Ω⟩ and Ω̂ = 1.

It will also be useful in the following to define the dual realignment map R†, which is
such that Tr(ρ1 R(ρ2)) = Tr(R†(ρ1) ρ2). Definitions (5.32) and (5.34) translate into

R†(A ⊗ B) = |BT⟩⟨A†|,

= (BT ⊗ 1)|Ω⟩⟨Ω|(A ⊗ 1),

= (1⊗ B)|Ω⟩⟨Ω|(A ⊗ 1). (5.37)

4This definition of |Ω⟩ remains useful even for continuous-variable (infinite-dimensional) systems,
where it can be interpreted as a (unnormalized) two-mode squeezed vacuum state with infinite squeez-
ing. The definition of R given by Eq. (5.34) remains thus valid with |Ω⟩ = ∑∞

i=0 |ii⟩, where |i⟩ stands
for Fock states.
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Finally, it is worth adding that, by inspection, definition (5.31) of the realignment
map can be decomposed as

R
(

A ⊗ B
)
=
((

A ⊗ BT) F
)T2

, (5.38)

where (·)T2 denotes a partial transposition on the second subsystem (B), and F =

∑i,j |ij⟩⟨ji| = |Ω⟩⟨Ω|T2 is the exchange operator [74]. From this, we obtain the follow-
ing.

Remark 1. For any state ρ, the realignment map can be defined as

R(ρ) =
(

ρT2 F
)T2

= (ρF)T2 F. (5.39)

In other words, the map R boils down to the concatenation of partial transposition
on subsystem B, then applying the exchange operator F to the right, followed by
partial transposition on subsystem B again. Conversely, the roles of F and (·)T2 can
be exchanged.

Of course, the dual realignment map R† can also be defined similarly as in Eq. (5.39),
namely

R†(ρ) =
(

FρT2
)T2

= F (Fρ)T2 . (5.40)

The difference with the (primal) realignment map R is that the exchange operator F
is applied to the left. To be complete, let us mention that maps R and R† can also be
defined using partial transposition on the first subsystem denoted as (·)T1 , namely,

R(ρ) = (FρT1)T1 = F(Fρ)T1 ,

R†(ρ) =
(

ρT1 F
)T1

= (ρF)T1 F. (5.41)

These alternative definitions of the realignment map will help us (in Section 5.5.4) to
explicitly derive the connection between the realignment criterion and PPT criterion
for the so-called symmetric states.

5.5.4 Realignment criterion

Coming back to the question of separability, let us now state the following theorem.

Theorem 7 (Realignment criterion [75]). If the bipartite state ρ is separable, then
∥ R(ρ) ∥tr≤ 1. Conversely, if ∥ R(ρ) ∥tr > 1, then ρ is entangled.

Proof. From Eq. (5.32), the realignment of a product state is given by

R(ρA ⊗ ρB) = |ρA⟩⟨ρ∗B|, (5.42)
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and therefore,

∥ R(ρA ⊗ ρB) ∥tr = Tr
√
|ρA⟩⟨ρ∗B|ρ∗B⟩⟨ρA|,

=
√

Tr(ρ2
B)Tr

√
|ρA⟩⟨ρA|,

=
√

Tr(ρ2
B)
√
⟨ρA|ρA⟩,

=
√

Tr(ρ2
B)
√

Tr(ρ2
A)

=
√

µAµB

≤ 1,

(5.43)

where ∥ O ∥tr= Tr(
√
OO†) denotes the trace norm5 of an operator O, we used the

Hilbert-Schmidt inner product, ⟨A|B⟩ = Tr(A†B) and µ = Tr(ρ2) is the purity of
the state ρ which is lower or equal to 1. The convexity of the trace norm implies that
∥ R(ρ) ∥tr≤ 1, for any separable state ρ = ∑i piρ

A
i ⊗ ρB

i , with pi ≥ 0 and ∑i pi = 1.

Theorem 7 is called the realignment criterion as the detection of entanglement ex-
ploits the map R. But it is interesting to note that ∥ R(ρ) ∥tr coincides with the sum
of the Schmidt coefficients of ρ, so the realignment criterion is actually equivalent to
Theorem 1 [76]. Indeed, let ρ be a state with the operator Schmidt decomposition
ρ = ∑r

i λi Ai ⊗ Bi. Then, according to Eq. (5.32),

R(ρ) = ∑
i

λi R(Ai ⊗ Bi) = ∑
i

λi |Ai⟩⟨B∗
i |, (5.44)

and

∥ R(ρ) ∥tr = Tr

√∑
i,j

λiλj|Ai⟩⟨B∗
i |B∗

j ⟩⟨Aj|

 ,

= Tr

[√
∑

i
λ2

i |Ai⟩⟨Ai|
]

,

= Tr

[
∑

i
|λi||Ai⟩⟨Ai|

]
= ∑

i
λi, (5.45)

since ⟨Ai|Aj⟩ = ⟨Bi|Bj⟩ = δij. Theorem 7 is thus equivalent to Theorem 6.

As a trivial example of Theorem 7, let us consider two d-dimensional systems (with
d ≥ 2). The maximally mixed state ρ = 1⊗ 1/d2 is mapped to R(ρ) = |Ω⟩⟨Ω|/d2,
see Eq. (5.36), so its trace norm is ∥ R(ρ) ∥tr= 1/d < 1 as expected since ρ is separa-
ble. Conversely, according to Eq. (5.36), the maximally entangled state ρ = |Ω⟩⟨Ω|/d
is mapped to R(ρ) = 1⊗ 1/d, so that ∥ R(ρ) ∥tr= d > 1 and the entanglement of ρ

5The trace norm of O is equivalent to the sum of the singular values of O, which are given by the
square roots of the eigenvalues of OO†. For an Hermitian operator, the trace norm is simply equal to
the sum of the absolute values of the eigenvalues.
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is well detected in this case.

Theorem 8. For any bipartite state ρ, the value of the trace norm of the realignment of the
state R(ρ) is bounded by

1
d
≤∥ R(ρ) ∥tr≤ d. (5.46)

Proof. Let us prove that the values 1/d and d of the bounds in theorem 8 are extremal
and correspond to the trace norm of the maximally mixed and maximally entangled
states. For this, we use the Lagrange multipliers technique. The constraint is the
purity of the state : P = ∑d

i λ2
i . From Eq. (5.45), the problem can be understood as

finding the point on a sphere of radius P that has the maximal length of coefficient λi

in an Euclidean space. Indeed, the Lagrangian of this problem writes :

L(λi, µ) =
r

∑
i

λi + µ(
r

∑
i

λ2
i − P). (5.47)

Hence, the partial derivatives of the Lagrangian are :

∂L
∂λi

= 1 + 2µλi = 0,

∂L
∂µ

=
r

∑
i

λ2
i − P = 0.

(5.48)

Hence, we find that

λi =
−1
2µ

,

P =
r

∑
i

λ2
i .

(5.49)

By solving this system one finds that :

λi =
−1
2µ

,

µ = ±1
2

√
r
P

,
(5.50)

and finally by taking only the negative value of µ (since the λi’s must be positive),

λi =

√
P
r

. (5.51)

Finally, the extremal values for the realignment criterion are the extreme values of :

r

∑
i

λi = r

√
P
r
=

√
rP. (5.52)

On one hand, for maximally mixed states (i.e. P = 1/d2 and r = 1 which are the
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minimal values for P and r), we have :

1

∑
i

λi =
1

∑
i

1
d
=

1
d

. (5.53)

On the other hand, for maximally entangled states (i.e. P = 1 and r = d2, which are
the maximal values for P and r), we have :

d2

∑
i

λi =
√

d2 = d. (5.54)

Hence, we have showed that ∥ R(ρ) ∥tr has to satisfy the following inequalities :

1
d
≤∥ R(ρ) ∥tr≤ d, (5.55)

which is saturated for maximally mixed and maximally entangled states.

Remark 2. The alternative definition given in remark 1 of R allows us to express the trace
norm as

∥ R(ρ) ∥tr=∥ (ρF)T2 F ∥tr=∥ (ρF)T2 ∥tr, (5.56)

where the last equality comes from the fact that, for any operator A, we have

∥ AF ∥tr = Tr
√

AF(AF)† = Tr
√

AFF† A†,

= Tr
√

AA† =∥ A ∥tr, (5.57)

since FF† = FF = 1.

From Eq. (5.56), it becomes obvious that for the special case of states ρs belonging
to the symmetric subspace, i.e., states satisfying Fρs = ρsF = ρs, the realignment
criterion coincides with the PPT criterion [77]. Indeed, ∥ R(ρs) ∥tr=∥ ρT2

s ∥tr, and
∥ ρT2

s ∥tr= ∑i |λ′
i| > 1 implies that at least one eigenvalue λ′

i of the partial-transposed
state ρT2

s is negative, since Tr(ρs) = Tr(ρT2
s ) = ∑i λ′

i = 1 (which is the PPT criterion).
Beyond the case of states in the symmetric subspace, however, the realignment and
PPT criteria are generally incomparable criteria (see Fig. 6.1).

5.5.5 Realignement criterion for Gaussian states

In [70], the authors introduced the notions of Continuous-Variable Local Orthogonal
Observables (CVLOO) and use them to derive an entanglement witness (EW) which,
under optimal choice of CVLOO, is equivalent to the realignment criterion.

The CVLOO are an infinite family of observables G(λ) that are defined for each mode
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and must satisfy the orthogonal relations:

Tr
(
G(λ)G(λ′)

)
= δ(λ − λ′), (5.58)

and the complete-set condition:

ρ =
∫
⟨G(λ)⟩ρG(λ)d2λ, (5.59)

where λ and λ′ are complex number indices.

By applying an optimal witness to a two-mode Gaussian state where the covariance
matrix is written under its normal form I, they obtain the following separability cri-
terion for Gaussian states:

Tr(ρWµ1µ2) = 1 − 1

4
√
(
√

ab − |c1|)(
√

ab − |c2|)
≥ 0. (5.60)

This equation will be compared to the weak realignment criterion derived for two-
mode Gaussian states in chapter 6.
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6 | Realignment separability cri-
terion for detecting CV entan-
glement

The content of this chapter is mainly based on the article "Realignment separability criterion
assisted with filtration for detecting continuous-variable entanglement" that I have published
with Anaelle Hertz, Ali Asadian and Nicolas Cerf as co-authors [2].

6.1 Introduction

When it comes to mixed states, determining whether a state is entangled or not is
provably a hard decision problem [55, 78]. Still, it has long been and it remains
an active research topic because entanglement is a key resource for quantum in-
formation processing. Both for discrete- and continuous-variable systems, various
separability criteria — conditions that must be satisfied by any separable state —
have been derived. Probably the best known criterion is the Peres–Horodecki crite-
rion [58, 53], also called the positive partial transpose (PPT) criterion. Introduced for
discrete-variable systems, it states that if a quantum state is separable, then its partial
transpose must remain physical (i.e., positive semidefinite). This PPT condition is,
in general, only a necessary condition for separability. It becomes sufficient only for
systems of dimensions 2× 2 and 2× 3 [53]. The PPT criterion was generalized to con-
tinuous variables (i.e., infinite-dimensional systems) by Duan et al. [79] and Simon
[80]. Interestingly, it is necessary and sufficient for all 1 × n Gaussian states [67] and
n × m bisymmetric Gaussian states [81]. In all other cases, when a state is entangled
but its partial transpose remains positive semidefinite, we call it a bound entangled
state [82, 55]. These are entangled states from which no pure entangled state can be
distilled through local (quantum) operations and classical communications (LOCC)
[82].

Many other separability criteria have been developed over years (see, e.g., [83, 84,
85, 86, 87], and consult [55] for an older, but still relevant, review). Among them,
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we focus in the present Chapter on the realignment criterion [75, 60]. This criterion
is unrelated to the PPT criterion and thereby enables the detection of some bound
entangled states in both discrete-variable [75] and continuous-variable cases [70].
Unfortunately, the realignment criterion happens to be generally hard to compute,
especially for continuous-variable systems. To our knowledge, it has only been com-
puted for Gaussian states by Zhang et al. [70] and yet, the difficulty increases with
the number of modes.

In this work, we introduce a weaker form of the realignment criterion which is much
simpler to compute and comes with a physical implementation in terms of linear
optics and homodyne detection, hence it is especially suited to detect continuous-
variable entanglement. It is, in general, less sensitive to entanglement than the origi-
nal realignment criterion and cannot detect bound-entangled states, but it happens to
be equivalent to the original realignment criterion for the class of Schmidt-symmetric
states. Furthermore, we show that by supplementing this criterion with a filtration
method, it is possible to greatly improve it and sometimes even surpass the original
realignment criterion while keeping the simplicity of computation.

In Sec. 5.5, we have reviewed the definition of the realignment criterion, focusing
especially on the realignment map R. We have linked different formulations of this
criterion and its main properties have been covered. In Sec. 6.2 , we now introduce
the weak realignment criterion, based on the trace of the realigned state R(ρ) and show
that for a class of states that we call Schmidt-symmetric, both the weak and original
strong realignment criteria (as stated in Theorem 7) are equivalent while the former
is much easier to compute than the latter. In Sect. 6.3, we apply the weak realign-
ment criterion to continuous-variable states and give special attention to Gaussian
states. In particular, we will provide some explicit calculations in the case of n × n
mode Gaussian states, in which case it boils down to computing a simple quantity
that only depends on the covariance matrix of the state. The idea is to compare to
the work of Zhang et al. [70], which relied on the original formulation of the cri-
terion. As expected, however, the easiness of computation comes with the price of
a lower entanglement detection sensitivity than the one of the original realignment
criterion for Gaussian states as calculated in [70]. We notice that several entangled
states remain undetected by the weak realignment criterion and, unfortunately, the
latter cannot detect bound entanglement. As a solution, we introduce in Sec. 6.4
a filtration procedure that enables a better entanglement detection by bringing the
state closer to a Schmidt-symmetric state, hence increasing the sensitivity of the en-
tanglement witness. Indeed, we may “symmetrize” the state by locally applying a
noiseless amplifier or attenuator (it does not affect the separability of the state, so
we may apply the weak realignment criterion on the filtered state). In Sec. 6.5, we
provide some specific examples for 1 × 1 and 2 × 2 Gaussian states. In some cases,
the filtration procedure supplementing the weak realignment criterion enables a bet-
ter entanglement detection than the original realignment criterion. Finally, we give
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some conclusions in Sec. 6.6.

6.2 Weak realignment criterion

Let us introduce the weak realignment criterion, which is in general not as strong as
the original realignment criterion but has the advantage of being easily computable
and physically implementable using standard optical components. The weak re-
alignment criterion applies to all states but our main focus will be its application
to continuous-variable states as detailed in Sec. 6.3.

6.2.1 Weak realignment criterion formulation

It is well known result in algebra that the trace norm of an operator is greater than
or equal to its trace (and we have equality if and only if the operator is positive
semidefinite). Using Eq. (5.39), we have that for any state

∥ R(ρ) ∥tr ≥ Tr R(ρ),

= Tr
(

ρT2 F
)

,

= Tr
(

ρ FT2
)

,

= Tr (ρ |Ω⟩⟨Ω|) = ⟨Ω|ρ|Ω⟩,

(6.1)

where F = ∑i,j |ij⟩⟨ji| = |Ω⟩⟨Ω|T2 is the exchange operator [74] and we have used the
invariance of the trace under partial transposition (·)T2 (line 2), the identity Tr(A BT2) =

Tr(AT2 B) for any bipartite operators A and B (line 3), and the definition of F (line 4).
Note that this result can also be obtained by noticing that

Tr(R(ρ)1⊗ 1) = Tr(ρ R†(1⊗ 1)) = Tr(ρ |Ω⟩⟨Ω|). (6.2)

We can thus state the following theorem:

Theorem 9 (Weak realignment criterion). For any bipartite state ρ, the trace norm of the
realigned state can be lower bounded as

∥ R(ρ) ∥tr≥ Tr R(ρ) = ⟨Ω|ρ|Ω⟩. (6.3)

Hence, if ρ is separable, then ⟨Ω|ρ|Ω⟩ ≤ 1. Conversely, if ⟨Ω|ρ|Ω⟩ > 1, then ρ is entangled.

In other words, the weak realignment criterion (6.3) amounts to computing the fi-
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delity of state ρ with respect to |Ω⟩ 1. Indeed, since
√
|Ω⟩⟨Ω| = |Ω⟩⟨Ω|/

√
d 2

where d is the dimension of the Hilbert space, the fidelity between ρ and |Ω⟩ writes

F(|Ω⟩, ρ) =
(

1/
√

dTr
(√

|Ω⟩⟨Ω|ρ|Ω⟩⟨Ω|
))2

= 1/d
(√

⟨Ω|ρ|Ω⟩
√

Tr(|Ω⟩⟨Ω|)
)2

=

⟨Ω|ρ|Ω⟩. It is immediate that its entanglement detection capability can only be lower
than that of the original realignment criterion, Theorem 7 (see Fig. 6.1). Furthermore,
if we deal with bound-entangled states, the weak realignment criterion cannot de-
tect entanglement. Indeed, we can link the weak realignment criterion with the PPT
criterion by expressing

∥ R(ρ)T2 ∥tr=∥ ρT2 F ∥tr=∥ ρT2 ∥tr, (6.4)

where we have used Eqs. (5.39) and (5.57), combined with the inequality

∥ R(ρ)T2 ∥tr≥ Tr
(

R(ρ)T2
)
= Tr R(ρ), (6.5)

Thus,
∥ ρT2 ∥tr ≥ Tr R(ρ), (6.6)

and we deduce that the weak realignment criterion is weaker than the PPT criterion
(see 6.1). If a state is bound entangled, we have ∥ ρT2 ∥tr= 1 which then implies
that Tr R(ρ) ≤ 1, so its entanglement cannot be detected with the weak realignment
criterion.

It is instructive to apply the weak realignment criterion on each component of the
operator Schmidt decomposition of ρ. Using Eq. (5.34), we have

Tr R(A ⊗ B) = ⟨Ω|A ⊗ B|Ω⟩ = Tr(ABT), (6.7)

which implies that if ρ = ∑i λi Ai ⊗ Bi, then

Tr R(ρ) = ∑
i

λi Tr(AiBT
i ) = ∑

i
λi ⟨B∗

i |Ai⟩. (6.8)

Remembering that ∥ R(ρ) ∥tr= ∑i λi, it appears that we must have Bi = A∗
i in order

to reach a situation where Tr R(ρ) =∥ R(ρ) ∥tr. This is analyzed in the following
section.

6.2.2 Schmidt-symmetric states

In this section, we show that for Schmidt-symmetric states, the weak and original
forms of the realignment criterion become equivalent (while the weak form is much

1The fidelity between two states ρ and σ is a measure of the distance between these states (while not
being a proper metric) and writes F(ρ, σ) =

(
Tr
(√√

ρσ
√

ρ
))2. In the case of ρ = |ψ⟩⟨ψ| being a pure

state, the fidelity is given by the well-known formula F(ρ, σ) = ⟨ψ|σ|ψ⟩
2remember that Tr(|Ω⟩⟨Ω|) = ⟨Ω|Ω⟩ = d
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Separable

Entangled

PPT

Figure 6.1: This schematic view on the convex ensemble of states. The separable
states are a subset depicted in light blue. The hatched area consists of the non sepa-
rable states. The red area is the ensemble of states that are PPT and the yellow area
is the ensemble of states that are not detected as non separable by the realignment
criterion (Theorem 7). The green area show the states that are not detected as non
separable by the weak realignment criterion (Theroem 9). Hence, we see that the
PPT and realignment criterion are not comparable. However, the weak realignement
criterion is weaker than both PPT and realignement criterion as it detects less entan-
gled states.

simpler to compute). Let us define Schmidt-symmetric states ρsch as the states that
admit an operator Schmidt decomposition with Bi = A∗

i , ∀i, namely,

ρsch = ∑
i

λi Ai ⊗ A∗
i . (6.9)

These states satisfy Fρsch F = ρ∗sch since applying F on both sides is equivalent to
exchanging the two subsystems and since the Schmidt coefficients are real. Note
that the converse is not true as there exist states ρ that satisfy FρF = ρ∗ but are not
Schmidt-symmetric, for example the state ρ = ∑i λi Ai ⊗ (−A∗

i ). For any state ρ that
satisfies FρF = ρ∗, it is easy to see that R(ρ) is Hermitian since 3

R(ρ)† = ((ρF)T2 F)†,

= F(ρ∗F)T1 ,

= F(Fρ)T1 = R(ρ), (6.10)

where we have used Eqs. (5.39) and (5.41). Thus, R(ρsch) is necessarily an Hermitian
operator.

Actually, using the definition (5.32) of the realignment map R, it appears that R(ρsch) =

∑i λi|Ai⟩⟨Ai| is positive semidefinite, so that ∥ R(ρsch) ∥tr= Tr R(ρsch). Conversely, if
the latter equality is satisfied for a state ρ, it means that R(ρ) is positive semidefinite
so it can be written as R(ρ) = ∑i λi|Ai⟩⟨Ai|, which is nothing else but the realignment
of a Schmidt-symmetric state. We have thus proven the following theorem:

3Be aware that R(ρ)† is the conjugate transpose of R(ρ) and it is distinct from the dual map R†(ρ).
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Theorem 10 (Schmidt-symmetric states). A bipartite state ρ is Schmidt-symmetric (i.e.,
it admits the operator Schmidt decomposition ρ = ∑i λi Ai ⊗ A∗

i ) if and only if

∥ R(ρ) ∥tr= Tr R(ρ). (6.11)

This entails the coincidence between the weak form of the realignment criterion de-
rived in Theorem 9 and the original realignment criterion of Theorem 7 in the special
case of Schmidt-symmetric states (see Fig. 6.1).

Incidentally, we note that the necessary condition FρF = ρ∗ for a state to be Schmidt-
symmetric resembles the necessary and sufficient condition FρF = ρ for a state to be
symmetric under the exchange of the two systems. For this reason, when building a
filtration procedure in order to bring the initial state closer to a Schmidt-symmetric
state (see Sec. 6.4), we will “symmetrize" the state. More precisely, we will exploit the
fact that the condition FρF = ρ∗ implies that Tr1 ρ = Tr2 ρ∗. In other words, Schmidt-
symmetric states are such that the reduced states of both subsystems are complex
conjugate of each other, namely ρsch,2 = ρ∗sch,1, which is also a simple consequence of

ρsch,1 = Tr2(ρsch) = ∑
i

λi Ai TrA∗
i ,

ρsch,2 = Tr1(ρsch) = ∑
i

λi A∗
i TrAi. (6.12)

Hence, they have the same eigenspectrum since their eigenvalues are real, and in
particular the same purity (but the converse is not true),

Tr(ρ2
sch,1) = Tr(ρ2

sch,2). (6.13)

The filtration procedure that we apply in Sec. 6.4 follows Eq. (6.13) in the sense
that we will “symmetrize” the initial state so that the two subsystems reach the same
purity.

6.3 Weak realignment criterion for continuous-variable states

6.3.1 Examples of realigned states

It is instructive first to check the action of the realignment map R on some of the well-
known states of quantum optics in order to set up some benchmarks in our intuition
about the application of the realignment map on CV:

• Fock states4:
4Remember that the Fock basis {|n⟩} is used as the preferred basis with respect to which the realign-

ment map R is defined.
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R(|n1⟩⟨n2| ⊗ |n3⟩⟨n4|) = |n1⟩⟨n3| ⊗ |n2⟩⟨n4|. Fock states are a natural discrete
basis in which one can describe quantum states.

• Position states: R(|x1⟩⟨x2| ⊗ |x3⟩⟨x4|) = |x1⟩⟨x3| ⊗ |x2⟩⟨x4|. Position states are
a natural continuous basis in which one can describe quantum states. This can
be proven using Eq. (5.34) and expressing |Ω⟩ = ∑n |n, n⟩ in the position basis,
namely |Ω⟩ =

∫
dx |x, x⟩.

• Momentum states: R(|p1⟩⟨p2| ⊗ |p3⟩⟨p4|) = |p1⟩⟨−p3| ⊗ | − p2⟩⟨p4|. This can
be proven using Eq. (5.34) and expressing |Ω⟩ = ∑n |n, n⟩ in the momentum
basis: |Ω⟩ =

∫
dp |p,−p⟩.

• Coherent states:
R(|α⟩⟨β| ⊗ |γ⟩⟨δ|) = |α⟩⟨γ∗| ⊗ |β∗⟩⟨δ|. In particular, R(|α⟩⟨α| ⊗ |α∗⟩⟨α∗|) =

|α⟩⟨α| ⊗ |α∗⟩⟨α∗|, so that a pair of phase-conjugate coherent states is invariant
under R.

• Two-mode squeezed vacuum state:
Defining |TMSV⟩ = (1 − t2)1/2 ∑i ti |i⟩|i⟩ with 0 ≤ t < 1 characterizing
the squeezing, we obtain R(|TMSV⟩⟨TMSV|) = 1+t

1−t ρth ⊗ ρth where ρth =

(1 − t)∑i ti|i⟩⟨i| is a thermal state. Entanglement is detected in this case since
∥ R(|TMSV⟩⟨TMSV|) ∥tr=

1+t
1−t > 1 as soon as t > 0.

• Tensor product of thermal states:
R(ρth ⊗ ρth) =

1−t
1+t |TMSV⟩⟨TMSV| so that we have ∥ R(ρth ⊗ ρth) ∥tr=

1−t
1+t ≤

1, as expected for a separable state.

6.3.2 Expression of Tr(R) for arbitrary states

In this section, we show how the weak form of the realignment criterion provides
us with an implementable entanglement witness. According to Eq. (6.3), in order
to access Tr R(ρ) we need to project state ρ onto |Ω⟩, which can be thought of as an
unnormalized infinitely entangled two-mode vacuum squeezed state. Indeed, the
state |Ω⟩ can be reexpressed as

√
π U†

BS|0⟩x1 |0⟩p2 where UBS is the unitary of a 50:50
beam splitter. By definition, it is expressed in the Fock basis as |Ω⟩ = ∑n |n⟩|n⟩.
Thus, if |x⟩ and |y⟩ are position states, we have

⟨x|⟨y|Ω⟩ = ∑
n
⟨x|n⟩⟨y|n⟩,

= ∑
n
⟨x|n⟩⟨n|y⟩,

= ⟨x|y⟩ = δ(x − y), (6.14)

so that |Ω⟩ can be written in the position basis as

|Ω⟩ =
∫

dx dy δ(x − y)|x⟩|y⟩ =
∫

dx |x⟩|x⟩. (6.15)
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Since the action of the 50:50 beam splitter unitary UBS on the position eigenstates is
defined as

UBS|x⟩|y⟩ =
∣∣∣∣ x − y√

2

〉 ∣∣∣∣ x + y√
2

〉
, (6.16)

we have,

⟨x|⟨y|U†
BS|0⟩x1 |0⟩p2 =

〈
x − y√

2

∣∣∣∣ 〈 x + y√
2

∣∣∣∣ |0⟩x1 |0⟩p2 ,

=

〈
x − y√

2

∣∣∣x = 0
〉〈

x + y√
2

∣∣∣p = 0
〉

,

= δ

(
x − y√

2

)
1√
2π

,

=
δ(x − y)√

π
, (6.17)

where we have used the fact that ⟨x|y⟩ = δ(x − y) and ⟨x|p⟩ = 1√
2π

eipx. Comparing
with Eq. (6.14), this completes the proof that |Ω⟩ can be reexpressed as

|Ω⟩ =
√

π U†
BS|0⟩x1 |0⟩p2 , (6.18)

that is, it can formally be obtained by applying (the reverse of) a 50:50 beam split-
ter Gaussian unitary UBS on an input state of the product form |0⟩x1 |0⟩p1 , where
UBS|z⟩x1 |z′⟩x2 =

∣∣∣(z − z′)/
√

2
〉

x1

∣∣∣(z + z′)/
√

2
〉

x2
in the position eigenbasis and |0⟩x1

(resp. |0⟩p2) is the position (momentum) eigenstate with zero eigenvalue. Therefore,

Tr R(ρ) = π ⟨0|x1⟨0|p2 UBS ρ U†
BS |0⟩x1 |0⟩p2 . (6.19)

Hence, implementing the weak realignment criterion amounts to expressing the prob-
ability density of projecting the state ρ′ = UBS ρ U†

BS onto |0⟩x1 |0⟩p2 where ρ′ is the
state obtained at the output of a 50:50 beam splitter (see Fig. 6.2 for the two-mode
case). This yields an experimental way of constructing an entanglement witness us-
ing standard optical components since entanglement is detected simply by applying
a Gaussian measurement on the state [88, 89].

Furthermore, this entanglement witness can be generalized to n × n modes with
quadrature components xA = (x1, · · · , xn), pB = (pn+1, · · · , p2n). We have

|Ωn×n⟩ = πn/2 U†
BS |0⟩xA |0⟩pB , (6.20)

with the short-hand notation |0⟩xA ≡ |0, · · · , 0⟩xA and |0⟩pB ≡ |0, · · · , 0⟩pB , hence

Tr R(ρ) = πn ⟨0|xA⟨0|pB ρ′ |0⟩xA |0⟩pB . (6.21)

To be more precise, it means that if the n first modes belong to Alice and the n last
modes belong to Bob, we apply n 50:50 beam splitters between Alice’s ith mode and
Bob’s ith mode, for i = 1, ..., n.
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Figure 6.2: Weak realignment criterion for a two-mode state ρ. The trace of the
realigned state R(ρ) is obtained by computing the probability of measuring x1 =
p2 = 0 on the output state after processing ρ through a 50 : 50 beam splitter, see Eq.
(6.19).

6.3.3 Expression of Tr(R) for Gaussian states

If the initial state ρ is a n× n Gaussian state, the state ρ′ = UBS ρ U†
BS will be Gaussian

too (since the beam splitter is a Gaussian unitary). Its Wigner function is thus given
by

Wρ′(r) =
1

(2π)2n
√

det γ′
e−

1
2 r(γ′)−1rT

, (6.22)

where r = (x1, p1, x2, p2, · · · , x2n, p2n) and γ′ is the covariance matrix of ρ′ obtained
as

γ′ = SγST with S =
1√
2

(
12n −12n

12n 12n

)
, (6.23)

being the symplectic matrix representing the beam splitting transformation and γ

being the covariance matrix of ρ. The probability of projecting ρ′ onto |0⟩xA |0⟩pB as of
Eq. (6.21) is thus easy to compute. Indeed, the probability distribution of measuring
xA on the n modes of the first system and pB on the n modes of the second system is
given by5

P(xA, pB) =
1

(2π)n
√

det γw
e−

1
2 ( xA,pB )γ−1

w ( xA,pB )T
, (6.24)

where γw ("w" is for witness) is the restricted covariance matrix obtained by removing
the lines and columns of the unmeasured quadratures of γ′ (see Fig. 6.3 for examples
with n = 1 and 2). Thus ⟨Ω|ρ|Ω⟩ = πnP(0, 0) = 1

2n
√

det γw
.

We show how to directly compute P(0, 0) for a two-mode state. We have to compute

5The probability distribution is Gaussian since we are dealing with Gaussian states.
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Figure 6.3: Construction of the restricted covariance matrix γw from the covariance
matrix γ′, when n = 1 and n = 2. The red bullets correspond to the entries of γ′ that
are copied in γw while the black bullets are the entries that are dropped.

the following integral where we set x1 = p2 = 0:

⟨x = 0|⟨p = 0|ρ′|x = 0⟩|p = 0⟩,

=
∫

dx2dp1Wρ′(0, p1, x2, 0),

=
1

(2π)2
√

det γ′

∫
dx2dp1 e

− 1
2 ( 0 p1 x2 0 )(γ′)−1

 0
p1
x2
0


,

=
1

(2π)2
√

det γ′

∫
dx2dp1 e−

1
2 ( x2 p1 )Γ

( x2
p1

)
,

=
1

(2π)2
√

det γ′
2π√
det Γ

,

=
1

2π
√

det γ′

√
det γ′

det γw
=

1
2π
√

det γw
,

(6.25)

where Γ is a 2 × 2 matrix with elements given by Γ1,1 = (γ′)−1
3,3 , Γ2,2 = (γ′)−1

2,2 and
Γ1,2 = Γ2,1 = (γ′)−1

2,3 .

We are now ready to state the following theorem:

Theorem 11 (Weak realignment criterion for Gaussian states). For any n × n Gaus-
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sian state ρG, the trace norm of the realigned state can be lower bounded as

∥ R(ρG) ∥tr≥ Tr R(ρG) =
1

2n
√

det γw
. (6.26)

Hence, if ρ is separable, then 1
2n
√

det γw
≤ 1. Conversely,

if
1

2n
√

det γw
> 1, then ρG is entangled. (6.27)

Incidentally, we note that condition (6.27) is equivalent to det γw < 1/4n and can thus
be viewed as checking the nonphysicality of γw via the violation of the Schrödinger-
Robertson uncertainty relation 6. This is in some sense similar to the PPT criterion,
which is based on checking the nonphysicality of the partially transposed state.

Consider the special case of a two-mode Gaussian state (n = 2). Its covariance matrix
can always be transformed into the normal form [79]

γG =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 , (6.28)

by applying local Gaussian unitary operations7, which are combinations of squeez-
ing transformations and rotations and hence do not influence the separability of the
state. Applying Theorem 11, we get

Tr R(ρG) =
1√

(a + b − 2c)(a + b + 2d)
, (6.29)

and the weak realignment criterion reads

1√
(a + b − 2c)(a + b + 2d)

> 1 ⇒ ρG is entangled.

In comparison, it was shown in [70] that for a covariance matrix in the normal form,
Eq. (6.28), the trace norm of the realigned state is given by

∥ R(ρG) ∥tr=
1

2
√(√

ab − |c|
) (√

ab − |d|
) . (6.30)

Comparing Eqs. (6.29) and (6.30) illustrates the fact that the weak realignment cri-
terion is generally weaker than the original form of the realignment criterion (there

6The Schrödinger-Robertson uncertainty relation is a generalisation of the Heisenberg uncertainty
relation and write in terms of the covariance matrix γ as det(γ) ≥ 1/4.

7The covariance matrix of the TMSV state, Eq. (2.79) is an example of the normal form.
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exist states such that ∥ R(ρG) ∥tr > 1 while Tr R(ρG) ≤ 1).

As already mentioned, both criteria become equivalent if the state is in a Schmidt-
symmetric form. In this case, for a general n × n Gaussian state ρG described by the
covariance matrix

γG =

(
A C

CT B

)
, (6.31)

it implies that both reduced covariance matrices must be identical, namely, A = B.
Indeed, ρG being Schmidt-symmetric implies that FρG F = (ρG)∗. Exchanging Al-

ice and Bob’s systems yields a Gaussian state FρGF of covariance matrix

(
B CT

C A

)
,

while (ρG)∗ = (ρG)T is a Gaussian state that admits the covariance matrix

(
A CT

C B

)
.

Identifying these two covariance matrices, we conclude that any Schmidt-symmetric
Gaussian state must have a covariance matrix of the form

γG
sch =

(
A C

CT A

)
. (6.32)

In particular, both reduced covariance matrices have the same determinant, i.e., det A =

det B, which is expected since we know from Eq. (6.13) that the two reduced states
have the same purity, Tr((ρG

1 )
2) = 1

2n
√

det A
and Tr((ρG

2 )
2) = 1

2n
√

det B
. In Sec. 6.4.2,

we apply a filtration procedure that brings the Gaussian state closer to a Schmidt-
symmetric Gaussian state, which will have the effect of bringing the covariance ma-
trix (6.31) closer to the form (6.32). More precisely, we will consider a filtration that
equalizes the determinants of the reduced covariance matrices (hence, the two sub-
systems reach the same purity). We say that a covariance matrix of the form (6.31)
has been symmetrized when det A = det B.

Note that the covariance matrix in form (6.32) is a necessary but not sufficient condi-
tion for a Gaussian state to be Schmidt-symmetric. A necessary and sufficient condi-
tion must imply additional constraints on matrix C. Let us show this for a two-mode
Gaussian state with covariance matrix in the normal form

γ =


a 0 c 0
0 a 0 d
c 0 a 0
0 d 0 a

 , (6.33)

which is a special case of Eq. (6.32). Using Eq. (6.29), we obtain

Tr(R(ρ)) =
1

2
√
(a − c)(a + d)

, (6.34)
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while Eq. (6.30) implies that

∥ R(ρ) ∥tr=
1

2
√
(a − |c|)(a − |d|)

. (6.35)

Both formulas are thus equivalent only if c ≥ 0 and d ≤ 0, which gives the additional
constraint on C. Thus, the necessary and sufficient condition for a two-mode state
with covariance matrix in normal form (6.28) to be Schmidt-symmetric is that a = b,
c ≥ 0, and d ≤ 0.

This last point can be illustrated by considering |Ω⟩ = ∑n |n⟩|n⟩ =
∫

dx |x, x⟩ =∫
dp |p,−p⟩, which can be viewed (up to normalization) as the limit of a two-mode

squeezed vacuum state with infinite squeezing. It has c > 0 and d < 0 since the x’s
are correlated and p’s are anticorrelated. It admits an operator Schmidt decomposi-
tion |Ω⟩⟨Ω| = ∑n,m |n⟩⟨m| ⊗ |n⟩⟨m| with all Schmidt coefficients being equal to one
and the associated operators An,m = Bn,m = |n⟩⟨m|; hence it is Schmidt-symmetric
since it satisfies Bn,m = A∗

n,m. Now, let us apply a phase shift of π on one of the
modes, yielding |Ω′⟩ = ∑n(−1)n|n⟩|n⟩ =

∫
dx |x,−x⟩ =

∫
dp |p, p⟩. Here, we have

c < 0 and d > 0 since the x’s are anticorrelated and p’s are correlated, so it should
not be Schmidt-symmetric. Accordingly, it can be checked that |Ω′⟩⟨Ω′| does not
admit an operator Schmidt decomposition with Bn,m = A∗

n,m. We may decompose
it as |Ω′⟩⟨Ω′| = ∑n,m An,m ⊗ Bn,m where all Schmidt coefficients are again equal to
one and, for example, An,m = Bn,m = in+m|n⟩⟨m| or An,m = (−1)n+mBn,m = |n⟩⟨m|,
but in all cases Bn,m ̸= A∗

n,m. This is an example of an (unormalized) state verify-
ing FρF = ρ∗ but that is not Schmidt-symmetric. Since |Ω⟩ and |Ω′⟩ share the same
Schmidt coefficients, the trace norm of their realignments coincide and are equal to
the trace of the realignment of |Ω⟩ only (in contrast, the trace of the realignment of
|Ω′⟩ vanishes).

The link between |Ω⟩ and |Ω′⟩ suggests that a suitable local phase shift operation
performed on one of the modes of a state can be useful to make the state closer to
being Schmidt-symmetric, and hence to enhance the detection capability of the weak
realignment criterion (an example of this feature is shown in Sec. 6.5.3). Applying a
local phase shift operation is, however, not always sufficient to make the state exactly
Schmidt-symmetric, as can be seen by considering a covariance matrix of the form
(6.28), where we impose that c ≥ 0 and d ≤ 0. Indeed, as soon as a ̸= b, one can verify
that Tr(R(ρ)) < ∥ R(ρ) ∥tr as a consequence of the well-known inequality between
arithmetic and geometric means,

√
ab ≤ (a + b)/2, which is saturated if and only if

a = b.
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6.4 Improvement of the weak realignment criterion

6.4.1 The filtration procedure

According to Theorem 11, the trace norm of the realigned state ∥ R(ρ) ∥tr is greater
than (or equal to) Tr R(ρ), which for n × n Gaussian states is a quantity that solely
depends on the determinant of the restricted covariance matrix γw. For this reason,
while it is easier to compute (especially in higher dimension), the weak realignment
criterion has generally a lower entanglement detection performance than the realign-
ment criterion (as applied in [70]). This suggests the possibility of improving the cri-
terion by transforming the state via a suitable (invertible) operation prior to applying
the criterion.

Since the trace norm and trace of the realigned state are equivalent for a Schmidt-
symmetric state, the natural idea is to find a procedure that ideally transforms the
initial state into a Schmidt-symmetric state without of course creating or destroying
entanglement. We focus here on n × n Gaussian states and exploit the fact that any
Schmidt-symmetric Gaussian state admits a covariance matrix of the form (6.32), in
particular its reduced determinants are equal. Even if this is not a sufficient condi-
tion for a state to be Schmidt-symmetric, we choose to symmetrize the initial state by
equalizing the reduced determinants of its covariance matrix in order to reach a state
that is closer to (ideally equal to) a Schmidt-symmetric state. We then apply Theo-
rem 11 on the resulting symmetrized state in order to get an enhanced entanglement
detection performance.

Since first-order moments are irrelevant as far as entanglement detection is con-
cerned, we can restrict to states with d = 0 with no loss of generality. To sym-
metrize the state, we will exploit a filtering operation in the Fock basis as follows.
Suppose that the first subsystem has a smaller noise variance or more precisely that
det A < det B in Eq. (6.31), meaning that the purity of the first subsystem is larger
than that of the second subsystem (the opposite case is treated below). We process
each mode of the first subsystem through a (trace-decreasing) noiseless amplification
map [90, 91, 92], that is

ρAB → ρ̃AB = c (tn̂/2 ⊗ 1)ρAB(tn̂/2 ⊗ 1), (6.36)

where c is a constant, n̂ is the total photon number in the modes of the first sub-
system, and t > 1 is the transmittance or gain (

√
t is the corresponding amplitude

gain). It can be checked that this map effects an increase of the noise variance of the
first subsystem (it increases det A). Note that if the input state ρAB is Gaussian, then
the output state ρ̃AB remains Gaussian [93]. Crucially, this map does not change the
separability of the state (the amount of entanglement might change, but no entangle-
ment can be created from scratch or fully destroyed). Therefore, ρ̃AB should be closer
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to a Schmidt-symmetric state and is a good candidate for applying Theorem 11.

To find the covariance matrix of the output state ρ̃AB, we follow the evolution of the
Husimi function defined as

Q(α) =
1

πn ⟨α|ρ|α⟩, (6.37)

where |α⟩ is a vector of coherent states. For an n × n Gaussian state ρAB, the Husimi
function is given by

Q(α, β) =
1

π2n
√

det(γ + 1
2 )

e−
1
2 rTΓr, (6.38)

where α is associated to the first system and β to the second, Γ = (γ + 1/2)−1, and

r =
√

2
(
ℜ(α1),ℑ(α1), · · · ,ℜ(αn),ℑ(αn),,

ℜ(β1),ℑ(β1), · · · ,ℜ(βn),ℑ(βn)
)T

, (6.39)

with ℜ(·) and ℑ(·) representing the real and imaginary parts. The noiseless ampli-
fication map enhances the amplitude of a coherent state as |α⟩ → e(t−1)|α|2/2|

√
t α⟩.

Therefore, the Husimi function of the output state ρ̃AB is equal to (see [94] for more
details)

Q̃(α, β) ∝
1

π2n ⟨α, β|(tn̂/2 ⊗ 1)ρAB(tn̂/2 ⊗ 1)|α, β⟩,

= e(t−1)(|α1|2+···+|αn|2)Q(
√

t α, β). (6.40)

Since the output state ρ̃AB is a Gaussian state, its Husimi function is still of the
form (6.38) with an output covariance matrix γ̃ (and corresponding Γ̃). Comparing
the exponent of both expressions, we find that

Γ̃ = MΓM − (M2 − 1) (6.41)

γ̃ =

[
M
(

γ +
1

2

)−1

M − (M2 − 1)

]−1

− 1

2

where

M =

(√
t12n×2n 0

0 12n×2n

)
. (6.42)

The last point before applying the weak realignment criterion on ρ̃AB is to find a
suitable value for the transmittance t (note that t must be greater than 1). A simple
ansatz is to choose t so that the filtered state ρ̃AB is a symmetrized Gaussian state,
that is, the noise variance of both subsystems are equal (det A = det B).

Now, if the first subsystem has a larger noise variance (namely det A > det B), we can
simply exchange the roles of A and B and apply the noiseless amplification map on
the modes of the second subsystem. Alternatively, we may consider another filtering
operation in the Fock basis by processing each mode of the first subsystem through

101



CHAPTER 6. REALIGNMENT SEPARABILITY CRITERION FOR DETECTING CV
ENTANGLEMENT

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BS 
 
t 

|0⟩ |0⟩ 

𝜌 𝜌%&' 

TMS 
 
r |0⟩ 

|0⟩ 𝑉 
𝜌 

𝑥 = 0 
 
 
 𝑝 = 0 

50: 50 𝜌 { 

{ { 

{ 

Figure 6.4: Circuit implementing the filtration on a two-mode Gaussian state ρ : a
noiseless attenuation map is applied on the first mode of ρ (BS represents a beam
splitter of transmittance t). The resulting state ρsym is symmetrized if the value of t is
well chosen.

a (trace-decreasing) noiseless attenuation map [95, 93]. Formally, it is defined exactly
as the noiseless amplification map in Eq. (6.36) but with a transmittance t < 1, so it
leads to very similar calculations. Physically, the noiseless attenuation map has the
advantage to admit an exact physical implementation (unlike the noiseless amplifi-
cation map), which provides us with another method to compute the output covari-
ance matrix γ̃ (and corresponding Γ̃). Indeed, processing the state of a mode through
a noiseless attenuation map is equivalent to processing it through a beam splitter of
transmittance t (with vacuum on an ancillary mode) and then postselecting the out-
put conditionally on the vacuum on the ancillary mode (see Fig. 6.4). We give the
details of this alternative calculation for the two-mode case in 6.5.1.

We note that the enhancement of the weak realignment criterion obtained via prior
filtration can be viewed as the consequence of using TrR(ρ) = Tr(ρ |Ω⟩⟨Ω|) but with
a better witness operator than |Ω⟩⟨Ω|. Let us define the filtration map as ρ → ΛF(ρ).
For example, consider the noiseless attenuation map ΛF(ρ) ∝ (tn̂/2 ⊗ 1)ρ(tn̂/2 ⊗ 1)

applied on a 1 × 1 state (with t < 1). The trace of the realigned state after filtration
can be expressed as

Tr(R(ΛF(ρ))) = Tr(ΛF(ρ) |Ω⟩⟨Ω|),

= Tr(ρ Λ†
F(|Ω⟩⟨Ω|)), (6.43)

where Λ†
F stands for the dual filtration map. In this example, we note that Λ†

F = ΛF

and ΛF(|Ω⟩⟨Ω|)) is proportional to the projector onto a two-mode squeezed vacuum
state. In other words, the enhancement in this example is obtained by computing the
fidelity of ρ with respect to ∑n tn/2|n⟩|n⟩ instead of |Ω⟩ = ∑n |n⟩|n⟩.
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6.4.2 Physical interpretation of the symmetrization procedure for a Gaus-
sian state

We present here an alternative way of computing the covariance matrix of the output
state of a noiseless attenuation channel. To do so, we use the fact that the attenuation
channel can be represented by a beam splitter followed by a postselection on the
vacuum (see Fig. 6.4).

To filter the state, we process the modes of the subsystem with the higher variance
(that is the higher value of the determinant of the reduced covariance matrix A or B)
through a noiseless attenuation channel and then postselect the output conditionally
to measuring the vacuum on the ancillary modes. Since it is a Gaussian channel,
the output remains Gaussian. Processing the state through this channel will have
for effect to lower the variance of the mode that traveled through the channel. The
output state is the symmetrized Gaussian state ρsym. We chose the attenuator factor
(that is the transmittance t of the beam splitter) so that the variance of both modes of
ρsym are equal that is det A = det B. In terms of covariance matrix, the procedure is
as follows.

Let us have a n × n Gaussian state ρ with covariance matrix (6.31) and let us assume
det A ≥ det B with no loss of generality. We then add n vacuum state to the system.
The new covariance matrix thus reads

γ|0⟩⊕n+ρ =

(
1
212n 0

0 γ

)
. (6.44)

We now apply the transformation S ⊕ 1 where S is the beam splitter transformation

S ⊕ 1 =


√

t12n −
√

1 − t12n 0√
1 − t12n

√
t12n 0

0 0 12n

 . (6.45)

to the covariance matrix γ|0⟩⊕n+ρ:

γS⊕1 = S ⊕ 1γ|0⟩⊕n+ρ S† ⊕ 1 =

(
A CT

C B

)
. (6.46)

Finally, we reduce the covariance matrix conditionally to measuring the vacuum on
the ancillary modes, that is [96, 97]

γsym = B − C
(
A+

1
2
1

)−1

CT =

(
A′ C ′T

C ′ B′

)
. (6.47)

At this stage we obtained a new covariance matrix which depends on t. If the filtra-
tion procedure is such that we want to symmetrize the covariance matrix, we need
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to make sure that the determinant of the covariance matrices of both subsystems are
equal (detA′ = detB′).

6.4.3 Explicit calculation for a two-mode case

Let us do the explicit calculations to obtain the symmetrized covariance matrix of a
two-mode Gaussian state initially expressed in its normal form [79],

γρ =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 . (6.48)

Any covariance matrix of a two-mode state can be transformed into this form by
applying local linear unitary operations which are combinations of squeezing trans-
formations and rotations. These operations do not influence the separability of the
state, and are thus always allowed when studying entanglement. Note that we as-
sume a ≥ b with no loss of generality. We first add the vacuum state to the system.
The new covariance matrix reads

γ|0⟩+ρ =



1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 a 0 c 0
0 0 0 a 0 d
0 0 c 0 b 0
0 0 0 d 0 b


. (6.49)

We then apply the transformation S ⊕ 1 to the covariance matrix γ|0⟩+ρ to obtain

γS⊕1 = S ⊕ 1γ|0⟩+ρ S† ⊕ 1 =

(
A CT

C B

)
, (6.50)

with

A =

(
−ta + a + t

2 0
0 −ta + a + t

2

)
, (6.51)

B =


(
a − 1

2

)
t + 1

2 0 c
√

t 0
0

(
a − 1

2

)
t + 1

2 0 d
√

t
c
√

t 0 b 0
0 d

√
t 0 b

 ,

C =


1
2 (1 − 2a)

√
−(t − 1)t 0

0 1
2 (1 − 2a)

√
−(t − 1)t

−c
√

1 − t 0
0 −d

√
1 − t

 .
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Finally, we reduce the covariance matrix conditionally to measuring the vacuum on
the first mode, that is

γsym = B − C
(
A+

1
2
1

)−1

CT

=


t−2a(t+1)−1

4a(t−1)−2(t+1) 0 2c
√

t
−2a(t−1)+t+1 0

0 t−2a(t+1)−1
4a(t−1)−2(t+1) 0 2d

√
t

−2a(t−1)+t+1
2c
√

t
−2a(t−1)+t+1 0 2(t−1)c2

−2a(t−1)+t+1 + b 0

0 2d
√

t
−2a(t−1)+t+1 0 2(t−1)d2

−2a(t−1)+t+1 + b

 .

(6.52)
The covariance matrix will be symmetrized providing that the determinant of the
covariance matrices of both subsystems are equal (det A = det B), meaning(

t − 2a(t + 1)− 1
4a(t − 1)− 2(t + 1)

)2

=

(
2(t − 1)c2

−2a(t − 1) + t + 1
+ b
)

×
(

2(t − 1)d2

−2a(t − 1) + t + 1
+ b
)

.

(6.53)

Solving this equation for t gives the transmittance of the beam splitter necessary to
obtain a Gaussian state with a symmetric covariance matrix.

In the next section, we apply this filtration procedure on several examples of Gaus-
sian states in order to show how the weak realignment criterion assisted with filtra-
tion can indeed improve entanglement detection.

6.5 Applications

6.5.1 Two-mode squeezed vacuum state with Gaussian additive noise

We first illustrate how the filtration procedure enables a better entanglement detec-
tion on two-mode entangled Gaussian states. In particular, we show that for specific
examples, computing the trace of the realigned state (after filtration) is equivalent to
computing its trace norm. Let us consider a two-mode squeezed vacuum state whose
first mode is processed through a Gaussian additive-noise channel as shown in Fig.
6.5. We denote V the variance of this added noise. It is known that the entanglement
of the two-mode squeezed state decreases when we increase the noise variance, until
V = 1 at which point it becomes separable (if V ≥ 1, the channel is entanglement
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Figure 6.5: Example of a Gaussian state created from a two-mode vacuum state
processed through a two-mode squeezer (with squeezing parameter r > 0) and a
Gaussian additive-noise channel acting on the first mode (with noise variance V).

breaking [98]). Our Gaussian state has a covariance matrix

γ =


V + cosh 2r

2 0 sinh 2r
2 0

0 V + cosh 2r
2 0 − sinh 2r

2
sinh 2r

2 0 cosh 2r
2 0

0 − sinh 2r
2 0 cosh 2r

2

 , (6.54)

where r > 0 is the squeezing parameter. By applying Eq. (6.26) where

γw =

(
1
2

(
V + e−2r) 0

0 1
2

(
V + e−2r)

)
, (6.55)

we find Tr R(ρ) = 1/(V + e−2r). According to Theorem 11, entanglement is thus
detected if V < 1 − e−2r. Clearly, for a finite squeezing parameter r, there exist
entangled states with 1 − e−2r < V < 1 which are not detected. As a result, the
weak realignment criterion does not always detect entanglement in this example (it
becomes perfect at the limit of infinite squeezing, r → ∞).

In comparison, it was shown in [70] that for a matrix in the normal form Eq. (6.28)
the trace norm of the realignment is given by Eq. (6.30). In our example, we obtain

∥ R(ρ) ∥tr=
1√

(cosh 2r + 2V) cosh 2r − sinh 2r
, (6.56)

so that entanglement is detected if V < tanh 2r. Here again, the realignment crite-
rion leaves some entangled states undetected (but it is more sensitive than the weak
realignment criterion since 1 − e−2r < tanh 2r, ∀r > 0).

Let us now symmetrize the state with the filtration procedure introduced in Sec.
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6.4, that is, we process the first mode (which has a larger noise variance) through
a noiseless attenuation map. By inspection, we find that the optimal transmittance is
t = tanh2 r and the resulting symmetrized Gaussian state ρsym admits the covariance
matrix8

γsym =
1

8(V + cosh 2r)

(
(4V cosh 2r+ cosh 4r+3)1 (8 sinh2 r cosh2 r) σz

(8 sinh2 r cosh2 r) σz (4V cosh 2r+ cosh 4r+3)1

)
,(6.57)

(6.58)

where σz =
(

1 0
0 −1

)
. We now apply Eq. (6.26) to ρsym, where

γ
sym
w =

1
2

(
V cosh 2r+1
V+cosh 2r 0

0 V cosh 2r+1
V+cosh 2r

)
, (6.59)

which gives

Tr R(ρsym) =
V + cosh 2r

1 + V cosh 2r
. (6.60)

Thus, entanglement is detected if TrR(ρsym) > 1 which is equivalent to V < 1, for
all r. Hence, all entangled states of the form (6.54) are now detected. Note that
Tr R(ρsym) =∥ R(ρsym) ∥tr here according to Theorem 4. Indeed, the covariance ma-
trix (6.57) is in the form (6.33) with c > 0 and d < 0, so we have reached a Schmidt-
symmetric state.

As a consequence, we have confirmed that the entanglement detection for Gaus-
sian states is improved if one symmetrizes the state before applying the weak re-
alignment criterion. In particular, in this specific example, the weak realignment
criterion is as strong as the original realignment criterion with symmetrization since
Tr R(ρsym) =∥ R(ρsym) ∥tr and even stronger than the realignment criterion without
symmetrization based on ∥ R(ρ) ∥tr. Moreover, applying the symmetrization pro-
cedure and computing the trace of the realigned state (via the determinant of the
restricted covariance matrix) are much easier than computing the trace norm of the
realigned state (as developed in [70]). In Fig. 6.6 (upper panel), we illustrate the
fact that the trace and trace norm of the realigned state can be increased by the fil-
tration procedure (the value without filtration is found when t = 1). We notice that,
although the optimal value of the transmittance t = tanh2(r) allows for the detec-
tion of entanglement, there are actually many other values of t that allow for such
a detection too. Moreover, it seems that the symmetrized state t = tanh2(r) is not
necessarily the best way of filtering the state of this example as it does not give the
highest possible value of the trace of R(ρ).

As a second example, let us start with the same two-mode squeezed vacuum state

8Note that even if V = 0 (i.e. the state already has a symmetric covariance matrix) we may still
process one of its modes through the noiseless attenuation map. It simply yields another (symmetric)
two-mode squeezed vacuum state with lower entanglement.
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(a) Noise added on the first mode – attenuation map
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(b) Noise added on the second mode – amplification
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Figure 6.6: Comparison of the trace Tr R(ρ) and trace norm ∥ R(ρ) ∥tr of the re-
aligned state for a two-mode squeezed vacuum state processed through a Gaussian
additive-noise channel (we choose r = 0.2 and V = 0.4).
(a) The noise is added on the first mode and filtering consists in processing this mode
via a noiseless attenuation map. The red cross shows the point at t = tanh2(r) where
the covariance matrix has been symmetrized and Tr R(ρ) =∥ R(ρ) ∥tr.
(b) The noise is added on the second mode and filtering works by processing the first
mode via a noiseless amplification map. The values of the trace and the trace norm
coincide when t = 1

tanh2 r
≈ 25.7.

but add noise on the second mode instead of the first. The covariance matrix reads

γ =


cosh 2r

2 0 sinh 2r
2 0

0 cosh 2r
2 0 − sinh 2r

2
sinh 2r

2 0 V + cosh 2r
2 0

0 − sinh 2r
2 0 V + cosh 2r

2

 . (6.61)

As before Tr R(ρ) = 1/(V + e−2r) so the weak realignment criterion alone does not
detect all entangled states. To improve on this, we could of course apply the noiseless
attenuation map on the second mode, which would give the exact same results. Al-
ternatively, we may explore another filtration procedure, which consists in applying
the noiseless amplification map on the first mode. As can be seen in Fig. 6.6 (lower
panel), the values of the trace and trace norm increase with t, and if t is chosen big
enough, we detect entanglement. In order to symmetrize the covariance matrix, we
would need a noiseless amplifier of transmittance t = 1

tanh2 r
, which is a limiting case

that would yield a two-mode squeezed vacuum state with infinite squeezing. For
this optimal value of t, we have Tr R(ρsym) = 1

V and thus entanglement is always
detected when V < 1. Hence, here again, the weak realignment criterion assisted
with filtration allows us to detect all entangled states.
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6.5.2 Random two-mode Gaussian states

Let us consider two other examples of random two-mode Gaussian states with their
covariance matrices written in the normal form (6.28). The random values of the
a, b coefficients where taken randomly in the interval [0.5, 1.5] and the c and d coeffi-
cients where taken randomly in the interval [−

√
ab,

√
ab]. Then, we checked that the

symplectic values ν± of the covariance matrix where larger than 1/2 and that they
where not PPT. Finally, we selected the two following matrices such that their c and
d coefficient have opposite signs:

γ1 =


1.46 0 0.83 0

0 1.46 0 −0.23
0.83 0 0.80 0

0 −0.23 0 0.80

 ,

γ2 =


1.29 0 −0.76 0

0 1.29 0 0.44
−0.76 0 0.83 0

0 0.44 0 0.83

 . (6.62)

These states are not PPT so they are entangled. These examples are interesting be-
cause in both cases ∥ R(ρ) ∥tr> 1 but Tr R(ρ) < 1, so entanglement is detected by
the realignment criterion but not by its weak formulation. We thus need to apply
the filtration procedure in order to enhance the detection with the weak realignment
criterion. In Fig. 6.7, we show the evolution of Tr R(ρ) as a function of the transmit-
tance t of the noiseless attenuation map applied on the first mode (t = 1 corresponds
to the initial value when no filtration is applied). The red cross indicates the exact
point when the covariance matrix has been symmetrized. In the first example (see
Fig. 6.7a), the filtration procedure works well and many values of t allow us to detect
entanglement. In particular, the entanglement is detected at the optimal value of t
(note that the trace and trace norm do not exactly coincide there, which witnesses
the fact that the symmetrized state is not exactly a Schmidt-symmetric state). In the
second example (see Fig. 6.7b), however, filtration alone is not sufficient and en-
tanglement is never detected by the weak realignment criterion. Even if filtration is
performed by applying a noiseless amplifier map on the second mode, we observe
the same results. Nevertheless, entanglement can still be detected if we apply a local
rotation (a π phase shift on one of the two modes which has the effect to flip the
sign of the c and d elements in the normal form of the covariance matrix) prior to
the filtration procedure, which makes the covariance matrix look similar to the first
example. This is shown by the dashed green curve on Fig. 6.7b. Furthermore, by
applying an appropriate local squeezing on the second mode of the state after the
noiseless attenuator on the first mode, we may always reach a Schmidt-symmetric
state (provided c and d have opposite signs in the covariance matrix (6.28) of the
initial state, otherwise the state is anyway separable). This indicates that applying
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Figure 6.7: Evolution of the trace Tr R(ρ) of the realigned state as a function of t for
two-mode Gaussian states with covariance matrices (a) γ1 and (b) γ2 after filtering
(noiseless attenuation on the first mode). Both examples are entangled states. The
blue dashed line represents ∥ R(ρ) ∥tr before the filtration and the red cross shows
the value of Tr R(ρsym) when the covariance matrix has been symmetrized. The green
dashed curve shows the evolution of the trace Tr R(ρphase), where ρphase is the state
obtained by applying a π phase shift prior to the filtration.

a suitable local phase shift followed by a suitable noiseless attenuator (or amplifier)
and finally a suitable local squeezer yields a filtration procedure that always allows
the detection of entanglement for a two-mode Gaussian state.

Note that we cannot easily plot the evolution of ∥ R(ρ) ∥tr as a function of t in Fig. 6.7
(in contrast with Fig. 6.6) since the covariance matrix after filtration is not anymore in
the form (6.28). The blue dashed line represents its initial value before the filtration
is applied.

6.5.3 Examples of 2 × 2 NPT Gaussian states

Let us now move on to examples of 2 × 2 Gaussian states (in which case the PPT
criterion is not necessary and sufficient anymore). We extend the example of Sec.
6.5.1 by considering that Alice and Bob share two instances of a two-mode squeezed
vacuum state with added noise. The covariance matrix is thus given by

γEPR=



(
V+ cosh 2r

2

)
1 0 sinh 2r

2 σz 0

0
(

V+ cosh 2r
2

)
1 0 sinh 2r

2 σz
sinh 2r

2 σz 0 cosh 2r
2 1 0

0 sinh 2r
2 σz 0 cosh 2r

2 1

 . (6.63)

This state is always detected by the PPT separability criterion. We can also add some
rotations on Bob’s modes in order to get another state whose covariance matrix is
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given by γ′
EPR = R(θ, t) γEPR RT(θ, t) with

R(θ, t) =


14×4 0 0 0

0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 12×2

 (6.64)

×


14×4 0 0 0 0

0
√

t 0 −
√

1 − t 0
0 0

√
t 0 −

√
1 − t

0
√

1 − t 0
√

t 0
0 0

√
1 − t 0

√
t

 .

This rotated state is always entangled and detected by the PPT criterion. The entan-
glement detection effected by the weak realignment criterion is, however, depending
on the values of θ and t as follows.

• If θ = 0 and t = 1 we have γ′
EPR = γEPR and the calculations are exactly

the same as in Sec. 6.5.1 (but everything is squared because we now have two
states). It means in particular that Tr R(ρEPR) =

1
(e−2r+V)

2 is not always greater

than 1, but if we applied a suitable filtration with t = tanh2(r), entanglement
becomes always detected.

• If θ = π and regardless of the value of t, we have Tr R(ρ′EPR) =
1

1+V2+2V cosh 2r
which is always smaller than 1. Entanglement is thus never detected. Note that
in this particular case, the filtration does not improve the value of Tr R(ρ′) even
if we try to add a rotation before the filtration. The key point is that this state
does not have EPR-like correlations.

• If θ = 0 and regardless of the value of t, we have Tr R(ρ′EPR) =
1

(cosh 2r−
√

t sinh 2r+V)2 .
In some cases, entanglement is detected without any filtration. In some other
cases, entanglement is not straightforwardly detected, but the filtration helps
in the detection. For example, if r = 1, V = 0.8, and t = 0.9, then Tr R(ρ′EPR) ≈
0.8 < 1 and entanglement is not detected as such. However, if we apply the
filtration procedure, we see in Fig. 6.8 (upper panel) that there are many values
of t that enable entanglement detection.

6.6 Conclusions

We have introduced a weak formulation of the realignment criterion based on the
trace of the realigned state R(ρ), which has the advantage of being much easier to
compute than the original formulation of the realignment criterion, especially in
higher dimensions. It has a simple physical implementation as computing Tr R(ρ)
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Figure 6.8: Evolution of the trace Tr R(ρ′EPR) of the realigned state after filtration as
a function of t for r = 1, V = 0.8, t = 0.9 and θ = 0.The entanglement is detected in
the interval of t values such that the trace exceeds 1.

is equivalent to measuring the |Ω⟩ component of state ρ via linear optics and ho-
modyne measurements. Moreover, for states in the Schmidt-symmetric form, both
realignment criteria — the weak and the original formulations — are equivalent. We
focused especially on Gaussian states and showed that applying a suitable filtration
procedure prior to applying the weak realignment criterion often allows for a better
entanglement detection. In particular, we have explored a filtration based on noise-
less amplification or attenuation, which is an invertible operation that transforms the
state into a symmetrized form such that the entanglement detection is enhanced (this
procedure may even surpass the original realignment criterion while it is simpler but
needs some knowledge about the reduced covariance matrices A and B in (6.31) in
order to symmetrize the state). We have provided examples of the application of this
procedure for various 1 × 1 and 2 × 2 Gaussian states. These examples illustrate the
power of the method (it can be made to detect all entangled 1 × 1 Gaussian states),
even though we have found cases where it leaves the entanglement of 2 × 2 states
undetected.

A question that we leave open in this work is whether the weak realignment crite-
rion assisted with suitable prior filtration can be stronger than the PPT criterion to
the degree that it can detect bound entangled states. The weak realignment criterion
is weaker than both the original realignment and PPT criteria, which are two incom-
parable criteria (except for states in the symmetric subspace, where they coincide).
Hence, as such, it cannot detect bound entanglement. We have not been able to find
instances where adding filtration allowed us to detect bound entangled states, al-
though it should in principle be possible to bring the state close enough to a Schmidt
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symmetric state so that bound entanglement is detected. Note, however, that this can
only be the case if the original realignment criterion detects the entanglement of the
state, that is, if the Schmidt-symmetric state that is approached via filtration is not
within the symmetric subspace (otherwise, the weak realignment criterion tends to
the realignment criterion which itself coincides with the PPT criterion, so no bound
entanglement can be detected). This puts severe constraints on where to seek the
detection of bound entanglement using the weak realignment criterion assisted with
filtration.

As a future work, it would also be interesting to explore other possible filtration
procedures in order to further improve the entanglement detection in higher dimen-
sions. Alternatively, another interesting goal would be to find a physically imple-
mentable protocol for the original realignment criterion and not its weak form (that
is, for evaluating the trace norm of R(ρ) instead of its trace with optical components).

113



CHAPTER 6. REALIGNMENT SEPARABILITY CRITERION FOR DETECTING CV
ENTANGLEMENT

114



Part IV | Nonclassicality criteria

115





7 | Introduction to nonclassicality
criteria

7.1 The notion of nonclassicality

7.1.1 The Glauber-Sudarshan P-function

Any density matrix ρ̂ representing the quantum state of a single oscillator (bosonic)
mode can be represented in a diagonal form in the coherent state basis |α⟩, namely:

ρ̂ =
∫

P(α)|α⟩⟨α|d2α, (7.1)

where the P(α) function is the so-called Glauber-Sudarshan P function. Note that P(α)
completely defines state ρ̂ and is normalized since Tr(ρ̂) = 1.

The expectation value of any normally-ordered operator function : ĝ(â, â†) : of the
annihilation and creation operators can be expressed using the P-function as follows:

⟨: ĝ(â, â†) :⟩ =
∫

d2αP(α)g(α, α∗). (7.2)

In this expression, the colon stands for normal ordering, which means that all cre-
ation operators must be placed on the left of annihilation operators. Hence, if the
P-function P(α) admits negative values, then Eq. (7.2) can become negative for some
well chosen function g(â, â†), witnessing the nonclassicality of state ρ̂. This suggests
a close connection between the expectation values of normally-ordered functions and
the nonclassical character of the P-function.

7.1.2 Classical and nonclassical states

A quantum state is said to be classical if its associated P-function behaves as a prob-
ability distribution P(α) = Pcl(α), hence it is non-negative. Any convex mixture of
coherent states |α⟩ is thus classical by definition. Conversely, a quantum state ρ̂ is
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considered to be nonclassical if it cannot be written as a statistical mixture of coherent
states, i.e. if the P-function does not show the properties of a classical probability
density : P(α) ̸= Pcl(α). Simple examples of nonclassical states include Fock states or
squeezed states, whose P-functions are not regular (their expressions involve deriva-
tives of Dirac δ-functions).

Hence, nonclassical states are defined as states that cannot be described as a classical
mixture of coherent states, meaning that their density matrix cannot be described as
a convex mixture of coherent states:

ρ̂NC ̸=
∫

Pcl(α)|α⟩⟨α|d2α, (7.3)

where the label "NC" means "nonclassical" and "cl" means "classical". Note that a clas-
sical distribution is understood as statistical distribution including the delta function
distribution as a limiting case (but not its derivatives).

This definition of nonclassicality reminds the definition of entanglement as both of
them are defined as the negation of the fact that a state belongs to some set of well-
defined states (classical or separable). Therefore and since the P-function of nonclas-
sical states is not directly accessible, we use witnesses in order to certify to nonclas-
sical character of a state. Hence, there exist a variety of nonclassicality criteria and
parameters. We will review some of them in the following sections.

7.1.3 Nonclassicality and entanglement

Entanglement is certainly the most common nonclassical feature of quantum physics.
In this section, we will review the result of Kim et al. [99] that shows a connection
between the notion of nonclassicality of a state following the definition (7.3) and its
entanglement.

When sending two bosonic states on a beam splitter, it is well known that the output
state might be entangled. One of the most known example of this effect is the so-
called Hong-Ou-Mandel effect where two single-photon Fock states |1, 1⟩ experience a
transformation through a balanced beam splitter. The output state is the NOON state
with N = 2 writes 1/

√
2(|2, 0⟩ − |0, 2⟩) and it is an entangled state.

Another well known example entangled state in quantum optics is the two-mode
squeezed vacuum (TMSV) descibed in section 2.3.3. Indeed, by sending two squeezed
states that have the same non-zero squeezing parameter but are squeezing in orthog-
onal direction in phase space on a beam-splitter, the state at the output of the beam
splitter is a TMSV (see Eq. (2.77)) which is an archetype of entangled state in CV.

Kim et al. [99] studied under which conditions on the input states of a beam splitter
the output states are entangled. They found that a necessary condition for the out-
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put state of a beam splitter to be entangled is that the input states are nonclassical.
Furthermore, they conjectured that only a single input state had to be nonclassical in
order to have a necessary condition for the output state to be entangled.

7.2 Nonclassicality criteria

7.2.1 The Mandel Q-parameter

The Mandel Q-parameter was introduced by Leonard Mandel in 1979 [26]. This pa-
rameter is closely connected to the Poisson distribution. Indeed, Mandel remarked
that the photon number distribution of a coherent state is Poissonian. Hence, any
photon number distribution that is narrower than the Poisson distribution must be
nonclassical. Hence, the Mandel Q-parameter:

Q =
⟨∆(n̂)2⟩ − ⟨n̂⟩

⟨n̂⟩ , (7.4)

indicates if a photon number distribution of some state is:

1. subpoissonian : −1 ≤ Q < 0;

2. Poissonian : Q = 0;

3. superpoissonian : 0 < Q.

The Q-parameter only depends on the number of photons statistics and does not
carry any information about the phase of the state.

Let us now remember the proof given by Mandel [26] on why the negativity of the
Q-parameter imply the nonclassicality of the state. First, since we are interested in
the negativity of the Q-parameter and since the denominator of Q is always positive,
we are only interested in the numerator of Q (7.4):

f = ⟨∆(n̂)2⟩ − ⟨n̂⟩ = ⟨(â† â)2⟩ − ⟨â† â⟩2 − ⟨â† â⟩. (7.5)

Now, we can re-express each of these mean values in terms of the P-function since:

⟨â†n âm⟩ =
∫

P(α)α∗nαm d2α = ⟨α∗nαm⟩P. (7.6)

Hence, the numerator function of the Q-parameter writes in terms of the mean values
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of the P-function as :

f = ⟨(â† â)2⟩ − ⟨â† â⟩2 − ⟨â† â⟩,

= ⟨â†2 â2⟩ − ⟨â† â⟩2,

= ⟨(α∗2α2 − ⟨α∗α⟩2
P)⟩P,

(7.7)

which is always positive if P(α) is a classical probability distribution since it corre-
sponds to the variance of α∗α.

The extremal value Q|n⟩ = −1 is attained by the Fock state |n⟩ since it is a perfectly
defined photon number state with exactly n photons and has a null variance ∆n = 0.
The coherent state admits a Q|α⟩ = 0 since its photon number statistics follows a
Poisson distribution. For thermal state, the Q-parameter is always positive and is
equal to QT = ⟨n̂⟩. Finally, for squeezed states the Q-parameter is equal to QS =

1+ 2⟨â† â⟩ = 1+ 2 sinh2(r), where r is the squeezing parameter. Hence, both thermal
and squeezed states are not detected as nonclassical by the Q-parameter. However,
as we will see in 7.2.2, squeezed states actually are nonclassical states.

7.2.2 The squeezing parameter

In order to construct the squeezing parameter criterion for nonclassicality, let us in-
troduce a general form of the quadrature operator x̂θ :

x̂θ =
âeiθ + â†e−iθ

√
2

. (7.8)

For θ = 0, we fall back on the definition of the x-quadrature and θ = π/2 correspond
to the p-quadrature. The general quadratures satisfy the commutation relation:[

x̂θ , x̂θ+ π
2

]
= i. (7.9)

Based on (7.8), the squeezing parameter for nonclassicality writes:

Sθ = ⟨: x̂2
θ :⟩ − ⟨x̂θ⟩2, (7.10)

where : · : means that one should consider the operator in their normal form : ââ† :=
â† â 1. Hence, we can write the expression of : x̂2

θ : in terms of annihilation and
creation operators :

: x̂2
θ :=

â2e−2iθ + â†2e2iθ + 2â† â
2

. (7.11)

The squeezing parameter criterion is the following. If the squeezing parameter is
negative Sθ < 0, then the state is nonclassical.

1Note that : x̂θ := x̂θ
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In order to prove this condition, we use the averages over the P-function representa-
tion such that:

⟨x̂θ⟩ =
∫

P(α)
(

αeiθ + α∗e−iθ
√

2

)
d2α,

⟨: (x̂θ)
2 :⟩ =

∫
P(α)

(
αeiθ + α∗e−iθ

√
2

)2

d2α.

(7.12)

Hence, the squeezing parameter Sθ writes :

Sθ =
∫

P(α)
(

αeiθ + α∗e−iθ
√

2

)2

d2α −
(∫

P(α)
(

αeiθ + α∗e−iθ
√

2

)
d2α

)2

,

= ⟨
(

αeiθ + α∗e−iθ
√

2

)2

⟩P − ⟨
(

αeiθ + α∗e−iθ
√

2

)
⟩2

P,

(7.13)

which is always positive if the P-function is classical.

From the form of the squeezing parameter Sθ in (7.10), we can see the link between
the Sθ parameter and the variance of the general quadrature since:

Sθ = ∆2 x̂θ −
1
2

. (7.14)

This shows that if ∆2 x̂θ < 1/2, the state is nonclassical. This also shows that the Sθ

parameter admits the value −1/2 as a lower bound. Hence, we can easily evaluate
the value of the squeezing parameter for states that are commonly encountered in
quantum optics:

1. Fock states |n⟩ : Sθ = n;

2. Thermal states ρ(n) : Sθ = n;

3. Coherent state |α⟩: Sθ = 0;

4. Squeezed vacuum state |r⟩ : S π
2
= 1

2 (e
−2r − 1).

In this case, only the squeezed states are detected as being nonclassical states. Both
Fock states and thermal states always show positive values for the squeezing param-
eter Sθ . The coherent state plays a pivot role as his value is just at the limit of being
detected as nonclassical.

We are now equipped with two sufficient conditions for nonclassicality of quantum
states. As we will see, there exist many more conditions of nonclassicality. Hence,
if a state has positive values for both the Mandel Q-parameter and the squeezing
parameter Sθ , one can not conclude that the state is classical.

An interesting case to study is the case where we add some mixedness to a squeezed
state and see how robust is the squeezing criterion against the degradation of a pure
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squeezed state. This is the subject of the following section.

7.2.3 Degradation of the squeezing criterion for mixed states

In the previous section, we only studied the nonclassicality of pure states and of the
most simple Gaussian states, the thermal states. In this section, we review some
results about the nonclassicality of the squeezed thermal states:

ρS,T = S(ξ)ρTS†(ξ), (7.15)

where ρT is the thermal state and S(ξ) is the single mode squeezing operator. The
study of the nonclassicality of this squeezed thermal state is interesting since the
squeezing will lower the variance in one direction while the variance increases with
the number of thermal photons. On one side, the squeezing will reduce the variance
of the state in the squeezing direction such that it will lower the value of the squeez-
ing criterion Sθ in the squeezing direction and eventually be detected as nonclassical.
On the other side, as the number of thermal photons grows, it will increase the value
of the variance of any general quadrature. Hence, these two effects will lead to a non
trivial bound for detecting nonclassicality.

Let us evaluate the squeezing parameter for a centered 2 squeezed thermal state ρS,T

as defined in (7.15). By using the expression of the squeezing parameter (7.10) to-
gether with the expression of the first and second order moments of the general
quadrature (7.8) and (7.11) in terms of the annihilation and creation operators, on
can write the squeezing parameter Sθ as:

Sθ(ρS,T) =
1
2

[
Tr
(
ρS,T â2) e−2iθ + Tr

(
ρS,T â†2

)
e2iθ + 2Tr

(
ρS,T â† â

)]
,

=
1
2

[
Tr
(
ρT â2

S
)

e−2iθ + Tr
(

ρT â†2
S

)
e2iθ + 2Tr

(
ρT â†

S âS

)]
,

(7.16)

where, by using the cyclic property of the trace, âS = S(ξ)âS†(ξ). From the Bo-
goliubov transformation (2.66) of the annihilation and creation operators under the
squeezing operation, we are able to calculate the different terms:

Tr
(
ρT â2

S
)
= Tr

(
ρT â†2

S

)∗
=

1
2
(1 + 2n) sinh(2r) eiθ ,

Tr
(

ρT â†
S âS

)
=

1
2
(1 + 2n) cosh(2r)− 1

2
,

(7.17)

where θ is the squeezing angle.

Finally, by replacing (7.17) into the expression (7.16) for the squeezing parameter Sθ ,

2this implies that Tr(ρS,T â) and Tr(ρS,T â†) are both equal to zero.
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we find the following condition (in the case of θ = ϕ = 0):

SS,T
θ =

1
2
[
(1 + 2n)e−2r − 1

]
= ∆2 x̂ − 1

2
, (7.18)

where ∆2 x̂ = ⟨x̂2⟩ρS,T − ⟨x̂⟩2
ρS,T

= 1/2(1 + 2n)e−2r is the minimal quadrature vari-
ance of the squeezed thermal state. This condition was derived in [100]. Moreover,
the condition (7.18) is a necessary and sufficient condition for the nonclassicality of
Gaussian states [101, 102]

7.2.4 Necessary and sufficient criteria for nonclassicality

As observed in Ref. [20], any operator of the form : f̂ † f̂ : is an Hermitian operator that
yields a sufficient condition of nonclassicality.

From (7.2), the expectation value of : f̂ † f̂ : can be written in terms of the P-function as

⟨ : f̂ † f̂ : ⟩ =
∫

d2α P(α) | f (α)|2, (7.19)

which is always positive for any f (α) provided P(α) is a classical probability dis-
tribution Pcl(α). Hence, a witness of nonclassicality of the considered state ρ̂ is the
existence of negative expectation values for some well chosen operator function f̂ ,
that is

∃ f̂ s.t. ⟨ : f̂ † f̂ : ⟩ < 0. (7.20)

Furthermore, as shown in Ref. [20], these nonclassicality criteria can be reformulated
in terms of an infinite countable set of inequalities, which involve the principal mi-
nors of an infinite-dimensional matrix of moments. The infinite set of inequalities
completely characterizes the nonclassicality of the quantum state under study. As
shown in [103], these criteria can be constructed for three different sets of operators
(â, â†), (x̂ϕ, p̂ϕ) and (x̂ϕ, n̂), but we only consider the set (â, â†) in the next Chapter.
In this case, one exploits the fact that any operator f̂ can be expressed as a (normally-
ordered) Taylor series

f̂ = f (â, â†) =
∞

∑
k=0

∞

∑
l=0

ckl â†k âl . (7.21)

Hence, a necessary criterion for classicality can be reformulated as

⟨ : f̂ † f̂ : ⟩ =
∞

∑
k,m=0

∞

∑
l,n=0

c∗mnckl ⟨â†(k+n) âl+m⟩ ≥ 0, (7.22)

for any coefficients cij’s. By using Silvester’s criterion, this can be reexpressed as the
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positivity of the determinant of the matrix of moments DN , defined as

1 ⟨â⟩ ⟨â†⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â†2⟩ ...
⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†3⟩ ...
⟨â⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â3⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ...
⟨â†2⟩ ⟨â†2 â⟩ ⟨â†3⟩ ⟨â†2 â2⟩ ⟨â†3 â⟩ ⟨â†4⟩ ...
⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â† â3⟩ ⟨â†2 â2⟩ ⟨â†3 â⟩ ...
⟨â2⟩ ⟨â3⟩ ⟨â† â2⟩ ⟨â4⟩ ⟨â† â3⟩ ⟨â†2 â2⟩ ...

...
...

...
...

...
...

. . .


. (7.23)

which contains all normally-ordered moments of â and â† up to N. The matrix of
moments DN can be defined for any dimension N × N (its block structure is shown
on Fig. 8.1), and its determinant will be written d1···N = det(DN) in the next Chapter,
where the index of d means that all row and columns of DN are kept in the range
1 · · · N. Note that the block structure of DN will be explained in details in the next
Chapter.

Remarkably, as a consequence of Bochner’s theorem, the classicality criteria become
necessary and sufficient when the determinants are positive for all orders [103], that
is, ρ̂ is classical if and only if

d1...N ≥ 0, ∀N. (7.24)

The determinants d1...N are the dominant principal minors of matrix DN , i.e., the deter-
minants of the matrices constructed by taking all the rows and columns in the upper
left corner of the matrix. Hence, the negativity of any single determinant d1...N of
order N is a sufficient condition for nonclassicality.

Note that one can construct various matrices of moments having similar properties
and nonclassicality detection power. In the next Chatper, we will restrict to the prin-
cipal minors of the matrix of moments (7.23), which are built by selecting some rows
and corresponding columns and then taking the determinant of the resulting matrix.
For example, if rows and columns i, j, and k are selected, the associated determi-
nant is written dijk. Interestingly, any principal minor such as dijk provides a suffi-
cient criterion for nonclassicality: if dijk < 0, then the state ρ̂ is nonclassical. Each
of these criteria might have a distinct physical interpretation and hence, detect dif-
ferent types of nonclassical states (see [104] for a review of nonclassicality criteria).
Some examples of principal minors that are not dominant are d14, d15, d124, d134 and
d145, while examples of dominant principal minors are d12, d123, d1234 and d1235 (note
that we adopt a slightly relaxed definition of dominant principal minors. Indeed,
from the block structure of the matrix of moments DN as described in section 8.2,
we slightly adapt the definition of a dominant principal minor: it is associated with
the upper left submatrix but the ordering of rows and columns is irrelevant within
a given block. Hence, d1235 is understood as a dominant principal minor, justifying
why this criterion is also invariant under displacement).
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8 | Multicopy Nonclassicality Cri-
teria

The content of this chapter is mainly based on the article "Multicopy observables for the
detection of optically nonclassical states" that I have published with Célia Griffet and Nicolas
Cerf as co-authors [3]. The article is currently submitted to a peer-reviewed journal.

8.1 Introduction

Determining whether a quantum optical state admits nonclassical properties or not
is an ubiquitous question in the theory of quantum optics as well as in the devel-
opment of quantum technologies. Numerous propositions for identifying quantum
states displaying nonclassicality have been discussed in the literature, see e.g. [105,
106, 107, 108, 109, 110, 111] (or see [104] for a review). We focus here on the definition
of optical nonclassicality as introduced by Glauber and Sudarshan [112, 10, 113], start-
ing from the assertion that classical states are those that are expressible as convex
mixtures of coherent states. Accordingly, when the Glauber-Sudarshan P-function
of a state is incompatible with a true probability distribution (i.e., when it admits
negative values in phase space or is not regular in the sense that it cannot be ex-
pressed as a function), the state is said to be optically nonclassical. Being able to
identify and characterize such nonclassical optical states is essential since nonclassi-
cal features are viewed as resources for quantum information tasks [114, 115] such
as quantum computation [116], distributed quantum computing [117], quantum net-
works [118], quantum boson sampling [119], quantum metrology [120] or quantum
communication [121]. Moreover, a straightforward operational meaning of optical
nonclassicality is that it is a necessary condition in order to produce entanglement
with a beam splitter [99].

Various implementation methods have been proposed for identifying nonclassical
states, exploiting measurements ranging from single-photon detection [122, 123] to
continuous-variable measurements such as homodyne detection [103] or heterodyne
detection [124]. In this Chapter, we introduce a technique that uses multiple repli-
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CHAPTER 8. MULTICOPY NONCLASSICALITY CRITERIA

cas (identical copies) of a quantum state in order to build a nonclassicality observ-
able. The relevance of multicopy observables in quantum optics has already been
explored in the context of uncertainty relations [125]. It relies on the observation that
polynomial functions of the elements of a density operator can always be expressed
by defining an observable acting on several replicas of the state, avoiding the need
for quantum tomography [126]. In the present case, we consider the nonclassical-
ity criteria resulting from the matrix of moments of the optical field introduced in
[103, 20]. In the simplest cases that we analyze, the multicopy observable enables an
original implementation of a nonclassicality witness through linear interferometry
and photon-number detectors.

This chapter is constructed as follows. First we present some of the basic proper-
ties of the matrix of moments in Section 8.2. Then, in Section 8.3, we benchmark the
performances of the nonclassicality criteria derived from the determinant of these
matrices [103, 20]. We consider a variety of states that are known to be nonclassi-
cal (Fock states, squeezed states, cat states, squeezed thermal states, photon-added
or photon-subtracted thermal states) in order to identify which criterion can detect
them. Our results are summarized in table 8.1. This is useful to guide our search
for multicopy nonclassicality observables as carried out in Section 8.4. There, we fo-
cus on the most interesting criteria as identified in Sec. 8.3 and provide a physical
implementations for them. In Section 8.5 we show a recursion relation on dN that
might lead to further development in finding an implementation for some higher
order criteria. Finally, in Section 8.6, we give our conclusions and further perspec-
tives on applying this multicopy observable technique for designing implementable
nonclassicality criteria.

8.2 Basic properties of the matrix of moments

Before evaluating the performance of the nonclassicality criteria derived from the
matrix of moments, we inspect some of the properties of the matrix of moments such
as the invariance of the criteria under rotation or displacement operations.

Structure of the matrix dN . By inspection of the matrix of moments Eq. (7.23),
we see that the element on line i and column j is composed of the corresponding
operators on the first line and first column taken in normal order and in expectation
value as :

mi,j = ⟨m̂i,j⟩ = ⟨: m̂i,1m̂1,j :⟩ = ⟨: m̂†
1,im̂1,j :⟩, (8.1)

where the first line element writes :

m̂1,j = â†l ân−l , (8.2)
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in which two indices n and l are introduced. Each of these indices can be linked to
the structure of the matrix. Indeed, the analysis of the matrix shows a block structure
as represented on figure 8.1.

Figure 8.1: Representation of the block structure of the matrix. Blocks of the same
color contains the same matrix elements.

The index n that goes from 0 to infinity corresponds to the number of the block while
l that goes from 0 to n corresponds to the position of the element in the corresponding
block.

Equivalently, we can formulate the elements of the first row using two indices n’ and
l’:

m̂i,1 = m̂†
1,i = â†n′−l′ âl′ , (8.3)

These double indices for the columns can be related to the usual index corresponding
to the column by:

j =
n(n + 1)

2
+ l + 1. (8.4)

Hence, we can find the reverse equations, n and l in terms of j:

−3 +
√

1 + 8j
2

≤ n ≤
−1 +

√
−7 + 8j

2
, (8.5)
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l = j − 1 − n(n + 1)
2

. (8.6)

The value of n can also be found by using n =

⌈
−3+

√
1+8j

2

⌉
.

By using the equation (8.1) together with (8.2) and (8.3), we have an explicit formula
for any element of the matrix dN :

m̂i,j = : m̂i,1m̂1,j :,

= : â†n′−l′ âl′ â†l ân−l :,

=â†n′−l′+l ân+l′−l ,

=â†n′−(l′−l) ân+(l′−l),

=â†n′−r ân+r,

(8.7)

where r = l′ − l and runs from −n to +n′.

The matrix of moment DN is Hermitian. The hermiticity of the matrix of moment,
Eq. (7.23), is easily seen from Eq. (8.7) since ⟨α̂i,j⟩ = ⟨â†m−r ân+r⟩ = ⟨â†n+r âm−r⟩∗ =

⟨α̂j,i⟩∗ where ⟨Ô⟩ = Tr(Ôρ̂) for some operator Ô and quantum density operator ρ̂.
Hence, its determinant as well as all its principal minors are real-valued.

All principal minors of matrix DN are invariant under rotations in phase space.
The principal minors of the matrix of moments (7.23) are built by selecting some rows
and corresponding columns and then taking the determinant of the resulting matrix.
For example, if rows and columns i, j, and k are selected, the associated determinant
is written dijk.

The invariance under rotation of the principal minors is obvious. Indeed, applying
a rotation transforms the operator â into eiθ â and â† into e−iθ â†. Since each term in
the development of the determinant of any matrix of moments always involve the
same number of "â" and "â†", the factors eiθ and e−iθ cancel each other out. Hence,
the observable is not affected by phase shifts and the criterion is therefore invariant
under rotation. By the construction of the matrix of moment, Eq. (7.23), this rota-
tion invariance is also true for any of its principal minors. Hence, all corresponding
nonclassicality criteria are invariant under rotations in phase space. Finally, we show
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this invariance property explicitly in the case of the d123 :

dθ
123 =

∣∣∣∣∣∣∣
1 ⟨âe−iθ⟩ ⟨â†eiθ⟩

⟨â†eiθ⟩ ⟨â†eiθ âe−iθ⟩ ⟨â†2e2iθ⟩
⟨âe−iθ⟩ ⟨â2e−2iθ⟩ ⟨â†eiθ âe−iθ⟩

∣∣∣∣∣∣∣ ,

= ⟨â† â⟩2 − ⟨â†2⟩⟨â2⟩ − 2⟨â†⟩⟨â⟩⟨â† â⟩+ ⟨â†2⟩⟨â⟩2 + ⟨â†⟩2⟨â2⟩,

= d123.

(8.8)

This invariance property is consistent with the fact that nonclassicality is a feature
that is unaffected by such rotations. This simplifies the calculations since all phase
terms can be given arbitrary values and will typically be set to zero.

All dominant principal minors of matrix DN are invariant under displacements in
phase space. The dominant principal minors of matrix DN are the determinants of
the matrices constructed by taking all the rows and columns in the upper left corner
of the matrix. Hence, all dN are dominant principal minors.

The invariance by displacement of the dominant principal minors dN of the matrix
of moments of any order can be demonstrated for a simple example by using the
properties of the determinant: adding to a column (or a line) a linear combination
of any other columns (or lines) does not change the value of the determinant. By
using this property recursively to d123, we show that it is equal to dα

123 where the
superscript α means that the state has been transformed by the displacement operator
D̂(α) = exp

(
αâ† − α∗ â

)
.

d123 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨â†⟩+ α∗

⟨â†⟩ ⟨â† â⟩+ α⟨â†⟩ ⟨â†2⟩+ α∗⟨â†⟩
⟨â⟩ ⟨â2⟩+ α⟨â⟩ ⟨â† â⟩+ α∗⟨â⟩

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â⟩+ α ⟨â†⟩+ α∗

⟨â†⟩+ α∗ ⟨â† â⟩+ α⟨â†⟩+ α∗(⟨â⟩+ α) ⟨â†2⟩+ α∗⟨â†⟩+ α∗(⟨â†⟩+ α∗)

⟨â⟩+ α ⟨â2⟩+ α⟨â⟩+ α(⟨â⟩+ α) ⟨â† â⟩+ α∗⟨â⟩+ α(⟨â†⟩+ α∗)

∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣
1 ⟨â + α⟩ ⟨â† + α∗⟩

⟨â† + α∗⟩ ⟨(â† + α∗)(â + α)⟩ ⟨(â† + α∗)2⟩
⟨â + α⟩ ⟨(â + α)2⟩ ⟨(â† + α∗)(â + α)⟩

∣∣∣∣∣∣∣ ,

= dα
123.

(8.9)

The argument can be generalized to any dominant principal minors dN but, in gen-
eral, not to the principal minors of the matrix of moments (some of the non-dominant
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principal minors as d1235 are still invariant by displacement).

This property is consistent with the fact that nonclassicality is unaffected by such
displacements. Hence, we can simplify our calculations by considering states that
are centered in phase space. Note that, unfortunately, the non-dominant principal
minors do not enjoy this invariance property. In Section 8.4.2, we will consider the
effect of displacements in some non-dominant principal minors and see how it af-
fects the detection capability of the corresponding criteria.

All principal minors of matrix DN vanish for coherent states |α⟩ Coherent states
|α⟩ are extremal classical quantum state. Indeed, their Glauber-Sudarshan P-function
is P(α) = δ(α) and any classical state can be written as a classical mixture of coher-
ent states. Hence, they will not only never be detected by any nonclassicality criteria
derived from the matrix of moments but also the value of any principal minors (dom-
inant or not) of the matrix of moment for coherent states will always be equal to 0.
Indeed, the action of the creation and the annihilation operator on coherent states |α⟩
is: â|α⟩ = α|α⟩,

â†|α⟩ = α∗|α⟩.
(8.10)

Hence, let us write the matrix of moments D|α⟩
123 as :

D|α⟩
123 =

 1 α α∗

α∗ α∗α α∗2

α α2 α∗α

 . (8.11)

One may see that D|α⟩
123 is a rank-one matrix since it can be written as the outer product

of α = (1, α, α∗) and α†: D|α⟩
123 = αα†. Hence, the determinant d|α⟩123 is equal to 0. By

construction of the matrix of moments and more precisely Eq. (8.1), this argument
holds for all principal minors of the matrix of moments (of order strictly greater than
one) which are therefore equal to 0 for coherent states. This shows the specific role
played by coherent states as extremal classical states in the sense that they saturate
all inequalities in Eq. (7.24). Moreover, any statistical mixture of coherent states is
classical and can only get a higher value of all principal minors. Conversely, a slight
deviation from a coherent state to a nonclassical state may induce some principal
minor to have a negative value.

8.3 Nonclassicality criteria based on the matrix of moments

Let us benchmark the performance of the nonclassicality criteria derived from the
principal submatrices of the matrix of moments DN (up to N = 5) in terms of their
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ability to detect various nonclassical states. We express the corresponding principal
minors for common classes of nonclassical pure states, such as Fock states, squeezed
states, or cat states (note that all these states are centered in phase space). All values
are listed in Table 8.1, where negative values imply the actual detection of nonclas-
sicality (see entries with grey background). We then study the performance of the
criteria when applied to Gaussian (pure or mixed) states and determine that d123 is a
necessary and sufficient nonclassicality criterion for these states. Finally, we consider
a restricted class of non-Gaussian mixed states that are nonclassical (resulting from
photon addition or subtraction from a Gaussian state). Overall, our observations lead
us to focus on d15, d23, d123 and d1235 when constructing multicopy nonclassicality ob-
servables in Section 8.4.

8.3.1 Nonclassical pure states

Fock states

Fock states |n⟩ (except the vacuum state |0⟩) are well-known nonclassical states,
which can be detected by criteria such as d15, d125, d135, d145 or d1235, as can be seen
in Table 8.1. In a nutshell, the Fock states are only detected when an odd number
of off-diagonal entries of the type ⟨â†k âk⟩ appear in the principal submatrix of the
matrix of moments (7.23). This explains why Fock states are never detected in Table
8.1 for criteria that are not involving the 5th row or column since the first non-zero
off-diagonal element of D5 is (D5)1,5 = (D5)5,1.

Squeezed states

Squeezed states are nonclassical quantum states which can be used, for instance, to
enhance the sensitivity of the LIGO experiment [127, 128]. In order to check which
principal minors detect them as nonclassical states, we need to evaluate the entries
of the matrix of moments D5. First, we observe that all terms of odd order vanish
since squeezed states can be decomposed into even Fock states [88], that is

|S⟩ = 1√
cosh(r)

∞

∑
k=0

(−eiψ tanh(r))k

√
2k!

2kk!
|2k⟩. (8.12)

where r is the squeezing factor and ψ is the squeezing angle. The non-vanishing
low-order terms are as follows (as a consequence of the rotation invariance, we may
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1 2 3 4
β

-20
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40

(a) Fock state (b) Legend
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β
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-4

-3
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-1

1

(c) Squeezed state (d)

Figure 8.2: The criteria are stronger when the number of photon of the Fock states or
the squeezing parameter for the squeezed increase.
(a) Comparison of the criteria for detecting the nonclassicality of Fock states.
(b) The dashed lines are guides to evaluate the efficiency of the criteria to detect the
nonclassicality of Fock states.
(c) Comparison of the criteria for detecting the nonclassicality of Squeezed states.
(d) The dashed lines show the value of the criteria that do not detect squeezed states
as nonclassical while the plain lines show the criteria that can detect squeezed states
as non classical.

assume ϕ = 0 without loss of generality):

⟨â† â⟩S = sinh2(r),

⟨â†2⟩S = ⟨â2⟩S =− sinh(r) cosh(r),

⟨â†2 â2⟩S = sinh2(r)(cosh2(r) + 2 sinh2(r)),

⟨â†3 â⟩S = ⟨â† â3⟩S =− 3 sinh3(r) cosh(r),

⟨â†4⟩S = ⟨â4⟩S = 3 sinh2(r) cosh2(r).

(8.13)

These results allow us to easily calculate the different determinants of principal sub-
matrices taken from matrix of moments (Eq. 7.23) for squeezed states (see table 8.1).
The nonclassicality of squeezed states is detected, for example, by d23, d123, d234, d235

or d1235.
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CHAPTER 8. MULTICOPY NONCLASSICALITY CRITERIA

Cat-states

Another archetype of nonclassical states consist of the even and odd optical cat states,
written |c+⟩ and |c−⟩ respectively . They are defined as superpositions of coherent
states of opposite phases |β⟩ and | − β⟩, namely

|cβ
+⟩ =

1√
N+

(|β⟩+ | − β⟩), (8.14)

|cβ
−⟩ =

1√
N−

(|β⟩ − | − β⟩), (8.15)

where N+ and N− are normalization constants defined as N± =
√

2
(
1 ± e−2|β|2).

Remember that even cat states and odd cat states are orthogonal to each other, i.e.,
⟨cα

±|c
β
∓⟩ = 0, while applying the annihilation operator to an odd cat state results in a

state proportional to an even cat state and vice-versa:

â|cβ
±⟩ = β

√
N∓
N±

|cβ
∓⟩. (8.16)

Therefore, the only non-zero entries in the matrix of moments are those of form
⟨â†k âl⟩ where k + l is even. As an illustration, we show here some of these non-zero
moments up to k + l = 4:

⟨â† â⟩c± =
N∓
N±

|β|2,

⟨â2⟩c± = ⟨â†2⟩∗c± =β2,

⟨â†2 â2⟩c± =|β|4,

⟨â† â3⟩c± = ⟨â†3 â⟩∗c± =
N∓
N±

β2|β|2,

⟨â4⟩c± = ⟨â†4⟩∗c± = β4.

(8.17)

This allows us to easily calculate the different determinants of principal submatrices
from matrix of moments (Eq. 7.23) for even and odd cat states (see table 8.1).

Observations for pure states

From table 8.1, we can make the following observations (limited to the matrix of
moments up to dimension 5):

• Increasing the dimension of the matrix of moments does not necessarily lead to
a stronger criterion. For example, d12345 does not detect more states than d1234

while being of higher order.

• Some criteria seem to be complementary in the sense that if a state is detected
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Figure 8.3: Comparison of the criteria detecting odd and even cat states. Interest-
ingly, while all the displayed always detects the nonclassicality, the different criteria
have a deeper detection value for different range of value of |β|. Hence, all these cri-
teria do not show the same performance in detecting the nonclassicality of cat states.
(a) The d245 looks to be the most robust criteria to detect odd cat state with |β| rang-
ing from 1 to 2,3. However, it looks more prudent to use d15 or d125 for values of |β|
around and below 1. d1235 detects both odd and even cat states but is the less strong
criteria in terms of deep of the negative value it can take.
(b) Again, d235 is the most reliable nonclassicality criteria for values of |β|. However,
for values of |β| below 1, d123 is stronger.

by one criterion, it will not be detected by the complementary criterion and
vice-versa. This is for instance the case of d15 (detecting Fock states but not
squeezed states) and d23 (detecting squeezed states but not Fock states). Fur-
thermore, it is often the case that a criterion detecting Fock states such as d15

also detects odd cat states (similarly, a criterion detecting squeezed states such
as d23 also detects even cat states).

• The strongest criterion seems to be based on d1235 since it is the lowest order
determinant that detects the nonclassicality of Fock states, squeezed, and (even
and odd) cat states.

These observation motivates the structure of this Chapter and explains why we will
focus on the determinants d15, d23, d123 and d1235 in section 8.4.

8.3.2 Nonclassical mixed states

Gaussian states

The nonclassicality of mixed states has been studied for example in Refs. [100, 129].
In the simplest case of Gaussian mixed states, the limit of nonclassicality is well
known: a state is nonclassical when the smallest quadrature variance is smaller than
the quadrature variance of the vacuum [100]. The relevant Gaussian mixed states are
the squeezed thermal states (since a displacement does not affect nonclassicality). It
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is also sufficient to consider squeezing along the x-quadrature since all the consid-
ered criteria are invariant under rotation. The covariance matrix of these states is
written as

γG = (n +
1
2
)

(
e−2r 0

0 e2r

)
, (8.18)

where n is the mean number of thermal photons and r is the squeezing parameter.

In order to calculate the principal minors of interest (d15, d23, d123 and d1235) for
squeezed thermal states, we take advantage of the property that, for Gaussian states,
the moments of order higher than two can be expressed as a function of the first- and
second-order moments only. Given that squeezed thermal states are centered states,
all elements of the matrix of moments (7.23) can thus be expressed from the covari-
ance matrix γG. For example, the fourth-order moment ⟨â†2 â2⟩ can be calculated
from the Wigner function W(x, p) of the state ρ̂ by using the overlap formula

⟨Â⟩ = Tr(Âρ̂) =
∫

dx dp W(x, p) Ā(x, p), (8.19)

where Ā(x, p) is the Weyl transform of Â. The latter can be obtained by exploit-
ing the commutation relation [â, â†] = 1 in such a way as to write Â = â†2 â2 in its
symmetrically-ordered form, namely

1
6
(â†2 â2 + â† ââ† â + â† â2 â† + ââ† ââ† + ââ†2 â + â2 â†2)− (â† â + ââ†) +

1
2

, (8.20)

which can then be reexpressed in terms of the x̂ and p̂ quadrature operators as

1
12

(x̂2 p̂2 + p̂2 x̂2 + x̂ p̂x̂ p̂+ x̂ p̂2 x̂ + p̂x̂2 p̂+ p̂x̂ p̂x̂) +
1
4
(x̂4 + p̂4)− (x̂2 + p̂2) +

1
2

. (8.21)

The Weyl transform of this expression yields

Ā(x, p) =
1
2

x2 p2 +
1
4
(x4 + p4)− (x̂2 + p̂2) +

1
2

, (8.22)

so that the mean value of Â can be written as

⟨â†2 â2⟩ = 1
2
⟨x2 p2⟩+ 1

4

(
⟨x4⟩+ ⟨p4⟩

)
−
(
⟨x̂2⟩+ ⟨ p̂2⟩

)
+

1
2

. (8.23)

For a Gaussian distribution, we have

⟨x4⟩ = 3 ∆x4 = 3
(

n +
1
2

)2

e−4r,

⟨x2 p2⟩ = ∆x2∆p2 =

(
n +

1
2

)2

,

⟨p4⟩ = 3 ∆p4 = 3
(

n +
1
2

)2

e4r,

(8.24)
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Figure 8.4: Nonclassicality limit for Gaussian states in the plane (r, n). All points ly-
ing below the orange line correspond to nonclassical states, as witnessed by Eq. (8.26)
or equivalently d123 < 0. Hence, pure squeezed states are nonclassical as soon as
r > 0.

so that we obtain finally

⟨â†2 â2⟩ = 1
2

(
n +

1
2

)2

[3 cosh(4r) + 1]− 2
(

n +
1
2

)
cosh(2r) +

1
2

. (8.25)

By using the same method to calculate the other moments, we obtain the values of
the determinants that are presented in Table 8.2.

criterion Fock
d15

1
4 (1 − 2(1 + 2n) cosh(2r) + (1 + 2n)2 cosh(4r))

d123 = d23
1
2 + n + n2 − 1

2 (1 + 2n) cosh(2r)
d1235 d15 d23

Table 8.2: Determinants evaluated for squeezed thermal states.

We see that d15 is always positive for any values of parameters n and r, so it does not
yield a criterion. In contrast, d23 is interesting as it can be negative for some values
of n and r. Of course, when the mean number of thermal photons n = 0, we recover
the result for squeezed states and d23 = − sinh2(r) is negative for all values of the
squeezing parameter r > 0. However, when n increases, the determinant becomes
positive below some threshold value of r, as shown in Fig. 8.4. From Ref. [100],
we know that a necessary and sufficient condition for a squeezed thermal state with
covariance matrix γG to be nonclassical writes

(n +
1
2
) e−2r <

1
2

. (8.26)

It is easy to check that this precisely corresponds to the condition d23 < 0, so the crite-
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rion based on the sign of d23 is necessary and sufficient for squeezed thermal states.
Note that d23 is not invariant under displacements, so that this criterion looses its
power when applied to an arbitrary Gaussian state (i.e., a displaced squeezed ther-
mal state). However, the determinant d123 can be used instead since it is invariant
under displacements and coincides with d23 for centered states. Thus, d123 < 0 pro-
vides a necessary and sufficient criterion for the nonclassicality detection of Gaussian
states.

Note finally that for the special case of centered Gaussian states (squeezed thermal
states), d1235 is equal to the product of d15 and d23 since all entries of odd order in
the annihilation and creation operators in the matrix of moments (7.23) vanish. Since
d15 is always positive for Gaussian states, d1235 has the same detection power as d23.
Furthermore, since it is invariant under displacements, d1235 actually has the same
detection power as d123 for arbitrary Gaussian states.

Non-Gaussian states

To complete the study of mixed states, we also explore the performance of the above
criteria for detecting nonclassical states in the set of non-Gaussian states. These states
are essential for the development of quantum technologies such as quantum com-
puting (for which non-Gaussian states are a necessary ressource [23, 130]) and have
attracted a lot interest [131]. By adding or subtracting a photon from the Gaussian
states as studied in Sec. 8.3.2, we obtain non-Gaussian states. A special case of these
states is the photon subtracted squeezed states, also known as the kitten state.

Photon-added and -subtracted Gaussian states Interestingly, all the moments of
the photon-added or -subtracted Gaussian states appearing in the matrix of moments
(7.23) can be calculated from the moments of corresponding Gaussian states as calcu-
lated in Sec. 8.3.2. Indeed, for the photon-subtracted Gaussian states, the moments
are

⟨â†k âl⟩ = Tr(â†k âl âρG â†) = Tr(â†(k+1) â(l+1)ρG),

= ⟨â†(k+1) â(l+1)⟩G
(8.27)

where we have used the cyclic invariance property of the trace. For the photon-added
Gaussian states, it can be shown that

⟨â†k âl⟩ = Tr(â†k âl â†ρG â)

= Tr((â†(k+1) â(l+1) + (l + k + 1)â†k âl + klâ†(k−1) â(l−1))ρG).

= ⟨â†(k+1) â(l+1)⟩G + (l + k + 1) ⟨â†k âl⟩G + kl ⟨â†(k−1) â(l−1)⟩G.

(8.28)

Hence, we can derive the values of the principal minors for photon-added and -
subtracted Gaussian states directly from the matrix of moments calculated for the
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corresponding Gaussian states. It is worth noticing that the criterion based on d15

can detect photon-subtracted Gaussian states for small values of squeezing and mean
number of thermal photons, while it was useless in the case of Gaussian states (see
Table 8.2).

moment Fock Squeezed |c−⟩ |c+⟩ Gaussian
⟨â† â⟩ n sinh2(r) |β|2 N+

N−
|β|2 N−

N+
(n + 1

2 ) cosh(2r)− 1
2

⟨â2⟩ = ⟨â2⟩∗ 0 − sinh(r) cosh(r) β2 β2 −(n + 1
2 ) sinh(2r)

⟨â†2 â2⟩ n(n − 1) sinh2(r)(cosh2(r) + 2 sinh2(r)) |β|4 |β|4 3(n + 1
2 )

2 cosh(4r)
2 +

(n+ 1
2 )

2

2 − 2(n + 1
2 ) cosh(2r) + 1

2

⟨â† â3⟩ = ⟨â†3 â⟩∗ 0 −3 sinh3(r) cosh(r) β2|β|2 N+
N−

β2|β|2 N−
N+

−3(n + 1
2 )

2 sinh(4r)
2 + 3(n + 1

2 ) sinh(2r)/2

⟨â4⟩ = ⟨â4⟩∗ 0 3 sinh2(r) cosh2(r) β4 β4 3(n + 1
2 )

2 cosh(4r)
2 − 3(n + 1

2 )
2/2

Table 8.3: Summary of the non-zero moments up to order 4 evaluated for different
classes of nonclassical centered states. This moments of the creation and annihilation
operators appear in the criteria based on the matrix of moments of Eq. (7.23).

8.4 Implementation of the nonclassicality multicopy observ-
ables

Potential implementations of nonclassicality criteria based on the matrix of moments
(7.23) have been considered in Ref. [103], but the idea was to experimentally evaluate
all individual elements of the matrix before calculating its determinant. Instead, in
the present work, we look for an optical implementation that makes it possible to
directly access the value of the determinant by measuring the expectation value of
some nonclassicality observable. Since the principal minors discussed in Sec. 8.3
(especially d15, d23, d123 and d1235) are polynomial functions of the matrix elements of
ρ̂, we turn to multicopy observables following Ref. [126]. This method seems to be
well adapted here since the nonclassicality criteria involve determinants (a similar
technique was successfully applied for accessing determinants of other matrices of
moments in quantum optics, see Ref. [125]).

After a reminder on the Schwinger representation in section 8.4.1, we start by detail-
ing the design of 2-copy observables for accessing the determinants d12, d14, d23 and
d15. Then, we increase the number of copies and consider the 3-copy nonclassical-
ity observable d123 and 4-copy nonclassicality observable d1235. We also discuss the
optical implementation of all these observables up to 3 copies.

8.4.1 Schwinger representation and linear interferometry

The Schwinger representation connects the angular momentum algebra to two bosonic
modes operators as follows :

L̂j =
1
2

Â†σj Â, (8.29)
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where Â =

(
â1

â2

)
and σj are the Pauli matrices with j = x, y, z. The associated

Casimir operator L̂0 = 1
2 Â†σ0Â where σ0 = 1 is the 2 × 2 identity matrix.

Let us derive the effect of linear interferometric operations on the L̂j operators. When
applying a beam-splitter operation of transmittance τ, the Schwinger operators trans-
forms as follows:

L̂0 → L̂0,

L̂x → −(2τ − 1) L̂x + 2
√

τ(1 − τ) L̂z,

L̂y → −L̂y,

L̂z → (2τ − 1) L̂z + 2
√

τ(1 − τ) L̂x.

(8.30)

When applying a phase-shift operation on the second mode of phase ϕ, the Schwinger
operators transforms as follows:

L̂0 → L̂0,

L̂x → cos(ϕ) L̂x − sin(ϕ) L̂y,

L̂y → cos(ϕ) L̂y + sin(ϕ) L̂x,

L̂z → L̂z.

(8.31)

These expressions are very usefull in order to find implementable schemes of the
multicopy observables. Indeed, they allow us to transform the L̂y into L̂x via the
phase shift operator and the L̂x operator into L̂z and vice versa via the beam-splitter
transformation. In this way, we can transform the multicopy operators through linear
interferometry such that they only depend on L̂0 and L̂z operators.

8.4.2 Two-copy observables

Instructive examples: d12 and d14

The determinant d12, which is expressed as

d12 =

∣∣∣∣∣ 1 ⟨â⟩
⟨â†⟩ ⟨â† â⟩

∣∣∣∣∣ = ⟨â† â⟩ − ⟨â⟩⟨â†⟩, (8.32)

is useless for nonclassicality detection in the sense that it is positive for all (classical or
nonclassical) states. Indeed, d12 is simply the thermal (or chaotic) photon number, i.e.,
the total photon number minus the coherent photon number. Since d12 is invariant
under displacements, centering the state on the origin in phase space simply results
in d12 = ⟨â† â⟩ ≥ 0.
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Nevertheless, it is instructive to illustrate the multicopy observable technique with
this simple example, where we need two copies of the original state ρ̂. We consider
a 2 × 2 operator matrix mimicking the matrix of moments D2 except that we remove
all expectation values. Then, we associate the first row of this operator matrix with
the first copy (mode 1) and the second row with the second copy (mode 2). In a last
step, we average over all permutations σ ∈ S2 on the mode indices in order to ensure
the Hermiticity of the resulting multicopy observable:

B̂12 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣ 1 âσ(1),
â†

σ(2) â†
σ(2) âσ(2)

∣∣∣∣∣
=

1
2
(â†

2 â2 + â†
1 â1 − â1 â†

2 − â2 â†
1),

(8.33)

where, in the r.h.s of the first equality, the first line of the matrix is associated to the
first mode and the second line on the matrix is associated with the second mode.
The sum over all possible permutation of the modes labels assures the hermiticity of
the multicopy operator. The value of the determinant d12 is obtained by measuring
the expectation value of this observable on two copies of the same state ρ̂, namely
⟨⟨B̂12⟩⟩ ≡ Tr[(ρ̂ ⊗ ρ̂) B̂12]. Indeed, we have

⟨⟨B̂12⟩⟩ =
1
2
⟨⟨ â†

2 â2 + â†
1 â1 − â1 â†

2 − â2 â†
1 ⟩⟩,

=
1
2
(⟨â†

2 â2⟩+ ⟨â†
1 â1⟩ − ⟨â1⟩⟨â†

2⟩ − ⟨â2⟩⟨â†
1⟩)

= ⟨â† â⟩ − ⟨â⟩⟨â†⟩ = d12,

(8.34)

where ⟨·⟩ ≡ Tr[ρ̂ ·].

Finally, we look for an optical implementation of observable B̂12 by means of linear
optics and photon-number resolving detectors. It is not immediately obvious from
Eq. (8.33), but we can exploit the Schwinger representation of angular momenta in
terms of bosonic annihilation and creation operators. Here, we can express B̂12 as
the difference between the Casimir operator L̂0 = 1

2 (â†
1 â1 + â†

2 â2) and the angular
momentum operator L̂x = 1

2 (â†
2 â1 + â†

1 â2), namely

B̂12 = L̂0 − L̂x. (8.35)

Since the application of any linear optics (passive) transformation does not change
the total number of photons, L̂0 is unaffected by such a transformation. In contrast,
L̂x can be turned by an appropriate linear optics transformation into Lz, which cor-
responds to the difference of the photon numbers between the two modes. Indeed,
following Ref. [125], we apply a 50:50 beam splitter, which transforms the mode op-
erators according to

â1 =
â′1 + â′2√

2
, â2 =

â′1 − â′2√
2

, (8.36)
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Figure 8.5: Implementation to measure the value of d12. We first apply a balanced
beam-splitter (transmittance τ = 1/2) and then we use a photon number resolving
detector on the second mode only.

so that L̂x transforms into L̂′
z = 1

2 (â′†1 â′1 − â′†2 â′2), where the primes refer to mode
operators after the beam splitter. Hence, the operator B̂12 is transformed into

B̂12 = L̂0 − L̂′
z =

1
2
(n̂′

1 + n̂′
2 − n̂′

1 + n̂′
2) = n̂′

2, (8.37)

where n̂′
1 = â′†1 â′1 and n̂′

2 = â′†2 â′2.

This implies that measuring the mean photon number in the second mode after the
beam splitter transformation of Fig. 8.5 gives the value of the determinant

d12 = ⟨⟨B̂12⟩⟩ = ⟨n̂′
2⟩. (8.38)

Obviously, we have d12 ≥ 0, so that d12 does not yield a useful criterion to detect
nonclassical states. It is trivial to understand from Eq. (8.36) that this scheme gives
access to the thermal (or chaotic) photon number since the coherent component of
the two identical input states is concentrated on the first output mode â′1, while the
mean field vanishes in the second output mode â′2. The latter is then only populated
by the thermal photons.

Before moving to principal minors that are actually useful to detect nonclassicality,
let us briefly consider the next case in Table 8.1, namely

d14 =

∣∣∣∣∣ 1 ⟨â2⟩
⟨â†2⟩ ⟨â†2 â2⟩

∣∣∣∣∣ = ⟨â†2 â2⟩ − ⟨â2⟩⟨â†2⟩. (8.39)

By building the corresponding two-copy observable, it is straightforward to check
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that d14 ≥ 0 so it is useless for nonclassicality detection. Indeed, we have

B̂14 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣ 1 â2
σ(1)

â†2
σ(2) â†2

σ(2) â
2
σ(2)

∣∣∣∣∣ ,

=
1
2
(â†2

1 â2
1 + â†2

2 â2
2 − â†2

2 â2
1 − â†2

1 â2
2),

(8.40)

In analogy with Eq. (8.35), this two-copy observable can be reexpressed in terms of
angular momentum operators, namely

B̂14 = 2 (L̂2
0 − L̂2

x). (8.41)

As before, we may transform L̂x into L̂′
z by using a 50:50 beam splitter as described

in Eq. (8.36), which gives

B̂14 = 2 (L̂2
0 − L̂

′2
z ) = 2 n̂′

1n̂′
2. (8.42)

Thus, this determinant can be accessed by applying a 50:50 beam splitter on the two
identical copies as in Fig. 8.5 and then measuring the mean value of the product of
the photon numbers, that is

d14 = ⟨⟨B̂14⟩⟩ = 2 ⟨n̂′
1n̂′

2⟩ ≥ 0. (8.43)

In the following, we apply the same technique to determinants that enable the de-
tection of nonclassicality. The calculations follow exactly the same path: we assign a
mode to each row of the operator matrix and then symmetrize it as in Eq. (8.33) or
(8.40). Finally, whenever possible, we find a linear optics transformation such that
the observable can be measured by means of photon number resolving detectors.
Since the difficulty of this procedure increases with the number of copies, we limit
our search to matrices of moments up to dimension N = 5.

Detection of squeezed states: d23

As shown in Table 8.1, the two most interesting principal submatrices of dimension
2 × 2 for detecting nonclassical states are d23 and d15. We start with d23, expressed as

d23 =

∣∣∣∣∣⟨â† â⟩ ⟨â†2⟩
⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣ = ⟨â† â⟩2 − ⟨â2⟩⟨â†2⟩. (8.44)

The criterion derived from d23 detects squeezed states and even cat states (it does not
detect Fock states and odd cat states). Note that d23 is not invariant under displace-
ments (as we shall see, this invariance can be enforced by considering d123 instead).
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Figure 8.6: Implementation to measure the value of d23. We first apply a phase of
phase π/2 and then a balanced beam splitter of transmittance τ = 1/2. Hence,
the criteria can be evaluated by measuring the number of photons in both modes
according to Eq.(8.50).

Following the procedure described in Sec. 8.4.2, we obtain the multicopy observable

B̂23 =
1

|S2| ∑
σ∈S2

∣∣∣∣∣â†
σ(1) âσ(1) â†2

σ(1)

â2
σ(2) â†

σ(2) âσ(2)

∣∣∣∣∣ ,

= â†
1 â1 â†

2 â2 −
1
2

(
â†2

1 â2
2 + â†2

2 â2
1

)
.

(8.45)

Similarly as for B̂12 or B̂14, we can express B̂23 in terms of the angular momentum
operator L̂y = i

2 (â†
2 â1 − â†

1 â2) and the Casimir operator L̂0, namely

B̂23 = 2 L̂2
y − L̂0. (8.46)

It must be noted that Eq. (8.46) can also be reexpressed more concisely as an operator
in normally ordered form, namely

B̂23 = 2 : L2
y : (8.47)

where the normal ordering symbol must be understood term by term, that is, we
must expand L2

y in power series in â and â† and then normally order each term.

Using Eq. (8.46), we may design a linear interferometer in order to measure B̂23 by
means of photon-number resolving detection. We consider the same interferometer
as considered in Ref. [125], which is composed of a π/2 phase shifter on the second
mode followed by a 50:50 beam splitter as shown in Fig. 8.6. Under the π/2 local
phase shift, the second mode operator transforms according to

â2 = i â′2, (8.48)

while the 50:50 beam splitter transformation is described in Eq. (8.36). The Casimir
operator L̂0 is invariant under these operations, but L̂y transforms into L̂x follow-
ing the phase shifter on the second mode and then transforms into L̂′

z after the 50:50
beam splitter. Hence, after applying the interferometer shown in Fig. 8.6, the non-
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classicality observable takes the form

B̂23 = 2 L̂
′2
z − L̂0

=
1
2
(n̂′

1 − n̂′
2)

2 − 1
2
(n̂′

1 + n̂′
2),

(8.49)

and its expectation value yields

d23 = 2⟨L̂
′2
z ⟩ − ⟨L̂0⟩

=

〈
1
2
(n̂′

1 − n̂′
2)

2 − 1
2
(n̂′

1 + n̂′
2)

〉
.

(8.50)

As a consequence, the principal minor d23 can be evaluated simply by accessing the
photon number statistics on the two output modes â′1 and â′2.

It is instructive to understand how the nonclassicality of a squeezed state is detected
by Eq. (8.50). Two copies of a squeezed state are transformed through the interferom-
eter of Fig. 8.6 as follows. The phase shift rotates the second squeezed states by π/2,
and the 50:50 beam splitter produces (from the original and rotated squeezed states)
a two-mode squeezed vacuum (TMSV) state, ∑∞

n=0(tanh r)n/ cosh r |n, n⟩. This state
exhibits a perfect photon-number correlation. Hence, the squared photon-number
difference in Eq. (8.50) vanishes while the second term, which is proportional to
the sum of photon numbers, comes with a negative sign. Thus, squeezed states are
detected as nonclassical with d23 < 0 as soon as r > 0.

Note that Eq. (8.50) can also be reformulated as

d23 =
1
2
(
Q′

1⟨n̂′
1⟩+ Q′

2⟨n̂′
2⟩+ ⟨n̂′

1⟩2 + ⟨n̂′
2⟩2 − 2⟨n̂′

1n̂′
2⟩
)

, (8.51)

where Q′
1 and Q′

2 denote the Mandel Q-parameter of the state on modes â′1 and â′2,
defined as

Q =
(∆n̂)2 − ⟨n⟩

⟨n⟩ , (8.52)

which measures the “Poissonianity” of the state (it vanishes for a coherent state, as-
sociated with a Poisson distribution). If the input state is a coherent state, it is trans-
formed under the interferometer of Fig. 8.6 into a product of two coherent states,
hence Q′

1 = Q′
2 = 0. Further, ⟨n̂′

1⟩2 = ⟨n̂′
2⟩2 = ⟨n̂′

1n̂′
2⟩ since the two coherent states

are independent and have equal squared amplitudes. This confirms that d23 = 0 for
coherent states.

Detection of Fock states: d15

The criterion based on d15 is complementary to the one based on d23 as it detects Fock
states and odd cat states (it does not detect squeezed states and even cat states). It is
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defined as

d15 =

∣∣∣∣∣ 1 ⟨â† â⟩
⟨â† â⟩ ⟨â†2 â2⟩

∣∣∣∣∣ = ⟨â†2 â2⟩ − ⟨â† â⟩2. (8.53)

and is not invariant under displacements (just as d23). It can be rewritten as

d15 = ⟨n̂2⟩ − ⟨n̂⟩2 − ⟨n̂⟩ = (∆n̂)2 − ⟨n⟩. (8.54)

and can thus be reexpressed in terms of the Mandel Q-parameter of the input state
as

d15 = Q ⟨n⟩, (8.55)

so that the nonclassicality criterion based on d15 is simply a witness of the sub-
Poissonian statistics (Q < 0) of the state. Obviously, we have d15 = 0 for coherent
states while d15 > 0 for (classical) thermal states, as expected.

The procedure described in Sec. 8.4.2 yields the following two-copy nonclassicality
observable

B̂15 =
1
2
(n̂2 − n̂1)

2 − 1
2
(n̂1 + n̂2), (8.56)

whose expectation value is written as

d15 =

〈
1
2
(n̂2 − n̂1)

2 − 1
2
(n̂1 + n̂2)

〉
. (8.57)

Interestingly, d15 involves a similar observable as the one used to measure d23 [see
Eq. (8.50)] except that we do not need a prior interferometer. This similarity will be
exploited in the next section.

Interpolation between d23 and d15

As we observe in Table 8.1, the criteria d23 and d15 taken together detect the four
considered kinds of pure states. Given the similarity between Eq. (8.50) and (8.57), it
is tempting to construct a common multicopy observable that interpolates between
d23 and d15. It is based on a linear optical interferometer composed of a phase shifter
of phase ϕ and a beam splitter of transmittance τ (see Fig. 8.7), followed by the
measurement of the observable

B̂15,23 =
1
2
(n̂′

2 − n̂′
1)

2 − 1
2
(n̂′

1 + n̂′
2), (8.58)

where the primes refer to output modes. By applying the interferometer of Fig. 8.7
backwards on Eq. (8.58), we may reexpress it as a function of the input mode opera-
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Figure 8.7: General two-mode scheme made of linear optics and photodetectors to
detect nonclassicalities. By using photon number detection, we only need one phase
shifter of phase ϕ and one beam splitter of transmittance τ.

Figure 8.8: Detection limit of the transmittance as a function of the characteristic
parameter of the state. The red area correspond to parameters values where Fock
states are detected and the green region correspond to the region where squeezed
states are detected. The phase is fixed to ϕ = π/2.

tors, namely

B̂15,23 =
1
2
[(â†

2 â1 e−iϕ + â†
1 â2 eiϕ) 2

√
(1 − τ)τ

+ (â†
1 â1 − â†

2 â2) (−1 + 2τ)]2.
(8.59)

This observable clearly interpolates between B̂15 (τ = 1) and B̂23 (ϕ = π/2 and
τ = 1/2). Since Eq. (8.59) is the square of a Hermitian operator, B̂15,23 can be written
under the form : f̂ † f̂ :, and is indeed a valid observable witnessing nonclassicality.

We start by setting the phase shift to ϕ = π/2 as it does not play any role in B̂15

and study the detection of the different types of nonclassical states as a function
of the transmittance τ (with 1/2 ≤ τ ≤ 1), see Fig. 8.8. It appears that all Fock
states |n⟩ with n ≥ 1 are detected when the transmittance is above a threshold value
τ∗ = (2 +

√
2)/4, while all squeezed states with r > 0 are detected only for val-

ues of the transmittance lower than this threshold τ∗. The value of τ∗ is such that
the coefficients of the two operators terms in Eq. (8.59) are equal. Moreover, it is
possible to show that the odd cat states are always detected when τ > τ∗ while the
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even cat states are always detected when τ < τ∗. This means that there is no value
of the transmittance enabling the detection of the four classes of nonclassical states
considered in Table 8.1. Unfortunately, changing the value of the phase shift ϕ does
not change the situation, so we cannot find a single 2-copy observable that detects all
four classes of nonclassical states.

Note that the criteria based on d23 and d15 can be viewed as complementary: if one
of them detects a nonclassical state, i.e., its value is negative, then the other one is
necessarily positive for that state (of course, they can be both positive as, for example,
for classical states). Indeed, we have

d23 + d15 = d14 ≥ 0 (8.60)

where the inequality comes from Eq. (8.43). Hence, the witnesses d23 and d15 never
detect nonclassicality simultaneously for a given state, as illustrated for a superposi-
tion of three Fock states in the next section.

Example of the complementarity of d15 and d23

As observed in Table 8.1 and on Fig. 8.8, d15 and d23 play a complementary role (see
(8.60)). Indeed, any benchmark pure states that were studied are never detected by
both d15 and d23. In order to insist on this fact, we will study a pure state that is the
superposition of |0⟩, |1⟩ and |2⟩ Fock states :

|ψ012⟩ = α|0⟩+ β|1⟩+ γ|2⟩, (8.61)

where |α|2 + |β|2 + |γ|2 = 1 for normalisation. We can restrict ourselve to only the
norm of the coefficients, |α| = a, |β| = b and |γ| = c and replace a =

√
1 − b2 − c2.

First, in the case where c = 0 in Eq. (8.61), meaning that we have a superposition
of |0⟩ and |1⟩ Fock state only, the determinant d23 is always positive (since ⟨â†2⟩ =

⟨â2⟩ = 0) while d15 is at least negative the state reduces to |1⟩. In fact, d15 ≤ 0 for all
superposition of the vacuum and Fock state |1⟩.

Second, in the case where b = 0 in Eq. (8.61), meaning that we have a superposition
of |0⟩ and |2⟩ Fock state only, the answer is more subtle.

Effect of a displacement on d23 and d15

In general, we expect that the nonclassical character of a quantum state will be harder
to detect when the state is moved away from the origin in phase space. As we shall
see, this is often (but not always) the case. We can calculate the difference between the
determinant when the state is displaced by D̂(α) with α = |α|eiθα and the determinant
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d15

d23
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Figure 8.9: Comparison of the values of d15 and d23 for a superposition of |0⟩ and |2⟩
Fock states. Remarkably, the two criteria does not detects nonclassicality simultane-
ously. This supports the idea of complementarity of d15 and d23.

State ∆α = dα
15 − d15

Squeezed ∆α = 2 sinh (r)|α|2(cosh (r) cos (2θα − ψ) + sinh (r))
Fock ∆α = 2n|α|2

Even cat ∆α = 2|α|2|β|2(N−
N+

− cos (2θα − 2θβ))

Odd cat ∆α = 2|α|2|β|2(cos (2θα − 2θβ) +
N+
N−

)

Table 8.4: Effect of displacement. Difference between the determinant when the state
is displaced and when it is not for the squeezed states, Fock states, even cat states
and odd cat states.

when it is centered. The differences are presented in Table 8.4 for the different kinds
of states.

For Fock states as well as odd cat states, the effect of a displacement on d15 is given
by an extra positive factor ∆α, so that displacements always deteriorate the detection.
For squeezed states as well as even cat states, the result of a displacement on d23 is
that it can either enhance (∆α < 0) or deteriorate (∆α > 0) the detection of nonclas-
sicality. Indeed, the sign of ∆α will depend on the difference between the angle of
squeezing ψ (or the angle of the cat state θβ) and the angle of the displacement θα.

8.4.3 Three-copy observables

As we have observed in Sec. 8.4.2, the two-mode criteria d23 and d15 are not invariant
under displacement. This comes with the fact that some nonclassical states become
undetected if they are displaced in phase space. In order to overcome this effect of
displacements, we build an observable involving an extra copy, following a similar
reasoning as in Ref. [125]. With three copies, we start by applying a transformation
that concentrates the coherent component of the input states in the first mode, which
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is traced out. Then, we apply the same scheme as for d23 but on the second and third
modes, which leads the following observable

B̂123 =
1
2
(n̂′

2 − n̂′
3)

2 − 1
2
(n̂′

2 + n̂′
3). (8.62)

Figure 8.10: Three-mode circuit of d123 to detect nonclassicalities. This corresponds
to the d23 implementation preceded by two beam splitter of transmittance τ12 = 1/2
and τ13 = 2/3. The role of these beam splitters is to concentrate the coherent part of
the input states to the mode 1.

Up to a mode relabelling, the operator in Eq. (8.62) is thus the same as the one used
for evaluating d23, see Eq. (8.50). The corresponding circuit is shown in Fig. 8.10 and
leads to the d123 criteria. Interestingly, the exact same circuit was used by in Ref. [125]
in order to measure an uncertainty observable; the difference here is the measured
observable at the output of the circuit.

The three-copy observable B̂123 can also be found by using the same procedure as
described in Sec. 8.4.2 for two copies. Indeed, from the explicit form of d123, namely

d123 =

∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩

∣∣∣∣∣∣∣ ,

=⟨â† â⟩2 − ⟨â†2⟩⟨â2⟩ − 2⟨â†⟩⟨â⟩⟨â† â⟩

+ ⟨â†2⟩⟨â⟩2 + ⟨â†⟩2⟨â2⟩,

(8.63)
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we get the three-copy observable

B̂123 =
1

|S3| ∑
σ∈S3

∣∣∣∣∣∣∣∣
1 âσ(1) â†

σ(1)

â†
σ(2) â†

σ(2) âσ(2) â†2
σ(2)

âσ(3) â2
σ(3) â†

σ(3) âσ(3)

∣∣∣∣∣∣∣∣
=

1
3

(
â†

2 â2 â†
3 â3 + â†

1 â1 â†
3 â3 + â†

1 â1 â†
2 â2

)
− 1

6
(â†2

2 â2
3 + â2

2 â†2
3 + â†2

1 â2
3 + â2

1 â†2
3 + â†2

1 â2
2 + â2

1 â†2
2 )

− 1
3
(â†

1 â1 â†
2 â3 + â†

1 â1 â2 â†
3 + â1 â†

2 â2 â†
3

+ â†
1 â†

2 â2 â3 + â1 â†
2 â†

3 â3 + â†
1 â2 â†

3 â3)

+
1
3

(
â†2

1 â2 â3 + â1 â†2
2 â3 + â1 â2 â†2

3

)
+

1
3

(
â2

1 â†
2 â†

3 + â†
1 â2

2 â†
3 + â†

1 â†
2 â2

3

)
.

(8.64)

It is straightforward to check from Eq. (8.64) that the mean value of B̂123 over three
identical copies gives

⟨⟨B̂123⟩⟩ = d123. (8.65)

Interestingly, the nonclassicality observable B̂123 can also be written in a much more
compact form by using the normally ordered expression

B̂123 = :
2
3

(
L̂12

y + L̂23
y + L̂31

y

)2
: , (8.66)

where L̂kl
y = i

2 (â†
l âk − â†

k âl).

After applying the unitary presented on figure 8.10, B̂123 transforms into :

B̂′
123 =

1
2
(n̂2 − n̂3)

2 − 1
2
(n̂2 + n̂3). (8.67)

Another option is to apply the DFT on the three copies input observable B̂123, this
leads to the same output observable. d123 presents an advantage with respect to d23

as it is invariant by displacement.

We have introduced d123 as the displacement invariant version of d23. However, the
criteria d123 is also superior as it is able to detect states that are different from dis-
placed states detected by d23. The easiest example is the superposition of the two
Fock states |0⟩ and |1⟩ given in Eq. (8.61) with c = 0. The values of d15, d23 and d123

are plotted in Fig. 8.11. We see, that while d23 never detects any such superposition,
d123 detects superpositions of the two first Fock states up to b = 0.7. Moreover, d15

detects all superposition of the vacuum with Fock state |1⟩.

More general example of states detected by d123 but not by d23 can be found by look-
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Figure 8.11: Comparison of the values of d123 and d23 for a superposition of |0⟩ and
|1⟩ Fock states. While d23 never detects any such superposition, d123 detects super-
positions of the two first Fock states up to b = 0.7.

ing to arbitrary superpositions of the type of Eq. (8.61).

8.4.4 Four-copy observables

The d1235 criteria for nonclassicality

The most promising criteria derived from a 4 × 4 matrix is certainly d1235 since it
detects the nonclassicality of all squeezed, Fock and cat states (see table 8.1). Hence,
we will study his structure in more details in this section.

d1235 =

∣∣∣∣∣∣∣∣∣∣
1 ⟨â⟩ ⟨â†⟩ ⟨â† â⟩

⟨â†⟩ ⟨â† â⟩ ⟨â†2⟩ ⟨â†2 â⟩
⟨â⟩ ⟨â2⟩ ⟨â† â⟩ ⟨â† â2⟩
⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†2 â2⟩

∣∣∣∣∣∣∣∣∣∣
. (8.68)

We start by considering the multicopy technique used for deriving physical imple-
mentation for the 2- and 3-copy nonclassicality observables. Hence, we write the
multimode operator B̂1235 by assigning a different mode to each matrix lines :

B̂1235 =
1

|S4| ∑
σ∈S4

∣∣∣∣∣∣∣∣∣∣∣

1 âσ(1) â†
σ(1) â†

σ(1) âσ(1)

â†
σ(2) â†

σ(2) âσ(2) â†2
σ(2) â†2

σ(2) âσ(2)

âσ(3) â2
σ(3) â†

σ(3) âσ(3) â†
σ(3) â

2
σ(3)

â†
σ(4) âσ(4) â†

σ(4) â
2
σ(4) â†2

σ(4) âσ(4) â†2
σ(4) â

2
σ(4)

∣∣∣∣∣∣∣∣∣∣∣
. (8.69)

Hence, by calculating the mean value ⟨⟨B̂1235⟩⟩, it is equal to d1235. The symmetrized
operator B̂1235 is Hermitian and of the form of : f̂ † f̂ : where f̂1235 is hermitian itself

152



8.4. IMPLEMENTATION OF THE NONCLASSICALITY MULTICOPY
OBSERVABLES

and writes :

f̂1235 =
−i

2
√

6
(â†

1 â1 â†
2 â3 − â†

1 â†
2 â2 â3 − â†

1 â1 â2 â†
3

+ â1 â†
2 â2 â†

3 + â†
1 â2 â†

3 â3 − â1 â†
2 â†

3 â3

− â†
1 â1 â†

2 â4 + â†
1 â†

2 â2 â4 + â†
1 â1 â†

3 â4

− â†
2 â2 â†

3 â4 − â†
1 â†

3 â3 â4 + â†
2 â†

3 â3 â4

+ â†
1 â1 â2 â†

4 − â1 â†
2 â2 â†

4 − â†
1 â1 â3 â†

4

+ â†
2 â2 â3 â†

4 + â1 â†
3 â3 â†

4 − â2 â†
3 â3 â†

4

− â†
1 â2 â†

4 â4 + â1 â†
2 â†

4 â4 + â†
1 â3 â†

4 â4

− â†
2 â3 â†

4 â4 − â1 â†
3 â†

4 â4 + â2 â†
3 â†

4 â4),

=
2√
6
(L̂14

z L̂23
y + L̂13

z L̂42
y + L̂12

z L̂34
y

+ L̂24
z L̂31

y + L̂23
z L̂14

y + L̂34
z L̂12

y ),

=
1√
6

∑
σ∈P4

L̂σ(1)σ(2)
z L̂σ(3)σ(4)

y ,

(8.70)

where P4 is the group of even permutations and the complete observable is B̂1235 =:
f̂ †
1235 f̂1235 :. However, since f̂1235 is made of products of non-commuting operators L̂ij

z

and L̂kl
y (when at least one of the i, j is equal to one of the k, l), we are not able to find

a 4-copy physical implementation in terms of linear optical interferometric elements.
Indeed, applying local phase shifts and beam-splitters does not help in bringing all
the L̂ij

z L̂kl
y elements into L̂ij

z or L̂kl
0 .

Indeed, we applied different types of transformations based on the Discrete Fourier
Transform whose elements in its matrix representation writes:

[DFT(n)]jk =
ei2π jk/n
√

n
, (8.71)

where n is the dimension of the matrix and i is the imaginary number satisfying
i2 = −1. By applying a tensor product of two DFT(2) matrices DFT(2)⊗ DFT(2),
one can transform f̂1235 into:

f̂1235 → −i
2
√

6
(â†2

2 (â2
4 − â2

3) + â2
2(â†2

3 − â†2
4 ) + â2

3 â†2
4 − â†2

3 â2
4), (8.72)

which is the shortest expression we could find and where the mode "1" does not
appear in accordance with the fact that DFT(2) ⊗ DFT(2) does concentrate all the
coherent part of the states in the first mode and that d1235 is invariant under displace-
ment.
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Decomposition of the d1235 criterion

In order to simplify the problem, we can restrict the study to certain class of states.
In some case, it is possible to find a multicopy implementation of d1235 by factorizing
it and finding implementation for the individual factors.

Determinant properties In order to factorize the determinant d1235, we will be us-
ing basic properties of determinants :

1. First, if A−1 exists and if A and D are squared matrices, then

det

(
A B
C D

)
= det(A)det(D − CA−1B). (8.73)

2. If A−1 and D−1 exist, then

det(D − CAB) = det(A−1 − BD−1C)det(A)det(D), (8.74)

where A ∈ Mm×m, D ∈ Mn×n, B ∈ Mm×n and C ∈ Mn×m

These properties will be used in the next sections. Note that a recursion relation on
d1...N is derived in section 8.5.

Determinant d1235 for centered states First, we consider the case of centered states.
Hence, this imposes some restriction on the matrix of moment, namely that ⟨â⟩ =

⟨â†⟩ = 0. Hence, under this assumption d1235 can be written:

d1235 =

∣∣∣∣∣∣∣∣∣∣
1 0 0 ⟨â† â⟩
0 ⟨â† â⟩ ⟨â†2⟩ ⟨â†2 â⟩
0 ⟨â2⟩ ⟨â† â⟩ ⟨â† â2⟩

⟨â† â⟩ ⟨â† â2⟩ ⟨â†2 â⟩ ⟨â†2 â2⟩

∣∣∣∣∣∣∣∣∣∣
. (8.75)

By using the method of the cofactors to calculate the determinant, we have:

d1235 = d235 − ⟨â† â⟩2d23. (8.76)

In order to further factorize the determinant d235, we assume the extra constraint that
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D23 is invertible. Hence:

d1235 = d23(⟨â†2 â2⟩ −
(
⟨â† â2⟩ ⟨â†2 â⟩

)
D−1

23

(
⟨â†2 â⟩
⟨â† â2⟩

)
)− ⟨â† â⟩2d23,

= d23(d15 −
(
⟨â† â2⟩ ⟨â†2 â⟩

)
D−1

23

(
⟨â†2 â⟩
⟨â† â2⟩

)
).

(8.77)

In particular, under the assumption that D23 is positive definite and hence d23 >

0 and that D15 is negative definite , then nonclassicality can be detected for sure.
Moreover, we see that d1235 is stronger than d23 and d15 since if d15 is smaller than the
last term in Eq.(8.77), then d1235 will detect the state as nonclassical.

By exchanging the role of d15 and d23, we find another decomposition for d1235:

d1235 = d23 det(D15

− 1
d23

(
0 0
0 2⟨â† â⟩⟨â†2 â⟩⟨â† â2⟩ − ⟨â†2⟩⟨â† â2⟩2 − ⟨â2⟩⟨â†2 â⟩2

)
).

= d23d15 − 2⟨â† â⟩⟨â†2 â⟩⟨â† â2⟩+ ⟨â†2⟩⟨â† â2⟩2 + ⟨â2⟩⟨â†2 â⟩2

(8.78)

In this case again, we see that d1235 is stronger than d15 and d23 as it can be negative
even if d15 and d23 are both positive.

Finally, in the particular cases of states for which we assume that ⟨â†2 â⟩ = ⟨â† â2⟩ = 0,
we have the simple formula:

d1235 = d15d23. (8.79)

This equality is satisfied for Fock, squeezed and cat states. Hence, a simple con-
catenation of the implementation of the d15 and d23 circuits is sufficient to calculate
the value of d1235. In section 8.4.4, we give another equivalent writting of d1...N by
showing that it can always be rewritten as a covariance type matrix.

d1235 as a covariance matrix

Interestingly, the matrix of moments in Eq. (7.23) can be expressed in a covariance-
type matrix of lower order. Indeed, by identifying the first line and first column
element in Eq.(7.23) as A in Eq.(8.73), we have :

dN = det(1)det(D23...N − cc†) = det(D23...N − cc†). (8.80)

where D23...N is the matrix of moments with the first line and column removed and
c is the first column of the matrix of moments dN with the first line element re-
moved. Hence, since D̂23...N;ij =: ĉi ĉ†

j :, we see that the elements of the reduced
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matrix D23...N − cc† can be written as :

(D23...N − cc†)ij = ⟨: ĉi ĉ†
j :⟩ − ⟨ĉi⟩⟨ĉ†

j ⟩, (8.81)

which is a covariance matrix in terms of creation and annihilation operators. For
example, we can rewrite d1235 as a 3 × 3 covariance matrix :

d1235 =

∣∣∣∣∣∣∣
⟨â† â⟩ − ⟨â†⟩⟨â⟩ ⟨â†2⟩ − ⟨â†⟩2 ⟨â†2 â⟩ − ⟨â† â⟩⟨â†⟩
⟨â2⟩ − ⟨â⟩2 ⟨â† â⟩ − ⟨â†⟩⟨â⟩ ⟨â† â2⟩ − ⟨â⟩⟨â† â⟩

⟨â† â2⟩ − ⟨â† â⟩⟨â⟩ ⟨â†2 â⟩ − ⟨â† â⟩⟨â†⟩ ⟨â†2 â2⟩ − ⟨â† â⟩2

∣∣∣∣∣∣∣ , (8.82)

where element of the first line and first column is d12. This re-writing might lead to
knew interpretations of the SRV criteria.

8.5 Recursion relation on d1...N

Let us consider the case where one has tested all principal matrix of moments criteria
up to d1...N without any detection of nonclassicality or a result of zero. This means
that d1...n > 0 for all n = 1, ..., N. Hence, by the Sylvester criterion, the matrix DN×N

is positive definite. What could we say about d1...N+1 ?

First, let us use Eq.(8.73) and the matrix determinant lemma Eq.(8.74) on d1...N+1

where A = DN , D = d = ⟨â†k âk⟩ for some integer k and B† = C is a column vector,
noted c = C :

d1...N+1 = det(DN×N)det(d − c†D−1
N×Nc),

= d1...N(d − c†D−1
N×Nc),

(8.83)

since (d− c†D−1
N×Nc) is a scalar. Since DN×N is positive definite, D−1

N×N is also positive
definite and hence c†D−1

N×Nc is positive. Therefore, in order to detect a new type of
nonclassicality, it suffices to check if the following inequality is violated :

(d − c†D−1
N×Nc) ≥ 0, (8.84)

which might be easier to detect in certain favorable cases than considering the whole
observable of d1...N+1.

8.6 Conclusion and Perspectives

In summary, we have analyzed the nonclassical criteria of the so-called matrix of mo-
ments up to dimension N = 5 and benchmarked their performances by their ability
to detect some well-known and interesting nonclassical states, such as Fock states,
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squeezed states and the cat states. We identified the criteria that lead to the detection
of nonclassicality in the family of Gaussian states. We give the relation between the
moments of photon added and substracted Gaussian states and the moments of the
associated Gaussian state.

We also identified some remarkable criteria, d15 and d23 that are connected to known
nonclassical features such as sub-Poissonian photon number statistics or squeezing.
For these criteria, we developped the multicopy technique in order to propose mul-
ticopy nonclassicality observables that have a physical implementation in terms of
linear interferometry and photodetectors. We identified that the criteria d123 is invari-
ant under translation and has the same detection performances as d23 and proposed
a 3-copy implementable nonclassicality criteria.

Finally, we identified the criteria d1235 to be very interesting since it can detect all the
states detected by d15 and d23 but also states that cannot be detected neither by d15 nor
d23. We identified its relation with d15 and d23 and derived the multicopy observable
associated. Finding an implementation in terms of linear interferometry and photon
number detectors is pretty challenging and is left as an open problem.
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9 | Conclusion

This thesis encompasses three distinct research areas : parameter estimation, separa-
bility criteria, and nonclassicality criteria. Each of them has led to an original contri-
bution to the field, as developed in Chapters 4, 6 and 8, respectively. The bonding
agent among these three topics is the general approach revolving around quantum
phase space, so that the coherence of the thesis lies in the methodology more than
in the particular subjects. In all cases, we have strived to develop protocols that
have a practical implementation. Specifically, we have proposed a scheme for esti-
mating several continuous variables encoded in multiple coherent states, a scheme
for testing the weak realignment criterion, and finally a multi-copy scheme for test-
ing a variety of nonclassicality criteria. These developments systematically exploit
the advantages of the phase-space representation of quantum optics, especially the
Heisenberg picture and the symplectic formalism, in order to achieve the main goals.
The structure of the thesis reflects this approach as we first introduce the basic no-
tions of quantum optics in Part I, then move to parameter estimation in Part II and
separability criteria in Part III, and finally address the nonclassicality criteria in Part
IV.

In Chapter 4, we provide a proof to the fifteen years old conjecture by S. Iblisdir and
N. J. Cerf stating that the optimal way to encode information about two continuous
variables in the quadratures of two coherent states consists in using phase-conjugate
states. After an experimental verification of their prediction and a first attempt of a
proof in 2008, we addressed the problem with the proper tools of quantum parameter
estimation theory, namely the quantum Cramér-Rao bound and the Fisher informa-
tion. We proved that the encoding strategy proposed by Iblisdir and Cerf actually
saturates the Cramér-Rao bound for both parameters simultaneously. Moreover, we
extended the special case of phase-conjugate states to a larger family of states for
which we provide a protocol for optimal parameter estimation. Finally, we general-
ized this strategy to any number of continuous parameter being encoded in the same
number of coherent states and proved that it is sufficient to encode pairs of param-
eters in pairs of coherent states (and, eventually, an ensemble of three parameters in
an ensemble of three coherent states). These work might be extended by providing
links with cryptographic primitives such as secret sharing.
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In Chapter 6, we provide a comprehensive and pedagogical overview of the so-called
realignment separability criterion by reformulating the realignment map in terms of
a trace norm. We define a new separability criterion based on the trace instead of the
trace norm, which we call the weak realignment criterion. It is generally weaker than
the original realignment criterion but we show that the two coincide for a special
class of states that we define as Schmidt-symmetric state. While the weak realign-
ment criterion thus detects less entangled states than the original realignment crite-
rion, we provide a physical implementation of the weak realignment map which can
be tested directly, without the need to have all knowledge about the state. Moreover,
we enhance the detection capability of the weak realignment map by supplementing
it with a filtering operation (namely, applying a noiseless attenuator on the noisiest
of the two modes of the state) that brings the state closer to a Schmidt-symmetric
form. Finally, we illustrate the enhanced performance of the filtration-assisted weak
realignment criterion by applying it to different families of states that are commonly
encountered in quantum optics. Future directions are to study the ability of the weak
realignment criterion to detect entanglement of non-Gaussian states.

In Chapter 8, we review the properties of the matrix of moments of the electromag-
netic field. We benchmark the performances of the nonclassicality criteria that can be
derived from the minors of this matrix up to dimension 5× 5 by considering different
classes of nonclassical states, such as the Fock states, the squeezed states or the cat
states. We also consider the set of Gaussian (pure or mixed) states and show that only
a single nonclassicality criterion is sufficient for identifying all nonclassical states in
this set. We then apply the multicopy technique developed by T. Brun in order to
define multicopy nonclassicality observables, following a similar line of reasoning as
for the definition of uncertainty observables by A. Hertz et al. We then propose phys-
ically implementable schemes for evaluating the nonclassicality criteria by means of
passive interferometry and photon number detectors. In particular, we find two- and
three-copy implementations of nonclassicality criteria, and show how a strong non-
classicality criterion could be tested and implemented by a combination of two-copy
implementations under some restriction. Finally, we propose relations that allow the
detection of nonclassicality for some specific families of non-Gaussian states. Ideally,
future work might provide a systematic procedure for an implementable multicopy
nonclassicality detection for any relevant minors of the matrix of moments.
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