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Thèse présentée par Timothée HOFFREUMON
en vue de l’obtention du grade académique de docteur en sciences de
l’ingénieur et technologie
Année académique 2022-2023

Sous la direction du Professeur Ognyan ORESHKOV, promoteur
Centre for Quantum Information and Communication

Jury de thèse :
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Résumé

Les transformations de transformations, également appelées processus d’ordres supérieurs, forment un

concept courant en informatique et en traitement de l’information. De tels processus apparaissent dès

qu’il est question de manipulations sur l’opération à appliquer aux données, plutôt que sur les données

elles-mêmes. Par exemple, lorsque l’on veut représenter un protocole informatique avec des boucles de

rétroaction d’opérations, comme des boucles “for” imbriquées, ou lorsque l’on veut représenter un protocole

de communication avec un contrôle dynamique des opérations, comme lorsqu’un adversaire agit sur les

données d’entrée et de sortie d’une autre partie afin de la tromper, on utilisera des processus d’ordre

supérieur.

Ce paradigme appliqué à l’informatique quantique a récemment suscité un grand intérêt, tant au niveau

pratique que fondamental. D’une part, il a été démontré que certains processus quantiques d’ordre supérieur

permettaient de réduire le nombre d’opérations nécessaires à la réalisation de certains protocoles. D’autre

part, ces processus présentent parfois des relations causales indéfinies au sens quantique du terme ; l’ordre

des événements A et B peut se superposer entre A puis B et B puis A. Ce comportement est d’un grand intérêt

fondamental car il remet en question certaines idées préconçues que d’aucun pensent incompatibles avec une

théorie quantique de la gravité.

Un cadre général pour représenter les transformations quantiques d’ordres supérieurs est dès lors nécessaire

pour pleinement exploiter les améliorations qu’elles apportent et, en parallèle, pour étudier les relations

causales quantiques singulières qu’elles présentent. Pareil cadre est développé dans cette thèse. Plus

précisément, un ensemble d’outils pour caractériser les processus quantiques d’ordre supérieurs valides

reposant sur la dualité canal-état ainsi que l’utilisation de projecteurs superopératoires est présenté. Il est

montré que les manières possibles de définir un ensemble donné de transformations d’un même ordre sont

homomorphes à une algèbre de ces projecteurs superopératoires, qui sont à leur tour homomorphes aux

relations de signalisation que les objets de cet ensemble peuvent permettre. De plus, il est démontré que cette

algèbre est très proche d’un modèle de logique linéaire appelé BV. Ainsi, la définition d’une transformation

au moyen de ces projecteurs se réduit à l’élaboration de formules logiques, tandis que l’énumération des

relations causales qu’elle comporte se réduit à des manipulations symboliques sur ces formules.
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Abstract

Transformations of transformations, also called higher-order processes, is a commonly occurring concept in

computing and information processing. Such processes arise in situations involving manipulations of the

operation applied to the data, rather than of the data itself. For example, when one wants to represent a

computing protocol with feedback loops of operations, like nested ‘for loops’, or when one wants to represent

a communication protocol with dynamical control over operations, like where an adversary party is acting

on the input and output data of some other party so to deceive her, higher-order processes will be used.

Applied to quantum computing, this paradigm has recently attracted significant interest both at the practical

and fundamental levels. On the one hand, specific higher-order quantum processes were shown to decrease

the number of operations needed to realize certain protocols. On the other hand, these processes sometimes

feature causal relations that are ‘indefinite’ in the quantum sense; the ordering of events A and B can become

superposed between A then B and B then A. This behavior is of great fundamental interest as it challenges

some pre-conceived ideas some believe to be incompatible with a quantum theory of gravity.

A general framework to represent higher-order quantum transformations is then necessary to fully harness

the improvements they provide and, in parallel, to study the puzzling quantum causal relations they feature.

Such a framework is developed in this thesis. Specifically, a set of tools for characterizing valid higher-order

quantum processes relying on channel-state duality and the use of superoperator projectors is presented.

It is shown that the possible ways to define a given set of higher-order transformations are homomorphic

to an algebra of these superoperator projectors, which are in turn homomorphic to the signaling relations

that the objects in this set may allow. Moreover, this algebra is shown to be very close to a model of linear

logic called BV. Whence, defining a transformation through these projectors is reduced to forming logic-like

formulae, whereas tracking down the causal relations it features is reduced to symbolic manipulations of

these formulae.
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Introduction

Indeed, one can wonder what kind of quantum computer the universe is: It could

be a gigantic quantum circuit where information is encoded in the state of many

qubits and is processed in time from a spacelike surface to the next, or it could

be a quantum Turing machine, or also be a higher-order computer, that processes

information encoded in transformations (e.g. in scattering amplitudes) rather than in

states.

Chiribella et al. (2009), Quantum computations without definite causal structure [4]

One of the striking features of quantum mechanics is that it challenges the view that

physical properties are well defined prior to and independent of their measurement.

(...) Is it possible that, in some circumstances, even causal relations would be ‘uncertain’,

similarly to the way other physical properties of quantum systems are ?

Oreshkov et al. (2012), Quantum correlations with no causal order [5]

The same way that a quantum channel describes the most general transformation mapping an input quantum

state to an output quantum state [6, 7], a quantum supermap describes the most general transformation

mapping an input quantum channel to an output quantum channel [8]. Interpreting the quantum channel as a

transformation between states, the supermap is then a transformation of transformations. For that reason, it is

called a higher-order transformation. Since nothing forbids a priori to nest transformations of transformations in

quantum theory, one can consider successive nestings to recursively build whole hierarchies of higher-order

quantum transformations [9–11].

Fragments of a quantum circuit are a concrete instance of the use of a higher-order hierarchy. A circuit

fragment that ‘goes around’ a channel is a supermap: it takes a channel as input and outputs a channel

[12, 13]. This supermap itself can be seen as the input for some super-supermap that will output a channel,

and so on. This ensuing hierarchy has been defined under the name quantum comb formalism [9], which has

proven to be a valuable tool in the field of quantum information theory. It is used to model the successive

operations of a single party in a multipartite quantum protocol, in order to optimize her strategy as a whole

but independently of the other parties’ actions.

With a different goal than modeling circuit fragments, supermaps with multiple inputs were subsequently

studied. First, the quantum switch was proposed as a supermap that takes two channels and outputs them in

an order that depends on a control qubit [4]. Soon after, the Process Matrices (PM) were proposed as a general

framework of supermaps that take a fixed number of quantum instruments [14] and map them to a joint

probability for their outcomes [5]. Both concepts led to the identification of Indefinite Causal Order (ICO) as a

feature of supermaps.

Indefinite causal order is the idea that, in some circumstances, even causal relations can become ‘uncertain’,

similarly to how other physical properties of quantum systems can be. It was conceptualized in the early

2000s by Hardy as a prerogative for a quantum description of gravity [15, 16]. Later, he also proposed using

this property to extend the quantum circuit formalism [17], which led to the quantum switch and the process

matrix.

Soon after this theoretical proposition, experiments were conducted to demonstrate the feasibility of a

quantum switch (see e.g., Reference [18]). Since then, harnessing the new possibilities offered by ICO has

been a very active subject of research. These have been proposed as a means to improve the efficiency of

protocols in many different areas of quantum information technologies, with examples having been found in

1



2 Introduction

e.g., quantum computing [19, 20], communications [21, 22], thermodynamics [23–25], metrology [26, 27], etc.

and the list keeps growing.

Yet, to this date, the experimental realizations of the quantum switch are still debated [28–31]. And this is

only one aspect of the general lack of systematic study of the theory of higher-order quantum processes. On

a fundamental level, a lot is still not understood about them. In particular, there are no ways to determine if a

process will even have a non-fixed causality, albeit this information is imperative to even speak about the

phenomenon of indefinite causality. Another striking shortcoming is that almost all processes studied in the

literature so far are assuming quantum channels as their input. Nevertheless, a general study of higher-order

quantum processes ought to go beyond this assumption: to infer general properties, processes must be

abstracted as any transformation between any transformations; if the switch is a valid process, then a switch

whose inputs are quantum switches must be considered as well. The first example of such a truly nested

process was considered to model the evolution of process matrices [32]: this evolution is indeed interpretable

as a process matrix on process matrices. In parallel, Perinotti [10] and Bisio [11] started considering the theory

as a whole. As mentioned in the first paragraph, they theorized and defined the hierarchy of higher-order

processes, and provided a type system to classify the different kinds of nested transformations. Inspired by

Perinotti’s approach, Kissinger and Uĳlen obtained a similar characterization but using the framework of

category theory instead of type theory [33].

In their formalisms, it becomes possible to treat process matrices and quantum combs on the same footing, as

two different classes of transformation within the whole hierarchy of admissible transformations. Still, one can

then wonder what differentiates the switch from a comb, or the PM from a comb. Especially, why certain

maps and hierarchies of maps may feature non-fixed causal orders while others will not. While these works

provide partial answers, they fail to provide a general explanation. Motivated by these considerations, the

ambition of this thesis is to present a framework that formalizes and characterizes higher-order quantum

transformations. This framework uses the notion of signaling as a primitive for sorting the different processes.

Briefly summarized, the two main questions answered through these pages are ‘What is a higher-order

quantum process?’ and ‘When does such a process feature a non-fixed causal order?’. In a more technical

form, the first question is ‘Given an operator on a set of input and output Hilbert spaces, what kind(s) of

a higher order processes does it represent? Conversely, how can I represent a higher-order process as an

operator?’ while the second is ‘What is the underlying signaling structure(s) of such a process? Does it feature

more than one fixed direction of signaling?’.

This dissertation is based on the following preprint:

[2]: Timothée Hoffreumon and Ognyan Oreshkov. Projective characterization of higher-order quantum
transformations. 2022. arXiv: 2206.06206 [quant-ph].

It generalizes the characterization method developed in a previous article about the Multi-round Process
Matrix (MPM) [1]. Note that some of its results on MPMs are used in the thesis although the work on itself is

not presented within it. This article is itself based on the technical part of my master thesis [34], which is in

turn based on a method of Araújo and coworkers developed to define causal witnesses for process matrices

[35]. Around the same time as the preprint [2] was completed, similar characterizations were independently

derived by Simmons and Kissinger [36] and then by Milz and Quintino [37].

The thesis is organized as follows: in the first part, a somewhat original review of the process formalism is

conducted in parallel with setting up the notation. In Chapter 1, the formalism is first presented as a statistical

model for local interventions so as to present the concepts of signaling and causal correlations. Then it is

specialized for interventions on quantum systems exchanged with an environment. The dichotomy of local

interventions/global environment is subsequently explored in Chapter 2, in which the process formalism is

discussed in the multipartite case. Multiple local parties interacting with a global environment are argued to

necessarily result in a picture admitting higher-order transformations when comparing the interventions of the

local parties. This means that some local parties’ intervention may happen to be everything happening in

the vicinity of another local party. From the point of view of this latter party, the former then acts as her

environment, which is effectively represented as a higher-order intervention. The Choi-Jamiołkowski (CJ)

correspondence is then reviewed to represent these admissible higher-order transformations as the same kind

of objects as interventions. Using this correspondence, the representation of the environment, called the

https://arxiv.org/abs/2206.06206


Introduction 3

process matrix, is introduced at the end of the chapter, along with two special cases mentioned above: the

quantum comb formalism and the quantum switch.

After this background review, the whole concept of ‘a class of admissible higher-order transformations’ is

abstracted into a formal structure called state structure in Chapter 3. Under the CJ correspondence, any class,

like maps, maps on maps, etc., is indeed identified with a state structure. Under the further observation

that the higher-order maps represent the deterministic interventions of parties, the statistical structure

of the theory is adapted at the level of state structures: the concepts of a resolution of a state structure,

which represents probabilistic interventions, as well as the state structure of functionals, which represent the

measurements and the action of the global environment, are introduced. Following this translation of process

heuristics into state structures, it is then shown that defining a given set of admissible transformations is but

a special way of defining the composition of an input state structure with an output state structure. This

supplants the characterization of higher-order processes by the one of composite state structures. At that

point, signaling is reintroduced in the theory as a guiding principle to define the relevant compositions

to consider. By doing so, defining a set of admissible higher-order transformations is shown to define a

two-way signaling composition. In addition, this section also makes the point that the state structures are

in one-to-one correspondence with specific projectors. Therefore, defining functionals or composite state

structures amounts to applying an operation on projectors, further supplanting the characterization of state

structures by the one of their projectors. To conclude this chapter, a toy model based on a state structure that

does not correspond to a class of higher-order transformation is introduced under the name biased quantum
theory. It is used as a demonstrating example for the methods developed in the chapter.

In Chapter 4, concrete examples of the utilization of these methods are presented. Several objects that

appeared in the literature, like the no-signaling bipartite channel or the bipartite process matrix, will be

recovered from these methods. In particular, the type theory of Perinotti [10] and Bisio [11] is reviewed at the

end of this chapter and then interpreted in terms of projectors. This small bridging chapter aims to highlight

certain peculiar behaviors when utilizing the methods on concrete quantum objects rather than abstract state

structures. This is done so as to motivate the study of the projectors using abstract algebra.

This is what is done in Chapter 5. Just as Chapter 3 is about supplanting the characterization of higher-order

transformations by the one of state structures and then the one of state structures by the one of projectors,

Chapter 5 is about supplanting the study of relations between higher-order transformations by the one of the

compositions of state structures and then by the one of the compositions of projectors. The various ways of

composing state structures, which encode the signaling relations between the subsystems in the bipartite state

structures, are shown to correspond to various ways of composing the projectors. In particular, these various

compositions taken together will be shown to form a certain kind of lattice, which can almost be interpreted

as a model of logic. The assessment of the signaling structure in a class of higher-order transformation is

then reduced to symbolic manipulation of projectors under the simple rules of this Boolean-logic lookalike.

With this result, assessing the signaling structure of a class of higher-order transformations is reduced to

decomposing the projector associated with its state structure into a normal form presented by the end of the

chapter. Using this normal form, it is then proven why quantum combs have a fixed signaling direction by

algebraic manipulations on projectors only.

Finally, Chapter 6 discusses the future developments envisioned for the formalism. First, the quantum

super-supermap (the third order of nested quantum channels) is characterized as a proof of concept. This

class is shown to be equivalent to a specific subclass of tripartite Multi-round Process Matrices. Afterward,

the generalization of the concepts of causal separability [5, 38–40] as well as of a causal witness [35] to

higher-order processes are briefly formulated as future research directions. In particular, the projective

constraints developed in the previous chapters to characterize higher-order processes are shown to lead to

the formulation of causal witnesses as Semi-Definite Programming (SDP) problems [41]. This generalizes

what was done for the case of the process matrix [35, 40, 42, 43] as well as general supermaps [44–46] so to

open the path for computer-assisted search of higher-order processes with interesting causal structures. In

addition, a preliminary discussion about the difficulties encountered when (de)composing projectors for

more than two parties is presented.





Introduction to Higher-Order

Processes





[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
[38]: Oreshkov et al. (2016), Causal and
causally separable processes.
[47]: Oreshkov et al. (2016), Operational
quantum theory without predefined time.
[48]: Oreshkov et al. (2015), Operational
formulation of time reversal in quantum the-
ory.

[49]: Barrett (2007), Information processing
in generalized probabilistic theories.
[50]: Chiribella et al. (2010), Probabilistic
theories with purification.

The Process Formalism 1.

1.1 Process Formalism . . . . 7

1.2 Signaling and Causal

Correlations . . . . . . . . 12

1.3 Local Quantum Theory . 17

1.3.1 Notation . . . . . . . . . . . 18

1.3.2 Quantum Systems as

Density Operators . . . . . 19

1.3.3 Evolution as Maps Between

Density Operators . . . . . 21

1.3.4 Interventions as Quantum

Instruments . . . . . . . . . 22

1.3.5 Environment as Single-

Partite Process Functional 24

1.4 Defining Higher-Order

Transformations . . . . . . 26

If there is no God, anything would be permit-

ted.

Dostoevsky (1880), The Brothers Karamazov*

God is dead.

Nietzsche (1882), The Gay Science

This section provides an overview of the process formalism and its

applications. This formalism aims to predict the correlation that local

parties can achieve through the exchange of systems. It is first presented

as a probabilistic model alone, in a manner distinguishing between local

and probabilistic interventions from global and deterministic environments.
Some of the hypotheses underlying this model are detailed, but the first

part aims primarily to define the notion of signaling correlations, around

which the rest of the thesis will be built.

The second part of the section specializes the formalism to the case of the

parties exchanging quantum systems as a means for information transfer.

Interventions on quantum systems are reviewed in a manner to set up

the notation used throughout the thesis. Once interventions are defined

as quantum operations, the question of representing the environment

is addressed. This will result in a few observations and assumptions

underlying the notion of an admissible higher-order quantum transformation,

a notion that will be further refined in Chapter 3.

1.1. Process Formalism

The process formalism is an instance of a probabilistic model used to

represent an experiment involving a group of local parties sharing a

common global resource called their environment. The goal of such a

model is to predict the joint distribution of the outcomes that these parties

will see according to their interventions, i.e. what they saw according to

what they did. It was developed by Oreshkov and collaborators during

the 2010s [5, 38, 47, 48], and it can be understood as a special instance of

a generalized probabilistic theory [49] or operational probabilistic theory

[50].

This framework assumes that the parties are in ‘closed laboratories’

that can only be related to each other through their interactions with

their shared environment. After each party has interacted with the

environment, a distribution of outcomes given the interventions and the

environment is obtained. Phrasing this in a notation following References

*
The exact citation is “(...) without God and Immortal life? All things are lawful then (...)”
(appearing in Part IV, Book XI, Chapter 4 of the 1912 translation by C. Garnett). The quoted

version, which is more common, is due to Jean-Paul Sartre’s 1946 essay L’existentialisme est
un humanisme (p.39 in Ed. Folio essais, Paris, France: Gallimard, 1996).
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8 1. The Process Formalism

[51]: Shrapnel et al. (2018), Causation does
not explain contextuality.

1: Without assuming the quantum circuit

model as in e.g. [52]

[52]: Nielsen et al. (2009), Quantum Com-
putation and Quantum Information.

, see in particular the

works of Hardy [15, 16, 53]

[15]: Hardy (2005), Probability Theories
with Dynamic Causal Structure: A New
Framework for Quantum Gravity.

[16]: Hardy (2007), Towards quantum grav-
ity: a framework for probabilistic theories
with non-fixed causal structure.
[53]: Hardy (2001), Quantum Theory From
Five Reasonable Axioms.

that inspired

the process formalism.

[54]: Fritz (2012), Beyond Bell’s theorem:
correlation scenarios.
[55]: Fritz (2016), Beyond Bell’s Theorem II:
Scenarios with Arbitrary Causal Structure.

[56]: Brunner et al. (2014), Bell nonlocality.

[38] and [51], three operational primitives underly the description of an

experiment: first, the local laboratories are abstracted into local regions

which are referred to using alphabetical labels A,B,C, . . .. These can be

thought of as locally flat patches of spacetime for instance. Each local

region is under the control of the local parties Alice, Bob, Charlie, ...

each of which performing an intervention noted M̃A,M̃B ,M̃C , . . .. Each

party’s intervention encapsulates everything that they have chosen to do

in their local lab during their interaction with the environment. At the end

of each of the parties A(lice), B(ob), C(harlie), ...’s interactions with the

environment, they each obtain an outcome, respectively noted a, b, c, . . ..

These outcomes represent the locally observed consequences of their

interventions. Each of these is modeled as the realization of a random

variable sampled from an outcome set whose specification depends on

the choice of intervention. Second, everything else happening outside of

one of the local regions is represented as the environment, noted W̃ABC...
.

Third, there exists a joint probability distribution of these variables given

all possible choices of interventions and for all environments,

∀a, b, c, . . . , ∀M̃A,M̃B ,M̃C , . . . , ∀ W̃ABC...,

∃ p(a, b, c, . . . |M̃A,M̃B ,M̃C , . . . , W̃ABC...) ∈ [0, 1] . (1.1)

The exact nature of these interventionsM̃ is a parameter of the formalism;

their description as well as the set of all interventions accessible to a

given party may vary according to the physical theories used to describe

them. Once fixed, it in turn constrains the description of the possible

environments W̃ by logical consistency: for all allowed interventions of

every party, the obtained joint distribution must be well-defined under

certain assumptions that will be defined in the following.

This requirement is a specificity that differentiates the process framework

from the usual circuit model
1
as well as from the more common quantum

network model [54, 55]. In these models, it is indeed presupposed that the

causal relations between the parties are fixed a priori by the environment.

In other words, one specificity of the process formalism is that it does

not assume the local parties to be embedded in a pre-determined causal

order, only that the interventions can be associated with the environment

in a way that results in valid probability distributions.

Like the circuit model and other generalized probabilistic theories, the

purpose of this abstract formalism is to study the correlations achievable

by a set of parties according to the assumed local description. While

of great foundational interest, it is also the appropriate framework for

studying communication protocols independently of the theoretical

description of the systems. Accordingly, the obtained correlations will

often be interpreted as communication protocols in which the parties

send and receive systems as a means of communication.

Applied to quantum theory, the formalism is about a set of parties

acting on quantum systems exchanged with their common background

environment. A typical instance of tasks that can be modeled as such are

the Bell-kind experiments [56]. In these, two spacelike separated (hence

local) parties share a bipartite quantum system. They are interested

in the joint probability distribution of the outcomes obtained when

each one has measured their share of the system. Treated as a process,
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[57]: Barnum et al. (2010), Local Quan-
tum Measurement and No-Signaling Imply
Quantum Correlations.

Figure 1.1.: Graphical representation of

the intervention by party Alice. (Dia-

grams are read from bottom to top.) The

box represents Alice’s local lab in which

her overall intervention M̃A
takes place,

the incoming thick wire (bottom) repre-

sents the system A0 entering her lab and

the outgoing one the system A1 she out-

puts, the thin wires represent her choice

of setting as well as the outcome she

recorded during the intervention so that

they specify which actual map Ma|x
happened.

2: Systems are noted with the same let-

ter as the party they are associated to

and a numeral index. By convention and

whenever it is possible, the input sys-

tems, i.e. those received, will be noted

with an even number, whereas the out-

put systems, i.e. those sent, will be noted

with an odd number.

3: For simplification purposes, all ran-

dom variables in this thesis are assumed

discrete, but the random variables could

be continuous in the general case.

the environment provides each party with their share of the bipartite

quantum system, and the interventions are the measurements of the local

parties. The representation compatible with local quantum theory then

consists of representing the environment by a bipartite quantum state

and the measurements as a pair of POVM in a tensor product [57]. The

conjunction of these two then yields the joint probability distribution

through the Born rule.

Without assuming spacelike separation as the Bell scenario does, the

process formalism generalizes the notion of a quantum state into a

‘spacetime state’, called the process functional in this thesis. This functional

encodes the environment, meaning that it represents everything outside

the parties’ control that is relevant for representing their interactions

while not contradicting logical consistency, regardless of what it is. For

instance, a multipartite state shared by the parties is a process functional,

but a set of quantum channels connecting some of the parties can also be

one.

Formally, the local intervention of a party Alice as is depicted in Figure 1.1 is

the mathematical representation of everything she can do when acting on

a received input system2 A0 and preparing an output system A1 to be sent

to the environment at the end of her intervention. An extra assumption,

therefore, is that the action realized by Alice during her intervention

is represented as a collection of mappings from the input system to

the output system. Each of the maps in the collection is indexed by its

corresponding outcome. For example, if Alice chooses to do nothing to

the input system and passes it on, her intervention is a single-element

collection M̃A = {Ma=0} constituted of a map that identically sends

A0 to A1 indexed by the outcome 0. In such a case, Alice is said to

make a deterministic intervention. If, however, she measures the system

according to a procedure resulting in two possible outcomes and passes

on the resulting system, her different intervention ÑA ̸= M̃A
is now

represented as a two-elements collection ÑA = {Na=0,Na=1}, each

corresponding to one possible outcome. In that case, Alice is said to make

a probabilistic intervention, as each element of the collection has a certain

probability of happening.

Thus, the outcomes model the random experimental behavior that the

parties have possibly no control over. An outcome a is the realiza-

tion of a random variable â which takes values in an n-valued
3

set

Ω
a|M̃A = {0, 1, . . . , n − 1} (see Appendix A.1.4 for a brief recap of the

theory of probabilities needed in this thesis). The notation ·|M̃A
in the

index is there as a reminder that the values the outcome can take are

defined based on which intervention the party performed. The party’s

intervention then consists of a collection of mappings {MA
a }a∈Ω

a|M̃A

from the representation of the input system to the representation of the

output system and concisely noted {MA
a }. This collection represents

what Alice has control over: she can freely choose which specific collection

she wants to use, so this collection represents what might happen during

the intervention. Contrastingly, it is only during the intervention –once â

has been realized– that it can be told which actual elementMA
a has been

used as the actual mapping between the input system A0 and the output

system A1, i.e. which map represents what actually happened.

To faithfully represent general tasks like communication protocols, it
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Figure 1.2.: Graphical representation of a

bipartite process. This process concerns

two local parties, Alice and Bob, using

settings x and y and obtaining outcomes

a and b according to the joint distribution

p(a, b|x, y) as defined in Equation (1.3).

In such a diagram, Alice’s box is the appli-

cation of the mapMA
a|x, Bob’s ofMB

b|y ,

and the I-beam-shaped box surrounding

them is the environment W̃AB
. When

no thick wire is dangling in a diagram, it

can be interpreted as a conditional prob-

ability distribution of the outgoing thin

wires, here a and b, given the incoming

ones, x and y.

4: Unless said otherwise, the labeling

will follow the alphabetical order when

passing from one party to the next, in

the example, Bob’s setting is labeled by

y because Alice’s is labeled by x. Also

note that in the superscripts denoting

the parties will sometimes be dropped,

in which case the letter representing the

mapping can also be changed: if Alice’s

intervention were noted {Ma|x} then

Bob’s would be noted as {Nb|y}.

is sometimes necessary that the choice of intervention depends on a

parameter that is only fixed during the intervention. For example, Alice

may want to change the system she outputs depending on a specific

message she wants to pass to the other parties, and this message is not

fixed a priori. In such case, Alice is said to act randomly, and her behavior

becomes conditioned by a second random variable x̂, called her setting.

This variable is typically pictured as “given by an external referee” to

represent the potential random behavior of Alice: whether she flips a

coin to decide which intervention to perform or she makes up her mind

on which message she wishes to send among a set of possible options

she fixed in the past, these cases are represented as if the decision was

randomly sampled from a set Ωx representing possible values like “heads

or tails” in the case of a coin flipping. When Alice’s choice of course

of action is independent of the value of the setting (either because she

ignores the setting or because it was taking value in a single outcome

set), she is said to act deterministically. The intervention of a party act-

ing randomly is then randomized between several choices M̃A, ÑA, . . .

depending on the value of the setting x = 0, 1, . . .. In that case, the

different choices are noted with the same letter, but indexed by the value

of x, i.e. M̃A = M̃A
x=0; ÑA = M̃A

x=1; . . .. Accordingly, the reference to

a specific choice of intervention can be made by a specific value of the

setting: the collection of mappings forming it are now also indexed by the

setting, i.e. M̃A
x=0 = {Ma|x=0}a∈Ωa|x=0

, where the shorthand notation

Ωa|x=0 replaces Ω
a|M̃A . The overall intervention then becomes a collec-

tion of collections of mappings, i.e. M̃A =
{{
MA

a|x

}
a∈Ωa|x

}
x∈Ωx

={{
MA

a=0|x=0,M
A
a=1|x=0, . . .

}
,
{
MA

a=0|x=1,M
A
a=1|x=1, . . .

}
, . . .

}
, and

shortly noted as {MA
a|x} where this set should be implicitly understood

as running over all values of a and x. Representing the interventions as

maps indexed by random variables and introducing the settings to the

picture allows to write the probability distribution (1.1) as a distribution

of the outcomes conditional on the settings,

p(a, b, c, . . . |M̃A,M̃B ,M̃C , . . . , W̃ABC...) 7→

p(a, b, c, . . . |x, y, z, . . . ; {MA
a|x}, {M

B
b|y}, {M

C
c|z}, . . . , W̃

ABC...), (1.2)

thus allowing the interaction of a party with the environment to be

modeled as a pair of random variables.

With respect to the above picture of interventions as conditioned by

settings and outcomes, the global environment shared by a collection of

parties can be seen as a way to assign a probability of outcomes given

interventions and, by extension, given settings. The abstraction of it,

W̃ABC...
, is thus an assignment from all possible maps in all possible

interventions to a probability.

For example, consider the situation depicted in Figure 1.2. This is a

bipartite case where party Alice chooses to do an intervention {MA
a|x}

conditioned by setting x and yielding outcome a, whereas Bob
4

chooses

to do {MB
b|y} conditioned on y and yielding b. For a given environment

represented by process functional W̃AB
, the resulting joint distribution

of outcomes is p(a, b|x, y; {MA
a|x}, {M

B
b|y},W

AB); this function output

different probabilities depending on the values taken by the settings and
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[56]: Brunner et al. (2014), Bell nonlocality.

5: This collection should be the one

whose description uses the minimal num-

ber of settings and outcomes. For ex-

ample, if the color of Alice’s measure-

ment device has no influence on the

joint probability distribution but its ori-

entation does, then the settings can al-

ways be mapped from x=(orientation,

color) to x̃ = (orientation) (which will

then be substituted by numbers), so

that several descriptions of the interven-

tion like {Ma|x=(orientation, color = blue)}
and {M′

a′|x′=(orientation, color = red)
} are

mapped to some minimal description

{Nã=a=a′|x̃=(orientation)}.

outcomes. As such, it can be concisely thought of as a distribution of

outcomes given settings, i.e.,

p(a, b|x, y; {MA
a|x}, {M

B
b|y}, W̃

AB) =: p(a, b|x, y) , (1.3)

where the shorthand notation p(a, b|x, y) has been introduced in the

above. The reader should however keep in mind that this is only a

shortening used to highlight the theory-independent character of the

process formalism: it is the choice of maps that truly amounts to the

intervention of the parties; the choice of settings is but a way to label

these choices. Therefore, the above notation p(a, b|x, y) will be used

only where there is no risk of confusion about the interventions and the

environment.

Using the process formalism, an experiment is consequently represented

as an environment, encompassing everything given without being con-

trolled, and interventions, encompassing locally controllable interactions.

The set of all distributions that can be achieved through these two

elements constitutes the process.

Definition 1.1.1 (Process) A process is the collection

∀{MA
a|x},∀{M

B
b|y}, . . . ,

∀a ∈ Ωa|x,∀x ∈ Ωx,∀b ∈ Ωb|y,∀y ∈ Ωy, . . . ,{
p(a, b, . . . |x, y, . . . ; {MA

a|x}, {M
B
b|y}, . . . , W̃

AB...)
} (1.4)

of all conditional probability distributions for all outcomes a, b, . . . given all
settings x, y, . . . that a finite set of local parties A,B, . . . can obtain for all
choices of interventions {MA

a|x}, {M
B
b|y}, . . . and when acting on a given

shared environment W̃AB....

This definition is inspired by References [38, 51]. It relies on the non-trivial

hypothesis that a joint probability distribution exists for all environments

and interventions. Following the literature on non-locality [56], it is

standard to add some extra assumptions to this definition. First, the

model should be a description at the level of equivalence classes: any

two interventions with no experimentally distinguishable consequences

are represented by the same collection of mathematical objects. That is,

for any two interventions of Alice M̃A = {Ma|x} and ÑA = {Nã|x̃}, if

there exists a way to map M̃A
to ÑA

so that the probability distribu-

tions are unchanged under the replacements a → ã and x → x̃ for all

interventions of the other parties as well as for all environments, then the

two interventions are equivalent and should be represented by the same

collection of maps (up to a permutation of the outcomes and settings)
5
.

This assumption is called operational equivalence: any two interventions

that always result in similar distributions of outcomes given settings can

never be operationally distinguished and, therefore, are equivalent for

all intents and purposes. The other assumption to be added is freedom
of choice: the value of a setting and the choice of intervention made by a

party cannot be influenced by the setting nor the choice of intervention of

any other party, and neither can they be influenced by the process itself.

That is to say, if Alice obtains a specific value of x and chooses to do a

specific intervention M̃A
, there is a priori no hidden ‘superdeterminisit
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mechanism’ outside of the process that forces Bob to obtain a specific

value of y, or that constrains him into choosing to do a specific interven-

tion M̃B
. Remark in passing that this model is device-dependent: the

parties ‘trust’ their interventions, like M̃A
, to be exactly represented as a

specific ensemble of maps, like {MA
a|x}. In other words, the parties know

which mathematical objects correspond to which given course of actions

performed on their experimental apparatuses. These assumptions are

just mentioned for the sake of completeness; they will be mentioned

sometimes in margin notes but are not necessary for the discussion in

the following. An interested reader should consult the discussion in

Reference [5].

Yet, Definition 1.1.1 is still not quite close to the original definition of

Reference [5]. Without assuming quantum theory still, the definition

amounts to the following.

Definition 1.1.2 (Process Functional) A process involving partiesA,B, . . .
and featuring a given environment W̃AB... as in Definition 1.1.1 is uniquely
characterized by its process functional WAB.... It is the map from the
elements of the interventions of the parties to a probability, i.e. the map defined
by the relation

WAB...(MA
a|x,M

B
b|y, . . .) =

p(a, b, . . . |x, y, . . . ; {MA
a|x}, {M

B
b|y}, . . . , W̃

AB...) . (1.5)

Hence, the environment variable W̃AB...
can be replaced by a functional

WAB...
which is uniquely characterized by its action on all possible

maps representing all possible interventions of the parties for all possible

outcomes. Several extra hypothesis must have been added to the model

to arrive at this formulation. One in particular is worth mentioning:

that it obeys an analog assumption to Spekken’s measurement non-

contextuality [58, 59], on the interventions [51, 60]. This means that the

probability distribution only depends on the actual maps corresponding

to the specific realizations of the outcomes and settings. Equation (1.5) is

independent of which interventions were chosen, i.e. it does not depend

on the collections of maps representing the parties’ action, but only on the

specific element within these collections that is associated with the actual
value of a and x. A comprehensive discussion on these assumptions can

be found in References [47, 51, 60].

With such assumptions, there is no danger when confusing the collections

of probabilities, the representation of the environment, and the functional

mapping the interventions to a probability: they are essentially the same

thing. Thus, any of these three concepts will be implied interchangeably

when using the word process.

1.2. Signaling and Causal Correlations

General questions about the information capacities and signaling relations

between parties can be asked using the process formalism. The kind

of questions this thesis will primarily explore concern the signaling

structure between the different parties in a process: given several parties
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doing local interventions for a fixed environment, the question is to infer

who may signal to whom. That is, is there a choice of interventions that

Alice and Bob can perform such that Alice can reliably send information

to Bob and/or the opposite way around? The answer to this question

for any chain of parties
6

in a process is what is meant by the signaling
structure of a process. Remark that actual signaling is not guaranteed:

a given environment may have a signaling structure that allows Alice

to signal to Bob, but if they do not perform a suitable intervention, for

example, if they do not interact with their environment at all, then they

will never achieve signaling.

Defined as such, signaling is a sufficient condition to infer causal influence:

if Alice can signal to Bob, it means that her intervention can have a causal

influence on the system that Bob receives. Because of that, the signaling

structure is a means to infer the causal order of a process: if, for a choice

of intervention, Alice can signal to Bob, then Alice is necessarily in the

causal past of Bob; if, for all choices of interventions of Alice and Bob,

only Alice can signal to Bob, they are in a fixed causal order. The in-between

situation is also of interest: a given environment may allow Alice to be

in the causal past of Bob for certain interventions but it can be the other

way around for other interventions. In such cases, the signaling structure

is not fixed and neither is the causal order.

The interest in using the process formalism to assess signaling is that it can

discuss theory-independent bounds on the ability to signal. Considering

settings and outcomes alone, the ability to signal can be witnessed

in the correlations between the two variables, independently of any

commitment to a specific theory used to describe the interventions and

the environment. If the setting x of Alice is correlated with the outcome

b of Bob, then one can infer that there has been signaling.

Conversely, for a given local theory describing the interventions, up-

per bounds on the achievable correlations can be derived so that two

local descriptions can be compared. The epitomical example of such

a bound has been formulated in terms of a bipartite process in which

local interventions are described using the rules of quantum theory [5].

This example showed from a theory-independent bound that, while

all processes compatible with a classical description of the local inter-

ventions are causal, there exist non-causal processes consistent with a

quantum description of the interventions. But what does causal mean in

this context?

The situation is as in Figure 1.2: Alice and Bob are two local parties

sharing an environment; Alice’s outcome is a and her setting is x; Bob’s

outcome is b and his setting is y; and the probability associated with the

diagram is p(a, b|x, y; {MA
a|x}, {M

B
b|y}, W̃

AB), which is shortened into

p(a, b|x, y) as discussed around Equation (1.3).

Some preliminary considerations: first, remember that the parties are

assumed to have freedom of choice. That is, how Alice associates her

settings and outcomes (x, a) to a choice of intervention {MA
a|x} is inde-

pendent of how Bob is associating (y, b) to {MB
b|y}, as well as from the

environment W̃AB
.

Second, in the literature the word causal is often used (e.g., [61, 62]) to

convey the idea of no-signaling from one party to another [63, 64]. A
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consequence of that is that through this thesis, the terms ‘fixed causal

order’ will be used interchangeably with ‘with a single and fixed signaling

direction’ in accordance with the utilization made in References [4, 5].

On the contrary, they use ‘indefinite causal order’ (ICO) as a more subtle

notion than ‘with several fixed signaling directions’; ICO requires several

signaling directions but in a manner that is not fixed, neither a priori
nor dynamically. This means that what happens in a process with ICO

cannot be understood as a convex sum (a mixture) of several scenarios

with fixed signaling directions. Nor can it be understood solely as a

process in which the action of a party has an influence on the signaling

structure of the parties in her causal future. The theory-dependent notion

of ‘process with ICO’ is defined in the process formalism with quantum

interventions under the term causal non-separability [5] (this notion was

subsequently refined in a series of follow-up works [1, 38, 39, 45]).

The word causal alone is used in the ICO literature as an in-between: it

is weakening of fixed causal order to mean something in the lines of

‘with a single direction at once’. However, when there is more than one

local party, a process with a single signaling direction does not guarantee

that this direction is fixed. If Alice signals to Bob or Bob signals to Alice,

depending on their settings, the process presents a single signaling

direction, although it is not fixed.

As a consequence, stating that a process is causal in this thesis refers to

the correlations; it does not mean that the physical process it models has

to be causal, let alone deterministic. This postulate is not an assumption

about the inner workings of the intervention: the probability distribution

may have been obtained by a non-causal theory, like a de Broglie-Bohm

pilot wave, or it can even have been obtained by a superdeterministic

theory. Here, the word causality refers to the distribution of outcomes

given a setting; it is a statement about the impossibility of gaining

knowledge of a classical variable from another. It does not imply that

the underlying physical process producing outcomes out of settings

mediated no interaction even though, on average, this interaction cannot

be detected as a correlation on the joint distribution (see in particular

Reference [65]). See Reference [66] for disambiguation between causality

and signaling and [67] for one between causality and determinism.

These notions of no-signaling and causal correlations are now formally

defined.

No-signaling is a constraint inspired by relativity: the interventions of two

spacelike separated parties in a process should not allow the transmission

of a message from one party to the other. Consequently, the process

should not allow them to signal to each other as this communication

would be faster than light. The mathematical translation of this principle

states that the setting of one party can never influence the marginal

distribution of the other’s outcomes.

Definition 1.2.1 Let Alice and Bob be the two parties in a process. Let Alice’s
intervention be conditioned by setting x and resulting in outcome a. Let Bob’s
be by setting y and outcome b. Write the joint probability distribution of their
outcomes as p(a, b|x, y).
The distribution is no-signaling if the marginals of each party are independent
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(a) No-signaling

(b) Signaling from Alice to Bob

(c) Signaling in both directions

Figure 1.3.: Graphical representation of

bipartite processes allowing for differ-

ent signaling scenarios. Graphically, no-

signaling is pictured as an outcome pro-

duced below a setting. For instance, in

Figure 1.3b, Alice’s outcome a is below

Bob’s setting y, so a cannot depend on y
and thus she cannot signal to him

7: These notions are briefly reviewed in

Appendix A.2 for completeness.

of the setting of the other party. I.e., if the following holds:

∀a, x, y, y′ :
∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) ; (1.6a)

∀b, x, x′, y :
∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y) . (1.6b)

If only Equation (1.6a) holds, then the distribution is said no-signaling from
Bob to Alice. If such distribution is not no-signaling, then it allows for
(one-way) signaling from Alice to Bob and the following holds:

∀a, x, y, y′ :
∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) ; (1.7a)

∃b, x ̸= x′, y :
∑
a

p(a, b|x, y) ̸=
∑
a

p(a, b|x′, y) . (1.7b)

Similarly, if only Equation (1.6b) holds, the distribution is no-signaling
from Alice to Bob. It allows for (one-way) signaling from Bob to Alice
if the following holds:

∃a, x, y ̸= y′ :
∑
b

p(a, b|x, y) ̸=
∑
b

p(a, b|x, y′) ; (1.8a)

∀b, x, x′, y :
∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y) . (1.8b)

Finally, if neither of Equations 1.6 hold, the distribution allows for two-way
signaling.

A no-signaling distribution is the standard statement that no local mea-

surement scheme can be used to gain knowledge of the other party’s

actions deterministically. The first condition (1.6a), states that Alice’s

outcome distribution cannot be used to determine which setting y Bob

has used and thus that the measurement result of Alice cannot be used

to guess Bob’s own choice of measurement. Hence, it entails that Bob

cannot signal to Alice by choosing his intervention according to the y he

wishes to transmit.

Therefore, no-signaling is a condition forbidding the possibility of trans-

mitting information from one party to another. In contrast, locality and

statistical independence are two strengthenings of conditions (1.6) that

rely on other heuristics added on top of the inability to correlate one

party’s settings with another’s outcomes
7
. Similarly, when neither of these

conditions are satisfied, another heuristic can be introduced so that some

constraint can still be imposed at the level of the joint distribution. This

extra a priori on the distribution of outcomes is what causal correlations

are about. It is a constraint that relies on the expectation that a signaling

distribution allows for signaling in one direction at a time. In other words, a

joint distribution can be expected to be either signaling from Alice to Bob

or from Bob to Alice. Any in-between situation would then be a mixture

of the two directions conditioned by a classical hidden variable.

For the technical definition, first notice that signaling distributions can

be characterized as a factorization of the distribution.
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Lemma 1.2.1 A bipartite distribution which is no-signaling from Bob to Alice
as in Equations (1.7) admits the following decomposition:

p(a, b|x, y) = p(a|x)p(b|x, y, a) , (1.9)

for all values a, b, x, y.

Proof. Almost direct from the definitions: the joint distribution is first

rewritten in terms of the marginal on a, p(a|x, y) :=
∑
b p(a, b|x, y), and

the conditional on b given a, p(b|x, y, a) = p(a,b|x,y)∑
b p(a,b|x,y)

, so that

p(a, b|x, y) = p(a|x, y)p(b|x, y, a) . (1.10)

Then Equation (1.6b) is used to simplify the marginal: if ∀y, y′: p(a|x, y) =
p(a|x, y′) then

p(a|x, y) = p(a|x) . (1.11)

Pretty much like a Local Hidden Variable Model is a decomposition of a

no-signaling distribution into independent distributions conditioned by

a variable λ, causal correlations decompose a general distribution into

one-way signaling distributions conditioned by a variable λ. As there are

only two different signaling directions between two parties, lambda is a

dichotomic variable such that

p(a, b|x, y) = p(λ = 0)p(a, b|x, y, λ = 0) + p(λ = 1)p(a, b|x, y, λ = 1) ,

(1.12)

where p(a, b|x, y, λ = 0) is one-way signaling from Alice to Bob, and

p(a, b|x, y, λ = 1) is from Bob to Alice. Naturally, p(λ) can be replaced

by some q ∈ [0, 1] so that p(λ = 0) = q and p(λ = 1) = 1 − q, and

Lemma 1.2.1 can be used as well, doing so leads to the original formulation

by Oreshkov, Costa, and Brukner [5].

Definition 1.2.2 (Bipartite Causal Correlations) Let Alice and Bob be two
parties in a process. Let Alice’s intervention be conditioned by settings x and
resulting in outcome a. Let Bob’s by settings y and outcome b. Write the joint
probability distribution of their outcomes as p(a, b|x, y).
Then the distribution is causal if and only if it admits the following decom-
position:

∃ q ∈ [0, 1] :

p(a, b|x, y) = q p(a|x)p(b|x, y, a) + (1− q) p(b|y)p(a|x, y, b) . (1.13)

Finally, observe that no-signaling and one-way signaling as in Defini-

tion 1.2.1 are pairwise constraints that guarantee the absence of signaling

in, respectively, two and one directions. At their core, these definitions

are about the impossibility of signaling for all choices of interventions.

For this reason, the definition can only be generalized by applying it pair-

wise to any number of parties. If a tripartite distribution is no-signaling

between Alice and Bob, meaning that neither Bob nor Alice can signal to

the other, and no-signaling between Bob and Charlie, it does not entail

that it will be necessarily no-signaling between Alice and Charlie. In
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other words, no-signaling is not a transitive property. But to define a

distribution with fixed causal order (i.e., with a single and fixed signaling

direction) for more than two parties then requires a special kind of

no-signaling constraints that are transitive. Indeed, in such a distribution,

if Alice can signal to Bob and Bob can signal to Charlie, it may be possible

for Alice to signal to Charlie as all parties would agree on Alice being

first, Bob second, and Charlie third so that a unique notion of direction in

the signaling structure can be established. However, it should never be

possible for Charlie to signal to Alice, as this would form a loop and so the

notion of a fixed direction in the signaling structure cannot be established.

Thus, if a tripartite distribution has a fixed signaling direction and it is

known that Charlie cannot signal to Bob and that Bob cannot signal to

Alice, it entails that Charlie cannot signal to Alice. This distinction is

important as the notion of causal correlations relies on the correlations

which have at most a single direction of signaling at once. Hence, not on

the pairwise impossibility of signaling from one party to another, but

rather on the transitive impossibility of signaling from one party to all

the others. This requires the following generalization of Definition 1.2.2

[38, 40].

Definition 1.2.3 (Multipartite Causal Correaltions) Let there be a mul-
tipartite process involving n parties labeled A(1), A(2), A(3), . . . A(n) so
that each party A(i)’s intervention is conditioned on setting xi and results
in outcome ai. Let a⃗ := (a1, a2, . . . an) and x⃗ := (x1, x2, . . . xn) be the
vectors of outcomes and settings, respectively, so that the process is associated
with the distributions p(⃗a|x⃗).
Let σj be an element of the permutation group on n symbols Sn indexed by
j so that, e.g., σ1(1) = 1, σ1(2) = 2 . . . , σ1(n) = n; σ2(1) = 2, σ2(2) =

3 . . . , σ2(n) = 1 etc.
Then, the distribution p(⃗a|x⃗) is causal if, for all choices of strategies, there
exists qj ∈ [0, 1] such that the distribution factorizes into a mixture of causal
distributions:

p(⃗a|x⃗) =
|Sn|=n!∑
j=1

qjp(aσj(1)|xσj(1))p(⃗a\aσj(1)
|x⃗\xσj(1)

, aσj(1)) , (1.14)

where
∑
j qj = 1; where a⃗\aσj(1)

indicates the vector of n− 1 components
obtained by removing aσj(1) from a⃗; and where p(⃗a\aσj(1)

|x⃗\xσj(1)
, aσj(1))

is a causal distribution for n− 1 parties.

The above definition thus recursively reduces the number of parties in

the conditional probability distributions until it obtains a decomposition

featuring only bipartite ones, in which case Definition 1.2.2 applies. In

accordance with the definition, a process is called causal if it consists of

causal distributions only.

1.3. Local Quantum Theory

The process formalism developed in the previous section is now applied

to the concrete case of a single party whose intervention obeys the rules

of quantum theory. The main purpose of the following subsections is to

review the quantum theory needed to attain the mathematical description
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[68]: Giacomini et al. (2016), Indefinite
causal structures for continuous-variable sys-
tems.

[69]: Peres (1993), Quantum Theory: Con-
cepts and Methods.
[70]: Ziman (2008), Process positive-
operator-valued measure: A mathematical
framework for the description of process to-
mography experiments.

[71]: von Neumann (1932), Mathematical
Foundations of Quantum Mechanics.

8: In order not to confuse them with la-

bels, the letters N,M, V,W will be the

ones mainly used to indicate linear maps.

Labels, on the other hand, will be as-

signed following the alphabetical order

A,B,C, . . ., and the number of labels

needed will never be large enough to

reach M .

9: For completeness, the main classes of

operators mentioned in this thesis, like

the positive ones for instance, are briefly

reviewed in Appendix A.1.1 alongside

the notion of a trace.

of a single quantum process. More notation will be set up along the

way.

A simplification made in this thesis is that every system is assumed to

be finite-dimensional. This simplification is not necessary, though. The

process formalism could accommodate continuous random variables as

possible observations, like, for example, the position or momentum of a

system, so that the state space of systems could be infinite-dimensional

(see Reference [68] for instance); but this results in mathematical compli-

cations that are beyond the scope of this thesis.

Postulate 1: Local Quantum Theory.

The local operations of each party are described by quantum theory

[5][5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

.

With this assumption, the probability distributions of local interventions

can now be obtained by applying the rules of quantum theory. The results

of an experiment in a closed lab will correspond to some quantum circuit:

the strategy will condition how many systems are prepared in which

state, how they evolve, and how they are measured; the observation is the

outcome set of this procedure, and the distribution p(a|x) of outcomes a

given settings x is obtained through the Born rule (see Reference [69, 70]

for instance).

1.3.1. Notation

Postulate 1 is the statement that the systems are general quantum systems,

which are represented by density operators [71] defined over a finite-

dimensional Hilbert space.

In the following, Hilbert spaces are denoted by the calligraphic letterH
and labeled with superscript capital letters likeHA,HB ,HC , . . .. These

superscripts indicate a specific party: Alice, Bob, Charlie,...etc. and the

letters indicate the system prepared by the party. When needed, these are

complemented with a number, for example, when a party is preparing

a composite system, and each part must be individually referred. For

example, A0, A1, A2 indicate three subsystems that belong to Alice. Note

that subsystems may sometimes be treated as independent, local parties

when a fine-grained description is needed. Likewise, several subsystems

potentially associated with different parties can be treated as a composite

system associated with a single, global party when a coarse-grained

description is needed.

Dirac bra-ket notation is used for vectors on a Hilbert space; the inner

product of a Hilbert space is indicated with brackets followed by the

label of the space in subscript like ⟨· , ·⟩A , ⟨· , ·⟩B , . . .. The dimension

of a Hilbert space will be indicated with the letter d with a matching

subscript like dA, dB , . . ..

Arbitrary linear maps and operators will be denoted using capital Latin

letters like N,M, V,W 8
. The set of linear maps from spaceHA toHB is

noted asL
(
HA,HB

)
. SpaceHA will often be referred to as the input space

and HB as the output space. An operator
9

is a linear map from a space
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10: Briefly reviewed in Appendix A.1.3.

Figure 1.4.: Graphical depiction of a local

experiment. A local experiment is an in-

tervention ignoring its input and output

system; it can be thought of as the trivial

map between the 1-dimensional systems

A0 and A1, associated with a probabil-

ity p(a|x). This operation relies only on

the local setting and outcome, and it has

been obtained by some procedure that

can be described entirely within Alice’s

lab.

[69]: Peres (1993), Quantum Theory: Con-
cepts and Methods.
[72]: Kraus (1983), States, Effects, and Op-
erations: Fundamental Notions of Quantum
Theory.

Figure 1.5.: Breakdown of a local experi-

ment as a prepare-and-measure scenario.

The quantum systems are represented

by thick wires, measurements by bottom-

facing half-circles, and state preparation

by top-facing half-circles.

11: Often abridged into ‘positive’ in this

thesis.

12: See Appendix A.1.1 for a refresher on

these notions.

13: Her overall measurement procedure

also depends on the setting x. However,

the effects themselves, each associated

with a specific outcome a, are indepen-

dent of x since quantum theory is mea-
surement non-contextual.

to itself, in which case the shorthand notation L
(
HA
)
:= L

(
HA,HA

)
is

used for the set of operators onHA. The Hilbert-Schmidt inner product

in a space of linear operators
10

is indicated with parenthesis instead of

brackets like (· , ·)A, (· , ·)B , ...; it is defined through the trace as

(V , N)A := TrA

[
V † ·N

]
, (1.15)

where V,N ∈ L
(
HA
)
; the subscript in the trace is used to refer over

which space it is taken, and † indicates the adjoint inHA. When needed,

subscripts or superscripts labels will be put on operators to remind in

which space they are defined.

Finally, the tensor factors appearing in an expression defined on several

subsystems will be sorted in lexical and numerical orders whenever

possible by convention. For example, a tensor product of VA0 , NA1 and

UB will be sorted as VA0 ⊗ NA1 ⊗ UB instead of another order like

UB ⊗ VA0
⊗ NA1

. Thus, the isomorphism HA ⊗ HB ∼= HB ⊗ HA will

be used whenever necessary. In other words, it is the labels rather than

the position that will be relevant in the expressions built using a tensor

product.

1.3.2. Quantum Systems as Density Operators

To present local quantum theory as the intervention of a single party

Alice, it is assumed in this section that she ignores her environment: she

discards the input system and outputs a random quantum system. The

intervention picture of Figure 1.1 is reduced to the local quantum operation
picture of Figure 1.4. Everything happening in her local lab is abstracted

in the probability distribution p(a|x) of her outcome given her setting.

What happens within the lab can be reduced to an overall preparation

and measurement scenario involving a single system (see References

[69, 72] for instance). This situation is depicted in Figure 1.5: First, the

preparation of a system according to the settings x, represented by a

quantum state. Second, the (destructive) measurement of it yielding the

outcome a, represented as a quantum effect. The state of a quantum

system is encoded as a trace-1 positive operator called density operator (or

matrix). Quantum states are noted with the Greek lowercase letters ρ, η, σ

instead of capital Latin letters so as to set apart these special operators.

Similarly, the effects of quantum measurements are a collection of positive

operators forming a Positive Operator-Valued Measure (POVM; see [52]).

The Latin uppercase letters E and F are reserved to set them apart.

In the present case, Alice’s intervention consists of preparing the system

A0 in a first time. The state of the system, conditioned by her setting x,

is represented as a linear operator ρA0

|x : HA0 → HA0
. This operator is a

quantum state, which is Positive Semi-Definite (PSD)
11

and of trace 1
12

.

In a second time, she measures her system through a procedure modeled

by a POVM
13 {Ea}a∈Ωa|x , the probability distribution of the outcome a

given the setting x is then given by the Born rule:

p(a|x) =
(
Ea , ρ|x

)
A0

, (1.16)
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[72]: Kraus (1983), States, Effects, and Op-
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[73]: Holevo (2011), Probabilistic and Sta-
tistical Aspect of Quantum Theory.

[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.

14: Remark that the word strategy will

be often used to mean ‘course of action’

or ‘choice of intervention’. This is done so

as to fit with the terminology introduced

in References [12, 75]

[12]: Gutoski et al. (2007), Toward a General
Theory of Quantum Games.
[75]: Gutoski (2010), Quantum Strategies
and Local Operations.

.

15: Or distinguishables (from each other).

16: Indeed, it can be shown that there

are at most dA0 pairwise orthogo-

nal states {ρ(i)}
dA0

−1

i=0 in L
(
HA0

)
and that these correspond to a set of

commuting rank-1 projectors {ρ(i) =

|φi⟩⟨φi|}
dA0

−1

i=0 resolving the identity,

1A0
=
∑dA0

−1

i=0 |φi⟩⟨φi|.

where (· , ·)A0
:= TrA0

[
·†·
]

is the Hilbert-Schmidt inner product in

L
(
HA0

)
. The diversity of prepare-and-measure scenarios that Alice

has access to forms her state space, i.e. the space of density operators in

L
(
HA0

)
. The (local) Hilbert space where Alice’s state and state space are

defined is depicted as a thick black wire in Figure 1.5. (See Appendix A.3

for a short explanation of diagrammatic methods used in this thesis.)

The state space is convex so as to represent randomization procedures (see,

e.g., References [72, 73]): if Alice randomly chooses between preparing a

system in state ρA0
with probability q or ηA0

with probability 1− q, this

is represented by another state σA0
given by

σA0
= qρA0

+ (1− q)ηA0
. (1.17)

Using a setting x, this can written as q := p(x = 0), ρA0 := ρA0

|x=0,

(1− q) := p(x = 1), ηA0
:= ρA0

x=1, so that Ωx = {0, 1}. The operator σA0

is then the averaged state ρA0
so that

ρA0 = p(x = 0)ρA0

|x=0 + p(x = 1)ρA0

|x=1 . (1.18)

This convex set has a distinguished element, its geometrical center, ob-

tained by averaging over all possible randomizations (see, e.g., Section

8.2 in Reference [74]). It is called the maximally mixed state, and it is

represented by the identity operator, noted 1A0
, divided by the dimen-

sion of HA0
in order to obtain a trace of 1. In other words, this state

represents non-pre-selected distributions; Alice can make no prediction

on what the outcome of any non-trivial measurement of such a state

will be. On the other hand, Alice’s strategy
14

can lead to a deterministic

intervention: a setting x so that she knows beforehand what outcome it

will yield. A typical instance of deterministic strategies is when the party

prepares and measures in the same basis. Recall that any two states that

Alice can deterministically tell apart, i.e., for which there exists a single

measurement that will associate each state with a single outcome like

p(a|x = “state 1 was prepared”) = δa,x, are represented by orthogonal

states. That is, states ρA0 , ηA0 with zero overlap in the Hilbert-Schmidt

inner product,

(ρA0
, ηA0

)A0
= TrA0

[
ρ†A0

ηA0

]
= 0 . (1.19)

Such states are called perfectly discriminable15
. The systems a party can

prepare are consequently represented on a Hilbert space of a dimension

as big as the maximum number of discriminable states in which this

system can be prepared.

Because of that, the maximal number of perfectly discriminable states for

a single measurement procedure is equal to the dimension dA0
ofHA0

.

Moreover, the states in such sets are projectors
16

, so each can be measured

in a way that yields a definite measurement outcome. Such states ρA0

are therefore represented by rank-1 projectors and called pure states. They

correspond to states of the system that have a measurement procedure that

yields a definite outcome and such that no extra information can be gained

from a measurement with more possible effects. They consequently

represent the system in a state of maximal knowledge, as opposed to the

maximally mixed state.
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This brief review of density operators was conducted so to remind the

reader about the structure of the state space because similar structures will

play an important role in the following. Mathematically, the unnormalized

state space is the convex cone formed by positive operators on a Hilbert

space; the state space is then the hyperplane obtained by fixing the trace

of each positive operator to be one. This hyperplane is perpendicular

to the center of the cone, spanned by 1. Whereas the center of the cone

corresponds to the state of no knowledge (called the maximally mixed

state); the boundary of the cone, its extremal states, correspond to states

of maximal knowledge (called pure states).

1.3.3. Evolution as Maps Between Density Operators

The state and effect picture presented in the previous section represents

a static situation: the system has a fixed state from its preparation to

its measurement. This picture must be complemented by a dynamical

ingredient to represent the evolution of a given state according to an

external cause. In the process-theoretic picture presented here, this

external cause is typically assumed to be the intervention of a party on

the system. As her intervention is making the state of the system change,

it must be represented as an evolution from the set of density operators

to a set of density operators. This evolution is assumed to be as general

as possible: the dimension of the output space can be different than the

input, and the dynamics can be open in general, meaning that the pure

states do not have to be necessarily mapped to other pure states. The most

general evolution of a quantum state is provided by the quantum channel,
which is a Completely Positive (CP) Trace-Preserving (TP) linear map

M from the input space L
(
HA0

)
to the output space L

(
HA1

)
. These

linearity and CPTP conditions are necessary to ensure that the set of

density operators in the input space is correctly mapped to the one in

the output space.

More generally, the following properties of linear maps will be used in

the rest of the thesis:

Definition 1.3.1 (Features of linear maps) LetM : L
(
HA
)
→ L

(
HB
)

be a linear map between two spaces of linear operators over not necessarily
isomorphic Hilbert spacesHA andHB . LetHC be an arbitrary Hilbert space
and let IC : L

(
HC
)
→ L

(
HC
)

be the identity map from L
(
HC
)

to itself.
Then,

1. M is Hermitian-Preserving (HP) if and only if it maps self-adjoint
operators to self-adjoint operators,

∀ρA ∈ L
(
HA
)
: ρA = ρ†A, M (ρA) =M (ρA)

†
. (1.20)

2. M is Positive (P) if and only if it maps positive operators to positive
operators,

∀ρA ∈ L
(
HA
)
: ρA ≥ 0, M (ρA) ≥ 0 . (1.21)

3. M is Completely Positive (CP) if and only if it maps positive
operators to positive operators even when the Hilbert spaces are extended
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through the tensor product by an arbitrary spaceHC ,

∀ηAC ∈ L
(
HA
)
⊗ L

(
HC
)
: ηAC ≥ 0,(

MA ⊗ IC
)
{ηAC} ≥ 0 .

(1.22)

4. M is Unital if and only if it maps the identity to the identity,

M (1A) = 1B . (1.23)

5. M is Trace-Preserving (TP) if and only if it preserves the trace,

∀ρA ∈ L
(
HA
)
, TrB [M (ρA)] = TrA [ρA] ; (1.24)

It is Trace-non-Increasing (TnI) if and only if it contracts the trace,

∀ρA ∈ L
(
HA
)
, TrB [M (ρA)] ≤ TrA [ρA] ; (1.25)

Therefore, the most general linear map from quantum states to quantum

states is a CPTP map as defined above (for a review, see e.g. Chapter 8 in

Reference [52]).

Definition 1.3.2 (Quantum Channel) . A Completely-Positive (CP) Trace-
Preserving (TP) mapM ∈ L

(
L
(
HA0

)
,L
(
HA1

))
is called a quantum

channel1717: Or ‘channel’ in short. .

The important part of this definition is the CP condition: from Equa-

tion (1.22), it can be interpreted as allowing a quantum channel to be

applied to a subsystem defined on a larger space without interfering

with the validity of the global quantum state. Hence, this condition is

important to allow for the extension of systems by ancillary degrees of

freedom and to talk about systems shared by several local parties.

1.3.4. Interventions as Quantum Instruments

Knowing the structure of state spaces in which the systems are repre-

sented and how the evolution of a system from one state to another is

represented, the next step is to study the structure of maps representing

the interventions as in Figure 1.1. The most general kind of quantum

intervention between an input and an output quantum systems are the

non-destructive measurement [76], for which the most general form

allowed by quantum theory is represented by a quantum instrument
[14].

Definition 1.3.3 (Quantum Instrument) A collection {Mi}ni=1 ∈
L
(
L
(
HA0

)
,L
(
HA1

))
of completely positive (CP) Trace non-Increasing

(TnI) maps that resolves, i.e. that sums up to, a CPTP mapM,

n∑
i=1

Mi =M , (1.26)

is called a quantum instrument18
18: Or ‘instrument’ in short. .
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These act on a system labeled A0 in a state
19

19: The reference to the label of the

Hilbert space has been put in superscript

for notational convenience.

ρA0
and output a system A1

in a state σA1

|a in the following manner:

σA1

|a =
1

p(a)
Ma

(
ρA0
)
. (1.27)

Where the probability p(a) of seeing outcome a is obtained through a

modification of the Born rule:

p(a) = Tr

[
Ma

(
ρA0
)]
. (1.28)

According to Definition 1.1.1, this rule can be understood as a shortcut

notation for a process like

p(a|x, {Ma|x},W) = Tr

[
Ma|x

(
ρA0
)]

, (1.29)

whereW is the environment that supplies Alice with state ρA0
. In the

above, the setting x was ignored by Alice as well. As a consequence,

referring to x in the description of the map is superfluous and thus

swallowed into its definition. This results in the quantum instrumen-

t/intervention {Ma|x :=Ma}. Each instrument elementMa results in

probability p(a) for a given state. Summing over all possible outcomes

leads to a deterministic operation of the party since

∑
a∈Ωa|x

p(a) = 1.

Accordingly, summing over the elements of the instrument gives the

averaged state resulting from averaging the intervention over all possible

outcomes as M =
∑
aMa. This can be pictured as if the party has

forgotten the measurement outcome. Indeed, the weighted sum of all

possible output states reads (the reference to the spaces has been dropped

for conciseness):

∑
a

p(a)σ|a =
∑
a

p(a)

p(a)
Ma (ρ) =

(∑
a

Ma

)
(ρ) =M (ρ) , (1.30)

whereM corresponds to the CPTP map resolved by the elements of the

instrument, so thatM (ρ) is a valid state (but defined in a different space).

Hence, when averaging over all possible outcomes and settings, the inter-

vention of a party results in a deterministic modification of the system,

mathematically expressed in the form of a transformation from a valid

state inL
(
HA0

)
to one inL

(
HA1

)
. Such maps representing deterministic

operations are the usual quantum channels of Definition 1.3.2.

In general, however, the parties’ interventions depend also on their setting.

To represent this, each setting is mapped to a different instrument. Alice’s

intervention is then defined as the quantum operation20

20: The name is chosen to fit the termi-

nology of References [10, 11]

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

while setting

a technical term to refer to the definition,

but ‘intervention’ or ‘strategy’ will be

used as well in colloquial explanations.

. The quantum

operation is the name of the collection of CPTnI maps {Ma|x} associated

with Alice’s choice of course of action during the intervention.

Definition 1.3.4 (Quantum operation) In a quantum process, a party’s
intervention is represented as a quantum operation21

21: Or ‘operation’ in short.. These consist of
a collection of quantum instruments indexed by the setting x. In each
instrument, each element is in turn indexed by the outcomes a.
Mathematically, let L

(
HA0

)
be the Hilbert space where the input state

is represented, and let L
(
HA1

)
be the one where the output state is. A

(probabilistic) quantum operation is the representation of an intervention
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Figure 1.6.: Principle of a single partite

process: Alice’s local intervention results

in an interaction with the environment

through the exchange of systems.

Figure 1.7.: Graphical representation of

a process with a single party, Equa-

tion (1.37).

as a collection of CPTnI maps

{Ma|x} ⊂ L
(
L
(
HA0

)
,L
(
HA1

))
, (1.31)

such that each subset {Ma|x} indexed by the same setting x forms a quantum
instrument.
The related deterministic quantum operationM|x (noted using the same
letter but without the outcome in the subscript) is the action of the operation
when averaged over its outcomes,

M|x :=
∑
a

Ma|x , (1.32)

which is a quantum channel.
And the related averaged quantum operationM (noted using the same
letter but without subscripts) is the action of the operation when averaged
over all of its settings and outcomes, i.e. it is the quantum channel defined by

M :=
∑
a,x

p(x)Ma|x , (1.33)

where p(x) is the distribution of the setting.

1.3.5. Environment as Single-Partite Process Functional

Having fixed local interventions as quantum operations, the next part

involves letting the party interact with her environment to determine

how the environment is represented. The situation is shifted from what

is depicted in Figure 1.4 towards Figure 1.6.

In the first picture, it was assumed that Alice was not interacting with

her environment. This is operationally equivalent to Alice discarding

her input and replacing it with a maximally mixed state, applying

her operation on it, and then discarding the output state again and

outputting another maximally mixed state to the environment. That

way, no information can be received or sent to the environment. This

situation leads to the probability distribution being computed from the

generalized Born rule as

p(a|x) = TrA1

[
Ma|x

(
1A0

dA0

)]
. (1.34)

With respect to that, it is as if Alice’s environment were represented as the

trivial process, p(a|x) = p(a|x, {Ma|x},Wtrivial). This process is always

seen as white noise by the party, no matter her choice of interventions:

Wtrivial(•) = TrA1

[
•
(
1A0

dA0

)]
. (1.35)

Instead, when Alice interacts with her environment, the process is no

longer replaced by the trivial process; her distribution changes from

p(a|x, {Ma|x},Wtrivial) to p(a|x, {Ma|x},W) with W no longer triv-

ial,

W : L
(
HA0 ,HA1

)
→ [0, 1] . (1.36)
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[4]: Chiribella et al. (2013), Quantum com-
putations without definite causal structure.
[8]: Chiribella et al. (2008), Transforming
quantum operations: Quantum supermaps.
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the Classification of Higher Order Quantum
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In accordance with Definition 1.1.1, the environment is now represented

as a specific functionalW from the space of linear maps to the space of

probabilities called the process functional (or, loosely, the process since it en-

codes everything that is not the interventions of parties). The probability

distribution becomes:

p(a|x) := p(a|x, {Ma|x},W) =W
(
Ma|x

)
. (1.37)

However, the single-partite picture obtained at Equation (1.37) does not

exactly specify what is the set of validW , i.e., what is the set of the allowed

process functionals representing Alice’s possible environments.

At that point, physical heuristics can be relaxed into an admissibility

criterion: any transformation that can be applied to other transformations

in a manner that does not spoil the probabilistic interpretation is a valid

candidate for representing an environment [4]. Accordingly, as purely

abstract objects, the set of allowed processes is defined out of logical

consistency [5] (see e.g., [77]): a process is valid if and only if it leads to

valid probability distributions for all choices of interventions [5]. This

assumption is called the no-restriction hypothesis [78, 79].

Postulate 2: No-Restriction Hypothesis.

All maps that satisfy all mathematical requirements for representing

a transformation within the theory will be actual transformations of

the theory.

For completeness, it should be pointed out that quantum theory can be

derived without assuming such a broad principle; see References [50,

80] and [78]. Whether higher-order generalizations of quantum theory

necessarily require it is a question left open for future work.

Remark that this Postulate 2 has been stated in terms of transformations.
This is because all mathematical objects representing a process can be

seen as mappings from one space to another. Indeed, states are maps from

the trivial system –the number 1– to the state space; effects are the dual

maps from the state space to a probability; and operations are mappings

from state space to state space. Seeing the singleton {1} as a state space,

the objects are all transformations between state spaces
22

. In particular,

the process functionalW , representing the environment, is a mapping

from the intervention of Alice to a probability. Consequently, the process

is a transformation of an object transforming a system; it is a higher-order
transformation. This leads to the first observation motivating this thesis:

The process formalism is about higher-order transformations [4, 8,

10, 11, 33, 37]. In that sense, the process formalism is a higher-order

generalization of quantum theory.

In Postulate 2, the ‘mathematical requirements’ still have to be made

explicit in order to define the admissible process functionals W . The

admissibleW must yield valid probability distributions in Equation (1.37)

irrespectively of the choice of intervention made by the party, since any

intervention is allowed on any state by the no-restriction hypothesis.

Moreover, it can be shown that this admissibility requirement constrains

the set of process functionals to the set of linear and (completely) positive

functionals on L
(
HA0 ⊗HA1

)
which preserves the normalization of
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[5]: Oreshkov et al. (2012), Quantum cor-
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23: Since

1 =
∑
a

p(a|x)

=
∑
a

W
(
Ma|x

)
=W

(∑
a

Ma|x

)
.

(1.38)

The first line follows by the definition

of a distribution, the second by Defi-

nition 1.1.2, and the third by linearity.

Equation (1.39) is then obtained through

Definition 1.3.4.

[82]: Wilson et al. (2023), Quantum Su-
permaps are Characterized by Locality.

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.
[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

probabilities [5]. Linearity and preservation of the normalization are

indeed necessary to preserve the convex structure of the theory, which in

turn allows Alice to mix any two of her operations. On the other hand,

Complete Positivity (CP) is necessary to allow for arbitrary extensions of

the process, for example, by letting Alice keep an ancillary memory or

by adding a second party.

Explicitly, preservation of the normalization means thatW maps every

quantum operation of the party Alice to a valid probability. Whence, ac-

cording to the definition of an operation, Definition 1.3.4, this implies that

the process functionalW must send elements of quantum instruments

(CPTnI maps) to the interval [0, 1] and moreover that it is normalized on

quantum channels
23

(CPTP maps). This leads to the following definition

(adapted from [5]).

Definition 1.3.5 (Admissible Single-Partite Quantum Process) A func-
tional W : L

(
L
(
HA0

)
,L
(
HA1

))
→ C is a single-partite process

functional as in Definition 1.1.2 which is admissible for quantum theory if
1) it is linear; 2) it maps all elements (CPTnI maps) of all quantum operations
as in Definition 1.3.4 defined on spaceL

(
L
(
HA0

)
,L
(
HA1

))
to the interval

[0, 1], and it keeps the deterministic operations (CPTP maps) normalized, i.e.,

∀M CPTP, W(M) = 1 . (1.39)

The generalization of this definition to the multipartite case is straightfor-

ward: a process is a multilinear functional from the operations of several

parties to a probability.

1.4. Defining Higher-Order Transformations

The definition of a process functional was obtained by requiring compati-

bility with mixing strategies, keeping an ancilla, or adding an extra party.

These are indeed possible transformations in quantum theory, which is

valid locally by Postulate 1. Because of that, the intervention as well as

the process normalized on it must be compatible with the probabilistic

structure of the theory, which requires linearity and complete positivity.

Pushing Postulate 2 further, these are essentially the same constraints

that should be imposed on all higher-order transformations, not just the

functionals on operations. This generalization is captured by the idea

of admissibility of higher-order transformations [82], first defined by

Chiribella [9], Perinotti [10], and Bisio [11].

As mentioned above, the quantum process functional is an example of

a transformation of an object which is a transformation itself: it sends

a channel, which is the transformation between quantum states, to the

number one. This ‘second-order transformation’ is a special case of the

quantum supermap [8], which is the transformation between quantum

channels, obtained when considering the number one as the only channel

that can be defined over a one-dimensional Hilbert space.

Consider the following construction of a supermap as the guiding

example for the general definition of an admissible higher-order transfor-
mation. It is defined in full analogy as with how the quantum channel
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(
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L
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L
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(
HB1

))
.
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[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
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is defined. Let {MA} be the set of all quantum channels defined in

L
(
L
(
HA0

)
,L
(
HA1

))
and let{NB}be the one inL

(
L
(
HB0

)
,L
(
HB1

))
.

Then, a supermap (or superoperator whenHA0 ∼= HB0
andHA1 ∼= HB1

) is

a map S that sends the set of channels in A onto the one in B:

S : L
(
L
(
HA0

)
,L
(
HA1

))
→ L

(
L
(
HB0

)
,L
(
HB1

))
,

∀MA
CPTP, ∃NB

CPTP : S(MA) = NB .
(1.40)

Next, the supermap must be compatible with the probabilistic structure:

the acted-upon channel is assumed to be under the control of a party

who can in general perform a quantum operation as in Definition 1.3.4.

Compatibility with the probabilistic structure is the requirement that not

only all channels inA24
have an image in the set of channels inB, but also

all possible choices of operations in A have one in the set of operations in

B. This means that all elements of all operations in A should be mapped

to elements of operations in B. This entails two conditions. First, all

quantum instruments must be mapped to quantum instruments in B.

This is the requirement that all elements of a resolution are maps to

elements of a resolution, i.e. that every CPTnI map inA (indexed by some

outcome a) must be mapped to a CPTnI in B (now indexed by outcome

b). This condition is compatibility under probabilistic operations, but the

second condition is compatibility under randomizations. A party can act

deterministically but in a way randomized between several deterministic

operations according to a setting x. In such case, its averaged quantum

operation is given byMA = p(x = 0)MA
|x=0 + p(x = 1)MA

|x=1 + . . .

and this behavior must be mapped homogeneously to B so that

S
(∑

x

p(x)NA
|x

)
=
∑
x

p(x)S
(
NA

|x

)
. (1.41)

From this latter condition, it can be shown that S is linear (see e.g.

References [5, 9, 10]).

The argument so far is similar to how to axiomatically define a channel as

a mapping from a set of states to a set of states. However, sending valid

states to valid states, i.e. positive trace one operators to positive trace one

operators, is not sufficient to define a channel. This is because the local

application of the channel on one part of a bipartite state may result in a

non-valid state. In the same way, sending valid channels to valid channels

is also not sufficient to define a supermap: applying it to one part of a

bipartite channel may not result in a valid bipartite channel. In other

words, the linear map S must not only send CP maps to CP maps, but it

must also do it in a ‘completely CP-preserving’ manner. In symbols, S is

completely CP-preserving if for all possibleHC , so that it can extend A

with a space of linear maps L
(
L
(
HC0

)
,L
(
HC1

))
(HC ∼= HC0 ∼= HC1

)

in order to define a bipartite channelMAC
, S sends this bipartite channel

to a bipartite channelNAC
in the following manner:

∀MAC ∈ L
(
L
(
HA0 ⊗HC0

)
,L
(
HA1 ⊗HC1

))
: MAC

CP,

∃NBC ∈ L
(
L
(
HB0 ⊗HC0

)
,L
(
HB1 ⊗HC1

))
, NBC

CP :(
S ⊗ IC

)
{MAC} = NBC ,

(1.42)

where IC is the identity mapping in L
(
L
(
HC0

)
,L
(
HC1

))
.
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25: Remark that the generalization

presented in this thesis, which relies

on formal analogies and operational

heuristics, can be made rigorous using

the framework of category theory.

In particular, while this thesis only

considers higher-order quantum

processes, the formulation of which

is reliant on Hilbert spaces and CP

maps, the categorical treatment can

consider different kinds of objects

and morphisms instead, like sets and

relations for example. See Reference [33]

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

for more information.

Notice that in this example, the ‘triv-

ial system’ could have been itself lifted

as a special subset of the quantum sys-

tems, whose state space is restricted to an

element proportional to the maximally

mixed state {1}. In general, it will be

possible to map any set of admissible

transformations to a set that resembles

a constrained state space. This kind of

set will be called a state structure and is

the backbone of the characterization pre-

sented in this thesis. The exact definition

is delayed until Chapter 3.

This linearity and complete CP-preservation essentially define a quan-

tum supermap, but to complete the picture of a supermap being a

transformation between channels in the same regard as a channel being a

transformation between states, the supermap should be interpretable as

‘under the control of a party’. In analogy with Definition 1.3.4, the party

should be able to implement a ‘superoperation’ consisting of probabilistic

resolutions and randomization of their choice(s) of supermap(s).

This is due to a special case of supermaps consisting of plugging a

pair of channels on both sides of the input channel, like S(MA) =

NA1→B1 ◦ MA ◦ NB0→A0
. Such a pair of channels can be assumed

under the control of the party realizing the supermap, say Bob, while the

input channelMA
is under the control of a different party, Alice. Bob

can apply a quantum operation on both sides of the input channel like

SB(MA) = NA1→B1

b1|y1 ◦MA ◦NB0→A0

b0|y0 , and grouping the labels together,

b := (b0, b1), y := (y0, y1) the overall operation can be defined as

SBb|y(M
A) = NA1→B1

b1|y1 ◦MA ◦ NB0→A0

b0|y0 , (1.43)

From this special case, the concept of an operation can be generalized to

all completely CP-preserving trace non-increasing resolutions as well as

randomizations of quantum supermaps.

Hence, the quantum supermap is a higher-order transformation that was

obtained by a formal analogy of the definition of the quantum channel

case. The set of all such quantum supermaps forms the set of admissible
transformations of quantum channels. Generalizing the procedure is

what is meant by ‘defining a higher-order quantum transformation’
25

.

The first step towards the general definition is to allow transformations

between any kind of input and output. The formalism should be able

to define a set of transformations from channels to supermaps in the

same way that it can define states to states. In order to do so, the trivial

system must also be considered, so that anything can be considered as

a transformation from the trivial transformation to itself. For example,

the quantum states are a set of admissible transformations as they

transform the trivial system (the number 1) to the quantum state they are

representing. In Equation (1.29), the input system is represented by a state

ρA0 ∈ L
(
HA0

)
, and a transformationMa acts on it. However, this state

is itself interpretable on the same footing as the channels and supermap,

that is, as an admissible linear map. In that case, it is a linear map from

the trivial system 1 to itself, ρA0
∈ L

(
C,L

(
HA0

))
: ρA0

(1) = ρA0
. It is

pretty straightforward to see that it will map any trivial system to any

quantum state in a manner that respects extensions of the input system,

since Equation (1.22) applied toHA0 = C reads

∀ηC ∈ CA0 ⊗ L
(
HC
) ∼= L (HC) : ηC ≥ 0,

(ρA0
⊗ IC){1× ηC} = ρA0

(1)⊗ IC(ηC) = ρA0
⊗ ηC ≥ 0 .

(1.44)

It is also possible to see that it will trivially preserve the probabilis-

tic structure as both a resolution 1 =
∑
a p(a) and a randomization

{p(x) × 1|
∑
x p(x)} amounts to considering scalar multiplication by

probability weights. The homogeneity condition reads ρA0
(
∑
x p(x)1) =∑

x p(x)ρA0
(1) = ρA0

, whereas the trace non-increasing condition reads

Tr [ρA0
(p(a))] ≤ Tr [p(a)]. Finally, the notion of an operation can be lifted
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to the state: it amounts to preparing ensembles conditioned by a random

variable; the operation is deterministic when the value of the random

variable is known, and a randomization amounts to considering an

ensemble of states {ρ|x} indexed by a setting x (known a prori); it is

probabilistic when it is not, and a resolution amounts to considering

the ensemble as a collection {ρa := p(x)ρ|x} resolving the average state

ρA0
=
∑
a ρa =

∑
x p(x)ρ|x and indexed by an outcome a (not known a

priori).

From this example, one can conclude that the notion of an order is not an

absolute thing. With respect to quantum states, the quantum channel is

a first-order transformation, but it is also a second-order transformation

with respect to the trivial system (whose state is transformed into a

quantum state which is in turn transformed by the action of the channel).

However, it can always be seen as a first-order transformation from the

trivial system to itself. Therefore, what is important in the theory is not

how a set of higher-order transformations is defined, but rather with

respect to which other set it is defined. An interesting consequence is

that sometimes certain sets will have several seemingly unrelated valid

ways to be defined, for example, the quantum 2-network, which will

be presented in Subsection 2.3.1, is a specific kind of bipartite CPTP

map, but at the same time, it happens to be the quantum supermap. The

study of the relations between the sets from how they are defined will be

conducted in Chapter 5, with the general reason behind this equivalence

being explored as the concluding example of this chapter.

The next step in the generalization is to properly define what should be the

complete preservation of complete positivity when dealing with higher-

order transformations between two different kinds of transformations.

The idea is to recursively generalize the definition by noticing that

complete positivity, Equation (1.22), depends on the notion of positivity

of the input and output spaces, and iteratively, that complete-complete-

positivity-preservation, Equation (1.42), depends on the notion of CP of

its input and output spaces.

Definition 1.4.1 (Generalized Complete Positivity) The space of positive
operators on a Hilbert space L (H) is completely positive in the generalized
sense and noted CPL(H).
Let K and J be two arbitrary spaces of linear maps between Hilbert spaces,
for which the input and output spaces can themselves be arbitrary spaces of
linear maps between Hilbert spaces. Let the respective notions of generalized
complete positivity for these spaces noted CPK and CPJ and let K′ be a copy
of K. Let S ∈ L (K,J ) be a linear map between these spaces, thenM is
completely positive in the generalized sense, and noted CPL(K,J ) if and only
if

∀M ∈ K ⊗K′ : M CPK⊗K′ ,

∃N ∈ J ⊗K′, N CPJ⊗K′ :(
S ⊗ IK

′
)
{M} = N ,

(1.45)

where IK′ is the identity mapping on K′.

Colloquially, generalized complete positivity is the ‘preservation of CP-

ness’ from the input to the output when the map is acting on a subsystem.

In the following, whenever a map is called CP, this should be understood
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in the general sense except when explicitly said otherwise.

This definition leads to the second observation: Higher-order quantum

transformations are about defining CP maps between CP maps, i.e.

nested CP maps [9, 13, 83, 84]
26

. Indeed, observe how the previous

section concerned the shifting from the usual representation of local

experiments obeying the rules of quantum theory to a representation

in terms of quantum operations, as in Definition 1.3.4. In mathematical

terms, this shifting amounts to requiring a representation in which every

object is represented by a completely positive (CP) map on some space
27

:

in Equation (1.29), the input system is represented by a state ρA0
, which

a CP map from C, where the trivial system 1 is defined, to L
(
HA0

)
, the

intervention is a CP mapMa|x ∈ L
(
L
(
HA0

)
,L
(
HA1

))
, and the output

system is the unnormalized stateMa|x(ρA0
), which is a CP map from

C to L
(
HA1

)
. Similarly, in Equation (1.37),Ma|x is the same CP map

and the process functionalW is a CP map from L
(
L
(
HA0

)
,L
(
HA1

))
to C. The set of admissible single-partite is thus a set of CP maps in

Hilbert space L
(
L
(
L
(
HA0

)
,L
(
HA1

))
,C
)

acting on a set of CP maps

in L
(
L
(
HA0

)
,L
(
HA1

))
(the operations) which in turn is acting on a

set of CP maps in L
(
C,L

(
HA0

))
(the states).

With respect to that, defining quantum processes is defining nested CP

maps preserving the probabilistic structure from one set of maps to

another. Formally,

Definition 1.4.2 (Admissibility of Higher-Order Transformation) A
Higher-Order Transformation is a map from any set of admissible higher-
order transformations to any set of admissible higher-order transformations.
A higher-order transformation is admissible if 1) it is linear; 2) it preserves
the probabilistic structure meaning that it maps probabilistic resolutions to
probabilistic resolutions; 3) it is CP in the generalized sense.

This definition involves notions that will be made precise only in Chapter 3.

So far, it should only be seen as a heuristic extension of the process

formalism. The cyclicity of the definition (the need for higher-order

transformations to define higher-order transformations) will be lifted

once the notion of a state structure is introduced in Definition 3.2.2, and

from there, the notion of resolution will be defined in Definition 3.2.4.

Both of these notions rely on the Choi-Jamiołkowski (CJ) isomorphism

[85, 86], which will be introduced in Definition 2.2.1, Chapter 2. With

this isomorphism, generalized complete positivity will be replaced by

the positivity of the elements in a state structure
28

. This will be shown

by doing over the reasoning of this section but using the introduced

concepts, thus converging to the proper definition, Definition 3.4.3

A last postulate, in line with the no-restriction hypothesis, was slipped

in the above definition: that all admissible maps will be allowed.

Postulate 3: Admissibility.

Any admissible higher-order transformation that can be defined is

assumed susceptible to represent the intervention of a party in the

theory of higher-order processes.

This postulate states that anything that mathematically looks like an
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intervention will be a valid intervention, putting aside its exact opera-

tional interpretation as well as its physical implementation. Postulates

1, 2, and 3 are taken as the core ideas of the theory of higher-order

quantum processes this thesis is about. The main concern of the present

manuscript will be the characterization of all admissible sets of higher-

order transformations. Before proceeding, the next chapter will present

some heuristic reasons for this last postulate as well as some of the

theoretical frameworks it can recover.
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The law of causality, I believe, like much that

passes muster among philosophers, is a relic

of a bygone age, surviving, like the monarchy,

only because it is erroneously supposed to do

no harm.

Russell (1912), On the Notion of Cause [87]

In the previous chapter, the process formalism was reviewed in a way that

led to the definition of the single-partite process as a pair of objects, the

quantum operation and the process functional, representing, respectively,

the intervention of a party and her environment. This class of processes

first involves one party whose interventions obey the rules of quantum

theory. Then, under the no-restriction hypothesis, the set of all process

functionals in this class –called the admissible processes– are defined as

every mapping from the interventions to a valid probability that obeys

the conditions of Definition 1.3.5. This admissibility requirement led to

identifying processes with a constrained set of CP maps called process

functionals.

When considering multipartite processes, such a broad definition of

admissible processes on local quantum interventions is actually enough to

recover most of the previous instances of (linear) higher-order quantum

process theories that appeared in the literature like the supermaps [8],

the quantum comb formalism [9], or the process matrix formalism [5] as

was first formalized in [10]. This is done simply by adding more parties

to the process and then requiring specific constraints on the signaling

structure, as shown in this chapter.

The idea conveyed in this chapter is that the process functional can

itself be seen as an intervention on the interventions of the parties –

a higher-order intervention. In that regard, the notion of admissibility
is a consistency requirement used to define operations on operations

so that the process they represent in the end always results in valid

probability distributions. In the next chapter, this notion of admissibility

will be generalized so that interventions, as well as every way to define

interventions on interventions, can all be seen as some kind of admissible

mappings themselves.

2.1. Multiround and Higher-order Interventions

Notice that the word process is used in two different manners in the above:

first in the information-theoretic sense, where the process refers to a collec-

tion of probabilities as in Definition 1.1.1, and by extension, the process

functional used to compute them. Then, in the information-processing

sense, where a process refers to applying a transformation on an object. For

instance, interventions are quantum processes, and process functionals

are higher-order quantum processes since they are transformations (send-

ing to a probability) of transformations (the interventions). Compared to

33
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the previous chapter, where the notion of causal was distinguished from

no-signaling, here the ambiguity is the point: processes are processes
1
.

This is a consequence of the assumption of tomography: stating that

the process (in the probabilities sense) can be represented by a process

functional (which is a process in the transformation sense) means that the

collection of distributions associated with all possible interventions (the

process) are enough to characterize the mapW uniquely (the process

functional).

Under that logic, the process functional W itself can be seen as the

intervention of a party acting deterministically on every party’s input

and output systems and outputting a trivial system (nothing). Since

it is a deterministic intervention on interventions, it can be abstracted

as a higher-order intervention. However the process functional is far

from being the only way to define a higher-order intervention. Actually,

even certain quantum operations in specific processes can themselves be

interpreted as higher-order interventions.

To see how the process formalism can feature higher-order interventions

as possible interventions, multi-round interventions must be introduced

first
2
. Consider Figure 2.1a: because the systems received and sent by the

parties can generally be multipartite, Alice’s input and output systems

can be split into two subsystems each. In that case, during her intervention

she receives two subsystems A0 and A2 and sends back two subsystems

A1 and A3. In addition, the formalism does not impose that parties have

to send and receive all parts of their systems simultaneously, and in

particular, it does not preclude a party’s intervention from being split

into several rounds. Consider Figure 2.1b for instance, in this case, Alice is

assumed to act in two rounds: she first receivesA0 and sendsA1 then she

receives A2 and sends A3. In such special cases, Alice’s second round is

assumed to be in the causal future of her first; the two rounds happened

in her local lab, and the order in which she acted on the subsystems is

locally fixed. Such particular cases of local interventions are generally

called multi-round [1, 34]. Because multi-round interventions are allowed,

the process can in particular be like the one represented in Figure 2.1c,

such that Bob’s intervention always happens in between Alice’s two

rounds, as in Figure 2.1d. By doing so, Alice’s operation, seen as a single

overall operation has been defined as a higher-order operation [8, 70].

In equations, the process in the first two situations consisted of Al-

ice’s quantum operation Na|x ∈ L
(
L
(
HA0 ⊗HA2

)
,L
(
HA1 ⊗HA3

))
,

of Bob’sMb|y ∈ L
(
L
(
HB0

)
,L
(
HB1

))
, and of a process functionalW

acting on these two operators to yield the probability:

p(a, b|x, y) =W
(
Na|x,Mb|y

)
. (2.1)

Going to the last situation, in which Alice’s operation happens to be

higher-order, implies that there exists a map Sa|x and a reduced single-

partite process W̃ such that the operation of Alice can be identified with
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(a) The systems in Alice’s

intervention can be bipar-

tite and she does not have

to send and receive them at

the same time...

(b) ...hence her operation can be

split into two ‘nodes’, in that case

her intervention is multirounds.

(c) The process can be such that

Bob’s operation ends up exactly

between Alice’s first and second

nodes...

(d) ...in that case, her inter-

vention is the environment

seen by Bob; it is of higher-
order compared to Bob’s.

Figure 2.1.: Multiround interventions allow for higher-order processes. The last two figures are the diagrammatic representations of the

terms appearing on both sides of Equation (2.2).

[88]: Apadula et al. (2022), No-signalling
constrains quantum computation with indef-
inite causal structure.

the supermap Sa|x [8] so that:

Na|x 7→ Sa|x : L
(
L
(
HB0

)
,L
(
HB1

))
→ L

(
L
(
HA0

)
,L
(
HA3

))
,

W 7→ W̃ : L
(
L
(
HA0

)
,L
(
HA3

))
→ [0, 1] :

W
(
Na|x,Mb|y

)
= W̃

[
Sa|x

(
Mb|y

)]
.

(2.2)

In such a description, Bob would describe Alice’s intervention in the same

way he would describe his environment. In Alice’s perspective, however,

Bob is treated as a black box within her local lab. Bob can be absorbed as

a part of Alice’s description over which she has no deterministic control.

By doing so, the ‘superoperation’ of Alice, Sa|x, becomes an operation

with respect to Alice’s environment W̃ , defined as

Ña,b|x,y ∈ L
(
L
(
HA0

)
,L
(
HA3

))
:

Ña,b|x,y := Sa|x
(
Nb|y

)
.

(2.3)

Such operations in which a party has been removed from the description

after they have performed their operation is called a reduced operation.

From the environment perspective, Alice is the only party in the descrip-

tion. All that the environment ‘sees’ is the reduced operation of Alice,

with ‘outcome’ ã := (a, b) and ‘setting’ x̃ := (x, y). In its description,

the situation is reduced into the following single-partite process as in

(1.37)

p(ã|x̃) = p(a, b|x, y) = W̃
(
Ña,b|x,y

)
. (2.4)

Conversely to that example, by reducing a bipartite scenario into a

single-partite one, the environment in the immediate surroundings of a

party can always be assumed under the control of an extra party. As a

consequence of admissibility, there is indeed always a way to fine-grain

the description from a single-partite process to a bipartite process where

an intermediate higher-order intervention has been ‘slipped’ in between

the party and the process [88].

What this means concretely is that, on the one hand, some bipartite

processesW such as Equation (2.1) happen to lead to a scenario where
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3: Which amounts to do the identifica-

tion A0 = A1 = B0 and B1 = A2 =

A3 when the outcome a has been ig-

nored.

4: Recursively defining and characteriz-

ing a hierarchy of higher-order processes

in that manner will be considered as the

concluding example of this thesis in Sec-

tion 6.1.

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

5: This point can also be phrased as a

categorical construction, see References

[33, 84]

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[84]: Wilson et al. (2022), A Mathematical
Framework for Transformations of Physical
Processes.

.

one of the parties is ‘totally around’ another one, like Equation (2.2),

so that the situation can be reduced to a single partite scenario, like

Equation (2.4). On the other hand, every single-partite process description

can always be fine-grained into a bipartite, higher-order scenario, either by

splitting the environment description or the party’s local lab description.

That is, it is always possible to go from (2.4) to (2.2). This is the case

because one can always choose the intervention of the intermediate

party to do nothing, Sa|x = I , where I is the identity map, which is an

admissible mapping. But, less trivially, the intervention can only have no

consequence on average: Sa|x :
∑
a Sa|x = I . This is also an admissible

mapping so long that the distributions it induces are well-defined and
3

∑
a

p(a, b|x, y) =
∑
a

W̃
[
Sa|x

(
Mb|y

)]
= W̃

(
Mb|y

)
= p(b|y) . (2.5)

Hence, the lower-order party cannot infer from his outcome distribution

whether or not the higher-order party was in the environment at all.

Put another way, the difference between the environment and the parties is

a matter of assumptions, and nothing prevents relaxing these assumptions

by promoting the environment as a party and defining an environment

for a new party, effectively defining a higher-order process4
.

In that regard, the process functional as well as the higher-order and

multi-round interventions are all instances of quantum operations. The

only difference is that these are defined over different Hilbert spaces. But

this observation is sufficient to define any extension of quantum theory

based on higher-order processes in full generality: higher-order quantum

operations are defined as quantum operations on quantum operations

simply by enforcing their admissibility [10, 11]
5
. That is, to define them as

CP maps that preserve the normalization of probabilities. The obtained

hierarchy of higher-order processes is a hierarchy of CP maps defined on

CP maps recursively.

This thesis develops the tools to fully characterize this hierarchy in the

Choi-Jamiołkowksi picture. In addition, it develops tools that allow the

decomposition of a given higher-order theory in term of its signaling

structure, which in turn allow answering a question like “Which processes

admit a decomposition like Equation (2.2)?”.

2.2. Representation of Processes: Channel-State

Duality

However, characterizing processes or using them to compute probabilities

may prove tricky when dealing with nested CP maps only. For this reason,

the methods developed in this work rely heavily on representing linear

maps as operators. This is often referred to as a channel-state duality:

the property that a channel between spaces L
(
HA0

)
and L

(
HA1

)
can

be represented as a state in space L
(
HA0 ⊗HA1

)
. This duality has a

two-fold advantage. On the one hand, any process can be reduced to a

state-and-effect pair. On the other hand, Choi-Kraus theorem applies:

the channel-state duality sends higher-order completely positive maps

into subspaces of the cone of positive operators. This implies that the
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6: Also called CJ correspondence.
[85]: Jamiołkowski (1972), Linear transfor-
mations which preserve trace and positive
semidefiniteness of operators.
[86]: Choi (1975), Positive Linear Maps on
Complex Matrices.
[89]: Pillis (1967), Linear transforma-
tions which preserve hermitian and positive
semidefinite operators.
[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.
[90]: Watrous (2018), The Theory of Quan-
tum Information.

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

[90]: Watrous (2018), The Theory of Quan-
tum Information.

structure of these maps is encoded into the structure of their associated

subspace. Therefore, simple linear characterization techniques for spaces,

like projectors, can be used. This key property underlies the projective

characterization presented in the next part.

2.2.1. Choi-Jamiołkowski (CJ) Isomorphism

The exact implementation of channel-state duality that will be in use is

the following definition of the Choi-Jamiołkowski (CJ) isomorphism
6

[85, 86, 89]. Remark that Definition 2.2.1 differs slightly from the one

used in the quantum information literature (e.g. in [74, 90]): an extra

transposition has been added in the definition. This is a convenience

of notation introduced in Reference [5] in order to write fewer partial

transpositions in the CJ picture. A few comments about the interpretation

of this transpose as an antilinear identification of a space with its dual is

provided for completeness in Appendix B.2.

Definition 2.2.1 (Choi-Jamiołkowski isomorphism) LetM be a linear
map from L

(
HA
)

to L
(
HB
)
. Let {|i⟩ ⟨j|}dA−1,dA−1

i,j=0 be the standard basis
of L

(
HA
)

and let I be the identity map on L
(
HA
)
. Define MAB ∈

L
(
HA ⊗HB

)
as follows:

MAB :=

dA−1∑
i=0

dA−1∑
j=0

(I ⊗M) {|i⟩ ⟨j| ⊗ |i⟩ ⟨j|}

T , (2.6)

where T indicates transposition w.r.t. the standard basis. This operator is the
Choi operator of the mapM. The ensuing correspondence between linear
mapsM ∈ L

(
L
(
HA
)
,L
(
HB
))

and operators7
7: When clear from the context or not

necessary, the subscripts on Choi opera-

tors will be dropped to lessen clutter.

M ∈ L
(
HA ⊗HB

)
is

called the Choi-Jamiołkowski (CJ) isomorphism.
To recover the action of the mapM on an arbitrary operator VA ∈ L

(
HA
)
,

the reverse direction of the CJ correspondence is used:

M (VA) = (TrA [MAB · (VA ⊗ 1B)])T , (2.7)

where 1B the identity operator in L
(
HB
)
.

Note that the correspondence will also be used in the text as a “de Pillis”

linear mapping [89] in order to refer to it more easily. This mapping,

noted C, is given as:

C : L
(
L
(
HA
)
,L
(
HA
))
→ L

(
HA ⊗HB

)
,

C (•) :=

dA−1∑
i=0

dA−1∑
j=0

(I ⊗ •) {|i⟩ ⟨j| ⊗ |i⟩ ⟨j|}

T .
(2.8)

The reason for choosing the Choi-Jamiołkowski representation rather

than any alternative representation like Kraus or Stinespring (see e.g.,

Chapter 2 in [90]) comes from the following ‘enjoyable’ properties of the

correspondence.
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Proposition 2.2.1 (Properties of the Choi-Jamiołkowski isomorphism)

Let L
(
HA ⊗HB

)
be a Hilbert space of operators with its Hilbert-Schmidt

inner product noted as (· , ·)AB := TrAB
[
·†·
]

with ‘†’ indicating the adjoint.
Let L

(
L
(
HA
)
,L
(
HB
))

be a Hilbert space of linear maps with its
Hilbert-Schmidt inner product noted as [·, ·] :=

∑
µ (·(eµ) , ·(eµ))A,

where {eµ}
d2A−1
µ=0 is a shorthand notation for the standard basis of L

(
HA
)
,

{eµ}dA−1,dA−1
µ=(i=0,j=0) := {|i⟩ ⟨j|}

dA−1,dA−1
i,j=0 . For any two arbitrary elements of

this space,M,W , such that C (M) = M and C (W) = W , the following
properties hold:

1. The Choi-Jamiołkowski correspondence is a bĳection.
2. The Choi-Jamiołkowski correspondence is an isometry:

(M , W )AB = [M,W] . (2.9)

3. M is Hermitian-Preserving (HP)⇔M is Hermitian8
8: Or self-adjoint. .

4. M is Positive (P)⇔M is Positive On Pure Tensors9
9: See Definition A.1.2. (POPT).

5. M is Completely Positive (CP)⇔M is Positive SemiDefinite (PSD).

6. M is Unital⇔
TrA [M ] = 1B . (2.10)

7. M is Trace-Preserving (TP)⇔

TrB [M ] = 1A . (2.11)

8. The adjoint of a map is mapped to the complex conjugate of its Choi
operator,

C (M∗) =M , (2.12)

where ∗ indicates the adjoint in L
(
L
(
HA
)
,L
(
HB
))

and · the
(entry-wise) complex conjugation.

The proof of all these properties is standard, except for 4 and 8 but

these can be shown from the definitions. For completeness, the proof of

property 8 is given in Appendix B.2 alongside the graphical interpretation

of the CJ correspondence and some remarks on its ‘hidden antilinearity’

that were explored in a work outside of this thesis [3].

The property 5, called Choi or Choi-Kraus theorem, is arguably the most

compelling feature of the representation as mentioned above. Indeed,

CP maps represent higher-order quantum transformation, but complete

positivity is not an easy property to prove, and the geometry of the

space of CP maps is convoluted (see Reference [74] for instance). The

Choi-Jamiołkowski representation allows the mapping of this set into the

cone of positive operators, making the characterization of its properties

easier.

In particular, mapping it to the cone of positive operators allows the

utilization of semi-definite programming (SDP) methods [41] to char-

acterize its interesting elements. See References [40, 43–45, 91–93] for

such examples of SDP methods in the context of higher-order quantum

processes.
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[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

2.2.2. The Link Product

Thus far, the isomorphism may not look practical because its reverse

direction, Equation 2.7, is quite an involved expression. Yet, graphically,

it just consists of ‘linking’ the wire of the input state with the correct wire

representing the channel. This hints at a general composition operation.

One for which the tensor product is a special case (no wire getting

connected), and every other action is a form of sequential composition

with the inner product as the other limiting case (all wires getting

connected). This recovers the idea of the previous section that every

operation is, to some extent, just a composition of some CP maps. Under

the CJ correspondence, all these maps are but vectors on a tensor product

of Hilbert spaces, so their composition is a form of pairing on this space.

This pairing is formalized as the link product [9].

Definition 2.2.2 (Link Product) Let MA ∈ L
(⊗nA−1

i=0 HAi

)
and NB ∈

L
(⊗nB−1

j=0 HBj

)
be two composite operators, acting respectively on mA

and nB subsystems.
Let C := A ∩ B labeling the set of nC subsystems they have in common,
i.e. C := {Ck|∀(i, j) : Ai ∈ A, Bj ∈ B, Ai = Bj := Ck} so that
HCk ∼= HAi ∼= HBj . Let A \ C be the complement of set C in set A, i.e.
A \ C := {Ai|∀Ck ∈ C : Ai ̸= Ck} and B \ C be the one in B.
The link product of operator MA with NB , noted with ∗, is the operator
MA ∗NB ∈ L

(
HA\C ⊗HB\C) defined as

MA ∗NB := TrC
[(
MTC

A ⊗ 1B\C

)
·
(
1A\C ⊗NB

)]
. (2.13)

Proposition 2.2.2 (Properties of the link product) Let M ∈
L
(
L
(
HA
)
,L
(
HB
))

, let N ∈ L
(
L
(
HB
)
,L
(
HC
))

, and let their com-
position beN ◦M ∈ L

(
L
(
HA
)
,L
(
HC
))

. Then, the following holds:

1. The composition of two linear maps is represented by the link product
of their Choi operators:

C (N ◦M) = C (N ) ∗ C (M) ∈ L
(
HA ⊗HC

)
. (2.14)

2. The link product is associative.
3. The link product is commutative10

10: Note that this ‘commutativity’ of the

link product is up to a reorganization of

the tensor factors (or ‘up to a SWAP gate’)

as in L
(
HA ⊗HC

) ∼= L (HC ⊗HA
)
.

This reorganization will always be im-

plicit since the factors are assumed to be

sorted by their labels by convention.

.
4. The link product of Hermitian operators is Hermitian.
5. The link product of Positive Semi-Definite (PSD) operators is PSD.

The interest in using the link product stems from its versatility: it en-

compasses the composition, the tensor product, and the inner product

as a single operation. In Definition 2.2.2, the link product of two opera-

tors defined on different spaces indeed reduces to a tensor product; let

MA ∈ L
(
HA
)

and NB ∈ L
(
HB
)
, then

MA ∗NB
(2.13)

= MA ⊗NB ∈ L
(
HA ⊗HB

)
. (2.15)

Similarly, the link product of two operators defined over the same Hilbert

space reduces to a trace, which can be expressed as a Hilbert-Schmidt
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[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

inner product; let NA, VA ∈ L
(
HA
)
, then

VA ∗NA
(2.13)

= TrA

[
V TA ·NA

]
(1.15)

=
(
N†
A , V

T
A

)
A
∈ C . (2.16)

With the link product, the following shorthand notation for expressions

like Equation (2.7) can be used:

M (VA) =
(
MAB ∗ V TA

)TB
= (MAB)

T ∗ VA . (2.17)

The link product is a very effective tool for writing compact CJ expressions

dealing with traces on multiple spaces at once; for example,

TrB [M (VA)] = 1B ∗MAB ∗ V TA , (2.18)

which uses TrB [·] = TrB [1B ·] as well as 1TB = 1B . Moreover, since the

link product is commutative, the single-partite terms can be regrouped

in the above expression:

TrB [M (VA)] =MAB ∗
(
V TA ⊗ 1B

)
. (2.19)

This kind of manipulation involving the link product will often be used

to write shortened formulae in the following.

2.3. Indefinite Causal Order

Before moving to the result part, it remains to see why signaling and

causality are relevant in process formalism.

2.3.1. Quantum Networks and Combs

The first formalization of a class of higher-order processes that appeared

in the literature is the quantum network formalism [9]. It has been developed

for the representation of interconnected multi-round interventions. A

multi-round intervention of a party Alice is associated with a network in

such a way that each of her interventions is a node in the network. Several

networks can then be combined to represent back-and-forth exchanges

of messages between two or more parties; see Figure 2.2a. In between

their message exchanges, the parties are allowed to keep a memory of

their previous interventions stocked into an ancillary system. A network

with n nodes associated with the successive interventions of party Alice

is concisely referred to as Alice’s n-network. For example, the figure

represents the composition of some 2-network of Alice together with

some 3-network of Bob.

Seen differently, the network formalism consists of abstracting fragments

of quantum circuits that are associated with some party. The exchange

of systems amounts to connecting the fragments to complete the circuit

and realize a protocol. As mentioned in the previous example, such

multi-round interventions actually correspond to higher-order processes.

In the figure, Alice’s 2-network can be seen as a higher-order map acting
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(a) Abstract depiction

of Alice and Bob’s in-

terconnected networks

as two sets of nodes (in-

terventions) exchang-

ing systems.

(b) Grouping of

the nodes into

combs.

(c) The network

as the composi-

tion of the two

combs associated

with the actions of

the two parties.

(d) Decompo-

sition of the

network into

node-wise quan-

tum operations.

Figure 2.2.: Main aspects of the quantum network formalism.

[94]: Chiribella et al. (2008), Memory Ef-
fects in Quantum Channel Discrimination.

on Bob’s second node, whereas Bob’s 3-network can be seen as a higher-

order map on Alice’s 2-network. This recursive aspect is what defines

the network formalism.

Definition 2.3.1 (Quantum Networks) A deterministic quantum 1-
network is a quantum channel. A probabilistic quantum 1-network is a
quantum operation.
A deterministic quantum n-network is an admissible transformation from
a deterministic (n−1)-network to a deterministic 1-network. A probabilistic
quantum n-network is a resolution of the deterministic quantum n-network.

Here, the concept of a resolution generalizes the usage made in POVM

and quantum instrument formalisms: a resolution of a CPTP supermap is

any collection of CP TnI supermaps that sum up to the CPTP supermap.

A quantum network with n nodes is, therefore, a supermap that takes a

network with (n− 1) nodes and outputs a network of 1 node. Remark

that in the example of the figure, Bob’s 3-network is particular as it has

a trivial first input (no wires coming into Bob’s first node) and a trivial

last output (none coming out of his third node). His 3-network is said to

output the trivial node, i.e. a 1-dimensional one, and therefore results in

a probability distribution rather than a quantum operation. In that sense,

Bob’s 3-network can be seen as the process functional upon which Alice

intervenes with her 2-network. This particular kind of process/network

is called a quantum 2-tester [94] (because it ‘tests’ a fragment of a circuit

with two nodes and outputs a probability).

To deal with these supermaps numerically, for example to optimize a

communication protocol or circuit, the networks are represented by their

CJ operators. In that case, these are called quantum combs (because of

their shape as diagrams, see Figure 2.2c).
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Definition 2.3.2 (Quantum Combs) A (quantum) comb is the Choi-
Jamiołkowski representation of a quantum network.

The epithets linked to a network carry to the comb. For example, the CJ

representation of a probabilistic quantum 3-network is called a proba-

bilistic quantum 3-comb.

As operators on a composite Hilbert space, combs have an easy charac-

terization [1] (adapted from [9, Theorem 5]

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

).

Theorem 2.3.1 (Characterization of deterministic n-combs) Let M ∈
L
(
HA0 ⊗HA1 ⊗ . . .⊗HA2n−1

)
be an operator. Let j be an integer and

let the following operators be defined from M : ∀j : 1 ≤ j ≤ n, M (j) :=
1

dA2j
dA2j+2

...dA2n−2
TrA2jA2j+1...A2n−1 [M ], such that M (n) =M .

Then,M is a deterministic quantum n-comb if and only if the following holds:

M ≥ 0 ; (2.20a)

TrA0A1

[
M (1)

]
= dA0

; (2.20b)

∀i ∈ 1, . . . n :

TrA2i−1

[
M (i)

]
= TrA2i−2A2i−1

[
M (i)

]
⊗
1A2i−2

A2i−2
.

(2.20c)

This characterization implies that the quantum networks, which are

abstract supermaps, are all realizable as a causally ordered succession

of channels [9, Theorem 6]. This is indeed the content of equations

(2.20): each M (i)
, i < n, appearing in the recursive characterization

rule represents a network in which the last node was detached as an

independent quantum channel (or instrument in the probabilistic case).

See Figure 2.2d: Equation (2.20) implies that Alice’s 2-comb Ma⃗|x⃗, which

is a supermap, decomposes as a succession of two maps MA(1)

a1|x1
and

MA(0)

a0|x0
. The two of which are elements of quantum instruments defined

on each of Alice’s nodes linked by an ancillary system (here namedA′
):

Ma⃗|x⃗ =MA2A3A
′

a1|x1
∗MA0A1A

′

a0|x0
, (2.21)

where

MA(1)

a1|x1
:=MA2A3A

′

a1|x1
, (2.22)

and

MA(0)

a0|x0
:=MA0A1A

′

a0|x0
. (2.23)

Whence, the result is thatMA(1)

a1|x1
andMA(0)

a0|x0
are also quantum operations.

However, compared to seeing Alice’s intervention as a supermap from

Bob’s second node to an operation as in Equation (2.3),

Ma⃗|x⃗ ∗NB(1)

b1|y1 =M
A0A3B

′
1B

′
2

a⃗,b1|x⃗,y1 . (2.24)

The decomposition sees Alice’s intervention as a special kind of bipartite

operation as in Equation (2.1). This means that the combs can be decom-

posed into subsequent uses of two quantum instruments, which have a

known physical realization [76], and therefore the combs have a physical

realization.
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for the complete

derivation.

The point of this result is that the quantum networks are supermaps,

but these supermaps decompose into a causally ordered succession of

operations at each node. As such, this class of higher-order quantum

processes is not a higher-order generalization of quantum theory: every

object they involve can be decomposed and represented within quantum

theory as a composition of some quantum instruments and ancillary

systems.

2.3.2. The Quantum Switch and Causal Non-Separability

Fragments of quantum circuits are quantum networks; quantum net-

works are quantum combs; and quantum combs are (representations of)

supermaps. But are all supermaps networks? As it turns out, there is

a counterexample to the potential universality of quantum combs: the
quantum switch [4].

The idea behind the quantum switch is to coherently control the order

of the operations applied on a system. Two parties, Alice and Bob, get

as input a target system |ψ⟩t and a control system |ψ⟩c, both in a pure

state. Then, depending on the value of the control, Alice either applies

her local operation first on the target system or it is Bob who does. When

the control system is in a pure state, the circuit formalism holds on: the

operations of Alice and Bob are black boxes applied in a particular order

or another depending on this control bit. It also holds when the control is

in a probabilistic mixture as a natural consequence of the convexity of the

space of density operators. But when the control bit is in a superposed

state, like |ψ⟩c = |+⟩ ≡
|0⟩+|1⟩√

2
, it breaks down. The signaling structure

of the circuit appears to be in an entangled state. In the paper [4], this is

formulated as a no-go theorem:

"The [SWITCH supermap] cannot be computed determin-

istically by a circuit in which the two unknown oracles [i.e.

the operations of Alice and Bob] are called a single time in a

fixed causal order."

As mentioned in the previous chapter, this indefinite causal order can

furthermore be formalized as the theory-dependent notion of causally
separable processes [5]. The switch can be seen as a four-partite process

shared by four parties. In addition to Alice and Bob, Charlie is added in

the global past, and David is added in the global future. Charlie’s role is

to prepare the control and the target systems before passing them onto

the process so that Alice and Bob can act on them, whereas David’s is

to measure the target and control systems destructively after Alice and

Bob have acted on them. As can be shown, for certain interventions of

Charlie, the reduced tripartite process shared by Alice, Bob, and David

cannot be split into a convex mixture of terms that have a fixed signaling

direction for all choices of interventions
11

. In such case, the quantum

switch is causally non-separable, the different causal orders it shows, i.e.

Alice’s operation happening in a superposition of before and after Bob’s,

are effectively in more than a classical mixture. It is an indefinite causal order
(ICO).

However, in contrast with no-signaling and causality, causal separability is

a theory-dependent property. It is inferred at the level of the mathematical

description of the process, rather than at the correlations it allows.
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12: Actually it is used twice on

the functional: once to go from

L
(
L
(
L
(
HA0

)
,L
(
HA1

))
,C
)

to

L
(
L
(
HA0

)
,L
(
HA1

))
⊗ C which is

isomorphic to L
(
L
(
HA0

)
,L
(
HA1

))
(this amounts to applying a Riesz

mapping) and then a second time.

13: SinceW is a positive functional, W

is none other than the unique operator

obtained through Riesz representation

theorem (see Reference [96]

[96]: Roman (2008), Advanced Linear Al-
gebra.
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mography experiments.
[94]: Chiribella et al. (2008), Memory Ef-
fects in Quantum Channel Discrimination.

2.3.3. The Process Matrix and Violation of Causal

Inequalities

The quantum switch example reveals that not all processes are quantum

networks since not all processes can be understood as a causally ordered

succession of parties’ operations. Generally, the environments, and thus

the higher-order interventions, are different admissible processes func-

tional than just quantum testers. The CJ representation of this broader

class of process functionals is called the process matrix.

This representation of processes using the CJ correspondence has still

not been addressed. To begin with, the single-partite process as in

Equation (1.37) can be represented as a single-partite process matrix using

the CJ correspondence on the quantum operation,

Ma|x
(2.6)7→ Ma|x ∈ L

(
HA0 ⊗HA1

)
, (2.25)

as well as on the process functional
12

W (2.6)7→ W ∈ L
(
HA0 ⊗HA1

)
. (2.26)

This turns the computation of the probabilities in the single-partite

process of Equation (1.37) into a trace rule

p(a|x) =W
(
Ma|x

)
= Tr

[
W ·Ma|x

]
, (2.27)

Actually, since both W and MA|x are positive by Choi theorem, they are

in particular self-adjoint, i.e. W † =W , hence this rule can be interpreted

as the inner product
13

in L
(
HA0 ⊗HA1

)
:

p(a|x) = Tr

[
W † ·Ma|x

]
(1.15)

=
(
W , Ma|x

)
A0A1

. (2.28)

This recovers a state-and-effect kind of relation: two positive operators

united through the inner product to yield a probability distribution.

For that reason, this rule is called a generalized Born rule [5, 60, 70, 94].

In the CJ picture, the matrix W , representing the process variable, is

called a single-partite process matrix. Therefore, the higher-order theory

(single-partite process matrix) has been represented in the same form as

the base theory (quantum prepare-and-measure scenarios): A state and

effect pair linked by the inner product (the generalized Born rule).

This picture is also valid for multipartite processes. For instance, in

Equation (2.1), the probability distribution can also be cast as a generalized

Born rule:

p(a, b|x, y) = Tr

[
W · (MA

a|x ⊗M
B
b|y)
]
, (2.29)

where {MA
a|x} is a quantum operation associated with Alice’s intervention

and {MB
b|y} one with Bob’s. Defining general processes featuring multiple

parties is the systematic method for considering every situation in order

to uncover those that may feature indefinite causal order. In that regard,

it bypasses the question of how concretely the process is implemented

and moves on to the question of which correlations it allows.
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[97]: Almeida et al. (2010), Guess Your
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Game with No Quantum Advantage.

14: The use of ‘setting’ is slightly altered

here to phrase the process as a variant of

GYNI game. The bit z is not a setting in

the sense of local interventions, since it is

not tied to a single lab. It is rather a piece

of information obtained as the outcome

of a previous round of communication

in which both parties independently re-

ceived the setting z of the referee, rep-

resenting his decision. Nevertheless, as

Bob never uses z in the winning strategy,

it could have been said that z is part of

Alice’s settings, whereas Bob’s settings

consist of y only.

Definition 2.3.3 (Process Matrix) Let {MA
a|x}, {M

B
b|y}, ... and letWAB...

be defined as in Definition 1.1.2. Let {MA
a|x}, {M

B
b|y}, ... be the Choi-

Jamiołkowski (CJ) representation of the operations. The operator WAB... ∈
L
(
HA0 ⊗HA1 ⊗HB0 ⊗HB1 ⊗ . . .

)
representing the process functional

WAB... such that

WAB...
(
MA

a|x,M
B
b|y, . . .

)
= Tr

[
WAB... ·

(
MA
a|x ⊗M

B
b|y ⊗ . . .

)]
,

(2.30)

is called the process matrix [5].

Theorem 2.3.2 (Characterization of the Process Matrix) An operator
WAB... ∈ L

(
HA0 ⊗HA1 ⊗HB0 ⊗HB1 ⊗ . . .

)
is a process matrix if

and only if it obeys the following conditions [5]:

W ≥ 0 ; (2.31a)

Tr
[
W ·

(
MA ⊗NB ⊗ . . .

)]
= 1 , (2.31b)

For all MA ∈ L
(
HA0 ⊗HA1

)
that is the CJ representation of a quantum

channel applied by party Alice, and for all NB ∈ L
(
HB0 ⊗HA1

)
that is

one applied by Bob, and etc. for all remaining parties.

As it turns out, the quantum switch is not the most exotic process that can

be expressed as a process matrix with no counterpart in circuit formal-

ism. As shown in Reference [5], some causally non-separable processes

result in distributions of outcomes that are non-causal in the sense of

Definition 1.2.3. This means that for some processes, indefinite causal

order can be certified by a theory-independent bound on correlations.

To show this, the authors considered a general bipartite process matrix

and proposed a communication game in which the winning probability

is related to causality. This game is similar to the “guess your neighbor’s

input” (GYNI) game [97], but where an external referee randomly desig-

nates a party that has to guess the other party’s input in order for both to

win. The parties are allowed to coordinate their strategies beforehand

and to share any environment for as long as they each intervene only once

on it. Alice and Bob each receive an evenly distributed input bit x and

y, and the referee’s decision is represented by another bit z that the two

have access to. In such a process, it is assumed that beyond the random

bits, the parties act deterministically under an agreed-upon strategy so

that Alice’s settings
14

are x, z, and Bob’s are y, z. The game is won if Bob

guesses Alice’s setting correctly when z = 0 or if Alice guesses Bob’s

when z = 1. Encoding the guess of each player on their outcomes, the

game-winning probability is then equal to

psucc. :=
∑
a,b

1/2p(a = y, b|x, y, z = 0) + 1/2p(a, b = x|x, y, z = 1) ,

(2.32)

and the parties’ goal is to maximize this probability.

Assuming classical resources, an optimal strategy does not depend on z:

Alice can always send her setting to Bob. By doing so, she fixes him in

her signaling future; the joint distribution becomes one-way signaling,

p(a, b|x, y, z) = p(a|x, z)p(b|x, y, z, a) as in Equation (1.7). Hence, she

cannot obtain the future setting of Bob y any differently than by guessing.
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16: Recall that in the process formal-

ism, the measured value like ‘(+z,−z)’)
are substituted some ordered label a =

(0, 1), i.e. the outcome.

By consequence, she wins perfectly half of the time and guesses the

other half, whence they win with a psucc. = 1/2× 1 + 1/2× 1/2 = 3/4

chance. A similar optimal strategy with the same probability of winning

is obtained by Bob sending his setting to Alice; in that case, the situation

is reversed but the probability of winning is still the same, psucc. = 3/4

as well. Actually, any optimal classical strategy is a mixture of these two

[97]. Hence, a strategy involving a classical process matrix will conclude

that the winning probability is 3/4.

There is a good reason for that; it can be shown that this optimal

probability is the maximal amount obtainable by assuming that the

distribution is causal as in Definition 1.2.2 [5]. Therefore, this bound of

3/4 is a causal inequality: Any process obtaining a value exceeding it will

prove that it is non-causal.

While the bipartite processes that assume classical theory locally are

causal, bipartite process matrices, which are those assuming local quan-

tum theory locally, are not. Oreshkov, Costa, and Brukner introduced a par-

ticular example of a bipartite process matrix defined over 2-dimensional

input and output systems to show it. This operator is commonly referred

to as OCB process matrix and is usually expressed in the Pauli basis.

Definition 2.3.4 (Pauli basis) Let

1 :=

(
1 0

0 1

)
; X :=

(
0 1

1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0

0 −1

)
.

(2.33)

The set {1, X, Y, Z} forms a basis for the space of operators on a two-
dimensional Hilbert space L (H) ∼= C2×2, called the Pauli basis.

Note that this basis has the particularity of being constituted of unitary

and self-adjoint operators. Because of this convenient property, this basis

is extensively used for the examples presented throughout this thesis.

The OCB process matrix represents a process functional on Alice and

Bob’s operations, respectively represented by MA
a|x ∈ L

(
HA0 ⊗HA1

)
and MB

b|y ∈ L
(
HB0 ⊗HB1

)
; it is the operator

15

15: In the following, the references to the

subsystems will be omitted to lessen clut-

ter. Recall that the systems are always

sorted alphabetically and then numeri-

cally. In this specific case, the omitted

subscripts are ·A0
⊗·A1

⊗·B0
⊗·B1

for

instance.

WOCB :=
1

4

(
1⊗ 1⊗ 1⊗ 1+

1√
2
(X ⊗ Z ⊗ Z ⊗ 1+ Z ⊗ 1⊗ 1⊗ Z)

)
, (2.34)

such that WOCB ∈ L
(
HA0 ⊗HA1 ⊗HB0 ⊗HB1

)
. The claim is that

the parties can use this process matrix to win the GYNI game with a

probability greater than 3/4. Here is the winning strategy: in his local

lab, Bob always follows the same course of action, which consists of

measuring his input system B0 in the eigenbasis of Z and recording his

measurement results as his outcome set b = {0, 1} 16
, then preparing B1

in the same basis but according to his setting. The CJ representation of

his quantum operation has the form

Mb|y =
1

4

(
1+ (−1)bZ

)
⊗ (1+ (−1)yZ) . (2.35)

On the other hand, Alice’s choice of operation depends on her setting z.

When z = 1, she measures in the eigenbasis of Z and outputs a random

system; when z = 0, she measures in the eigenbasis of X instead and
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encodes both her outcome a and her other setting x into a Z state of A1.

The CJ representation of her operation has the form

Ma|x,z = δz,0

(
1

4
(1+ (−1)aX)⊗

(
1+ (−1)a+xZ

))
+ δz,1

(
1

4
(1+ (−1)aZ)⊗ 1

)
. (2.36)

Where δz,0 is the Kronecker symbol. The probability distribution is

computed in the CJ picture using the generalized Born rule:

p(a, b|x, y, z) =WOCB ∗ (Ma|x,z ⊗Mb|y) = Tr

[
WOCB · (Ma|x,z ⊗Mb|y

]
, (2.37)

which yields the following distribution:

p(a, b|x, y, z) = δz,0
1

2

(
1 +

(−1)b+x√
2

)
+ δz,1

1

2
(1 +

(−1)a+y√
2

) . (2.38)

This gives a success probability of psucc. =
∑
a,b 1/2p(a, b = x|x, y, z =

0) + 1/2p(a = y, b|x, y, z = 1) = 1/2(1 + 1/
√
2) ≈ 0.85.

Since the game is won with a better probability than any causal theory,

the OCB process matrix is said to violate a causal inequality and repre-

sents a non-causal process. In addition, the bound is at the level of the

probabilities alone. Hence, the OCB process matrix presents indefinite

causal order in a theory-independent manner, a stronger property than

causal non-separability.

The difference between the quantum combs, the quantum switch, and

the process matrix reviewed in this section is everything that is needed

from the theory of indefinite causal order so to motivate the formalism

developed in this thesis. Before concluding, here are some remarks

intended to give some directions for further enquiries to the interested

reader.

First, notice the formal analogy between the theory of quantum entangle-

ment (see [74, 98] for instance) and causal non-separability. A fair amount

of the important developments of the theory were actually obtained by

transposing concepts encountered in the theory of entangled states and

non-locality into the theory of non-separable and non-causal process

matrices. While it is necessary for a state to be entangled in order to be

non-local which is then proven by beating a Bell inequality, it is necessary

for a process matrix to be causally non-separable in order to be non-causal

which is then proven by beating a causal inequality [5]. Conversely, a

non-local state is entangled, and the same way, a non-causal process is

causally non-separable. The analogy can be pushed forward: like there

exist local entangled states that cannot beat a Bell inequality (see [56, 98]),

there exist process matrices that are causally non-separable but yet that

cannot beat a causal inequality. This is the case of the quantum switch

for instance [35, 38].

Thus far, it may look like a process matrix has to be based on local quantum

theory to be non-causal; but this is only the case for bipartite processes.

For tripartite processes, there exist processes which interventions are

locally described by classical probability theory
17

that can violate a causal

inequality [99]. On the same account, a causal process is not necessarily

classical. See Reference [100] for more details on this disambiguation.
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18: Keep in mind that this notion

has a rigorous definition using the

theory-dependent notion of causal non-

separability. This notion will not be re-

viewed in this thesis.

2.4. Summary

Before proceeding to the main part, it should be noted that what has

been called process formalism so far is actually a generalization of the

original framework. Indeed, the possibility of multi-round interventions

as well as the higher-order interventions they induce were not part of

the original formulations. This was only developed during my master

thesis [34] and by two other groups that used different approaches [10,

11, 33].

Recapitulating the rationale so far, it has been shown that the processes

formalism (with higher-order and quantum interventions) involves the

same linear maps as higher-order quantum processes. And that these

processes are mathematically the theory of nested CP maps.

Looking at the consequences of the formalism, it was shown that among

the allowed processes, some feature more than one fixed signaling di-

rection between the parties it relates together. Among those with more

than one signaling direction, some have indefinite signaling direction
18

.

Moreover, among the processes with an indefinite signaling direction,

some can truly be non-causal: some of the outcome distributions associ-

ated with these processes cannot be decomposed as in Definition 1.2.2.

In other words, higher-order processes can violate causal inequalities.

In order to precisely understand these non-causal effects, one can then

wonder when do the higher-order processes feature these exotic signaling

structures. The purpose of the present thesis is to fully characterize all

processes that can be built under this formalism and to systematically

track how the signaling structure in a process can be decomposed on a

party-wise basis.

As a whole, this thesis defines what higher-order processes are and the

main part of the technical results is about devising a method to character-

ize them: the projector algebra. The generalization of the notion of causal

separability for higher-order processes, as well as the characterization

of the causal polytopes are too remote to be attained within this couple

hundred pages. Despite this shortcoming, the hope is that the methods

developed in this thesis will serve as a starting point to study these

natural follow-up questions.
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Young man, in mathematics you don’t under-

stand things. You just get used to them.

John von Neumann
*

The point of this chapter is to show that the state space of all families

of admissible higher-order processes has the same abstract structure.

Because of that, the characterization will be conducted on this structure

first, and then applied to concrete cases.

This chapter starts by introducing this ubiquitous mathematical struc-

ture appearing everywhere in the characterization. The goal is to do it

gradually using minimal assumptions while keeping track of them so as

to pinpoint the principles underlying them. Some elements of discussion

about their validity will also be provided in the appendices.

This structure is called a state structure. The name was chosen because

the simplest example of such a structure is the set of finite-dimensional

quantum states in density matrix form. One may think of a state structure

operationally as ‘the set of allowed deterministic interventions a party

can locally perform’. In the case of quantum states for example, the

deterministic intervention is a preparation, i.e. to choose a specific state of

the system, say ρ; this intervention is then phrased as ‘the party decided

to prepare state ρ in her lab and to pass it to the environment’.

Therefore, one of the core messages of this thesis is that, in the Choi-

Jamiołkowski picture, every conceivable intervention is represented as

an element of a state structure. The nature of the state structure then

reflects the kind of intervention: the preparation of a system in a given

state, a given measurement procedure of the system, a transformation

of the system, a higher-order transformation of the system, etc. are all

represented by an element of different state structures. Characterizing

the state structure associated with a party then amounts to characterizing

the kind of intervention the party can perform on the system and vice-

versa.

This property of inferring a new state structure out of its relations with

another one applies to all conceivable interventions. This is the next

core message of this thesis: while all higher-order processes are state

structures, state structures are moreover defined through their relations

with each other. Concretely, after introducing the state structure, the

concept of a measurement of a state structure, as well as the parallel

composition of, the sequential composition of, and the transformation

between two state structures will be introduced. Again, the assumptions

for why a set of operations represents each of these four concepts will

be carefully tracked. Each of these concepts will then be shown to be

representable by a state structure as well.

*
Reply, according to Dr. Felix T. Smith of Stanford Research Institute, to a physicist friend

who had said "I’m afraid I don’t understand the method of characteristics"; as quoted in

Gary Zukav (1979), The Dancing Wu Li Masters: An Overview of the New Physics, Bantam

Books, p. 208, footnote.
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Another related core message of the thesis is that the algebra of these

projectors reflects (in the sense of is homomorphic to) the relations between

these state structures. Since these state structures are derived from their

relations with one or two ‘base’ state structure(s), and since each state

structure is associated with a projector, the relations with the base(s)

are encoded as specific operations to apply on the base projector(s).

This procedure yields a projector characterizing the newly defined

state structure. For example, the set of transformations between two

state structures will be shown to be a state structure as well, and its

characterization will be reduced to a specific way of forming a new

projector out of the projectors characterizing the input and output state

structures.

3.1. Motivating Example: From POVM to

Instrument Formalism

The idea behind state structures is then to abstract the common mathe-

matical skeleton out of the theory of processes. An occurrence of it lies

in the similarities between POVM formalism and quantum instrument

formalisms when expressed in the CJ picture.

Consider the quantum communication protocol where Alice transfers

a message to Bob by sending him a quantum system. A simple picture

of it is that Alice will encode her setting x on a system ρ|x and then

send it to Bob’s lab in which he will measure it. If the two parties

have agreed on a basis for encoding the message and the system has

a dimension big enough for the message to be reliably encoded, Bob’s

outcome distribution will tend to a perfect transmission where each

setting is identified with a single outcome, p(b|x) = δb,x.

The situation can be represented both with destructive or non-destructive

measurements, and shifting from one to the other is a prototypical

example of how to construct a higher-order transformation. As will

be shown, this example is actually related to the construction of the

single-partite process as in Subsection 1.3.5.

In the destructive case, Alice’s encoding consists of her operation being

the preparation of a state among a collection of possible states {ρ|x}x∈Ωx

(preferably orthogonal states to maximize discriminability). The state

transits through a perfect channel (represented by an identity map; in

this scenario, the channel plays the role of the environment shared by

Alice and Bob) and reaches Bob’s lab in which he measures POVM {Eb}
(preferably a projective measurement in the same orthogonal basis as

Alice). The probability of observing the outcome b is given by the Born

rule:

p(b|x) := p(b|x, {ρ|x}, {Eb}) =
(
Eb , ρ|x

)
≡ Tr

[
E†
b ρ|x

]
. (3.1)

His effects can be seen as probabilistic functionals from the state space to

a probability, i.e. Eb = (Eb , ·)B0
= Tr

[
E†
b ·
]
: L
(
HB0

)
→ [0, 1]. These

functionals sum up to a deterministic functional Tr [1·] : L (H)→ 1 that

send each state to a probability of 1.
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1: In the sense of no-signaling from the

future to the past.

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
[60]: Shrapnel et al. (2018), Updating the
Born rule.
[94]: Chiribella et al. (2008), Memory Ef-
fects in Quantum Channel Discrimination.

2: This example will reappear but

treated using the tools developed in this

thesis as part of the concluding example.

See Subsection 6.1.1.

When one considers non-destructive measurement, the representation of

Bob’s operation is instead given by a quantum operation. Assuming for

simplicity that this collection is deterministic, i.e. that it depends on a

single-valued setting, it can be represented as the quantum instrument

{Mb} : L
(
HB0

)
→ L

(
HB1

)
resolving the quantum channel M, i.e.,∑

bMb = M. The probability of observing outcome b as well as the

output state
1

p(b|x)Mb

(
ρ|x
)
∈ L

(
HB1

)
is given by

p(b|x) = Tr

[
Mb

(
ρ|x
)]
. (3.2)

But who discards the system so to end the protocol? From the perspective

of Bob, this does not matter as this system exited his lab and causality
1

forbids any subsequent intervention on it to change what Bob has

recorded. For all intents and purposes, Bob’s output is as if discarded

by a third local party, Charlie, whose intervention has no influence on

Bob’s. Referring to the labels of the systems explicitly, Alice’s output is

identified with Bob’s input, A1 = B0, and Charlie’s input is identified

with Bob’s output,B1 = C0, so that the probability is the inner product

p(b|x) =
(
1C0=B1 ,MB0→B1

b

(
ρA1=B0

|x

))
C0

. (3.3)

(A reference to the spaces where the operators and the map are defined

have been put in superscripts for clarity.)

The similarity with the destructive case becomes striking in the CJ picture.

From Bob’s perspective, the probability reads p(b|x) = 1B1 ∗MB0B1

b ∗
(ρB0

|x )T . Using the link product, this can be rephrased as another inner

product as in Equation (2.16),

p(b|x) =
(
Mb , ρ|x ⊗ 1T

)
B0B1

. (3.4)

This is back to the situation of an inner product without in-between

mapping. Here, Alice’s preparation and Charlie’s discarding can be

bundled into a ‘space-time state’W|x = ρ|x⊗1 ∈ L
(
HA1=B0 ⊗HC0=B1

)
that constitutes Bob’s environment. Bob’s operation is the corresponding

‘space-time effect’ so that the inner product is the generalized Born rule

[5, 60, 94]:

p(b|x) =
(
Mb , W|x

)
. (3.5)

The ‘state’ W|x is once more destructively measured by an ‘effect’ (or

probabilistic functional). W|x is indeed a positive and trace-normalized

operator while {Mi} is a collection of positive operators resolving a

trace-normalized positive operator M .

The destructive and non-destructive representations of the protocol

look formally similar in the CJ picture. However, the ‘effects’ Mb of

the quantum instrument formalism are mappings between the states of

the POVM formalism; they are thus higher-order effects compared to Eb.

Consequently, switching the representation from POVMs to quantum

instruments can be seen as the construction of a higher-order process
2
.

Notice the common threads that will be the starting point of the general-

ization: the two formalisms involve ‘states’ (ρ|x and W|x, respectively)

that are measured by a ‘deterministic functional’ or ‘unit effect’ (1 and

M ), resolved into ‘probabilistic functionals’ or ‘effects’ (Eb andMb). What
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[70]: Ziman (2008), Process positive-
operator-valued measure: A mathematical
framework for the description of process to-
mography experiments.
[94]: Chiribella et al. (2008), Memory Ef-
fects in Quantum Channel Discrimination.

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
[101]: Morimae (2014), The process matrix
framework for a single-party system.

changes between the two situations is that the set of deterministic func-

tionals {1} has a single element in the POVM case, whereas the set {M}
belongs to a subspace of L

(
HB0 ⊗HB1

)
. Remark, however, that the sets

of states and unit effects have a similar structure: those of positive and

trace-normalized subspaces. These are precisely the structures that will

be abstracted under the name ‘state structures’, which form the backbone

of the characterization methods. Moreover, observe that the state struc-
tures of both cases are related:W is the tensor product of a quantum state

ρ with a quantum effect, 1; the set of valid W ’s is thus a composite state

structure obtained by the tensor product of the state structures of ρ and 1.

Likewise, the set of valid M ’s consists of all mappings between the state

structure of ρ in space B0 to a similar state structure but on space B1 ob-

tained under the link product as< State in B1 >=M∗ < State in B0 >;

it is itself a composite state structure, the transformation between two state
structures.

This example motivates the common features of higher-order objects

and their projective characterization. As explained in the introductory

chapters, the quantum comb formalism and the process matrix formalism

are also characterized by a pair of ‘states’ and ‘unit effects’: the environ-

ment and the deterministic interventions. These sets correspond to state

structures in the CJ picture, as they are sets of positive and normalized

operators with support on a specific subspace. The projective characteri-

zation that will be presented in this chapter then consists of finding the

projector to that subspace and phrasing how the state structures relate

to each other as operations on the projectors. Three such ways of being

related that will be formalized in the following already appeared in the

example: (deterministic) functional on, tensor of, and transformation between
state structure(s). As will be shown, relations are actually imposed by

certain no-signaling constraints on correlations, as in Definition 1.2.1.

Finally, note that W|x is effectively a higher-order state; it can be seen

as a mapping from an effect in B0 to an effect in B1. However, it is not

a local closed box, i.e., it is not under the control of a single party. The

higher-order picture can be completed by assuming that Bob’s post-

measurement state was returned to Alice. In this case, he pictures her as

his environment: Alice’s lab encloses Bob’s. The spaces can be identified

such that Bob’s input corresponds to Alice’s (first node) output B0 = A1

and his output to her (second node) input B1 = A2. What changes in

this new scenario is that Alice can now learn things about Bob. For

example, she could have entangled the state she sent to Bob with an

ancilla of hers so that when she receives Bob’s output, she can jointly

measure it with her ancilla to learn about Bob’s operation. This approach

is yielding the PPOVM formalism [70, 94], generalized into the single-

round process matrix formalism [5, 101]. Both are the CJ representations

of the single-partite and single-round quantum process functional, as

presented in the introduction, Definition 1.3.5 in Subsection 1.3.5, and

then in Subsection 2.3.3.
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3: Thereafter just called ‘states’; the ter-

minology ‘quantum states’ will be re-

served to a regular quantum state prepa-

ration, resulting in density operators, i.e.

an element of the positive trace-1 set of

operators on the space.

4: The center of a set of operator is de-

fined using the distance induced by the

Hilbert-Schmidt inner product.

3.2. Abstracting the Admissible Quantum

Operations

In this section, the abstract kind of structure to interpret W|x and Mb in

Equation (3.5) as a ‘higher-order’ state and effect pair of a ‘higher-order

quantum theory’ are defined and characterized. Introducing mappings

between these higher-order objects as ‘higher-higher-order objects’ will

follow in Section 3.4.

3.2.1. Defining State Structures

State structures are denoted with a script letter A ,B,C , . . ., chosen to

be the same as the label of the party they are associated to (and thus,

in accordance with the notation, they will come with subscripts when

associated to subsystems). For example, the set of deterministic quantum

operations a party A can do on Hilbert space L
(
HA
)

is represented

by ‘generalized states’
3

in a state structure A . These states represent

quantum operations, but the exact interpretation of which, like the order,

the number of input and output subsystems, etc., is left open until precised.

For example, these operations can be the preparations of a quantum state

in which case A is the set of density operators; but it can also be the

choice of a quantum channel to apply between subsystems A0 and A1,

in which case A is a different set of operators: the (CJ representation

of the) set of quantum channels in L
(
HA
)
= L

(
HA0 ⊗HA1

)
. When

several abstract state structures need to be defined on the same space for

comparison, these will be distinguished by a prime like A ,A ′,A ′′
.

As concluded from the examples so far, admissible deterministic quantum

operations of a certain kind are represented under the CJ isomorphism

as a constrained set of positive operators on some composite space. The

abstract structure of these sets is captured under the name state structure

that is yet to be defined in this section. Since state structures aim to

be abstract enough to infer general properties and relations between

higher-order transformations, the question is: What are the key aspects

of the sets obtained through CJ representation to be abstracted in it?

A geometrical perspective first: the set of density matrices is a set of

positive operators on a Hilbert space with a trace norm of 1. These

constraints underlie the probabilistic interpretation of density operators

under the Born rule as they shape the spectrum of the operator into a

probability vector. The exact form of the operator is then just a ‘basis-

dependent packaging’ around this probability vector. On the one hand,

the feature of positive operators is that they form a convex cone in

the space of operators, the center
4

of which is made by all elements

proportional to the identity operator. On the other hand, the feature of

the trace-normalized operators is that they form a plane perpendicular

to the identity operator, as the normalization can be seen as an inner

product constraint: Tr [ρ] = (1 , ρ) = c ∈ C. While the space of operators

is a complex linear space, each of these two features actually restricts

this linear space to a space with a more complex geometry: the PSD cone

is a real convex space, whereas the trace-normalized plane is a complex

affine space. Both are more delicate to characterize than a linear space,
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5: Actually, not in the context of quan-

tum channels, but rather in the context

of process matrices.

[35]: Araújo et al. (2015), Witnessing causal
nonseparability.

6: For completeness, the proof of neces-

sity and sufficiency of Equation (3.10)

can be found in the Appendix A.2 of

Reference [1]

[1]: Hoffreumon et al. (2021), The Multi-
round Process Matrix.

.

especially the cone of positive operators as positivity is a non-linear

constraint.

However, one can focus on the smallest linear subspace contained in the

span of both sets. In the case of density operators, as all positive operators

are self-adjoint, this set spans the space of self-adjoint operators, a real

linear subspace of the space of operators. The trace condition, on the

other hand, does not bring another linear constraint besides itself so the

sought subspace cannot be further restricted.

If one moves to the next level, mappings between quantum states, that

is, quantum channels represented by the set of CPTP maps, a similar

reasoning can be conducted in the CJ picture. By Proposition 2.2.1

(or Theorem 2.3.1), the CJ representation M ∈ L
(
HA0 ⊗HA1

)
of a

CPTP mapM ∈ L
(
L
(
HA0

)
,L
(
HA1

))
must obey the following two

conditions:

M ≥ 0 ; (3.6a)

TrA1
[M ] = 1A0

. (3.6b)

The first line (3.6a), stating that the CP condition becomes a PSD condition

under CJ correspondence, again constraints the operators to the cone of

positive operators in L
(
HA0 ⊗HA1

)
. This set is again spanning the (real

sub-)space of self-adjoint operators.

On the other hand, the TP condition (3.6b) is no longer just a trace

condition. As it was first noticed by Araújo and colleagues
5

[35], it

actually can be split between a trace normalization,

Tr [M ] = dA0 (3.7)

and a linear constraint

TrA1
[M ]− Tr [M ]

1A0

dA0

= 0 . (3.8)

This linear constraint onM can be expressed in terms of a linear supermap

PA : L
(
HA0 ⊗HA1

)
→ L

(
HA0 ⊗HA1

)
which is actually an orthogonal

superoperator projector. It is defined as:

PA {M} :=M − TrA1
[M ]⊗ 1

dA1

+ Tr [M ]
1A0
⊗ 1A1

dA0
dA1

, (3.9)

so that condition (3.8) is expressed as a complex linear subspace defined

by this projector
6
,

TrA1
[M ]− Tr [M ]

1A0

dA0

= 0 ⇐⇒ PA {M} =M . (3.10)

Hence, the set of channels in CJ representation has support on the linear

subspace supporting both the positive cone and the subspace defined

by condition (3.6b). Compared to density operators in L
(
HA0 ⊗HA1

)
,

their span is now smaller than the full space of self-adjoint operators:

Equation (3.10) further restricts it to a subspace.

Generalizing from this example, on the one hand, it will be shown that the

admissibility condition at each level of the hierarchy guarantees that the
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[102]: Kadison (1957), Unitary Invariants
for Representations of Operator Algebras.
[103]: Choi et al. (1977), Injectivity and
operator spaces.
7: Definition 3.2.1 is actually the one

used by Choi and Effros. Kadison’s def-

inition is actually more restricted: it is

a real Jordan algebra of self-adjoint op-

erators meaning that it is closed under

real-linear combinations as well as the

Jordan product ρ ◦ σ := ρ·σ+σ·ρ
2

. In fi-

nite dimension, this is a special case of

a C∗
-algebra called a JC-algebra [104,

105]

[104]: Topping (1957), Jordan Algebras of
Self-Adjoint Operators.
[105]: Effros et al. (1967), Jordan Algebras
of Self-Adjoint Operators.

. In an earlier version of the thesis,

the implicit assumption that all elements

in a state structure were self-adjoint was

made because of the latter definition; Def-

inition 3.2.2 was indeed inspired by the

C∗
-algebraic formulation of quantum

theory. I am grateful to the reviewers for

bringing this to my attention.

[106]: Sinclair et al. (2008), Finite von Neu-
mann Algebras and Masas.
[107]: Hiai et al. (2014), Introduction to
Matrix Analysis and Applications.

CJ representations of all sets of quantum operations are sets of positive

operators. These therefore have support in the space of self-adjoint

operators. On the other hand, the TP-preserving condition is expressed

as a pair of conditions, one of which being a linear constraint, expressed

as a projector, which restricts the support of the set of quantum operations

to a complex linear subspace of the space of operators. Combining these

two ideas, the linear subspace spanned by a state structure is assumed to

be a subspace of the self-adjoint operators.

The convexity of the sets of quantum operations, in conjunction with the

second part of the trace-preserving condition (3.7), hints that these sets

must always contain an element proportional to the identity operator.

The physical interpretation of this fact is randomization: without access

to the setting, any probabilistic operation can be thought of as a mixture

of several deterministic operations that some party can implement. In

particular, the party can always choose to do a uniform mixture of every

deterministic procedure so their operation is indistinguishable from

white noise. The ‘maximally randomized operation’ obtained through

this procedure is indeed represented by the center of the convex set of

positive operators which is proportional to the identity. Alternatively,

this is the operation that forbids the transmission of any information

between the party’s lab and the environment. At all levels of the hierarchy,

it corresponds to tracing out the input state, whose CJ representation is

the identity operator, followed by repreparing the maximally mixed post-

measurement ‘state’ as output, whose CJ representation is proportional

to the identity operator.

Recapitulating, the linear space supporting sets of CJ operators have the

structure of a subspace of Hermitian operators containing the identity.

This kind of set belongs to a class that has been studied in operator theory

under the name operator system [102, 103]
7

(see References [106, 107] for

an up-to-date introduction).

Definition 3.2.1 (Operator system [103]) For a given space of operators, an
operator system is a subspace that contains the identity and that is closed
under the adjoint.

A real subspace of self-adjoint operators is indeed a special case of an

operator system. Now, the actual sets containing the CJ representation of

some kind of higher-order transformations are built on top of an even

more special kind of operator system: those that are closed with respect

to the complex conjugation. This is due to the fact that the adjoint of a

linear map is mapped to the conjugate of its Choi operator, see property 8

of Proposition 2.2.1. Hence, a Choi operator and its conjugate essentially

represent the same map, and since the interesting operators are the

self-adjoint ones, the set of such operators must be closed under the

transpose as well. For these reasons, in this thesis when mentioning an

‘operator system’, it will always be meant ‘the real subspace spanned by

a set of self-adjoint operators containing the identity and which is closed

under the transposition with respect to the basis used to define the CJ

isomorphism’.

Similar to the quantum states and quantum channels cases, the admissi-

bility of a set of maps to represent a set of higher-order operations will be

shown to entail the positivity and trace-normalization of the operators.
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This in turn restricts the operator system to the cone of positive operators

and a hyperplane orthogonal to the identity. These two conditions define

the abstract structure that will play a central role in the characterization

of higher-order quantum transformations, named state structure.

Definition 3.2.2 (State structure) A state structure A ⊂ L
(
HA
)

is a
set of positive operators that share the same non-zero trace, which is closed
under the transposition, and that spans an operator system.

The linear span of a state structure will be called the operator system on
which it is defined. For simplicity, the same script letter will be used to

refer to a state structure and the operator system it spans, as it should

be clear from the context which one is under consideration. Note that at

least two operator systems can be defined on every Hilbert space: itself

and its real subspace of self-adjoint operators. In accordance with the

above discussion, this is the latter that will implied when talking about

the largest operator system defined on a space as all operator systems are

assumed made of self-adjoint operators. Since a state structure can be

defined for any Hilbert space, a special case of which is the one defined

on a 1-dimensional system: the state structure of the trivial system, which

by definition is always normalized to be the number 1.

Definition 3.2.3 (The state structure of the trivial system) A system
associated with a one-dimensional state space is called trivial; it always has
the same trivial state 1. The state structure of the trivial system8

8: The name ‘trivial state structure’ will

also be used as a shortcut for ‘state struc-

ture of the trivial system’.

is the
state structure in the operator system R that consists of the number 1.

Likewise, note that two state structures defined on the same underlying

operator system only differ by their normalization: they are isomorphic

up to a rescaling of their trace.

The interest of working with state structures is that they abstract the

operations into abstract sets that can be compared and combined. The

knowledge of the state structure associated with the local operations

and two parties, combined with a constraint on their signaling relation,

defines a new composite state structure, which represents all the joint

operations these parties can do. For example, knowing that two parties

can prepare quantum states, inferring that globally they prepare states

from the set of bipartite states is an example of combining two state

structures into a new one: the set of density operators defined in the

space associated with party A and the one of B have been combined into

the set of density operators defined in the composite space.

3.2.2. Probabilistic Content: Defining Resolutions

State structure represents sets of deterministic quantum operations. What

about the probabilistic content of the theory? The CJ isomorphism has the

advantage of being a module homomorphism, meaning it maps the vector

space of quantum operations onto a vector space in the CJ representation.

Because of that, the convex combinations of two operations are mapped

to the same convex combinations of the two operators representing them.

The representation of probabilistic operations is accordingly mapped to

a resolution of the representation of deterministic operations.
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[72]: Kraus (1983), States, Effects, and Op-
erations: Fundamental Notions of Quantum
Theory.

[108]: Ludwig (1983), Foundations of Quan-
tum Mechanics I.

[14]: Davies et al. (1970), An operational
approach to quantum probability.

9: Remark that nothing guarantees a pri-

ori that every positive operator represents

an experimentally feasible probabilistic

operation. Or even that any element of a

resolution can be obtained from a com-

bination of elements of a lower-order

operation. Therefore, this definition may

hide a mathematical hypothesis under-

lying the theory presented in this thesis;

see Appendix C.3.1 for some comments

concerning this hypothesis.

In the motivating example, a POVM is the deterministic ‘destructive

measurement’ operation represented by the unit quantum effect {1} re-

solved into probabilistic ‘measure outcome a’ represented by a collection

of quantum effects {Ea} so that the (probabilistic) effects sum up to the

(deterministic) effect, ∑
a

Ea = 1 . (3.11)

A coarse-graining of the outcomes amounts to redefining their set as one

in which one or more outcomes are mapped to the same new outcome.

For example, a coarse-graining may consist of combining two outcomes

ai and aj into a joint one ãk so that p(ãk) = p(ai ∪ aj). In terms of the

quantum implementation, this coarse-graining is obtained by summing

the associated effects, Ẽãk = Eai + Eaj [72, 108]. This coarse-graining

defines a new valid POVM {Ẽã} under the identification

{Ea} 7→ {Ẽã} :

∀l, l ̸= i, j, k : Eal = Ẽãl ;

Eai + Eaj = Ẽãk .

(3.12)

In the same manner, a quantum instrument {Ma} can also be coarse- and

fine-grained using the addition operation like M̃ã =Mai +Maj [14].

Since the Choi-Jamiołkowski representation is linear, this coarse-graining

is also represented through the addition in the CJ picture, i.e.

M̃ã =Mai +Maj

(2.6)7→ Mã =Mai +Maj . (3.13)

Since the elements in the quantum instrument are CP, their CJ represen-

tation is a collection of positive operators {Ma}, the effects at the level of
instruments, resolving a unit effect M . This is a similar structure to the

elements of a POVM; but the difference is that there are now more than

one unit effectsM to sum up to, with each corresponding to the represen-

tation of a channel. Accordingly, the setting plays a role more important

for instruments than for POVMs because two quantum instruments do

not necessarily sum up to the same quantum channel. Consequently,

different settings x, x′ can now lead to different deterministic operations

(unit effects):

∑
aMa|x ̸=

∑
a′ M

′
a′|x′ . Compare it to the only effect in the

POVM case

∑
aEa|x =

∑
a′ E

′
a′|x′ = 1.

Generalizing from the example, the probabilistic content of the theory is

phrased under the concept of a resolution by formal analogy
9

with the

POVMs as well as the quantum operations of Definition 1.3.4.

Definition 3.2.4 (Resolution of a state structure and resolution of

an element of a state structure) Let A be a state structure in L
(
HA
)
.

A set of operators resolving an element of A is a collection of positive
operators summing up to this element. That is, a set of operators {Ei}i∈Ωi

is
a resolution of an element of A if

∀i ∈ Ωi : Ei ≥ 0 ; (3.14a)∑
i∈Ωi

Ei ∈ A . (3.14b)

The resolutions can be used to represent anything probabilistic in the



60 3. State Structures

10: Notice the multiplication by a proba-

bility as it is a conditional distribution;

the notation is coherent with a Bayesian

interpretation of the states as ‘state of

knowledge’ of the system [109]

[109]: Leifer et al. (2013), Towards a for-
mulation of quantum theory as a causally
neutral theory of Bayesian inference.

.

[35]: Araújo et al. (2015), Witnessing causal
nonseparability.

12: The base state structure defines what

is taken as the ‘first order’ operation un-

der consideration. Usually taken to be

the preparation of quantum states, hence

the state structure of density matrices.

state structure. For example, if the state structure is a set of quantum

state preparations, the preparation of a state conditioned by a setting

is a resolution
10 {ρx := p(x)ρ|x} of the mean state ρ =

∑
x p(x)ρ|x .

The mean state preparation is the deterministic operation (unit effect)

resolved by the probabilistic operations (effects) consisting of preparing

states from the set {ρ|x}.

3.2.3. The Projective Characterization of Single-Partite

State Structures

As mentioned in the previous sections, the great interest in working

in the CJ picture is that all sets have the same abstract structure. This

structure in turn has a remarkably simple characterization [35].

Proposition 3.2.1 (Characterization of a State Structure) For every state
structure A as in Definition 3.2.2, there exists a unique superoperator
projector11

11: Recall that a superoperator is a linear

map from a space of operators to itself

and that a projector is an idempotent lin-

ear map. In the case of a projector charac-

terizing the operator system spanned by

a state structure, it belongs to a special

kind of projector that will be defined in

the following, Definition 3.2.7. See Ap-

pendix C.1.3 for a longer introduction of

these projectors.

PA : L
(
HA
)
→ L

(
HA
)

characterizing its span. That is, for
every operator VA ∈ L

(
HA
)
,

VA ∈ A ⇐⇒
VA ≥ 0 , (3.15a)

Tr [VA] = cA , (3.15b)

PA {VA} = VA , (3.15c)

where cA is a positive real number.

The first two conditions, positivity and normalization, are common to

all state structures. They follow from the admissibility of linear maps to

represent a higher-order operation (which will be made formal in the

following). The positivity is related to generalized complete positivity,

thus required for defining arbitrary compositions of state structures.

While important, this condition does not tell much about the current

state structure at hand because all of them obey this condition. The

normalization is trace-preservation, required for the normalization of

probabilities. It is fixed for a whole hierarchy of state structures as soon

as it has been fixed for the state structure of the lowest order, called the

‘base state structure’
12

.

Therefore, the relevant bit in the characterization of the higher-order

operations is the third line: the projector defining the operator system

spanned by the state structure. Two projectors that are defined for all

spaces of operators acting on a Hilbert space always result in state

structure as in Definition 3.2.2. The first is the identity.

Definition 3.2.5 (Identity Map) The superoperator I : L
(
HA
)
→

L
(
HA
)

defined by
∀VA, IA(VA) = VA , (3.16)

is called the identity map. Its CJ representation13
13: As in Equation (2.8). is the maximally entangled

operator
C (I) =

∑
i,j

|i⟩ ⟨j|A0
⊗ |i⟩ ⟨j|A1

, (3.17)
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where the input and output spaces have been labeled to disambiguate them:
HA0 ∼= HA1 ∼= HA.

The second is the depolarizing superoperator, because an operator system

always contains a maximally mixed element.

Definition 3.2.6 (Depolarizing Superoperator) The superoperator D :

L
(
HA
)
→ L

(
HA
)

defined by

DA(VA) :=
1A

dA
Tr [VA] , (3.18)

is called the depolarizing superoperator. Its CJ representation is propor-
tional to the identity operator

C (D) =
∑
i,j

|i⟩ ⟨i|A0
⊗
|j⟩ ⟨j|A1

dA1

= 1A0
⊗ 1A1

dA1

, (3.19)

where the input and output spaces have been labeled to disambiguate them:
HA0 ∼= HA1 ∼= HA.

These two projectors are examples of projectors on an operator system.

The identity is associated with the operator system of all self-adjoint

operators since it projects the space on itself. Thus, this is the biggest

operator system that can be defined on a space of operators. Whereas the

depolarizing superoperator projects on the span of the identity, which is

the smallest one
14

14: Notice that these two projectors are

moreover always valid operations on any

state structure. The identity is the ‘do

nothing and pass the system on’, whereas

the depolarizing is the ‘replace by white

noise’ operation. The fact that they are

valid higher-order operations, no mat-

ter the level of the hierarchy, will play

a role in interpreting the characteriza-

tion method as a lattice, leading to the

logic-like structure of the characteriza-

tion presented in Chapter 5.

.

The projectors characterizing state structure are defined in between these

two cases. The only requirement to projector on a state structure is that,

like the identity and depolarizing superoperators, they must preserve

the identity and be closed under adjoints.

Definition 3.2.7 A projector on an operator system PA : L
(
HA
)
→

L
(
HA
)

is a linear orthogonal superoperator projector to a subspace closed
under the adjoint that contains the identity.
Mathematically15

15: The exact mathematical phrasing of

the conditions (3.20) is derived around

Equations (C.20), (C.25), (C.28), and

(C.31) presented in Appendix C.1 along-

side a reminder on some of the properties

of projectors.

Some examples of projectors on operator

systems in the Pauli basis are presented

in Appendix C.1.4.

, it is a linear superoperator PA ∈ L
(
L
(
HA
)
,L
(
HA
))

that obeys the following conditions:

PA ◦ PA = PA ; (3.20a)

P∗
A = PA ; (3.20b)

PA ◦ † ◦ PA = † ◦ PA ; (3.20c)

PA ◦ DA = DA , (3.20d)

where ‘∗’ indicates the adjoint in L
(
L
(
HA
)
,L
(
HA
))

and where ‘†’ means
taking the adjoint in L

(
HA
)
.

Remark that the first two conditions in the definition are just the definition

of an orthogonal projector.

The handiness of using projectors is that most of the properties of the

state structure they characterize are encoded in them. Furthermore, the

relations and combinations of local state structures with global state

structures –for example, the state structure obtained by the parallel
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applications.
[115]: Wright et al. (2019), A Gleason-type
theorem for qubits based on mixtures of pro-
jective measurements.

composition of two local ones, or the state structure transforming a state

structure into another one (representing a higher-order transformation)–

can be expressed as composition rules on the projectors. The signaling

constraints between the operations of several parties are encoded into

their global state structure which is characterized by a global projector.

The idea of projective characterization is breaking the global projector

into local projectors combined through operations reflecting the signaling

constraints. These rules are what is derived in the following sections.

3.3. The Projective Characterization of States

and Effects

The first relation between state structures considered in the characteriza-

tion is those forming states and effects pairs. Consider the two projectors

introduced in the previous section, I and D. The first projector is associ-

ated with the state structure of quantum states in density matrix form,

ρ ∈ L (H), characterized by

ρ ≥ 0 , (3.21a)

Tr [ρ] = 1 , (3.21b)

I{ρ} = ρ . (3.21c)

The second projector is associated with the state structure of the quantum

unit effect, characterized by

1 ≥ 0 , (3.22a)

Tr [1] = d , (3.22b)

D{1} = 1 . (3.22c)

This latter state structure made up of a single element {1}, is what the

elements of a POVM, the effects, are summing up to, i.e., are resolving.

These two structures are not independent of each other. On the contrary,

they define each other through the inner product; a valid effect always

sends a valid state to a probability as

Tr

[
E†
a · ρ

]
= p(a) . (3.23)

In that regard, the quantum states are linear functional from the res-

olutions of the unit quantum effect to a probability. This is actually a

well-known result, called the Gleason-Busch theorem [110, 111]: imposing

a measure
16

on the set of observables uniquely fixes the set of states.

3.3.1. Effects as Functionals

This theorem can be generalized to state structures. Following the termi-

nology introduced in a series of papers generalizing the original theorem

on projective measurements to POVMs [112, 113] and beyond [60, 114,

115], the possible resolutions of a state structure can be seen as a σ-

algebra whose intersections and unions are represented by, respectively,

multiplication and addition of operators. As a consequence, a measure

can be defined on it. Concretely, a function mapping each effect to a
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[110]: Gleason (1957), Measures on the
Closed Subspaces of a Hilbert Space.

17: In the Gleason sense, i.e. simi-

larly to Spekkens’ measurement non-

contextuality, and not in the Kochen-

Speckers one, see [116]
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contextuality.
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tion.
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for the case of POVMs in the literature.

Moreover, as with defining resolutions

for state structures, defining determin-

istic functional to be normalized on ar-

bitrary resolutions of state structure in-

stead of POVMs actually may induce an

extra hidden mathematical hypothesis

in the model. As is the case for the defi-

nition of a resolution, the frame function

is a definition obtained by formal anal-

ogy and that results in the model this

thesis is about. The interpretation of the

hypotheses their definitions require is

left open for future work; for some pre-

liminary elements, see the discussion in

Appendix C.3.2.

[111]: Busch (2003), Quantum States and
Generalized Observables: A Simple Proof of
Gleason’s Theorem.

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[79]: Plávala (2021), General probabilistic
theories: An introduction.

[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

non-negative real number can be defined. All such measures are called

frame functions [110].

Definition 3.3.1 (Frame Function on a State Structure) Let A be a
state structure in L

(
HA
)
. A frame function on this state structure is a

(real-valued) functional f : L
(
HA
)
→ R so that, for all N ∈ A , for

all resolutions {Ea}|Ωa|
a=1 of N , and for all arbitrary sequences {Ei} :=

{Ej , Ek, . . .}{j,k,...}⊂Ωa
in the resolutions, the following holds:

f(N) = 1 ; (3.24a)

f(Ei) ∈ [0, 1] ; (3.24b)

f(Ej + Ek + . . .) = f(Ej) + f(Ek) + . . . . (3.24c)

This definition relies on two hypotheses: that the frame functions are

non-contextual
17

and that they associate a probability to all effects in

a homogeneous manner, not just to each set of mutually orthogonal

projectors
18

. These hypotheses are enough to enforce linearity for all

frame functions, whence the frame functions are elements of the dual

space L
(
HA,C

)
= L

(
HA
)∗

. As a consequence of the Riesz theorem,

these are representable as dual vectors on the same Hilbert space.

Lemma 3.3.1 The set of all frame functions {f} ⊂ L
(
HA
)∗ can be repre-

sented as a set {V } contained in L
(
HA
)

which forms a complex subspace.
Their action is given by the inner product so that

L
(
HA
)∗ ∋ f 7→ V ∈ L

(
HA
)
:

∀X ∈ L
(
HA
)
, f(X) = (V , X) = Tr

[
V † ·X

]
.

(3.25)

Proof. Any N as in Definition 3.3.1 can be taken as proportional to the

identity element. Since a frame function must also obey the conditions

for N = cA
dA
1, they can be seen as a frame function on {1} and so the

Gleason-Busch theorem applies [111], which prove that these maps are

linear functionals. By Riesz representation theorem, linear functionals can

be identified with a unique element V ∈ L
(
HA
)

so that Equation (3.25)

holds.

It remains to show that the operator representations of all linear function-

als, the set {V }, is a subspace of L
(
HA
)
. For a state structure A , let an

orthogonal family of self-adjoint operators Ni ∈ {N1, N2, . . . , NdA } be

such that it spans this set. Then, condition (3.24a) defines a set of linearly

independent constraints on all V ,

(Ni , V ) = 1 , (3.26)

which defines an affine subspace of dimension dA − dA (where dA is

the dimension of the affine span of A) .

Interpreting the frame functions, they are deterministic operations from

effects to probabilities: they are the general notion of a deterministic

operation but with either trivial input or output space, like a state

preparation or a destructive measurement. Following the literature, these

are called deterministic functionals [10, 11]. They generalize the notion of

a unit effect [79, 81] by allowing the existence of more than one in the
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20: Its first projective formulation was

derived in my work on the Multi-round

Process Matrices (MPM) but applied

to the restricted case of process matri-

ces and quantum combs [1, 34]. It ap-

peared in a similar projective form but

for restricted cases in Appendix B of

[35] as well as Theorem 2 in [92]; Its

non-projective formulation appeared at

Lemma 2 in [10] as well as Lemma 4 in

[11].

theory
19

. Note that the two terms will be used loosely to talk about the

set of linear functionals sending the elements of a state structure to the

number 1 as well as the set of their representation as vectors in L (H).

All deterministic functionals on a state structure are thus (representable

as) operators V mapping all resolutions to given distributions,

(V , Ea) = p(a|{Ea}, N, V ) , (3.27)

so that summing over the resolution amounts to forgetting the value of

a, making it a deterministic procedure which gives a probability of 1:∑
a

(V , Ea) = 1 . (3.28)

Formally, by applying Lemma 3.3.1 to the set of all frame functions, their

definition can be rephrased as a set of operators, called the deterministic

functionals.

Definition 3.3.2 (Deterministic Functional) The representation inL
(
HA
)

of a frame function on state structure A is called a deterministic functional
(or unit effect). The set of all deterministic functional on A is noted A ; it
contains all operators which take each element of A to the number 1 through
the inner product,

∀V ∈ A , ∀N ∈ A : Tr
[
V † ·N

]
= 1 , (3.29)

and which take each element Ea of every resolution ofN to a positive number
between 0 and 1, i.e.,

∀N ∈ A , ∀{Ea} : Ea ≥ 0 ,
∑
a

Ea = N ,

Tr
[
V † · Ea

]
∈ [0, 1] .

(3.30)

With the defining conditions (3.24) rephrased as inner products, the

characterization is now a linear problem.

Theorem 3.3.2 (Characterization of Deterministic Functionals) Let A
be a state structure. Let {Ea} be a resolution of an element of A as in
Definition 3.2.4. Let A be the set of all deterministic functionals as in
Definition 3.3.2. Then, A is a state structure characterized by the following
conditions:

V ∈ A ⇐⇒
V ≥ 0 , (3.31a)

Tr [V ] =
dA
cA

=: cA , (3.31b)

P
A
{V } := {IA − PA +DA} (V ) = V . (3.31c)

This theorem is a generalization of various results obtained in previous

works on higher-order quantum operations [1, 10, 11, 34, 35, 92]
20

. A full

proof is presented in Appendix C.2.1.

The set characterized in Theorem 3.3.2 will be called the state structure

complementary to A in the following. This defines some sort of duality

with respect to condition (3.29): an element of A is the need of an element



3.3. The Projective Characterization of States and Effects 65

21: This standard result is reminded in

Appendix C.1.3, Proposition C.1.3.

22: Which is equivalently a special party

that always chooses the same determin-

istic strategy, consisting of preparing a

fixed V ∈ A .

of A in order to obtain the number 1.

Definition 3.3.3 The state structure A as defined by Equations (3.31) is
called the dual or complementary state structure to A defined by Equations
(3.15).

In addition, the following corollary should be obvious from the theo-

rem:

Corollary 3.3.3 The double dual of a state structure is equal to itself,

A = A . (3.32)

The projector characterizing the dual state structure can be seen as being

obtained from an operation applied on the projector associated with the

original state structure. This operation called the negation (of a projector)

is defined using the ‘bar-over-the-original’ notation

P := I − P +D . (3.33)

It should be clear that this operation defines a new projector P out of

the original one, i.e. that (P )2 = P . In the appendix to Chapter 5, which

is concerned with operations on projectors as a means to characterize

state structures, it will be further shown that this newly defined projector

is a projector on operator system as in Definition 3.2.7. Moreover, as

commutation is preserved for all linear combinations of projectors, it

is also proven that a projector always commutes with its negation,

see Appendix D.2.3. As a consequence, the intersection of the two

state structures defined by projectors P and P can be defined as their

composition
21

, which yields the depolarizing superoperator,

P ◦ P = D . (3.34)

This equation shows that the intersection of the span of a state structure

and its dual is the span of the identity. This has an interpretation in terms

of the statistical structure of the operations, as discussed next.

3.3.2. Statistical Interpretation

The situation represented by a pair {A ,A } has interpretation in the

context of a single-partite process. The process is a deterministic func-

tional picked in A ; it represents the given environment
22

of party Alice.

The probabilistic operation of said party is then a quantum operation

resolving an element of A . The environment is thus represented by a

state V , and the party will apply an averaged unit effect N ∈ A on it.

The single-partite process thus generalizes the quantum state and effect

scenario into a state and effect pair taken from {A ,A }.

However, the party’s operation can also depend on her setting. In this

case, it is lifted from a resolution (generalizing the quantum instruments)

to the ad hoc generalization of a quantum operation, Definition 1.3.4,

when applied to resolutions of state structures.
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Definition 3.3.4 (Operation (from a state structure)) Let Alice be a party
whose deterministic operations are represented as the elements of A .
When conditioned by setting x and outcome a, Alice’s active part in her
intervention is represented as their choice of a (probabilistic) operation
from her state structure A to be applied on some locally23

23: ‘Locally’ means that A can in gen-

eral be only a factor in a bigger state

structure.

dual state structure
A .
An operation consists of a collection of deterministic elements
{N|x=0, N|x=1, . . .} ∈ A , her deterministic operations, indexed
by the setting x. Each of her deterministic elements are in turn
resolved into her probabilistic elements as in Definition 3.2.4:
{{Na|x=0}, {Na|x=1}, {Na|x=2} . . .}.
The related averaged operation N is the action of the operation when
averaged over all of its settings and outcomes, i.e. it is the quantum channel
defined by

N :=
∑
a,x

p(x)Na|x , (3.35)

where p(x) is the distribution of the setting.

The actual element Na|x that she will implement is determined by

the realization of a, but it is independent of x by intervention non-

contextuality. However, the values a might have taken are dependent on

the choice of the given set {Na|x=0} (the context). This implies that Alice’s

realized deterministic operation, N|x=0, is dependent on the realized

value of the setting, in that case x = 0. The distribution of Alice’s settings

and outcomes for a given choice of operation is thus given by

p(a|x) := p(a|x, {Na|x}, V ) =
(
Na|x , V

)
:= Tr

[
N†
a|x · V

]
. (3.36)

Of course, this joint distribution is also conditional on the choice of process

V . When it will be needed to make this choice explicit, an ‘environment

setting’ y can be introduced so that two different choices of V are labeled

by different choices of y, i.e. such that y ̸= y′ ⇐⇒ V|y ̸= V|y′ .

Then, different processes correspond to different probability distributions

conditioned by random variable y,

p(a|x, y) =
(
Na|x , V|y

)
. (3.37)

And when the environment is different, V|y ̸= V|y′ , then the processes

are different in the sense that there exists at least one operation that can

be used to distinguish between the two,

∃a, x, p(a|x, y) ̸= p(a|x, y′) . (3.38)

The probability of occurrence of a given value a is again always inde-

pendent of the choice of resolution {Na|x}x fixed
. This is the intervention

non-contextuality [51]: any outcome a appearing in two different resolu-

tions a 7→ a|x and a 7→ a|x′, x ̸= x′, should result in the same probability

distribution p(a|x, y) = p(a|x′, y). In that case, the elements of each

resolution have to be the same,

∀y, p(a|x, y) = p(a|x′, y) ⇐⇒ Na|x = Na|x′ , (3.39)

although the measured unit effects can be different, i.e. nothing can be
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24: This actually follows from the free-

dom of choice assumption, see Ap-

pendix C.3.3.

25: In the context of state and effect pair,

it requires the choice of strategy on the

state side to have no deterministic in-

fluence on the choice of strategy on the

effect side and vice-versa.

said about whether N|x = N|x′ .

With regard to that, each effect Na|x of the operation corresponds to a

conditional distribution p(a|x) of outcomes a for a given setting x (and

for a given state V ). Without the knowledge of x nor a, the operation

is averaged over all choices of settings and outcomes as the unit effect

N :=
∑
x p(x)

∑
aNa|x; without the knowledge of the outcome, the

operation is the unit effect N|x :=
∑
aNa|x. In these two cases, the

distribution sum up to a probability of 1:(
N|x , V

)
=
∑
a

(
Na|x , V

)
=
∑
a

p(a|x) = 1 ; (3.40a)

(N , V ) =
∑
x

p(x)
∑
a

(
Na|x , V

)
=
∑
x

p(x) = 1 . (3.40b)

The only difference is that in the first case, Alice still knows which

resolution she chose to apply, represented by the variable x.

Similar to how the conditional distribution can recover the joint dis-

tribution of settings and outcomes through p(a|x)p(x) = p(a, x), the

probabilistic operation {Na,x}with elements defined by
24

Na,x = p(x)Na|x (3.41)

recovers the joint distribution of outcomes and settings

(Na,x , V ) = p(a, x) . (3.42)

Defining such an Na,x amounts to treating the setting x as another out-

come. In other words, losing the a priori knowledge of which realization

of x happened.

3.3.3. Quasi-Orthogonality

The joint probability distribution of Alice outcome a and setting x given

an environment picked through random variable y is thus given by

p(a, x|y) =
(
p(x)Na|x , V|y

)
. (3.43)

The joint distribution of all three random variables is accordingly given

by

p(a, x, y) = p(a, x|y)p(y) =
(
p(x)Na|x , p(y)V|y

)
. (3.44)

While the freedom of choice assumption asserts that the settings are

independent
25

, p(x, y) = p(x)p(y), the fact that all pairings (V,N) ∈
(A ,A ) give the number 1 is the assumption that, on average, the freedom

of choice assumption is also verified by all choices of operation.

By ‘on average’ it is meant that, even when the environment is seen as

a probabilistic operation under the control of some local party, when

summing over the outcomes a and b, the joint distribution of settings is

independent. That is, the following sum∑
a,b

p(a, b, x, y) =
∑
a,b

(
p(x)Na|x , p(y)Vb|y

)
=
(
p(x)N|x , p(y)V|y

)
= p(x)p(y)

(
N|x , V|y

)
(3.45)
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should be equal to p(x)p(y) for all choices of V|y × N|x ∈ (A ,A ).

Otherwise, the choice of the operation of the party is not independent of

the choice of its environment. Seen as a state and effect pair, the choice of

state V should be independent of the choice of measurementN , although

the outcomes of the measurement, a, can be correlated with the choice

of V , y and correspondingly, although that b can be correlated with the

choice of N , x. Therefore, the defining condition

∀N ∈ A , ∀V ∈ A , (N , V ) = 1 (3.46)

of a ‘state and effect’ pair of state structures is the (almost tautological)

statement that, in a local lab, any deterministic operation (unit effect) on

a given environment occurs with a probability of 1 (hence the name). By

doing something authorized by the theory, it is certain that something has

been observed. The knowledge of what was observed is obtained through

a probabilistic operation (effect).

Theorem 3.3.2 guarantees condition (3.46) to be true whenever the

support of the unit effects is orthogonal to the support of the states

everywhere but at the identity. This condition is called quasi-orthogonality
[117]

26
. Quasi-orthogonality in turn implies the following property [107,

Theorem 2.37 iii)]:

∀V ∈ A ,∀N ∈ A , Tr [N · V ] =
1

dA
Tr [N ]Tr [V ] . (3.47)

Combining the trace conditions and Equation (3.47) yields the follow-

ing.

Tr [N · V ] = Tr

[
N · 1

cA

]
Tr

[
1

cA
· V
]
. (3.48)

This suggests the interpretation of the above as a concrete instance of the

difference between randomizing and acting probabilistically: a state and

effect pair are two sets of deterministic operations such that the choice of

an operation in one set cannot modify the probability distribution seen by

the other set; it is as if the other always chooses to do a maximally mixed op-

eration. However, keep in mind that it is always possible to see an influence

probabilistically. Indeed, the party on the effect side in Equation (3.48) can

still sometimes learn that someV was chosen rather than some otherV ′
by

applying a suitable probabilistic resolution {Na} ofN ; for certain choices

of resolutions the probability of seeing certain outcomes will be differ-

ent: p(a|{Na}, V ) = Tr [Na · V ] ̸= Tr

[
Na · 1

cA

]
= p(a|{Na}, V ′ = 1

cA
).

Hence, by repeating the procedure enough times, V and V ′
can be dis-

criminated by tomography. However, the same can never be achieved

deterministically, even if the experiment is repeated a large number of

times and the party on the effect side chooses to apply a randomized

choice of deterministic functionals like {p(x)N|x}. This is because allN|x

belong to A and therefore Tr

[
N|x · V

]
= Tr

[
N|x · 1

cA

]
for all choices of

N|x and V . Quasi-orthogonality is then the property that no deterministic

functional can be applied to a state in order to deterministically gain

information about it; repeated probabilistic procedures are needed to

distinguish any state from the maximally mixed one.
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3.3.4. Statistical Dependence of State and Effects

While Equation (3.48) can be seen as the operator version of the inde-

pendence of settings, it does not entail the independence of the party

from its environment in the sense that the joint outcome distribution has

no factorization like p(a, b|x, y) = p(a|x)p(b|y) as it would require the

analog of (3.48) to hold for all effects not just the unit ones,

Tr

[
Na|x · Vb|y

]
=

1

dA
Tr

[
Na|x

]
Tr

[
Vb|y

]
, (3.49)

which is obviously impossible as both operators can be any positive

element of L
(
HA
)
. Moreover, this influence can be used to signal from

one side to the other. When seeing V|y as under the control of some party

Bob which plays the role of Alice’s environment, the information about

this environment, represented by variable y, can be obtained through

a suitable choice of operation of the party so that she can distinguish

between different y, y′ which corresponds to different choices V|y, V|y′ ,

V|y ̸= V|y′ .

Suppose now that the environment is behaving like a party, in the

sense that Bob can also do probabilistic operations Vb|y . In that case,

Alice can obtain information about the average operation of the party

in the same manner: a suitable choice of resolution can help them

distinguish probabilistically between two different choices x, x′. This

point is contained in the following two statements:

∀{Vb|y}, {Vb|y′} : V|y ̸= V|y′ , ∃Na|x :
∑
b

Tr

[
Na|x · Vb|y

]
̸=
∑
b

Tr

[
Na|x · Vb|y′

]
; (3.50a)

∀{Na|x}, {Na|x′} : N|x ̸= N|x′ , ∃Vb|y :
∑
a

Tr

[
Na|x · Vb|y

]
̸=
∑
a

Tr

[
Na|x′ · Vb|y

]
. (3.50b)

These are indeed signaling distributions as in Definition 1.2.1. Substituted

by their probability distribution, these equations are exactly the definition

of signaling

∃a, x, y ̸= y′,
∑
b

p(a, b|x, y) ̸=
∑
b

p(a, b|x, y′) ; (1.8a)

∃b, x ̸= x′, y,
∑
a

p(a, b|x, y) ̸=
∑
a

p(a, b|x′, y) . (1.7b)

That is to say, the local information of the environment can be sent

to the party and the local information of the party can be sent to the

environment.

Notice that the quantum states and effects have a particular behavior with

respect to that fact. As there is only one unit quantum effectN|x = 1 for all

possible settings and strategies, it does not satisfy condition (3.50b). The

different choices of settings all lead to the same deterministic operation.

This is a convoluted way of arriving at the fact that quantum theory does

not allow for procedures that deterministically lead to postselection. Still,

in Chapter 5 this fact will be essential for understanding some peculiar

isomorphisms that only happen at the lowest levels of the hierarchy of

higher-order quantum processes.
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27: As was presented in Section 1.4.

28: Which is the 0-dimensional set {1}
defined over the 1-dimensional operator

system R, see Definition 3.2.3.

29: For example, by writing a confusing

statement like ‘a non-local state from a

local state structure’, since nothing for-

bids a priori a party to prepare a bi-

partite system in their lab. If the base

state structure of a party is the set of

4-dimensional quantum states, its states

represent the preparation procedure of

a 4-dimensional quantum system. Yet,

the resulting quantum system can have

a non-local quantum state with respect

to a 2-dimensional partitioning (see Ref-

erences [119, 120]

[119]: Zanardi (2001), Virtual Quantum
Subsystems.
[120]: Zanardi et al. (2004), Quantum Ten-
sor Product Structures are Observable In-
duced.

for instance).

3.4. The Projective Characterization of

Higher-Order Transformations

Whereas the state structure abstracts any higher-order object, the defi-

nition of a deterministic functional (Definition 3.3.2) and its projective

characterization (Theorem 3.3.2) can be seen as the abstract general-

ization of the single-partite process functional that was presented in

Subsection 1.3.5. This generalization is induced by the abstraction of

a quantum operation (Definition 1.3.4) into a higher-order operation

(Definition 3.3.4) since both the process and the deterministic functional

are a mapping from their corresponding notion of an operation to a prob-

ability. Following the logic of the first chapter, the next thing to be defined

after and characterized after the functional is then the transformation

between two state structures, so that it abstracts the notion of admissible

higher-order quantum transformations presented in Section 1.4 (Defi-

nition 1.4.2) to the notion of admissible transformation between state

structures (Definition 3.4.3).

Indeed, a state-and-effect dual pair like A and A only represent a

specific kind of intervention where the party prepares then destructively

measures a higher-order object whose state is an element of the state

structure A. But in between, the system often evolves, so its state changes.

This evolution, as it sends an element of A to another, is a map M :

A → A. More generally, this evolution may represent the intervention of

another party in between the two stages in a similar fashion to a quantum

channel. This kind of deterministically controlled modification of the

evolution is represented by a mapping on the state structure A to itself,

i.e. a superoperator27
, whose resolution can represent the probabilistic

intervention of the in-between party in a similar fashion to a quantum

instrument. Also, nothing prevents it from outputting a system in a state

of a different state structure. This is precisely what the preparation and

measurement are: as mentioned in the introduction (and as is explained in

the discussion of the graphical methods in Appendix A.3; see Figure A.1b),

a preparation (respectively, a measurement) is a transformation from an

element of the state structure of the trivial system
28

1 to an element of

a state structure A , A ∋ VA : 1→ A (respectively, from A to the state

structure of the trivial system, A ∋ NA : A → 1).

Therefore, any element of a state structure is interpretable as a map

from the trivial state structure to the element. Following this logic, maps

from one state structure to another state structure are maps on maps, i.e.

higher-order maps. In that sense, the notion of an order is relative. All

state structures represent a higher-order mapping of some kind. Once

the state structures associated with the local parties have been defined,

the higher-order maps relative to the local state structures are the maps that

relate two local state structures together. Note that ‘local state structures’

will be after that called ‘base state structures’ to avoid ambiguities with

quantum non-locality
29

: a base state structure is a non-composite state

structure representing all the deterministic interventions a local party

can perform in a single round. For example, the base state structures in a

bipartite process can be A and B, where A is a set of quantum states that

Alice can prepare in her local lab and B is a set of quantum channels that

Bob can realize in his own local lab. The process itself, modeling their

environment, is a higher-order map relating these two state structures.



3.4. The Projective Characterization of Higher-Order Transformations 71

[14]: Davies et al. (1970), An operational
approach to quantum probability.

[53]: Hardy (2001), Quantum Theory From
Five Reasonable Axioms.
[72]: Kraus (1983), States, Effects, and Op-
erations: Fundamental Notions of Quantum
Theory.

[76]: Ozawa (1984), Quantum measuring
processes of continuous observables.
[121]: Busch et al. (1995), Operational
Quantum Physics.
[122]: Fuchs (2002), Quantum Mechanics
as Quantum Information (and only a little
more).
[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
[8]: Chiribella et al. (2008), Transforming
quantum operations: Quantum supermaps.
[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[13]: Chiribella et al. (2008), Quantum Cir-
cuit Architecture.
[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[46]: Milz et al. (2022), Resource theory of
causal connection.

[60]: Shrapnel et al. (2018), Updating the
Born rule.
[82]: Wilson et al. (2023), Quantum Su-
permaps are Characterized by Locality.

[83]: Jenčová (2012), Generalized channels:
Channels for convex subsets of the state space.
[84]: Wilson et al. (2022), A Mathematical
Framework for Transformations of Physical
Processes.
[88]: Apadula et al. (2022), No-signalling
constrains quantum computation with indef-
inite causal structure.
[123]: Barnum et al. (2005), Influence-free
states on compound quantum systems.
[103]: Choi et al. (1977), Injectivity and
operator spaces.
30: See especially Reference [82] for

a comprehensive discussion; the cur-

rent discussion is an original yet infor-

mal rephrasing of their argument so to

give intuition and motivation for Defini-

tion 3.4.3.

In the following, it will be shown how sets of admissible higher-order

maps can be built and characterized entirely from the two state structures

they relate. The interest in working with state structures is that higher-

order maps are state structures themselves, so the characterization of

higher-order maps is recursive: a third-order map is characterized by

the second-order maps it relates using the exact same formula for how

these second-order maps are characterized by the first-order maps they

relate. Once this general formula is known, i.e. Theorem 3.4.1, any set of

higher-order maps can be built out of the knowledge of the lower-order

maps it relates.

3.4.1. Higher-Order Maps as Admissible Transformations

But what is an admissible higher-order transformation between state

structures? As a recursive application of the operational definition of

a map [14, 53, 72, 76, 121, 122] refined and formalized in more recent

works [5, 8, 10, 11, 13, 33, 46, 60, 82–84, 88, 123], the short answer given

by Definition 1.4.2 in Section 1.4 is “a completely CP-preserving TP-

preserving linear map between state structures”. From the mathematical

viewpoint, this definition makes sense since the completely positive

maps are the appropriate morphisms (transformations) between state

structures [103], and trace-preservation is required to keep normalized

probabilities.

In terms of the statistical interpretation, a broad interpretation compatible

with all these sources
30

is “any map that preserves the probabilistic

structure between state structures, even locally”. By this, it is meant that

starting from a set of local parties, say A, B, and C, each of which have

the ability to prepare and measure systems in a state taken from their

base state structure, say A ⊂ L
(
HA
)
, B ⊂ L

(
HB
)
, and C ⊂ L

(
HC
)
,

a higher-order transformation is admissible if it relates two local parties

through the generalized Born rule, no matter their choice of operations,

say A and B. In symbols,M sends a state of A to one of B; its input

must be compatible with any choice of state in A and its output with

any choice of measurement in B. This implies that for all choices of

resolution of A and B conditioned by arbitrary settings x, y of Alice and

Bob, respectively noted {Va|x} and {Nb|y}, the following is a well-defined

probability distribution:

p(a, b|x, y) =
(
Nb|y ,M

(
Va|x

))
B
. (3.51)

The action of such maps M should preserve the set of deterministic

operations on each side. This requires that the marginals

p(a|x, y) =
∑
b

(
Nb|y ,M

(
Va|x

))
B
, (3.52a)

p(b|x, y) =
∑
a

(
Nb|y ,M

(
Va|x

))
B
, (3.52b)

have to be well-defined probability distributions as well. This condition

can be shown to be equivalent to requiringM to be linear [5, 8, 13, 123].

BecauseM is linear, its adjoint can be defined,

p(a, b|x, y) =
(
Nb|y ,M

(
Va|x

))
B
=
(
M∗ (Nb|y) , Va|x)A , (3.53)
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[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

31: The transpose in Equation (3.55) has

been swallowed into the definition of

Va|x since these equations must be true

for all Va|x, which is the set of positive

operators, hence closed under the trans-

position.

[32]: Castro-Ruiz et al. (2018), Dynamics
of Quantum Causal Structures.
32: See property 2 in Proposition 2.2.2.

33: See References [124, 125]

[124]: Roman (2017), An Introduction to
the Language of Category Theory.

[125]: Heunen et al. (2019), Categories for
Quantum Theory: An Introduction.

. In categor-

ical terms, this amounts to assuming

that the category of State Structures is

a monoidal sub-category of CPM [126,

127]

[126]: Selinger (2007), Dagger Compact
Closed Categories and Completely Positive
Maps: (Extended Abstract).
[127]: Coecke (2008), Axiomatic Descrip-
tion of Mixed States From Selinger’s CPM-
construction.

. See in particular the Caus[C] con-

struction in [33]

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

.

and the above can be rephrased in the CJ picture: M 7→ MAB by

Definition 2.2.1 so that

p(a, b|x, y) = Tr

[
M†
AB ·

(
Va|x ⊗NT

b|y

)]
= Tr

[(
MT
AB

)† · (V Ta|x ⊗Nb|y)] . (3.54)

As the resolutions

(
Va|x ⊗NT

b|y

)
have support on the entirety of the

spaceHA ⊗HB and are positive,Mmust be positive. This means that

MAB is positive on pure tensors (POPT; see Definition A.1.2), so the

dagger can be omitted in the inner products. The above can then be

concisely written using the link product (see also Proposition 4.4 in

[33]):

p(a, b|x, y) = Nb|y ∗MAB ∗ V Ta|x . (3.55)

The requirements (3.52) that the marginals are well-defined become
31

p(a|x, y) =
(∑

b

Nb|y

)
∗MAB ∗ Va|x , (3.56a)

p(b|x, y) = Nb|y ∗MAB ∗
(∑

a

Va|x

)
. (3.56b)

Va|x ∈ L
(
HA
)

and Nb|y ∈ L
(
HB
)

are arbitrary resolutions of A and

B that respectively send the positive operators

(∑
bNb|y

)
∗MAB and

MAB ∗
(∑

a Va|x
)

to a probability through the inner product. Because

of that, the conditions of Theorem 3.3.2 are met: these equations are

verified provided that, respectively,

(∑
bNb|y

)
∗MAB ∈ A and MAB ∗(∑

a Va|x
)
∈ B. Moreover, since

∑
a Va|x ∈ A and

∑
bNb|y = N|y ∈ B

are arbitrary elements of state structures, (3.52) can be further simplified

into the requirements

∀NB ∈ B, NB ∗MAB ∈ A , (3.57a)

∀VA ∈ A, MAB ∗ VA ∈ B . (3.57b)

By the linearity of the mapM and the uniqueness of the adjoint, these

two conditions are a roundabout way of saying that the preservation of

probabilistic structure requires thatMmaps an element of A to one of

B [32],

∀V ∈ A, M (V ) ∈ B . (3.58)

It remains to see what the preservation of probabilities even locally entails.

Remark that Equation (3.55) is compatible with arbitrary extension by

the state of some other, non-involved local party C through the tensor

product. This is because of the associativity
32

of the link product,

∀VA ∈ A, ∀UC ∈ C,

MAB ∗ VA ∗ UC = (MAB ∗ VA)⊗ UC =MAB ∗ (VA ⊗ UC) . (3.59)

In terms of linear maps, this is but the statement that the extension by a

tensor product is a natural transformation
33

:

∀VA ∈ A, ∀UC ∈ C, M (VA)⊗UC = (M⊗IC) ◦ (VA ⊗ UC) , (3.60)

meaning that ‘applying the map, then extending by UC ’ is equivalent to

‘extending by UC then applying the map’.
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[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

In the same way that two local parties can share entangled quantum

states, one can postulate that parties A and C may share a non-separable

joint stateWAC ∈ A ⊗C ⊂ L
(
HA ⊗HC

)
, so thatM is compatible with

acting locally on the A’s part of the shared state:

∀WAC ∈ A ⊗ C, MAB ∗WAC ∈ B ⊗ C (3.61)

In the above equation, a notion of parallel composition of two state

structures was used, B⊗C. For now, it is taken as the following definition,

but its meaning and interpretation will be clarified in the following.

Definition 3.4.1 (Tensor Composition of State Structures) Let A and
B be two state structures as in Equations 3.15, their tensor composition
A ⊗B ⊂ L

(
HA ⊗HB

)
is the set of all operators W characterized by the

following constraints:

W ∈ A ⊗B ⇐⇒
W ≥ 0 , (3.62a)

Tr [W ] = cAcB , (3.62b)

(PA ⊗ PB) {W} =W . (3.62c)

Consequently, A ⊗B is the intersection of the linear span of A and

B with the cone of positive operators in L
(
HA ⊗HB

)
and with a

hyperplane for trace-normalization.

Notice that this definition, like Theorem 3.3.2, involves a new state

structure which characterization is obtained by applying an operation on

known state structures. In the case of the dual state structure, it was the

bar operation; in this case, it is the tensor product of projectors, whose

definition simply consists of using the definition of a tensor product of

linear maps. Again, this operation results in a valid projector on state

structures as in Definition 3.2.7. Moreover, the tensor product preserves

commutation, meaning that ifPA andP ′

A as well asPB andP ′

B commute

with each other, then PA ⊗ PB commute with P ′

A ⊗ P
′

B , this will be

shown in Appendix D.3.1.

In terms of linear maps, Equation (3.61) reads

∀W ∈ A ⊗ C , (M⊗IC) {W} ∈ B ⊗ C . (3.63)

It is the requirement that when the state space of a subsystem is locally

modified, the state space of the other subsystems is left untouched:

TrA [W ] ∈ C and TrB [(M⊗IC) {W}] ∈ C. Importantly, however, this

does not prevent an influence in the sense that the reduced state on

Charlie’s side, while belonging to the same state space, can be different

after the mapM has acted on Alice’s side:

∃M : TrA [W ] ̸= TrB [(M⊗IC) {W}] . (3.64)

Collecting the different requirements that have been presented so far, one

obtains the definition of an admissible higher-order map (first formalized

in [9]).
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34: I am grateful to the reviewers for

pointing out this mistake in an earlier

version of the manuscript.

35: A simple way to see it is to notice

that the identity 1AB is a pure tensor,

1AB = 1A ⊗ 1B .

36: Whether it is necessary is an open

question left for future work. This

question is linked to the remark Ap-

pendix C.3.1 about the absence of op-

erational justification for the definition

of a resolution of a state structure; if this

condition is not necessary, this would

be further evidence that the definition

of a resolution is ‘too strong’ with re-

spect to the operational interpretation:

imposing probabilistic behaviors to be

represented by any collection of positive

operators add an extra, not operationally

justified, constrain on top of complete

CP-preservation.

Definition 3.4.2 (Higher-Order Transformation) LetM be a map from
L
(
HA
)

to L
(
HB
)
, let A ⊂ L

(
HA
)

and B ⊂ L
(
HB
)

be state structures.
The map M represents a higher-order transformation between the set of
transformations A and B only if it is a structure-preserving map between
A and B. I.e., if and only if 1) it is linear; 2) it maps any element of state
structure A to one in B, that is,

∀V ∈ A , M(V ) ∈ B . (3.65)

3) it keeps this property when these state structures are embedded in
larger systems. That is, for any state structure C , the map M ⊗ IC ∈
L
(
L
(
HA ⊗HC

)
,L
(
HB ⊗HC

))
should map any element of A ⊗ C to

one of B ⊗ C .

However, this definition for state structures is not enough to entail

admissibility as in Definition 1.4.2 as generalized complete positivity

(Definition 1.4.1) is not guaranteed to hold by this definition alone
34

.

Remark that the definition instead entails that MAB ∗WAC as in Equa-

tion (3.61) to be a well-defined functional on some state structure B ⊗ C,

hence that

∀NBC ∈ B ⊗ C , ∀WAC ∈ A ⊗ C : NBC ∗MAB ∗WAC = 1 . (3.66)

Using the properties of the link product, this is equivalent to

∀NBC ∈ B ⊗ C , ∀WAC ∈ A ⊗ C : MAB ∗ (WAC ∗NBC) = 1 . (3.67)

While this last equation holds, it may be tempting to conclude that the

set of all (WAC ∗NBC) is actually equivalent to A ⊗B. However, this

is not the case, for instance when C is one-dimensional this set is made

of all pure tensors, i.e., {W ⊗ N |W ∈ A, N ∈ B}. Nevertheless, if

one considers the resolutions of this set, these are made of all positive

operators in L
(
HA ⊗HB

)
35

. Therefore, if NBC and WAC are assumed

to be under the control of parties that can act probabilistically, MAB

must be able to send these resolutions to a well-defined probability. In

symbols, let {Nb} be a resolution of an element of B ⊗ C and let {Wa}
be one of A ⊗ C, then

∀{Wa},∀{Nb}, MAB ∗ (Wa ∗Nb) ∈ [0, 1] . (3.68)

Because (Wa ∗ Nb) can be proportional to any positive operator in

L
(
HA ⊗HB

)
, this requirement is equivalent to requiring that

∀V ∈ L
(
HA ⊗HB

)
: V ≥ 0, Tr [V ·MAB ] ≥ 0 . (3.69)

This, in turn, amounts to restrictingMAB to the set of positive operators.

Summarizing, by the definition of a resolution of a state structure, and

assuming that parties could locally extend their operation on each side

of the map M, the Choi operator of M is forced to be positive. This

condition is actually sufficient
36

to enforce generalized CP. This leads to

the definition of an admissible transformation for state structures:
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[83]: Jenčová (2012), Generalized channels:
Channels for convex subsets of the state space.
37: This generalizes many results: a non-

projective version of this theorem ap-

pears in References [83], [10] (Lemma

2 and Theorem 5) and [11] as well as

[33] ([83] presents a singular approach

compared to the other sources as the the-

orems are derived for convex sets on op-

erator systems instead of state structures,

meaning that the trace normalization is

replaced by a convexity requirement); a

projective version in the case of the Pro-

cess Matrices was considered in Ref. [32],

although it misses the last two terms in

Equation (3.71) as pointed out in my work

[2]. The same result was independently

derived in Ref. [37].

Definition 3.4.3 (Admissible Higher-Order Transformation (between

state structures)) Let M be a map from L
(
HA
)

to L
(
HB
)
, let A ⊂

L
(
HA
)

and B ⊂ L
(
HB
)

be state structures. The mapM, is an admissible
transformation between state structures A and B if and only if 1) it is
linear; 2) it maps any element of state structure A to one in B; 3) its Choi
operator is positive.

3.4.2. Projective Characterization of Transformations

The following theorem characterizes admissible higher-order transfor-

mations [2, 10, 11, 32, 33, 37, 83]
37

.

Definition 3.4.4 (Transformations between State Structures) LetM∈
L
(
L
(
HA
)
,L
(
HB
))

be an admissible higher-order transformation between
state structures A and B as in Definition 3.4.3. Let M ∈ L

(
HA ⊗HB

)
be the Choi-Jamiołkowski representation of this map. This operator is a
transformation between state structures A and B. The set {M} of all
such operators is noted A → B.

Theorem 3.4.1 (Characterization the Transformations between State

Structures) The set A → B of all transformations between state structures
A and B is a state structure characterized by the following conditions:

M ∈ A → B ⇐⇒
M ≥ 0 , (3.70a)

Tr [M ] = cAcB =
cB
cA
dA , (3.70b)

PA→B{M} =M , (3.70c)

where

PA→B := IA⊗IB−PA⊗IB+PA⊗PB−PA⊗DB+DA⊗DB (3.71)

is a projector on operator system.

The proof is delayed to Appendix C.2.2, because it requires Lemma 3.5.1

derived below.

As with Theorem 3.3.2, the projector in Equation (3.71) can be concisely

defined as an operation on projectorsPA andPB likePA→B = PA → PB ,

the algebraic connector relating the two projectors into a new one is called

the transformation and represented by→. A transformation between

state structure represented byMAB can be seen as the bipartite functional

M̃ such that

Tr [MAB (·A ⊗ ·B)] = (·B ,M (·A))B = M̃(·A , ·B) . (3.72)

This functional is normalized on states from A in tensor product with

effects from B as is implicit in Equation (3.51) and the discussion below

it:

∀VA ∈ A ∀NB ∈ B, Tr [MAB (VA ⊗NB)] = 1 . (3.73)
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38: This is due to the Hilbert spaces

isomorphism L
(
L
(
HA
)
,L
(
HB

)) ∼=
L
(
HA
)∗ ⊗ L (HB

)
, where ∗ denotes

the algebraic dual.

39: BecauseM is CP.

(It is also the key observation for the proof of Theorem 3.4.1.) As a conse-

quence, the projector characterizing transformations can be expressed

in terms of projectors to dual state structure. That is, it actually can be

defined from the tensor product of supermaps and the negation operation

under the following combination:

PA→B = PA ⊗ PB . (3.74)

Thus, it can be defined as an operation on PA and PB , derived from ·
and · ⊗ · and noted with an arrow→:

PA → PB := PA ⊗ PB . (3.75)

This is a connector whose direction matters. In order not to change the

order in the tensor factorization of the spaces, the reversed symbol,←, is

defined accordingly:

PB→A = PA ← PB := PA ⊗ PB , (3.76)

and will be used whenever it allows sorting the tensor factors in lexical

order without overloading the notation with parenthesis.

3.5. Characterization of Bipartite State

Structures

The set of admissible transformations between two state structures A
and B is itself a state structure, noted A → B. As the notation hints,

this new state structure can be seen as a special kind of composition

between two state structures. This builds on the idea that a channel

M∈ L
(
L
(
HA
)
,L
(
HB
))

can always be decomposed as
38

M(·) =
∑
i

σiTr [ηi ·] (3.77)

where {σi} ⊂ L
(
HB
)

and {ηi} ⊂ L
(
HA
)

are sets of operators con-

strained by the definition of the channel. Its CJ representation is the

bipartite positive
39

operator M ∈ L
(
HA ⊗HB

)
such that

MAB =
∑
i

ηi ⊗ σTi . (3.78)

The span of allowed combinations of ηi’s and σi’s so that MAB belongs

to the span of valid transformations is exactly what the projector PA→B

involved in Theorem 3.4.1 characterizes. The extra conditions in the

theorem then require this decomposition to form a positive operator

which is correctly trace-normalized.

Putting these conditions aside, the projective requirement enforces in

particular Equations (3.57), stating that the reduced operator seen at one

side of the transformation after something has been applied on the other

side must always be an element of the dual state structure on this side.

For instance, if Bob is at the output of the transformation and measures

the states coming out of it by a deterministic measurement in B, then

the ‘reduced state’ seen by Alice at the input side is a deterministic
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40: Where the definition

cA :=
dA

cA
(3.31b)

is used to simplify the scalar quantity.

41: The transpose over subsystem B has

been swallowed in the definition of Ui

for conciseness.

42: As both are defined in terms of lin-

ear combinations, negations, and tensors,

which all preserve commutation.

43: Actually, remark that this inequality

breaks in certain limiting cases like for

example in the quantum channel case

when PA = IA and PB = IB . The

consequence of this will be explored in

Section 5.3.

measurement on the input, i.e. an element in A . Because the elements

can, in particular, be the identity operator, i.e., VA = cA
1
dA
∈ A and

NB = cB
1
dB
∈ B, these equations imply that

40

cB
1B

dB
∗MAB =

∑
i

Tr [σi]

cB
ηi =

1

cB
TrB [MAB ] ∈ A ; (3.79a)

MAB ∗ cA
1A

dA
=
∑
i

Tr [ηi]

cA
σTi =

1

cA
TrA [MAB ] ∈ B . (3.79b)

Thus, that MAB is a particular way to combine valid elements of A
with valid elements of B. According to this insight, the operator system

spanned by the set of transformations A → B is obtained as a special

way of combining the operator systems respectively spanned by A and

B. But how is this composite span obtained?

A special case of transformations can be understood as a measurement

followed by a repreparation like MAB = RA ⊗ UTB where RA ∈ A
and UB ∈ B. It may be conjectured that A → B is spanned by affine

combinations of such measurements, meaning that
41

∀MAB , ∃Ωi : ∀i ∈ Ωi : ∃qi ∈ R,
∑
i

qi = 1, ∃Ri ∈ A , ∃Ui ∈ B :

MAB =
∑
i

qiRi ⊗ Ui .

(3.80)

However, this decomposition only recovers Definition 3.4.1. The tensor

product of two state structures does indeed belong to the affine span of

pure tensor products of A and B.

Lemma 3.5.1 Any element of a tensor product state structure can be decom-
posed as an affine sum of tensor products of elements from the composed state
structures, i.e.,

∀W ∈ A ⊗B, W =
∑
i

qi Vi ⊗Ni,

where, ∀i, Vi ∈ A, Ni ∈ B, qi ∈ R, and
∑
i

qi = 1 .
(3.81)

The proof is presented in Appendix C.2.3. As a consequence, the intersec-

tion of the affine hull of the tensor product of operators in state structures

A and B with the cone of positive operators in L
(
HA ⊗HB

)
is exactly

the tensor product state structure A ⊗B.

Yet, A → B cannot belong to this affine span since the operator system

it spans is strictly bigger. This can be seen since the projectors PA → PB
and PA ⊗ PB commute

42
, hence the intersection of their respective

images is characterized by

(PA → PB) ◦
(
PA ⊗ PB

)
= PA ⊗ PB ̸= PA → PB . (3.82)

Therefore, the bipartite composition using the transformation connector

and the tensor connectors are different
43

.

As implied with the CJ representation, the ‘input’ and ‘output’ sides

of this composite state are differentiated by a partial transpose. This is
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44: I.e., PA

&

PB
∼= PB

&

PA. This

was not the case with the transformation,

PA → PB ̸= PA ← PB
∼= PB →

PA, since PA → PB = PA ⊗ PB ̸=
PA ⊗ PB = PA ← PB .

[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.
[128]: Kläy et al. (1987), Tensor products
and probability weights.
[129]: Aubrun et al. (2021), Entangleability
of cones.

because the ‘input’ side is interpreted as a functional related to A whereas

the ‘output’ side is a state like B. If the ‘input’ of the transformation

was reversed, i.e. if the two single-partite state structures A and B
involved in the definition of A → B were interpreted as two states

(diagrammatically, as top facing wires), then the transformation is a way

of defining a set of bipartite states out of two states structures, noted as

A

&

B.

Thus, two bipartite compositions have been considered so far, A ⊗B
and A

&

B. While the former has been postulated, the latter is the

admissible functionals normalized on it in the sense of Equation (3.73).

It follows from the proof and interpretation of Theorem 3.4.1 as well as

Equation (3.72) that this parr product of state structures is the composition

defined using the transformation between two state structures.

Definition 3.5.1 (Parr Composition of State Structures) The bipartite
state structure defined through the transformation, i.e. the CJ representation of
admissible transformations from a dual state structure A to a state structure
B, is called the parr composition of A and B. In symbols:

A

&

B := A → B (3.83)

This state structure is directly characterized by combining Theorem 3.3.2

and Theorem 3.4.1.

Corollary 3.5.2 The parr composition of two state structures is exactly the
dual of the tensor composition of the duals of each state structure composing
it,

A

&

B = A ⊗B . (3.84)

Remark that this equivalence appears once again at the level of operations

on the projectors: because of Equation (3.75), it is direct to check that

PA → PB = PA ⊗ PB . (3.85)

So the ‘parr’ composition of projectors can be defined as

PA

&

PB := PA ⊗ PB . (3.86)

Remark that this new way of composing projectors is, like the tensor of

projectors, a symmetric operation
44

. Hence, the two ways of constructing

a bipartite state structure, A ⊗B and A

&

B, are directly related. But

what actually distinguishes them?

Remark: Parallel with entanglement. The mathematical theory of

entanglement provides an analog question under the problem of how to

build the sets of join quantum states on the tensor product space from

the definition of the state space on each tensor factor (see References [74,

128, 129] for instance).

At a purely geometric level, the difference between A ⊗B and A

&

B
lies in choosing how to define a bipartite state structure, which is a

hyperplane of positive operators in L
(
HA ⊗HB

)
, from two similarly

defined hyperplanes A ⊂ L
(
HA
)

and B ⊂ L
(
HB
)
. In the case of
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[128]: Kläy et al. (1987), Tensor products
and probability weights.

45: See e.g., Section 5.1 in Reference [79]

[79]: Plávala (2021), General probabilistic
theories: An introduction.

.

46: Otherwise, they can trivially be sig-

naling to one another just by using the

pre-existing correlations featured in their

non-product operation.

entanglement, a similar question has been studied: how to form a joint

convex cone in L
(
HA ⊗HB

)
out of two convex cones, which are the

quantum state spaces in L
(
HA
)

and L
(
HB
)

[128].

Let Aquant. be the state structure of quantum states onHA and Bquant.

the one onHB . The algebraic dual of these state spaces, noted A ∗
quant. and

B∗
quant. and defined by

E ∈ A ∗
quant. ⇐⇒ ∀ρ ∈ Aquant., (E , ρ) ≥ 0 , (3.87)

are the set of all (representation of) positive functionals on quantum

states. That is, the set of unormalized quantum effects. To define the set

of join states, there are actually two relevant ways to be considered
45

.

The first is the minimal tensor product, consisting of the convex hull of

all product states,

Aquant. ⊗min Bquant. := Conv{ρA ⊗ σB |ρA ∈ A ; σB ∈ B} . (3.88)

This is the set of separable states. The second way, the maximal tensor

product, is obtained as the dual in L
(
HA ⊗HB

)
of the tensor product

of each dual in their respective spaces,

Aquant. ⊗max Bquant. :=
(
A ∗
quant. ⊗min B∗

quant.

)∗
. (3.89)

In the case of state structures, Definition 3.3.3 provides another form of

duality, A , ‘with respect to the deterministic operations’ according to the

defining condition (3.29) in Theorem 3.3.2. This duality is at the level of

the linear spaces spanned by the state structures rather than at the level

of cones of positive operators. In the same fashion as above, the tensor

product of state structures can be defined as the minimal tensor product,

since it is the minimal closure of all tensor products of elements from the

two sets that result in a valid state structure. And in the same fashion

still, the parr composition can be defined as the maximal tensor product

with respect to the · duality, i.e. it can also be defined as the ‘dual of the

tensor product of the duals’.

3.5.1. No-signaling as Local Quasi-Orthogonality

The difference between state structures A ⊗ B and A

&

B lies in

their signaling relations. Or, more precisely, whether they allow for a

deterministic transmission of information between the parties sharing a

state of these bipartite state structures.

To formulate this statement precisely, assume two parties Alice and Bob

trying to measure a shared bipartite state structure. Each locally sees their

own measurement operation as an effect state structure, respectively A
and B. Their measurements are locally disconnected and thus assumed

in tensor product
46

. Thus, both their probabilistic and deterministic joint

operations are assumed to factorize into a product state. In symbols, their

joint deterministic operations are represented by the set

{V ⊗N |V ∈ A , N ∈ B} . (3.90)
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47: Remember that it can be anything

outside their control that respects their

local operations: if both party’s opera-

tions are quantum measurements, W

is a bipartite quantum state; if they are

quantum instruments, W is a bipartite

process matrix; if Alice is preparing a

quantum state and Bob is measuring, W

is a channel; etc.

48: Defined in Definition 1.2.1 as

∀a, b, x, y, y′,∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) ;

(1.6a)

∀a, b, x, x′, y,∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y) .

(1.6b)

This set is contained in state structure A ⊗B. The greatest admissible

set of states they can jointly measure is the dual, which is A

&

B =

A ⊗B.

Hence, in general, the two parties share an environment
47

(a state)

W ∈ A

&

B and measure locally so that the probability distribution of

their outcomes is obtained via

p(a, b|x, y) = Tr

[(
Va|x ⊗Nb|y

)
·W

]
. (3.91)

The question reduces to finding what kind of shared state W Alice

and Bob can locally measure so that their outcome distributions are

guaranteed to be no-signaling for all choices of operation.

In the previous section, it was claimed that Definition 3.3.1 imposes a

sort of no-deterministic influence of the choice of state on the choice

of effect that was interpreted as a kind of no-signaling. This property

stems from the quasi-orthogonality relation (3.48), which can be phrased

as a projective condition (3.31c). Hence, a pair of deterministic prepara-

tion and measurement procedures applied on the same system cannot

influence each other if the operator systems they respectively span are

quasi-orthogonal. This is the content of the state/unit effect duality of

Definition 3.3.3.

This property can be turned into a subsystem-wise property. Enforcing

that a shared state W is no-signaling can be phrased as a sort of local

quasi-orthogonality condition as is now shown. Indeed, imposing the

no-signaling conditions
48

(1.6) on Equation (3.91) yields

∀a, x, y, y′, Tr

[(
Va|x ⊗N|y

)
·W

]
= Tr

[(
Va|x ⊗N|y′

)
·W

]
; (3.93a)

∀b, x, x′, y, Tr

[(
V|x ⊗Nb|y

)
·W

]
= Tr

[(
V|x′ ⊗Nb|y

)
·W

]
. (3.93b)

These equations can be reduced into a more concise condition that

resembles Equation (3.29).

Consider Equation (3.93a), since it should hold for any y, y′ the choice

of a particular setting is no longer needed, and one can simply consider

different unit effects N,N ′ ∈ B. Rewriting it as

∀N,N ′, TrA

[
Va|x · TrB [(1⊗N) ·W ]

]
= TrA

[
Va|x · TrB [(1⊗N ′) ·W ]

]
, (3.94)

one can simplify further by noticing that the possible Va|x actually range

over the whole of L
(
HA
)

by definition of a resolution, so that only the

trace over B part
49

49: Which can be interpreted as the (un-

normalized) reduced state seen by Alice.

is relevant:

∀N,N ′, TrB [(1⊗N) ·W ] = TrB [(1⊗N ′) ·W ] . (3.95)

Finally, as 1/cB is a valid element of B, it can replace N ′
to obtain the

shortened

∀N, TrB [(1⊗N) ·W ] =
1

cB
TrB [(1⊗ 1) ·W ] . (3.96)

Remark that this form gives the operational interpretation of local no-

signaling: once Bob has done his operation, the reduced state seen

on Alice’s side, WA = TrB [(1⊗NB) ·W ], is independent of the unit
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50: When applied to quantum processes

like channels, this no-signaling criterion

is sometimes called causality of quantum

channels in the literature [50, 78, 81, 130]

[50]: Chiribella et al. (2010), Probabilistic
theories with purification.

[78]: D’Ariano et al. (2017), Quantum The-
ory from First Principles: An Informational
Approach.

[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

[130]: Kissinger et al. (2017), Equivalence
of relativistic causal structure and process
terminality.

as in the sense of ‘no-signaling from the

future’; see the discussions in Section 1.2

and Subsection 5.3.1.

effect applied by Bob
50

. Alice cannot distinguish, even probabilistically,

whether Bob has applied a given N or the maximally mixed operation

cB1. Using Proposition 3.3.2, observe that 1/cB = Tr [N ] /dB because

of Equation (3.31b), so Tr [N ] can be put in the right-hand side so to

reach the desired formulation that resembles quasi-orthogonality. Doing

the same reasoning for condition (1.6b), the following rephrasing of

no-signaling (1.6) is reached:

∀NB , TrB [(1⊗NB) ·W ] =
Tr [NB ]TrB [W ]

dB
; (3.97a)

∀VA, TrA [(VA ⊗ 1) ·W ] =
Tr [VA]TrA [W ]

dA
, (3.97b)

Hence, no-signaling (1.6) can be recast into the conditions (3.97), which

amounts to requiring quasi-orthogonality for only one of the tensor

factors of an operator.

Moreover, and like the global quasi-orthogonality, local quasi-orthogonality

is a projective constraint as well.

Lemma 3.5.3 Let W be an operator in L
(
HA ⊗HB

)
, let V be one in the

operator system spanned by A and letN be one inL
(
HB
)
. Then, a necessary

and sufficient condition for

TrA [(V ⊗N) ·W ] =
Tr [V ]

dA
·N · TrA [W ] , (3.98)

to hold for all V and N is that

(PA ⊗ IB) {W} =W . (3.99)

That is to say, that W belongs to the subspace spanned by A ⊗ L
(
HB
)
.

See Appendix C.2.4 for the proof.

3.5.2. The Projective Characterization of Bipartite State

Structures

The no-signaling constraints can be used to impose the conditions (3.97)

on the bipartite composition of state structures obtained by higher-order

transformation. These two conditions define three new subsets of the

composite state structure. Let A

&

B = A ⊗B be the bipartite state

structure obtained as the set of CJ representation of higher-order trans-

formations between state structure A and B, i.e., the parr composition

A

&

B = A → B as in Definition 3.5.1. This state structure has A and

B as reduced state structures, meaning that ∀WAB ∈ A

&

B,

∀VA ∈ A , WAB ∗ VA ∈ B , (3.100a)

∀NB ∈ B, WAB ∗NB ∈ A , (3.100b)

as implied by Definition 3.4.3 and which can be checked from Theo-

rem 3.4.1.

Because this state structure has A and B as reduced state structures, it

must have been obtained as a composition of A with B. And, because
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it verifies neither of conditions (3.97), this composition is the two-way

signaling one. Three other compositions can be defined accordingly.

Definition 3.5.2 The bipartite state structure A

&

B is called the two-
ways-signaling composition of state structures A and B. Accordingly:
The subset of A

&

B obeying condition (3.97a) is called their A-to-B
one-way-signaling composition;
The subset of A

&

B obeying condition (3.97b) is called their B-to-A
one-way-signaling composition;
And the subset of A

&

B obeying both of conditions (3.97) is called their
no-signaling composition.

One of the key results of the characterization is that these four sets are

state structures.

Proposition 3.5.4 (One-Way Signaling Composition of State Structures)

Let A and B be two state structures as in Equations (3.15), their A-to-B one-
way signaling composition is the state structure A ≺ B ⊂ L

(
HA ⊗HB

)
consisting of all operators W characterized by the following conditions:

W ≥ 0 , (3.101a)

Tr [W ] = cAcB , (3.101b)

(PA ≺ PB) {W} =W , (3.101c)

where

PA ≺ PB := IA ⊗ PB − PA ⊗DB +DA ⊗DB . (3.102)

The same way, their B-to-A one-way signaling composition is the analogously
defined state structure A ≻ B ⊂ L

(
HA ⊗HB

)
but instead using the

projector

PA ≻ PB := PA ⊗ IB −DA ⊗ PB +DA ⊗DB . (3.103)

Proof. The positivity and trace conditions are inherited from W being

a valid transformation. The projector condition is obtained directly by

taking the intersection of the subspace of valid transformations with the

subspace of operators that are no-signaling from B to A, defined by By

Theorem 3.4.1, the former is characterized by projector PA → PB and by

Lemma 3.5.3 the latter is characterized by IA⊗PB . Since these projectors

commute, the intersection of the subspace they define is equivalent to

their composition. This composition is also a projector on an operator

system (these two statements will be proven in the next chapter). A bit of

algebra yields the projector (3.102),(
PA → PB

)
◦ (IA ⊗ PB)

=
(
IA ⊗ IB − PA ⊗ PB +DA ⊗DB

)
◦ (IA ⊗ PB)

= IA ⊗ PB − PA ⊗DB +DA ⊗DB . (3.104)

This required thatPB◦PB = DB which is the case since the only place two

quasi-orthogonal spaces intersect is at the span of the identity, therefore

the composition of their respective projectors yields the projector onto

the span of the identity which isDB . The proof for the other composition
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51: Be aware that this hierarchy, as well

as some of its blind spots that the meth-

ods developed in this thesis intent to

overcome, will be reviewed in the next

chapter, Section 4.3.

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[36]: Simmons et al. (2022), Higher-order
causal theories are models of BV-logic.

is the same.

Proposition 3.5.5 (No-signaling Composition of State Structures) Let
A and B be two state structures as in Equations (3.15), their no-signaling
composition is the tensor product of state structures A ⊗B as in Defini-
tion 3.4.1.

Proof. Similar to the proof above, the non-trivial part is to show that(
PA → PB

)
◦ (IA ⊗ PB) ◦ (PA ⊗ IB) = PA ⊗ PB . (3.105)

From Equation (3.104), the left-hand side is equal to

(
IA ⊗ PB − PA ⊗DB +DA ⊗DB

)
◦ (PA ⊗ IB) = (PA ⊗ PB −DA ⊗DB +DA ⊗DB)

= PA ⊗ PB .
(3.106)

And therefore the left-hand side is equal to the right-hand side. (The

proof that these three projectors commute and that their composition

is a well-defined projector on operator systems is again delayed for the

discussion in the next chapter.)

As will be shown in the next chapter, with the addition of the state

structure of deterministic functional, Theorem 3.3.2, these five ways

of combining state structures are enough to characterize every family

of operations considered in the literature so far, and they extend the

hierarchy of higher-order maps of Bisio and Perinotti [10, 11] by allowing

a composition that ‘block signaling’ in one direction
51

.

3.6. Example: Biased Quantum Theory

The novelty of the state structure approach compared to previous ap-

proaches like References [10, 11] is that the base state structure –the state

structure upon which the hierarchy is built– does not have to be the

set of quantum states. In that regard, the projective approach recovers

what the categorical treatment of References [33, 36] was able to do.

For example, in a state structure like A → B the base state structures

A and B can be any valid state structure. For comparing the resulting

higher-order process theories, one can consider various sets of possible

base state structures for a fixed number of subsystems associated with a

fixed number of parties. Say Alice’s system is known to be bipartite and

quantum, then her possible base state structures can be, for example, a

tensor composition, A = A0 ⊗A1, or a transformation A = A0 → A1

and the same reasoning applies to Bob.

Nonetheless, the set of base state structures in consideration does not

actually have to be restricted to only those that can be built from the

quantum states (corresponding to the identity projector) and the various

compositions presented in this chapter. Any state structure built from a

projector on operator systems would work. So what about projectors that

cannot be built from the identity and the various composition rules?
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52: See the example presented in the

methods, Appendix C.1.4.

53: Where, from Definition 2.3.4,

1 :=

(
1 0

0 1

)
; X :=

(
0 1

1 0

)
; Y :=(

0 −i
i 0

)
; Z :=

(
1 0

0 −1

)
.

A physically motivated example is the set of diagonal operators with

respect to a fixed basis. These correspond to the dephased states obtained

after a measurement in this basis, hence to classical systems to an extent.

The projector to a diagonal subspace, ∆, happens to obey the properties

(3.20) of a projector on an operator system
52

. The set of base state

structures for the states and effects of a single-partite system, in this case,

is characterized by, respectively, projectors ∆ and ∆ instead of I and

D.

Inspired by this example, and in order to present an original theory that

has not been studied before but which can be built using the projective

characterization methods, the set of base state structures, i.e. the state

space of the subsystems of each party, can be taken to be characterized

by projector ∆. Simply put, the purpose of this section is to present the

construction of a higher-order theory based on a subset of states that is

only generated by off-diagonal matrices for a given basis, so that their

diagonal elements will all happen to be 1/dA. This will illustrate the

utilization of the theorems so as to study the properties of the multipartite

state structures built out of it. The interest of this toy model is that it has

similar signaling properties to higher-order quantum transformations,

especially the bipartite process matrices, although it is represented on a

Hilbert space of much smaller dimension.

For simplicity, all subsystems are assumed two-dimensional. The spaces

of operators on each subsystem will be expressed in the Pauli basis
53

{1, X, Y, Z}. Let P = ∆ be the projector that restricts the basis elements

to {1, X, Y } in the Pauli basis so that the base state structure on system

A is A defined over the operator system Span
{
1A, XA, Y A

}
, associated

with projector PA. The normalization is assumed to be cA = 1 so to look

like a subspace of the quantum states.

Definition 3.6.1 (Biased Quantum Theory) In the space of operators over
a Hilbert space of dimension two, the elements of the following state structure
are called the biased quantum states:

V ≥ 0 ; (3.107a)

Tr [V ] = 1 ; (3.107b)

∆(V ) :=
1

2
(Tr [V ]1+ Tr [X · V ]X + Tr [Y · V ]Y ) = V . (3.107c)

Any state structure that uses the biased states or the dual state structure to
the biased states as the base state structure of all its parties is referred to as a
biased quantum theory.

By Proposition 3.3.2, the dual state structure to the biased quantum states

in L
(
HA
)
, i.e. the state structure of unit effects on A, is A defined over

Span
{
1A, ZA

}
, associated with PA, and normalized to cA = dA

cA
= 2.

Compare it to quantum theory in 2 dimensions: the normalization is the

same but Aquant. is defined over Span {1, X, Y, Z} and associated with

IA whereas A quant. is defined over {1} and associated with DA.

The theory characterized by P can be called a biased quantum theory

in the sense that the measurement can be ‘biased’ towards an arbitrary

element of A . Let the deterministic operations like V|x ∈ A have a

normalization taken so that cA = 1. By Theorem 3.3.2, a measurement
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is the set of deterministic operations N|y ∈ A resolved into sets {Nb|y}.
The probability rule reads

p(b|x, y) =
(
Nb|y , V|x

)
; (3.108)

this can be interpreted in regular quantum mechanics as a measurement

of POVM elementNb|y ∈ L
(
HA
)

followed by a projection onto the ‘state’

N|y ∈ A ⊂ Span {1, Z}. It is almost like quantum theory, but quantum

theory is restricted to projecting onto the ‘state’ 1. In other words, while

the post-measurement state is traced out at the end of a destructive

measurement in quantum theory, in this theory it is first projected onto a

selected N|y and only then traced out.

For that reason, the state and effect pair characterized by {PA,PA} is

similar to a quantum theory for states in L
(
HA
)

for which there exists

an inherent deterministic postselection of the measurement –here in the

computational basis {1, Z}. Nevertheless, the theory by itself does not

allow for the usual counter-logical behaviors encountered in theories

with postselection (see e.g. [131, 132]) because it is inherently constraining

the allowed states into a basis that is quasi-orthogonal to the one of the

postselection (see also [133, 134]). Another way to picture it is that the

theory allows for a postselection but in a basis that is by construction

mutually unbiased [74] with respect to the basis of the state: in the

example, Alice can in general postselect in any state of the form 1+ p Z,

where p real and p2 ≤ 1 because of positivity
54

. That is, she can choose

to project the state into a mixture of projectors |0⟩⟨0| and |1⟩⟨1|, but the

state is itself built by superposing the eigenstates of the X operator, |±⟩,
with the ones of the Y , |±i⟩, and these are the two mutually unbiased

bases w.r.t. the computational. Therefore her postselection cannot be used

to distinguish from the maximally mixed state 1/2. Equivalently, she

cannot distinguish between states by choosing p ̸= 0, which explains how

the theory is operationally equivalent (in the sense of ‘tomographically

indistinguishable’ [78, 79]) to a qubit quantum theory with one ‘forbidden’

axis of the Bloch sphere.

In other words, despite its postselected aspect, Theorem 3.3.2 guarantees

the pair A,A to be a perfectly well-behaved preparation and measure-

ment pair. Meaning that no matter the settings x and y, the choices of

V|x, N|y and its resolution {Nb|y}, by construction no incoherence like

overnormalized or negative probabilities can be found in the distribution

of the outcomes. This impossibility of incoherence is the fact that y cannot

get correlated to x for any choice of operation in Equation (3.108); in

Subsection 3.3.3 this was referred to as the statistical independence on
average of a state and effect dual pair.

Interpreting the signaling in a one-party example is of course trivial. Yet,

as soon as more than one party is allowed, for example by associating

a party with the state and another one with the effect, the possibility

of deterministically sending a signal from one party to another will

coincide with this kind of allowed postselection. This behavior also

appears in quantum instrument formalism
55

, where the choice M|y
of which quantum channel the elements of an instrument {Mb|y} are

summing up to also amounts to deterministically inducing a bias in the

outcome probability, p(b|x, y) ̸= p(b|x, y′).
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56: Actually, the smallness of the dimen-

sion makes it so that all states in A ⊗B
are separable. The proof is provided as a

comment, Appendix C.3.5.

3.6.1. Bipartite Biased Quantum Theory

In the bipartite case, there are now two copies of the state structures

associated with the systems of two parties A = B = Span {1, X, Y }.
Following Section 3.5, the scenario under consideration involves two

parties A and B sharing a bipartite system whose state belongs to a

composition of state structures A and B. The ‘measurements’ performed

by these parties on their shared states are resolutions of A and B in a

tensor product, where A = B = Span {1, Z}.

The difference between a bipartite no-signaling composite state, meaning

an element of A ⊗ B, and the more general bipartite compositions

A ≺ B,A ≻ B and A

&

B becomes apparent. The set of all valid states

normalized on the local effects resolving A ⊗B is A ⊗B =: A

&

B
which, according to Proposition 3.3.2 is made of the following 13 basis

elements:

A

&

B ⊂ Span
{
1A ⊗ 1B ,1A ⊗XB ,1A ⊗ Y B , XA ⊗ 1B , XA ⊗XB , XA ⊗ Y B , XA ⊗ ZB ,

Y A ⊗ 1B , Y A ⊗XB , Y A ⊗ Y B , Y A ⊗ ZB , ZA ⊗XB , ZA ⊗ Y B
} . (3.109)

These were obtained by applying the projector PA ⊗ PB = IA ⊗ IB −
PA ⊗ PB + DA ⊗ DB , where P is the projector on the dual operator

system, spanned by {1, Z}.

On the other hand, the no-signaling composition of A and B, A ⊗B
as by Definition 3.4.1, is actually a subspace of A

&

B, its no-signaling

subspace, but only made of 9 elements. The four missing elements are

A

&

B\A ⊗B ⊂ Span
{
XA ⊗ ZB , Y A ⊗ ZB , ZA ⊗XB , ZA ⊗ Y B

}
, (3.110)

which are exactly the elements containing a Z term. The consequence of

this observation is that if Alice and Bob share a bipartite no-signaling state

W ∈ A ⊗B, they may observe nonlocal entanglement effects on their

outcome distributions
56

, but these correlations will obey no-signaling

constraints (1.6) in both directions. If, however, they share a general

bipartite state W ∈ A

&

B, they may use it to achieve deterministic

signaling: for certain states, they will be able to signal perfectly in one

direction, i.e. Alice can perfectly send a message to Bob, and vice-versa.

These allow (deterministic) signaling between A and B because they do

not satisfy the conditions (3.97) so Lemma 3.5.3 applies.

Indeed, these basis elements are those which are quasi-orthogonal

globally, meaning that the operators W ∈ A

&

B that contains some of

them will verify ∀NA ∈ A , ∀NB ∈ B

Tr

[(
NA ⊗NB

)
·W

]
=

1

dAdB
Tr

[(
NA ⊗NB

)]
Tr [W ] , (3.111)

because they satisfy Theorem 3.3.2 and therefore Equation (3.47). But

some of these W will not obey quasi-orthogonality with respect to a

local measurement, meaning that they will fail to satisfy at least one of

Equations (3.97). For example, the subset A ≺ B ⊂ A

&

B defined in
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57: The fact that the union of sets A ≺
B and A ≻ B has the same span as

set A

&

B is actually a defining feature

of the algebra of projectors that underly

the characterization methods. This point

will be explored in Chapter 5.

Definition 3.5.2 and characterized by Proposition 3.5.4 has elements W

such that

TrA

[(
NA ⊗ 1

)
·W

]
̸= 1/dATrA

[
NA
]

TrA [W ] . (3.112)

This means Alice can useW to signal to Bob. Observe moreover that these

four extra terms allowing for signaling split into either set A ≺ B,

A ≺ B\A ⊗B ⊂ Span
{
XA ⊗ ZB , Y A ⊗ ZB

}
, (3.113)

obeying only condition (3.97a). Or into set A ≻ B,

A ≻ B\A ⊗B ⊂ Span
{
ZA ⊗XB , ZA ⊗ Y B

}
, (3.114)

obeying (3.97b)
57

.

For instance, consider the task where Alice receives a classical bit x and

wants to communicate it to Bob so that his outcome b has the same value

as her setting, b = x. Without any resources, Bob can only guess and

thus succeeds with p(b = x) = 1/2. Now if they measure a shared state

in A

&

B, they can pick the following state:

WA≺B =
1

4

(
1A ⊗ 1B + ZA ⊗XB

)
, (3.115)

and choose to do the following: Alice ‘steers’ her measurement towards

|0⟩ or |1⟩ depending on x,

NA
|x = 1A + (−1)x ZA , (3.116)

while Bob is measuring an unbiasedNB = 1 resolved into a measurement

in the |±⟩ basis,

NB
b =

1

2

(
1B + (−1)b XB

)
, (3.117)

where b = 0, 1 so that his probabilistic effects sum up to a unit effect,

NB
0 +NB

1 = NB = 1B . One can check that they are effectively properly

normalized positive operators belonging to the proper state structures,

NA
|x ∈ A , NB ∈ B, despite NB

0 , N
B
1 /∈ B. The measurement results in

the following probability distribution:

p(b|x) = Tr

[(
NA

|x ⊗N
B
b

)
·WA≺B

]
. (3.118)

Injecting the above expressions into it yields

p(b|x) = 1

2

(
1 + (−1)x+b

)
, (3.119)

which gives 0 when x ̸= b and 1 when x = b; Alice’s setting is perfectly

correlated to Bob’s outcome. A bit was deterministically sent from A to

B, p(x = b) = 1. A similar thing can be done in the reverse direction,

e.g.

WA≻B =
1

4

(
1A ⊗ 1B +XA ⊗ ZB

)
(3.120)

will allow a strategy in which the setting of Bob is equivalent to the

outcome of Alice.

One can also try to construct a state in A

&

B superposing the two
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signaling directions like

W
A

&

B
=

1

4

(
1A ⊗ 1B + p

(
XA ⊗ ZB + ZA ⊗XB

))
. (3.121)

with p ∈ R. Such a state is the analog of the OCB Process Matrix (PM)

[5] in this toy theory: similar to how Alice and Bob can tune the channels

they plug in the OCB PM so to signal in one direction or the other, here

Alice and Bob can tune their measurement to signal in one direction or

the other.

The direct follow-up question is whether such a state can be used to

violate a causal inequality. It is actually known that quantum theories

with a specific kind of linear post-selection restricted to avoid paradoxes

can reproduce all process matrices and, in particular, those that violate

causal inequalities [47, 134–136]. Since biased quantum theory is very

similar to such theories, the question makes sense. But this is where

bipartite biased quantum theory diverges from bipartite process matrix

formalism: it cannot. Positivity implies that the weight p obeys |p| ≤ 1/2,

whence the state is separable into two one-way signaling states,

W
A

&

B
=

1

2
WA≺B +

1

2
WA≻B , (3.122)

with WA≺B and WA≻B given by Equations (3.115) and (3.120), respec-

tively.

As a matter of fact, it can be shown that any state in state structure

A
&

B is decomposable as a convex mixture of one in A ≺ B with one

in A ≻ B.

Proposition 3.6.1 The two-way signaling bipartite composition of the states
spaces of biased quantum theory, A

&

B, is equivalent to the convex hull of
the one-way compositions A ≺ B and A ≻ B.

Proof. Suppose it was not the case, then any non-trivial combination

would contain a term of the form qU ⊗ Z + pZ ⊗ V , where U and V are

weighted combinations ofX and Y of the form like U = aX + bY where

a2 + b2 = 1. Such a non-trivial operator W would read

W =
1

4

(
1A ⊗ 1B + qUA ⊗ ZB + pZA ⊗ V B + . . .

)
. (3.123)

By Lemma C.1.2, the weights q, p must obey at least |p|+ |q| > 1 if they

were to prevent a convex decomposition like

W = |q|1
4

(
1A ⊗ 1B +

q

|q|
UA ⊗ ZB + . . .

)
+ |p|1

4

(
1A ⊗ 1B +

p

|p|
ZA ⊗ V B + . . .

)
. (3.124)

However, it is always possible to form a maximally entangled state of the

form

ρ =
1

4

(
1A ⊗ 1B − |q|

q
UA ⊗ ZB − |p|

p
ZA ⊗ V B − |q|

q

|p|
p
(U · Z)A ⊗ (Z · V )B

)
. (3.125)
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59: Beside note 56, notice this is a ‘Guess

Your Neighbour Input (GYNI)’ game

with uniformly distributed input. It is

known that neither classical nor quan-

tum no-signaling strategies can outper-

form random guessing, see Reference

[97]

[97]: Almeida et al. (2010), Guess Your
Neighbor’s Input: A Multipartite Nonlocal
Game with No Quantum Advantage.

.

As if the Pauli basis in Alice’s side was redefined
58

58: One can check that the algebraic

properties and normalization are indeed

unchanged; these are still mutually unbi-

ased observables but in a different eigen-

basis.

under X 7→ U ,

Y 7→ i U · Z and Z 7→ Z while at the same it is redefined in Bob’s side

with Z 7→ V , Y 7→ i Z · V and X 7→ Z . Such a state, whose third term

|q|
q

|p|
p (U · Z)A ⊗ (Z · V )B is outside of the support of A

&

B, has an

inner product with W equal to

(W , ρ) = 1/16 (1− (|p|+ |q|)) . (3.126)

Therefore, if p and q were not convex weights, then |p|+ |q| > 1, so the

inner product would be negative meaning that the operator W would

not be positive, a contradiction.

This is at odds with the OCB PM which is not a convex mixture of

one-way signaling terms but an affine one. Because of that, if the parties

were trying to use the bipartite state to violate a causal inequality similar

to the one presented in [5] they would never do better than a mixture of

one-way strategies, so they would not violate the inequality.

For example, consider the game where it is required that Alice’s setting is

equivalent to Bob’s outcome and vice-versa, x = b and a = y. Assuming

all variables to be uniformly distributed classical bits, the probability in

the no-signaling case is p(a = y, b = x) = 1/4, and it cannot be improved

using non-locality
59

. However, if A and B share the state (3.121), they

can both do ‘half’ of the one-way signaling strategy, with the effects

NA
a|x =

1

2

(
1A +

1√
2
(−1)a XA +

1√
2
(−1)x ZA

)
, (3.127a)

NB
b|y =

1

2

(
1B +

1√
2
(−1)b XB +

1√
2
(−1)y ZB

)
, (3.127b)

which are adding up to

NA
|x = 1A +

1√
2
(−1)x ZA , (3.128a)

NB
|y = 1B +

1√
2
(−1)y ZB . (3.128b)

This specific choice of operations result in the probability distribution

p(a, b|x, y) = Tr

[(
NA
a|x ⊗N

B
b|y

)
·W

]
. Explicit computation gives

p(a, b|x, y) = 1

4

(
1 +

1

4

(
(−1)a+y + (−1)b+x

))
. (3.129)

Hence, the probability of Alice guessing correctly individually is

∑
b p(a =

y, b|x, y) = 5/8, and the same holds for Bob, this is slightly better than

the purely random case. Yet, while the probability of both of them

correctly guessing each other’s input is p(a = y, b = x) = 3/8 which

is better than the no-signaling (i.e. purely random) case, this is worse

than a strategy using one-way signaling in a pre-decided direction fol-

lowed by a random guess for the other, resulting in a probability of

pone−way(a = y, b = x) = 1/2.

The bottom line of this first example is that compared to quantum theory,

there exist states in A ⊗B which allow to deterministically beat either

one of the no-signaling constraints (1.6) and at the same time there exist
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of the categorical presentation of quan-

tum theory. This equality is the fact
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36]
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, for which A

&

B ⊋ A ⊗B.

states that allow for two-ways probabilistic signaling as well. However,

the biased quantum theory is too simple to beat a causal inequality:

as the two-way signaling states are convex sums of one-way signaling

strategy, their probability distribution can always be explained in terms

of a mixture of one-way signaling correlations.

Remark that with respect to every Bell-kind scenario with state structures

characterized by the projective methods, quantum theory plays a special

role. This is the only state structure whose bipartite states normalized

on no-signaling composite effects are automatically no-signaling. It can

be checked from Equation (3.70c) that the projector IA ⊗ IB associated

with the ‘fully signaling’ bipartite quantum states Aquant.

&

Bquant. is

equivalent to the projector IA ⊗ IB associated with the ‘no-signaling’

subset of bipartite states, Aquant. ⊗Bquant.. Hence, bipartite quantum

states are automatically no-signaling, Aquant.

&

Bquant. = Aquant. ⊗
Bquant.. This may not be a surprise

60
, but compared to the general

properties of the state structures, this is an oddity.

The particular behavior of quantum theory is the reason why a differ-

ent theory (the biased quantum theory) was chosen as the illustrating

example for this section. The study of quantum theory and its higher-

order generalizations in the state structures language will happen in a

later chapter, after the algebraic properties of the projectors have been

presented.

3.6.2. Biased Quantum Channel Theory as a Toy Model

for OCB Correlations.

While most of the important features of the bipartite state structures

were present in the bipartite state case, it was not possible to violate a

causal inequality with it. But can it work for the transformation as in

Definition 3.4.3? After all, this is another case of bipartite state structure

that can be built in biased quantum theory. In this case, the signaling

properties are not with respect to parties ‘on the left’ or ‘on the right’ of

the shared ‘state’ W ; but rather with respect to the party ‘at the input’ or

‘at the output’ of the shared ‘channel’ M .

This kind of state structure can for example represent the evolution of

states of the biased quantum theory. This evolution is by the no-restriction

hypothesis all the structure-preserving maps from the biased theory to

itself. Theorem 3.4.1 characterize these as the set A → B where the state

structure of the input and output are the same, A = B ⊂ Span {1, X, Y };
its basis elements are

A → B ⊂ Span
{
1A ⊗ 1B ,1A ⊗XB ,1A ⊗ Y B , XA ⊗XB , XA ⊗ Y B , Y A ⊗XB ,

Y A ⊗ Y B , ZA ⊗ 1B , ZA ⊗XB , ZA ⊗ Y B , ZA ⊗ ZB
}
.

(3.130)

Again, out of these eleven terms the ones allowing signaling can be

singled out, and then can be further split with respect to the direction of

signaling they allow,
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A → B\A ⊗B ⊂ Span
{
XA ⊗XB , XA ⊗ Y B , Y A ⊗XB , Y A ⊗ Y B , ZA ⊗ ZB

}
; (3.131a)

A ≺ B\A ⊗B ⊂ Span
{
XA ⊗XB , XA ⊗ Y B , Y A ⊗XB , Y A ⊗ Y B

}
; (3.131b)

A ≻ B\A ⊗B ⊂ Span
{
ZA ⊗ ZB

}
. (3.131c)

Here, the fact that a transformation between state structures is a compo-

sition that does not forbid signaling in any direction is more striking as

the deterministic signaling from output to input can be interpreted as

a ‘backward-in-time’ influence. Suppose Alice and Bob are sharing the

channel

MA≺B =
1

2

(
1A ⊗ 1B +XA ⊗XB

)
(3.132)

from state structure A ≺ B as defined by Proposition 3.5.4. Alice

can perfectly signal to Bob by encoding her setting x in the X basis,

V|x = 1/2(1 + (−1)xX), and if Bob measures in the same basis, they

effectively have a perfect single bit channel, p(b = x) = 1.

On the other hand, suppose they share the channel

MA≻B =
1

2

(
1A ⊗ 1B + ZA ⊗ ZB

)
(3.133)

from state structure A ≻ B. Now it is Bob who can perfectly signal to

Alice: Alice has to use an ancilla so that she can prepare the same joint

state as the bipartite example, Equation (3.115),

WA′≻A =
1

4

(
1A

′
⊗ 1A +XA′

⊗ ZA
)
. (3.134)

She sends the A part through the channel and keeps the A′
part as

her ancilla. Bob can then apply the measurement NB
|y = 1+ (−1)yZ at

the outcome of the channel, depending on the variable y he wishes to

send. Alice can then finally measure her ancilla in the X basis, NA′

a =

1/2(1+ (−1)aX), leading to her performing the probabilistic operation

V Aa := NA′

a ∗WA′≻A

V Aa = TrA′

[(
NA′

a ⊗ 1A
)
WA′≻A

]T
=

1

4

(
1A + (−1)aZA

)
. (3.135)

The outcome distribution is then the distribution obtained from V Aa ∗
MA≻B ∗NB

|y = p(a|y),

p(a|y) = Tr

[(
V Aa ⊗

(
NB

|y

)T)
·MA≻B

]
, (3.136)

and she will get perfect correlation with Bob setting, p(a = y) = 1 exactly

like in the bipartite example. Therefore, in the state structure A → B,

there are transformations allowing perfect signaling from Alice to Bob,

like MA≺B as well as from Bob to Alice, like MA≻B .

Contrastingly with the bipartite state case, a channel in biased quantum

theory can be represented by an operatorM that does not admit a convex

decomposition likeM = pMA≺B +(1− p)MA≻B . The simplest example
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of this is the identity channel I from A to B. It has the following CJ

representation:

MI =
1

2

(
1A ⊗ 1B +XA ⊗XB − Y A ⊗ Y B + ZA ⊗ ZB

)
, (3.137)

which is a valid element of the set of transformations A → B as can

be checked using Theorem 3.4.1. This kind of channel can be used by

the party to send information back and forth. It is this kind of shared

channel that violates a causal inequality in the same manner that the

OCB does. As for the bipartite process matrix, the game is a GYNI

conditioned by a referee. Alice and Bob’s settings x and y are evenly

distributed bits, and they additionally receive a shared bit z sent by a

referee. The game is won if Bob guesses Alice’s setting correctly when

z = 0 or if Alice guesses Bob’s when z = 1. Encoding the guess of

each player on their outcomes, the game-winning probability is equal to∑
a,b 1/2p(a = y, b|x, y, z = 0) + 1/2p(a, b = x|x, y, z = 1).

A classical strategy will conclude that the winning probability is 3/4

since Alice can always send her setting to Bob, who is assumed at the

output of the channel, hence in her causal future, but since Alice is at the

input side, she cannot obtain the future setting of Bob y any differently

than by guessing. But this is classical reasoning – this bound of 3/4,

which is the causal inequality of the OCB example, is violated using

biased channel theory. Here is how: at her side of the channel, Alice can

choose to do the following operation

Va|x = 1/2

(
1

2

(
1+

1√
2
((−1)xX + (−1)aZ)

))
, (3.138)

and Bob can choose to either measure or send depending on z:

Nb|y,z = δz,0

(
1

2

(
1+ (−1)bX

))
+ δz,1 (1+ (−1)yZ) , (3.139)

The probability is then p(a, b|x, y, z) = Va|x ∗MI ∗Nb|y,z given by

p(a, b|x, y, z) = δz,0
1

2

(
1 +

(−1)b+x√
2

)
+ δz,1

1

2
(1 +

(−1)a+y√
2

) . (3.140)

This yields the same success probability as in the case of the OCB,∑
a,b 1/2p(a, b = x|x, y, z = 0) + 1/2p(a = y, b|x, y, z = 1) = 1/2(1 +

1/
√
2) ≈ 0.85.

Starting from a toy theory to illustrate the use of the projective methods,

the most well-known example of indefinite causal order violating a causal

inequality was recovered. The biased quantum channel theory indeed

reproduces the behavior of the bipartite process matrix formalism to

a certain extent. This hints that the projective characterization of state

structure allows for the abstraction of signaling properties, independently

of the considered theory. The important ingredients needed to violate a

bipartite causal inequality were 1) a scenario involving two local parties

sharing an object of a state structure A

&

B; 2) that two-way signaling

composition of state structures was non-trivial, A

&

B ̸= A⊗B; 3) that

the state structure possess elements outside of the convex hull of the two

one-way signaling compositions A ≺ B and A ≻ B. The second reason

is why quantum theory cannot violate a causal inequality
61

61: First proven in [5]

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

then in [138]

[138]: Purves et al. (2021), Quantum The-
ory Cannot Violate a Causal Inequality.

.

and the third
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62: A ′
is a copy of A in an ancillary

subsystem A′
of Alice.

[140]: Ambainis et al. (1999), Dense quan-
tum coding and a lower bound for 1-way
quantum automata.

[141]: Ambainis et al. (2002), Dense Quan-
tum Coding and Quantum Finite Automata.

63: For which I am grateful to Ravi Kun-

jwal for pointing out dimension wit-

nesses.

reason is why the bipartite biased quantum theory of last section was

not able to violate one.

Abstracting these last two points is the study of how the signaling relations

are encoded in the composition rules of state structures, this is the topic

of the next chapter. Looking at these rules alone can thus already give a

lot of information about the signaling structure of processes, even if the

local state structures A,B associated with each party are left unspecified.

As will be shown, these relations are themselves encoded in the algebra of

the compositions of projectors. On top of knowing how the algebra works

allows for a quick characterization of the possible signaling directions of

a given higher-order transformation, in this chapter it will also be shown

that this algebra is a known model of logic whose simplicity allows for

automated proofs.

Before concluding this example, there remain a few observations that

are worth mentioning.

First, remark that Alice has no procedure involving preparations and

measurements that can result in her operation being the resolution of

Equation (3.138). Again because of Proposition 3.6.1, if Alice is restricted

to preparations and measurements in the biased theory she cannot obtain

(3.138) as the combination of preparing a bipartite state and measuring

one half of it like V Aa|x = NA′

a|x ∗W
A′A
|x where

62 NA′

a|x is a resolution of

A and WA′A
|x is a bipartite state in A ′ &

A. If she was allowed to share

quantum entanglement with her ancillary system, then she could do it

by teleportation [139], for example by taking V Aa|x of Equation (3.138) as a

resolution of A
′
applied to a maximally entangled state of subsystems

A′
and A. This is one of the main drawbacks of the ‘every resolution is

an operation’ hypothesis underlying Definition 3.2.4 on which the whole

formalism is based. As discussed in Appendix C.3.1, sometimes it seems

that some resolutions are not feasible without breaking out of the state

structure. Studying the extent of this problem as well as the definition of

a resolution is a direction left open for future research.

The second observation, again on the resolution (3.138), is its link

with the 2-to-1 Quantum Random Access Code (QRAC) [140, 141]. The

‘state’ seen by Bob after Alice’s transmission is indeed of the form

1
2

(
1+ 1√

2
((−1)xX + (−1)aZ)

)
for fixed a and x. As discussed in the

sources mentioned, this state is known to be the best encoding of two

bits on a qubit with respect to the task of randomly accessing the value of

either. The operation of Bob amounts to deciding which bit he wants to

access by choosing between measuring basis X or Z . The success bound

of 85% then makes sense as it is the optimal bound for encoding two

bits on a qubit. The difference with a QRAC is that if he accesses the Z

basis he is not reading but encoding on x. Hence, by choosing a basis the

parties can choose the directionality of the flow of classical information.

As only one bit is accessed at once, this is a sort of delocalized random

access code: by his choice of operation, Bob decides whether Alice gets to

see his setting or if he gets to see hers. Interpreting the maximal violation

of causal inequality of the OCB-kind as optimizing a delocalized random

access code is also a direction left open for future research.

The third observation
63

, related to the second, is that interpreting the

bipartite biased quantum state as a measure-and-prepare scenario may
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[142]: Brunner et al. (2013), Dimension
Witnesses and Quantum State Discrimina-
tion.

64: Equations (3.109) and (3.130) show

that the first has 11 basis elements while

the second has 13.

Note that the two definitions have been

made out of formal analogy. The charac-

terization, as will be shown next, recovers

the results of the literature on higher-

order processes. Therefore, discussing

the assumptions underlying these defi-

nitions is only done for completeness as

well as to propose some future research

directions. These have no consequences

in the characterization of signaling in

higher-order processes per se.

lead to the elaboration of new dimension witnesses [142]. The ability to

violate a causal inequality indeed requires a minimal dimension of the

joint bipartite system, as shown in the bipartite example compared to the

OCB process matrix. Hence, it is tempting to postulate that it can lead

to device-independent bounds on the dimension of a system. However,

the biased quantum channel theory, while of a smaller dimension than

the bipartite biased theory
64

, can violate a causal inequality. So, the

interpretation as input and output also appears to play a role in the

device-independent bounds implied by causal inequalities. This is yet

another direction open for future prospects.

3.7. Summary

This chapter presented the concept of a state structure gradually so as to

keep track of the assumptions. The central object defined in it were the

state structure, Definition 3.2.2, and the projector on an operator system

Definition 3.2.7. These two tools have been used to derive the basic

rules for building and characterizing classes of higher-order processes as

state structures defined out of known state structures. These rules are

summarized below in the tables 3.1 and 3.2.

The characterization has been conducted in two steps: first, the single-

partite characterization of ‘state and effect’ pairs of state structures, and

second, the characterization of bipartite composite state structures from

their interpretation as transformations.

The first step was done by defining the equivalent of process functionals

on operations that resolved state structures. A single-partite character-

ization. To do so, starting from a state structure, Definition 3.2.2, the

concept of a resolution has been defined in Definition 3.2.4. In doing so,

the element of a state structure can be interpreted as the deterministic

operation of a party, so that her probabilistic operations are represented

by the resolution of the element in the state structure. Here, a first major

assumption has been made: that all elements of all resolutions of a state

structure actually correspond to a probabilistic operation that some party

can do in her lab. Elements discussing this hypothesis are presented in

Appendix C.3.1.

From the definition of a state structure, the concept of a frame function was

subsequently defined in Definition 3.3.1. The frame function generalizes

Gleason-kind proofs to resolutions of state structure by postulating a

functional from the probabilistic operations to a probability. This is

where a second major assumption has been made: the existence of

such functionals obeying Equations (3.24) requires the hypothesis of

generalized non-contextuality and homogeneity. Elements discussing

these are presented in Appendix C.3.2.

With resolutions and frame functions, the dual state structure was

characterized in Theorem 3.3.2. This dual state structure is exactly the

CJ representation of the set of frame functions, that is, of deterministic

functionals on a state structure.

Using this result, the characterization methods have been applied to the

admissible transformations between state structures as in Definition 3.4.3.
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[61]: Beckman et al. (2001), Causal and
localizable quantum operations.

Here, another assumption was made in the formalism: that the parties

on each side of a transformation between two state structures can, in

principle, implement any no-signaling bipartite operation and their

resolutions. But this ignores the eventuality that interaction is sometimes

needed to achieve the composite object, as is the case for no-signaling

bipartite channels [61]. Hence, when the transformation is interpreted

as time evolution this ‘hidden’ interaction may be backward in time. As

with the other two, it is not clear operationally why this assumption

should hold a priori, and some elements of this hypothesis are presented

in Appendix C.3.4. But as with the other two and as mentioned in the

margin, this non-justified hypothesis does lead to the generalization of

previous characterizations obtained in the literature, so discussing its

validity is left for future work.

The final characterization step was obtained by realizing that transfor-

mations can be phrased as bipartite states. This is a consequence of

assuming that every object is the CJ representation of some (super)map.

As such, the common characterization of maps and bipartite states has

been guided by requiring certain no-signaling constraints between the

parties. It was recognized that the transformation is a composition that

allows for two-way signaling while the tensor product of state structures

is a composition allowing for none. Lemma 3.5.3 has been the key for

figuring out the intermediate one-way signaling composition in Propo-

sition 3.5.4. This allowed the sorting of the bipartite compositions into

four classes: no-signaling, one-way signaling from A to B, from B to A,

and two-way signaling as in Definition 3.5.2.

In addition, all these characterization methods were shown to be essen-

tially the characterization of the subspace on which the state structures

are defined. As such, the characterization can be reduced by studying the

algebraic properties of composing the projectors to define the composite

state structures. These rules are summarized in Table 3.2. In Chapter 5, a

more in-depth study of this algebra will be conducted.

Finally, the biased quantum theory has been presented as the concluding

example of the section. This is a proof of concept of the characterization

methods since it is based on a postselected toy model, which can be

phrased as a state structure. This toy model was used to present how

concretely state structures encode signaling directions and even went up

to reproduce the OCB correlations.
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Structure Name Space Condition: W ≥ 0 ∈ Structure ⇐⇒

A quant. Qu. Unit Effects L
(
HA
)

W = 1A

Aquant. Qu. States L
(
HA
)

Tr [W ] = 1

A State L
(
HA
)

A quant. ⊆ A ⊆ Aquant.

A Unit Effect L
(
HA
)

∀M ∈ A : Tr [W ·M ] = 1

A

&

B two-way sign. L
(
HA ⊗HB

)
∀MA ∈ A : TrA [W · (MA ⊗ 1B)] ∈ B

composite ∀MB ∈ B : TrB [W · (1A ⊗MB)] ∈ A

A ≺ B one-way sign. L
(
HA ⊗HB

)
∀MA ∈ A : TrA [W · (MA ⊗ 1B)] ∈ B

composite ∀MB ∈ B : TrB [W · (1A ⊗MB)] = cBTrB [W ] ∈ A

A ⊗B no-signaling L
(
HA ⊗HB

)
∀MA ∈ A : TrA [W · (MA ⊗ 1B)] = cATrA [W ] ∈ B

composite ∀MB ∈ B : TrB [W · (1A ⊗MB)] = cBTrB [W ] ∈ A

Table 3.1.: Summary of the basic state structures and how to combine them with respect to some defining properties. (Qu. = Quantum;

sign. = signaling.)

Each line reads “The <Name> state structure <Struct.> has support on <Space>. It is defined as the set of positive and trace-normalized

operators that respect <Condition>.”.

Struct. Characterization Projector rule

A quant. Equation (3.22) DA
(3.18)

: DA(VA) := 1A

dA
Tr [VA]

Aquant. Equation (3.21) IA
(3.16)

: ∀VA, IA(VA) = VA

A Proposition 3.2.1 PA : Definition 3.2.7

A Theorem 3.3.2 PA
(3.33)

:= IA − PA +DA

A → B Theorem 3.4.1 PA → PB
(3.75)

:= IA ⊗ IB − PA ⊗ IB + PA ⊗ PB − PA ⊗DB +DA ⊗DB

A ⊗B Definition 3.4.1 PA ⊗ PB : (PA ⊗ PB) {
∑
i ci Vi ⊗Ni} =

∑
i ci PA {Vi} ⊗ PB {Ni}

A ≺ B Proposition 3.5.4 PA ≺ PB
(3.102)

:= IA ⊗ PB − PA ⊗DB +DA ⊗DB .

A

&

B A → B PA → PB
(3.85)

= PA ⊗ PB

Table 3.2.: Summary of the characterization of basic state structures and the associated projector rules.
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The only tangible reality about sense is the

way it is written, the formalism; but the for-

malism remains an unaccommodating object

of study, without true structure, a piece of soft
camembert.

Girard (1989), Proofs and Types [143]

With the characterization methods developed in the previous chapters,

it looks like the problem of signaling in higher-order quantum theory

can be addressed. A process involving a certain amount of subsystems

A0, A1, A2, . . . can be systematically probed for a fixed signaling order

by exhaustively searching if it belongs to a state structure with fixed

causal order like ((A0 ≺ A1) ≺ A2) ≺ . . .. Using Proposition 3.5.4, this

can be done by applying projector ((PA0
≺ PA1

) ≺ PA2
) ≺ . . . on the

process matrix representing it. If the process had a fixed causal order, the

projectors may catch it by exhausting all possible permutations of the

factors. This is implicitly what was done in the biased quantum theory

example of the previous chapter: every time a new class of composite

objects was defined, its support was split into the terms allowing for

signaling in certain fixed directions.

However, some examples of state structures and constructions may not

be so simple to decompose. Worse, with the increasing number of nodes,

the number of projectors to test grows factorially, which is far from

efficient. It can be asked whether the algebraic properties of the bipartite

compositions found in the previous chapter, i.e., ⊗, ≺, and

&

, could help

simplify these issues. To do so, the next chapter will conduct a systematic

study of the algebra of projectors under these connectives.

In this section, some selected examples from the literature will be used

to motivate some of the questions the projector algebra aims to answer.

In particular, some peculiar behaviors of the state structures will be

observed. Finding an explanation for these behaviors will motivate some

aspects of the projector algebra while at the same time providing more

examples of how to use the characterization methods. Remark that this

section is facultative and can be skipped by a reader who already knows

these works or who is in a hurry to get to the results. In this chapter,

the base state structures A ,B, . . . associated with each party in the

following examples are assumed to be the set of quantum states, to which

corresponds projector I .

4.1. Quantum Theory and Isomorphisms

Here, the same examples of state spaces constructed for the Biased

Quantum Theory in Section 3.6 are constructed for Quantum Theory. As

announced, for this base state structure, some composite state spaces

happen to be isomorphic. This illustrates the first reason for a general

study of the compositions of state structure: finding isomorphisms.

97
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[120]: Zanardi et al. (2004), Quantum Ten-
sor Product Structures are Observable In-
duced.

4.1.1. Single Party Quantum Theory

This is the simplest example of a dual pair of state structures that can be

built assuming Theorem 3.3.2. In this case, A = Aquant. is the state space

of finite-dimensional quantum theory; its underlying operator system

has support over the whole of L
(
HA
)
. To it is associated its negation, A ,

interpreted as ‘the need of a state of A to obtain a probability of 1’, i.e.

the deterministic measurement of a state or unit effects. Concretely, the

states are the regular notion of the quantum state in density matrix form,

as defined in Equation (3.21). And to it corresponds the regular notion of

unit effect as A ≡ {1} because Theorem 3.3.2 implies that the valid unit

effect in A have to obey Equation (3.22) since I = I − I +D = D. That

is to say, any collection of effects should resolve 1.

Reformulating the POVM example of Section 3.1, it starts with a base

state structure A ⊂ L
(
HA
)

with projector IA and a trace of 1, and the

formalism consists of the state and effect dual pair in complementary

(i.e. quasi-orthogonal) state structures, (ρ,1) ∈ A × A , linked by the

normalization of the probability rule

1 = (1 , ρ)A = Tr [1 · ρ] . (4.1)

Probabilistic assignments are obtained by resolving the effect state struc-

ture by a collection of positive operators {Eb} indexed by outcome b. The

deterministic unit effect they sum up to has to be {1}, so the setting on

the effect side, y, is irrelevant. However, the setting on the state side, x, is

relevant for determining which average state ρ|x has been prepared. The

probability rule (Born rule) reads

p(b|ρ|x,1) = p(b|x) = Tr

[
Eb · ρ|x

]
, (4.2)

This is a state structure derivation of the POVM formalism.

4.1.2. Bipartite Quantum Theory

Using Definition 3.4.1, the bipartite quantum theory is an example of

no-signaling bipartite composition of state structures. A bipartite scenario

involving a joint system whose state is described in some space L (H)

induces a bipartition L (H) ∼= L
(
HA ⊗HB

)
so that the (Einstein) local

measurements of party Alice and Bob only act on, respectively, subsystem

A and B [120].

The one-party example has shown that the local measurements of, say,

Alice resolve the state structure A as in Equation (3.22). Assume Bob

has a similarly defined B so that the joint local measurement of Alice

and Bob are resolving A ⊗B. If they are moreover allowed to perform

joint but no-signaling operations, by Proposition 3.5.5 their deterministic

operations are exactly represented by the set A ⊗B characterized by

M ≥ 0 , (4.3a)

TrAB [M ] = dAdB , (4.3b)

(DA ⊗DB) {M} =M . (4.3c)
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It is not hard to see from
1A

dA
TrA

[
1B

dB
TrB [M ]

]
= 1A

dA
⊗ 1B

dB
TrAB [M ] that

also in the bipartite case, the effects of quantum theory resolve a single

element, {M = 1 = 1A⊗1B}. Note, however, that the effects can now in

general be entangled in the sense that there are resolutions {Mi} for which

there is no possibility to find a decomposition {Mi =
∑
i qiE

A
i ⊗ FBi }

where qi ≥ 0 ,
∑
i qi = 1 and for all qi and i, with Ei (Fi) a valid effect

resolving an element of A (B). A Bell measurement is an instance of

such a collection of entangled effects resolving 1 in the dA = dB = 2

case.

Using Theorem 3.3.2 to characterize the valid states, an operator W ∈
L
(
HA ⊗HB

)
is a valid state if it belongs to the dual state structure

A ⊗B = A

&

B, i.e.

W ≥ 0 , (4.4a)

TrAB [W ] = 1 , (4.4b)

(DA ⊗DB){W} =W . (4.4c)

As mentioned in Subsection 3.6.1, the projective constraint can be simpli-

fied into

(DA ⊗DB){W}
(3.31c)

= (IA ⊗ IB −DA ⊗DB +DA ⊗DB) {W} = (IA ⊗ IB) {W} =W . (4.5)

This projector is the same as the one involved in a no-signaling com-

position using Definition 3.4.1. This means that the two-way signaling

composition Aquant.
&

Bquant. of state structures of density matrices

is actually the same composition as their no-signaling composition,

Aquant. ⊗Bquant.. In other words, in quantum theory, the set of valid

states normalized on local measurements is exactly the set of no-signaling

composite states: this recovers the Einsteinian intuition that it is impossi-

ble for parties measuring a part of a shared quantum state to signal to the

other one. Contrastingly, states from arbitrary bipartite state structures

can be used for signaling, as shown for the Biased Quantum Theory in

Subsection 3.6.1. What is more surprising is that it is actually the only

theory having this property, as will be proven in Section 5.3 (Lemma 5.3.1).

Generally, the set of states normalized on a pair of local measurements

contains terms that can signal in one direction or the other. For instance,

this ability to signal will also be present in the set of bipartite process

matrices presented below.

4.1.3. Quantum Channel Theory and Reformulating the

Example of Section 3.1

The evolution between quantum states is characterized by Theorem 3.4.1;

the obtained set is the CJ representation of the set of quantum channels;

its probabilistic resolutions yield the quantum instrument formalism; and

the dual state structure yields the set of single-partite process matrices.

This example is, therefore, the rephrasing of the introductory example of

Section 3.1 in the language of state structures.

The introductory example can be reduced to the description of a party A

preparing a quantum system according to her setting x and passing it on
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to a party B measuring it and obtaining outcome b. Its interest was to

motivate the following successive rephrasings of the Born rule:

p(b|x) (3.1)

=
(
Eb , ρ|x

) 1)
=
(
1 ,Mb

(
ρ|x
)) 2)

=
(
Mb , ρ|x ⊗ 1

) 3)
=
(
Mb , W|x

)
. (4.6)

Step 1), passing from (3.1) to (3.2), consisted in lifting Bob’s POVM

measurement {Eb} into a quantum instrument {Mb}. The state space

is no longer a state and effect pair, but rather two snapshots tracking

the evolution of the state prepared by Alice ρ|x ∈ Aquant. into the

Bob’s post-measurement stateMb

(
ρ|x
)
∈ L

(
HB
)
. In accordance with

Definition 3.4.3, the instrument elements sum up to an admissible

mapping

∑
bMb =M from states in Aquant. to Bquant.. This is the set

of all CPTP maps {M} from A to B

Step 2), passing from (3.2) to (3.4), consisted in going to the CJ picture,

Mb 7→ Mb. By preservation of the linear structure, M =
∑
bMb 7→∑

bMb = M ; these are the M such that for all quantum state ρA ∈
Aquant. ⊂ L

(
HA
)
, there exists a state σB ∈ Bquant. ⊂ L

(
HA
)

so that

[TrA [M · (ρA ⊗ 1)]]T = σB . (4.7)

Here, Theorem 3.4.1 can be used to characterize the set of all such

operators M ∈ L
(
HA ⊗HB

)
which are the CJ representation of the

admissible transformations as Aquant. → Bquant.. By Theorem 3.4.1, they

must satisfy

M ≥ 0 , (4.8a)

Tr [M ] = dA , (4.8b)

(IA → IB) {M} =M , (4.8c)

to be valid. Remark that the projective condition,

(IA → IB) {M} := IA ⊗DB{M} = (IA ⊗ IB − IA ⊗DB +DA ⊗DB) {M} , (4.9)

which is equivalently seen as a two-way signaling composition,

(IA → IB) {M} ≡
(
IA

&

IB
)
{M} : =

(
IA ⊗ IB − IA ⊗ IB +DA ⊗DB

)
{M}

= (IA ⊗ IB − IA ⊗DB +DA ⊗DB) {M} ,
(4.10)

is actually equivalent to the one-way composition since the projector

coincide:

(
IA ≺ IB

)
{M} : =

(
IA ⊗ IB − IA ⊗DB +DA ⊗DB

)
{M}

= (IA ⊗ IB − IA ⊗DB +DA ⊗DB) {M} .
(4.11)

From Equation (4.8b) and

(DA ⊗DB) {M} =
TrAB [M ]

dAdB
1AB , (4.12)

these two conditions are equivalent to the more common quantum ‘1-

comb’ condition: TrB [M ] = 1A (see the discussion in Subsection 5.3.1
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[50]: Chiribella et al. (2010), Probabilistic
theories with purification.

[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

1: Notice this is actually working the

proof of Theorem 3.4.1 backward; see

Appendix C.2.2.

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
2: Remark that the reservations about

the definition of a resolution expressed

in Appendix C.3.1 reappear in this re-

sult: by assuming that the resolutions of

single-partite process matrices represent

all probabilistic operations between the

input and the output of a channel, some

resolutions will require side-channels to

be realized, e.g.,Wa = ρa⊗ρTa such that∑
a Wa = W = ρA⊗1B . However, the

on average deterministic process matrix

they sum up to does not require a side-

channel to be implemented since it fac-

tors as input states ρA in tensor product

with a destructive measurement1B . The

deterministic objects appear to require

fewer resources to be implemented than

their probabilistic resolutions; again, the

structure of the theory is based on defini-

tions obtained by formal analogy (in this

case Definition 3.2.4), and the discussion

thereof is left open for future work.

where this will be shown explicitly). Again, quantum channels are

peculiar: seeing the elements of Aquant. → Bquant. as composite systems

in L
(
HA ⊗HB

)
, the M ’s can be interpreted as composite states on this

space, but compared to biased quantum channels, Equation (3.131), the

support of the A-to-B one-way signaling composition is equal to the

two-way signaling composition, i.e.,

Aquant. → Bquant. = A quant. ≺ Bquant. . (4.13)

This is because the part in B is normalized on quantum effects (3.22), so

there is only one deterministic effect at the output of a quantum channel

(i.e. {1B}); hence it is impossible to deterministically steer the input side

from the output side as there are no two different deterministic effects N

and N ′
such that: TrB [M · (1⊗N)] ̸= TrB [M · (1⊗N ′)]. This absence

of deterministic influence can be interpreted as a no-signaling from the

output to the input condition, i.e. a form of causality according to the

literature (see, e.g., References [50, 81]). This particularity will be revisited

thoroughly in Section 5.3.

Back to the motivating example of Section 3.1: Step 3), passing from

(3.4) to (3.5), consisted in completing the set of ‘states’ ρ|x ⊗ 1 into all

‘higher-order states’. Since the whole set is dual to the ‘higher-order

effects’ characterized by Equation (4.8), the corresponding set of states is

obtained through Theorem 3.3.2
1
.

W ≥ 0 , (4.14a)

Tr [W ] = dB , (4.14b)

IA → IB{W} =W . (4.14c)

This is the set of single-partite process matrices by construction, as it

is the set of functionals normalized on quantum instruments. Indeed,

any resolution {Mb} of a channel leads to a probability rule of the form

(3.5):

p(b|W|x,M) =
(
Mb , W|x

)
. (4.15)

The set of valid W ’s is characterized by the projector

IA → IB = IA ⊗ IB = IA ⊗ IB ; (4.16)

as a consequence, it is the state structure Aquant.⊗Bquant., characterized

by IA ⊗DB . By Lemma 3.5.1, it is supposed to be the affine span of the

objects of the form ρA ⊗ 1B . Yet, the remarkable thing here is that there

is only one element in Bquant., 1B . Therefore, there is no need to take

the affine span as Aquant. is convex closed. In other words, this recovers

the known result that a single partite process matrix reduces to inputting

a quantum state and tracing out the output (see the supplementary

material of Reference [5])
2
.

4.1.4. The No-Signaling Subset of a Quantum Channel.

The previous example showed that some state structures characterized

by the methods developed in the previous chapter are equivalent in some

cases. This is, therefore, a reason why studying how the compositions

interact with each other: avoiding drawing misled conclusions (e.g.,
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3: The downright assignment is ob-

tained by b 7→ j = k: Ej = δj,bEb

and σk = δk,bσb. Thus, many of the

Ej ’s and σk’s are the zero operator.

“quantum theory allows faster than light signaling”) because of a missed

equality (Aquant.

&

Bquant. = Aquant. ⊗ Bquant.). However, finding

equality is not the only outcome of a general study of the algebra that one

may expect: inequalities are equally interesting and often more revealing.

Since state structures are sets, inequalities are better phrased as inclusion

relations.

A first example. From the above considerations, it can be guessed that the

set of elements of the form M = 1A ⊗ σTB , which is A quant. ⊗Bquant. is

a subset of the valid quantum channels,

A quant. ⊗Bquant. ⊆ A quant. ≺ Bquant. = Aquant. → Bquant. . (4.17)

And indeed they are the ‘trace-and-replace’ channels such that input ρA
is traced out and replaced by σB :(

TrA

[(
1A ⊗ σTB

)
· (ρA ⊗ 1B)

])T
= TrA [ρA]

(
σTB
)T

= σB . (4.18)

Its resolutions factors into Mi = Ei ⊗ σi such that

∑
iMi = M ;

also

∑
iEi = 1;

∑
i σi = σ since its marginals are well-defined, i.e.,

TrB [M ] = 1A and
1
dA

TrA [M ] ∈ Bquant.. Using the generalized Born

rule, this leads to a probability rule:

p(b|W = ρ|x ⊗ 1,M = 1⊗ σT ) = Tr

[(
ρ|x ⊗ 1

)
· (Eb ⊗ σb)

]
= Tr

[
ρ|x · Eb

]
Tr [σb] = p(b|x) , (4.19)

so they can be interpreted as the probabilistic ‘measure-and-reprepare’

scenario. In that sense, the transformation can indeed be seen as another

composition of A quant. with Bquant. –the two-way signaling compo-

sition A quant.

&

Bquant.– that is bigger than A quant. ⊗Bquant.. But

here, compared to the bipartite quantum theory and akin to the bi-

ased quantum channel case, the inclusion is strict, A quant. ⊗Bquant. ⊊
A quant.

&

Bquant.; the ‘trace-and-replace’ channels are but a certain

kind of channels.

Actually, A quant.⊗Bquant. is, by definition, the no-signaling composition,

so neither the measurement nor the repreparation can have a deterministic

influence over the other. To see it explicitly, A quant. and Bquant. are

treated as if they were under the control of different parties so that

the resolutions of M now depend on two classical variables: b 7→ (j, k)

where j is the measurement outcome seen at A and k is the choice of

repreparation at B. The factorization is turned into Mj,k = Ej ⊗ σk
such that

3

∑
j

∑
kMj,k = M ;

∑
j Ej = 1;

∑
k σk = σ. The probability

distribution becomes

p(j, k|x) := p(j, k|W|x,Mj,k) = Tr

[(
ρ|x ⊗ 1

)
· (Ej ⊗ σk)

]
, (4.20)

so the joint probability distribution of j and k factors:

p(j, k|x) = Tr

[
ρ|x · Ej

]
Tr [1 · σk] = p(j|ρ|x)p(k) = p(j|x)p(k) . (4.21)

Hence, the conditional distributions are statistically independent; the

knowledge of j cannot help determining k, and vice-versa. Therefore, in

such a channel, no information can be deterministically passed from the

input side at A to the output side at B. This is a concrete illustration of

why the set A quant. ⊗Bquant. is dubbed the ‘no-signaling’ composition
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[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

of A quant. and Bquant., and what Lemma 3.5.3 really entails at the level

of distributions. A0 → A1 for this reason.

The extra thing that can be learned from this example is that the no-

signaling composition, as expected, is a proper subset of the one- and

two-way signaling compositions. One of the aims of studying the abstract

mathematical structure of compositions of projectors will be to generalize

this observation for any state structure, particularly in the multipartite

setting. Indeed, already in a tripartite scenario, it is not straightforward

to tell a channel allowing no signaling at all apart from one allowing

signaling from Alice to Bob but none to Charlie, or one allowing signaling

from Alice to Charlie and Bob but none at a single party. The general

characterization of the no-signaling subset of any state structure will be

achieved in Subsection 5.1.3 under Definition 5.1.2.

4.2. The Bipartite Process Matrix Formalism and

Inclusions

Here is presented a second example of the inclusion of a state structure

into another one based on a signaling heuristic. This is a more subtle

example as it is four-partite and mixes transformation (two-way signaling

composition) with parallel composition (no-signaling composition) –that

is, Proposition 3.5.5 and Theorem 3.4.1. This example is the bipartite

process matrix as first defined in [5] which is one of the “canonical”

examples of higher-order quantum theory with indefinite causal order,

see Subsection 2.3.3.

This example will show that the ordering of compositions is important.

From there, that the ordering between ⊗ and → is important in a

multipartite state structure like A0 → (A1 ⊗ A2) ̸= (A0 → A1) ⊗ A2

(which is read: “the state structure of the transformation from state

structure A0 to the no-signaling composition of the state structures

A1 and A2 is inequivalent to the no-signaling composition of the state

structure of the transformation from A0 to A1 with the state structure

A2”). This semantic difference differentiates the bipartite channels and

their no-signaling subset.

4.2.1. Bipartite Quantum Channels

Let there be 4 subsystems: the input of Alice A0, her output A1, the

input of Bob B0 and his output B1, all with isomorphic base state

structures A0
∼= A1

∼= B0
∼= B1 of finite-dimensional quantum states

like in Equations (3.21) (the ‘quant.’ subscript has been dropped for

conciseness). A bipartite channel is a CPTP mapM : L
(
HA0 ⊗HB0

)
→

L
(
HA1 ⊗HB1

)
, hence with state structure (A0 ⊗B0)→ (A1 ⊗B1). In

the bipartite case, a bipartite channel is nothing more than the previous

example of Subsection 4.1.3. The deterministic probability rule reads:

(1A1
⊗ 1B1

,M (ρA0B0
)) = 1 , (4.22)
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4: The ordering of the tensor factor has

been switched into numeral then alpha-

betic for simplicity.

5: Note that once again, IA1 ⊗ IB1 =

DA1⊗DB1 is a particularity of the iden-

tity and the depolarizing superopera-

tors; it is not valid for general projectors:

PA1
⊗ PB1

̸= PA1
⊗ PB1

. This is yet

again a particularity specific to the state

structure of quantum theory.

which holds for all 1A1
⊗ 1B1

∈ A1 ⊗B1 and all ρA0B0
∈ A0 ⊗B0. In

the CJ picture, this is

(M , ρA0B0
⊗ 1A1

⊗ 1B1
) = 1 , (4.23)

with M ∈ L
(
HA0 ⊗HB0 ⊗HA1 ⊗HB1

)
4
, leading to the characteriza-

tion of valid M ’s by applying Theorem 3.4.1 on (4.4):

M ≥ 0 , (4.24a)

Tr [M ] = dA0
dB0

, (4.24b)

((IA0
⊗ IB0

)→ (IA1
⊗ IB1

)) {M} =M . (4.24c)

The projector is (IA0
⊗ IB0

)→ (IA1
⊗ IB1

) = IA0
⊗IB0

⊗IA1
⊗IB1

−
IA0
⊗ IB0

⊗ IA1
⊗ IB1

+ DA0
⊗ DB0

⊗ DA1
⊗ DB1

; it can be further

simplified by noticing that IA1
⊗ IB1

= DA1
⊗DB1

. This simplification
5

then gives conditionM −TrA1B1
[M ]⊗1A1

⊗1B1
+1A0

⊗1B0
⊗1A1

⊗
1B1 = M , which, using the trace condition, is equivalent to the usual

condition TrA1B1 [M ] = 1A0⊗1B0 . One indeed recovers the same 1-comb

condition as the single partite case but applied on two subsystems.

4.2.2. No-Signaling Bipartite Channels.

Consider the swap channel, sending the input at A0 into the output at

B1 and similarly B0 to A1. This channel can obviously not be realized

if the situation does not allow signaling from Alice to Bob and vice-

versa. This simple example indicates that the parallel composition of two

single-partite channels is actually smaller than the bipartite channels:

(A0 → A1)⊗ (B0 → B1) ⊊ (A0 ⊗B0)→ (A1 ⊗B1) , (4.25)

at least in the case of quantum channels. This is now shown using

projective methods.

According to Definition 3.4.1, the left-hand side of the above is indeed

the composition of two state structures of single-partite channels done

in a manner forbidding a deterministic influence of each party on the

other, Proposition 3.5.5, as indicated by the ⊗ symbol. This definition

characterizes the set of operators obeying

M ≥ 0 ; (4.26a)

Tr [M ] = dA0dB0 ; (4.26b)

((IA0 → IA1)⊗ (IB0 → IB1)) {M} =M ; (4.26c)

equivalently, Lemma 3.5.1 indicates that this is (a trace-normalized slice

of) the affine hull of a tensor product of single partite channels, i.e.,

M =
∑
i

qiM
A
i ⊗MB

i , (4.27)

where M ≥ 0, qi ∈ R,

∑
i qi = 1, in which each MA

i ∈ L
(
HA0 ⊗HA1

)
obeys single quantum channel conditions (4.8), and so does each MB

i ∈
L
(
HB0 ⊗HB1

)
. In particular, these operators can be entangled because

the parallel composition is taken as the no-signaling composition
6

6: In the context of a no-signaling quan-

tum channel, separability is the analog

of separable quantum states: the sub-

set of channels whose decomposition

like Equation (4.27) is a convex sum, for

which each qi ∈ [0, 1]. A milder form of

decomposition is localizability: the pos-

sibility of obtaining the bipartite channel

as two single-partite channels applied on

a joint ancillary entangled state [61]

[61]: Beckman et al. (2001), Causal and
localizable quantum operations.

.

It is known that separable and localiz-

able channels are subsets of the set of no-

signaling channels. However, the charac-

terization of these spaces is much more

involved than working out their support-

ing subspaces, as their constraints are

non-linear. As discussed in Section 3.5,

the parallel composition is defined out of

convenience as the no-signaling compo-

sition since it results in a state structure.

See Appendix C.3.4 for a discussion on

how big of an assumption it is to take the

parallel composition as the no-signaling

composition. Generalizing separability

and localizability to higher-order quan-

tum transformations is left open as a

future research direction.

, Def-
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[64]: Piani et al. (2006), Properties of quan-
tum nonsignaling boxes.
[65]: D’Ariano et al. (2011), No Signaling,
Entanglement Breaking, and Localizability
in Bipartite Channels.
[61]: Beckman et al. (2001), Causal and
localizable quantum operations.
[62]: Eggeling et al. (2002), Semicausal
operations are semilocalizable.
7: See in particular [64].

inition 3.4.1, which is the maximal tensor product with respect to the

inner product as discussed in Section 3.5.

The right-hand side of Equation (4.25) corresponds to the state structure

of the bipartite quantum channels, as shown in the previous section. First,

the inclusion can be proven by algebraic manipulations of projectors:

notice that the set (A0 ⊗B0)→ (A1 ⊗B1) has a projector which can be

simplified as

IA0 ⊗ IB0 ⊗ IA1 ⊗ IB1
∼= (IA0 ⊗DA1)⊗ (IB0 ⊗DB1) , (4.28)

using the IA1 ⊗ IB1 = DA1 ⊗DB1 identity.

On the other hand, the projector (4.26c) associated with (A0 ⊗B0) →
(A1 ⊗B1) can be rewritten as IA0 ⊗DA1 ⊗ IB0 ⊗DB1 according to the

discussion in Subsection 4.1.3 and Definition 3.4.1. By Proposition C.1.3,

the inclusion can then be shown by computing their composition:

(
(IA0 ⊗DA1)⊗ (IB0 ⊗DB1)

)
◦
(
IA0 ⊗DA1 ⊗ IB0 ⊗DB1

)
= IA0 ⊗DA1 ⊗ IB0 ⊗DB1 , (4.29)

and the converse is not true. Therefore,

(IA0
⊗DA1

)⊗ (IB0
⊗DB1

) ⊋ IA0
⊗DA1

⊗ IB0
⊗DB1

, (4.30)

Where the right-hand side of the above equation is none other than the

projector characterizing the set (A0 → A1)⊗ (B0 → B1), whereas the

left-hand side characterizes (A0 ⊗B0)→ (A1 ⊗B1).

Yet, computing the intersection of the two projectors is quite a long

and gruesome process. Worse, it is a specific instance, so to prove that

the set of bipartite no-signaling channels of biased quantum theory is

a subset of the bipartite biased channels requires computing another

such intersection of projectors. However, all such computations could be

skipped once the algebraic properties of the projectors are known. From

their properties proven in Chapter 5, it is indeed direct to check that

the identity PA ⊗ PB ⊆ PA ⊗ PB is valid for any projector on operator

systems (this is explicitly proven at Equation (D.51)). Hence, a knowledge

of how the compositions {⊗,≺,

&

,→} interact together and with the

dual · allows to infer general properties of the state structure, thus the

higher-order states, that are built.

According to the discussion of the previous Subsection 4.1.4, another

general property that can be learned from the formula alone is that

(A0 → A1)⊗(B0 → B1) is, as announced, exactly the set of no-signaling

channels as defined in the literature [64, 65] (also known as causal

channels, [61, 62]). That is, the subset of channels forbidding deterministic

signaling from Alice’s side to Bob’s and vice-versa.

Again, this property stems from the support of the state structures, and

thus could have been inferred by studying the projectors alone
7
. To prove

it explicitly requires showing that the choice of input state on Alice’s

side cannot induce a deterministic influence on Bob’s measurement and

vice-versa. In equation, Alice and Bob share a bipartite channel M , each

acting locally by state preparation and measurement. Call x and y the

settings of respectively Alice and Bob, and a and b their outcomes. That

is, depending on some input x, Alice prepares some state ρ|x that she
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∀y, y′,∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′);

(1.6a)

∀x, x′∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y).

(1.6b)

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.
[64]: Piani et al. (2006), Properties of quan-
tum nonsignaling boxes.

inputs in her side of the channel, A0. Then, she measures at the output

A1 some POVM {Ea|x}, which choice can also depend on x, and sees

outcome a. Bob does the same at B0 with state σ|y and POVM {Fb|y} at

B1. The probability rule then reads

p(a, b|x, y) = Tr

[
M ·

(
ρ|x ⊗ σ|y ⊗ ETa|x ⊗ F

T
b|y

)]
. (4.31)

By Definition 1.2.1, Alice is no-signaling to Bob if her choice of set-

ting x cannot deterministically influence his measurement outcome,

Equation (3.97b) and Bob is no-signaling to Alice the converse holds,

Equation (3.97a). In terms of the channel, these two conditions can be

shown to be equivalent to

TrA1
[M ] = 1A0

⊗ TrA0A1
[M ] ; (4.32a)

TrB1
[M ] = 1B0

⊗ TrB0B1
[M ] . (4.32b)

which form a stronger constraint than the channel condition TrBB1
[M ] =

1A ⊗ 1B0
. Indeed, computing Bob’s outcome marginal distribution in

(4.31), i.e. p(b|x, y) =
∑
a p(a, b|x, y), and injecting (4.32a) shows that

Bob’s outcome is independent of x:

p(b|x, y) =
∑
a

Tr

[
M ·

(
ρ|x ⊗ σ|y ⊗ ETa|x ⊗ F

T
b|y

)]
= Tr

[
M ·

(
ρ|x ⊗ σ|y ⊗ (1A1)⊗ FTb|y

)]
(4.32a)

= TrA0B0B1

[
(1A0

⊗ TrA0A1
[M ]) ·

(
ρ|x ⊗ σ|y ⊗ FTb|y

)]
= TrA0

[
ρ|x
]

TrB0B1

[
TrA0A1

[M ] ·
(
σ|y ⊗ FTb|y

)]
= TrB0B1

[
TrA0A1

[M ] ·
(
σ|y ⊗ FTb|y

)]
= p(b|y) .

(4.33)

The same thing can be shown for Alice, effectively proving that they are

no-signaling to each other if they obey conditions (4.32). Proving this to

be necessary requires an even longer proof found in References [9, 64].

In contrast, when working with projectors and state structures, the

necessity immediately follows from Lemma 3.5.3 and Proposition 3.5.5.

What is more, this above equivalence of Definition 3.4.1 with (4.32) in the

case of quantum theory can be shown in a general way from the algebraic

properties of the projectors alone.

According to Proposition 3.5.5, the no-signaling conditions are exactly

those encoded in the projector of the state structure (A0 → A1) ⊗
(B0 → B1), which reads (IA → IB) ⊗ (IB0 → IB1) = IA ⊗DB ⊗
IB0 ⊗DB1 . Indeed, this result states that no-signaling is the conjunction

of the operator being a one-way signaling composition from A to B and
simultaneously being one fromB toA. By Lemma 3.5.3, the first is enforced

by restricting the subspace to (IA0
→ IA1

)⊗IB0
⊗IB1

and the second by

(IA0
⊗ IA1

⊗ (IB0
→ IB1

)). Notice that these are two projectors acting

on different subspaces and thus commuting; their conjunction is then

given by the intersection of both subspaces they define,

(IA0
→ IA1

)⊗ (IB0
→ IB1

) = ((IA0
→ IA1

)⊗ IB0
⊗ IB1

) ∩ (IA0
⊗ IA1

⊗ (IB0
→ IB1

)) , (4.34)



4.2. The Bipartite Process Matrix Formalism and Inclusions 107

and because they commute, the∩ symbol is just the operator composition

◦ of the projectors. Hence, each of them enforces a condition indepen-

dent of the other. The first one,

(
IA ⊗DB ⊗ IB0

⊗ IB1

)
{M} = M , is

explicitly

M − 1B ⊗ TrB [M ] + 1A ⊗ 1B ⊗ TrAB [M ] =M , (4.35)

which is equivalent to condition (4.32a), and thus to statistical indepen-

dence of Bob’s outcome marginal p(b|x, y) from Alice’s setting x, as was

shown above. The same way,

(
IA ⊗ IB ⊗ IB0

→ DB1

)
can be shown

equivalent to condition (4.32b) and thus the statistical independence of

Alice’s outcome marginal p(a|x, y) from Bob’s setting y.

The extra message conveyed by this example is that the algebra of projec-

tors is homomorphic to signaling constraints. Not only does it simplify

the proofs of equations (4.32), but it also gives signaling interpretation

by looking at the projector expression alone: Equation (4.34) is read: “the

parallel composition (⊗) of the local quantum channels of Alice and

Bob are equivalent = to the set of bipartite channels that are one-way

signaling from Alice to Bob and simultaneously (∩) from Bob to Alice”.

In other words, it hides the general principle a no-signaling constraint

is equivalent to a one-way signaling constraint in both directions. By

the same token, that quantum channels are no-signaling from output

to input, Equation (4.13), and that no-signaling from output to input

quantum channels are its subset, Equation (4.17), are also relations that

can be directly read from equivalences of projectors. In other words, the

structure of signaling relations allowed by multipartite objects can be

learned by decomposing the projector associated with the state structure,

whence the interest in studying the algebra of projectors.

4.2.3. Bipartite No-Signaling Channel and Process Matrix

Formalism.

One last interesting aspect that can be revealed by studying the alge-

bra of projectors that appear in this example is duality relations. The

characterization of bipartite process matrices can be recovered from the

one of the base state structures of quantum states. With respect to the

characterization of the state structure of no-signaling channels in the last

section the set of bipartite process matrices are nothing short of the set

of functionals normalized on this set [1, 5]. As with the construction of

single-partite process formalism of Subsection 4.1.1, the construction of

bipartite process formalism can be seen as successive rephrasing of a

Born rule:

p(a, b|x, y) 1)
=
(
Ea|x ⊗ Fb|y , ρ

) 2)
=
(
Ea|x ⊗ Fb|y ,M (ρ)

)
3)
=
(
Ea|x ⊗ Fb|y ,

(
MA ⊗MB

)
{ρ}
)

4)
=
(
1A ⊗ 1B ,

(
MA

a|x ⊗M
B
b|y

)
{ρ}
)

C
=
(
MA0A1

a|x ⊗MB0B1

b|y , ρA0B0
⊗ 1A1

⊗ 1B1

)
5)
=
(
Ma|x ⊗Mb|y , W

)
,

(4.36)

where ‘C’ indicates the Choi-Jamiołkowski isomorphism, Definition 2.2.1.

This construction is now detailed step by step. It actually relates all the
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8: The state space at the output of the

channel is assumed isomorphic to the

state space at the input for simplicity.

other structures built in this section; thus, it is a good summarizing

example.

1) The construction begins similarly to that of the single-partite PM in

Subsection 4.1.3 but assumes the induced dynamics to be bipartite to

start with. Starting with the regular single-partite quantum theory as in

Subsection 4.1.1

1 = Tr [1 · ρ] , (4.37)

one first considers POVM effects in tensor product, ∃{Ea|x} ⊂ L
(
HA0

)
,

∃{Fb|y} ⊂ L
(
HB0

)
, controlled by local parties A and B to argue for

bipartite states, ρ ∈ A0

&

B0 ⊂ L
(
HA0 ⊗HB0

)
,

p(a, b|x, y) = Tr

[(
Ea|x ⊗ Fb|y

)
· ρ
]
. (4.38)

As shown in Subsection 4.1.2, a peculiarity of quantum theory is that

these bipartite states are automatically no-signaling A0

&

B0 = A0⊗B0.

At this stage, the distribution p(a, b|x, y) is a typical Bell scenario: two

local parties A and B applying quantum measurements on a shared

bipartite quantum system.

2) Then, this static bipartite quantum theory is extended by allowing

evolution; quantum channelsM : L
(
HA0 ⊗HB0

)
→ L

(
HA1 ⊗HB1

)
are added to the picture

8
:

p(a, b) = Tr

[(
EA1

a|x ⊗ F
B1

b|y

)
· M (ρA0B0

)
]
= Tr

[
M ·

(
ρ⊗ ETa|x ⊗ F

T
b|y

)]
.

(4.39)

These bipartite channels are characterized as in Section 4.2, so that these

maps have state structure (A0 ⊗B0)→ (A1 ⊗B1).

3) To turn this Bell-like scenario into a bipartite process, the next step

consists of restricting the set of valid bipartite channels to the no-signaling

channels to guarantee that parties A and B are no-signaling even during

the evolution. The heuristic is the following: if there are local effects, the

evolution may be local, for example, if Alice and Bob’s labs are space-like

separated
9

9: There is a technicality ignored for the

sake of following a similar argument to

References [5, 123]

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.
[123]: Barnum et al. (2005), Influence-free
states on compound quantum systems.

: no-signaling is ac-

tually a weaker restriction than causal

disconnection, see [61, 63, 65–67]

[61]: Beckman et al. (2001), Causal and
localizable quantum operations.
[63]: Popescu et al. (1994), Quantum non-
locality as an axiom.

[65]: D’Ariano et al. (2011), No Signaling,
Entanglement Breaking, and Localizability
in Bipartite Channels.
[66]: Perinotti (2021), Causal influence in
operational probabilistic theories.
[67]: D’Ariano et al. (2014), Determinism
without causality.

for in-

stance. Localizable channels, whose defi-

nition was briefly evoked in note 6, are

the correct model of space-like separated

evolution in this context. This assumes

the operations to be in tensor product

as in (4.40) but allowed to share entan-

glement. At the level of state structures,

this changes nothing to the argument,

as localizable and no-signaling channels

share the same linear support because of

Equation (3.81).

. Put another way, Alice and Bob are each allowed to do any

physically admissible transformation on their local share of the quantum

system before measuring, but no global transformation is allowed. Both

points of view conclude that the set of channels is restricted to its local

subset spanned by the tensor product of local transformations:

p(a, b|x, y) = Tr

[
(MA0A1 ⊗MB0B1) ·

(
ρA0B0 ⊗ E

TA1

a|x ⊗ F
TB1

b|y

)]
.

(4.40)

Hence, the state structure of the maps, a bipartite composition, has been

restricted to the no-signaling composition:

MA0A1B0B1
∈ (A0 ⊗B0)→ (A1 ⊗B1)

3)7→MA0A1
⊗MB0B1

∈ (A0 → A1)⊗ (B0 → B1) .
(4.41)

The characterization of MA0A1
⊗MB0B1

is now obtained through Defi-

nition 3.4.1. This was done in Equation (4.26).

4) The probabilistic content of the operations is then passed to the channel

side. This means that it is no longer the destructive measurements that

are resolved but rather the channels, as in step 1) of Equation (4.6) in
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[35]: Araújo et al. (2015), Witnessing causal
nonseparability.

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

the introductory example (see Subsection 4.1.3). Each channel in (4.40) is

turned into an instrument. The probability rule becomes

p(a, b|x, y) = Tr

[(
MA0A1

a|x ⊗MB0B1

b|y

)
· (ρA0B0

⊗ 1A1
⊗ 1B1

)
]
. (4.42)

5) The final step is the same as in the single-partite PM case. It con-

sists of extending ‘states’ ρA0B0 ⊗ 1A1 ⊗ 1B1 to any operator W ∈
L
(
HA0 ⊗HA1 ⊗HB0 ⊗HB1

)
normalized on the set of valid ‘effects’

that MA0A1

a|x ⊗MB0B1

b|y are resolving. Since the state structure of the unit

effects is (A0 ⊗B0)→ (A1 ⊗B1), the state structure of all ‘higher-order

states’ W normalized on it is (A0 ⊗B0)→ (A1 ⊗B1) characterized by

applying Theorem 3.3.2 on Equation (4.26), which results in the projective

characterization of bipartite process matrices W [35],

W ≥ 0 ; (4.43a)

Tr [M ] = dA1dB1 ; (4.43b)

(IA0 → IA1)⊗ (IB0 → IB1){W} =W . (4.43c)

Remark that using Equation (4.13) and (5.2), the projector can be rephrased

as

(IA0
→ IA1

)⊗ (IB0
→ IB1

) = DA0
≺ IA1

&

IB0
≺ IB1

. (4.44)

By doing so, it has been inferred from signaling heuristics what is the

characterization of the set of bipartite process matrices {W} (the five steps

were nothing else than a rephrasing of the steps of the original derivation

in Reference [5]). Moreover, by manipulations on the projectors, it was

shown that its state structure can be rewritten as

(A0 → A1)⊗ (B0 → B1) = A 0 ≺ A1

&

B0 ≺ B1 . (4.45)

From this rewriting, it becomes evident that the bipartite PM allows for

signaling from Alice’s side to Bob’s and vice-versa, as it was explicitly

written as a two-way signaling composition of state structures A 0 ≺ A1

with B0 ≺ B1 in accordance to Definition 3.5.2.

From the example of the swap channel, it has been possible to infer the

inclusion (4.17). Now, as the bipartite process matrix can signal in more

directions than a state and effect pair [5], the inclusion has been reversed:

the set of bipartite process matrix is a bigger state structure than the

tensor product of bipartite quantum states with bipartite unit effects

inasmuch as the set of no-signaling bipartite channels is a smaller state

structure than the bipartite quantum channels. In symbols:

MA0A1B0B1
∈ (A0 ⊗B0)→ (A1 ⊗B1) ⊋ (A0 → A1)⊗ (B0 → B1) ∋MA0A1

⊗MB0B1

ρA0B0
⊗ 1A1

⊗ 1B1
∈ (A0 ⊗B0)→ (A1 ⊗B1) ⊊ (A0 → A1)⊗ (B0 → B1) ∋WA0A1B0B1

(4.46)

and constructing the bipartite process matrix consisted of going from

the dual pair on the left-hand side of this pair of equations to the

one on its right-hand side. The essence of the construction of bipartite

process matrices then lies in restricting the set of ‘effects’ from the

bipartite channelsMA0A1B0B1
to no-signaling channelsMA0A1

⊗MB0B1
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work for higher-order quantum theory.
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mal systems in logic and computer sci-

ences, see Reference [143]

[143]: Girard et al. (1989), Proofs and Types.

for instance.

The kind of type system devised by

Perinotti and Bisio is a fragment of lin-
ear type theory, which generalizes simply

typed λ-calculus into a programming

language suitable for both classical and

quantum computation. This type theory

was already introduced in the context

of quantum theory by various authors

in the 2000s (see, for example, Refer-

ence [144]

[144]: Selinger et al. (2004), A lambda calcu-
lus for quantum computation with classical
control.

), but each time for a different

purpose than studying nested quantum

maps. Remark that the equivalence of

the type-theoretic treatment of Perinotti

and Bisio [10, 11] with the categorical

treatment of Kissinger and Uĳlen [33]

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

can be explained simply because linear

type theory is the internal language of

∗−autonomous categories, in the sense

of a Curry-Howard-Lambek correspon-

dence as shown by Seely and Ambler;

see the review [145]

[145]: Baez et al. (2010), Physics, Topology,
Logic and Computation: A Rosetta Stone.

and sources within.

ρ ≥ 0 , (3.21a)

Tr [ρ] = 1 , (3.21b)

I{ρ} = ρ . (3.21c)

so that the set of ‘states’ is allowed to be extended from the prepare-

and-measure ρA0B0
⊗ 1A1

⊗ 1B1
environment to the bipartite process

matrices WA0A1B0B1
. Whence the name ‘dual pair’ in Definition 3.3.3:

Theorem 3.3.2 encodes a duality in signaling: the less signaling the

‘effects’ are, the more the ‘states’ can be, and vice-versa. This duality is

another reason for studying the algebraic relations between projectors

on state structures. As will be shown in the following, this duality can be

leveraged to simplify the study of the state structure within an object:

instead of asking ‘Which are the signaling directions allowed by this

shared state?’ the duality allows to ask the equivalent ‘Which are the

signaling direction forbidden by this shared effect?’ and pick the easiest

of the two to analyze.

4.3. Type Theory and Order

The rules defined in the previous chapter allow whole hierarchies of

higher-order processes to be developed. For instance, one can consider the

channels of channels between biased quantum theory by repeating the

construction in Subsection 3.6.2, then channels of channels of channels,

and so on... The idea of Perinotti and Bisio’s works [10, 11] is to define a

type system to classify these infinite hierarchies of nested maps
10

.

Given a global Hilbert space and a tensor partitioning of it, likeH = HA⊗
HB ⊗ . . ., one first defines a set of base types {A,B, . . .} as a collection of

state spaces of quantum systems defined on spaces L
(
HA
)
,L
(
HB
)
, . . .

and associated to parties A(lice), B(ob), ... The idea behind the type theory

is then to associate a type to the global state space of the parties defined

on L
(
HA ⊗HB ⊗ . . .

)
. The type can be built using one occurrence of

each base type and any combination of the rules {1,→, (, )} according to

the following rules:

▶ All base types are valid types.

▶ 1 is a valid type called the trivial type; it is the state space of

1-dimensional quantum theory, i.e. the number 1.

▶ If A ⊂ L
(
HA
)

and B ⊂ L
(
HA
)

are valid types, then (A→ B) ⊂
L
(
HA ⊗HB

)
is a valid type.

One recovers the hierarchy of Bisio and Perinotti by imposing the follow-

ing postulates:

1. The base types are the state space of quantum theory.

2. The type A→ B is the state space of the the CJ representation of

the admissible mappings (in the sense of Definition 3.2.2) between

A and B.

In terms of the projective characterization of the last chapter, the type

system is built by assuming base types as being the state structures of

density matrices: the set of base types corresponds to a set {A ,B, . . .} of

states structures each characterized by Equations 3.21. The type rule→,

called type constructor, corresponds to using Theorem 3.4.1 for defining

new state structures like A → B for instance.

The type system can then be used recursively under splitting and group-

ing of parties/Hilbert space to increase and decrease the number of

subsystems. For instance, several types can be associated with the same
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party when it is dealing with a composite system. In that case, subscript

numbers will be used to differentiate between each part. For instance, if

Alice has a tripartite system, base type Awill split into a set of three base

typesA0,A1, andA2 associated with each subsystem. Note that although

two different parties A and B could have isomorphic state spaces, i.e. the

same base type. In order to avoid a complicated notation, different letters

are used for types instantiated on different systems – by convention the

same letters as for the systems – and it will indicated by words, if needed,

when the types are isomorphic. E.g., if parties A and B’s systems are

both qubits, their types will be noted as A and B, and it will be precised

that the state space associated with these types are isomorphic since they

are base types of the same dimension. However, the rules distinguish the

base type on the 1-dimensional system as the trivial type, noted 1, which

is the set of quantum states on a 1-dimensional Hilbert space –consisting

of the number one– from the other base types, which are the sets of

quantum states on any other finite-dimensional Hilbert spaces. This is

important as any system A can be extended by the trivial type since

HA ⊗ C ∼= HA. As a consequence, in type notation, the trivial type will

be noted 1 without reference to a party since it represents trivial systems

(i.e. nothing).

The interest of the type system is to infer general properties on state

space by the sole analysis of their type. In particular, the type system can

be used to derive equivalence between types and, from there, rewrite

rules to show equivalence between more complex types (meaning types

instantiated on more subsystems).

The trivial type plays a special role in the construction and classification of

valid types; indeed, it complexifies the situation already for single-partite

types. Starting with a single base type {A}, one may have expected that

the only valid type would be A, but actually many other valid types can

be built using 1 like 1 → A, A → 1, (A → 1) → 1, 1 → (A → 1), etc.

Notice that 1→ A is the set of transformations from the trivial system

to A; this is a mapping from nothing to a quantum state, which is no

different than state preparation, thus the state itself. Therefore, the first

equivalence of types is

A = 1→ A . (4.48)

One may expect that all single-partite type is equivalent to the base type,

but actually, there is another equivalence class. Consider A→ 1, i.e. the

transformation from a state to the number 1: this describes the destructive

measurements, exactly the set of unit effects or deterministic functionals
characterized in Theorem 3.3.2. It is a different type than A: A is the type

of all operators N that takes operators V of type A to the trivial type

through rule (2.7): TrA [N · V ] = 1. This set has the following special

notation:

A := A→ 1 . (4.49)

Whence the choice of using A to denote the dual state structure in

the last chapter. Another special type in the single-partite setting is

(A → 1) → 1 = A → 1 = A. By a direct interpretation of the formula,

this is the type that sends the set of unit effects to the number one, which

is the set of states, i.e.

A = A . (4.50)

This type rule corresponds to Corollary 3.3.3. With this rule, all single



112 4. Intermezzo: Towards the Projector Algebra

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.

[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[61]: Beckman et al. (2001), Causal and
localizable quantum operations.
[64]: Piani et al. (2006), Properties of quan-
tum nonsignaling boxes.
11: This connection is explained in more

detail in Subsection 4.2.2.

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.
[8]: Chiribella et al. (2008), Transforming
quantum operations: Quantum supermaps.

partite types fall into two essential categories: states A or unit effects

A. This type constructor “→”, nicknamed transformation, is the key

element of the type theory of higher-order transformations: each set

can be seen as an abstract type, and new types can be defined out of

existing ones using the transformation connector as a semantic rule. It is

actually not associative: (A→ 1)→ 1
(4.50)

= A whereas A→ (1→ 1)
(4.48)

=

A→ 1
(4.49)

= A. And this is how there can two inequivalent types for the

single-party type.

For multipartite types, this non-associativity further splits types into

‘orders’, which convey the idea of ‘how nested the map associated with

the type is’. In the bipartite setting, there are two possibilities: one is

the elementary type for two parties, A ⊗ B, which is a special kind of

transformation between them [10, Lemma 1]:

(A→ (B → 1))→ 1 = A→ B := A⊗B . (4.51)

Generalizing this rule in the case where A and B are not base types

yields the parallel composition of two types, defined as type A→ B ≡
A⊗B [11, Section V.E]. Since it corresponds to the set of all possible CJ

representations of the parallel (⊗) composition of two linear maps, the

type A⊗B is ‘not nested’, so it is a first order type. The other possibility is

the second order typeA→ B, which is, by definition, the set of (admissible)

linear maps from type A to type B. This is a transformation between

types; hence, provided the types A and B are not base types, A → B

represents a set of maps on the set of maps A, i.e. a nested map. Type

A→ B is ‘nested’ with respect to types A and B, so, by consequence, it

is a second order type.

For example, consider the case whereA has the type of quantum channels;

this is a composite type over subsystemsA0 andA1 so thatA = A0 → A1,

where A0 is associated with the input space of the channel and A1 the

output. LetB = B0 → B1 be similarly defined. Consequently, the Hilbert

space is split between four subsystems for which {A0, A1, B0, B1} are

the base types. Then the first order type (with respect to the type of

channel) A⊗B = (A0 → A1)⊗ (B0 → B1) coincides with the parallel

composition of channels, that is the (CJ representation of) no-signaling

channels [61, 64] from the joint input space L
(
HA0 ⊗HB0

)
to the joint

output L
(
HA1 ⊗HB1

)
11

. Whereas the second-order type A → B is a

transformation (i.e., an admissible linear map) from a channel on Alice’s

side (betweenL
(
HA0

)
andL

(
HA1

)
) to a channel on Bob’s side (between

L
(
HA1

)
and L

(
HA0

)
). The second-order type is then the set of valid

quantum 2-combs [9] (also called quantum supermap or superchannel

[8]).

Going down at the level of the base types, the situation is four-partite,

and the order of the expressions increases. However, this fine-graining

allows for the characterization of the no-signaling channels and 2-combs

to be inferred from the characterization of the base type alone. What

is more, the actual description of what is going on in this process can

be read from the type formula. From the expression A = A0 → A1, it

is assumed that Alice is applying some quantum operation in between

A0 and A1, which are base types. Then, one can infer that the set of

allowed transformations to which she has access is of type A0 → A1, a

second-order type. This simple semantic statement is then translated into
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constraints to apply on the Hilbert space L
(
HA0 ⊗HA1

)
and yields (the

Choi-Jamiołkowski representation of) the set valid quantum channels

for Alice. The set of no-signaling channels shared by Alice and Bob

then corresponds to type A ⊗ B = (A0 → A1) ⊗ (B0 → B1). This is

now of second order with respect to the base type, since it is a parallel

composition of two second-order transformations. Again, this semantic

statement can be translated into constraints to apply on four-partite

operators MA0A1B0B1
for them to represent valid no-signaling bipartite

channels. On the other hand, the set of quantum 2-combs corresponds to

the different type A→ B = (A0 → A1)→ (B0 → B1), which is a type

of the third order since it is a transformation between second-order types.

Again, from the semantic expression, the characterization follows.

Thus, starting from some postulates, a trivial type 1, base types {A,B, . . .},
and the type constructor→, all the higher-order generalizations of the

quantum formalism based on nested maps (i.e., generalizing the supermaps
of Reference [8]) can be defined and classified using the type system.

These, in turn, yield the characterization constraints on the operators

representing transformations of a given type [10, 11].

A more complex example is obtained by recovering the set of bipartite

process matrices (PM) [5], which corresponds to the set of functionals

normalized on the local quantum instruments of two parties, say Alice

and Bob. Knowing that their local instruments sum up to quantum

channels, i.e. they belong to types (A0 → A1) and (B0 → B1), the set of

process matrices is the type that takes the parallel composition of these

two types as input and outputs a trivial system. In the semantics, this

statement corresponds to writing type ((A0 → A1)⊗ (B0 → B1))→ 1,

from which the constraints for the characterization of the valid CJ oper-

ators representing bipartite PM directly ensue. From the type formula,

one directly sees that the bipartite process matrix is the second-order

type (A0 → A1)⊗ (B0 → B1) dual to the set of bipartite no-signaling

channels.

A shortcoming of the type system is the absence of a systematic way to

break down the signaling structure in an expression, which is one of the

goals of this chapter. While (A0 → A1)⊗ (B0 → B1) can be interpreted

as the type of no-signaling channels by inspection, nothing can be told

about its dual (A0 → A1)⊗ (B0 → B1), albeit it is known to be the type

of bipartite process matrices hence objects that allow signaling from

Alice’s side to Bob’s and vice-versa. A more problematic example of

this kind is the result shown in [13] that a quantum comb, which is a

transformation from a higher-order channel to a channel, always features

a fixed signaling direction. Yet there is no direct way to see it from the

type system, although it can be proven using some rewrite rules as was

shown in [11].

A supplementary issue raised by the proof of fixed signaling direction in

quantum combs is that it requires reducing the order of their type to the

first order. More generally, the non-associativity of the transformation

connector, which is what allows for the definition of the order of types,

can actually hide some equivalences. A concrete example of such non-

associativity encountered in the proof is

(A1 → A2)→ (A0 → A3) ̸= ((A1 → A2)→ A0)→ A3 , (4.52)
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in the case where the Ai’s are the base types of four subsystems as-

sociated with Alice [10]. On the one hand, this is a comparison of a

second-order type with a first-order type, so it makes sense that these

are not equivalent, although the two types are sets of objects defined on

L
(
HA0 ⊗HA1 ⊗HA2 ⊗HA3

)
. On the other hand, the following equiva-

lence holds [9]:

(A1 → A2)→ (A0 → A3) = ((A0 → A1)→ A2)→ A3 , (4.53)

so there is an equivalence between a first-order type and a second-order

type, despite non-associativity. The difference is that the ordering of

subsystems is not the same; the right-hand side of Equation (4.52) can be

rephrased into a second-order type so that the equation becomes:

(A1 → A2)→ (A0 → A3) ̸= (A2 → A0)→ (A1 → A3) . (4.54)

Both types are now of second order and represent sets of 2-combs

(supermaps). However, in the left-hand side, this is the set of supermaps

that transform an input channel betweenA1 andA2 to an output channel

between Ao and A3, whereas in the r.h.s., these are the supermaps that

transform a channel betweenA2 andA0 to an output channel betweenA1

andA3. Therefore, a naive application of the notion of order may hide the

equivalence between some types of transformations, as in Equation (4.53).

Looking at the formula alone, one could have concluded that there is no

use in comparing them because they do not feature the same base state

structures at equivalent orders. But a naive application of the notion of

order can also put incomparable transformations at the same level, as in

Equation (4.54). Looking at the formula alone, one could have concluded

that there is a way to rewrite one into the other.

There is therefore a reason to extend the type system into a wider set

of rules that are more convenient to work with. There are moreover

clear candidates for this extension: the rules for bipartite composition of

state structures derived in the previous chapter and based on signaling

relations. Therefore the aim of this chapter is to generalize the type theory

using the state structure treatment and associated projective methods.

This generalization is called the algebra of state structures.

Type theory is dependent on a set of base types. In Reference [11], the first

nontrivial types in the hierarchy, called the elementary types, are taken as

the set of quantum states as in Equations (3.21). In terms of the projective

characterization, this means that each base type is characterized with

projector I, and the elementary type on k subsystems is the set of

quantum states characterized by projector IA⊗IB⊗ . . . IK (where party

K is the k−th party). But within the framework of state structures, other

base types can be considered: any projector on state structure defines a

state structure that can be taken as a basis to construct a higher-order

theory. What is more, the different parties can be associated with different

base state structures. Nothing forbids a priori to consider party Alice to

be able to prepare quantum states, whereas party Bob can only prepare

classical states. What the algebra of state structure should be able to tell

is how to link these two local operations into a joint global operation

given a signaling relation. This is the first purpose of the algebra of

state structure: by knowing what parties can do locally and how their

signaling relations are constrained, using the algebra allows to quickly



4.3. Type Theory and Order 115

12: Where PA and PB characterize the

set of valid single-partite channels of

Alice and Bob, respectively.

13: The transformation, → is omitted

since it can be built out of the other rela-

tions.

get an expression for the projector on their joint state structure, which

in turn yields the characterization of the set of all joint operations the

parties are allowed to perform as well as what the set of all environments

they can share (the dual state structure).

The second purpose of studying the algebra is to abstract its structure.

Knowing how the algebra works allows one to compare state structure

simply by using the rewrite rules of the algebra in the same fashion as

what was possible with type theory. This is a relevant question for two

reasons: first, it can be used to classify the different families of operations.

It should be no surprise that the set of bipartite channels allowing

signaling only from Alice to Bob is a subset of the set of bipartite channels

allowing signaling in the two directions. Remark that the state structures

are essentially characterized by their projectors. In Section 3.5, it was

shown in particular that the (on-average) signaling relations between

the parts of a multipartite state structure are in correspondence with

how the joint projector characterizing the overall state structure is built.

Hence, the state structure algebra is actually homorphic to a projector

algebra. Compared to types and state structures, the projector algebra

is a concrete algebra on a Hilbert space, so the algebraic rules between

state structures can be systematically uncovered by computations on

projectors. This chapter will present relations between state structure

through relations in the projectors. For example, an expression of the

form
12

PA ≺ PB ⊂ PA

&

PB , (4.55)

encodes the fact that one-way signaling composition is a subset of two-

way signaling composition. It may appear trivial, but as it turns out,

these inclusion relations sometimes carry deep results. For example, that

two-way signaling composition is (the affine hull of) the two one-way

signaling compositions will be reduced to the projector expression

PA

&

PB = (PA ≺ PB) ∪ (PA ≻ PB) . (4.56)

Thus, abstracting the algebra is to give meaning to what the symbols

like ⊂, ∪, = mean in terms of projectors, what they entail in terms of the

subspaces these projectors characterize, and, therefore, what they mean

in term of signaling relations.

In this regard, working out all equivalence relations for all compositions

of projectors using the connectives in the algebra provides the systematic

breakdown of the possible signaling relations composite state structure

can present. For a fixed number of parties, thorough characterization

consists of sorting them into equivalence classes in the same way that

single partite types fall into two equivalence classes: either A or A. Now,

the issue with a systematic characterization of the algebra is its size.

As will be shown, there are seven relevant operations in the algebra of

projectors
13

, { · ,∩,∪,⊗,≺,≻,

&

}. Hence, the number of different ways of

combining just two projectors is already very large. Out of the very large

amounts of expressions combining the seven connectives for two parties

Alice and Bob, there are only four equivalence classes corresponding to

the four possible signaling directions: none; Alice to Bob; Bob to Alice;

and both. Lifting these operations to the case of more than two parties

exponentially increases the number of equivalence classes (this number

grows as powers of four): a systematic listing of all signaling structures
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[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

is complicated.

This leads to the technical reason for studying the abstract structure of the

algebra in this chapter: inferring general properties so as to infer general

behaviors of signaling structure. In a sense, this is tackling the opposite

problem of the systematic characterization: given two composite state

structures that are believed to be equivalent, what general proof strategy

can be used at the level of the algebra to prove it without exhaustively

listing all equivalences for this given number of parties? This will result

in the study of the lattice structure of the algebra, as well as the definition

of a normal form for projectors. Putting two projectors in normal form

indeed provides a systematic way to prove the equivalence of two state

structures.

As a concluding example of Chapter 5, the issues of the type system raised

around equations (4.52), (4.53), and (4.54) will be shown to disappear in

a two-step example of the utilization of the algebra. First, it will be shown

that quantum theory has a singular signaling behavior with respect to

the algebra. This will explain why certain higher-order quantum maps do

coincide with lower-order ones as in Equation (4.53). Second, an example

of the use of the normal form will be used to extend this particular

behavior of quantum channels to their full hierarchy: the result of

References [9, 11] that quantum combs (which are nested transformations)

are equivalent to quantum networks (which are successions of operations

with a fixed signaling direction) will be rederived.
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L’algèbre n’est qu’une géométrie écrite, la

géométrie n’est qu’une algèbre figurée.
*

Sophie Germain (1896), Oeuvres philosophiques

In the previous chapter, the basic form of all sets of objects in the

theory of higher-order processes was abstracted as a state structure in

Definition 3.2.2. It was shown that all state structures are tied to their

support on an operator system, Definition 3.2.1, characterized by a special

kind of superoperator projector, Definition 3.2.7. It was moreover shown

that composite state structures, i.e. the set of objects shared by several

parties, are defined by the local state structures of each party as well as

which signaling relations they permit between them. As a consequence,

any composite state structure, like the transformation between state

structure A and B or their tensor product for example, is characterized

by a projector which is obtained from the projectors of the state structures

it composes. With regard to that, the algebraic relation encoding how

two projectors are composed encodes the signaling relations that the

composite structure will feature.

Studying the algebra of projector compositions is thus a systematic way

to study signaling in state structures. In this chapter, this will be done

to obtain decompositions of composite state structures so as to infer the

signaling relations they allow between their components.

This chapter relies heavily on previous results of Perinotti [10]

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.

and Bisio

[11]

[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

, as well as Kissinger and Uĳlen [33]. In particular, the whole chapter

starts by recognizing that Perinotti and Bisio’s type system (reviewed

in Section 4.3) can be expressed as structural rules on how projectors

are composed using Theorem 3.4.1. From there, the type system is

extended into an algebra of projector compositions by adding the various

composition rules studied in the previous chapter. The chapter studies

this extension, particularly the intrinsic logic of the obtained algebra

as was pioneered in References [33, 36]. By construction, this algebra

of projectors is homomorphic to the signaling relations between the

different parts of a composite state structure. Consequently, studying the

logic of the projector algebra provides a systematic way to study the logic

of signaling in higher-order processes. In addition to the exhaustive study

of this logic, the achievement of this chapter is to introduce a normal

form for the projectors characterizing composite state structure. From

this normal form, the signaling structure of any state structure, therefore

of any set of higher-order objects, can be read.

5.1. Beyond Type Theory: the Projector Algebra

It was shown in the last chapter that, given a state structure, its dual

state structure was characterized mainly through a rule on projectors,

*
“Algebra is but a written geometry, geometry is but a figurative algebra.”

117
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the negation of a projector defined as

P := I − P +D . (5.1)

And that the corresponding state structure is defined over a subspace that

is quasi-orthogonal to the subspace of the original state structure. This

mathematical property was interpreted in Subsection 3.3.2 as a constraint

on the influence that the states and effects can have on each other.

Using this constraint as a no-signaling heuristic, four different bipartite

composition rules for state structures were derived using the signaling

relations. These composition rules are actually ways of composing the

underlying operator systems of state structures, hence they can be

encoded as ways of composing projectors. These are the tensor product of

projectors, representing a no-signaling composition, which is simply the

tensor product of linear maps; the parr, representing two-way signaling

composition,

PA

&

PB := IA ⊗ IB − PA ⊗ PB +DA ⊗DB , (5.2)

(in which the negation rule has been used to shorten the expression);

and the prec, representing a one-way signaling composition in which

directionality matters so there are two of them:

PA ≺ PB := IA ⊗ PB − PA ⊗DB +DA ⊗DB ; (5.3a)

PA ≻ PB := PA ⊗ IB +DA ⊗ PB +DA ⊗DB . (5.3b)

With respect to these projective rules, the type system presented in

Section 4.3 starts from the state structure of transformations, characterized

by the transformation connector which is derived as a parr with negated

input,

PA → PB := PA

&

PB . (5.4)

Using this rule at the level of projectors instead of types, the relations

obtained for types also hold for projectors:

A = A→ 1⇒ PA = PA → 1 ; (5.5a)

A⊗B = A→ B ⇒ PA ⊗ PB = PA → PB . (5.5b)

There is a correspondence types↔projectors↔ state structures. However,

the prec is outside of the definition of the original type system. Yet, it has

a well-defined rule and interpretation. This is the limitation of the type

system that the study of the algebra of projectors is meant to overcome:

the formulae in the type system are abstract entities that require some

translation to identify the set of operators they designate. Lowering it one

step closer to the state structures, at the level of connection rules between

projectors, allows to keep some of its abstract structure while at the

same time rephrasing it as concrete mathematical objects (superoperator

projectors) so that the translation is built-in.

The benefit of doing so is that abstract relations, like a rewrite rule

between two types, can now be derived methodically from the study of

the algebraic properties of superoperator projectors. In addition, because

the projector rules ultimately represent ways of combining subspaces,

two extra rules arise naturally for comparing subspaces: the union and

intersection of subspaces. Actually, it is under these two rules that
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the projectors form an algebra. Phrasing the signaling relations and

their abstract logic models in terms of this algebra is the genuinely

new contribution of this work to the theory of higher-order quantum

transformations [10, 11, 33, 36, 37, 88].

The point of this chapter is to show that not only do the new connectors

extend the type theory into an algebra but that the roles of the operations

in the algebra are not arbitrary: they are actually well-known connectives

that arise in models of logic. Hence, each added connector corresponds

to a new way of defining state structure from signaling requirements,

but at the same time, each added connector happens to refine the algebra

of projectors into a more complex model of logic. These connectors will

be reintroduced in an order such that the model of logic they define is a

refinement of the previous one. Starting from the algebra of projectors

defined under the union and the intersection, these refinements will

be similar to the following models of logic: 1) Classical Logic (Boolean

algebra), obtained by adding the negation (5.1); 2) Multiplicative Additive

Linear Logic (MALL) [146], obtained by adding the tensor and the parr

(5.2); 3) Pomset [147, 148] or BV-Logic [149], obtained by adding the prec

(5.3).

5.1.1. The Projector Algebra as a Lattice

The overarching question of this chapter can be put as “how are the

signaling relations allowed by the state structure reflected on the algebraic

properties of their characterizing projectors?”. The first step is to identify

what is the algebra and how to interpret it. By Definition 3.2.7, projectors

on operator systems are a subset of the algebra of bounded linear

maps on the space of operators on a Hilbert space. As such, arbitrary

superoperators S, T , . . . inherit three operations ‘for free’ because of their

linearity: the addition +, the composition ◦, and the scalar multiplication.

With these three operations, the set of superoperators constitutes an

algebra over C (in the abstract sense, see e.g. Chapter 7 of Reference [150]).

But when the set of all superoperators is restricted to only the projectors

on operator systems, does it still have the same abstract structure? Since

these are projectors, they acquire the extra property that all elements of the

subset are idempotent. However, this set of idempotent superoperators

is no longer closed under any of the three operations.

The workaround to recover a closed set is to realize that state structures

are trace-normalized, so scalar multiplication is an irrelevant feature that

can be abandoned, and the field over which the projectors are defined

can actually be restricted to the singleton {1}. The other realization is

that the algebraic properties of the projectors will be used to compare the

operator systems they define. But for a meaningful comparison to hold,

these subspaces must be expressible in the same basis. A cornerstone of

linear algebra is that to share the same basis, i.e. to be simultaneously

diagonalizable, two operators must commute. As a consequence, the

working hypothesis for this chapter is that the elements of the algebra

form a set of commuting projectors on operator systems. This hypothesis

will be shown to be verified along the presentation of the algebra as each

newly introduced operation will be proven to preserve commutation.
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1: See Appendix D.2.1, for the technical

details.

2: Which generalizes the inclusion of

subspaces as in Proposition C.1.3.

3: See Appendix D.1.1 for the definition.

4: This set-theoretic intuition is proven

explicitly in Appendix D.2.1.

5: The definition of a ring is reminded

in Appendix D.1.1. Some technicalities: 1)

The projectors under operations∪,∩ are

actually not exactly a Boolean ring but

a Boolean semiring naturally related to

one. This simplification is made for the

sake of exposition.

2) A Boolean ring is not only a ring but

also a distributive lattice. This lattice can

always be turned into a Boolean algebra

by adding a uniquely defined extra oper-

ation called a ‘negation’ (which is done

in the next section). However, as such a

Boolean algebra is actually still a ring as it

is not defined over a field but rather over

the singleton {1}. In other words, the

only scalar compatible with a Boolean

algebra is the number 1, whereas the ab-

stract definition of an algebra requires

the set of scalars compatible with it to

be a field. The name Boolean “algebra”

is due to historical reasons and should

not be understood as an algebra over a

field. On the other hand, a Boolean alge-

bra is a (distributive and complemented)

lattice. For these reasons, the phrasing

‘algebra of projectors’ is used as a col-

loquial term to convey the idea that the

operations (∪,∩) are similar to the usual

operations (+,×) of school children’s al-

gebra; whereas ‘lattice of projectors’ is

used as a technical term, for example

when dealing with definitions.

Such a set of commuting idempotent projectors constitutes an abstract

mathematical structure known as a Boolean ring1
. In terms of the operator

systems they define, comparison becomes straightforward as one can

consider the overlap between the two such subspaces. For this purpose,

one needs a new composition rule: the intersection of projectors2
which is

abstracted as a new operation noted ∩ and nicknamed ‘cap’. It is defined

by

∀P ,P
′
, Im

{
P ∩ P

′
}
= Im{P} ∩ Im

{
P

′
}
, (5.6)

That is, the intersection of two projectors is the projector defining the

intersection of the spaces they define. For commuting projectors, the

intersection of projectors is exactly the composition operation,

P ∩ P
′
:= P ◦ P

′
. (5.7)

The algebra is still not quite complete; a Boolean ring is almost a Boolean
algebra3

but it is not closed under the addition operation as it does not

preserve idempotency. The interpretation in terms of the underlying

operator systems can again guide how to change the definition: an

addition of projectors should represent the union of the two spaces

they characterize. The issue with using the addition to do that is that it

counts twice the overlap of the two subspaces
4
; a correct addition is then

obtained by turning the addition into the exclusive disjunction, or union
of projectors, noted ∪ and nicknamed the ‘cup’. It is defined by

∀P ,P
′
, Im

{
P ∪ P

′
}
= Im{P} + Im

{
P

′}
, (5.8)

where the ‘+′
here refers to the Minkowski sum: Im{P} + Im

{
P ′}

:=

{x + y|x ∈ Im{P}, y ∈ Im
{
P ′}}. That is, the union of two projectors

is the projector defining the joint span of the spaces they define. For

commuting projectors, the union of projectors is obtained as

P ∪ P
′
:= P + P

′
− P ∩ P

′
. (5.9)

With these, a set of projectors on operator system defined over a space

L (H) that are commuting pairwise can be extended into a set closed

under the operations {∪,∩}. This abstract set forms a ring, where the

∪ plays the role similar to the addition + whereas the ∩ plays the role

of the multiplication ×. This is a special kind of ring whose elements

are all idempotent, i.e. P ∩ P = P called a Boolean ring. This ring can

also be interpreted as a distributive lattice, a sublattice of simultaneously

diagonalizable subspaces, where ∩ plays the role of the ‘meet’ and ∪ the

‘join’. The images of the projectors in this ring/lattice are all the operator

systems that can be defined for a given basis of a given Hilbert space.

Hence, when ignoring normalization the elements of the Boolean ring of

projectors are in one-to-one correspondence with the state structures on

a given space.

This ambivalent ring/lattice is the ‘algebra’ this section is about
5
; this

name is now made formal.

Definition 5.1.1 (Projector Algebra) Let {P ,P ′
, . . .} be a set of superoper-

ator projectors on operator systems like in Definition 3.2.7 so that they all act
on the same space L (H). This set is a commuting set of projectors if its
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6: The proof that it is effectively a

Boolean lattice is provided in Ap-

pendix D.1.1. Remark in passing that

defined as such, the projector algebra

is a finitely generated lattice with at most

2d
2−1

elements, see the comment in Ap-

pendix D.2.2.

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

7: Another type system can be defined

as will be shown in Subsection 6.3.2.

elements are pairwise commuting with respect to the composition ◦. This
commuting set is complete when no extra projector can be added to the set
while preserving pairwise commutation.

By a Projector Algebra on a given space L (H), it is meant a complete
commuting set of superoperator projectors on operator systems together with
the operations {∩,∪}.

When discussing projectors, it is always assumed that they belong to a

given projector algebra, hereafter concisely referred to as ‘the algebra’.

A Boolean ring is a special kind of lattice that has many useful properties

that are now detailed
6
. First, one can prove that an operator system

characterized by P ′
is contained within another characterized by P by

showing either of the following:

P ∩ P
′
= P

′
; (5.10a)

P ∪ P
′
= P . (5.10b)

In the above, remark that the duality principle of lattices holds: any

equality formed using projectors, caps, and cups (for instance the first

line) induces a second equality obtained by switching the caps and

cups (the second line) which automatically holds. This principle greatly

reduces the amount of proofs needed to show inclusion. In terms of

projectors, the inclusion conditions will be concisely noted

P
′
⊆ P . (5.11)

When comparing state structures, the inclusion of projectors shows

inclusion (up to normalization) of a state structure within another since

the other constraint, positivity, is common to all state structures. Moreover,

because every operator system must at least contain the identity element

and because an operator system cannot be bigger than the full space of

self-adjoint operators, every projector in the algebra is contained between

the depolarizing and identity projectors,

D ⊆ P ⊆ I. (5.12)

Conditions (5.10) thus define the partial order (5.11) quantifying whether

a state structure is included into another one. Equation (5.12) states thatD
and I are respectively the least and greatest elements in the partial order,

meaning that in a given space L
(
HA
)
, the smallest state structure is the

set { cAdA1} and the largest is the set of self-adjoint operators. Hence, the

projectors can be compared using the partial order, which corresponds

to the embedding of an operator system into another one.

Nevertheless, the cap and the cup are new rules that cannot be expressed

using the→ connector. So, while it generalizes and simplifies the clas-

sification of higher-order transformations, the downside of the algebra

is that it goes outside of the “typed-λ-calculus kind” of type-theoretic

framework of references [10, 11] as the type system can no longer be ex-

pressed in terms of a single connector→ from which all other connectors

can be derived
7
.
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9: See Appendix D.2.3 for the proofs.

5.1.2. The Boolean Algebra of Projectors

In a Boolean ring, it is always possible to define a unique complement
operation, promoting it to a Boolean algebra. The complement of a projector
in the algebra is noted · and nicknamed ‘negation’. It is defined by, ∀P ,

P ∩ P = D ; (5.13a)

P ∪ P = I . (5.13b)

The negation of a projector is none other than the operation appearing in

Theorem 3.3.2,

P := I − P +D , (5.14)

and characterizing the dual state structure as in Definition 3.3.3. This

operation · effectively acts as the Boolean negation in the algebra of

projectors since it makes P complementary to P , meaning they add up

to the greatest element and since it is an involution, meaning applying it

twice does nothing P = P . The algebra therefore simplifies the relation

between a set of states and its set of unit effects into a simple application of

the Boolean complement. Actually, for a given set of base state structures,

the operations {∪,∩, · } can be used to construct a full Boolean sublattice

of the algebra by considering all possible combinations.

Proposition 5.1.1 (Boolean sublattice) Let {P(i)
A }ni=1 be a set of n com-

muting projectors on operator systems in space L
(
HA
)
. Then, this set spans8

8: By its ‘span’, it is meant the set gener-

ated by all combinations of any number

of elements from the base set mixed us-

ing the operations {∪,∩, · }.

a sublattice of the projector algebra under the operations {∪,∩, · }.

Proof. The operations {∪,∩, · }map projectors to projectors and preserve

commutation are proven in the appendix (see Appendix D.2.1 and

Appendix D.2.3). Since these operations define a Boolean lattice, with

the least element being DA (that can be obtained as P(i)
A ∩ P

(i)
A for any

i) and the greatest being IA, it has to be a sublattice of the algebra of

projectors.

This sublattice contains all possible states and effects state structures

that can be constructed from the base set. Therefore their comparison

is straightforward using the partial order relation of the lattice (‘is this

state structure contained into this one?’).

Moreover, a Boolean algebra obeys the De Morgan law:

P ∩ P ′ = P ∪ P ′ , (5.15)

which induces another duality principle
9
:

P
′
⊆ P ⇐⇒ P ⊆ P ′ . (5.16)

These two rules greatly reduce the number of computations required

to determine all the relations between the state structures in the lattice,

as inclusions between functionals are dual to inclusions between the

corresponding states. For example, in Equation (5.13), only one equation

is to be proven and the other holds simply by the duality principle of the

negation. The main properties of the Boolean lattice structure useful for

doing computations on projectors are gathered in the following.
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10: Which only needs the transformation

connector→ and the trivial system 1 to

recover the other two.

Proposition 5.1.2 (Properties of the cap and the cup) The cap and the
cup are associative, commutative, order-preserving, De Morgan dual to each
other. Moreover, these two rules are distributive over each other. That is, the
cap verifies (

PA ∩ P
′

A

)
∩ P

′′

A = PA ∩
(
P

′

A ∩ P
′′

A

)
; (5.17a)

PA ∩ P
′

A = P
′

A ∩ PA (5.17b)

PA ⊆ P
′

A

P ′′

A ⊆ P
′′′

A

}
⇒
(
PA ∩ P

′′

A

)
⊆
(
P

′

A ∩ P
′′′

A

)
; (5.17c)

PA ∩ P
′
A = PA ∪ P

′
A; (5.17d)

and moreover,

PA ∩ (P
′

A ∪ P
′′

A) = (PA ∩ P
′

A) ∪ (PA ∪ P
′′

A) . (5.18)

Accordingly, the cup verifies the same five rules under the interchange ∩ ↔ ∪.

Proof. See the appendix: in Appendix D.2.1, the lattice structure is dis-

cussed, proving the first three and the last equations; in Appendix D.2.3,

the last one is proven.

5.1.3. Type Theory and the No-Signaling Sublattice

The Boolean algebra of projectors sees each state structure as a global

thing, characterized by a global projector P . But how is the set of

global projectors obtained? Actually, any projector splits as an expression

built from the k projectors PA,PB , . . . ,PK on the base state structures

associated with each party. An example is the projector on the elementary

state structure which reads PA...K = PA ⊗ . . .⊗ PK .

Using the three rules under consideration in the type theory
10

, { · ,⊗,→},
the possible state structures for a given number of parties, and therefore

the associated projectors, will be constructed by considering all possible

combinations of these rules. The assumption that all such projectors

commute with each other is then justified by the following lemma:

Lemma 5.1.3 The rules { · ,⊗,→} result in valid projectors and preserve
commutation.

This is provable by direct computation using the definitions; see Ap-

pendix D.2.3, Appendix D.3.1, and Appendix D.3.2. A direct corollary is

that the sets they span are valid projector algebra.

Corollary 5.1.4 (The lattices of type theory) Let {P(i)
A }

nA
i=1 be a set of nA

commuting projectors on operator systems in space L
(
HA
)
. Let {P(j)

B }
nB
j=1,

{P(k)
C }

nC

k=1, . . . be a similarly defined sets in spaces L
(
HB
)
,L
(
HC
)
, . . ..

Then, the set of all expressions built from elements of these sets under the
rules { · ,⊗,→} so that they project on L

(
HA ⊗HB ⊗HC ⊗ . . .

)
spans

a sublattice of the projector algebra on L
(
HA ⊗HB ⊗HC ⊗ . . .

)
under

operations {∪,∩}.
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[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[32]: Castro-Ruiz et al. (2018), Dynamics
of Quantum Causal Structures.
[88]: Apadula et al. (2022), No-signalling
constrains quantum computation with indef-
inite causal structure.

11: Note that the converse is not true, the

interchange of a cup with a tensor de-

fines a subset, whereas the interchange

of the cap with the parr defines a super-

set; see Equations (D.46) and (D.82) in

the appendix.

As a simplification and for the sake of a meaningful comparison, these

sets are often taken the same single-element sets:every party can only

access to a single state space locally, and the state space of every party is

the same. For example, in References [10, 11, 32, 88] it is assumed that

every party has access only to quantum theory locally, so the set of base

projectors for every party are reduced to the singletons made of the

identity map, i.e. {P(i)
A } = {IA}. Using projective characterization, the

comparison of higher-order transformations in the sense of Reference

[11] is by consequent reduced to the study of lattices of commuting

projectors on operator systems built from single-element base projectors.

For k parties, any expression P built using { · ,⊗,→} is contained in a

Boolean lattice closed under operations {∩,∪} with smallest element

DA ⊗ . . . ⊗ DK and biggest element IA ⊗ . . . ⊗ IK . Of course, even

when the base state structures are singletons, the number of possible

combinations using the operations { · ,⊗,→} grows exponentially with

the number of parties, so these lattices are huge. However, any projector

in the lattice has natural subset and superset that are in general different

than the tensor product of the depolarizing and of the identity projectors,

meaning that projectors usually belong to a sublattice.

Definition 5.1.2 (No-signaling subset / Fully signaling superset) Let P
be a projector on operator system built using k base projectorsPA,PB . . .PK
composed together using operations { · ,∩,∪,⊗,→}.
The projectorPNS to its no signaling subset is the largest projector embedded
in P obtained as the tensor composition of single-partite projectors. By
construction, the single-partite projector associated with party X can only be
the base projector, its negation, or the depolarizing superoperator DX so that
PNS reads

PNS := P̃D
A ⊗ P̃D

B ⊗ . . . P̃D
K ⊆ P , (5.19)

where the P̃D
X notation means an element chosen among

{
PX ,PX ,DX

}
depending on the exact form of P .
The projector PFS to its fully signaling superset is the smallest projector
containing P obtained as the parr composition of single-partite projectors. By
construction, the single-partite projector associated with party X can only be
the base projector, its negation, or the identity superoperator IX so that PFS
reads

P ⊆ PFS := P̃I
A →

(
P̃I
B → . . .

(
P̃I
J → P̃

I
K

)
. . .
)
, (5.20)

where the P̃I
X notation means an element chosen among

{
PX ,PX , IX

}
depending on the exact form of P .

To see why these sets always exist, notice that the definition allows

PNS to be equal to DA ⊗ . . .⊗DK and PFS to be IA ⊗ . . .⊗ IK in the

worst case scenario. The other thing to notice is that the cap and cup are

defined respectively of which tensor factor they act on. This is because

an intersection or union at the level of a single subsystem appearing in

a single projector can be transferred as an intersection or union of two

projectors over the full system. This is because the cap and the cup obey

an interchange law with, respectively, the tensor and the parr
11

,



5.1. Beyond Type Theory: the Projector Algebra 125

12: The exact procedure of making all

the caps and cups global will be studied

in details in Section 5.2 below.

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

14: A one-line computation can prove

these properties; see Appendix D.3.1 for

the details.

(
PA ∩ P

′

A

)
⊗
(
PB ∩ P

′

B

)
= (PA ⊗ PB) ∩

(
P

′

A ⊗ P
′

B

)
; (5.21a)(

PA ∪ P
′

A

) &(
PB ∪ P

′

B

)
= (PA ⊗ PB) ∪

(
P

′

A

&

P
′

B

)
. (5.21b)

Using this law, the cap and cup connectors relative to the algebra over a

tensor factor can always be lifted as caps and cups relative to the algebra

on the full space by a rewriting like

. . .⊗ (PJ ∩ P
′

J)⊗ . . . = . . .⊗ PJ ⊗ . . . ∩ . . .⊗ P
′

J ⊗ . . . , (5.22)

where on the left-hand side, the cap defined is with respect to the J

subsystem, whereas on the right-hand side, it is with respect to the full

space
12

.

In general, the no-signaling and fully signaling projectors define the least

and greatest elements of a sublattice

DA ⊗ . . .⊗DK ⊆ PNS ⊆ P ⊆ PFS ⊆ IA ⊗ . . .⊗ IK , (5.23)

around each projector P . In Definition 5.1.2 one can use the parr instead

of the transformation to define these sublattices, this is what is done in

Reference [33]. Actually, it is hidden in the definition of the fully signaling

superset:

PFS ≡ P̃I
A

&

P̃I
B

&

. . . P̃I
K (5.24)

This makes sense in terms of the signaling interpretation: the parr

compares better to the tensor since both elements in each side of the

connective ‘have the same nature’, meaning that they are either both

interpreted as inputs or outputs. In terms of the projector algebra, using

the parr rather than using the transformation also makes more sense

because, like the tensor, the parr has no directionality and is associative.

Proposition 5.1.5 (Properties of the tensor, the parr, and the transforma-

tion) The tensor and the parr are associative, commutative13
13: In the literature, and especially in

the category theory literature (e.g., [124,

125]

[124]: Roman (2017), An Introduction to
the Language of Category Theory.

[125]: Heunen et al. (2019), Categories for
Quantum Theory: An Introduction.

), the word ‘symmetric’ is often pre-

ferred over commutative, as the rela-

tion relies on an isomorphism of spaces,

whence the use of
∼= instead of = in

(5.25b). At the level of algebraic relations,

however, isomorphic spaces or maps are

the same for all intents and purposes.

Thus ‘commutative’ is used in a general,

loose sense.

, order-preserving,
De Morgan dual to each other. That is, the tensor verifies

(PA ⊗ PB)⊗ PC = PA ⊗ (PB ⊗ PC) ; (5.25a)

PA ⊗ PB ∼= PB ⊗ PA ; (5.25b)

PA ⊆ P
′

A

PB ⊆ P
′

B

}
⇒ (PA ⊗ PB) ⊆

(
P

′

A ⊗ P
′

B

)
; (5.25c)

PA ⊗ PB = PA

&

PB . (5.25d)

Accordingly, the parr verifies the same four rules under the interchange⊗ ↔

&

.
The transformation, however, is neither associative nor commutative, i.e.,
PA → (PB → PC) ̸= (PA → PB)→ PC and PA → PB ̸= PA ← PB .
But it enjoys the following properties:

PA → (PB → PC) = (PA ⊗ PB)→ PC ; (5.26a)

PA → PB = PA ← PB . (5.26b)

From the signaling interpretation of the last chapter, it should be clear

that the parr compares to the tensor as a ‘larger’ composition because
14
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15: But, as was shown in the biased quan-

tum state example, this is still not suf-

ficient for ICO as one must then show

that this support is also strictly bigger

than the convex hull of the two one-way

signaling compositions, so that it is not

a mixture of signaling directions. And

then to show that it allows for non-causal

correlations. Only then can the process

be said to have ICO.

16: A proof is provided in the Ap-

pendix D.5.1 for completeness.

PA ⊗ PB ̸= PA ⊗ PB and

PA ⊗ PB ⊆ PA ⊗ PB = PA

&

PB . (5.27)

Note that the inequality between these two projectors is fundamentally

the reason why an indefinite causal order may arise. As argued in the

biased quantum theory example, Subsection 3.6.2, the inequality must be

verified in order for the two-way signaling space not to be trivial, i.e.

PA ⊗ PB ̸= PA

&

PB ⇐ A ⊗B ̸= A

&

B . (5.28)

Meaning that the support of the two-way signaling composition is strictly

bigger than the one of the no-signaling composition, so there may be

two-way signaling
15

.

When the parr is not equivalent to the tensor, the two of them allow

refinement of the notion of a no-signaling/fully signaling subsets into a

more compact form when P is built without intersection or unions.

Lemma 5.1.6 (No-signaling sublattice around a projector) Let P be a
projector on operator system built using k base projectors PA,PB . . .PK
composed together using operations { · ,⊗,→}. Then, it belongs to a sub-
lattice closed under operations {∩,∪} so that

P̃A ⊗ . . .⊗ P̃K ⊆ P ⊆ P̃A

&

. . .

&

P̃K , (5.29)

where the P̃X notation means an element chosen among {PX ,PX} depending
on P . Importantly, the choice is the same on both sides of the equation.

This follows mainly from the property (5.25c) that PA ⊆ P
′

A ⊆ P
′′

A ⇒
PA ⊗ PB ⊆ P

′

A ⊗ PB ⊆ P
′′

A ⊗ PB ⊆ P
′′

A ⊗ PB , and from property

(5.16)
16

.

This fine-graining of the lattice is relevant for the study of indefinite

causal order and signaling relations as it contains all scenarios similar

in terms of the interpretation of base state structures either as inputs or

outputs. For a state structure A, the other state structures characterized

by the no-signaling sublattice around its projector will be those in which

each subsystem has the same interpretation, but with a different set of

two-way signaling connections between any two subsystems. A simple

example: given the state structure (i.e. the set of) of bipartite quantum

channels, its no-signaling sublattice is composed of two elements: itself

and the state structure of no-signaling channels. In the next section, this

lattice will be further fine-grained by the addition of the prec connectors.

Given a state structure, this further refinement is the sublattice of all state

structures that are similar to the original one up to changes in signaling

relations between subsystems. In the above example, the no-signaling

sublattice around a bipartite channel will be enriched by two elements:

the state structure of channels allowing signaling from Alice’s side to

Bob’s and the one allowing signaling in the opposite direction.

The least and greatest projectors of Lemma 5.1.6 are found by repetitively

using Equation (5.27). A rule of thumb for finding the no signaling

projectors is to ‘count the number of bars’ above each base projector in a

given expression P . Since negation is an involution, an odd (respectively,
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even) amount will indicate that the projector is (not) negated in the

no signaling subset. For example, to find the no signaling subset of

(PA ⊗ (PB → PC)) → PD, one first expresses it using negations and

tensors products, (PA ⊗ (PB → PC)) → PD = PA ⊗ PB ⊗ PC ⊗ PD,

then by inspection PA and PC have an odd number of negations above

them (one and three, respectively) so they will be negated, whereas PB
and PD have an even number (two and two) so they will not be. On

that account, the no signaling subset of (PA ⊗ (PB → PC)) → PD is

PA ⊗ PB ⊗ PC ⊗ PD and its fully signaling superset is PA

&

PB

&

PC

&

PD = PA ⊗ PB ⊗ PC ⊗ PD.

Thus, for a given P , the subspace it defines is embedded between a

no-signaling and a fully signaling subspace. What is more, the position

of the negations in Equations (5.19) and (5.20) are the same because of

Equation (5.27). The projectors to these subspaces are actually the least

and greatest elements of a subalgebra stable under∩ and∪, i.e. a sublattice.

This sublattice w.r.t a given P can be spanned as in Corollary 5.1.4 by

defining each local projectors P̃X involved in its no-signaling subset

as the set of base projectors, P̃X 7→ PX (i.e., by redefining the base

projectors so to incorporate the negations), and by restricting the choice

of operations { · ,⊗,→} to a choice that preserves the same no-signaling

subset, which, from of Equation (5.27), is {⊗,

&

}.

Corollary 5.1.7 (Building a no-signaling sublattice.)

Let {PA,PB , . . . ,PK} be a set of k projectors on operator systems each associ-
ated with a specific Hilbert spaceHA,HB . . . ,HK , i.e., a set of base projectors.
Any expression P built using each element of this set once and under the
rules {⊗,

&

} is a projector on an operator system over L
(
HA ⊗ . . .⊗HK

)
and belongs to the no-signaling lattice

PA ⊗ . . .⊗ PK ⊆ P ⊆ PA

&

. . .

&

PK , (5.30)

spanned by {∪,∩,⊗,

&

}.

This is the lattice mentioned above, the one obtained when studying

a given state space of projector P with respect to modifications of the

signaling structure while keeping the same base projectors. It is phrased

as a corollary as it is a special case of the finer-grained ‘signaling lattice’

obtained under the same set of operations plus the prec connectors. This

lattice is presented in Proposition 5.1.10 below.

Nonetheless, one should not be misled into thinking that the operations

{⊗,

&

} are enough to span the sublattice. While it is trivially true for one

party and also holds for two, with three parties and beyond this is no

longer true as

PA ⊗ PB ⊗ PC ⊊ ((PA

&

PB)⊗ PC) ∩ (PA ⊗ (PB

&

PC)) ⊊ PA ⊗ (PB

&

PC) ; (5.31a)

PA ⊗ PB ⊗ PC ⊊ ((PA

&

PB)⊗ PC) ∩ (PA ⊗ (PB

&

PC)) ⊊ (PA

&

PB)⊗ PC . (5.31b)

So there is no expression involving only ⊗ and

&

that is equivalent

to ((PA

&

PB)⊗ PC) ∩ (PA ⊗ (PB

&

PC)); this is a distinct element

of the lattice that can only be expressed as an intersection. This issue
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17: Where the notation L
(
L
(
HA
))

is

a shorthand for L
(
L
(
HA
)
,L
(
HA
))

;

it indicates the space of superopera-

tors on HA
. That is, the space of op-

erators defined over the Hilbert space

L
(
HA
)
= L

(
HA,HA

)
.

happens because while the connectors are associative, they are neither

associativite nor distributive with each other, i.e.,

PA ⊗ (PB

&

PC) ⊊ (PA ⊗ PC)

&

PB ⊋ (PA

&

PB)⊗ PC . (5.32)

This is due to the richer substructures that can happen in the tripar-

tite signaling scenarios. That PA ⊗ PB ⊗ PC ̸= ((PA

&

PB)⊗ PC) ∩
(PA ⊗ (PB

&

PC)) happens because in the latter case there is still some

‘controlled’ or ‘dynamic’ way to pass a message: the first projector guar-

antees that Charlie can signal to neither Alice nor Bob and the second that

Alice can signal to neither Bob nor Charlie, but there can still be signaling

from Bob to Alice while Charlie is no-signaling to both or signaling from

Bob to Charlie when Alice is no-signaling to both. This will be discussed

in Chapter 6.

5.1.4. The No-Signaling Sublattice as (almost) Linear

Logic

With the further additions of the tensor and of the parr operations, the

Boolean algebra of projectors is lifted to another abstract lattice-like struc-

ture. This lattice is the one built from several Boolean algebras on different

spacesL
(
HA
)
,L
(
HB
)
, . . . in the manner of Definition 5.1.2. It is by con-

struction a sublattice of the Boolean lattice on L
(
HA ⊗HB ⊗ . . .

)
with

the same least and greatest elements, DA ⊗DB ⊗ . . . and IA ⊗ IB ⊗ . . .,
respectively.

Actually, the connectors ⊗ and

&
behave like ∩ and ∪ under De Morgan

duality. Compare Equations (5.17) with (5.25): In both cases it consists

of a pair of associative and commutative connectors that obey a duality

principle: any equality is valid under the interchange ∩ ↔ ∪ and⊗ ↔

&

;

both preserve the partial order; and both obey a De Morgan law. And

since the pair tensor/parr verifies a De Morgan law, it obeys the duality

(5.16) which implies that

PA ⊗ PB ⊆ P
′

A ⊗ P
′

B ⇐⇒ PA

&

PB ⊇ P
′
A

&

P ′
B . (5.33)

All these relations greatly reduce the number of computations needed

to characterize a no-signaling sublattice. The only difference is their

domains: the latter two take two expressions from the same space and

form one still on the same space, i.e.
17

∩/∪ : L
(
L
(
HA
))
× L

(
L
(
HA
))
→ L

(
L
(
HA
))

, (5.34)

whereas the former two take two expressions from different spaces and

form one on the composite space, i.e.

⊗ /

&

: L
(
L
(
HA
))
× L

(
L
(
HB
))
→ L

(
L
(
HA ⊗HB

))
. (5.35)

In linear logic terminology, the former ones are called additive connectors

whereas the latter ones are called multiplicative connectors. The additive

connectors are internal operations in the sense that they are kept within

the same space whereas the multiplicative connectors are external in

the sense that they ‘glue’ operations on two different spaces into an

operation on the composite space. The lattice structure is defined with
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18: I.e., PA ⊗ PB is different than PA
even when PA

∼= PB .

19: See Appendix D.3.5 for the technical-

ities that prevent it from being an exact

model of MALL.

[146]: Girard (1987), Linear logic.

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
20: While this is a connection between

quantum physics and logic using projec-

tors, it is different than one studied in

the field of quantum logic [151]

[151]: Birkhoff et al. (1936), The Logic of
Quantum Mechanics.

. In quan-

tum logic, the propositions are projec-

tors, and they form a non-distributive

but orthomodular lattice. In the projec-

tive characterization, the propositions

are superopertor projectors, and they

form a distributive Boolean lattice.

respect to the additive connectors as, while the multiplicative share

many of their properties, they cannot satisfy certain lattice axioms like

idempotency
18

.

Still, this surprisingly regular behavior, while not defining a second

lattice on top of the first, is a known structure. Just as the projector

algebra is a Boolean lattice, which is a well-known model of classical

logic, Boolean sublattice defined using { · ,∩,∪,⊗,

&

,→} is also close to

a model of logic. Indeed, observe that the transformation between states

is equivalent to the reverse transformation between effects,

PA → PB = PA ← PB = PA ⊗ PB . (5.36)

This is a clear indication of the algebra under operations { · ,∩,∪,⊗,

&

,→} being an instance of logic: it follows the logic principle that if A

implies B, then not B must imply not A. Interpreting the projectors as

‘propositions’ of a formal model of logic, the ‘propositions’ P consist of

k ‘sub-propositions’ {PA, . . .PK} that can be composed in two different

manners: using⊗ or

&

and each (sub)proposition can be negated using · .
To compare two propositions, the connectives ∩ and ∪ are used, and the

comparison of two propositions is itself a valid proposition. The lattice

is then the set of all propositions of a fixed length k. As such a model

of logic, the projector algebra actually happens to form a degenerate
19

instance of multiplicative additive linear logic (MALL) [146] mainly because

its connectives obey the De Morgan dualities:

PA = PA ; (5.37a)

PA ∩ P
′
A = PA ∪ P

′
A ; (5.37b)

PA ⊗ PB = PA

&

PB . (5.37c)

as well as the interchange laws (5.21). This extends an observation made

in Reference [33] that the logic of higher-order quantum transformations

form an instance of multiplicative linear logic (MLL)
20

.

As is the case for the additive connectors, the rules obeyed by the no-

signaling and two-way signaling composition are far from being arbitrary,

and by exploiting their properties the characterization of signaling in

higher-order theories can be made easier. An extra advantage of knowing

that the logic of signaling is (a degenerate fragment of) Linear Logic

is that this structure has been studied extensively in the context of

automated proofs (see e.g., Reference [143]

[143]: Girard et al. (1989), Proofs and Types.

). For example, the package

llprover is computer software that can be used to automate the search of

equivalences in the fragment. What this suggests is that given a certain

higher-order theory, it should be possible in principle to 1) write the

projector associated with the states of the theory using the methods

developed in this thesis and 2) use llprover or an automated proof

program to find all equivalent projectors to the original projector. That

way, any isomorphism can be found between the various signaling

relations. A simple example is that in quantum theory the set of bipartite

states is automatically no-signaling. This is computed by proving that

IA

&

IA = IA ⊗ IB . It could have been found automatically by 1)

writing that a general bipartite quantum state is associated with IA

&

IA
and 2) letting an automated proof find that this formula is equivalent

to IA ⊗ IB . Of course, this example is trivial, but considering that the

https://cspsat.gitlab.io/llprover/
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[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[36]: Simmons et al. (2022), Higher-order
causal theories are models of BV-logic.

[149]: Guglielmi (2007), A System of Inter-
action and Structure.
[152]: Blute et al. (2012), Deep Inference
and Probabilistic Coherence Spaces.
[147]: Rétoré (1993), Réseaux et Séquents
Ordonnés.
[148]: Retoré (2021), Pomset Logic.

number of projectors in the lattice grows exponentially with the number

of parties, automating the proofs may simplify the problem of finding

such equivalences. This path was pioneered in References [33, 36], and a

systematic treatment is left open for future research.

5.1.5. The Full Algebra of Projectors as the Signaling

Lattice

With respect to the logic-like structure of the algebra, the addition of the

tensor and parr promoted the Boolean algebra to a degenerate instance of

Multiplicative Additive Linear Logic (MALL). With the further addition

of the prec, the algebra can be seen as one of BV- [149, 152] or Pomset

[147, 148] logic, as first noticed in Reference [36] (although their choice of

additives connectives is different, see Subsection 5.1.4 for the comparison).

Like with MALL, this fact alone already opens a path to automatic proofs

for inferring the signaling structure in higher-order objects.

However automatic proofs give little information about the interpretation

of the formulae, so this is not the direction followed here. Rather, this

section presents the properties of the prec in order to conclude the

investigation of the relations between the different connectors that appear

in the projective characterization. With this, the sublattice spanned by

negation, cap, cup, and the four compositions can be defined as a general

notion, and conversely, a method of building such a lattice around any

projector can also be defined. That way, information about the allowed

signaling directions in a given state structure can be inferred from

its neighbors in the lattice. As will be shown in the next section, the

knowledge of how these lattices work can also be used to study signaling

relations directly from reading the projector. In particular, a systematic

way of decomposing a state space into causally ordered terms will be

provided under the name normal form. Such a form is necessary to

formalize the notions of non-fixed signaling structure, leading to an

indefinite causal order, causal separability, and causal inequality for

higher-order quantum processes.

Back to the properties of the prec. As is the case for the other compositions,

the prec is a well-defined operation in the sense that it results in a valid

projector in a manner that preserves commutation.

Lemma 5.1.8 The rule ≺ results in a valid projector and preserves commuta-
tion.

The proof is once again quite direct from definitions and relayed to

Appendix D.3.6.

Like the tensor and the parr, it is an associative connector preserving

partial order. However, like the transformation, the prec is not commuta-

tive.

Proposition 5.1.9 (Properties of the prec) The prec is associative, order-
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preserving, and commutes with negation. That is, the prec verifies

(PA ≺ PB) ≺ PC = PA ≺ (PB ≺ PC) ; (5.38a)

(PA ≺ PB) ∩ (PA ≻ PB) = PA ⊗ PB ; (5.38b)

PA ⊆ P
′

A

PB ⊆ P
′

B

}
⇒ (PA ≺ PB) ⊆

(
P

′

A ≺ P
′

B

)
; (5.38c)

PA ≺ PB = PA ≺ PB . (5.38d)

Accordingly, the prec verifies the same four rules under the interchange≺↔≻,
albeit it is not commutative, PA ≺ PB ̸= PA ≻ PB .

The ‘exotic’ property of the prec compared to the other compositions is

its commutation with the negation (5.38d). This feature will be important

for defining a normal form of the algebra in the following.

In terms of distribution property with respect to the other connectives,

the prec, the commutation with negation leads to another nice property

compared to the other multiplicative connectors (compositions): it has

an interchange law with both of the additives connectors (cap and cup;

and consequently it is distributive over both),(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
=
(
PA ≺ PB

)
∩
(
P

′

A ≺ P
′

B

)
; (5.39a)(

PA ∪ P
′

A

)
≺
(
PB ∪ P

′

B

)
=
(
PA ≺ PB

)
∪
(
P

′

A ≺ P
′

B

)
. (5.39b)

However, it is not distributive nor associative over the other multiplica-

tive connectors. Nevertheless, there still exist some relations that can be

inferred using the signaling interpretation of the last chapter (Defini-

tion 3.5.2 and Proposition 3.5.4): a state structure A ≺ B feature terms

that can be signaling from A to B but none that can be signaling from B

to A. From there, the following relation can be guessed:

PA ⊗ PB = (PA ≺ PB) ∩ (PA ≻ PB) , (5.40a)

PA

&

PB = (PA ≺ PB) ∪ (PA ≻ PB). (5.40b)

In plain words, the first line encodes the statement that the no-signaling

composition is no-signaling from B to A (first term on the right-hand side)

and (cap) from A to B (second term). Similarly, the second line encodes

the statement that two-way signaling composition is no-signaling from B

to A (first term on the r.h.s.) or (cup) from A to B (second term). These

imply the following chains of inclusions,

PA ⊗ PB ⊆ PA ≺ PB ⊆ PA

&

PB , (5.41a)

PA ⊗ PB ⊆ PA ≻ PB ⊆ PA

&

PB . (5.41b)

These two partial order relations indicate that any projector whose

expression features a prec has a lower bound obtained by replacing the

prec by the tensor as well as an upper bound obtained by replacing the

prec by the parr. As a consequence, while adding the prec connector to

the set of operations { · ,∪,∩,⊗,

&

} on projectors do increase the number

of projectors in every sublattice closed under ∩,∪ (like the no-signaling

sublattice of Lemma 5.1.6), it does so in a manner that keeps lower and

upper bounds intact. From the signaling interpretation this makes sense:
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adding the prec is a fine-graining in which the intermediate situation

of ‘signaling in one direction but not the other’ is slipped between the

‘no-signaling’ and ‘two-way signaling’ cases.

AnyP can now be decomposed into base projectorsPA,PB , . . . combined

using any sequence of operations { · ,⊗,≺,

&

} instead of { · ,⊗,

&

}. The

other way around, several commuting sets of projectors defined on

different subsystems composed using the operations { · ,⊗,≺,

&

} span

a sublattice of the projector algebra on the full system. These are the

lattices of projectors that the projective characterization of state structures

defines.

Proposition 5.1.10 (The lattices of the projective characterization)

Let {P(i)
A }

nA
i=1 be a set of nA commuting projectors on operator systems

in space L
(
HA
)
. Let {P(j)

B }
nB
j=1, {P(k)

C }
nC

k=1, . . . be a similarly defined
sets in spaces L

(
HB
)
,L
(
HC
)
, . . .. Then, the set of all expressions

P : L
(
HA ⊗HB ⊗HC . . .

)
→ L

(
HA ⊗HB ⊗HC . . .

)
built using

a combination of elements of these sets and the rules { · ,∪,∩,⊗,≺,

&

} is a
sublattice of the projector algebra on L

(
HA ⊗HB ⊗HC . . .

)
.

Proof. Collecting Propositions 5.1.1, 5.1.2, 5.1.5, and 5.1.9 as well as Lem-

mas 5.1.3 and 5.1.8, any P is a valid projector on operator system that

preserve commutation.

The preservation of the commutation also relies on the fact that all caps

and cups applied on subsystems can be turned into global caps and cups

using the interchange laws for the tensor and the prec, Equations (5.21)

and (5.39), as well as the De Morgan law (5.15) to interchange with the

negation. (The interchange with the parr follows from the interchange

with the tensor and De Morgan duality (5.37c).)

As cap and cup are valid operators in the construction of P , the set is by

definition a closed sublattice of the algebra of projectors.

When a global projector is given, one can construct the signaling lattice

around this projector. As discussed between Lemma 5.1.6 and Corol-

lary 5.1.7, this results in a lattice of projectors built from single base

projectors –the ones appearing in the no-signaling subset of the projector–

constructed under a restricted set of operations that ‘preserve the number

of negations over each base projectors’.

Proposition 5.1.11 (Building the signaling lattice) Let P be a given
element of a given lattice of projectors as in Proposition 5.1.10 and over a
given space L

(
HA ⊗HB ⊗ . . .⊗HK

)
with k tensor factors. Let PNS =

PA ⊗ PB ⊗ . . .PK be the projector on the no-signaling subspace of P .
Let {PA,PB , . . . ,PK} be the set of k projectors on operator systems, each
associated with a specific Hilbert space HA,HB . . . ,HK , that appear in
PNS .
Then, P belongs to a sublattice, called the signaling sublattice, spanned by
set {PA,PB , . . . ,PK} under operations {∩,∪,⊗,≺,

&

}.

The proof, similar to the one of Lemma 5.1.6, is sketched in the appendix,

Appendix D.5.2.
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work for higher-order quantum theory.
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5.2. The Normal Form

With the prec and the signaling lattice, the signaling relations in state

structures can now be analyzed. To do so systematically, a normal form

will now be defined for projectors. As explained in the introduction,

the non-associativity of the transformation connector is what makes the

definition of order possible; in a tripartite formula like

PA → (PB → PC) ̸= (PA → PB)→ PC , (5.42)

the left-hand side (l.h.s.) involves a transformation to a transformation,

which is second order, whereas the right-hand side (r.h.s.) involves a

nesting of two transformations, which is of first order. In such a case

where the terms do not have the same order, deriving any conclusions

regarding the two state spaces without any extra information is not

feasible. Nonetheless, by articulating the formula purely through tensor

and negation,

PA ⊗ PB ⊗ PC ̸= PA ⊗ PB ⊗ PC , (5.43)

it can be inferred that these projectors share the same no-signaling

subspace: PA ⊗ PB ⊗ PC , so they must be comparable. The various

refinements of the projector algebra make this comparison more and

more clear. First, from what can be done using the type theory, the

l.h.s. can be simplified using the uncurrying rule, PA → (PB → PC) =
(PA ⊗ PB)→ PC , and using the parr, the formula becomes

(PA ⊗ PB)→ PC ̸= (PA
&

PB)→ PC . (5.44)

Showing the inclusion of one into the other however cannot be done

by some rewriting rules in the type theory and the early categorical

treatment [10, 11, 33].

But using Equation (5.27), which is proven thanks to the cap and the cup,

as well as De Morgan duality, it is possible to conclude that the r.h.s. is a

subset of the l.h.s. by simple formulae manipulation once again:

(PA

&

PB)

&

PC ⊇ (PA ⊗ PB)

&

PC
⇐⇒ PA ⊗ PB ⊗ PC ⊇ (PA

&

PB)⊗ PC
⇐⇒ PA → (PB → PC) ⊇ (PA → PB)→ PC .

(5.45)

One can then conclude that the inclusion is tight because of Equa-

tion (5.44). This is as far as the no-signaling sublattice goes. Adding

the prec, i.e. looking at the expression with respect to the signaling

lattice Proposition 5.1.11, provides a breakdown of the signaling relations

between the parties. The relations (5.40) and (5.21) allow to write the

expressions as:

(PA

&

PB)

&

PC ⊇ (PA ⊗ PB)

&

PC ⇐⇒((
PA ≺ PB)

&

PC
)
∪
(
PA ≻ PB)

&

PC
))
⊇
((
PA ≺ PB)

&

PC
)
∩
(
PA ≻ PB)

&

PC
))

.
(5.46)

The two of them are pretty much the same object: the same two expres-

sions are composed on both sides, with the notable difference that in

the l.h.s., subsystem A can be used to signal (prec, ≺) to B OR (cup, ∪)
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21: The alphabetical ordering of the ten-

sor factors is temporarily dropped for

clarity.

22: This is proven by using the definition

(5.3) then computing the intersection.

subsystem B can be used to signal to subsystem A (prec, ≻); whereas in

the r.h.s, the signaling is from A to B AND (cap, ∩) from B to A. One

concludes that there is two-way signaling in the former case, whereas

there is no signaling in the latter. Since the rest of the expression is the

same, the comparison is over.

Nevertheless, the analysis of the causal structure can be continued by

developing these terms further. For example, in the r.h.s., relations (5.40)

and (5.21) can be used again to turn the remaining parr into more unions
21

,

PA → (PB → PC) =((
PA ≺ PB)

&

PC
)
∪
(
PA ≻ PB)

&

PC
))

=

PA ≺ PB ≺ PC ∪ PC ≺ PA ≺ PB ∪ PC ≺ PB ≺ PA ∪ PB ≺ PA ≺ PC .
(5.47)

This rewriting rule is due to the fact that the prec commutes with the

negation, (5.38d), is associative, (5.38a), and at the same time, it can be

interchanged with the additives connectors, (5.39). Compared to previous

characterizations, it now becomes possible to analyze and compare state

structures simply by algebraic manipulations of their projectors.

Each of the properties used for the rewriting above has an interpretation

in terms of signaling: the prec commutes with negation because if a

bipartite state is one-way signaling (say, characterized by PA ≺ PB),

corresponding to one half of the state (A) being prepared in the causal

past of the other half (B), then a bipartite measurement on it (PA ≺ PB)

must have at most the same causal structure (PA ≺ PB = PA ≺ PB).

Otherwise, if it was possible to deterministically signal from a measure-

ment on the part in the causal future to the part in the causal past (i.e., by

performing a measurement characterized by PA ≺ PB
?
= PA ≻ PB), it

would result in a signaling loop. The state could be used to pass informa-

tion fromA toB, while at the same time, the measurement could be used

to pass information from B to A. It suffices that parties A and B forward

the information between the preparation and the measurement to achieve

a loop. This is a remote consequence of the definition of measurement

of state structure, Definition 3.2.4, imposing that the normalization of

probabilities is always preserved. This condition shapes projector P in

order to avoid over-normalization of the trace, which in turn shapes the

algebraic relations it must have with the multiplicative connectors so

that this rule is respected. The logic rules followed by the negation (5.37)

are but a translation of the signaling property that loops are forbidden.

A more striking example is that the two-way signaling composition is

dual to the no-signaling composition: this is so that closing a circuit

(measuring a state) never results in a signaling loop.

Similarly, the logic rule that the prec is associative is also a consequence

of a signaling property: transitivity. In an expression likePA ≺ PB ≺ PC ,

the projector implicitly allows for signaling from A to C since
22

PA ≺ PB ≺ PC ⊇ (PA ≺ PC)⊗ PB , (5.48)

meaning that prec chains contain terms that allow signaling to other

parties down the chain irrespective of whether the intermediate term has

received signaling. The r.h.s. indeed allow A to signal to C while B is
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no-signaling to both. This indicates that the signaling relations in a prec

chain are transitive: A can signal not only to the next party in the chain

(in that case, B), but to every following party in the chain (in that case

C). PA ≺ PB ≺ PC is thus read as ‘A can signal to B and to C, and B

can signal to C’. Associativity,

(PA ≺ PB) ≺ PC = PA ≺ (PB ≺ PC) , (5.49)

is read as ‘A can signal to B, and the two of them can signal to C

(l.h.s.) is equivalent to (=) A can signal to B and C, and B can signal

to C (r.h.s.)’. Naturally, these two statements are equivalent to the one

associated withPA ≺ PB ≺ PC . The interpretation of formulae as logical

statements about signaling will be discussed further in the next chapter

Subsection 6.3.1.

Therefore, the amazing feature of writing the projector as ‘unions of prec

chains’ is that the signaling structure of the state space can be directly

read from its expression. Take decomposition (5.47) in the above example:

it characterizes objects taking two ‘inputs’ (negations, · ) from parties A

and B, providing one ‘output’ to party C ; this object allows for signaling

from A to B and C and from B to C (PA ≺ PB ≺ PC ) or (∪) from C to

B to A (PC ≺ PA ≺ PB) or (∪) ... etc.

As is now shown, the above ‘decomposition into prec chains’ procedure

can be conducted for any projectors as the tensor and the transformation

split into precs, (5.40) and since the algebra obeys the De Morgan relations

(5.37). Notice that any expression P involving ⊗ and→ can be reduced

to the union and intersection of expressions built using the prec alone.

In the same way, all properties of the tensor and the parr (and the

transformation) are derived from properties of the prec. For example,

the interchange law (5.21) can be inferred from the interchange law of

the prec, Equation (5.39). There is, moreover, a convenient aspect of

expressing all multiplicative connectors in terms of prec: the expression

would become associative ‘prec chains’, so the notion of order whatsoever

is dropped in favor of union and intersections. Thus, on purely semantic

grounds, any multiplicative connector other than the prec seems like

‘syntactical sugar’, whose only purpose is to shorten the expressions.

Yet, these induce unnecessary complications. It is therefore reasonable

to impose an unambiguous form to formulae, one using the one-way

signaling composition and additives connectors only. Such a form will

be called normal.

To obtain this normal form, remark that the cap and the cup distribute

over each other in any Boolean algebra, Equation (5.18). They further

distribute over the prec in the case of the projector algebra, Equation (5.39).

Consequently, the additives connectors can always be put outside of

expressions involving these three connectors so to make prec chains

appear. Nevertheless, the cap and the cup can be interchanged, so there

is still a choice of which normal form to choose in the Boolean algebra:

either all formulae should be expressed as unions of intersections of prec

chains; this is called a disjunctive normal form. Or they should be expressed

as intersections of unions of prec chains; this is called a conjunctive normal
form.

But splitting the projector expressions into prec chain was actually the

goal of the algebra to begin with since it allows the interpretation of
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23: This is straightforward to prove:(
PA ≺ PB

)
is a valid projector, so it

obeys relations (5.40) with PC .

24: Nonetheless, whilst the intersection

cannot augment the number of signaling

directions when merging two prec

chains, it still has non-trivial rules

with respect to signaling. For example,

Equation (5.40a) will not apply in the

tripartite case: the intersection of a

prec chain with the reversed direction

term will not yield the no-signaling

projector, i.e.

(
PA ≺ PB ≺ PC

)
∩

(
PC ≺ PB ≺ PA

)
̸=(

PA ⊗ PB ⊗ PC

)
. This will be

shown in Subsection 6.3.1

each chain as a term allowing a fixed signaling direction. From there, the

signaling interpretation favors the disjunctive normal form. Indeed, the

union can lead to more than one signaling direction at once, whereas the

intersections reduce the length of the signaling chains. Formally
23

,

(PA ≺ PB ≺ PC) ∩ (PC ≺ PA ≺ PB) = (PA ≺ PB)⊗ PC ; (5.50a)

(PA ≺ PB ≺ PC) ∪ (PC ≺ PA ≺ PB) = (PA ≺ PB)

&

PC . (5.50b)

The first equation shows that the cap results in a shorter prec chain:

the longest signaling chain that can be achieved is between two parties,

compared to three for the terms on each side of the cap. The second

equation, however, still has its longest signaling chain being three parties,

but now it has two of them (either Charlie is the first or he is the last).

Moreover, it is impossible that the intersection of two prec chains of length

n results in the union of two prec chains of length k ≤ n. Otherwise, this

would contradict the interchange law, as the union can always be pulled

outside of the chain
24

. As a consequence, once a term has a fixed signaling

direction, the only way to have more is through the union with another

term with a different signaling direction. Hence, by phrasing expressions

as the union of intersections, it is direct to see when a projector defines a

state structure with more than one signaling direction: its normal form

features more than one prec chain.

Definition 5.2.1 (Normal form) Let P be a projector on operator system
built from a set of k base projectors {PA,PB , . . . ,PK} composed together
under operations { · ,∩,∪,⊗,≺,→} so that P ∈ L

(
HA ⊗ . . .⊗HK

)
.

Then, a normal form Γ ofP is a projector equivalent toP obtained as unions
of intersections of expressions built from operations { · ,≺} alone. This means
that a normal form has the following form:

Γ :=

x⋃
i=1

 yi⋂
j=1

P̃σij(A) ≺ P̃σij(B) ≺ . . . ≺ P̃σij(K)

 , (5.51)

in which there are x unions of expressions labeled by index i, and each
expression involves yi intersections of sub-expressions labelled by index j.
σij is an element of the permutation group on k element, like e.g. σ00(A) =
A, σ01(A) = B, . . ., so that each P̃σij(A) is a choice of a base projector which
is potentially negated depending on indices i and j. Each sub-expression is
thus a permutation of P̃A ≺ P̃B ≺ . . . ≺ P̃K where the position of the
negations depends on i and j. (Note that the indices do not necessarily run
over the full permutation group).

Theorem 5.2.1 Any projector P as in Definition 5.2.1 has a normal form.

Proof. By Proposition 5.1.10, it is a valid projector on operator system. By

Equations (5.40), the projector can be put in a form involving operations

{ · ,∩,∪,≺} only. The normal form can always be reached by first dis-

tributing negations over intersections and unions using De Morgan law

(5.15) and over the prec using Equation (5.38d), then by distributing the

prec over unions and intersections using (5.39), and finally by distributing

the caps over the cups using (5.18). This procedure is explicitly proven in

Appendix D.5.3.



5.2. The Normal Form 137

27: All stem from the already mentioned

fact that bipartite quantum states are au-

tomatically no-signaling; in categorical

terms that the category of quantum pro-

cesses is a compact closed subcategory of

the category of higher-order processes,

which is more generally ∗−autonomous

[33, 137]

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[137]: Abramsky et al. (2004), A Categori-
cal Semantics of Quantum Protocols.

.

28: More precisely: certain operators

MABC in A ≺ B ≺ C may allow A to

signal deterministically to B and to C by

suitably choosing the (local deteministic)
state VA ∈ A she will input in MABC .

And the same way, B may signal to C by

suitably choosing his state VB ∈ B, but

he will never be able to signal to A, no

matter his choice of VB .

Definition 5.2.2 (Fixed Signaling Direction) A state structure whose
associated projector can be reduced in a normal form that only features
intersections is said to have a fixed signaling direction25

25: Or fixed causal order colloquially..

This definition provides the most strict sufficient criterion for causal cor-

relations as in Definition 1.2.3: a dual pair such that both state structures

have a one-way signaling structure will always result in one-way signal-

ing correlations between the same parties. Remark that the definition

specifies that the normal form can be reduced, not is. This is due to the

non-uniqueness of normal forms.

Indeed, because the normal form encodes the possible signaling direc-

tions, it is not unique for more than two parties. As mentioned above,

the prec is associative because the possibility to signal is a transitive

property: in an expression like PA ≺ PB ≺ PC , A can signal to C so

PA ≺ PB ≺ PC ∪ (PA ≺ PC) ⊗ PB is a redundant formula, which

induces the redundant normal form PA ≺ PB ≺ PC ∪ ((PA ≺ PC ≺
PB) ∩ (PA ≺ PC ≺ PB)), which is equivalent to PA ≺ PB ≺ PC . This

implies that some formulae are redundant. For example, the following

can be proven using the algebra
26

26: Remark that this is an example of a

non-unique conjunctive normal form.

:

(PA ≺ PB ≺ PC)∩ (PC ≺ PA ≺ PB) = (PA ≺ PB ≺ PC)∩ (PC ≺ PA ≺ PB)∩ (PA ≺ PC ≺ PB) . (5.52)

This formula has an intuitive interpretation: if A cannot signal to B and

C and vice-versa, this also includes the situation in which A receives

signaling from B and signals to C . Therefore, the third term on the right-

hand side of the above is redundant, and these two normal forms are

equivalent. On top of that, the interchange law also presents a redundancy

since the cap and the cup are commutative; see the discussion around

Equation (D.96). Worse, the properties of the algebra make it so that

sometimes exceptional isomorphism between formulae happens. Some

of them are specific to quantum theory
27

and they will be discussed in

the concluding example of this chapter. And some of them are due to

the internal logic of the theory, as will be discussed in the next chapter,

Subsection 6.3.1. Changing the definition to incorporate this redundancy

to make the normal form unique is left open as a future research direction.

Another concrete example of the use of the normal form, as well as of

an instance of equivalent normal forms, will be used as the introductory

example of the next chapter, Section 6.1.

Contrariwise to this decomposition-driven approach, higher-order state

spaces can also be devised by constructing their normal form through

signaling requirements. Indeed, since expressions built using only the

prec like PA ≺ PB ≺ PC define the support of a theory with a fixed

signaling order
28

. First, several prec chains are combined through the cap

as a means to require no-signaling between some subsystems. Second,

several such intersections are combined through the cup as a means to

require two-way signaling. For example, to further impose no signaling

betweenA andB inPA ≺ PB ≺ PC , one intersects it with

(
PA ≻ PB

)
≺

PC so that

(
PA ≺ PB ≺ PC

)
∩
(
PB ≺ PA ≺ PC

)
=
(
PA ⊗ PB

)
≺ PC .

Then, to loosen the requirement that C can signal to neither A nor B,

one takes the union of it with

(
PC ≺ PA ≺ PB

)
∩
(
PC ≺ PB ≺ PA

)
=
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29: The first equality can more simply

be obtained by directly interpreting the

sentences telling how the normal form

was constructed.

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.
[13]: Chiribella et al. (2008), Quantum
Circuit Architecture.

(
PA ⊗ PB

)
≻ PC . The obtained projector has, by construction, the

following normal form,

((
PA ≺ PB ≺ PC

)
∩
(
PB ≺ PA ≺ PC

))
∪
((
PC ≺ PA ≺ PB

)
∩
(
PC ≺ PB ≺ PA

))
=
((
PA ≺ PB)

&

PC
)
∩
(
PA ≻ PB)

&

PC
))
= (PA → PB)→ PC ,

(5.53)

and the shortened versions written on the right side of the equality

signs can be obtained using the rewrite rules of the algebra
29

. Surprise,

this is the right-hand side term of the introductory example of this

section, (5.42). From its normal form, it can be said that the set of objects

transforming a transformation from an effect of A to a state of B into a

state of C, i.e. (PA → PB) → PC , is equivalently defined as an object

which takes as inputs states from A and B and output a state of C. Its

normal form shows furthermore that these tripartite objects are such that

A and B cannot use it to signal to each other, but both can signal back

and forth to the party at the output, C.

Compare it to the left-hand side of Equation (5.42), the set of objects

transforming a state of A into a transformation from a state of B to

one of C i.e. PA → (PB → PC). It was shown around Equation (5.45)

that they are the same kind of objects: they take states from A and B

and output one in C. Thus, they live in the same signaling lattice. Its

normal form, derived at Equation (5.47), shows that the three parties

can use these tripartite objects to achieve any direction of signaling. This

is more directions than those in (PA → PB) → PC henceforth it is its

superset. Actually, since it can also be put in a form involving the parr

only, PA → (PB → PC) = PA

&

PB

&

PA, its projector is the greatest

element in their common signaling lattice.

With the normal form, any higher-order objects become comparable by

using the signaling lattices of their state structures. Moreover, a spe-

cific object within a state structure can be shown to have less signaling

directions than the maximum allowed by its state structure by demon-

strating inclusion in a smaller element of the lattice. For instance, it can be

proven that a bipartite channel is one-way signaling simply by applying

the corresponding projector. The lattice structure and the normal form

conclude the study of the projector algebra; they provide a set of tools

to systematically infer the signaling relations in higher-order quantum

theories as well as any theory built using state structures.

5.3. Example: Accidental Isomorphism for

Quantum Theory

As a concluding example for this chapter, the theory of quantum networks

[9, 13] is characterized using the projective methods. This example

actually relies on a particularity of quantum theory already mentioned

several times: that its no-signaling bipartite states are the same as its

bipartite states. This is one of the accidental isomorphisms in the projector

algebra, and, as will be shown, is the reason why quantum networks are

causally ordered while at the same time interpretable as higher-order

transformations. This is peculiar since higher-order transformations are
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[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

built using the→ connector which is related to the

&

one and therefore

should typically involve two-way signaling according to (5.40).

Avoiding the accidental isomorphism is the reason why the concluding

example of the previous chapter was built on the exotic biased quantum

theory. The presence of the isomorphism in quantum theory would

have indeed tampered with the narrative of compositions conditioned

by signaling requirement, as certain compositions would have been

equivalent by accident. Note that an explanation of the latter result

already exists within the framework of type theory [11], but the projector

algebra recovers it in a more general fashion and it provides a nice

illustration of the utilization of the normal form. The following example

can also be interpreted as the comparison of two different ways of building

higher-order objects using the developed formalism of projectors.

Following reference [9], a network is defined as the causally ordered (i.e.

one-way signaling) succession of ‘nodes’ of the same state structure. A

‘1-network of base A ’ will be the set A ⊂ L
(
HA
)

itself, thereafter noted

with an index as A0 to distinguish between the multiple copies of the

state structure A defined on an increasingly larger number of factors.

The ‘2-network of base A ’ will be the set A0 ≺ A1 ⊂ L
(
HA0 ⊗HA1

)
,

the ‘3-network’ will be A0 ≺ A1 ≺ A2, etc. up to the ‘n-network’

defined as A0 ≺ A1 ≺ . . . ≺ An−1 ⊂ L
(
HA0 ⊗HA1 ⊗ . . .HAn−1

)
. A

common occurrence of this structure in the literature is the network

whose base is a quantum channel so that A is characterized by a projector

PA = IA0
→ IA1

; it is called a quantum network (notice that it will

require twice as many systems since the base is defined as a state structure

on two systems). This quantum network, here associated with some party

that will be called Alice, represents the successive operations of that party.

If Alice has a single node quantum network, it means that Alice acts once

on subsystem A0 with a quantum channel and outputs a quantum state

in A1. If she has a network with two nodes, she will act a first time on A0

and output a first state at A1, then a second time on A2, now potentially

using any size of ancillary qudit as a memory register she preserved

from her first operation, and output a second state in A3. And so on for

all numbers of nodes, as defined recursively.

Another way of building a higher-order state structure is the comb,

which consists of recursively transforming into a base type: the 1-comb

of base A is again A0, then the 2−comb is A0 → A1, the 3−comb

is (A0 → A1) → A2, etc up to the n−comb defined as (...(A0 →
A1) → ...) → An ⊂ L

(
HA0 ⊗HA1 ⊗ . . .⊗HAn−1

)
. As is the case for

the network case, a common occurrence of this structure is the comb

whose base is a quantum channel, called the quantum comb.

When the two constructions were introduced in reference [9], it was

proven that a quantum network is a quantum comb. When treated using

the formalism developed here, there is a stark contradiction. All quantum

combs are built using the transformation,→, which permits two-way

signaling. How could it be that they are all equivalent to networks which

are built using the prec – that is, objects featuring a single direction of

signaling? Besides, why is the 1-comb (built using the two-way signaling

transformation) equivalent to the quantum channel (which is causal)?

Why does the quantum 2-comb reduce to a two-node quantum network,

i.e. a map acting on two quantum states, when by definition it should
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[11]: Bisio et al. (2019), Theoretical frame-
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be a supermap, i.e. a map acting on a quantum channel? And why does

it reduce to a succession of two operations that have a well-defined

direction of signaling between parties, and not, as its projector suggests, a

nesting of two two-way signaling compositions, resulting in four possible

signaling directions?

To phrase this issue formally, let A state
i ⊂ L

(
HAi

)
be the state structure

of states on system Ai so that its projector is IAi
, and let A channel

i,j ⊂
L
(
HAi ⊗HAj

)
be the state structure of channels between systems Ai

and Aj so that its projector is IAi
→ IAj

.

The state structure of quantum combs with n nodes reads (. . . (A channel
n−1,n

→ A channel
n−2,n+1) . . .)→ A channel

0,2n−1 which, in the language of [10, 11], carries

the type (. . . ((An−1 → An) → (An−2 → An+1)) → . . .) → (A0 →
A2n−1) where each A are the trivial type, and in terms of projector it is

associated with:

P (n-comb)

A
channel

:= (. . .

((. . . ((IAn−1
→ IAn

)→ (IAn−2
→ IAn+1

))→ . . .)→ (IAn−1−j
→ IAn+j

))

→ . . .)→
(
IA0
→ IA2n−1

)
.

(5.54)

Note that the labeling has been chosen so as to coincide with the other

state structures it will be compared to. The state structure of quantum

networks with n nodes reads A channel
0,1 ≺ . . . ≺ . . . ≺ A channel

2n−2,2n−1; it

carries the type (A0 → A1) ≺ . . . ≺ (A2n−2 → A2n−1); it is associated

with the projector

P (n-network)

A
channel

:= (IA0
→ IA1

) ≺ . . . ≺
(
IAj
→ IAj+1

)
≺ . . . ≺

(
IA2n−2

→ IA2n−1

)
. (5.55)

The state structure of a comb based on states with 2n nodes reads

(. . . ((A state
0 → A state

1 )→ A state
2 ) . . .) → A state

2n−1 ; it carries the type

(. . . ((A0 → A1) → A2) → . . .) → A2n−1; it is associated with the

projector

P (2n-comb)

Astate

:= (. . . ((. . . ((IA0 → IA1)→ IA2)→ . . .)→ IAj )→ . . .)→ IA2n−1 . (5.56)

It is known that 1) quantum channels are no signaling from output to

input, and are equivalent to quantum 1-network and quantum 1-combs

[13]; 2) that the first two state structures defined above are equivalent

[9, Theorem 8]; 3) that the elements M of these state structures can be

characterized in the CJ picture by the causality condition [9, Theorem 5]

(see Equation (2.20)):

∀j ∈ 0, ...n, let M (n) :=M, M (j) :=
TrA2j ...A2n−1

[M ]

dA2jdA2j+2 . . . dA2n−2

,

then ∀i ∈ 1, . . . n, TrA2i−1

[
M (i)

]
=M (i−1) ⊗ 1A2i−2

.

(5.57)

4) that the last two state structures defined above are equivalent [11,

Proposition 6].

These results are now recovered and explained using the projective

characterization. These four statements can indeed be proven simply by

algebraic manipulations of the projectors. They amount to proving that
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1) IA0
→ IA1

= IA0
≺ IA1

;

2) Equations (5.54) and (5.55) are equivalent, i.e.P (n-comb)

A
channel

= P (n-network)

A
channel

;

3) Equation (5.57) is an equivalent way of defining the validity sub-

space of quantum networks, Eq. (5.55);

4) Equations (5.54) and (5.56) are equivalent, i.e.P (n-comb)

A
channel

= P (2n-comb)

Astate

.

5.3.1. The Notion of Causality in Quantum Process Theory

Every quantum channelM ∈ L
(
L
(
HA
)
,L
(
HB
))

, when in CJ form,

obeys Equation (5.57):

TrB [M ] = 1A . (5.58)

This is equivalent to the dual channelM∗
being unital, or the channel

being trace-preserving, and it is necessary forM to represent a valid

quantum channel [52, 72, 90].

While it is necessary for the channel to be valid, it also makes the channel

causal [78, 81, 130]. Being causal in this context is the condition described

in Subsection 3.5.1 under the name no-signaling but applied from the

output to the input. As explained in that section, no-signaling is first

a theory-independent constraint on the probability distribution of the

settings and outcomes of the parties at both sides of the channel. It

imposes that the choice of setting (y) at the output (party B) cannot have

probabilistic correlations with the outcome (a) at the input (party A). At

the level of the Born rule given by

p(a, b|x, y) = Tr

[
MAB ·

(
V Aa|x ⊗N

B
b|y

)]
(5.59)

this bound imposes that there are no choices of deterministic operation∑
bNb|y = N|y at the output that can have an influence on the probabilis-

tic operation Va|x at the input. Following the discussion in that chapter,

this requirement was shown to imply Equation (3.96),

TrB

[
M ·

(
1A ⊗N|y

)]
= TrB

[
M ·

(
1A ⊗ cB

1B

dB

)]
. (5.60)

This means that no choice of operation on Alice’s side can distinguish

the deterministic choice made by Bob from Bob maximally randomizing

over his settings.

In the general framework of state structures, condition (5.58) follows

from the equivalent conditions (3.57). Which is that a transformation

M ∈ A → B is valid if it transforms a state of the input state structure

A into one of the output B, or equivalently if it transforms an effect of

B into an effect of A :

∀NB ∈ B, NB ∗MAB ∈ A . (3.57a)

This equivalence is due to Equation (5.36), i.e. that a map M ∈ A → B
can be equivalently interpreted as one in A ← B; It recovers Equa-

tion (5.58) in the case of quantum theory: A quant. = Bquant. = {1} so

that NB = 1B and

1B ∗MAB ∈ {1A} ⇒ TrB

[
MAB ·

(
1A ⊗ 1TB

)]
∈ {1A} ⇒ TrB [MAB ] = 1A . (5.61)
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30: By coherent, it is meant ‘as any el-

ement of the convex hull of measure-

and-reprepare maps’, so this set does

not represent only entanglement break-

ing maps, i.e. of the form M(•) =

ρTr [σ · •], but any linear mapM(•) =∑
i ρiTr [σi · •]). Recall that in this non-

CJ representation, the CPTP condition

comes as constraints on the ρi’s and σi’s.

For a bipartite state structure to represent a valid channel (transformation)

or a causal channel (no-signaling from output to input) are two different

conditions: Equation (3.57a) is different than Equation (5.60). However,

in the case of quantum channels, to be a valid channel, which implies

verifying Equation (5.58), is sufficient to verify (5.60) as well because

B = Bquant. = {1} so that (5.60) becomes tautological in that case.

As it happens, the only choice of N|y ∈ Bquant. that can be made is 1,

irrespective of y, so the condition becomes trivially true:

TrB [M · (1A ⊗ 1B)] = TrB

[
M ·

(
1A ⊗

dB
dB

1B

)]
. (5.62)

For this reason, in the literature of higher-order quantum processes,

condition Equation (5.58) is taken as the causality condition, although it is

the channel condition. This equivalence between a general transformation

and a no-signaling one is only valid for the case of density matrices

nonetheless (as proven explicitly in Lemma 5.3.1 below) and hides the

subtle difference between the two definitions in the general case: being a

valid transformation between state structures does not guarantee that

the output cannot be used to signal to the input.

In the following, it will be shown that this overlap of definitions carries

on at higher-order generalization of quantum channels, meaning that

this tautology also applies to all of quantum comb formalism, and it is

exactly the accidental isomorphism this section is about.

5.3.2. Transformations between Quantum States

First, in the case n = 1, equations (5.54), (5.55) and (5.56) all reduce to

IA0 → IA1 , so items 2) and 4) hold. What remains to be proven are items

1) and 3) in the single-node case. The following lemma underlies the

proofs.

Lemma 5.3.1 The transformation operation on projectors,→, simplifies into
a prec operation when either of the projectors is identity. The prec operation on
projectors, ≺, simplifies into a tensor operation when either of the projectors
is depolarising. In equation,

PA → PB = PA ≺ PB ⇐⇒ PA = IA or PB = IB ; (5.63a)

PA ≺ PB = PA ⊗ PB ⇐⇒ PA = DA or PB = DB . (5.63b)

These relations are proven in detail in a dedicated section in Appendix D.4.

There, these relations are depicted in terms of their support in Figure D.5

for the case where both A and B are quantum states. This should be

compared with the general case of Figure D.4.

The first equation of this lemma implies that transformations between

quantum states, characterized by IA0
→ IA1

, are equivalent to a causal

succession of a functional and a state, DA0 ≺ IA1 . This proves statement

1), IA0 → IA1 = IA0 ≺ IA1 . Remark these actually are two different

ways of defining the quantum channel: as the most general transformation

that takes a quantum state to a quantum state, or as a measurement

coherently
30

followed by a preparation of a quantum state (this is also

mentioned in the example of Subsection 4.1.3).
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[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

More generally, the first equation (5.63a) states that any transformation

from (or to) an arbitrary state structure to (or from) the state structure of

quantum states will automatically be no signaling from output to input.

The second equation states that any way of combining a state structure

with the single element ‘quantum measurement’ state structure, i.e. {1},
is automatically no signaling from and to it.

In contrast, Equation (5.63b) is for example the reason why the single

partite process matrix reduces to an effect and a state in tensor product

[5]: the 1-PM is a functional on channels, characterized by the negated

projector IA0
→ IA1

. Using the first part of the lemma, IA0
→ IA1

=

DA0
≺ IA1

. The negation is distributed over a prec,DA0
≺ IA1

= IA0
≺

DA1
, and finally the second part of the lemma is used, IA0

≺ DA1
=

IA0 ⊗DA1 . These algebraic manipulations on projectors quickly led to

the conclusion that the functionals on quantum channels, characterized

by IA0 → IA1 , are equivalent to a quantum state on the input system

followed by a measurement applied on its output, IA0
≺ DA1

, and that

the state and measurement are causally disconnected, IA0
⊗DA1

.

Equation (5.63a) is the case explained in detail in Subsection 5.3.1 above,

where the state structure definition of no-signaling, Equation (3.97),

becomes redundant with the definition of transformation between state

structures, Equation (5.58). The fact that these two equations coin-

cide in this case is exactly statement 3) in the n = 1 case: ∀M ∈
L
(
HA0 ⊗HA1

)
, M ≥ 0, Tr [M ] = cA : TrA1 [M ] = cA

1
dA0

⇐⇒
(IA0 → IA1) {M} =M .

5.3.3. Equivalence of Quantum Combs and Networks

This result is now generalized for all n. Reinterpreting IA0 → IA1 =

DA0 ≺ IA1 , the quantum channel can be seen as a sort of network in which

the nodes alternate between an effect and a state, and it seems to imply

(5.57) in the n = 1 case. Going to n > 1, a network of quantum channels

is then an alternating network of effects and states as associativity can be

used, and it indeed implies (5.57) in general.

Theorem 5.3.2 The projectors to quantum combs (5.54), to a network of
quantum channels (5.55), and to (twice) a network of quantum states (5.56)

are all equivalent to the following projector to an alternating network of
quantum effects and states:

P(2n) = IA0 ≺ IA1 ≺ . . . ≺ IA2n−2 ≺ IA2n−1 . (5.64)

Meaning that with suitable normalization, the state structure of networks of
order n based on quantum channels is equivalent to the one of combs of order
n based on quantum channels, and it is also equivalent to the one of combs of
order 2n based on quantum states.
In addition, the elements M of the state structure defined by this projector
obey equation (5.57).

The proof is presented in the appendix; see Appendix D.5.4. This theorem

means that an operator M obeying the causality condition (5.57) can

be interpreted as an element of four equivalent state structures: from

Equation (5.54) as a valid quantum n-comb, i.e. (the CJ representation
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31: In Section 6.1, it will be further shown

that other ways of nesting based on quan-

tum theory are also ‘resistant’ to multi-

ple signaling directions: several layers

of recursively defined supermaps are re-

quired before obtaining ICO.

of) a map on 2n systems that transforms the recursively defined map

on the n− 1 nodes split between the 2n− 2 systems A1, . . . A2n−2 into

a single-node map, i.e. a quantum channel from A0 to A2n−1. From

Equation (5.55) as a valid quantum network of channels with n nodes,

i.e. (the CJ representation of) a map on 2n systems A0, . . . A2n−1 that

represents the n successive operations of a party on n nodes: at node j she

applies a channel between systems A2j−2 and A2j−1 that can depend on

(that is, use any size of ancillary memory from) the j − 1 previous nodes.

From Equation (5.56) as a valid comb of states on 2n nodes, i.e. (the CJ

representation of) a map on 2n systems that transforms the recursively

defined map on the 2n−1 systemsA0, . . . A2n−2 into a quantum state on

the 2n−th system A2n−1. And from Equation (5.64) as a valid quantum

network alternating between quantum measurements and states at each

of the 2n nodes, i.e. (the CJ representation of) a map on 2n systems

A0, . . . A2n−1 that represents the 2n successive operations of a party on

2n nodes: at odd nodes, she measures a quantum state, at even nodes, she

prepares one. Each operation is potentially conditioned by the previous

nodes but is independent of the future ones.

Although these four definitions appear quite different, notice that Equa-

tion (5.64) is actually the normal form of Equations (5.54), (5.55), and

(5.56)! Hence, the equivalence between seemingly unrelated definitions

of higher-order maps is inferred simply by working out their normal form.

The fact that the two comb-like definitions result in structures with a sin-

gle signaling direction is now directly apparent, as the structure features

a single ‘prec chain’ in normal form. As mentioned above, this is a very

peculiar behavior: From Equation (5.40b), one would have expected the

normal forms to be the union of many prec chains with different signaling

orderings. That is, the combs should typically have an unfixed signaling

direction between their nodes. Lemma 5.3.1 auspiciously prevents that.

The isomorphisms between ≺ and → in the case of composite state

structures whose base structures are sets of quantum states explain this

apparent counter-logical equivalence of a transformation (the network

of states) with various higher-order transformations. Quantum theory

is thus very tame in the sense that successive and/or comb-like-nested

transformations
31

of quantum states or channels happen to have no

signaling from output to input automatically.

On the contrary, nesting any other state structures in a comb-like con-

struction will generally result in a non-fixed signaling structure. An

example of this in the case of the MPM is provided in Chapter 6. It also

features another example of the use of the normal form.

5.4. Conclusion and Outlooks for the

Characterization

Defining and characterizing higher-order processes has been abstracted

under the concept of a state structure in the Chapter 3. In particular,

it was shown that any class of admissible higher-order processes is

characterized only by the processes on top of which it is defined. In terms

of state structures, this definition amounts to defining composite state

structures out of base state structures, which in turn amounts to defining
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composition rules for the projector characterizing them. The properties

of the various composition rules for projectors have been studied in

depth in this chapter. The algebraic properties found in this chapter were

shown to allow the characterization of the signaling structure of any

higher-order process by algebraic manipulations on its projector only.

The key finding is that the various combinations of projectors built using

the algebra and a given number of base state structures were shown to

organize as a lattice, the projector algebra, Proposition 5.1.10. This lattice

sorts the state structures it contains according to the possible signaling

directions its states may show. Within it, a term is contained within

another if it has ‘more signaling’ than another. For example, the partial

order ⊆ concludes that PA ≺ PB ⊃ PA ⊗ PB , meaning that the set

of bipartite states that are one-way signaling from A to B have more

signaling allowed than the ones that are no-signaling. Accordingly, the

partial order cannot conclude anything for terms with different signaling

directions, e.g., PA ≺ PB ̸= PA ≻ PB .

In particular, the lattice can be restricted to the sub-lattice built without

using the negation and using a single base state structure for each

subsystem, the signaling lattice, Proposition 5.1.11. This signaling lattice

characterizes all ‘comparable state structures’ inasmuch as it is the subset

of state structures with the same local interpretation of their base state

structures. If a party A considers her local share of a state belonging to a

global state structure as something inputting a state from state structure

A, then she will also do so for every other state in every other state

structures in the signaling lattice; she will not suddenly obtain a share of

a state that is interpreted as A ′
or A . Within the signaling lattice, the

no-signaling projector is contained within all elements: the smallest kind

of global state that the parties can share is made of the ones that never

allow for signaling from one party to another. Conversely, all elements

of the lattice are contained in the fully signaling projector: the biggest

kind of shared global state is made of those allowing signaling in every

direction.

The second key result was introducing a normal form for the projectors,

Definition 5.2.1, and showing that all of them admit at least one, The-

orem 5.2.1. This normal form can be used to directly read the possible

signaling directions a given lattice term may show. A caveat, nonetheless,

is that the normal form is not unique. As shown by the example of

the quantum comb formalism, in certain cases, a normal form can be

reduced to another one that features fewer terms and, therefore, signaling

directions. Because of that, one can be led to mistakenly interpret a state

structure as permitting states with several possible signaling directions

where they have only one, as is the case when naively putting the state

structures of quantum combs in normal form.

This demonstrates that completely sorting out the signaling lattice for

a given number of parties and set of base projectors is not as simple

as it appears. As signaling defines the ordering of the lattice, it could

have been that a term is ‘above’ another one every time its normal form

has ‘more unions’ in its decomposition. But the isomorphic normal

forms complicate such a simple approach. On the contrary, sorting these

lattices will also help identify equivalent normal forms and, therefore,

isomorphisms of state spaces. Such isomorphic state spaces are very
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32: I.e., the combs can be defined as net-

works of channels, as networks of states,

as transformations between channels.

interesting because they are characterized differently, while having the

same signaling structure. Ergo, some classes of higher-order processes

assumed to be fundamentally different can turn out to be the same. For

example, in the case of the combs, it was shown in Theorem 5.3.2 that

several ways
32

of defining the objects all led to the same state structure.

Sorting a signaling lattice for two parties is still simple: these lattices

are essentially characterized by (5.40). However, when there are more

than two parties, the situation becomes more complex, especially since

there can be projectors involving different multiplicative connectors like

PA ≺ (PB

&

PC), and that these connectors do not distribute over

each other, let alone verify a (weak) interchange law. Therefore, these

non-distributive expressions lead to many more possibilities than the

four equivalences classes defined by (5.40), and their decomposition

into normal forms may lead to even more unsuspected isomorphisms of

normal forms. In the outlook chapter, some preliminary results about

the relations in the tripartite case will be presented in Subsection 6.3.1.

While it is a non-trivial matter, identifying the non-equivalent elements

of a signaling lattice appears as a natural direction to continue the

characterization: Identifying the non-equivalent points of the signaling

lattice defines the equivalence classes of state structures. The knowledge

of the normal form of each of these points, as well as a systematic way

to turn a normal form into its other equivalent normal forms would

complete the characterization fully. Indeed, if one knows how to turn

a normal form of a given state structure until it becomes the normal

form of one of the equivalence classes, they have precisely assessed the

position of their state structure within the lattice, and, therefore, how

much signaling the states in their state structure allows with respect to

all the comparable state structures.

Nevertheless, as the quantum comb example demonstrated, the char-

acterization tools developed in this chapter are already sufficient for a

thorough analysis of the signaling in any family of higher-order processes.

In the next chapter, the methods will be applied to nested quantum chan-

nels as a proof of concept. In addition, some preliminary considerations

and insights about their use in the search for indefinite causal order will

be presented.
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Nicely put, but as young Cerro said to King

Vridank on their first date: “Does it have any

practical uses?”

Zoltan Chivay to Geralt of Rivia in: Andrzej

Sapkowski (1999), The Lady of the Lake

In Subsection 3.6.2, it was shown that defining a bipartite state or a channel

between two state structures is enough to observe two-way signaling. In

the channel case, it was demonstrated that specific admissible channels

were not decomposable as a convex sum of two terms with opposite

signaling directions. This ‘non-mixture of causal orders’ is colloquially

referred to as an indefinite causal order (ICO) in the literature [4]

[4]: Chiribella et al. (2013), Quantum com-
putations without definite causal structure.

, and

made precise under the theory-dependent notion of causal non-separability
[5]

[5]: Oreshkov et al. (2012), Quantum cor-
relations with no causal order.

. The biased quantum channel was moreover shown to beat the OCB

game, a guess your neighbor’s input (GYNI) task providing a theory-

independent inequality to certify that the process is non-causal, i.e. a

causal inequality. Yet, in Section 5.3, it was shown that the higher-order

quantum channel theory, known as the quantum comb formalism [9]

[9]: Chiribella et al. (2009), Theoretical
framework for quantum networks.

,

never leads to two-way signaling, Theorem 5.3.2. The question is, ‘When

does an indefinite causal order arise in higher-order quantum processes

?’.

With the tool of the normal form, Theorem 5.2.1, it was shown that

the fixed signaling direction in the quantum combs is due to an acci-

dental isomorphism, Lemma 5.3.1. As follows from Theorem 3.4.1 and

Lemma 3.5.3, an admissible transformation is represented by a two-way

signaling composition and should generally lead to two-way signaling.

The answer provided by this thesis
1

1: Concordant conclusions were inde-

pendently attained by Simmons and

Kissinger [36]

[36]: Simmons et al. (2022), Higher-order
causal theories are models of BV-logic.

as well as Milz and

Quintino [37]

[37]: Milz et al. (2023), Transformations
between arbitrary (quantum) objects and the
emergence of indefinite causality.

.

is then almost always, the quantum
combs are an exception.

In this thesis, a method for characterizing the signaling relations in

higher-order processes has been developed. This last chapter before the

conclusion presents some further consequences and future prospects

implied by the methods.

This chapter begins with another example of the utilization of the

formalism: nested quantum supermaps, Section 6.1. The aim is twofold:

on the one hand, it will demonstrate how to use the characterization

methods in another concrete case. On the other hand, it will show that

non-fixed causal order, that is, multiple signaling directions, eventually

arises when recursively defining admissible quantum transformations.

In other words, this is done to confirm that the quantum combs are

an exception to the rule; admissible quantum transformations lead to

processes with non-fixed signaling direction, and possibly to indefinite

causal order or non-causal processes.

If it is the case that admissible quantum transformation lead to non-

causal processes, one may wonder if it is possible to refine Perinotti and

Bisio’s type system to define nested quantum transformations that do not.

Preliminary insights in this direction are presented in Subsection 6.3.2.

In this section are also sketched some preliminary results on the problem

147
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[41]: Vandenberghe et al. (1996), Semidefi-
nite Programming.

[1]: Hoffreumon et al. (2021), The Multi-
round Process Matrix.

of characterizing the non-equivalent elements in the signaling lattice

for the tripartite case, Subsection 6.3.1. As a whole, this section tries to

utilize the lattice structure of projectors as a model of logic for discussing

signaling: the signaling relations will be read directly from the projector

formulae, and, as will be shown, the equivalence of formulae will be

interpreted as logical equivalences. By this, it is meant that equivalences

or inequivalences at the level of the algebra, computed using the algebraic

rules, will be interpreted as logical equivalences, inferred using language

and reasoning.

The last briefly mentioned outlook of this chapter is the connection of the

characterization with Semi-Definite Programming [41], Section 6.2. Since

the projective characterization yields projectors, hence linear constraints,

these can be directly translated into linear programs for the numerical

search of causally non-separable processes within a given state structure.

Actually, this was the original purpose for introducing the projective

characterization methods in Reference [35]

[35]: Araújo et al. (2015), Witnessing causal
nonseparability.

.

6.1. Example: Nesting Quantum

Transformations until the Emergence of an

Indefinite Causal Order

This example focuses on the case of higher-order transformations built

upon quantum mechanics. The construction that lifts the POVM formal-

ism into the quantum instrument formalism presented at the beginning

of Chapter 3, revisited in Chapter 4 as an example for the state structure

formalism as well as a motivation for studying the projector algebra in

Chapter 5, is once again revisited in this section as an example of the use

of the algebra. In a nutshell, it will be repeated on itself until an indefinite

causal order (ICO) arises.

There are three reasons for choosing this example. Firstly, it demonstrates

the application of characterization techniques in a concrete case, where

all the objects that will be defined have already been studied in the

literature. Secondly, and in accordance with the discussion of Section 5.3,

it highlights how tame quantum theory is compared to other process the-

ories characterized using projective means. Although the transformation

operation→ will be used repetitively, i.e. successive higher-order objects

will be defined in a way that should allow for bidirectional signaling, it

will not result in an object presenting ICO until the fourth order. This is in

stark contrast with the example of the biased quantum theory presented

in Section 3.6. There, one could observe signaling in both directions

already at the level of bipartite states (bipartite and first-order type)

as well as of channels (single partite and second-order type). Thirdly,

this example recovers another previously studied tripartite process: the

Multi-Round Process Matrix (MPM) [1].

As is the case in Section 4.1 and Section 5.3, the objects under study are

higher-order generalizations of quantum theory, so in this section, it is

assumed that every base projector is the identity projector and that all

base state structure is normalized to 1. However, the notion of order was

shown to be somewhat misleading for quantum theory in Section 4.3.
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(a) State ρ

(b) Map M

(c) Supermap S

(d) Super-supermap W

Figure 6.1.: The example considered in this section: from states to the super-supermap. Each new figure is defined by introducing a

transformation of the previously introduced transformation: The channel M is a transformation on the state space of ρ, the supermap

S is a transformation on the state space of the channels M , and the super-supermap is a transformation on the state space of the

superchannels S. Note that, with respect to the graphical methods, these are not exactly the CJ representations of the maps as the ‘wires

are unbent’ to increase readability; normally, in the CJ picture all these diagrams are half-circle acting on multiple subsystems.

Moreover, the normal form of Definition 5.2.1 makes it unnecessary.

Consequently, this notion has to be formalized before ‘constructing up to

the fourth order’.

The basic idea is that an order is defined by a state and effect dual pair

as in Definition 3.3.3. The base state structure determines the first order.

To build the next order, an evolution (i.e. admissible mapping) from

the states of the current order to themselves is postulated. The state

structure of the evolutions is then declared as the ‘states of order+1’,

which automatically fixes the ‘effects of order+1’ as its dual state structure,

so this new pair forms the order+1. To give a process interpretation, the

states at all orders will always be assumed to be an environment shared

by the local effects of the order below. This is done for the sake of the

argument: the introduced evolutions, which are bipartite states according

to the order below, are interpreted as the global deterministic ‘states’

and everything else is interpreted as the local ‘effects’ controlled by

some parties. Doing so will maximize the number of local parties acting

probabilistically, which makes non-fixed signaling directions and ICO

more obvious.

Therefore, given states in A0 ⊂ L
(
HA0

)
and effects in A 0, the current

order consists of pairs of objects in A0×A 0, and next order is constructed

by defining A0 → A1 ⊂ L
(
HA0 ⊗HA1

)
as a shared state between party
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2: His settings are ignored since he per-

forms a quantum measurement, which

is always no-signaling; his outcome is

labeled c instead of d to avoid confusion

with the dimension.

Figure 6.2.: Graphical representation of

Equation (6.4)

3: The numeral labeling of subsystems

is changed after the introduction of each

new order so to put the environment

(state) of the previous order ‘in between’

the effects. The different operations re-

main assumed under the same party’s

control; here, Charlie is still preparing

state ρ|x at A0, but David is now mea-

suring his effect Ec at A1.

4: As will be shown, Charlie will always

end up in the global past, so his inter-

vention is assumed deterministic since

no probabilistic course of action would

allow his outcome to be correlated with

any of the other parties’s settings.

A0, acting on it with local effect A0 and party A1, acting on it with

A 1
∼= A 0. Thus, the construction of the next order consists of the

following redefinition of the dual pair:

A0︸︷︷︸
State

× A 0︸︷︷︸
Effect

7→ (A0 → A1︸ ︷︷ ︸
State + 1

)× (A0 → A1︸ ︷︷ ︸
Effect + 1

) . (6.1)

and the interpretation of the states as environments will promote the

environment of order n to a local party at order n + 1. In symbols,

Environment 7→ Party B so that:

A0︸︷︷︸
Environment

× A 0︸︷︷︸
Party A

7→ ( A0 → A1︸ ︷︷ ︸
Environment + 1

)× ( A0︸︷︷︸
Party B

⊗ A1︸︷︷︸
Party A

) . (6.2)

Remark that this interpretation is possible because the dual of a trans-

formation is a no-signaling composition: A0 → A1 = A0 ⊗ A 1. Con-

sequently, it can be split into two local parties without changing the

support of the state structure.

6.1.1. The Quantum Channel is a 1-comb

This is yet again the introductory example of Section 3.1. The first order

consists of a state and effect pair

(ρ,1) ∈ A0︸︷︷︸
Environment

× A 0︸︷︷︸
David

. (6.3)

The resolutions of the effect are assumed to be under the control of party

David, who records outcome
2 c with probability distribution

p(c) = Tr [Ec · ρ] . (6.4)

To go to the second order, one postulates some evolution so that the state

structure A0 is mapped to a similarly defined state structure A1 by a

CPTP mapM∈ L
(
L
(
HA0

)
,L
(
HA1

))
in a manner that preserves the

Born rule,

1 = (1 , ρ)A0
7→
(
1 ,MA0→A1 (ρ)

)
A1

= 1 . (6.5)

According to Subsection 4.1.1, in the CJ picture, this results in a new state

and effect dual pair
3
:(

ρA0 ⊗ 1A1 ,MA0A1

)
∈
(
A0 ⊗A1

)
× (A0 → A1) , (6.6)

so that the normalization is preserved,

1 = Tr [M · (ρ⊗ 1)] = (M , ρ⊗ 1)A0A1
. (6.7)

In this case,M is a quantum channel in CJ representation, i.e., a quantum

1-comb by Definition 2.3.2. As explained below Equation (4.6), this leads

to the scenario of a communication through an ‘environment’ modeled

by a channel M : the former environment, the quantum state ρ, is now a

local effect modeling the action of a party Charlie. Letting Charlie choose

his prepared quantum state according to setting
4 z while David is still
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Figure 6.3.: Diagrammatic representa-

tion of Equation (6.8)

applying a POVM with outcome c, the distribution is

p(c|z) = Tr

[
M ·

(
ρ|z ⊗ ETc

)]
. (6.8)

In this example, completing the second-order theory requires the set of

states to be extended to all functionals normalized on the effects. That is,

to allW in A0 → A1 so that the normalization of probabilities becomes

1 = (W , M) , (6.9)

where W is a single partite PM and M is a 1-comb, so that both are

second-order objects.

Nonetheless, it was shown in Subsection 4.1.4 that the single partite

PM trivially decomposes into quantum states and measurements, which

means that the states W of the second order always ‘redescend to the

first order’: A0 → A1 = A0⊗A 1. The explanation in terms of the projec-

tor algebra is direct from the definition PA0
→ PA1

:= PA0
⊗ PA1

.

In terms of signaling structure, because the transformation is two-

way signaling, PA0
→ PA1

=
(
PA0

≺ PA1

)
∪
(
PA0

≻ PA1

)
, the func-

tional on transformations have to be no-signaling by De Morgan dual-

ity (5.37c): PA0
→ PA1

= PA0
≺ PA1

∩ PA0
≻ PA1

=
(
PA0

≺ PA1

)
∩(

PA0
≻ PA1

)
(5.40a)

= PA0
⊗ PA1

. Therefore, the single partite process

matrix for any base state structure always reduces to state and effect pairs.

While the state structure redescending to the state and effect pair is not

a specificity of quantum theory, the fact that all single parties process

matrices factorizes, i.e. that W can always be written as a pure tensor

product like W = ρ ⊗ 1 is one. This is due to the fact that the state

structure of quantum measurement is a singleton PA1
= {1}.

Another difference noticed in Subsection 4.1.1 is that the 1-comb is one-way

signaling despite being built using the transformation connector. Now,

this fact has been explained in Section 5.3: the 1-comb is characterized by

IA0
→ IA1

which, by Lemma 5.3.1, is equivalent to the normal form

IA0 → IA1

(5.63a)

= IA0 ≺ IA1 . (6.10)

Hence, it is guaranteed that the 1-combs have a fixed signaling direction,

so they cannot show indefinite causal order. If the base state structure

were anything other than quantum states, this would not have been the

case; this is a specificity of quantum theory. Interestingly, while the effects

lose a signaling direction, the states remain no-signaling,

IA0
≺ IA1

= DA0
≺ DA1

(5.63b)

= IA0
⊗DA1

, (6.11)

the normal form DA0
≺ DA1

is indeed subject to one of the accidental

isomorphism of Lemma 5.3.1. Therefore, in the second order, the dual

pair, which was to feature up to two directions of signaling, only features

one, (
A0 → A1

)
× (A0 → A1) =

(
A0 ⊗A 1

)
×
(
A 0 ≺ A1

)
. (6.12)

The only signaling direction is from the input of the effect (i.e., the

quantum channel) to its output; this scenario is causally ordered in both
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[8]: Chiribella et al. (2008), Transforming
quantum operations: Quantum supermaps.

5: Normally, M = C (M) should be

transposed since it went from the l.h.s.

to the r.h.s. of the inner product. This

transposition is assumed to be hidden in

a redefinition like M 7→ MT
to lessen

clutter. Omitting it is unimportant for

the discussion since operator systems

are closed under the transposition in any

case.

Figure 6.4.: Diagrammatic representa-

tion of Equation (6.17)

its states and effects.

6.1.2. The Quantum Supermap is a 2-comb

The third order is obtained by assuming the existence of an evolution of

the current evolution. This transformation of transformation was defined

in the literature as the quantum supermap [8]. In the same way operators

defined on operators can be nicknamed ‘superoperators’, the ‘supermap’

S is a linear map between two maps in the same state structure. Let the

quantum channelM be defined between subsystems A1 and A2. Then,

S as a completely CPTP-preserving supermap that sendM to a similar

map M̃ between subsystems A0 and A3, S
(
MA1→A2

)
= M̃A0→A3

, so

that

1 = (1 ,M (ρ))A2
7→ (1 , [S (M)] (ρ))A3

= 1 . (6.13)

Going to the CJ picture
5
, the following deterministic probability rule is

obtained:

1 = Tr [S · (ρ⊗M ⊗ 1)] = (S , ρ⊗M ⊗ 1) . (6.14)

The quasi-orthogonal pair is of the form

(S, ρ⊗M ⊗ 1) ∈ ((A1 → A2)→ (A0 → A3))︸ ︷︷ ︸
Environment

×( A0︸︷︷︸
Charlie

⊗ (A1 → A2)︸ ︷︷ ︸
Bob

⊗ A3︸︷︷︸
David

) . (6.15)

The channel M ∈ A1 → A2 is now interpreted as a local effect. It

is assumed under the control of party Bob, who is resolving it into a

collection {Mb|y} according to his setting y and outcome b. Letting Charlie

and David resolve their respective quantum states ρ and unit effect 1,

their outcome distribution without the supermap is now a scenario in

which Charlie prepares a state, sends it to Bob, who applies a quantum

instrument on it then forwards the output to David, who finally applies

a destructive measurement on it:

p(b, c|y, z) = Tr

[
Mb|y ·

(
ρ|z ⊗ ETc

)]
. (6.16)

With the supermap as an environment between their operations, the

probability becomes

p(b, c|y, z) = Tr

[
S ·
(
ρ|z ⊗Mb|y ⊗ ETc

)]
. (6.17)

Defined as such, S is a 2-comb, an object that transforms Bob’s 1-comb

(a quantum channel) into the 1-comb seen by Charlie and David. In the

previous subsection, channels themselves were shown to be one-way

signaling objects, and, moreover, in Section 5.3 it was demonstrated that

any comb is one-way signaling. But without using Theorem 5.3.2, this

could also have been found from the normal form of its projector. This is
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6: But the prec does not obey the uncur-

rying rule in general; this is discussed in

Subsection 6.3.2.

7: By trivially redundant normal form it

is meant one where terms are repeated

like P = P ∩ P , the latter expression is

trivially redundant. In the case of (6.21), it

is non-trivial as the equivalence relies on

a non-trivial inclusion relation between

different projectors like P = P ∩ P ′
.

8: The proof of this theorem provides

an alternative way to show (6.23) using

the uncurrying for the transformation

(D.68):(
IA1

→ IA2

)
→
(
IA0

→ IA3

)
(D.68)

=
(
IA0
⊗
(
IA1

→ IA2

))
→ IA3

(5.63a)

=
(
IA0 ⊗

(
IA1 ≺ IA2

))
≺ IA3

(5.63b)

=
(
IA0

≺
(
IA1

≺ IA2

))
≺ IA3

= IA0 ≺ IA1 ≺ IA2 ≺ IA3 .
(6.24)

now done for completeness. Some manipulations yield

(IA1 → IA2)→ (IA0 → IA3)
(5.63a)

=
(
IA1 ≺ IA2

)
→
(
IA0 ≺ IA3

)
(5.40b)

=
(
IA1
≺ IA2

)
≺
(
IA0
≺ IA3

)
∪
(
IA1
≺ IA2

)
≻
(
IA0
≺ IA3

)
= IA1 ≺ IA2 ≺ IA0 ≺ IA3 ∪ IA0 ≺ IA3 ≺ IA1 ≺ IA2 . (6.18)

At this point, it may be concluded that the most general 2-comb is a

superposition of two possible quantum networks: the left-hand side is

the one in which the channel M is measured, IA1
≺ IA2

= IA1
→ IA2

,

then reprepared in its causal future (≺) as M̃ , IA0
≺ IA3

; whereas

the right-hand side is the one in which M̃ is first prepared then M is

measured.

By Definition 5.2.2, one may be led to conclude that the supermap

has a non-fixed signaling structure. Yet, there is again the accidental

isomorphism at play: using Equation (5.63b),

(IA1 → IA2)→ (IA0 → IA3) =
(
(IA0 ⊗ IA1 ⊗ IA2) ≺ IA3

)
∪
(
IA0 ≺ (IA1 ⊗ IA2 ⊗ IA3

)
, (6.19)

but both sides of the union are actually equivalent. This is a particular

instance of an uncurrying-like rule for the prec
6
:

(
IA0
⊗
(
IA1
⊗ IA2

))
≺ IA3

= IA0
≺
((
IA1
⊗ IA2

)
⊗ IA3

)
= IA0

≺
(
IA1
⊗ IA2

)
≺ IA3

. (6.20)

To get to the normal form, one normally uses Equation (5.40b) on the

right-hand side of the above so to get

(IA1
→ IA2

)→ (IA0
→ IA3

) =
(
IA0
≺ IA1

≺ IA2
≺ IA3

)
∩
(
IA0
≺ IA2

≺ IA1
≺ IA3

)
. (6.21)

However, Equation (5.63b) makes it a redundant normal form. Indeed,

IA1
⊗ IA2

= IA1
≺ IA2

, so using (5.40b) in

IA1 ⊗ IA2 = (IA1 ≺ IA2) ∩ (IA1 ≻ IA2) (6.22)

added a new, unnecessary IA1 ≻ IA2 term, which resulted in an extra

prec chain in the normal form (6.21) (i.e., the one on the right-hand side

of the cap). Simplifying the normal form results in a different normal

form featuring a single prec chain this time:

(IA1
→ IA2

)→ (IA0
→ IA3

) = IA0
≺ IA1

≺ IA2
≺ IA3

. (6.23)

Equation (6.21) is a first example of a non-trivially redundant normal form

for (6.23)
7
: the normal form can be shortened because of an accidental

isomorphism that is specific to the base projectors that were used to

construct it.

This specificity of quantum theory, which reduces the number of terms

in the normal form, means that the third-order supermaps are objects

with a fixed signaling direction. This is in accordance to Theorem 5.3.2
8
:

Equation (6.23) shows that the 2−combs are equivalent to quantum

networks with two nodes. This makes the states of the third-order (the
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supermaps) descend to a causally ordered succession of two second-order

states (which are quantum channels):

(A1 → A2)→ (A0 → A3) =
(
A 0 ≺ A1

)
≺
(
A 2 ≺ A3

)
. (6.25)

As the second-order transformations have been shown to have a single

signaling direction, so is the third-order.

Using Lemma 5.3.1 on the normal form, the third-order can be further

descended to a composition of first-order objects since the projector

becomes

IA0
≺ IA1

≺ IA2
≺ IA3

= IA0
≺
(
IA1
⊗ IA2

)
≺ IA3

, (6.26)

so the third-order states have the state structure

(A1 → A2)→ (A0 → A3) = A 0 ≺
(
A1 ⊗A 2

)
≺ A3 . (6.27)

Thus, an ordered succession of four first-order objects that allow for

signaling from A0 to all the nodes, and from A1 and A2 to A3. This is

very surprising as it is the dual of the tripartite no-signaling composition

of the effects,

A0 ⊗
(
A 1 ≺ A2

)
⊗A 3 = (A1 → A2)→ (A0 → A3) , (6.28)

so the state structure of the environments (states) before simplification

was A0 ⊗
(
A 1 ≺ A2

)
⊗A 3 = A 0

&(
A1 ≺ A 2

) &

A3 which featured

two-way signaling connectors. This means that the two two-way signaling

compositions (
&

) were reduced to a one-way signaling (≺) and the one-

way signaling (≺) to a no-signaling (⊗) one. Without the isomorphism,

one may have expected third-order states to be a fully signaling tripartite

state structure (i.e., composed using the

&

only, and treating A1 ≺ A 2

as a single state structure associated with Bob), which, in that case,

would have featured up to six different one-way signaling terms in the

decomposition. (Indeed, with two-way signaling between three projectors,

the normal form was expected to feature the union of 3! different prec

chains.) But instead, the quantum supermap reduces to an object with, at

most, a single signaling direction and characterized by Equation (6.27).

Moreover, it is not even signaling along the four subsystems: in a su-

permap, it is impossible to signal from the first output at A1 to the

second input at A2. Note that it is this property that makes the quantum

supermap interpretable as a quantum bipartite channel reduced to a

one-way signaling subset [64] (also called a semicausal box [61, 62, 65]).

Without it, the channel causality condition (5.58) could not be verified

when treating the two subsystems A0 and A2 as the input of a bipartite

channel outputting subsystems A1 and A3.

6.1.3. The Quantum Super-supermap has Non-Fixed

Causal Order

To go to the fourth order, the same procedure is applied again: the

‘super-supermaps’W are introduced as the admissible mappings from

supermaps like S to themselves,W(S) = S̃ . In this scenario, the rela-

beling of subsystems is such that S ∈ L
(
HA1 ⊗HA2 ⊗HA5 ⊗HA6

)
,



6.1. Example: Nesting Quantum Transformations until the Emergence of an Indefinite Causal Order 155

9: Like the channel (see note 5), the su-

permapS should be transposed in (6.30);

it is implicitly assumed that it has been

redefined like S 7→ ST
.

Figure 6.5.: Diagrammatic representa-

tion of Equation (6.32)

S̃ ∈ L
(
HA0 ⊗HA3 ⊗HA4 ⊗HA7

)
, so that the Born rule is mapped to

1 = (1 , [S (M)] (ρ))A3
7→ (1 , [[W (S)] (M)] (ρ))A7

= 1 . (6.29)

In the CJ representation
9
, the normalization of probabilities reads

1 = Tr [W · (ρ⊗ S ⊗M ⊗ 1)] . (6.30)

Accordingly, the valid states and effects are taken from a dual pair of

state structures defining the fourth order as

(W,ρ⊗ S ⊗M ⊗ 1) ∈
([(A2 → A5)→ (A1 → A6)]→ [(A3 → A4)→ (A0 → A7)]︸ ︷︷ ︸

Environment

)

× ( A0︸︷︷︸
Charlie

⊗ (A2 → A5)→ (A1 → A6)︸ ︷︷ ︸
Alice

⊗ (A3 → A4)︸ ︷︷ ︸
Bob

⊗ A7︸︷︷︸
David

)) .

(6.31)

The 2-comb S is promoted as a local effect representing the intervention

of a party Alice. She prepares it according to her setting x and obtains

outcome a when resolving it probabilistically.

p(a, b, c|x, y, z) = Tr

[
W ·

(
ρ|z ⊗ Sa|b ⊗Mb|y ⊗ ETc

)]
. (6.32)

The local effects consist of Charlie preparing a state, Alice applying

a probabilistic supermap, Bob applying a quantum instrument, and

David measuring a POVM. Using the results of the previous section, the

signaling allowed in the local interventions is drastically reduced,

[(A2 → A5)→ (A1 → A6)]→ [(A3 → A4)→ (A0 → A7)]

= A0 ⊗
(
A 1 ≺

(
A2 ⊗A 5

)
≺ A6

)
⊗
(
A 3 ≺ A4

)
⊗A 7 .

(6.33)

and the operation of Alice –applying the resolution of a supermap– can

be restated as a network with two nodes: Alice does a first intervention

modeled by a quantum instrument acting between subsystems A1 and

A2, then she does a second intervention also modeled by a quantum

instrument but between subsystems A5 and A6 this time. Between her

two interventions, she can keep an ancillary memory represented by a

side channel.

The projector characterizing the state structure of the environment W

is put in normal form to extract its signaling structure. First, successive

applications of the uncurrying rule (D.68) yield

[(IA2 → IA5)→ (IA1 → IA6)]→ [(IA3 → IA4)→ (IA0 → IA7)]

= [(IA3
→ IA4

)⊗ ((IA2
→ IA5

)→ (IA1
→ IA6

))]→ (IA0
→ IA7

)

=
[
IA0
⊗
(
(IA3

→ IA4
)⊗ ((IA2

→ IA5
)→ (IA1

→ IA6
))
)]
→ IA7

.

(6.34)

Next, Equations (5.63) as well as (6.23) are used alternatively:
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=
[
IA0
⊗
(
(IA3

→ IA4
)⊗ ((IA2

→ IA5
)→ (IA1

→ IA6
))
)]
→ IA7

=
[
IA0
⊗
((
IA3
≺ IA4

)
⊗
(
IA1
≺ IA2

≺ IA5
≺ IA6

))]
→ IA7

(5.63b)

=
[
IA0 ≺

((
IA3 ≺ IA4

)
⊗
(
IA1 ≺ IA2 ≺ IA5 ≺ IA6

))]
→ IA7

(5.63a)

= IA0 ≺
((
IA3 ≺ IA4

)
⊗
(
IA1 ≺ IA2 ≺ IA5 ≺ IA6

))
≺ IA7

= IA0
≺
((
IA3
≺ IA4

)
⊗
(
IA1
≺ IA2

≺ IA5
≺ IA6

))
≺ IA7

,

(6.35)

where the negation got distributed over the prec in the last step.

Simplifying the negation at the center of the formula provides another

example of a non-unique normal form. Using Equation (5.40a):

IA0
≺
((
IA3
≺ IA4

)
⊗
(
IA1
≺ IA2

≺ IA5
≺ IA6

))
≺ IA7

= IA0
≺
(
IA1
≺ IA2

≺ IA5
≺ IA6

≺ IA3
≺ IA4

)
∩
(
IA3
≺ IA4

≺ IA1
≺ IA2

≺ IA5
≺ IA6

)
≺ IA7

(5.15)

= IA0
≺
(
IA1
≺ IA2

≺ IA5
≺ IA6

≺ IA3
≺ IA4

∪ IA3
≺ IA4

≺ IA1
≺ IA2

≺ IA5
≺ IA6

)
≺ IA7

= IA0 ≺ IA3 ≺ IA4 ≺ IA1 ≺ IA2 ≺ IA5 ≺ IA6 ≺ IA7∪
IA0 ≺ IA1 ≺ IA2 ≺ IA5 ≺ IA6 ≺ IA3 ≺ IA4 ≺ IA7 .

(6.36)

Therefore,

[(IA2
→ IA5

)→ (IA1
→ IA6

)]→ [(IA3
→ IA4

)→ (IA0
→ IA7

)]

=

IA0
≺ IA3

≺ IA4
≺ IA1

≺ IA2
≺ IA5

≺ IA6
≺ IA7

∪
IA0 ≺ IA1 ≺ IA2 ≺ IA5 ≺ IA6 ≺ IA3 ≺ IA4 ≺ IA7 . (6.37)

From this normal form, it can be inferred that the super-supermapsW can

feature an indefinite causal order as it features the union of two different

prec chains and, compared to Equation (6.23), no accidental isomorphism

can make one term disappear. Actually, the indefiniteness is between

Alice and Bob. To make it more clear, the state structure associated

the unit effects of each local party is gathered into a single symbol,

(A0⊗(A2 → A5)→ (A1 → A6)⊗(A3 → A4)⊗A7) 7→ (C⊗A⊗B⊗D),

so that the local state structures are redefined as the base state structures.

The associated projectors are accordingly defined; let

PA := IA1
≺ IA2

≺ IA5
≺ IA6

;

PB := IA3
≺ IA4

;

PC := IA0 ;

PD := IA7 ;

(6.38)

be associated with the (normal form of the) state structures of, respectively,

the deterministic interventions S,M, ρ,1 (i.e., unit effects) of Alice, Bob,

Charlie, and David.
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The state structure of the shared environment W is then

[(IA2
→ IA5

)→ (IA1
→ IA6

)]→ [(IA3
→ IA4

)→ (IA0
→ IA7

)]

=

PC ≺ PB ≺ PA ≺ PD ∪ PC ≺ PA ≺ PB ≺ PD . (6.39)

Interpreting the above as the projector associated with a state structure

in which states are shared between the four parties, it is straightforward

to see that Charlie’s intervention is in the global past whereas David’s is

in the global future. These two parties are thus in a fixed causal structure;

in the language of process matrix formalism, any four-partite process W

belonging to this state structure is at most “3-causal” [153] meaning that

the processes will decompose into terms in which at least three parties

are fully ordered. Indeed, since Charlie has to be in the past and David

has to be in the future, it is certain that Alice and Bob will be in between,

so at least three parties will have a fixed ordering in signaling relations.

Finally, the dual pair at the fourth order is

(W,S ⊗M ⊗ ρ⊗ 1) ∈ ((C ≺ B ≺ A ≺ D) ∪ (C ≺ A ≺ B ≺ D))× (A ⊗B ⊗ C ⊗D) . (6.40)

Once again, according to the effect state structure of effects, the states

should have belonged to the fully signaling four-partite state structure

A

&

B

&

C

&

D and therefore featured a union of up to 4! = 24

different fixed signaling directions (i.e., prec chains). Yet, because of the

recurring accidental isomorphism due to the base state structure being

the quantum states, there are only 2 of them. Still, because there are two

of them, and because they are not contained in one another, the fourth

order is the first order in this hierarchy of nested maps to have a non-fixed

signaling direction. Because of that, it is additionally the first level in

the hierarchy that does not descend into the first order; it is genuinely a

higher-order transformation as not all states W can be decomposed as

some succession of objects of lower orders. This is due to the multiple

terms appearing in the normal form: nothing prevents operators from

belonging to the affine hull of the union. I.e., operators whose description

features terms supported on the two subspaces defined by the two prec

chains of different signaling directions.

The follow-up question is whether the affine hull is convex. That is,

whether the states W have a convex decomposition like

W = q
(
PC ≺ PB ≺ PA ≺ PD

)
W+(1−q)

(
PC ≺ PA ≺ PB ≺ PD

)
W,

(6.41)

for some q ∈ [0, 1]. If this is the case, one can conclude that the super-

supermaps W have a non-fixed signaling direction but one that is just a

classical mixture of two directions. If so, then the process is automatically

causally separable and by consequent causal as in Definition 1.2.3.

6.1.4. The Quantum Super-supermap is a Multi-round

Process Matrix

To see how the set of quantum super-supermaps admits processes that

can have ICO and, even more, be non-causal, a small reinterpretation
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of them must be done. Because of all the isomorphisms at the lower

levels, it so happens that Alice, Bob, Charlie, and David’s interventions

are each a quantum network as in Definition 2.3.1. Alice has two nodes;

Bob, Charlie, and David have one. In addition, the nodes of Charlie and

David are special: Charlie has trivial input, and David has trivial output.

Hence, the set of valid super-supermaps W can also be seen as a special

kind of process functionals from the quantum networks to probabilities.

This class of processes was previously studied in the literature under the

name Multi-round Process Matrix (MPM) according to the definition of

Oreshkov and myself [1, 34].

To fit the definition of an MPM, the signaling structure ofW will therefore

be treated with respect to parties seen as nodes of quantum networks.

By treating the state structure of W as a functional normalized on

networks, Alice’s two interventions are effectively treated as if they

were independent parties. Whence the natural question of the causal

ordering of Alice’s nodes with respect to the others. To treat this question,

Alice’s state structure is split: A = A (1) ≺ A (2)
, her projectors is split

accordingly PA = P(1)
A ≺ P(2)

A , so that

P(1)
A := IA1

≺ IA2
;

P(2)
A := IA5

≺ IA6
.

(6.42)

This refinement of the projectors actually induces two normal forms for

the projector of W . This is due to the same kind of redundancy as the

example of Equation (5.52):

(
PB ≺ PA

)
∩
(
PA ≺ PB

)
=(

PB ≺ P
(1)

A ≺ P
(2)

A

)
∩
(
P(1)

A ≺ P
(2)

A ≺ PB
)
=(

PB ≺ P
(1)

A ≺ P
(2)

A

)
∩
(
P(1)

A ≺ P
(2)

A ≺ PB
)
∩
(
P(1)

A ≺ PB ≺ P
(2)

A

)
,

(6.43)

and, using

(
PB ≺ P

(1)

A ≺ P
(2)

A

)
∩
(
P(1)

A ≺ P
(2)

A ≺ PB
)
=
((
IA3 ≺ IA4

)
⊗
(
IA1 ≺ IA2 ≺ IA5 ≺ IA6

))
, (6.44)

the longer form can be reinjected at (6.36) to derive the following equiva-

lent normal form to (6.37):

[(IA2 → IA5)→ (IA1 → IA6)]→ [(IA3 → IA4)→ (IA0 → IA7)]

=

IA0 ≺ IA1 ≺ IA2 ≺ IA3 ≺ IA4 ≺ IA5 ≺ IA6 ≺ IA7∪
IA0 ≺ IA3 ≺ IA4 ≺ IA1 ≺ IA2 ≺ IA5 ≺ IA6 ≺ IA7∪
IA0
≺ IA1

≺ IA2
≺ IA5

≺ IA6
≺ IA3

≺ IA4
≺ IA7

. (6.45)

Ergo, the normal form is multiply defined in that case because of re-

dundancy in the description of the signaling structure. This general

equivalence of two normal forms is interesting because it is a redundancy

independent of the choice of base state structure. Moreover, this redun-

dancy in Equation (6.43) can be inferred from logical reasoning alone: the
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state structure characterized by this projector allows for signaling from

the nodes of Alice to the one of Bob and vice-versa. But, if Bob’s node

is allowed to be both before or after the Alice’s nodes, he can also be in

the middle of the two. The issue with these logically equivalent normal

forms is that they may hide some simplifications when decomposing a

process into pieces with fixed signaling directions, and it will be studied

in greater detail in Subsection 6.3.1.

However, finding the minimal decomposition is not the point here. What

is interesting for proving that there is an effective ICO is the structure of

signaling between the nodes. The situation can be simplified by supposing

that either Charlie and David acted already or with trivial systems. By

doing so, the state and effect pair becomes

(W,S ⊗M) ∈ ((A (1) ≻ A (2)) ≻ B) ∪ (A (1) ≺ A (2)) ≺ B)× ((A (1) ≺ A (2))⊗B) (6.46)

using the first normal form (6.37), and where each base state structure in

the above is the state structure of quantum channels. This state and effect

pair is exactly the one of the example in Reference [1]. Such MPMs where

Alice has two rounds and Bob one can not only be causally separable, but

they can also be causally activated, and they can violate the same causal

inequality as the OCB process matrix. The reader is invited to refer to

this paper for the details. Nevertheless, this roundabout way proves that

the quantum super-supermaps are a special kind of MPM that can be

non-causal and, as a consequence, that the super-supermaps allow for

an indefinite causal order (ICO).

To summarize, the conclusion that can be drawn from this example

is that higher-order quantum theory stands out compared to theories

based on different state structures because it forbids two-way signaling

in many simple cases. It was tried to obtain ICO by recursively nesting

quantum transformations. But compared to the biased quantum theory

example of Section 3.6, where ICO appears as soon as transformations

are defined, the nesting depth of quantum transformations had to be

threefold before obtaining a genuinely higher-order process that features

an indefinite causal ordering. Still, this indefinite causal order is not

genuinely multipartite [153]: it is only between party Alice and Bob that

the effect manifests itself. Charlie and David are always well-localized in,

respectively, the global past and future.

6.2. Fixed Causal Order in State Structures:

Towards Causal Witnesses

Thus far, the notion of signaling has been applied to sets of transfor-

mations as a whole. Given a dual pair featuring more than one local

intervention (pictured as multipartite effects that factor into a pure ten-

sor product), the states are said to allow for more than one signaling

direction as soon as the normal form featured the union of more than

one non-redundant terms. But this is a too naive notion for indefinite

causal order (ICO): having more than one signaling direction is only a

necessary condition to achieve it. In particular, while a state structure

may feature the union of two signaling directions, nothing guarantees
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10: Suppose it does, then there exists

P = PK ≺ PA ≺ PB ≺ PL and

P ′
= PR ≺ PB ≺ PA ≺ PS (with

HK ⊗HL ∼= HR ⊗HS
, but not assum-

ing thatHK ∼= HR
), so that P ∩ P ′

=

. . . (PA

&

PB) . . .. If the situation is

different than PA = PB = I, then

this would contradict Equation 5.40 since

the subsystems K,R,L,W are arbitrary

and so can be taken as 1-dimensional

systems.

11: The projectors are built from the

CPTP math I, which keep these proper-

ties under the tensor and the operations

of the algebra as all of them result into

valid projectors. However, as discussed

in Appendix C.1.4, certain projectors on

state structures, like the one on the bi-

ased quantum theory, are not CP. Con-

sequently, this discussion –like the rest

of the chapter– is restricted to the case of

higher-order quantum processes.

that the terms in this union will not factorize into a convex mixture of the

two signaling directions. This happens in the bipartite biased quantum

theory presented in Subsection 3.6.1. These bipartite states may allow

signaling from one side to the other, and they may even allow for a

convex combination of it, but they cannot outperform a classical protocol

as these bipartite states are never ‘in superposition’ of two causal orders;

they are only mixed.

However, the tools of the projective characterization can also be adapted

for the study of a given process. While the general problem of proving

that a process will be non-causal as in Definition 1.2.3 is not linear,

the projective methods can still detect certain cases where it is causal.

Indeed, besides algebraic properties, using the disjunctive normal form

is also motivated by the sufficient condition for causal separability it

induces. Recall that causal separability is a decomposition of operators

that guarantees its inability to violate a causal inequality and, thus,

that it is causal. It was shown in a previous work on the Multi-round

Process Matrix that the general question of defining causal separability

for higher-order objects is actually non-trivial due to the parties’ ability to

use lower-order states as shared ancillary resources. This general issue is

left open for future work. Nonetheless, the normal form induces a ‘strong’

notion of causal separability. This notion is the ability to decompose the

operator into a convex sum of causally ordered terms. This is, therefore,

a restricted notion insomuch as it precludes dynamical causal orders,

which are typically causal but not caught by this notion.

To see how the normal form always implies such a decomposition, remark

that a ‘prec chain’ has a fixed signaling direction. In addition to that, the

intersection of several prec chains can never achieve two-way signaling
10

.

These two properties mean that when a normal form is expressed as

Γ =

n⋃
i=1

Γi , (6.47)

each Γi is a valid projector that projects in a subspace whose signaling

structure is, at most, a totally ordered chain. Therefore, each Γi defines

a subspace of valid state structures with a fixed signaling direction.

Following the original idea of Reference [35], these projectors can be

used to decompose any state W into causally ordered pieces. There

are two required properties for this decomposition to be possible: that

the projectors are positive- and trace-preserving. Assuming that the

base state structure is quantum theory, for which this is the case
11

, the

decomposition only amounts to applying each projector and summing

the reduced operators to obtain the original one. Suppose the projector

characterizing a state structure A has a normal form with n terms. Then,

any operatorW in the structure, i.e. for whichΓ(W ) =W , can potentially

be decomposed as the following weighted sum:

W =

n∑
i

qiΓi(W ) , (6.48)

where Γi(W ) ∈ A for all i and

∑
qi = 1. In this expression, the weights

qi compensate for all the double-counting of terms that belong to the

image of several Γi. Of course, such a decomposition is not guaranteed to

exist, but if it does and with convex weights, then the operator has been
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decomposed into a convex sum of causally ordered terms. And therefore,

the operator is causally separable.

Hence, the problem of the decomposition into chains with fixed signaling

direction can also be phrased as an optimization problem under linear

constraints, which can be solved using Semi-Definite Programming [41].

In the case of Equation (6.48), the optimization problem is to find the

vector of encoding the q′is such that each qi ≥ 0 and the conditionW ≥ 0

is verified. As shown in [35], this method can be refined into an analog

to the concept of an entanglement witness (see e.g. [98]), but which

witnesses this strict notion of causal separability instead of entanglement.

In general, this kind of witness is formulated as a Hermitian operator S,

which lives in the state structure dual to the normal form because

(S , W ) =

(
S ,

n⋃
i=1

Γi(W )

)

=

(
n⋃
i=1

Γi(S) , W

)
.

(6.49)

The problem then consists in minimizing (S , W ) under the constraint

that S is a valid element of the dual,

⋃n
i=1 Γi(S). This optimization

problem can also be automatized by SDP, and if it returns a negative

value, it witnesses that at least one of the weights is negative.

The utilization of this SDP problem in concrete cases, as well as its

refinement, are left open as a future research direction, although abundant

literature already exists on the matter (see [35, 40, 43–46, 91–93] for

instance). Compared to these works, the original result of this thesis is to

provide a systematic way to derive the linear constraints to be put into

the SDP problem: these are none other than the projective methods. It

should be mentioned that a concording approach was presented in [37]

around the same time I presented mine [2]. In this work, they specifically

study the projector algebra with the goal of formulating signaling and

causal separability as general classes of SDP problems. While not going

into as many details in the algebra, this complements the results of this

thesis nicely as they concretely demonstrate how to use the projector

algebra to devise SDP characterization methods.

6.3. Towards the Logic of No-Signalling

The projective characterization is a new method for analyzing the sig-

naling relations in higher-order processes. The tools that have been

developed in the previous chapter can be used to analyze the signaling

structure of a wide class of interventions and processes. The first way

to do so is at the level of a whole theory: given the state structures of

the state and effect pair and their partitioning into parties, the possible

signaling directions of the objects in this theory can be inferred. To do so,

one considers the decomposition of the projectors into their normal form

and searches to reduce it so as to extract the minimal number of fixed

signaling directions. This approach can then answer specific questions

using projector algebra, such as whether a given signaling scenario can

be obtained and which operators should be used. It can also answer
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general questions using the lattice structure, like if a given state structure

is the one allowing the most possible signaling directions, whether it

is equivalent to another, and which are the closely related state spaces.

The second way, which was briefly considered in the previous section, is

to apply the tools to specific processes, since the projectors give linear

constraints that can be formulated as SDP problems. For example, one

can certify that a process has a fixed signaling direction or find the

optimal process to beat a given causal inequality induced by a given

game. These developments are the expected utilization of the formalism

in the yet-to-come follow-ups on this thesis.

Yet, these prospective applications rely on processes or communication

protocols known a priori that would benefit from the tools for optimiza-

tion. But these prosaic implementations do not make the most of the

logic of the projector algebra. Instead, the logic itself could be explored to

find new interesting processes. As shown by Theorem 5.3.2, the fact that

quantum networks and quantum combs are the same is purely accidental.

One can then wonder how many more such accidental isomorphisms

exist and if, like was the case for the switch and the OCB compared to the

network formalism, there are interesting processes to be uncovered at the

boundary between the exception and the rule. This is a very promising

way to use the formalism, especially since this search can be automatized

(for example, by using llprover as mentioned in Subsection 5.1.4).

In this section, two preliminary results on the logic of the algebra are

sketched. These will hopefully pave the way for continuation works.

6.3.1. Isomorphisms in Tripartite Projectors and

Interpretation of the Formulae as Logic

Isomorphic state structures complexify the use of the normal form. The

issue is that terms that are written as a union of prec chains can sometimes

reduce to fewer prec chains. To avoid drawing erroneous conclusions, it is

important to discover the general ways such isomorphisms may happen.

Another reason for searching these isomorphisms is to optimize the

SDP search: a brute force algorithm to certify fixed causal order would

test over the n! possible combinations. However, if the goal is to test for

multiple signaling directions, the optimization does not have to run over

all possibilities. Proving that at least two terms are non-zero is sufficient,

but how can such proof be practically realized from projectors? Beyond

these aspects that are specific to the normal form, more general questions

may be asked: Isomorphisms of state spaces offer a promising lead for

identifying interesting processes, but are there that many? On the other

hand, why not just classify all combinations of signaling relations for a

given number of parties into equivalence classes, as was discussed in the

conclusion of Chapter 5?

Some elements of answers are presented in this final part. As will be

shown, as soon as more than two parties are involved, the situation

becomes much more complicated: the normal forms can be non-unique

in many different ways, something which makes the characterization

and classification of the terms in the projector algebra and in its signaling

sublattices harder. But on the other hand, it shows that there are many

potentially interesting isomorphisms in the lattice.
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12: These formulae are proven from the

definition, Equation (5.3), and using the

algebra.

Starting with a single party, the signaling lattice is simply a lattice of

commuting projectors built from the various base state structures. Using

the negation, intersection, and union completes the lattice of commuting

projectors. The normal form is unique up to trivial redundancy since

any single-partite projector is in normal form by definition, and the only

isomorphisms that may happen is that the dual of a base state structure

is equivalent to another base state structure.

The first non-trivially equivalent normal forms arrive in the bipartite case:

the presence of more than one base projector induces a redundancy by

permutation involving unions and intersections of the different bases. This

is because the cap commutes with the prec, and the two of them distribute

over the prec. As explained in the appendix, this can lead to artificially

multiplying the number of normal forms through permutations over the

same subsystem, as in the following (D.96):(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
=
(
PA ∩ P

′

A

)
≺
(
P

′

B ∩ PB
)

=
(
P

′

A ∩ PA
)
≺
(
PB ∩ P

′

B

)
=
(
PA ≺ P

′

B

)
∩
(
P

′

A ≺ PB
)
.

(6.50)

This problem is specific to the study of state spaces involving potentially

different base state structures, like the quantum to classical channels for

example. This problem is set aside in the following by assuming that

the projector algebra (as in Proposition 5.1.10) is built with a single base

projector associated with each party.

In such a case, the lattice for two parties is quick to characterize: it only

consists of the four terms in Equation (5.40), corresponding to the four

possible ways of signaling. As the equation gives their relations in terms

of interconnected unions and intersections, any other term in the lattice

falls into one of these four equivalence classes of projectors. That is, any

term is either equivalent to PA ⊗ PB , PA ≺ PB , PA ≻ PB , or PA

&

PB ,

up to negation.

Inspired by this solution, one may try to generalize this to the multipartite

case: once the no-signaling projector has been fixed, so that the position

of the negations is known, the lattice splits according to the number

of signaling relations. At the bottom of the lattice is the no-signaling

projector, then the terms allowing for one-way signaling, then the two-way

signaling ones, etc. Nonetheless, the situation is not that easy. Already in

the tripartite case, this intuition proves wrong. Consider three parties

A,B, and C, and the projectors that characterize their shared state such

that there is only one direction of signaling between only two parties in

total. This is the kind of scenario in which the states may allow signaling

from Alice to Bob, but none from or to Charlie for instance. These states

are characterized by projectors like (PA ≺ PB)⊗PC ((PA ≻ PB)⊗PC),
((PA ≻ PC)⊗ PB), etc.

If these projectors encode a single two-partite signaling direction, their

intersections should lead to no-signaling projectors as a generalization

of Equation (5.40b). As it turns out, there is an oddity. Computing the

various cases up to relabelling
12

leads to:
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((PA ≺ PB)⊗ PC) ∩ ((PA ≻ PB)⊗ PC) = PA ⊗ PB ⊗ PC , (6.51a)

((PA ≺ PB)⊗ PC) ∩ (PA ⊗ (PB ≺ PC)) = PA ⊗ PB ⊗ PC , (6.51b)

((PA ≺ PB)⊗ PC) ∩ ((PA ≻ PC)⊗ PB) = PA ⊗ PB ⊗ PC , (6.51c)

((PA ≺ PB)⊗ PC) ∩ (PA ⊗ (PB ≻ PC)) = PA ⊗ PB ⊗ PC , (6.51d)

((PA ≺ PB)⊗ PC) ∩ ((PA ≺ PC)⊗ PB) ̸= PA ⊗ PB ⊗ PC (6.51e)

It appears that Alice being able to signal to Bob but not to Charlie while

being able to signal to Charlie but not to Bob does not forbid her to signal.

It is not the situation in which she can signal to Bob and Charlie, since

((PA ≺ PB)⊗ PC) ∩ ((PA ≺ PC)⊗ PB) ⊊ PA ≺ (PB ⊗ PC) . (6.52)

Moreover, it appears that this is a scenario for which the direction of

signaling is important since:

PA ⊗ PB ⊗ PC ⊊ ((PA ≺ PB)⊗ PC) ∩ ((PA ≺ PC)⊗ PB) ; (6.53a)

PA ⊗ PB ⊗ PC = ((PA ≻ PB)⊗ PC) ∩ ((PA ≻ PC)⊗ PB) . (6.53b)

To understand this situation in terms of signaling structure, it is easier to

consider the De Morgan dual:

PA

&

PB

&

PC ⊋ ((PA ≺ PB)

&

PC) ∪ ((PA ≺ PC)

&

PB) ; (6.54a)

PA

&

PB

&

PC = ((PA ≻ PB)

&

PC) ∪ ((PA ≻ PC)

&

PB) . (6.54b)

In that case, there is a purely semantic explanation. Thus far, it has been

said that an expression like PA ≺ PB ‘allows for signaling from A to

B’. But the statement of Lemma 3.5.3 is less ambiguously interpreted

as ‘forbids signaling from B to A’. This is a stricter way to phrase the

condition, as allowed to signal does not necessarily mean that the party

will signal, whereas forbidden to signal necessarily means that the party

will not signal; A state characterized by PA ≺ PB may allow for signaling

from A to B but it never allows for signaling from B to A. Accordingly,

the reason for working with the De Morgan dual of these formulae is that

these will be shorter, as they encode only a small number of interdictions.

For example, PA

&

PB

&

PC is ‘no forbidden directions in the signaling

structure’ and ((PA ≺ PB)

&

PC) is ‘a single forbidden direction in

the signaling structure: Bob can never signal to Alice’. To the contrary,

PA ⊗ PB ⊗ PC encodes six such interdictions. Whence, to interpret the

formulae as reasonably short sentences, it is best to use De Morgan

duality to go as high as possible in the signaling lattice, even if it means

interpreting their dual instead.

In the above, the second line, Equation (6.54b), then reads ‘no restriction

on the signaling structure (the fully signaling projector, PA

&

PB

&

PC )

is equal to forbidding Alice to signal to Bob ((PA ≻ PB)

&

PC ) or (∪)

to forbidding Alice to signal to Charlie ((PA ≻ PC)

&

PB)’. Since she

can always use the other situation to bypass the interdiction, there are

effectively no restrictions on Alice’s signaling. Proving the equivalence

between the two formulae using the algebra amounts to this purely

logical reasoning. On the other hand, Equation (6.54a) reads (from right

to left) ’forbidding Charlie to signal to Alice ((PA ≺ PC)

&

PB) or (∪)

forbidding Bob to signal to Alice ((PA ≺ PB)

&

PC ) is more restrictive

(⊊) than imposing no restriction’. This is indeed the case since if Bob or

Charlie cannot signal to Alice, it precludes the situation in which Bob
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13: It is also interesting to notice that

the ‘two-to-one’ kind of signaling of the

r.h.s. of Equation (6.55b) is the kind of

signaling on which relies the so-called

‘Lugano’ process [77, 154]

[77]: Baumeler et al. (2016), The space of
logically consistent classical processes with-
out causal order.
[154]: Baumeler et al. (2014), Perfect signal-
ing among three parties violating predefined
causal order.

.

and Charlie are both signaling to Alice simultaneously. Hence, there

is a non-trivial condition compared to (6.54b), but it is weaker than

forbidding the two of them to signal to Alice (PA ≺ (PB

&

PC)).

Interestingly, when changing the intersection to a union in Equation (6.53),

the unexpected case happens in the other signaling direction
13

:

PA ≺ (PB ⊗ PC) = ((PA ≺ PB)⊗ PC) ∪ ((PA ≺ PC)⊗ PB) ;
(6.55a)

PA ≻ (PB ⊗ PC) ⊋ ((PA ≻ PB)⊗ PC) ∪ ((PA ≻ PC)⊗ PB) .
(6.55b)

The interpretation is again easier from the dual:

PA ≺ (PB

&

PC) = ((PA ≺ PB)

&

PC) ∩ ((PA ≺ PC)

&

PB) ;
(6.56a)

PA ≻ (PB ⊗ PC) ⊊ ((PA ≻ PB)

&

PC) ∩ ((PA ≻ PC)

&

PB) .
(6.56b)

The first line states that ‘Bob and Charlie being no-signaling to Alice

is equivalent to Bob being no-signaling to Alice and Charlie being no-

signaling to Alice’. The second line states that ‘Alice being no-signaling to

Bob and Charlie is a stronger condition than her being no-signaling to Bob

and her being no-signaling to Charlie’. Indeed, in that latter case, nothing

is said about the scenarios where Alice signals to both simultaneously.

This shows that there are two different intermediate situations between

the one-way and no-signaling projectors. The interpretation of which de-

pends on the signaling direction, yet both rely on the idea of simultaneous

signaling. This hints that for more parties, more intermediate situations

will arise as not only the bipartite coincidences must be considered but

also the tripartite, quadripartite, etc.

The fact that Equation (6.55b) is a ‘little more’ than the union of two one-

way signaling connections is actually necessary for the decomposition of

the prec chains:

PA ≺ PB ≺ PC ⊋ (PA ≺ (PB ⊗ PC)) ∪ (PA ⊗ (PB ≺ PC)) ; (6.57a)

PA ≻ PB ≻ PC = (PA ≻ (PB ⊗ PC)) ∪ (PA ⊗ (PB ≻ PC)) . (6.57b)

The right-hand term of the first line, which can be further decomposed

into the union of three one-way signaling bipartite compositions using

Equation (6.55a), shows that a prec chain is more than that. This means

that the decomposition of prec chains into smaller prec chains is also

impacted by these “coincidental” isomorphisms. The second line of

the above is in line with the intuition: like the two previous examples,

(the De Morgan dual of) Equation (6.57b) states that ‘Alice being no-

signaling to Bob and Charlie while Bob is no-signaling to Charlie (PA ≻
PB ≻ PC ) can be decomposed into Alice being no-signaling to Bob and

Charlie (PA ≻ (PB ⊗ PC)) and into Bob being no-signaling to Charlie

independently of Alice (PA ⊗ (PB ≻ PC))’. By contrast, the first line

does not decompose as such: (the dual of) Equation (6.57a) states that

‘Charlie being no-signaling to Bob and Alice while Bob is no-signaling to

Alice (PA ≻ PB ≻ PC ) is a weaker constraint that Bob and Charlie being
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14: Proven by direct application of Equa-

tion (5.3).

no-signaling to Alice (PA ≺ (PB ⊗ PC)) and Charlie being no-signaling

to Bob independently of Alice (PA ⊗ (PB ≺ PC))’.

The further consequence is that one cannot obtain a no-signaling channel

by simply combining two chains with opposite signaling directions. This

is again an oddity in the expected behavior when combining prec chains

(all these equations but the last are proven by associativity and using

Equation (5.40)):

(PA ≺ PB ≺ PC) ∩ (PB ≺ PA ≺ PC) = (PA ⊗ PB) ≺ PC , (6.58a)

(PA ≺ PB ≺ PC) ∩ (PA ≺ PC ≺ PB) = PA ≺ (PB ⊗ PC) , (6.58b)

(PA ≺ PB ≺ PC) ∩ (PB ≺ PC ≺ PA) = PA ⊗ (PB ≺ PC) , (6.58c)

(PA ≺ PB ≺ PC) ∩ (PC ≺ PA ≺ PB) = (PA ≺ PB)⊗ PC ; (6.58d)

(PA ≺ PB ≺ PC) ∩ (PC ≺ PB ≺ PA) ̸= PA ⊗ PB ⊗ PC (6.58e)

Using the decomposition (6.57b) and distributing over the unions, this

latter equation reduces to

(PA ≺ PB ≺ PC) ∩ (PC ≺ PB ≺ PA) = ((PA ⊗ PB) ≺ PC) ∩ (PA ≻ (PB ⊗ PC)) , (6.59)

which can be further simplified
14

into the first ‘coincidental’ example

(6.53a) (up to the interchange A↔ B),

(PA ≺ PB ≺ PC) ∩ (PC ≺ PB ≺ PA) = ((PA ≻ PB)⊗ PC) ∩ (PA ⊗ (PB ≺ PC)) . (6.60)

This means that the states allowing signaling from B to A and C simul-

taneously belong to two oppositely directed prec chains in which they

are in the middle. On the other hand, the fact that the intersection is not

the no-signaling subspace means that

(PA ≺ PB ≺ PC) ∪ (PC ≺ PB ≺ PA) ⊊ PA

&

PB

&

PC . (6.61)

So, these two prec chains do not exhaust all the signaling directions in

the fully signaling subspace: at least three prec chains should be used to

give a normal form to PA

&

PB

&

PC . Hence, at least three signaling

directions must be tested before concluding that any operator in this

state structure has a single signaling direction.

To conclude, this observation can be phrased as part of a bigger problem:

given a projector Γ, what is the minimal number of prec chains that can

be used to decompose it as a union? And what are those chains? Knowing

the answer to that question would be very useful to provide the minimal

amount of terms used to decompose any operators to test for a single

signaling direction. Whether this problem has a general answer and

whether this answer would be useful to formulate a more efficient SDP

test of non-fixed signaling structure are questions left open for future

work.

6.3.2. A Type System Based on the Prec and BV-Logic

According to the discussion in Section 4.3, the projectors under the

transformation connector→ form a type system, first studied by Bisio
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[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.
[146]: Girard (1987), Linear logic.
15: As explained in Appendix D.3.5, the

projector algebra is not exactly a model of

logic, but still it is very close to BV-logic

[149], which is a sublogic of pomset logic

[147] in which the ≺ is self-dual. This

property is indeed verified by the pro-

jector algebra, Equation (5.38d). Remark

that the projector algebra can become a

model of logic if the additive connectors

are changed [36].

[36]: Simmons et al. (2022), Higher-order
causal theories are models of BV-logic.
[149]: Guglielmi (2007), A System of Inter-
action and Structure.
[152]: Blute et al. (2012), Deep Inference
and Probabilistic Coherence Spaces.
[147]: Rétoré (1993), Réseaux et Séquents
Ordonnés.

and Perinotti [10, 11]. As was mentioned in Subsection 5.1.4, this type

system corresponds to a fragment of a logic system called multiplicative

linear logic (MLL) [33, 146]. Yet, according to the discussion in Section 5.2,

the → connector is an operation derived from the one-way signaling

connector ≺; it can be removed from the equations using a combination

of the prec with the single-projector operations ∩,∪, · . By doing so, the

underlying logic is promoted to (almost
15

) BV-logic [36, 149, 152], a model

of multiplicative additive linear logic enriched by a non-commutative

connector ≺ [147].

Considering these two points, one can wonder whether the ≺ can be

used as the constructor of a new type system. The ensuing type system

is a second direction for possible continuation works concerning the

study of the logic of signaling connections in state structures. Here are

briefly presented some preliminary considerations about this possible

type system.

Starting from a set of base projectors PA,PB ,... the type theory is built

from a connector relating an output type with an input type, built by

negating the input of the≺. Following References [147, 149], this connector

is called the seq (for sequent) and noted as ◁:

PA ◁ PB := PA ≺ PB . (6.62)

Consequently, compared to Perinotti and Bisio’s type system, this con-

structor is related to the CJ representation of the set of one-way signaling

maps rather than the set of all admissible maps. Because of Lemma 5.3.1,

the linear type system collapses into the type system built on the prec as

soon as the base projectors are the identity. Also because of this lemma,

remark that when the base projectors are the depolarizing ones, both type

systems collapse to a third one, based on the no-signaling composition.

The ◁ types obey the same basic rules on single projectors as the→ types.

That is, every type is equivalent to a seq from the trivial system:

PA = 1 ◁ PA , (6.63)

and the negation is recovered as the seq towards the trivial system:

PA = PA ◁ 1 . (6.64)

However, as soon as multipartite formulae are involved, the properties

diverge. While the seq is also non-associative,

(PA ◁ PB) ◁ PC ̸= PA ◁ (PB ◁ PC) , (6.65)

it does not obey the uncurrying rule (D.68):

PA ◁ (PB ◁ PC) ̸= (PA ⊗ PB) ◁ PC . (6.66)

This is because

PA ◁ (PB ◁ PC) = PA ≺ PB ≺ PC = (PA ≺ PB) ◁ PC , (6.67)

so the equivalence is only true when PB = IB or when PA = DA.

Therefore, to be in a situation where the two types systems are equivalent.

For the same reason, the tensor product cannot be recovered from the ◁
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connector alone, except when equivalent to quantum theory. From these

preliminary considerations, the type system enriched by adding the ∩
connective looks more promising as it recovers all the other connectors

in the algebra without reducing to the type system of transformations.

Briefly summarized, the main observation is that this type system is

similar to Bisio and Perinotti’s linear type theory for single systems but

significantly departs from it in the multipartite case when the base theory

is not quantum theory. The difference between the introductory example

of this chapter and Theorem 5.3.2 can be interpreted using this fact: the

type system of quantum combs reduces to the type system based on the

seq, whereas the general type system is based on the→, and, eventually,

the two constructions must diverge. This divergence is embodied by the

super-supermap being an MPM instead of being a comb.



Conclusion

Look into my heart. I know that everything you need is in there. It has to be. I never

sold my soul to anyone! It’s mine, it’s human! You take from me what it is I want... it

just can’t be that I would want something bad! Damn it all, I can’t think of anything,

except those words of his... ‘HAPPINESS FOR EVERYBODY, FREE, AND NO ONE

WILL GO AWAY UNSATISFIED!’

Arkady and Boris Strugatsky (1972), Roadside Picnic
*

Higher-order quantum processes are a rich theoretical landscape of which this thesis only scratched the

surface. Starting from the observation that nested quantum transformations lead to processes with non-fixed

signaling structures, this thesis has tried to present a comprehensive characterization method for assessing

the signaling structure of general processes. With the tools developed in this thesis, it is now possible to

devise and characterize any kind of higher-order quantum process, either by requiring a specific signaling

structure or by requiring a specific input and output. This thesis also put forward the idea that higher-order

processes are characterized by the intrinsic logic of their signaling relations: the processes are defined by their

state space, which is defined by a projector, which in turn are defined as the elements of a Boolean lattice.

These nested relations summarize the main concepts in this thesis: the admissible processes, Definition 1.1.1,

are defined by their state structures, Definition 3.2.2, which correspond to projectors on operator systems,
Definition 3.2.7, which are elements of the projector algebra, Definition 5.1.1. The contribution of this thesis

lies in bridging the gap between them: the signaling structure of processes is the logic of how projectors are

composed.

More specifically, in order to achieve this goal, some elements presenting the process formalism were gathered

into Chapter 1. The process was presented as a collection of probabilistic assignments on every possible

intervention made by a party during the exchange of a system with her environment. While trying to be

faithful to the original work [5], the presentation tried to articulate the formalism as a generalized probabilistic

theory [50, 79], i.e. without assuming a too specific form of the intervention. The aim was to convey the main

idea of the process formalism –that the interventions of local parties are the only constraint on their vicinity–

under a probabilistic approach. Using this probabilistic approach, the notion of signaling, Definition 1.2.1, as

well as of causal correlations, Definition 1.2.3, can be introduced independently of the theory that rules the

local interventions. In the remainder of the chapter, the formalism was applied to local quantum theory. The

single-partite process scenario was modeled as a quantum operation, representing the party’s intervention,

and the process functional, representing the process, meaning the party’s global environment.

This scenario was then extended to the multipartite case in Chapter 2. An original point sustained in

this chapter is that if the admissible environments and interventions are everything compatible with the

probabilistic interpretation of the process, then quantum interventions may and will generally be higher-order

if the environment lets them do so. To represent all these higher-order interventions on the same footing, the

tool of the Choi-Jamiołkowski correspondence [85, 86, 89] was introduced as a means to substitute all linear

maps by operators. To close this section, some landmarks in the development of the theory of higher-order

quantum transformations were reviewed: the quantum combs as the first formalism based on the idea of

admissible quantum transformations, the quantum switch as the first example of a higher-order process with

indefinite causal ordering, and the process matrix as the first formalism leading to non-causal correlations.

At that point, the research question is formulated as ‘What difference in the definition of these processes leads

to the difference in their signaling relations?’ and ‘How to characterize any class of higher-order processes,

and when does a non-fixed signaling direction arise?’.

*
Quoting the 1977 translation by Antonina W. Bouis; this novel is better known under the name of its movie adaptation by Andrei

Tarkovsky, Stalker.
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This led to the technical core of the thesis, Chapters 3 and 5. Firstly, in Chapter 3, the main concepts of

a state structure, of a resolution, and of an admissible higher-order transformation were defined as the

abstract modelization of, respectively, a deterministic intervention, a probabilistic one, and an evolution; see

Definitions 3.2.2, 3.2.4, and 3.4.3. Then, they were used to characterize the processes of measurement and

evolution as state structures related to the state structure they are acting on, Theorems 3.3.2 and 3.4.1. This led

to two general considerations: first, that all classes of higher-order processes correspond to a state structure

and that higher-order transformations correspond to composite state structures. Second, the projectors on

operator systems (Definition 3.2.7) involved in the characterization of state structures encode most of the

information about it. Whence, the characterization can be shifted to the study of these projectors, and the

characterization of higher-order processes to the study of how these projectors are composed. Doing so, the

notion of signaling was used as a guiding principle to define the various ways of composting two projectors,

and, by extension, to compose state structures; see Lemma 3.5.3. This led to the realization that there are

essentially four such compositions, ⊗,≺,≻,

&

(see Definition 3.5.2), corresponding to the four possible

signaling directions that a bipartite object shared by Alice and Bob may allow: none, A to B, B to A, both. In

addition, the measurement of state structures was also defined as a new state structure obtained by applying

an operation on the original one, called the negation · . Using the negation, it was made clear that the

transformation is a bipartite state structure composed using a mix of the two-way signaling composition

&

and the negation. As a proof of concept, the toy model of biased quantum theory was used to demonstrate the

use of these connectors. As expected, the biased quantum channels allowed two-way signaling. On top of

that, they even featured ICO.

This led to the natural question of ‘Why do the quantum channels have one-way signaling then?’. This

question was motivated by several examples presented in Chapter 4. Then, Chapter 5 delved into the structure

of the algebra of projectors defined under the set of operations { · ,⊗,≺,

&

} to provide an answer. Two

new connectives, the intersection ∩ and the union ∪, were added so their utilization induces an order

relation on the set of projectors. The algebra of projectors is a lattice under these operations, and the partial

order amounts to gauging whether the state structure represented by a projector allows for more signaling

directions than another, Proposition 5.1.10. The related concept of a signaling lattice was defined as the

sublattice that encompasses all projectors ‘comparable to a given projector’, Proposition 5.1.11. (Here, by

‘comparable’, it is meant the projectors that characterize the state structure of processes in which inputs and

outputs are of the same nature.) It was also noted that, as a specific kind of Boolean lattice, the projector

algebra was very close to a model of logic called BV-logic [149], corroborating an observation made by another

group working on the matter [36]. A final technical tool, the normal form Definition 5.2.1, was introduced at

that stage. This normal form allows to write all projectors so that the allowed signaling structures of the

set of higher-order processes they characterize can be read directly from it. As a proof of concept, the proof

that quantum combs have a fixed signaling direction was rederived in Theorem 5.3.2 (it was first derived in

Reference [11]). Since it is the kind of higher-order transformation whose simplest instances are the quantum

channels, this answered the question.

Finally, Chapter 6 presented another example of nested quantum transformations to insist on the idea that

quantum theory is tame in that certain classes of supermaps avoid having non-fixed signaling direction

because of some accidental isomorphisms. However, the point is that the very concept of an admissible

higher-order transformation is based on the two-way signaling composition which, apart from the special

case of quantum combs, would necessarily lead to indefinite causal order in any class of processes at a high

enough order. This corroborates an observation made by yet another group [37]. In this chapter were also

mentioned some future prospects for the formalism developed through this thesis.

The first of these prospects is the adaptation of numerical methods to automatize the search for new

interesting higher-order processes. The first aspect of this search will consist of adapting the already existing

semi-definite programming methods [37] to the broader context of the projective characterization. The first

necessary task towards this goal will be to adapt the definition of causal separability to higher-order processes.

Convex decomposition into causally ordered pieces is indeed a too strong condition to impose as a definition

of causal separability since it cannot take into account the processes with dynamical causal order (i.e., the

kind of processes in which the ordering of the parties classically depends on the actions of the other parties).

In its own respect, the definition of causal separability for higher-order processes is an interesting endeavor
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since it is the only way to talk about an indefinite causal order meaningfully. This faces the risk of becoming an

order-dependent concept: nothing prevents a priori that a process is causally separable provided that the

parties are not allowed to perform interventions of a higher order. For example, certain MPMs are causally

separable so long that the parties cannot use quantum channels as side resources but only quantum states.

Devising SDP to develop causal witness and possibly to bound the set of correlations attainable by a process

is one way that numerical methods may be useful for higher-order theories. Another way, mentioned in

Subsection 5.1.4, is to use the linear-logic-like structure of the algebra of projectors. It is reasonable to consider

an adaptation of automated provers like llprover for the task of finding interesting isomorphisms of signaling

structure, as was first considered in [33, 36]. This would provide an ad hoc complement to the SDP algorithms:

the linear logic part can automatize the search of classes of processes that may be interesting, and the SDP

part can automatize the search for causally non-separable processes within this class.

The other main direction mentioned in Chapter 6 is to study the algebra of projectors as a logic model. One can

wonder how often two differently defined structures with a common no-signaling subset are equivalent. And

how often do the structures based on the transformation connector reduce into a normal form to structures

based on a prec/seq connectors? The question of classifying the isomorphic constructions is also left open. A

systematic way to obtain results in that direction would be to characterize the points in the signaling lattice

for a given number of parties. I.e., to characterize the equivalence classes of formulae. As was shown in

Subsection 6.3.1, this task is already non-trivial for three parties. However, the use of automated provers can

also help in that case.

Other aspects have also not been addressed concerning the algebra of projectors. The first of which is the

non-uniqueness of the normal form. Some criterion must always exist to favor a certain normal form over an

equivalent one; there must be a possible refinement of the definition to make it unique. Remark that changing

the definition to incorporate the redundancy of normal form cannot be done without a prior identification of

all the possible ways that two normal forms can be equivalent, so this task is intrinsically linked with the

study of the logic of the algebra.

Another issue that was overlooked is the one of the composition of types in the sense of References [11,

88]: knowing the projector characterizing a transformation is sufficient to know what will be the projector

characterizing its set of outputs. However, if the input state structure is now restricted to a subset with a

different projector, is there a rule to apply on the projector of the transformation to get the projector on the

possibly restricted output state structure? For example, an n-comb takes (n− 1)-combs as inputs and outputs

a 1-comb. One can ask what happens when the inputs are restricted to the no signaling subset: when (n− 1)

1-combs are plugged into an n−comb instead, is the output set still the full set of 1-combs?

When setting up the concepts necessary to define the notion of a resolution, a frame function, and an

admissible transformation, a certain amount of a priori hypothesis has been imposed. In particular, while

these hypotheses can be taken as definitions, it is still worth discussing their physical justification.

The assumption that any element of any resolution corresponds to an actual physical realization could be

justified by devising a procedure to realize them concretely in a lab, as can be done with POVMs and quantum

instruments [76]. But this issue is part of the more general issue of realizability: given a state structure, is it

possible to realize each of its elements in a lab experiment? Is there a systematic way to relate these abstract

mathematical objects to a circuit realization, as is the case for quantum combs [9] and for time-delocalized

subsystems [28, 30]? One may expect that the normal decomposition of general state structures into the

union of several one-way signaling structures will prove useful for answering this question.

On the other hand, it is not clear how the frame functions can get rid of the hypothesis of Gleason-kind

non-contextuality that was required for their definition, but a concrete first step would be to define a notion

of higher-order purification so to make the connection with previous works on POVM contextuality [58, 59,

115, 116, 155]. Remark that this notion of purification may also help with the realization of the resolutions, in

the same way that Naimark and Stinespring dilations are involved in the proof of realizability for POVM and

instruments (see e.g., [52, 90, 156]).
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Regarding the definition of admissible transformation, there is a case to be made against the fact that they

allow two-way signaling albeit quantum channels are not two-way signaling transformations. But this is

not the concern at hand, another less fundamental hypothesis was still slipped in the definition: that local

parties between which the admissible transformation can be realized should in principle be able to share

any no-signaling composite state, including the entangled ones. As mentioned in the text, this hypothesis

relies on the difference between no-signaling and localizable bipartite processes [61] (which is a concept that

is yet to be defined in general for higher-order processes). Because certain no-signaling channels require

communication to be obtained (e.g., [65]), does it make sense to speak about local parties in a process? The

derivation of the theorems without assuming the parties to have access to the full affine hull of the set of

no-signaling states would close that loophole. See in particular Reference [36] where this issue is discussed in

much more depth than in this thesis.

Another enjoyable aspect of the broad definition of state structure that was under-considered in the thesis is

their ability to represent other higher-order theories than higher-order quantum theory. For instance, the

biased quantum theory is a new class of theories that can be considered by taking a different base projector

than the identity. Note that in the biased quantum theory examples already there were interesting connections

still to be explored see the conclusion of Section 3.6. However, a task of interest that was not considered at

all in the thesis is to devise classical/quantum mixed theories. The investigation of the state structure of

quantum to classical channels and related higher-order construction is a standalone path that can also be

interesting for future works on decoherence or on classical and quantum control of processes as in Reference

[157].

Finally, the operational/general probabilistic theory [78, 79] presentation of the background is also a whole

topic that has not been studied yet. The interpretation of the signaling lattice as a class of GPT seems like a

good starting point. Another more general approach that was not considered in this thesis albeit lurking in the

margins is the categorical theoretic treatment. Many of the results presented in this thesis were independently

attained by another group [33, 36] using the formalism of category theory. Providing a Rosetta stone between

the two approaches, as well as phrasing the projective characterization as a categorical construction looks a

very promising path for future research.



Appendix





[96]: Roman (2008), Advanced Linear Al-
gebra.

[107]: Hiai et al. (2014), Introduction to
Matrix Analysis and Applications.
[124]: Roman (2017), An Introduction to
the Language of Category Theory.

[159]: Hall (2013), Quantum Theory for
Mathematicians.
[160]: Pearl (2009), Causality.

[161]: Wackerly et al. (2008), Mathematical
Statistics with Applications.

Appendices to Chapter 1 A.

A.1 Mathematical Methods 175

A.1.1 Operators on a Hilbert

Space . . . . . . . . . . . 175

A.1.2 Functionals and the Dual

Space . . . . . . . . . . . 177

A.1.3 Hilbert-Schmidt Spaces of

Operators . . . . . . . . . 179

A.1.4 Probabilities . . . . . . . 180

A.2 Some Elements on Local

Correlations . . . . . . . 183

A.3 Graphical Methods

and Turning States and

Effects into Operations 184

They were funny-looking pictures. And I did

think consciously: Wouldn’t it be funny if this

turns out to be useful and the Physical Review

would be all full of these funny looking pic-

tures. It would be very amusing.

R. Feynman on Feynman diagrams
*

The ultimate goal of life, the universe, and

everything is of course to replace horrible

symbolic manipulation by diagrams.

Coecke and Kissinger (2017), Picturing
Quantum Processes: A First Course in Quantum

Theory and Diagrammatic Reasoning [81]

Boy, that escalated quickly.

Ron Burgundy (Will Farrel) in: Anchorman:

The Legend of Ron Burgundy (2004)

(dir. Adam McKay, DreamWorks Pictures)

A.1. Mathematical Methods

In this section, some mathematical methods are reviewed with the

particular goal of presenting the notation in more detail. These are only a

few scattered facts about the theory of Hilbert-Schmidt spaces and about

the theory of probabilities that may be useful to be reminded of. Besides

the one cited, the main sources used for this section are References [96,

107, 124, 159–161].

A.1.1. Operators on a Hilbert Space

Operators on a Hilbert space, which are linear maps between isomorphic

input and output spaces identified together, play a special role in this

thesis. In addition to the properties of linear maps, some extra concepts

can be defined on them, like the positivity or the trace. This section briefly

reviews these two notions and related concepts for reference.

Definition A.1.1 An operator V ∈ L (H) is Positive SemiDefinite (PSD)
if, for all vectors |ψ⟩ ∈ H, the condition

⟨ψ|V |ψ⟩ ≥ 0 (A.1)

*
Quoted from Lancaster and Blundell (2014), Quantum Field Theory for the Gifted Amateur
[158], chapter 19, p. 175.
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[123]: Barnum et al. (2005), Influence-free
states on compound quantum systems.

holds. If the inequality is strict, ⟨ψ|V |ψ⟩ > 0, then it is positive definite.

For simplicity, ‘positive’ will be used to say ‘positive semi-definite’ and so

will the shorthand notation V ≥ 0 to indicate that an operator is positive.

Actually, positivity, as well as most of the properties of operators, are all

encoded in their spectrum.

Proposition A.1.1 (Classification of operators.) An operator V ∈ L (H)

is normal if and only if it commutes with its adjoint,

V †V = V V † . (A.2)

A normal operator can be diagonalized,

V =

d∑
i=1

λi |ei⟩⟨ei| , (A.3)

where {|ei⟩} is an orthonormal basis (ONB) ofH and the set of coefficients
λi ∈ C is called the spectrum of V , and the coefficients its eigenvalues.
Then,

▶ V is self-adjoint if and only if its spectrum is real, ∀i : λi ∈ R ;
▶ V is unitary if and only if its spectrum lies on the unit circle, ∀i :
|λi| = 1 ;

▶ V is positive if and only if its spectrum is (real and) positive, ∀i :
λi ≥ 0 ;

▶ V is a projector if and only if all its eigenvalues are equal to either 1
or 0 or, equivalently, if and only if it verifies

V 2 = V ; (A.4)

▶ V is the identity (operator), noted 1, if and only if all its eigenvalues
are equal to 1.

When operators are defined on tensor-composite Hilbert spaces like

H = HA ⊗ HB , a weaker notion of positivity which depends on the

factorization can also be defined. It is called positivity on pure tensors
[123].

Definition A.1.2 (Positive on Pure Tensors) An operator W ∈
L
(
HA ⊗HB

)
is positive on pure tensors (POPT) if and only if, for

all vectors |ψ⟩ ∈ HA and |ϕ⟩ ∈ HB , the condition

(⟨ψ| ⊗ ⟨ϕ|)W (|ψ⟩ ⊗ |ϕ⟩) ≥ 0 (A.5)

holds.

A related concept is the trace of an operator.

Definition A.1.3 (Trace.) Let M ∈ L
(
HA ⊗HB

)
be a bipartite operator,

let {|ei⟩} be a basis of HA and {|fj⟩} be one of HB . The linear map
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1: In the infinite-dimensional case, it is

also true for the continuous dual space,

i.e. the space of all continuous linear

functionals on the direct space. In the

finite-dimensional case, these two no-

tions happen to coincide, so there is no

need for disambiguation when mention-

ing the dual space.

Tr : L
(
HA ⊗HB

)
→ C defined as

Tr [M ] :=
∑
i

∑
j

⟨ei ⊗ fj |M |ei ⊗ fj⟩ (A.6)

is called the Trace of M .
In addition, the linear maps TrA : L

(
HA ⊗HB

)
→ L

(
HB
)

and TrB :

L
(
HA ⊗HB

)
→ L

(
HA
)

defined as

TrA [M ] :=
∑
i

⟨ei|M |ei⟩ , (A.7a)

TrB [M ] :=
∑
j

⟨fj |M |fj⟩ , (A.7b)

are respectively called the partial traces over subsystems A and B.

Proposition A.1.2 (Properties of the Trace.)

1. The trace is basis-independent ;
2. The trace of a normal operator is equal to the sum of its eigenvalues ;
3. The trace can be used to define a norm on the space of operators, called

the trace norm:
||V ||1 := Tr

[√
V V †

]
; (A.8)

When restricted on the set of positive operators this norm is the trace
itself:

V ≥ 0⇒ ||V ||1 = Tr [V ] ; (A.9)

4. The partial traces commute with each other

TrA [TrB [V ]] = TrB [TrA [V ]] = TrAB [V ] := TrAB [V ] ; (A.10)

5. The partial traces commute with the tensor product

TrAB [V ⊗N ] = TrA [V ]TrB [N ] . (A.11)

A.1.2. Functionals and the Dual Space

A functional is a linear map from a Hilbert space to its base field, f :

H → C. The (algebraic) dual space of a Hilbert space, noted H∗
(or,

alternatively, L (H,C) using the notation for spaces of linear maps of

this thesis), is the vector space of all linear functionals on it. Note that to

talk about a Hilbert space with respect to its dual, the terms direct or base
Hilbert space are used. By a well-known theorem of Riesz and Fréchet,

and in the case of finite-dimensional Hilbert space, the dual space is also

a Hilbert space which moreover is isometrically anti-isomorphic to the

direct
1
.

Theorem A.1.3 (Riesz Representation Theorem) LetH be a Hilbert space
with inner product ⟨· , ·⟩H . Let {ei}d−1

i=0 be a basis ofH. LetH∗ be the space
of all (continuous) linear functionals onH.
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ThenH∗ is a Hilbert space under the inner product

⟨f , g⟩H∗ =
∑
i

f(ei) g(ei) , (A.12)

where f, g ∈ H∗.
Moreover, this Hilbert space has a representation in H called the Riesz
representation: for every (continuous) linear functional f ∈ H∗, there exists
a unique vector φf ∈ H such that

f(ψ) = ⟨φf , ψ⟩ . (A.13)

The Riesz representation can indeed be obtained through an antilinear

isomorphism of spaces.

Corollary A.1.4 The spaceH is anti-isomorphic to its dualH∗.
Therefore, the identification

H ≃ H∗
(A.14)

can be realized by an invertible linear map R sending the inner product in
H∗ to its conjugate inH,

∃R : H∗ → H : ∀f, g ∈ H∗, ∃φf , ϑg ∈ H :

R (f) = φf ;

R (g) = ϑg;

⟨f , g⟩H∗ = ⟨ϑg , φf ⟩H .

(A.15)

The antilinear nature of the correspondence makes it basis-dependent

when expressed using a linear map like R since a basis has to be fixed in

order to define the complex conjugation operation. However, a complex

conjugation is an involution, so applying the Riesz representation twice

gets rid of the basis-dependency. This means that a functional on a

functional, like γψ : H∗ → C such that γψ(f) = f(ψ), is naturally

isomorphic to a vector in the direct, γψ ∼= ψ. This is the content of the

following well-known corollary.

Corollary A.1.5 The spaces H and its double dual (H∗)∗ are canonically
isomorphic.
Therefore, the identification

HA ∼=
((
HA
)∗)∗

(A.16)

can always be realized by an invertible linear map in a basis-independent way.

The bra-ket notation makes good use of this theorem. The identification of

a functional f with a vector φf is made apparent using the ‘bra’ notation

f = ⟨φf |. The functional is a vector of the dual, thus put in the antilinear

part of the inner product, the bra, so to be combined with a vector of the

direct ψ, put into the linear part, the ket |ψ⟩.

The symbol † is then used to denote the antilinear identification of a

vector with its dual, |ψ⟩† = ⟨ψ|, using Corollary A.1.4. This identification

can be made loosely since it is antilinear and therefore basis-independent.

However, as stated in the theorem, trying to make this identification in
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2: Which is quick to prove using the

completeness relation

∑
i |ei⟩⟨ei| = 1:∑

i

〈
ei
∣∣φf

〉
|ei⟩ =

∑
i

|ei⟩
〈
ei
∣∣φf

〉
=
∑
i

(|ei⟩ ⟨ei|)
∣∣φf

〉
= 1

∣∣φf

〉
=
∣∣φf

〉
. (A.19)

Since the completeness relation holds for

all bases, the choice of a particular base

{|ei⟩} has no influence on the definition

of the †.

[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.
[162]: Farenick (2000), Algebras of Linear
Transformations.
[156]: Heinosaari et al. (2011), The Mathe-
matical Language of Quantum Theory: From
Uncertainty to Entanglement.
[163]: Audretsch (2007), Entangled Sys-
tems: New Directions in Quantum Physics.
3: In infinite dimension, this also holds

but the space of operators must be re-

stricted to the space of bounded and com-

pact operators that have finite Hilbert-

Schmidt norm.

a linear manner leads to a linear map R that depends on a choice of

basis. When identifying the kets with vectors of CdA×1
, the usual way

of obtaining a linear identification is the transposition with respect to a

basis {ei}d−1
i=0 ,

R (⟨φf |) = (⟨φf |)T :=
∑
i

⟨φf |ei⟩ |ei⟩ . (A.17)

The dagger then corresponds to the conjugate transpose,

(⟨φf |)† :=
∑
i

⟨φf |ei⟩ |ei⟩ =
∑
i

⟨ei|φf ⟩ |ei⟩ , (A.18)

which is effectively basis-independent
2
. These seemingly pedantic pre-

cisions about the bra-ket notation will come in handy in the following

sections when nested linear maps are considered.

A.1.3. Hilbert-Schmidt Spaces of Operators

The inner product on a Hilbert spaceH can be used to define an inner

product between operators N,V ∈ L (H) as

(N , V ) :=
∑
i

⟨N(ei) , V (ei)⟩ . (A.20)

where N,V ∈ L (H) and the set of vectors {ei} is an orthonormal basis

ofH.

Definition A.1.4 (Hilbert-Schmidt Inner Product) Let HA and HB be
Hilbert spaces with inner product ⟨ , ⟩A and ⟨ , ⟩B respectively. Let {ei} be a
basis of spaceHA. Let M,N ∈ L

(
HA,HB

)
be a two linear maps.

Then, the sesquilinear form defined by

(M , N) :=
∑
i

⟨M(ei) , N(ei)⟩A , (A.21)

is called the Hilbert-Schmidt inner product.

It can be checked that this induced sesquilinear form is indeed an inner

product on L (H). Moving the terms around a little,

(N , V ) =
∑
i

⟨N(ei) , V (ei)⟩ =
∑
i

〈
ei , (N

† · V )(ei)
〉
, (A.22)

it can be expressed as a trace:

(N , V ) ≡ Tr

[
N† · V

]
. (A.23)

This hints that this is indeed a basis-independent construction as it can

be shown. The Hilbert-Schmidt inner product actually makes the space

of linear maps a Hilbert space with respect to it as well.

Therefore, a Hilbert space (H, ⟨· , ·⟩) always induces another Hilbert

space of operators on itself (L (H) , (· , ·)) called the Hilbert-Schmidt

[74, 162] or Liouville [156, 163] space
3
. In the finite-dimensional case,

this construction is also well-defined for linear maps between spaces
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[164]: Horn et al. (2013), Matrix Analysis.

Remark that the theory of categories is

best suited to abstract this repeating pat-

tern behavior between a Hilbert space

and the operators defined on it. In cate-

gorical language, the property that the

(Hilbert-Schmidt) operators on a Hilbert

space are also a Hilbert space is called clo-
sure. And that the Hilbert-Schmidt space

is isomorphic to the tensor product be-

tween the base Hilbert space and its dual

is called monoidal closure. See References

[81, 125]

[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

[125]: Heunen et al. (2019), Categories for
Quantum Theory: An Introduction.

for an introduction in the context

of quantum information theory.

[8]: Chiribella et al. (2008), Transforming
quantum operations: Quantum supermaps.

of different dimensions, in which case it is often called the Frobenius

inner product instead [164]. As will be shown in the following, this

self-repeating property is the mathematical reason why the theory of

higher-order processes, which mathematically is nothing short of defining

linear maps between linear maps recursively, is so well-behaved and

always presents the same kind of structure.

When the input and output spaces are isomorphic, the Hilbert-Schmidt

space of operators is naturally isomorphic to the tensor product of the

base Hilbert space with its (algebraic) dualH∗
,

L (H) ∼= H ⊗H∗ . (A.24)

This fact is what justifies Dirac bra-ket notation as dyads (or ket-bras)

such as |ϕ⟩ ⟨ψ| can be interpreted both as an operator or as the tensor

product between a vector and a dual vector |ϕ⟩ ⟨ψ| ∼= |ϕ⟩ ⊗ ⟨ψ|. This fact

is also what underlies the Choi-Jamiołkowski isomorphism, hence, with

Choi’s theorem, these are the crucial ingredients for the representation

of higher-order processes.

Adjoint operators are defined on the Hilbert-Schmidt space as well; to

avoid confusion these will be noted by a ∗ instead of a †. The adjoint

of a linear mapM ∈ L
(
L
(
HA
)
,L
(
HB
))

is given by the unique map

M∗ ∈ L
(
L
(
HB
)
,L
(
HA
))

satisfying

(N ,M (V ))B = (M∗(N) , V )A , (A.25)

for all V ∈ L
(
HA
)

and N ∈ L
(
HB
)
. That is the onlyM∗

such that

Tr

[
N† · M(V )

]
= Tr

[
M∗(N)† · V

]
. (A.26)

As is the case with linear maps, if the input and output spaces are the

same, L
(
HA
) ∼= L (HB), the map are called operators on L

(
HA
)
. To

distinguish the sets of operators on a Hilbert space L
(
HA
)
, from the set

of operators on the set of operators on a Hilbert space L
(
L
(
HA
))

, the

elements of the later are called superoperators [8].

A.1.4. Probabilities

Let a be a realization of a random variable â, and let b be one of b̂. In this

work, all random variables are assumed to be discrete and finite. That

is, realizations of â are assumed to take values a from a countable set

of events Ωa whose cardinality is finite, |Ωa| = na < ∞. Therefore the

values â can take range over the set Ωa = {a = 1, a = 2, . . . , a = na}.
And the same holds for b̂.

Definition A.1.5 Let P : Ωa → R be a probability measure on Ωa, the
probability distribution4

4: Also called probability mass func-

tion or discrete probability density

function.

of â, or distribution in short, is the function
p : R→ [0, 1] defined by

p(a) := P (â = a) . (A.27)
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A distribution summed over all possible realizations of â, i.e. all the

possible values the random variable can take, gives a probability of 1:∑
a∈Ωa

p(a) = 1 . (A.28)

Remark the reference to the set Ωa will often be omitted for conciseness:∑
a p(a) :=

∑
a∈Ωa

p(a).

Definition A.1.6 Let P : Ωa × Ωb → R be the probability measure on
Ωa×Ωb, the joint probability distribution of â and b̂, or joint distribution
in short, is the function p : R→ [0, 1] defined by

p(a, b) := P (â = a ∩ b̂ = b) . (A.29)

When summed over all possible realizations of â and b̂, it gives a proba-

bility of 1:

p(a, b) ∈ [0, 1] :
∑
a

∑
b

p(a, b) = 1 . (A.30)

Whereas the summation over a single random variable defines the

marginal distribution (of the other variable):

p(a) :=
∑
b

p(a, b) ; (A.31a)

p(b) :=
∑
a

p(a, b) . (A.31b)

Where the first line of the above is read ‘the marginal distribution of a’

for instance.

Marginal distributions can be used to define the conditional distribution

of a variable given another:

p(a|b) := p(a, b)∑
a p(a, b)

=
p(a, b)

p(b)
. (A.32a)

p(b|a) := p(a, b)∑
a p(a, b)

=
p(a, b)

p(a)
. (A.32b)

Where the second line of the above is read ‘the conditional distribution

of b given a’ for instance.

From the definition, the following holds

p(a, b) = p(a|b)p(b) = p(b|a)p(a) . (A.33)

So that the marginal and conditional distributions are linked by Bayes

theorem:

p(a|b) = p(b|a)p(a)
p(b)

. (A.34)

A special case of marginal distribution is the mixture. The distribution of

a random variable â may be conditioned on a second variable q ∈ [0, 1]

so that its distribution has the form:

p(a) = qp1(a) + (1− q)p2(a) , (A.35)
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where p1 and p2 are different distributions. Such a distribution is called a

mixture of distributions p1 and p2 and q is called the weight of the mixture.

Mixture can be defined for an arbitrarily large amount of distributions

p(a) =
∑
i

qipi(a) , (A.36)

where the weights qi obey qi ∈ [0, 1] and

∑
i qi = 1.

In general, a mixture (or compound) distribution can be seen as a

marginal distribution, in which case the weights qi are interpreted as

the probabilities associated with the realizations of a random variable b̂.

Whence, the mixture is seen as a marginal over b̂ of some joint distribution

p(a, b):

p(a) =
∑
i

qipi(a) =
∑
b

p(b)p(a|b) , (A.37)

under the identification i 7→ b: qi ≡ p(b) and pi(a) ≡ p(a|b).

Another special case of joint distributions is independent distributions.

Definition A.1.7 Two random variable â and b̂ are independent if and only
if their joint distribution satisfies

∀a, b : p(a, b) = p(a)p(b) . (A.38)

Otherwise, they are dependent (or correlated).

In the case of independent random variables, the following holds from

the definitions:

p(a|b) = p(a) ; (A.39a)

p(b|a) = p(b) . (A.39b)

From these formulae, independence can also be phrased as follows:

∀a ∈ Ωa, ,∀b, b′ ∈ Ωb, p(a|b) = p(a|b′) ; (A.40a)

∀a, a′ ∈ Ωa, ,∀b ∈ Ωb, p(b|a) = p(b|a′) . (A.40b)

When clear from the context, these will be concisely phrased as

∀a, a′, p(b|a) = p(b|a′) ; (A.41a)

∀b, b′, p(a|b) = p(a|b′) . (A.41b)

A less strong notion than independence is conditional independence:

the random variables â and b̂ are independent of each other but share a

common cause represented by a variable ẑ with realizations z ∈ Ωz .

Definition A.1.8 Two random variables â and b̂ are conditionally inde-
pendent [165][165]: Dawid (1979), Conditional Indepen-

dence in Statistical Theory.

given a third random variable ẑ if and only if their joint
distribution satisfies

∀a, b, z : p(a, b|z) = p(a|z)p(b|z) . (A.42)

This definition has several equivalent definitions holding for all values
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[166]: Bell (1964), On the Einstein Podolsky
Rosen paradox.

[167]: Tsirelson (1980), Quantum general-
izations of Bell’s inequality.

a, b, z:

p(a|b, z) = p(a|z) ; (A.43a)

p(b|a, z) = p(b|z) ; (A.43b)

and

∀b′, p(a|b, z) = p(a|b′, z) ; (A.44a)

∀a′, p(b|a, z) = p(b|a′, z) . (A.44b)

A.2. Some Elements on Local Correlations

Some distributions can be no-signaling but still have a common cause,

for example, the kind of distribution obtained by local parties measuring

part of a shared system. Well-studied instances of such distribution are

those admitting a common cause described by a classical variable as well,

the so-called local hidden variable models [166].

Definition A.2.1 (Local Hidden Variable Model) A no-signaling dis-
tribution p(a, b|x, y) as in Definition 1.2.1 is said to have a local hidden
variable model (LHVM) if there exists a random variable λ such that the
distribution factories as a mixture of conditionally independent distributions:

p(a, b|x, y) =
∑
λ

p(a|x, λ)p(b|y, λ) . (A.45)

A no-signaling distribution admitting an LHVM is concisely called local.

In a nutshell, local hidden variable models certify that there exists a local

common cause (whose influence is represented by λ) that explains the

correlations between local outcomes a and b. The states of a theory that

can be explained in terms of an LHVM for all possible local measurements

are called (Bell-)local. The compliance to a hidden-variable model can be

certified with a bound on correlations called a Bell inequality. In the case

of quantum theory, a well-known result is that some states of quantum

theory violate some Bell inequalities. For example, the CHSH inequality,

noted S, has a value of at most 2 for distributions with an LHVM,

SLHVM ≤ 2, but this bound is surpassed by some distributions obtained

with a bipartite state of two qubits and can go up to SQuantum = 2
√
2 in

the case of maximally entangled states, like the Bell states.

Any quantum state violating a Bell inequality is called a non-local state.

The maximal departure from a Bell inequality with quantum theory is

quantified in terms of the Tsirelson bound [167]. States saturating this

bound are called maximally non-local. Remark that the no-signaling

condition also puts an upper bound on correlations, so the Tsirelson

bound lies between the Bell-local and no-signaling bounds. In the case of

CHSH, the values are:

SLHVM = 2 < SQuantum = 2
√
2 < SNS = 4 . (A.46)

Note that a hypothetical pair of closed boxes whose inner workings

obey a different theory than quantum physics so that their outcomes
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[63]: Popescu et al. (1994), Quantum non-
locality as an axiom.

[56]: Brunner et al. (2014), Bell nonlocality.

5: This assumes a single preparation of a

joint system in a given state. Tasks requir-

ing the differentiation of various joint

states produced by two local prepara-

tion procedures can also show non-local

behavior, although the prepared states

are pure and unentangled. This phe-

nomenon is called Non-Locality Without

Entanglement (NLWE). See Reference

[168]

[168]: Croke et al. (2017), Difficulty of dis-
tinguishing product states locally.

for an introduction.

[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.
[169]: Horodecki et al. (1998), Mixed-State
Entanglement and Distillation: Is there a
“Bound” Entanglement in Nature?

[170]: Einstein et al. (1935), Can Quantum-
Mechanical Description of Physical Reality
Be Considered Complete?

6: This point is stressed because all these

notions have been called ‘local’ at some

point in the literature, see Ref. [171]

[171]: Eberhard (1978), Bell’s theorem and
the different concepts of locality.

for

disambiguation of the different notions.

[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

distribution saturates the no-signaling bound for CHSH has been studied

in the literature. It is referred to as a Popescu-Rohrlich (PR) box [63].

In quantum theory, the characterization of the local states of systems is an

especially difficult task, which is its own subfield (quantum non-locality,

see Reference [56] for a review). A necessary
5

condition for non-locality

is that the state is entangled... However, characterizing entangled states

is a difficult task, with entire books devoted to it (e.g., Reference [74]).

The key thing to keep in mind is that the two concepts are distinct:

entangled states are not automatically non-local; entangled states that

cannot violate a Bell inequality, even when local operations and classical

communications (LOCC) are allowed, are called bound entangled [169].

A special case of LHVM is obtained when the hidden variable λ only

takes one value. In that trivial case, the correlations are independent in

the mathematical sense with x only affecting a and y only b.

Definition A.2.2 Let Alice and Bob be two parties in a process as in
Definition 1.2.1. Their experiments are said independent if and only if the
joint distribution is no signaling and their outcomes are independent:

p(a, b|x, y) = p(a|x)p(b|y) . (A.47)

Remark that no-signaling has to be imposed otherwise Alice’s outcome

a can still depend on Bob’s setting y and vice-versa. This is the kind of

correlation one may expect from two experimentalists in closed labs that

are causally disconnected; as if each of the local labs in which each party

conducted their measurement have always been shielded from the rest

of the universe. These correlations are the ones exhibited by bipartite

systems in which the preparation, evolution, and measurement stages

are all composed in parallel, so that no interaction at all happens between

Alice and Bob subsystems. In quantum theory, a situation in which the

state, evolution, and effects are in pure tensor products is guaranteed to

produce such correlations.

Independence is the original notion of “locality” for quantum theory

that was used in the context of the EPR paradox [170]. For this reason, it

is sometimes dubbed Einstein locality [73, p. 302]

[73]: Holevo (2011), Probabilistic and Sta-
tistical Aspect of Quantum Theory.

[67]

[67]: D’Ariano et al. (2014), Determinism
without causality.

as opposed to Bell
locality. The important thing to remember is that if interventions in closed

boxes are called local, yet the correlations observed by the local parties

performing these interventions are not automatically (Bell-)local. Local

correlations are defined by a heuristic requirement on the correlations.

This heuristic sits in between the related notions of no-signaling and

independent correlations
6
.

A.3. Graphical Methods and Turning States and

Effects into Operations

All the usual objects of quantum theory fall under this general definition

of a quantum operation or intervention. Meaning all can be represented

as some special case of linear maps. Following [81], the graphical methods

used in Chapter 1 are formalized into diagrammatic rules in order to

picture these transformations more easily.
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(a) Channels

(Transformations):

M(•)

(b) State VB (c) Effect:

TrA

[
N†

A · •
] (d) Inner product:

(NA , VA)A :=

Tr

[
N†

A · VA

]

(e) Outer Product (Dyad):

Tr

[
N†

A•
]
⊗ VB

(f) Maximally mixed state:

1
dB

(g) Dual of maximally

mixed state; the trace:

TrA [1A · •] = TrA [•]
(h) State preparation

conditioned by x:

Vρ
|x(

1
d
) = ρA|x

Figure A.1.: Some common diagrammatic representation of local and deterministic quantum operations

Refer to Figure A.1. As set up within the process framework, systems

are represented as thick wires with a label, so that each thick wire is

associated with a Hilbert space of operators L
(
HX

)
on which the state

of the system X is expressed. Quantum operations are linear mapsM
from an input space L

(
HA
)

to an output space L
(
HB
)
. By consequence,

these are represented as a box in between two wires as in Figure A.1a

with theM written within it. The whole diagram in the dashed frame is

the linear map, with the bottom of the frame associated with the input

space and the top of it associated with the output space.

The thin wires, representing classical data and used for settings and

outcomes, will often be omitted in favor of indices in the diagrams. For

example, in Figure A.1h an incoming wire with setting x has been omitted

since the reference to the setting is already made in the label Vρ|x.

Within such diagrammatic heuristics, it is easy to argue that preparation

and measurement are special cases of linear maps, i.e. quantum inter-

ventions. Indeed, in this picture, a state preparation corresponds to a

deterministic operation with an input space of dimension 1, a trivial input
space. Graphically, the preparation is indicated with a bottom half-circle

with the state of the prepared state substituting the name of the map, as in

Figure A.1b. A special symbol is reserved to refer to the maximally mixed

state: a ground symbol (dashed lines as in Figure A.1f. A state can equiv-
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alently be seen as a deterministic operation V ∈ L
(
L
(
HA0

)
,L
(
HA1

))
applied on a maximally mixed state in A0, i.e.

V
(
1A0

dA0

)
= ρ . (A.48)

This is because a state space reduced to a subspace consisting of the

maximally mixed state is effectively a trivial space, as no measurement

procedure can extract any useful information from it. This picture can

be understood as encoding information on a system (A0) that was only

containing white noise up to that point (

1A0

dA0
) through a procedure V

resulting in a modified system A1 in state ρ.

In the same way, a measurement corresponds to an instrument with a

trivial output space. An instrument with trivial output space reduces

back to the usual definition of a POVM; the action of a map Ea ∈
L
(
L
(
HA0

)
,L
(
HA1

)
= C

)
becomes equivalent to the action of a POVM

element Ea ∈ L
(
HA
)

under the identification

∀ρ, Ea(ρ) = Tr [Ea ρ] . (A.49)

In other words, if the map is reduced to a functional, Ea ∈ L
(
HA0

)∗
, it

goes back to the usual form of a destructive measurement, Tr [Ea·], where

Ea ≥ 0 :
∑
aEa = 1 is a vector inL

(
HA0

)
representing an element of the

dual space L
(
HA0

)∗
through the inner product (Ea , ·) := Tr

[
E†
a·
]
.

As the dual space is (anti-)isomorphic to the direct, 1 also plays a

distinguished role there: the discarding operation [81]. It amounts to

ignoring the output state of an operation, to discard it. Concretely, it is

obtained by averaging over all outcomes of any destructive measurement.

This indeed yields a discarding operation: the state has been destroyed

and at the same time no information about it has been kept. Because of

the POVM condition

∑
aEa = 1, the discarding is indeed a functional

represented by 1, which amounts to taking the trace:

Na(·) =
∑
a

Tr [Ea·] = Tr [1·] = Tr [·] . (A.50)

As with preparations, the measurement procedure can be seen as an

operation Na ∈ L
(
L
(
HA0

)
,L
(
HA1

))
followed by a discarding, or

“applied on the maximally mixed state in the dual space”, which leads to

the following identification of an effect with an instrument

Ea = N ∗
a (1A1) . (A.51)

In the above, ∗ indicated the adjoint in L
(
HA0

)
so that the map N ∗

a ∈
L
(
L
(
HA1

)
,L
(
HA0

))
is uniquely defined by

(σA1
, Na(ρA0

))A0
= (N ∗

a (σA1
) , ρA0

) ∀σ, ρ . (A.52)

Note that the destructive measurements, here in the form of a POVM,

reflect randomized state preparation, i.e. those depending on a setting x

such that it results in different output states ρ|x depending on its value,

ρ|x = V|x
(
1A0

dA0

)
. (A.53)
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(a) Local experiments p(a|x)...

(b) ...are described by some quantum

protocols, (A.57), in which the object...

(c) ...are all specific instances of quantum

operations (boxes) between trivial input

and output systems, (A.58).

Figure A.2.: Quantum Theory formu-

lated as CP maps.

[126]: Selinger (2007), Dagger Compact
Closed Categories and Completely Positive
Maps: (Extended Abstract).
[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

Compared to Equation A.51, these two formulas are similar, with the

only difference being that the measurement is defined in the dual space

of the preparation. This duality is known as a state and effect pair. The

important thing to notice is that averaging over the settings of a state

preparation, ∑
x

V|x
(
1A0

dA0

)
=
∑
x

ρ|x := ρ , (A.54)

does not have to lead to the maximally mixed state necessarily. But, on

the other hand, averaging over the outcomes of a measurement does:∑
a

N ∗
a (1A1

) =
∑
a

Ea = 1A0
. (A.55)

This is due to the condition that the elements of a POVM sum up to the

identity.

Because of that, it must hold that the adjoint of the elements of a quantum

instrument,N ∗
a sum up to a unital map,

∑
a

N ∗
a (1A1

) =

(∑
a

N ∗
a

)
(1A1

) = N ∗(1A1
) = 1A0

. (A.56)

And since the adjoint of a unital map is Trace-Preserving (TP), this

explains why a quantum channel must be TP.

This whole discussion has been made so to motivate two ideas. The

first is that a local intervention without input or output is equivalent

to an intervention between trivial input and output. And the second

idea is that a quantum operation is a versatile enough tool to represent

any quantum procedure which moreover puts every object on the same

footing: everything is a CP map of some kind. For example, in quantum

information, a communication protocol is usually represented as a prepa-

ration of states ρ|x conditioned by setting x, followed by transmission

through a channelM, and terminated by a measurement {Ea} yielding

outcomes a, the distribution of which is given by the Born rule

p(a|x) =
(
Ea ,M

(
ρ|x
))

. (A.57)

The point is that the channel is a linear map, whereas the state and effect

are operators. Seen as operations, all these objects are CP maps composed

together and acting on trivial input and output,

p(a|x) =
(
1A1 ,

(
N (E)
a ◦M ◦ V(ρ)

|x

)(1A0

dA0

))
. (A.58)

(Here the superscript notation refers to the operator the CP map is

representing). Using this kind of construction to put all the objects in

the same kind of mathematical space is one of the key ingredients of the

theory of higher-order quantum processes presented here.

Remark that this kind of construction has been studied in much more

depth in the categorical framework of quantum mechanics. Especially,

this picture of local quantum theory is axiomatically obtained as a

diagrammatic language under the name of the CPM [126] or doubling
constructions [81].
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B.1. Some Elements on the Multipartite Process

Formalism

The development of the mathematical tools in the main text consists

of setting the theory ruling the parties’ intervention to be quantum

theory. That is, to impose quantum theory as being the way to represent

how parties can prepare and measure systems locally to interact with

their environment in order to obtain the probability distributions. The

resulting global theory obtained when assuming quantum theory locally,

the process matrix formalism [5], is the theory of higher-order quantum

processes (first defined under the name of ‘quantum supermaps’ [8]), i.e.

the theory of nested, or higher-order, quantum interventions.

The postulates are indeed lenient enough to accommodate the idea of

a higher-order intervention, as will now be discussed. It should be first

stressed that the process formalism is agnostic with respect to the exact

form of the systems, as well as to any form of global background besides

what the environment provides. By looking at diagrams alone, one may

be tempted to label each thick wire as some point in space and time,

but these are examples of global things of the backgrounds that need

not be assumed, and can potentially flaw the interpretation. The input

system can indeed be composed of several subsystems, each entering

Alice’s lab at a different point and at a different time (with respect to

Alice’s local clock
1
) and the same way the output system can actually be

several subsystems released back to the environment at different times. In

between these different times, Alice can correlate the systems she release

at a later time with the ones she received at an earlier time because she

is allowed to. She can indeed do anything locally, including keeping a

memory of her previous classical settings and outcomes in the form of a

side system she keeps in her closed lab. This kind of system that Alice

fully controls (for which Alice is a global party) and that she can always

add in parallel to any scenario in which she is involved (for which she is

a local party), are called the ancillary systems of Alice
2

or side systems.

Assuming that the system of a party splits into subsystems according to a

notion of space and time is a special case of the general possibility that it

splits according to something she can measure by some strategy. Consider

the situation in Figure B.1: a party can perform multiple interventions at

multiples nodes; however, her nodes are not exactly local parties since the

*
Quoted from Farenick (2000), Algebras of Linear Transformations [162].
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(a) A multi-round intervention

still assumes that Alice is a local

party...

(b) ...so it can be encompassed

in a closed box which so to

rephrase it as...

(c) ...a single local intervention

of Alice.

Figure B.1.: A scenario allowed by the process framework: multi-round interventions. B.1a: Alice acts twice on a system, which is assumed

to return into the environment in between, so the state of the second system she received can be in general different but correlated to the

state of her first output system. Each operation of Alice is referred to as a node in her network of operations. In between her nodes, she

keeps a memory: constituted by her previous settings and outcomes (thin wire), as well as a side system (or ancilla; thick wire). Her overall

situation although multi-round, is still local. B.1b: Her multiple interventions can be gathered as a single overall intervention... B.1c:

...Equivalent to a single-round intervention.

[28]: Oreshkov (2019), Time-delocalized
quantum subsystems and operations: on the
existence of processes with indefinite causal
structure in quantum mechanics.
[172]: Vanrietvelde et al. (2021), Routed
quantum circuits.

setting of the second operation may depend on the setting of the first.

Therefore, it is be termed a multi-round intervention.

The multi-round intervention is a special case of an even more general

situation: the higher-order intervention. Consider a bipartite process. It

can be that, on the one hand, party Alice has an intervention that splits

into two rounds as in Figure B.2a. On the other hand, the environment

can turn out to be such that the output of Alice’s first intervention

is exactly the first input of Bob’s, and at the same time, his output

is the input of Alice’s second intervention, as in Figure B.2b. In that

case, Bob’s intervention is entirely under Alice’s control; she sees it as a

random process between her first input and second output. From Bob’s

perspective, Alice’s intervention is global in the same manner that the

environment is. In such a scenario, Alice’s intervention is called higher-

order with respect to the one of Bob. Remark that the environment is a

general instance of higher-order intervention; it is always assumed global

as opposed to the local parties.

Note that more developed approaches to the splitting of systems into

subsystems have been investigated in the context of higher-order quantum

processes. The process formalism has been extended to consider these

splitting as subsystems not associated with a definite time, but rather

as time-delocalized subsystems [28]. In the unitary case, constraints on the

splitting into subsystems can be treated with an extension of the circuit

formalism: routed quantum circuits [172].
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(a) A scenario in which Alice’s intervention splits into two

rounds.

(b) A scenario in which Alice’s intervention encompasses

Bob’s: from the point of view of the process, she acts in a

higher order than him.

Figure B.2.: The higher-order intervention scenario

B.2. Directed Arrows and Some Remarks on

Antilinearity

The Choi-Jamiołkowski isomorphism of Definition 2.2.1 is not natural,

that is, basis-independent. Formulated as Equation (2.6), the corre-

spondence identifies an element of L
(
L
(
HA
)
,L
(
HB
))

with one of

L
(
HA ⊗HB

) ∼= L (HA)⊗ L (HB). However, the space of linear maps

L
(
L
(
HA
)
,L
(
HB
))

is itself a Hilbert space naturally isomorphic to

L
(
HA
)
⊗ L

(
HB
)∗

where L
(
HB
)∗

:= L
(
L
(
HB
)
,C
)

is the algebraic

dual of L
(
HB
)
. The CJ correspondence, therefore, hides an identifi-

cation of one of the spaces, L
(
HB
)
, with its dual. Nevertheless, such

identification has to be antilinear and basis-dependent, making the CJ

correspondence itself basis-dependent and antilinear on one of its argu-

ments as a consequence. This hidden antilinearity manifests itself as the

transpose in the reverse direction of the isomorphism, Equation (2.7);

this is indeed a basis-dependent map that identifies the standard basis

with (the representation in the direct space of) its dual.

This whole ‘problem’ of keeping track of transposes would be alleviated

by properly specifying that the Choi operator lives in two fundamentally

different spaces, dual to each other, but that would spoil the interpretation

of MAB as a bipartite state. It could also be avoided by defining the

isomorphism with an extra partial transpose on either of the two systems,

but that would spoil Choi theorem: the maps identified with the PSD

cone would then be the Completely co-Positive (CcP) maps (that is, CP

Figure B.3.: Graphical depiction of the

CJ isomorphism: a transformation M
is turned into a bipartite effect M . The

maximally entangled state can be seen as

‘bending a wire’ to provide an antilinear

connection between the two spaces (see

Appendix B.2 for more details).
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Figure B.4.: Graphical representation of

the antilinear connection provided by the

maximally entangled bipartite operator.

As with the CJ isomorphism, applying

it on a state ‘flips it down’, meaning that

it transforms it into an effect in the dual
space (with the arrow pointing down).

The first equality is (B.1). In the second

equality, interpreting it as an effect of the

direct space (arrow pointing up) requires

applying the antilinear connection again,

which exactly corresponds to the trans-

pose under this choice of connection.

[74]: Bengtsson et al. (2017), Geometry of
Quantum States: An Introduction to Quan-
tum Entanglement.

3: As can be seen by the fact that the

antilinear and linear parts of the inner

product, i.e., left and right parts, have

been switched.

4: Connection is used here in the mul-

tilinear algebraic sense, meaning in the

same way that the Minkowski metric is

the connection between lower and upper

indices for 4-vectors which also live in

dual spaces.

[173]: Uhlmann (2016), Anti- (conjugate)
linearity.

5: By convention, the tensor factors of

Hilbert spaces are always organized al-

phabetically from left to right.

maps followed by a transposition; see Chapter 11 of Reference [74] for

instance).

But what does the transpose mean? For operators VA, it is related to the

following property of the maximally entangled state:

TrA


∑

i,j

|i⟩ ⟨j|A ⊗ |i⟩ ⟨j|A′

†

(VA ⊗ 1A′)

 = V TA′ . (B.1)

This provides a representation of the dual Hilbert space ofHA intoHA′
as

the inner product is mapped antilinearly
3
, (NA , VA)A 7→

(
NT
A′ , V TA′

)
A′ =

(VA′ , NA′)A′ . In other words,HA′ ∼=
(
HA
)∗

and so the maximally mixed

state can be seen as the connection
4

between the two spaces. In other

words, taking the (partial) inner product between a state VA ∈ L
(
HA
)

with the (unnormalized) maximally entangled state

∑
i,j |i⟩ ⟨j|A⊗|i⟩ ⟨j|A′

corresponds to applying the antilinear map relatingHA to the represen-

tation of its dual inHA′
[173].

A consequence of this identification is that the adjoint map M∗ ∈
L
(
L
(
HB
)
,L
(
HA
))

, which has a CJ representation in L
(
HB ⊗HA

)
,

also gets a representation in L
(
HA ⊗HB

)
sinceHB ⊗HA ∼= HA ⊗HB

(which amounts to applying a SWAP gate, or to label the spaces carefully

and to always sort them in the same order, as is done in this work
5
).

For a map M with Choi operator M , the adjoint map M∗
has Choi

representation

M∗
AB =

[
dB−1∑
ν=0

(M∗ ⊗ I) {fν ⊗ fν}

]T
, (B.2)

where {fν}
d2B−1
ν=0 = {|k⟩ ⟨l|}dB−1,dB−1

k,l=0 is the standard basis of L
(
HB
)
.

Using that (NB ,M (VA)) =
(
V TA , (M∗(NB))

T
)

, the reverse direction

of the isomorphism yields

Tr

[
(1A ⊗NB)† [MAB (VA ⊗ 1B)]TB

]
= Tr

[(
V TA

A ⊗ 1B
)†

[M∗
AB (1A ⊗NB)]TB

]
. (B.3)

Which, after some rewriting, leads to

Tr

[
MAB

(
VA ⊗NB

)]
= Tr

[
M∗
AB

(
V A ⊗NB

)]
. (B.4)

In the above, · indicates the complex conjugation. As VA and NB are
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[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

[3]: Carette et al. (2023), Complete Graph-
ical Language for Hermiticity-Preserving
Superoperators.

arbitrary, the equivalence requires

M∗
AB =MAB . (B.5)

Therefore, the adjoint of a map is represented as its conjugate in the CJ

picture,M∗ 7→M . As this work is concerned with mappings between self-

adjoint operators, their CJ representation is Hermitian, so the transpose

of a CJ operator is the representation of its adjoint.

The transposition in the definition of the CJ isomorphism can thus be

interpreted as defining it in the dual space, so that the convention of

Equation 2.6 is equivalent to

MAB :=

dB−1∑
k=0

dB−1∑
l=0

(M∗ ⊗ I) {|k⟩ ⟨l| ⊗ |k⟩ ⟨l|} . (B.6)

where this vector, similar to Equation B.1, makes the interpretation of the

action Equation 2.7 as a mapping to the dual space,

M(VA)
T = TrA

[
M†
AB (VA ⊗ 1B)

]
. (B.7)

The transpose is used as a means to go back to the direct space. Remark

that the dual space happens to always correspond to an output space:

this is a feature, not a bug, of the CJ correspondence. In the graphical

methods, the arrows on the wires are used to indicate whether a system

is interpreted as an input or an output. But mathematically, this amounts

to the operators to be defined on (a representation of) either the direct or

dual. As a consequence, the direction of the arrow indicates which inner

product to use, or equivalently, where to put transposes; see Reference [81,

§8.6.3] for a more in-depth discussion. When reading from bottom to top,

if the arrow goes in the same direction, the representation is direct, and

nothing has to be done. If the arrow goes in the opposite direction, then

the representation is dual. The reversed arrow is therefore here to keep

track of the transposition to be applied so as to repay the antilinearity of

the correspondence.

Graphically, the correspondence can be understood as if a bent wire, or

‘cap’ was put on top of the channel, so that it now looks like a bipartite

effect; see Figure B.3 This ‘cap’ is the connection (B.1), which is obtained

by taking the inner product with the maximally mixed state. Hence, a cap

symbol closing two parallel wiresAB in a diagram is to be interpreted as

the functional

(
ϕ+AB , ·

)
AB

= Tr

[
ϕ+AB ·

]
, where ϕ+AB is the unnormalized

maximally entangled state on these two spaces.

With this in mind, the channel-state duality amounts, graphically, to

‘transforming boxes into top half-disks’ so that every object is interpreted

as an effect. The CJ correspondence can indeed be defined for any

quantum operation, even the higher-order ones.

These are all the graphical methods needed in this thesis. A more system-

atic treatment of the graphical methods is given in Ref. [81]; whereas a

complete graphical language taking into account this antilinearity issue

of the CJ correspondence has been developed in an article that is not

developed in this thesis beside this comment [3].
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B.3. A Short Literature Review of Higher-order

Quantum Processes

Here are gathered some of the results and research works that shaped the

field of higher-order quantum theory. This brief account is mainly aimed

at giving some background information and giving credit to sources not

cited in the main text, albeit sharing similar ideas. Be aware that this is a

synthesis of my own bibliographic research; this should by no means be

taken as an exhaustive nor precise historical account of the research in

the field of higher-order processes during this period. In particular, this

account focuses mainly on results in quantum information using the CJ

isomorphism. At the same time, many similar ideas were emerging in

the then-newborn categorical approach as well as other fields like spin

networks.

B.3.1. Quantum Networks

Quantum network formalism started gaining the shape presented in

this thesis in the study of memory effects in successive applications of

a quantum instrument [174–177]. The first milestone was achieved by

Kreschtmann and Werner who considered these under the name quantum
channels with memory [175]. They proposed a first formal definition and

proved it encompassed all quantum causal automata. They also studied

the difference in terms of channel capacity between the set of channels

sharing a memory register and those that do not. Next, Gutoski and

Watrous also considered quantum networks (with n nodes) under the

name (n-)quantum strategy in the context of quantum game theory [12].

They used the Choi-Jamiołkowski representation of the network to

optimize strategies using semi-definite programming (SDP), whence

the name. Following this approach, Chiribella, Perinotti, and D’Ariano

considered the CJ representation of networks under the name quantum
combs as a method for optimizing quantum circuit architecture [13].

Soon after, Chiribella et al. considered a version of quantum networks

that had no first input and no last output under the name quantum testers
to study memory effects in quantum channel discrimination [94]. Around

the same time, Ziman, in the context of process tomography, considered

the most general measure on a quantum channel under the name Process
Positive Operator Valued Measure (PPOVM) [70].

The PPOVM is actually a special case of a quantum tester with only one

slot, and, as mentioned, quantum testers are special cases of quantum

networks. Chiribella et al. recognized these different approaches to

yield the same objects. For bringing these concepts together, they first

conceptualized the notion of a quantum supermap as the most general

transformation that maps an input quantum operation into an output

quantum operation [8], and they proved a realization theorem showing

that any supermap can be physically implemented as a quantum network

with two nodes. Using this observation, they formalized all approaches

under the name of quantum networks
6

[9]. Generalizing the result

of Kretschmann and Werner, they showed that a quantum network

encompasses many concepts: it is the most general form of a fragment of

a quantum circuit; it is the most general transformation from a network
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to a channel; and it is a causally ordered succession of quantum channels

sharing an ancillary memory.

B.3.2. The Quantum Switch

Processes similar to the quantum switch had some early occurrences

in the literature in the 2000s, see in particular Reference [178]. Hardy

is usually credited for formulating the idea of processes without fixed

causal order around that time [53]. The breakthrough came from the

Pavia group for the same reason cited in the main text: by probing where

the quantum comb formalism could not be used to represent a circuit,

they came up with a few examples during that time, all of which implying

a ‘causal loop’ of some sort [4, 19, 65]. Remark that in the following years,

it was claimed that the quantum switch was realized in a lab, see for

example References [18, 179].

It was already known at that time that the way around this no-go theorem

was to drop the assumption of a fixed causal order. The motivation for

such a radical step was known before the example of the quantum switch.

According to Kochen-Specker contextuality, any observable quantity

cannot be defined outside of its (local) measurement context. The fact that

causal structure is fixed for all observers a prori appears as a contradiction

to this notion, as it has observable effects [15].The causal structure must

itself be a variable that presents quantum characteristics; it should be

able to be in a coherent superposition of several states, and consequently,

there can be uncertainty on it; in such case, there may be non-fixed causal
structure [16].

Remark that the presentation in the main text of the causal non-separability

of the quantum switch was made colloquially and using the process for-

malism. However, the realizability of processes is still an open question.

Therefore, the experimental realizations of the switch usually require a

specialized framework to be treated, like the time-delocalized subsystems
[28, 30].

On Quantum Causal Models. However, the quantum switch does not

actually require such a broad framework to be discussed. It falls into a

class of processes called quantum circuits with quantum control. This

restricted class has been studied extensively, and its purifiable subset even

more. In that latter case, a fully general model of quantum causal models

has been developed [180, 181], so the treatment of the quantum switch

can be made in a much more fine-grained description. In particular, the

sketch of the non-causal separability of the switch presented in the main

text has been made rigorous and studied in-depth using the formalism

of routed quantum circuits [31, 172].

It is then legitimate to wonder why this thesis is not considering these

results. The issue is that most of these works assume a purified pic-

ture, in which the process can be identified with unitary operations.

However, because of a no-go theorem of Araújo et al, the purification

of certain higher-order processes is impossible
7

[182]. In particular, the

OCB example is one of these no-purifiable processes. Hence, to keep the

formalism broad enough to consider violations of causal inequalities
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of the OCB-kind, the process formalism considered in this thesis has

not been restricted to the purifiable processes, contrary to what is done

in many of these works. The reconciliation of these two approaches is

nonetheless an exciting direction for future inquiries.

B.3.3. The Process Matrix Formalism

The derivation of the process formalism was inspired by the proofs of

the Gleason theorem for POVM made by Busch as well as Caves and

collaborators [111, 112]. In addition, the work of Barnum and collaborators

[123] shaped the idea of the global process emerging from the compati-

bility of local operations. It should be noted that this group rederived

quantum theory in an approach very similar to the process matrix but

did not obtain the process matrix formalism because they assumed a

fixed spacetime background and therefore a fixed causal order [57].

The process formalism was developed a year after the no-go theorem of

Chiribella [4] by Oreshkov, Costa, and Brukner [5]. Its original motivation

was quite different; whereas quantum combs were intended to implement

general tools for analyzing the properties of every physically possible

quantum circuit, process matrices were aimed to probe more fundamental

aspects of nature, as needed in the search for a theory of quantum gravity

per example. It aimed to provide a more general framework to quantum

theory that could, according to Hardy’s ideas (among others), treat

the causal structure as non-fixed, which comes from the fundamentally

contextual
8

behavior of quantum theory, but also as dynamical which is

motivated by the theory of general relativity [16].
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C.1. Mathematical Methods

Projective characterization methods are extensively based on the decom-

position of operators into bases that are formed by tensor products of

Hermitian operators. The simplest example of such a basis is the Pauli
basis, Definition 2.3.4.

In this section, decompositions in bases similar to the Pauli basis are

reviewed. Then, the projectors on subspaces spanned by subsets of

these bases, abstracted under the name projectors on operator systems
in Definition 3.2.7, are presented alongside some basic properties of

superoperator projectors.

C.1.1. Decomposition of Hermitian Operators

Operator systems are represented as real subspaces of Hermitian matrices.

This section collects three basic results on how to decompose such

operators because they are extensively used in the proofs presented in

this chapter. For a more systematic treatment, see for example References

[96, 162]

[96]: Roman (2008), Advanced Linear Al-
gebra.

[162]: Farenick (2000), Algebras of Linear
Transformations.

.

First, there always exists a Hermitian basis of L (H), so that ∀W ∈
L (H),

W =
∑
i

qi σi , (C.1)

where qi ∈ C and σ†
i = σi.

Second, because L
(
HA
)
⊗ L

(
HB
) ∼= L (HA ⊗HB), it is true that

∀VA ∈ L
(
HA
)
,∀NB ∈ L

(
HB
)
: (VA ⊗NB)† = V †

A ⊗N
†
B . (C.2)

This, in turn, implies that a factorizable self-adjoint basis exists, so that

all WAB ∈ L
(
HA ⊗HB

)
can be decomposed as

WAB =
∑
ij

qijσ
A
i ⊗ σBj , (C.3)

where qij ∈ C {σAi } and {σBj } are Hermitian bases like Equation C.15

for respectively spaces L
(
HA
)

and L
(
HB
)
. Remark that since the basis

elements are self-adjoint, whenever W is self-adjoint the weights qij are

real.

197
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[159]: Hall (2013), Quantum Theory for
Mathematicians.
[164]: Horn et al. (2013), Matrix Analysis.

Third, a self-adjoint operator can always be expressed as the difference

between two positive operators,

∀W =W †, ∃W+,W− ≥ 0 : W =W+ −W− , (C.4)

This is a consequence of the spectral theorem [159, 164]. This last observa-

tion can be extended to operator systems to define them as the difference

between two unnormalized elements of a state structure.

Lemma C.1.1 Any trace-normalized self-adjoint operator in an operator
system supporting state structure A can be represented as an affine difference
between two elements of the state structure A . In symbols,

∀V : V = V †, PA {V } = V, Tr [V ] = cA,

∃V1, V2 ∈ A ,∃q1, q2 ∈ R+, q1 − q2 = 1

such that
V = q1V1 − q2V2 .

(C.5)

Proof. V factors as

V = V + − V − . (C.6)

These two parts are positive so they cannot have negative traces. If any

part has a zero trace, then because of

cA = Tr [V ] = Tr

[
V +
]
+ Tr

[
V −] , (C.7)

either Tr [V −] = 0 in which case V is positive and q1 = 1 and V1 = V =

V +
. Or Tr [V +] = 0 in which case V is positive times a negative constant

and q2 = 1 and V2 = V .

In between these two special cases, as a projector on operator systems is

linear by definition, and since V = V + − V −
, it should hold that

V = PA
{
V +
}
− PA

{
V −} , (C.8)

Each part of the difference has support only on the operator system

of A . However, the projection may have turned the positive opera-

tors V +
and V −

into Hermitian operators. Hence they need to be

split again. Let PA {V +} = PA {V +}+ − PA {V +}− and PA {V −} =

PA {V −}+−PA {V −}−. By defining PA {V +}+ to be the operator built

from the projection on the eigenvectors with positive eigenvalues of

PA {V +} and PA {V +}− the one with the negative eigenvalues and

by proceeding similarly with PA {V −}+ and PA {V −}−, these four

operators are positive and supported on A only. Define

Ṽ1 := PA
{
V +
}+

+ PA
{
V −}− ; (C.9a)

Ṽ2 := PA
{
V +
}−

+ PA
{
V −}+ . (C.9b)

(C.9c)

These are two positive operators that have support on the operator system

of A . If any of those is zero the situation is back to the special cases

discussed above, so assuming they are not V can be rewritten as

V = Ṽ1 − Ṽ2 , (C.10)
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it only remains to normalize them properly. Define

q1 :=
Tr

[
Ṽ1

]
cA

, q2 :=
Tr

[
Ṽ2

]
cA

, (C.11a)

V1 := cA
Ṽ1

Tr

[
Ṽ1

] , V2 := cA
Ṽ2

Tr

[
Ṽ2

] , (C.11b)

so that the form of Equation C.5 has been reached:

V = q1V1 − q2V2 . (C.12)

To check that it obeys the conditions, on the one hand,

Tr[Ṽ1]
cA

and

Tr[Ṽ2]
cA

are positive real numbers hence V1 and V2 are positive operators that

have support on A and have a trace norm of cA. Therefore they are

valid elements of A . On the other hand, since Tr [V ] = cA, cA =

Tr

[
Ṽ1

]
− Tr

[
Ṽ2

]
and therefore

q1 − q2 =
Tr

[
Ṽ1

]
cA

−
Tr

[
Ṽ2

]
cA

= 1 , (C.13)

concluding the proof.

C.1.2. Decomposition in Traceless Basis

There are many ways to construct a basis for the decomposition of Equa-

tion C.1. But, since all operator systems contain an element proportional

to the identity, it is relevant to use a basis that features the identity as

one of its a elements. Because of the orthonormality condition, all the

other basis elements {σi}will be traceless since the inner product will

require that (1 , σi) = Tr

[
1†σi

]
= 0.

That way, any trace-normalized Hermitian operator has a Bloch vector
[52] or Fano [74] decomposition as

V =
c

d
1+

d2−1∑
i

vi σi . (C.14)

There are many ways of building a Fano decomposition. In accordance

with the previous section, the extra condition that this basis is self-adjoint

is taken. In two dimensions, an example of such a basis is the Pauli basis

(2.33). But such a basis exists for all dimensions: to construct it one can

use the d2 − 1 generators of the representation of the su(d) algebra in

L (H) (which are traceless and self-adjoint; see e.g. Ref. [159, Ch. 16]

[159]: Hall (2013), Quantum Theory for
Mathematicians.

)

and the identity matrix (which has a Hilbert-Schmidt inner product with

all traceless matrices equal to zero and which is self-adjoint). Yet, in

the case of the Pauli basis, the inner product of an element with itself

yields the dimension i.e. Tr

[
12
]
= Tr

[
X2
]
= Tr

[
Y 2
]
= Tr

[
Z2
]
= 2.

A better-behaved basis will be required to be normalized instead so

that (σi , σj) = Tr

[
σ†
i · σj

]
= δi,j

1
. This self-adjoint orthonormal basis,

which is sometimes called a generalised Gell-Mann [183] or a conal [184]
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2: If v was negative, the proof would
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order.
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[90]: Watrous (2018), The Theory of Quan-
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basis, satisfies

(σi)
†
= σi ; (C.15a)

σ0 := 1/
√
dA ; (C.15b)

Tr

[
σi ̸=0

]
= 0 ; (C.15c)(

σi , σj
)
:= Tr

[
σi · σj

]
= δi,j . (C.15d)

And is used in the proof of Lemma 3.5.3 as well as the one of Lemma 3.5.1.

For this last proof, a characterization of positivity for 2-dimensional

subspaces in this basis is used. This is the following result.

Lemma C.1.2 A Hermitian operator of the form

V =
c√
d
1+ vσi = cσ0 + vσi (C.16)

when expressed in a basis of the form (C.15) is positive semi-definite if

c√
d
≥
∣∣∣∣ v√2

∣∣∣∣ . (C.17)

In particular, V is positive for c = |v| when d > 1.

Proof. Assume without loss of generality that v ≥ 0. Since σ0 is the

identity it commutes with σi so they are simultaneously diagonalizable.

Let the d eigenvalues of σi be sorted in the vector {s0, ..., sd−1} in

ascending order
2
, so that the k-th diagonal element of the diagonalization

of cσ0 + vσi is equivalent to
c√
d
+ v × sk. The smallest eigenvalue of

cσ0 + vσi is therefore
c√
d
+ v × s0.

The trace of a matrix is the Schatten 1-norm (see e.g., References [74, 90])

and therefore equivalent to the sum of the eigenvalues. Since the matrix

σi is traceless but non-zero,

∑
k sk = 0 and s0 must therefore be negative

otherwise all the eigenvalues of σi are zero, thus

s0 = −
∑
k ̸=0

sk (C.18)

The Hilbert-Schmidt inner product of a matrix with itself is its Schatten

2-norm. As the matrices σi are normalized to 1 with respect to this inner

product, their eigenvalues obey the following relation√
s20 +

∑
k ̸=0

s2k = 1 . (C.19)

By the triangle inequality, it is straightforward to see that the worst case

scenario happens when −s0 = sk = 1/
√
2 so a sufficient condition for

c√
d
+ v × s0 to be positive is indeed that

c√
d
≥ v√

2
.

C.1.3. Superoperator projectors

The concept of a projector can also be defined for superoperators. A linear

superoperator PA ∈ L
(
L
(
HA
)
,L
(
HA
))

is a projector on a subspace of
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L
(
HA
)

if it is idempotent,

PA ◦ PA = PA . (C.20)

Two examples of such projectors are the identity map,

IA : ∀V ∈ L
(
HA
)
, IA(V ) = V , (C.21)

which projects L
(
HA
)

onto itself and the depolarizing superoperator

DA : DA(V ) :=
1A

dA
TrA [V ] , (C.22)

which projects L
(
HA
)

onto the span of the identity operator.

An operator V ∈ L
(
HA
)

belongs to the subspace defined by PA if and

only if

PA {V } = V . (C.23)

An operator that does not belong to the subspace defined by PA belongs

to the one defined by its complement, noted P⊥
A and defined as

P⊥
A := IA − PA . (C.24)

PA projects to a subspace closed under the adjoint if it obeys

PA {V } = V ⇒ PA
{
V †} = V † . (C.25)

This condition is actually necessary and sufficient since PA
{
V †} =

V † ⇒ PA
{
(V †)†

}
= (V †)† which is the left-hand side of Equation (C.25)

since the Hermitian adjoint is an involution. Then, the left-hand side of

Equation (C.25) can be inserted into the right-hand side so that

PA
{
PA {V }

†
}
= PA {V }

†
. (C.26)

This can be written concisely as PA ◦ † ◦ PA = † ◦ PA where † means

‘taking the adjoint in L
(
HA
)
’.

A projector is orthogonal if it does not increase the norm of operators
3
:∣∣∣∣PA {V } ∣∣∣∣2 ≤ ∣∣∣∣V ∣∣∣∣2 . (C.27)

This condition is equivalent to self-adjointness (see e.g., [96]),

Tr

[
PA {V ′}† · V

]
= Tr

[
V ′† · PA {V }

]
, ∀V, V ′ . (C.28)

Indicating the adjoint of a mapM∈ L
(
L
(
HA
)
,L
(
HA
))

with ∗ so that

(V ′ ,M (V )) = (M∗(V ′) , V ), this condition can be written concisely as

PA = P∗
A. All projectors are thereafter assumed orthogonal.

Since the space of superoperators is a Hilbert space of bounded operators,

the properties of orthogonal projectors on Hilbert spaces also apply to

them. A few results from this rich theory will underly the mathematical

properties of the projective characterization methods. See references [71,

96, 106, 162] for a more thorough exposition. The main property, which is

the mathematical starting point of Chapter 5, is that the projectors on a
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Hilbert space are in bĳection with closed subspaces of the Hilbert space.

Meaning P can be identified with Im{P} and all their properties will

be in one-to-one correspondence; this is why Chapter 5 focuses on the

algebra of projectors rather than on the inclusions properties of operator

systems.

From there, the inclusion of the image of two projectors can be phrased

as an algebraic property. This is the content of the following standard

result.

Proposition C.1.3 (Inclusion of Projectors) Let P and P ′ two orthogonal
(superoperator) projectors on some Hilbert space of operators L (H). Then the
following are equivalent:

Im{P} ⊆ Im
{
P

′
}
; (C.29a)

P ◦ P
′
= P ; (C.29b)

P
′
◦ P = P ; (C.29c)∣∣∣∣P {V } ∣∣∣∣

2
≤
∣∣∣∣P ′
{V }

∣∣∣∣
2
, ∀V ∈ L (H) ; (C.29d)

0 ≤ Tr
[
V † ·

(
P

′
− P

)
{V }

]
, ∀V ∈ L (H) . (C.29e)

In general, an orthogonal superoperator projector can be written as a

sum of vectors in L (H) times functional in L (H)
∗

like

P {·} = σiTr

[
σ†
i ·
]
. (C.30)

Where the orthonormal collection of operators {σi} ⊂ L (H) spans the

subspace defined by the projector. This is the analog to how a projector on

a subspace ofH can be written asΠ =
∑
i |ϕi⟩⟨ϕi| for a given orthonormal

set of vectors {ϕi} ⊂ H defining the support of Π.

As the orthogonal projectors should be used to characterize operator

systems, which are subspaces that contain the identity, it should be

true that their images contain the span of the identity as a subspace. By

Proposition C.1.3, a necessary and sufficient condition for that to be true

is

PA ◦ DA = DA , (C.31)

with DA defined as in Eq. (C.22).

Finally, and as defined in the main text, a projector on operator systems

is orthogonal, and projects onto a self-adjoint subspace that contains

the identity: it obeys conditions (C.20), (C.25), (C.28), and (C.31). Also,

note that a property of superoperator projectors is that they are stable

under transpose. This is because, on the one hand, they are C-linear

maps thus stable under complex conjugation. And, on the other hand,

they are stable under Hermitian adjoint by definition. Combining the

two yields stability under the transpose.

C.1.4. Examples of Projectors on Operator Systems

Besides I and D, an example of a projector on an operator system is the

‘dephasing’ or ‘quantum-to-classical’ map ∆ that sends an operator to
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4: The use of the symbol ∆ instead of a

calligraphic letter is made to stick with

the literature.

5: In order to compute it, the maximally

entangled state in Pauli basis is given by

Equation C.36 below.

6: This was brought to my attention by

Nicola Pinzani, to whom I am grateful.

7: Meaning that it is the largest subspace

whose basis can be expressed using real

numbers only.

its diagonal subspace with respect to a given basis
4

ConsiderH to be of

dimension two. Expressing the qubits states ρ ∈ L (H) in the Pauli basis

(2.33), the dephasing superoperator projector with respect to this basis

has the form

∆ =
1

2
Tr [·] + Z

2
Tr [Z·] . (C.32)

It can be checked that it obeys the different requirements of Defini-

tion 3.2.7: it is an idempotent map because the Pauli matrices obey the

relation

σi · σj = δi,j1+ ϵi,j,kiσk (C.33)

for σ1 = X,σ2 = Y, σ3 = Z, δi,j the Kronecker symbol, and ϵi,j,k the

Levi-Civita symbol; It is Hermitian-preserving because the Pauli basis is

hermitian; It is self-adjoint because its CJ operator
5

is

M (∆) = 1⊗ 1+ Z ⊗ Z , (C.34)

which is symmetric and therefore self-adjoint as the adjoint
∗

of linear

maps corresponds to the transpose
T

of their Choi operators under CJ

isomorphism; and it contains the depolarizing superoperator D{·} :=
1
d Tr [·] as can be seen from direct inspection. Notice in passing that the

Choi operator of ∆ is positive, therefore it is a completely positive map.

However, projectors on operator systems are usually not even positive-

preserving as shown in the following example
6
. The counterexample is

built from the map

PR {·} := 1

2
Tr [·] + X

2
Tr [X·] + Z

2
Tr [Z·] , (C.35)

which projects onto the “real” subspace of the Bloch sphere
7
.

This map is positive-preserving but nonetheless not CP. Consider the

bipartite maximally entangled state ϕ+ =
∑1,1
i,j=0 1/2 |i⟩ ⟨j|A ⊗ |i⟩ ⟨j|B .

This is a state in L
(
HA ⊗HB

)
thus a positive operator. In the Pauli basis,

it has the form

ϕ+ =
1

2
(1A ⊗ 1B +XA ⊗XB − YA ⊗ YB + ZA ⊗ ZB) . (C.36)

Applying the projector PR {·} on one side, say A, yields the state

(
PR
A ⊗ IB

)
{ϕ+} = 1

2
(1A ⊗ 1B +XA ⊗XB + ZA ⊗ ZB) , (C.37)

which is no longer positive. Moreover, remark that PR
A ⊗ IB is also a

projector on operator system, but space L
(
HA ⊗HB

)
this time. This

constitutes an example of a non-positive-preserving projector on operator

system. For the same reason, the projectors IA ⊗ PR
B and PR

A ⊗ PR
B are

also non-positive-preserving. It appears that the positivity-preservation

of projectors P is not a property preserved by their quasi-orthogonal

complement P .
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C.2. Proofs

C.2.1. Proof of Theorem 3.3.2

Theorem 3.3.2 states that the set of operators V such that

∀N ∈ A : Tr

[
V † ·N

]
= 1 , (3.29)

and taking each elementEa of every resolution ofN to a positive number

between 0 and 1, i.e.,

Tr

[
V † · Ei

]
∈ [0, 1] , (3.30)

is a state structure noted A characterized by the following conditions:

V ∈ A ⇐⇒
V ≥ 0 , (3.31a)

Tr [V ] =
dA
cA

=: cA , (3.31b)

P
A
:= {IA − PA +DA} (V ) = V . (3.31c)

Proof. As cA/dA1 is a valid element of A ⊆ L
(
HA
)
, any element V of

A must satisfy 1 = (V , cA/dA1) = Tr

[
V † · cA/dA1

]
= cA/dATr [V ].

Since V is arbitrary, this fixes the normalization for all elements of A :

dA/cA = Tr [V ] =: cA, this is condition (3.31b).

Positivity follows from the requirement of element-wise positivity with

each resolution. For any V , let {|ej⟩} is an orthonormal basis of HA
so that V is diagonal in this basis. Then its eigendecomposition is

given by V =
∑
j aj |ej⟩⟨ej |, where aj ∈ C are the eigenvalues of

V . Since cA/dA1 = cA/dA
∑
j |ej⟩⟨ej |, a resolution of cA/dA1 can be

defined as {Ej = cA/dA |ej⟩⟨ej |}dA−1
j=0 . That each element in the reso-

lution gives a number between 0 and 1 reads ∀j, ⟨V , Ej⟩ ∈ [0, 1]. But

⟨V , Ej⟩ = Tr

[
(
∑
i ai |ei⟩⟨ei|)

† · (cA/dA |ej⟩⟨ej |)
]
= cA/dA

∑
i ai δi,j ,

where · indicates complex conjugation and δi,j is the Kronecker delta.

Hence, ∀j, ⟨V , Ej⟩ = cA/dA aj ∈ [0, 1], and since cA/dA is a positive

real constant, this means that each aj is real and greater or equal to zero.

Therefore, V is positive semi-definite since it has a positive spectrum,

condition (3.31a).

Finally, the projective condition remains. First, 1/cA1 must belong to A
as it is positive, properly normalized, and respects Tr [1/cA1 ·N ] = 1

for all N ∈ A . Assuming that A is a deterministic state structure

with projector PA := I − PA + D, the if part follows: Any positive

and properly normalized operator V in L
(
HA
)

on which the projec-

tor PA is applied obeys

〈
PA {V } , N

〉
= 1 for all N ∈ A because〈

PA {V } , N
〉
≡ ⟨(I − PA) {V } , N⟩ + ⟨D{V } , N⟩. The first member

on the right part of the equality vanishes because it belongs to the or-

thogonal complement of A ; the second member is normalized so that

⟨D{V } , N⟩ = ⟨Tr [V ] /dA1 , N⟩ =
〈

dA
cAdA

1 , N
〉
= 1/cATr [N ] = 1.

The only if part is proven by a counterexample: assume that there is a posi-

tiveX with trace norm cA = dA/cA that does not belong to the space char-

acterized by PA. Then,

(
I − PA

)
{X} = X . From the definition of the

projector, I −PA = PA−D. Now, lettingN = cA/dA 1 gives (X , N) =
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[32]: Castro-Ruiz et al. (2018), Dynamics
of Quantum Causal Structures.

(X , cA/dA 1) = 1. Yet, by applying the projector on X it should be

that ((PA −D) {X} , cA/dA1) = 1, hence (P {X} , cA/dA1) − 1 = 1

but PA is a self-adjoint projector so (P {A} , 1) = 2dA/cA becomes

⟨X , PA {1}⟩ = ⟨X , 1⟩ = Tr [X] = 2dA/cA. However, the trace norm of

X was assumed to be cA := dA/cA. By consequence, a contradiction has

been reached. This proves the necessity of condition (3.31c), concluding

the proof.

C.2.2. Proof of Theorem 3.4.1

Theorem 3.4.1 states that the set of all admissible and structure-preserving

maps between state structures A and B as defined by Definition 3.4.3 are,

in CJ representation, the set noted A → B whose elements M obey

M ≥ 0 , (3.70a)

Tr [M ] = cAcB =
cB
cA
dA , (3.70b)

PA→B{M} =M . (3.70c)

Proof. Following [32], the second requirement of Definition 3.4.3 states

thatM (V ) is a valid element of B:

M (V ) ≥ 0 , (C.40a)

Tr [M (V )] = cB , (C.40b)

PB ◦M ◦ PA =M◦PA . (C.40c)

The third requirement further imposes condition (3.70a) by definition.

Because of the first requirement,M is linear so it has a CJ representation.

Denote by M the CJ representation ofM, complete positivity imposes

condition (3.70a). Using the reverse definition of CJ isomorphism, Equa-

tion 2.7, condition (C.40b) becomes (subscripts have been put on M and

V for clarity)

Tr [MAB · (VA ⊗ 1B)] = cB , (C.41)

from which the normalization condition (3.70b) follows as VA can be

cA1/dA.

Finally, asM (V ) = (TrA [M · (V ⊗ 1B)])T andM (V ) ∈ B, it should

be true that, ∀N ∈ B,

1 = TrB [N · M (V )]

= TrB

[
N · (TrA [M · (V ⊗ 1B)])T

]
=
(
TrB

[
TrA [M · (V ⊗ 1B)] ·NT

])T
= Tr

[
M · (V ⊗NT )

]
. (C.42)

Where M is positive and normalized, and where V ∈ A and N ∈ B
are arbitrary. This last equation, as it is linear, also holds for all affine

combinations of elements in A and B,

1 = Tr

[
M · (V ⊗NT )

]
⇒ Tr

[
M ·

(∑
i

qi(Vi ⊗NT
i )

)]
= 1 , (C.43)
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∀{qi} ⊂ R :
∑
i qi = 1, ∀{Vi} ⊂ A, ∀{Ni} ⊂ B. By Lemma 3.5.1,

the affine combinations of A and B are themselves a state structure

characterized by

W :

W ≥ 0 , (C.44a)

Tr [W ] = cAcB , (C.44b)(
PA ⊗ PB

)
{W} =W , (C.44c)

and noted by A ⊗B according to Definition 3.4.1. Hence, the consequence

of Equation C.42 is that the set of allM obeying it is the set of deterministic

functionals on A ⊗B. Therefore, by Proposition 3.3.2, it is characterized

by a projector PA ⊗ PB yielding the projective condition (3.70c). Finally,

notice that PA→B can be expressed as tensor product and negation of

projectors on operators systems. As a consequence, it is a valid projector

on operator system as is proven explicitly in Appendix D.3.2.

C.2.3. Proof of Lemma 3.5.1

The proof of Theorem 3.4.1 relies on the statement that the tensor

composite state structure as in Definition 3.4.1 belongs to the affine span

of the composed state structures, i.e.,{∑
i

qi Vi ⊗Ni|Vi ∈ A, Ni ∈ B, qi ∈ R :
∑
i

qi = 1

}
⊃ A ⊗B .

(3.81)

Proof. To prove that anyW ∈ A ⊗B decomposes into

∑
i qi Vi⊗Ni, the

self-adjointness of W is used. Because W is self-adjoint, it can be written

in a Hermitian basis as a real-linear sum like Equation C.3,

W =

nA,nB∑
i=0,j=0

qij σ
A
i ⊗ σBj , (C.45)

so that the basis element are of the form (C.15) and are restricted to the

support of A ⊗B and where the number of non-zero coefficients is

(nA + 1)(nB + 1) so that nA + 1 ≤ dA ≤ dA and nB + 1 ≤ dB ≤ dB .

According to Lemma C.1.2, the elements in the decomposition can be

made positive by adding the identity times a positive constant to them.

This constant can actually be chosen to be |qij |. In addition, each of these

positive elements can be made so that they have a trace of cAcB . Let

q̃00 := 1 , (C.46a)

(i, j) ̸= (0, 0) ∈ [0, nA]× [0, nB ] , q̃ij :=

√
dA
cA

√
dB
cB
|qij | , (C.46b)

(i, j) ̸= (nA, nB) ∈ [nA, 2nA]× [nB , 2nB ] , q̃ij := −q̃i−nA j−nB
, (C.46c)

and
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8: For example,
cA√
dA

(
σA
0 −σA

i

)
is pos-

itive by Lemma C.1.2, has support on the

operator system of A , and has a trace

equal to cA.

W00 =
cAcB√
dA
√
dB

(
σA0 ⊗ σB0

)
, (C.47a)

(i, j) ̸= (0, 0) ∈ [0, nA]× [0, nB ] , Wij =
cAcB√
dA
√
dB

(
σA0 ⊗ σB0 +

qij
|qij |

σAi ⊗ σBj
)
, (C.47b)

(i, j) ̸= (nA, nB) ∈ [nA, 2nA]× [nB , 2nB ] , Wij =
cAcB√
dA
√
dB

(
σA0 ⊗ σB0

)
. (C.47c)

That way,

W =

2nAnB−1∑
i=0,j=0

q̃ijWij , (C.48)

where each Wij is a valid element of A ⊗ B and

∑
ij q̃ij = 1 since

Tr [W ] = (nA + 1)(nB + 1)(cAcB) − ((nA + 1)(nB + 1) − 1)cAcB . The

decomposition in (nA + 1)(nB + 1) Hermitian operators thus have been

turned into an affine sum of 2(nA + 1)(nB + 1)− 1 elements of A ⊗B
in accordance with Lemma C.1.1.

It remains to prove that each element Wij can be split into an affine sum

of tensor products of elements of A and B. This is already the case for

W00 and the Wij for which (i, j) > (nA, nB) since all these elements but

the tensor product of the identity elements of each state structure:

cAcB√
dA
√
dB

(
σA0 ⊗ σB0

)
=

(
cA
dA

1A

)
⊗
(
cB
dB

1B

)
. (C.49)

To show it for the remaining composite operators of the form Wij =
cAcB√
dA

√
dB

(
σA0 ⊗ σB0 +

qij
|qij |σ

A
i ⊗ σBj

)
, the following is used:

Wij =
1

2

[ cA√
dA

(
σA0 +σAi

)
⊗ cB√

dB

(
σB0 +

qij
|qij |

σBj

)]
+

1

2

[ cA√
dA

(
σA0 −σAi

)
⊗ cB√

dB

(
σB0 −

qij
|qij |

σBj

)]
. (C.50)

This is a convex sum of two tensor products. By construction, each tensor

product feature a valid element of A tensored with one of B8
. A convex

sum is an affine sum, therefore each such Wij can be decomposed into

an affine sum of tensor products. As an affine sum of affine sums is an

affine sum, this provides a constructive proof that any W ∈ A ⊗B can

be split into an affine sums of elements of the form V ⊗N where V ∈ A
and N ∈ B.

C.2.4. Proof of Lemma 3.5.3

Lemma 3.5.3 states that a necessary and sufficient condition for

TrA [(V ⊗N) ·W ] =
Tr [V ]TrA [W ]

dA
·N , (3.98)

to hold for all V ∈ A and N ∈ L
(
HB
)

is that

(PA ⊗ IB) {W} =W . (C.51)
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9: Which exists for all dimensions since

it is the su(d) generators and the identity

matrix. See subsection C.1.1.

Proof. Let

{
σXi
}

be an orthonormal basis of L
(
HX

)
so that

9

(
σXi
)†

= σXi ; (C.52a)

σX0 := 1/
√
dA ; (C.52b)

Tr

[
σXi ̸=0

]
= 0 ; (C.52c)(

σXi , σXj
)
:= Tr

[
σXi · σXj

]
= δi,j . (C.52d)

And choose this basis on L
(
HA
)

such that the n < d2A elements after σA0 ,

{σA1 , σA2 , . . . , σAn }, form a basis of A \ {1 =:
√
dAσ0}. This implies that

if PA is the projector on A , then

∑d2A−1
i=0 PA

{
σAi
}
=
∑n
i=0 PA

{
σAi
}

.

Expand W and V using this basis, let W =
∑d2A−1,d2B−1
i,j wij σ

A
i ⊗ σBj ;

V = cA/
√
dA σ

A
0 +

∑n
k=1 vk σ

A
k . By direct computation:

TrA [W ] = dA

d2B−1∑
j=0

w0j σ
B
j ; (C.53)

Tr [V ] = cA ; (C.54)

TrA [W · (V ⊗N)] =

 n∑
i=0

d2B−1∑
j=0

dA wij viσ
B
j

 ·N . (C.55)

Combining Eqs. (C.53) and (C.54) in the right-hand side of Eq. (3.98) and

(C.55) in its left-hand side yields

TrA [W · (V ⊗N)] =
TrA [W ]Tr [V ]

dA
·N ⇒ n∑

i=0

d2B−1∑
j=0

dA wij viσ
B
j

 ·N =

(
dA

∑d2B−1
j=0 w0j σ

B
j

)
(cA)

dA
·N ,

(C.56)

the equality is true for n∑
i>0

d2B−1∑
j=0

wij vi σ
B
j

 ·N = 0 . (C.57)

This reduces to

∑n
i>0

∑d2B−1
j=0 wij vi σ

B
j = 0 because N is arbitrary. On

the other hand, this equation has to hold for allV in A, so one can consider

the family Vi ≡ σAi . Each Vi then induces a condition

∑
j wij σ

B
j = 0

for i ∈ 1, . . . , n. Because the σBj ’s are orthonormal vectors, and W is

arbitrary, this condition is true for a given Vi if and only if wij = 0 ∀j
whenever i corresponds to a basis element of A , i.e., whenever 0 < i ≤ n.

The condition for the equality to hold is therefore that W has the

form

∑d2B−1
j=0

(
w0j σ

A
0 ⊗ σBj +

∑d2A−1
i>n wij σ

A
i ⊗ σBj

)
. This is equivalent

to requiring Equation (C.51) on M , concluding the proof.
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[52]: Nielsen et al. (2009), Quantum Com-
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[90]: Watrous (2018), The Theory of Quan-
tum Information.

[76]: Ozawa (1984), Quantum measuring
processes of continuous observables.

C.3. Comments

C.3.1. On the Definition of a Resolution

Following the idea that a quantum instrument and their CJ representation

are ‘probabilistic resolutions’ of the set of quantum channels, the concept

of a resolution of the identity has been generalized into the concept of a

resolution of a state structure in Definition 3.2.4.

Therefore Definition 3.2.4 is the postulate, made implicitly in the theory

of higher-order processes, that all convex decomposition of a unit effect

into positive operators must be identifiable with a given probabilistic

intervention.

The justification of this postulate is beyond the scope of this thesis. For

completeness, the following discussion presents some elements about a

potential justification by finding a decomposition of the resolution into a

known to be realizable experimental procedure.

While it is known that all POVM have an in-principle physical realization

through Naimark dilation (see e.g. References [52, 90]) and, at the level

above, that all quantum instruments have an in-principle realization

through Stinespring dilation [76], this is not guaranteed to be true for

the higher-orders. What about the realization of the resolutions of other

state structures as a concrete lab procedure?

For instance, can the resolution of a single partite process be decom-

posed as an ordered succession of a state preparation followed by a

measurement and sharing an ancillary memory channel? And what

about bipartite processes? This is to say, even if a deterministic operation

appears feasible in a lab (a single partite process matrix is simply a

state preparation followed by a measurement and sharing an ancillary

channel), its probabilistic resolutions may require more resources (like

backward in time signaling, indefinite causal order, postselection, etc.).

An interesting thing to keep in mind is that the resolutions are always

allowed to be outside of the support of the state structure, as long as

they sum up to an element of it. This is already the case for quantum

effects, which can be any positive operator as long as they belong to a

collection that sums up to the identity. As resolutions are mathematically

compatible with the full structure of the theory, and indeed yield a well-

defined probabilistic theory they should be allowed by the no-restriction

hypothesis. But, in light of the result cited above, one may wonder if

the no-restriction hypothesis is too lenient in that case? An answer to

this question would require more research on the realizability of higher-

order quantum processes. This direction is left open for future research.

Without a clear answer, it should be noted that the hypothesis that all the

allowed probabilistic operations correspond to all possible resolutions

of state structures may induce extra hypotheses on what is feasible in

a local lab. The concept of the resolution of a state structure is taken

purely as a mathematical definition for the purpose of obtaining a general

mathematical model.
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10: Which is also an hypothesis of the

model, see Appendix C.3.1.

C.3.2. On the Definition of a Frame Function on a State

Structure

The definition of frame function on state structure requires assuming a

generalized notion of Gleason non-contextuality as well as a σ−additivity

of the frame functions on resolutions of state structures. For completeness,

here are presented some potential issues that may result from such

assumptions.

The first assumption, called instrument non-contextuality in [51, 60], is

actually an adaptation of Gleason non-contextuality (later formalized as

Spekkens’ measurement non-contextuality; see e.g., [58, 59]) to the case

of higher-order interventions. In the context of Definition 3.3.1, this is the

assumption that only the outcome is important for assigning a probability

to an element of a resolution. Hence, it is an assumption that is not specific

to state structures, so higher-order quantum processes, but any kind of

process that can be treated using the formalism of Definition 1.1.1.

At the level of resolutions of frame functions, it is a non-trivial as-

sumption. If a specific outcome ã appears in two different observations,

it corresponds to two probabilistic operations like {Na1}a1∈Ωa1
and

{Ma2}a2∈Ωa2
(these observations are assumed independent of a choice of

setting to simplify the notation). When this is the case, one can randomize

between these two observations so that the new global observation takes

values in Ωa|x such that it results in a new operation {Ea}a∈Ωa|x with

Ωa|x=0 = Ωa1 , Ωa|x=1 = Ωa2 and ã can be observed in both conditional

subsets. In other words, depending on the setting, the observation of

the party is either represented by {Na1} when x = 0 or by {Ma2}
when x = 1. The point is that the outcome ã has been mapped to two

different operators, either Eã|x=0 = Nã or Eã|x=1 = Mã. The analog

of non-contextuality here is that the obtained probability, for all frame

function f , is independent of which of these operators was chosen,

p(ã|x = 0) = p(ã|x = 1) . (C.58)

This is true if and only if

f(Eã|x=0) = f(Eã|x=1) . (C.59)

Since the resolutions can run over the entirety of L
(
HA
)
, and that f

can also be resolved
10

, this amounts to requiring that Eã|x=0 = Eã|x=1

= Eã. In a sentence, the assumption states that each different operator

corresponds to a different outcome, and if the same operator appears in

two different resolutions, the outcome distribution for all frame functions

is independent of the resolution it was taken from.

In general, this kind of non-contextuality conditions for generalizations

of POVMs are hard to justify with respect to contextuality for PVMs. Non-

repeatability blurs the notion of deterministic assignment of measurement

results. And, if one purifies the unsharp effects to sharp effects so as to

make the assignments deterministic, some effects that differed only by

their choice of setting can be mapped to different projectors and, therefore,

to different statistics; one induces contextual effects by purifying despite

having assumed them to be non-contextual, see in particular References

[59, 155]

[59]: Spekkens (2014), The Status of De-
terminism in Proofs of the Impossibility of a
Noncontextual Model of Quantum Theory.

[155]: Grudka et al. (2008), Is There Con-
textuality for a Single Qubit? for a discussion on that point. Since frame functions on state
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[112]: Caves et al. (2004), Gleason-Type
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[115]: Wright et al. (2019), A Gleason-type
theorem for qubits based on mixtures of pro-
jective measurements.

structures are equivalent to a subset of frame functions on quantum effects

constrained by condition (3.24a), these critics also apply to Definition 3.3.1.

The study of Gleason-kind contextuality for frame functions is left open

as a direction for future research.

The second assumption is also a stronger requirement than the original

Gleason theorem because the probabilistic measure has been shifted

from a PVM to a POVM. As the overlap between effects in a POVM can

be non-zero, assuming they obey the σ-additivity condition (3.24c) is an

extra condition compared to the PVM case.

Indeed, nothing guarantees that the union of two effects with non-zero

overlap splits homogeneously like f(Ei+Ej) = f(Ei)+f(Ej) [112]. This

point has been first formulated concerning Busch’s proof of Gleason’s

theorem for POVM (see Reference [115] for review). But Busch’s proof

only assumes f(1) = 1. Compared to Equation (3.24a), it appears that an

extra assumption was added by using the same form of frame functions

by formal analogy alone. Gleason-kind proofs are based on an idea of

σ-finite measure, which is order-preserving with respect to the partial

order in the set of positive operators, i.e.

Ei ≤ Ej ⇒ f(Ei) ≤ f(Ej) , (C.60)

this property leads to the weakening of Equation (3.24c),

∑
i f(Ei) =

f(
∑
iEi) for

∑
iEi ≤ 1 which justifies coarse-graining: summing op-

erators amounts to summing their respective probabilities. However,

Definition 3.3.1 assumes

∑
i f(Ei) = f(

∑
iEi) for

∑
iEi ≤ N for all

N ∈ A and not only 1; the frame functions on operator system appear

much more constrained than frame functions on POVMs. This does not

appear as a trivial extra condition since not all N ≤ 1 nor not all N ≥ 1.

Whether this assumption has implications is also left open for future

research.

C.3.3. On the Freedom of Choice Assumption in Quantum

Operations

Under the statistical interpretation, a choice of setting is always seen

as something that can be done deterministically, whether the choice of

outcome is always probabilistic. This is the statement that at the lowest

order, the preparation procedure can always result in a preselected state

in a deterministic, and therefore repeatable, way, but, on the contrary,

the measurement procedure cannot result in a postselected effect in

a repeatable way. The freedom of choice assumption asserts that the

choices of settings of different parties are independent of each other.

In the generalized state and effect pair picture presented above, this

assumption was actually sneaked in by demanding the environment to

be chosen independently of the operation the party chooses to perform.

By writing that the averaged operation is given by

N :=
∑
x

p(x)
∑
a

Na|x (C.61)

the unconditional distribution of x was used. This assumes that the

average over the setting of the party is not conditional on the choice
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[62]: Eggeling et al. (2002), Semicausal
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[64]: Piani et al. (2006), Properties of quan-
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[185]: Horodecki et al. (2016), Relativistic
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ries.

of the environment y, so that p(x|y) = p(x|y′) = p(x) for any two y, y′.

Hence the settings are independent, p(x, y) = p(x)p(y). Indeed, a general

operatorNa,x representing the joint distribution of outcome a and setting

y obeys (
Na,x , V|y

)
= p(a, x|y) . (C.62)

By the definition of a conditional distribution,

p(a, x|y) = p(a|x, y)p(x|y) , (C.63)

so because

p(a|x, y) =
(
Na|x , V|y

)
= Tr

[
N†
a|x · V|y

]
, (C.64)

the relation between the operators Na|x and Na,x is obtained using the

linearity of the trace in Equation C.63

Tr

[
N†
a,x · V|y

]
= Tr

[(
p(x|y)Na|x

)† · V|y] . (C.65)

As V|y can be the identity operator and that Na,x and Na|x take value

over the whole of L
(
HA
)

(since these are effects), it is necessary that

Na,x = p(x|y)Na|x . (C.66)

Finally, it is direct to see that p(x, y) = p(x)p(y) is enough to weaken the

above relation into Equation C.61
11

11: Proving it at the level of distributions

alone,

p(a|x, y)p(x|y) = p(a|x, y)p(x, y)/p(y).
(C.67)

And p(x, y) = p(x)p(y). Therefore,

p(a|x, y)p(x|y) = p(a|x, y)p(x) .
(C.68)

By seeing the environment as an independent party, the freedom of

choice assumption indeed requires the setting y of this new party to be

uncorrelated with the setting x of the party performing the operation. In

a sentence: the local choice of an operation is independent of the global

environment.

C.3.4. On the Definition of Parallel Composition as the

No-Signaling Composition

The smallest composition that can be witnessed by the projective charac-

terization techniques, a linear method, is the set of no-signaling composi-

tions. But some smaller sets are also interesting, like the separable states

defined by the minimal tensor product. Considering these subsets makes

sense for quantum states because of entanglement and non-locality [56,

169].

However, the exact meaning of entanglement in higher-order state struc-

ture remains to be clarified. For instance, what does it mean when a

no-signaling bipartite channel has an entangled CJ representation? When

it is not, the separability entails that it can be represented by local opera-

tions and shared randomness (LOSR). However, when it is entangled,

it cannot be that it has a realization using local operation and shared

entanglement (LOSE) since there exist no-signaling channels that do not

[61, 62, 64, 65, 185].

The kind of channel realizable by LOSE brings another interesting subset

of A ⊗B to consider the set of ‘localizable’ bipartite composite operators.

For the set of bipartite quantum channels, this is the set of local channels
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12: Which properties are analog to the

Hadamard gate (see e.g., Section 4.2 in

Reference [52]

[52]: Nielsen et al. (2009), Quantum Com-
putation and Quantum Information.

) but this matrix changes

the computational basis (the eigenbasis

of Z) into the {|±i⟩} basis (the eigenba-

sis of Y ) instead of changing it into the

{|±⟩} basis (the eigenbasis of X).

sharing entanglement [61, 64]. However the generalization to arbitrary

state structures opens the question of how to generalize the notion of

localizability to compositions of arbitrary state structures. This question

has been considered in much more detail in Reference [36].

Naturally, this brings the extra question of how to define local operations

and classical communications (LOCC) paradigm for arbitrary pairs of

state structures. This was discussed in References [186, 187].

Remark in passing that the admissibility of higher-order processes hides

on the assumption that the set A ⊗B is fully realized by local parties at

all levels. Otherwise, the higher-order environment these local parties

could share would actually be bigger than the state structure A

&

B. For

instance, if all that the parties could realize were product states, then the

most general map normalized on this would not have to be CP, Positivity

on Pure Tensors would suffice [123]. On physical heuristics, one could

require that the set of local operations be restricted to the localizable ones

at some ‘highest level’ of the hierarchy instead. Would that prevent any

non-trivial higher-order transformations from being defined over that

level?

All of these questions have no answer to the best of my knowledge. They

are left as interesting, open directions for further developments.

C.3.5. No-Signaling Bipartite Biased Quantum States are

Separables.

In the example of biased quantum theory of subsection 3.6.1, it is claimed

that the set A ⊗B of bipartite no-signaling states cannot show non-local

effects. This is because this state space is entirely composed of separable

states.

Proposition C.3.1 (Bipartite Biased Quantum States are Separable) Let
A and B be state structures of biased quantum states as in Definition 3.6.1.
Then, their no-signaling composition as in Definition 3.4.1 is a minimal
tensor product. In other words, any no-signaling bipartite biased quantum
state is separable.

Proof. To see it, first notice that the space spanned by the Pauli matrices

minus the Y one is the space of symmetric operators with respect to

transpose in the computational basis,

Sym(L
(
HA
)
) := Span {1A, XA, ZA} . (C.69)

And notice that the operator system supporting A ⊗B is similar to a

tensor product of spaces of symmetric matrices, i.e. its support is similar

to the nine elements in

Sym(L
(
HA
)
)⊗ Sym(L

(
HB
)
) = Span {{1, X, Z}A ⊗ {1, X, Z}B} .

(C.70)

Let H be the following unitary transform
12

.

H :=
Y + Z√

2
(C.71)
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[188]: Peres (1996), Separability Criterion
for Density Matrices.
[189]: Horodecki et al. (1996), Separabil-
ity of mixed states: necessary and sufficient
conditions.

whose adjoint action leaves the identity matrix invariant, maps the Pauli

X toHXH = −X , and maps the Pauli Y matrix to the Z and vice-versa,

i.e. HYH = Z and HZH = Y . The similarity is obtained by mapping

all elements W ∈ A ⊗B to (H ⊗H)
†
W (H ⊗H) so that

Sym(L
(
HA
)
)⊗ Sym(L

(
HB
)
) = (H ⊗H)

† A ⊗B (H ⊗H) . (C.72)

Now the space of symmetric matrices spanned by these operators is

invariant under transposes and partial transposes
13

. Hence, it is a subspace

of the state space of two qubits in which all elements have a Positive Partial

Transpose (PPT). In this dimension, this is a necessary and sufficient

condition for separability by the Peres-Horodecki criterion [188, 189].

Finally, since the unitary map between the two state spaces is separable

as well, it cannot map separable states to entangled states. Therefore,

A ⊗B have to be separable.
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D.1. Mathematical Methods

Some known results about the abstract mathematical structures evoked

in the main text are gathered here.

Some set theory is used. When it is done, abstract sets are noted using

capital letters S,L, . . . and their elements are noted using lowercase

letters a, b, c, . . .. From the context, there should be no risk of confusion

with operators on a Hilbert space.

D.1.1. Lattices

The operator systems on which the algebra of projectors is built are

subspaces of the real vector space of self-adjoint operators which is

itself embedded in the complex vector spaces of operators, L (H). It is

well-known that the set of subspaces of a vector space forms a special

algebraic structure named a lattice. Here some facts about these structures

are recollected. It is then shown under which operations the algebra

of commuting projectors on operator systems in a space L (H) forms a

Boolean lattice. More precisely, it is shown that the set of operator systems

sharing the same basis is a Boolean lattice characterized by projectors

whose algebra is homomorphic to this lattice. For a complete review, see

Chapter 8 of Reference [150] for instance.

The set of subspaces of a space is a special kind of set called a partially
ordered set.

Definition D.1.1 (Partial order) A partially ordered set is a set together
with a binary relation a ⊆ b defined between any two of its elements a and b
and satisfying the following rules:

1. a ⊆ a (reflexivity);
2. If a ⊆ b and b ⊆ a, then a = b (anti-symmetry);
3. If a ⊆ b and b ⊆ c, then a ⊆ c (transitivity).

The⊆ operation for subspace translates the property of a subspace being

contained into another one. The greatest (respectively, lowest) element of

a subset {ai} is the element aj verifying aj ⊇ ai (aj ⊆ ai) ∀i. It is related

to another structure called a lattice. A lattice is a partially ordered set in

which two elements have a lowest upper and greatest lower bounds. This

requirement can be shown as equivalent to the following properties:

215
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Definition D.1.2 (Lattice and Sublattice) A lattice is a set L together with
two binary compositions S × S → S, the cap1

1: Also called ‘meet’, ‘and’, or ‘additive

conjunction’.

∩ and the cup2

2: Also called ‘union’, ‘join’, ‘or’, or ‘ad-

ditive disjunction’.

∪, satisfying
the following rules (a, b, c are elements of S):

1. a ∩ b = b ∩ a;
2. (a ∩ b) ∩ c = a ∩ (b ∩ c);
3. a ∩ a = a;
4. (a ∩ b) ∪ a = a;
5. If a statement S can be deducted from the axioms, the dual statement S′

obtained by replacing ∩ by ∪ througouht S can be deducted (Principle
of duality).

A subset K of L is called a sublattice if it is closed under the compositions
∩ and ∪.

The join and meet of a lattice are related to a partial order by the following

identification:

a ⊆ b ⇐⇒ a ∩ b = a ⇐⇒ a ∪ b = b , (D.1)

in terms of subspaces, this equation reads ‘a subspace is contained within

another if and only if its intersection with the other space is equal to

itself and if and only if its union with the other space is equal to the other

space’. These lattices are not totally arbitrary; they actually follow certain

special rules.

Definition D.1.3 (Properties of Lattices) A lattice is:

▶ Complete if every subset have a greatest and lowest element. In which
case, the zero 0 and unit 1 of the lattice are defined as, respectively, the
greatest and lowest element of the whole lattice,

0 :=
⋂
a∈L

a ; (D.2a)

1 :=
⋃
a∈L

a ; (D.2b)

▶ Distributive if it obeys the distributive law,

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) ; (D.3)

▶ Modular if
a ∩ (b ∪ c) = b ∪ (a ∩ c) (D.4)

whenever a ⊇ b. Equivalently, a lattice L is modular if and only if
whenever ∃a, b, c such that

a ⊇ b, and a ∩ c = b ∩ c, and a ∪ c = b ∪ c ⇒ a = b ; (D.5)

▶ Complemented if for any a ∈ L there exists a ∈ L such that

0 = a ∩ a ; (D.6a)

1 = a ∪ a . (D.6b)

▶ Boolean3
3: This structure is also called ‘Boolean

algebra’.

if it is complemented and distributive.
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5: See e.g. Theorem 2.26 in Ref. [96]

[96]: Roman (2008), Advanced Linear Al-
gebra.

.

6: Recall that these are superoperators

obeying conditions

PA ◦ PA = PA ; (3.20a)

P∗
A = PA ; (3.20b)

PA ◦ † ◦ PA = † ◦ PA ; (3.20c)

PA ◦ DA = DA . (3.20d)

In addition, a lattice homomorphism is a map ϕ : L → L′ such that
ϕ(a ∩ b) = ϕ(a) ∩ ϕ(b) and ϕ(a ∪ b) = ϕ(a) ∪ ϕ(b). If the map is bĳective
then it is a lattice isomorphism4

4: Note that ϕ being a lattice isomor-

phism is equivalent to the maps ϕ and

ϕ−1
being both order-preserving.

.

D.2. The Projector Algebra

The projector algebra is relative to how the Hilbert space is partitioned

between parties. To start with, this section deals with single-partite

Hilbert space. Single-partite projectors are considered when discussing

the local state structure of a single party as well as the global state

structure seen by a set of parties.

D.2.1. The Lattice of Commuting Projectors on Operator

Systems

In the set of all subspaces of a given space, the inclusion of a subspace into

another one is a partial order relation. As discussed in subsection C.1.3

around Proposition C.1.3, instead of being phrased in terms of subspaces,

these inclusions can be translated into operations on the projectors. By

restricting the set of subspaces to either included subspaces or subspaces

with no overlap, it is then possible to promote this inclusion relation

⊆ defined by Equation C.29 into an operation on projectors as the

intersection ∩ defined in the main text by

∀P ,P
′
, Im

{
P ∩ P

′
}
= Im{P} ∩ Im

{
P

′
}
. (5.6)

The link between the two is thenP∩P ′
= P ⇐⇒ P ⊆ P ′

. This amounts

to restricting the set of all projectors to only commuting projectors so that

the inclusion relation can be promoted to an operation under which this

set is closed. It is almost direct to show that, like with the inclusion, it is

the composition operation
5 ◦ that corresponds to the intersection ∩,

P ∩ P
′
≡ P ◦ P

′
. (5.7)

Thus, commuting projectors also have a natural ‘conjunction’ operation

interpretable as a logic ‘and’ and called the intersection or the cap. It can

also be interpreted as the ‘multiplication’ since it is the role inherited from

the algebra of superoperators. This is indeed a binary operation that is

distributive over the addition and is compatible with scalar multiplication.

Moreover, it is both associative and commutative. When acting on sets

of projectors, this operation inherits the idempotent property from the

projector definition:

P2
A := PA ∩ PA ≡ PA ◦ PA = PA . (D.7)

In the above equation, the shorthand notation for ‘squaring’ under the

‘multiplication’ ∩ has been defined: PA ∩ PA ≡ P2
A.

When the set of projectors is further restricted to projectors on operator

systems
6

as in Definition 3.2.7, the set is actually stable under the

intersection.
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7: DA : DA(V ) := 1A

dA
TrA [V ] .

[190]: Piziak et al. (1999), Constructing
projections on sums and intersections.

Proposition D.2.1 (The cap yields valid projector on operator system.)

IfPA andP ′

A are a pair of projectors that obey Equations (3.20) thenPA∩P
′

A

obey condition (3.20) as well, provided PA and P ′

A commute.
In addition, PA ∩ P

′

A commutes with both PA and P ′

A as well as any other
projector that commutes with the two of them.

Proof. The preservation of commuting relations is inherited from the

associativity of ◦, for example:

(
PA ∩ P

′

A

)
∩ PA =

(
PA ◦ P

′

A

)
◦ PA = PA ◦ P

′

A ◦ PA = PA ◦ PA ◦ P
′

A = P2
A ◦ PA = PA ∩ PA . (D.9)

Condition (3.20a) comes from the associativity and commutativity of the

∩ as well as the idempotence of each projector:

(
PA ∩ P

′

A

)2
= PA ◦ P

′

A ◦ PA ◦ P
′

A = PA ◦ PA ◦ P
′

A ◦ P
′

A = PA ◦ P
′

A = PA ∩ P
′

A . (D.10)

provided PA and P ′

A commute. From PA ∩ P
′

A = PA ◦ P
′

A, it is direct

to see that (PA ◦ P
′

A) ◦ † = † ◦ (PA ◦ P
′

A) using associativity. From

(PA ◦ P
′

A)
∗ = (P ′

A)
∗ ◦ (PA)∗, (P ′

A)
∗ ◦ (PA)∗ = PA ∩ P

′

A if the two

projectors commute and are self-adjoint. Finally, the last condition is also

direct from associativity:

(
PA ∩ P

′

A

)
∩ DA = PA ∩

(
P ′

A ∩ DA
)

.

The set can thus be ‘completed’ by all possible intersections of elements.

A property inherited from Definition 3.2.7, that was used in the proof

above is that

PA ∩ DA = DA . (D.11)

Whence the set of commuting projectors on operator systems have a

‘least’ element given by the depolarizing superoperator
7

(C.22).

Projectors on operator systems naturally feature the ‘intersection’ oper-

ation under which they are stable and have a least element. But since

the superoperators form an algebra, it is tempting to also use the second

operation of the algebra, the addition ‘+’ defined by(
PA + P

′

A

)
{V } := PA {V }+ P

′

A {V } ∀V ∈ L
(
HA
)
, (D.12)

in the set of projectors on operator systems. But an issue revealed by

squaring is that the operation ‘+’ does not necessarily map projectors to

projectors: (
PA + P

′

A

)2
= P2

A + P
′2
A + 2

(
PA ∩ P

′

A

)
, (D.13)

because the last term of the right-hand side is not always zero. Nonethe-

less, another operation that has all the properties of the addition while

preserving idempotency is the union of two projectors: the union∪ (see e.g.

References [190] and [96, Thm. 2.26]). This is inspired by set theory: asPA
maps to a subspace Im{PA} ⊂ L

(
HA
)

and P ′

A to Im
{
P ′

A

}
⊂ L

(
HA
)
,

an addition of projectors counts the overlap between these subspaces

twice, since it is contained in each. A proper addition ‘∪’ should only
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count the overlap once. Therefore Im
{
PA ∪ P

′

A

}
should be equivalent to

the exclusive disjunction of subspaces Im{PA} ⊕ Im
{
P ′

A

}
. This require-

ment is realized by the ‘disjunction’ operation presented in the main text,

which can be interpreted as an addition or as logic ‘or’, nicknamed the

cup:

PA ∪ P
′

A = PA + P
′

A − PA ∩ P
′

A . (5.9)

As the name hints, PA ∪ P
′

A characterizes the union of the underlying

operator systems. As is the case with the cap, the cup of two projectors

on operator systems is a valid projector on operator system.

Proposition D.2.2 (The cup yields valid projector on operator system.)

If PA and P ′

A are a commuting pair of projectors that obey Equations (3.20)

then PA ∪ P
′

A obey condition (3.20) as well.
In addition, PA ∪ P

′

A commutes with PA and P ′

A as well as any projector
that commutes with the both of them.

Proof. As with the cap, the preservation of commutation is again inherited

from the properties of the algebra of operations on superoperators + and

◦. Let P ′′

A be a projector that commutes with both PA and P ′

A, then

(
PA ∪ P

′

A

)
∩ P

′′

A =
(
PA + P

′

A −
(
PA ∩ P

′

A

))
∩ P

′′

A = PA ◦ P
′′

A + P
′

A ◦ P
′′

A −
(
PA ∩ P

′

A

)
◦ P

′′

A , (D.14)

because composition linear maps distributes over their addition, and from

there the commutation of each element in the sum can be used (especially

the commutation of P ′′

A with PA ∩P
′

A that comes from Proposition D.2.1.

Conditions (3.20c) and (3.20b) follow because the addition and the cap

preserve these properties, whereas conditions (3.20a) and (3.20d) follow

from direct computation using the definition, and the fact and ∪ define a

distributive lattice (as is proven below) so that the cap distributes over

the cup like in Equation D.18. First,

(
PA ∪ P

′

A

)2
=
(
PA + P

′

A −
(
PA ∩ P

′

A

))
∩
(
PA + P

′

A −
(
PA ∩ P

′

A

))
=

(PA)
2
+
(
P

′

A

)2
− 5

(
PA ∩ P

′

A

)
+ 4

(
PA ∩ P

′

A

)
= PA + P

′

A −
(
PA ∩ P

′

A

)
,

(D.15)

therefore (
PA ∪ P

′

A

)2
= PA ∪ P

′

A . (D.16)

Then, DA ∩
(
PA ∪ P

′

A

)
= (DA ∩ PA) ∪

(
DA ∩ P

′

A

)
= DA ∪ DA, thus

DA ∩
(
PA ∪ P

′

A

)
= DA . (D.17)

Hence, the cup of two commuting projectors on operator systems is a

projector on operator system.

Under the cap and cup operations, the set of projectors is a ring. ∩ and ∪
can indeed be seen as some multiplication and addition of projectors as
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8: Although some technicalities in the

definition of completeness have been

avoided by the projectors being defined

over a finite-dimensional Hilbert space.

9: Both lines hold by the definition of an

operator system.

the former distributes over the latter:(
PA ∪ P

′

A

)
∩ P

′′

A =
(
PA ∩ P

′′

A

)
∪
(
P

′

A ∩ P
′′

A

)
. (D.18)

Indeed,

(
PA ∪ P

′

A

)
∩ P ′′

A =
(
PA + P ′

A − (PA ∩ P
′

A)
)
∩ P ′′

A =
(
PA ∩

P ′′

A

)
+
(
P ′

A ∩ P
′′

A

)
−
(
PA ∩ P

′

A

)
∩ P ′′

A, and

(
PA ∩ P

′

A

)
∩ P ′′

A =
(
PA ∩

P ′

A

)
∩
(
P ′′

A ∩ P
′′

A

)
=
(
PA ∩ P

′′

A

)
∩
(
P ′

A ∩ P
′′

A

)
.

The projectors I and D play a special role in it: one can identify the

identity superoperator I as the multiplicative identity or ‘unit’ of the

algebra of projectors since for all projectors P ,

PA ∩ IA = PA . (D.19)

As for the depolarizing superoperator D, it is the additive identity,

PA ∪ DA = PA . (D.20)

To actually show the ring structure, it remains to collect these results: first,

the distributivity law (D.18) holds. Second, from associativity, it should

be clear that the set {P} together with operation ∩ is a monoid with unit

I. Third, it should also be clear from associativity and commutativity

that the set {P} together with operation ∪ is an Abelian group with unit

D. The only missing thing in the definition is the inverse with respect to

this group.

But this set is already constrained enough to uniquely define what the

inverse should be. Indeed, by condition (D.7) this is a special kind of ring

whose elements are all idempotent, called a Boolean ring. These kinds of

rings are also lattices. Because their elements are all commuting, it can

be shown that they obey the Definition D.1.2. For example, distributivity

also holds when replacing the cap with the cup,(
PA ∩ P

′

A

)
∪ P

′′

A =
(
PA ∪ P

′′

A

)
∩
(
P

′

A ∪ P
′′

A

)
, (D.21)

as required by the principle of duality. This is explicitly proven as follows:

(
PA ∪ P

′′

A

)
∩
(
P

′

A ∪ P
′′

A

)
=
(
PA + P

′′

A −
(
PA ∩ P

′′

A

))
∩
(
P

′

A + P
′′

A −
(
P

′

A ∩ P
′′

A

))
=
(
PA ∩ P

′

A

)
+
(
PA ∩ P

′′

A

)
−
(
PA ∩ P

′

A ∩ P
′′

A

)
+
(
P

′

A ∩ P
′′

A

)
+ P

′′

A −
(
P

′

A ∩ P
′′

A

)
−
(
PA ∩ P

′

A ∩ P
′′

A

)
−
(
PA ∩ P

′′

A

)
+
(
PA ∩ P

′

A ∩ P
′′

A

)
=
(
PA ∩ P

′

A

)
+ P

′′

A −
(
PA ∩ P

′

A ∩ P
′′

A

)
=
(
PA ∩ P

′

A

)
∪ P

′′

A .

(D.22)

This lattice is distributive from Equation D.18; from distributivity, it is

direct to check that it is modular as well. Moreover, it is also a complete

lattice
8
. This is because the identity and depolarizing superoperators also

play a particular role with respect to the other operation: the absorbant of

the operation
9
:
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DA ∩ PA = DA ; (D.23a)

IA ∪ PA = IA . (D.23b)

D is the absorbant of ∩ and I is the one of ∪. In lattice terms, this is

simply the fact that I is the greatest element of the lattice, i.e. the ‘unit’,

and that D is its smallest, i.e. the ‘zero’.

Because of that property, it should be clear that for any element of the

algebra, the following is true:

DA ⊆ PA ⊆ IA . (D.24)

As a consequence, this is an algebra of idempotent elements equipped

with a partial ordering ⊆ that have a common greatest element I and a

common least element D. Moreover, the intersection and union of any

two elements P ,P ′
are uniquely defined elements of the algebra. To sort

these new elements with respect to the partial order, the lattice structure

is taken advantage of to write the following

PA ∩ P
′

A ⊆ PA ⊆ PA ∪ P
′

A , (D.25)

and the analog with P ′

A.

As defined in the main text, such lattices are what is implied when

referring to the ‘algebra of projectors’ because, as will be shown in the

next section, these lattices are complemented. In the remainder of this

chapter, the term ‘projector’ used alone always refers to an element of

such a Boolean algebra of projectors on operator systems. Accordingly,

the term ‘algebra’ alone always refers to such a Boolean algebra which is

defined in a space that should be clear from the context.

Summarizing, in this section, the observation that subspaces of a Hilbert

space are in one-to-one correspondence with their projectors was applied

to the case of operator systems. Since their projectors are projectors on

operator systems, it was then asked under which rules these sets are

stable. In order to do so, the observation that superoperators are an

algebra over C under operations {+, ◦}motivated the observation that

projectors on operator systems form a lattice under operations {∪,∩}.
Moreover, this lattice was shown to be a Boolean ring, which happens to

be complete, distributive, and modular as a lattice. This Boolean ring is in

correspondence with the state structures that can be defined on a Hilbert

space, so all these properties actually make the set of state structures

quite a tame and easy-to-characterize partially ordered set.

In the following of the mathematical method section: the lattice of the

projective characterization will be defined. The goal is to show that the

different rules on projector derived in Chapter 3 are valid operations

in the algebra of operators, meaning that adding them to the algebra

may augment the number of elements in the algebra but globally the

algebra will still be a Boolean ring. What is more, this new set will be

shown to be a sublattice of the global projector algebra. To prove it, it

must be shown that on the one hand, each new rule added will preserve

the algebra. This means that each added rule will map valid projectors to

valid projectors and commuting sets of projectors to commuting sets of

projectors. This is the algebraic counterpart of saying that the different

rules { · ,⊗,≺,≻,

&

,→} to define new state structures out of given state
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10: I.e., { · ,⊗,≺,≻,

&

,→}.

11: And for a given basis defined by the

set of commuting projectors.

12: Defined by Equations C.52.

structures result in valid state structures. But proving it at the level of the

algebra of projectors will allow to derive the relations between all these

different rules from algebraic manipulations only. The end goal is to use

the rules to rewrite any projector into a form that makes the signaling

relations of the objects it characterizes apparent.

D.2.2. A Comment on the Size of the Lattice

Before proceeding to the systematic breakdown of the algebraic properties

of each operation on projector(s) that appeared in the last chapter
10

, a

short comment on the size of the projector algebra is in order.

Defined as such, the projector algebra is in one-to-one correspondence

with the set of all simultaneously diagonalizable operator systems on

a given space
11

. The set of all operator systems characterized using the

projective rules is a subset of this set. Since it extends the type system

by adding a bunch of new rules, namely the intersection ∩, the union ∪,

and the one-way signaling composition ≺, the set of valid expressions in

the type system must, in turn, be a subset of this subset.

To upper bound these sets, one can wonder how large the projector

algebra is. As observed in the main text, the projector algebra is a lattice

of commuting projectors on a finite-dimensional Hilbert space, so it is

a finitely generated lattice. That is, the set of non-equivalent different

elements must be of finite cardinality.

In the methods of the last chapter, subsection C.1.1, it was mentioned

that the projector on operator systems can be identified with subsets of a

traceless self-adjoint basis
12

of L (H) that contains the identity element,

σ0. A given such basis {σµ}d
2−1
µ=0 can be identified with a set of d2 − 1

commuting projectors on operator systems by the identification

σµ̸=0 7→ P(µ) {·} = σ0Tr [σ0·] + σµTr [σµ·] . (D.26)

These projectors on operator systems define 2-dimensional operator

systems spanned by {σ0, σµ}. The union of two such projectors, say

P(µ)
and P(ν)

, define the 3-dimensional operator system spanned by

{σ0, σµ, σν}.

Considering that all projectors must contain the depolarizing super-

operators, that the depolarizing superoperator D(·) = σ0Tr [σ0·] is a

rank-1 superoperator projector itself, and that these rank-2 commuting

projectors have zero overlaps, it should be clear that all unions of such

projectors span all possible operator systems for this given basis. This

implies that the set of all simultaneously diagonalizable operator systems

is in one-to-one correspondence with the power set of {σµ}d
2−1
µ=1 . Hence

it follows that the size of the projector algebra of superoperators on a

Hilbert space of dimension d is 2d
2−1

. The number of elements in the

sublattices considered in Chapter 5 is thus at most exponential with

the number of parties. Figuring out the exact size of a signaling lattice

defined as in Proposition 5.1.11 is left open for future research.
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13: This terminology is favored over

other commonly used terms for this con-

cept like ‘inverse’, ‘dual’, or ‘complement’

because these words are already used for

different concepts in quantum informa-

tion and functional analysis. This choice

is made by consequence to avoid ambi-

guities.

Figure D.1.: Diagrammatic representa-

tion of how a space of operator is split

between the images of a projector and

its negation. In this kind of diagrams,

the central dot will always represent the

image of the center of the algebra of pro-

jectors, i.e. the image of the depolarizing

superoperator.

D.2.3. The Boolean Lattice of Projectors

In the algebra of superoperator projectors, the new projector that naturally

appears in Proposition 3.3.2, PA, can be seen as an operation on the

original projector PA called the negation of PA,

P := I − P +D , (5.14)

whence the ‘bar over PA’ notation. This new operation is defined for any

projector. As will be shown below, it defines a new projector P which,

since the projectors are linear maps, commutes with the original projector.

Indeed, P ◦ P = P ◦ (I − P +D) = (P ◦ I)−P2 + (P ◦ D), using the

fact that a projector always commutes with itself and the identity, and

that, because of Definition 3.2.7, it also commutes with the depolarizing

superoperator, thenP ◦P = (I ◦ P )−P2+(D ◦ P ) = (I − P +D)◦P .

Therefore, P ◦ P = P ◦ P . and so the ∩ of a projector with its negation

is a well-defined expression obeying

P ◦ P = P ◦ P . (D.27)

As it turns out, the negation is actually the complement operation of the

lattice (or logic ‘not’, thereafter referred to as ‘negation’
13

) characterized

by the condition that the addition of any projector with its negation

yields the additive identity, i.e.

PA ∪ PA = IA , (D.28)

wherePA is the negation ofPA. This is exactly what the quasi-orthogonal

complement of Proposition 3.3.2 is doing. First, compute the cap as

PA ∩ PA = PA ◦ (IA − PA +DA) = PA −P2
A +DA = PA −PA +DA,

so

PA ∩ PA = DA . (D.29)

Then, it is true for the cup because PA ∪ PA = PA + IA − PA +DA −
(PA ∩ PA) = IA.

In addition to property (D.28), one can verify from (D.29) that a projector

and its negation intersect at the zero of the algebra, which in this case

is DA (refer to the diagram in Figure D.1). These two rules are actually

fundamental in Boolean logic: the first is the law of excluded middle,

and the second is the law of noncontradiction. The projector algebra has

the characteristics of a model of Boolean logic.

There is now an explanation why the definition of the inverse with

respect to the addition of the Boolean ring that was eluded in the

previous section. The algebra is more correctly interpreted as a Boolean

lattice, and therefore as a model of logic, than as a Boolean ring. Actually,

the operation ∪ defines a monoid with unit rather than an Abelian group

since it is impossible to find an inverse projector on operator system P−1

that would satisfy

PA ∪ P−1
A = DA . (D.30)

Actually, the correct addition in the Boolean ring is the symmetric

difference,

PA ⊕ P
′

A =
(
PA ∪ P

′

A

)
∩
(
PA ∪ P

′
A

)
, (D.31)
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but using the ∪ instead allows the interpretation of the Boolean ring

as a Boolean algebra (or lattice) and so to benefit from an extra duality

principle as well as the De Morgan law.

The lattice and De Morgan duality: The lattice structure was already

shown to be complete, distributive, and modular in the previous section.

Under the negation, it is moreover complemented, as the negation is an

involution:

PA = PA , (D.32)

and it verifies the conditions (D.29) and (D.28).

As a consequence, the De Morgan laws are valid for the Boolean algebra

of projectors:

PA ∪ P
′
A = PA ∩ P

′
A , (D.33a)

PA ∩ P
′
A = PA ∪ P

′
A . (D.33b)

The proof is more involved: PA ∪ P
′
A = IA − PA ∪ P

′

A + DA = IA −
(PA + P ′

A − (PA ∩ P
′

A)) + DA = IA − PA + DA + DA − P
′

A − DA +

(PA ∩P
′

A)−DA+DA = (IA−PA+D)∩ (IA−P
′

A+DA) = PA ∩P
′
A.

The second identity directly ensues.

The inclusion relation ⊆ defined by conditions (5.10) is by consequence

reversed when the projectors it involves are negated. Indeed, if P ′

A ⊆
PA ⇒ P

′

A ∩ PA = P ′

A, negating both sides of the cap yields P ′
A ∩ PA =

P ′
A ∪ PA. But the term under the negation in P ′

A ∪ PA is equivalent to

PA since the inclusion also implies that P ′

A ⊆ PA ⇒ P
′

A ∪ PA = PA.

Whence,P ′
A∩PA = P ′

A ∪ PA = PA, which by definition is the inclusion

PA ⊆ P
′
A. This reasoning works in both ways, proving

P
′

A ⊆ PA ⇐⇒ PA ⊆ P
′
A , (D.34)

which is equation (5.16) in the main text. Note that these properties

directly follow from the algebra being a Boolean lattice, these were

proven for completeness.

The bottom line is that the algebra of projectors is a Boolean algebra under

operations {∪,∩, · }with greatest element I and least D. It remains to

show that the negation can be added to the algebra without spoiling

its structure of commuting projectors: the new elements P should also

be projectors on operator systems and commuting with every other

projectors.

Negation yields a valid projector on operator system: Since IA and

DA are Hermitian-preserving (HP) and self-adjoint (SA), the negation

of a projector is HP and SA provided the original projector is HP

and SA. The idempotency property (3.20a) is preserved from P2

A =

(IA − PA +DA)∩ (IA − PA +DA) = IA−PA+DA−PA+P2
A−DA+

DA −DA +DA = IA − PA +DA, hence

P2

A = PA . (D.35)
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[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[33]: Kissinger et al. (2019), A categorical
semantics for causal structure.

Figure D.2.: Diagrammatic representa-

tion of the support of a tensor product of

projectors. This is the bipartite version of

Figure D.1. The support associated with

subsystem A is always on the left side of

the tensor product. Note that the inter-

sections and unions are well defined in

this diagram: the central dot is associated

withDA∩DB and every, the bottom left

to top right line withDA ⊗ IB , and the

top left to bottom right one to IA ⊗DB .

A quarter of the wheel is associated with

a tensor of projectorsPA⊗PB , the other

quarters represent the three other sub-

spaces obtainable through projector-wise

negation, and the union of the four quar-

ters, the full wheel, represent the full

space, associated with the identity pro-

jector IA ⊗ IB .

To prove that the negation of a projector on an operator system is a

projector on an operator system itself it remains to show that the identity

is still contained in the negation, Equation 3.20d,

DA ∩ PA = DA . (D.36)

This is true from DA ∩ PA = DA ∩ (IA − PA +DA) = DA −DA +DA.

Without the heuristic of Theorem 3.3.2, this could be interpreted as a

reason for choosing Equation 5.14 as the definition of negation instead of

the orthogonal complement IA − PA since, in this latter case, identity

does not belong to the negated state structure.

Negation preserves commutativity: It should also be clear from PA ∩
PA = PA∩ (IA − PA +DA) = PA−P2

A+DA = (IA − PA +DA)∩PA
that negated projectors commute with the original ones, and, by the

same kind of proof, that the negations of two commuting projectors still

commute:

PA ∩ P
′

A = P
′

A ∩ PA =⇒ PA ∩ P
′
A = P ′

A ∩ PA . (D.37)

D.3. The Type System/Fragment of Linear Logic

Here are reviewed the properties of the operations {⊗,→,

&

} that ap-

peared in the projective characterization of state structures. Together

with the negation, these ways of connecting are historically the first ones

to have been considered in the theory of higher-order processes. The

‘transformation’ composition→ was first introduced in Reference [10],

whereas the parr in Reference [33]. Although these two works did not

explicitly use these compositions as rules to be applied to the projectors,

many of the properties derived here were implicit in them.

D.3.1. The Tensor

The first composition operation that is added to the projector algebra is

the tensor product because it is inherited as the tensor product of linear

maps. In Definition 3.4.1, the tensor product is used at the level of the

projectors to consider the no-signaling composition of state structures

A ⊗B ⊂ L
(
HA ⊗HB

)
when it is known that A is characterized by a

projector PA acting on L
(
HA
)

and that B is by PB . Here is shown how

the tensor product of two algebras of projectors on different spaces is

also the algebra of projector on the composite space, translating the fact

that A ⊗B is a valid state structure if A and B are.

Because of the isomorphism L
(
HA ⊗HB

) ∼= L (HA) ⊗ L (HB), the

definition of no-signaling composition, nicknamed tensor, is straightfor-

ward:

(PA ⊗ PB)

{∑
i

qi (Vi ⊗ Ui)

}
:=
∑
i

qi (PA {Vi} ⊗ PB {Ui}) ,

(D.38)

and it should hold for all i such that qi ∈ C, Vi ∈ L
(
HA
)
, Ui ∈ L

(
HB
)

as any operator in L
(
HA ⊗HB

)
can be decomposed as such.
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[81]: Coecke et al. (2017), Picturing Quan-
tum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning.

By the inherited properties of the tensor product of linear maps, the

tensor at the level of superoperators is associative; because of L
(
HA
)
⊗

L
(
HB
) ∼= L (HB)⊗ L (HA), it is moreover commutative.

Tensor and cap/cup: The tensor is distributive with respect to the cap,(
PA ∩ P

′

A

)
⊗ PB = (PA ⊗ PB) ∩

(
P

′

A ⊗ PB
)
, (D.39)

as well as to the cup,(
PA ∪ P

′

A

)
⊗ PB = (PA ⊗ PB) ∪

(
P

′

A ⊗ PB
)
. (D.40)

This directly follows from idempotency:(
PA ∩ P

′

A

)
⊗ PB =

(
PA ∩ P

′

A

)
⊗ (PB ∩ PB) , (D.41)

and because the intersection of projectors is party-wise therefore it

commutes with the tensor product. This is due to the fact that the

composition of superoperators obeys an interchange law with the tensor

product of superoperators [81]:(
PA ∩ P

′

A

)
⊗
(
PB ∩ P

′

B

)
= (PA ⊗ PB) ∩

(
P

′

A ⊗ P
′

B

)
. (D.42)

However, the tensor does not interchange with the cup; rather, the cup

distributes:

(
PA ∪ P

′

A

)
⊗
(
PB ∪ P

′

B

)
= (PA ⊗ PB) ∪

(
PA ⊗ P

′

B

)
∪
(
P

′

A ⊗ PB
)
∪
(
P

′

A ⊗ P
′

B

)
. (D.43)

This is the case because

(
PA ∪ P

′

A

)
⊗
(
PB ∪ P

′

B

)
=((

PA ∪ P
′

A

)
⊗ PB

)
+
((
PA ∪ P

′

A

)
⊗ P

′

B

)
−
((
PA ∪ P

′

A

)
⊗
(
PB ∩ P

′

B

))
(D.40)

=
(
(PA ⊗ PB) ∪

(
P

′

A ⊗ PB
))

+
((
PA ⊗ P

′

B

)
∪
(
P

′

A ⊗ P
′

B

))
−
(
(PA ⊗ PB) ∪

(
P

′

A ⊗ PB
))
∩
(
(PA ⊗ PB) ∪

(
PA ⊗ P

′

B

))
=
(
(PA ⊗ PB) ∪

(
PA ⊗ P

′

B

))
∪
((
P

′

A ⊗ PB
)
∪
(
P

′

A ⊗ P
′

B

))
.

(D.44)

And the union is associative. Note in passing that the following identity

has been used,((
PA ∪ P

′

A

)
⊗
(
PB ∩ P

′

B

))
=
[(
PA ⊗ PB

)
∩
(
PA ⊗ P

′

B

)]
∪
[(
P

′

A ⊗ PB
)
∩
(
P

′

A ⊗ P
′

B

)]
=
[(
PA ⊗ PB

)
∪
(
P

′

A ⊗ PB
)]
∩
[(
PA ⊗ P

′

B

)
∪
(
P

′

A ⊗ P
′

B

)]
,

(D.45)

the proof of which follow from Equation (D.39) and (D.40). Because of

Equation (D.43), the interchange law for the cup yields a lower bound,(
PA ∪ P

′

A

)
⊗
(
PB ∪ P

′

B

)
⊇ (PA ⊗ PB) ∪

(
P

′

A ⊗ P
′

B

)
, (D.46)
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which is saturated only when[
(PA ⊗ PB) ∪

(
P

′

A ⊗ P
′

B

)]
⊇
[(
P

′

A ⊗ PB
)
∪
(
PA ⊗ P

′

B

)]
. (D.47)

Tensor and negation provides another De Morgan duality: Interest-

ingly, however, the tensor and the negation do not commute with each

other: PA ⊗ PB ̸= PA ⊗ PB . Actually, the latter expression defines a

subspace in the former since

PA ⊗ PB∩PA⊗PB = (IA ⊗ IB − PA ⊗ PB +DA ⊗DB)∩PA⊗PB
= PA ⊗ PB −DA ⊗DB +DA ⊗DB , (D.48)

so that

PA ⊗ PB ∩ PA ⊗ PB = PA ⊗ PB . (D.49)

And from the duality principle,

PA ⊗ PB ∪ PA ⊗ PB = PA ⊗ PB . (D.50)

Hence,

PA ⊗ PB ⊆ PA ⊗ PB ; (D.51)

This identity which, using (D.34), can be recast as

PA ⊗ PB ⊆ PA ⊗ PB =: PA

&

PB , (D.52)

is Equation 5.27 of the main text.

Because of the interchange law (D.42), relation (D.51) is stable when

composed with more parties, i.e.,

(PA ⊗ PB)⊗ PC ⊆ (PA

&

PB)⊗ PC . (D.53)

More generally, the inclusion relation ⊆ induced by conditions (5.11) is

stable under the tensor; if PA ⊆ P
′

A, then the following hold

PA ⊗ PB ⊆ P
′

A ⊗ PB , (D.54a)

PA ⊗ PB ⊆ P
′

A ⊗ PB , (D.54b)

PA ⊗ PB ⊆ P
′

A ⊗ PB . (D.54c)

The last equation is a consequence of the first using (D.51). The first

equation holds because

(PA ⊗ PB) ∩
(
P

′

A ⊗ PB
)

(D.39)

=
(
PA ∩ P

′

A

)
⊗ PB , (D.55)

and the term in parenthesis is equal to PA because PA ⊆ P
′

A, therefore

the first equation holds. The second equation is proven using De Morgan
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duality:

PA ⊗ PB ∩ P
′

A ⊗ PB
(D.33a)

=
(
PA ⊗ PB

)
∪
(
P

′

A ⊗ PB
)

(D.40)

=
(
P

′

A ∪ PA
)
⊗ PB

(D.33b)

= P ′
A ∩ PA ⊗ PB

= P
′

A ⊗ PB . (D.56)

Relations (D.51) and (D.54) are important to define the no signaling

subset of an arbitrary projector, as explained in subsection 5.1.3 of the

main text.

The Tensor yields a valid projector on operator system: Expressions

built from the tensor product of Hermitian-preserving projectors are

automatically HP since the dagger distributes over the tensor, (ρ⊗ σ)† =
ρ† ⊗ σ†

. If the composed projectors are self-adjoint then so is their tensor

product since the Hilbert-Schmidt inner product is C-linear and splits as

(PA {ρA} ⊗ PB {σB} , ηA ⊗ χB)AB = (PA {ρA} , ηA)A (PB {σB} , χB)B (D.57)

so that (PA ⊗ PB)
∗
= P∗

A ⊗ P∗
B . They preserve idempotency,

(PA ⊗ PB)
2
= (PA ⊗ PB) ∩ (PA ⊗ PB)

(D.42)

= (PA ∩ PA)⊗ (PB ∩ PB) , (D.58)

because of interchange law, thus

(PA ⊗ PB)
2
= (PA ⊗ PB) . (D.59)

A further consequence of the interchange law is that the tensor composi-

tion of, respectively, the units and the zeroes on A and B, i.e. IA ⊗ IB
and DA ⊗DB , are the respective unit and zero of the projector algebra

on L
(
HA ⊗HB

)
, IAB and DAB . Indeed, they can be used to define

the negation of PA ⊗ PB , PA ⊗ PB , and this gives the correct Boolean

completions:

(PA ⊗ PB) ∩ (PA ⊗ PB) = (PA ⊗ PB) ∩ (IA ⊗ IB − PA ⊗ PB +DA ⊗DB)
=
(
PA ⊗ PB − P2

A ⊗ P2
B +DA ⊗DB

)
= DA ⊗DB

(D.60)

(at the second equality sign, the interchange law was used to compute

the cap of PA ⊗PB with each of the three components of the negation);

(PA ⊗ PB) ∪ (PA ⊗ PB) = (PA ⊗ PB) ∪ (IA ⊗ IB − PA ⊗ PB +DA ⊗DB)
= PA ⊗ PB + IA ⊗ IB − PA ⊗ PB +DA ⊗DB −DA ⊗DB = IA ⊗ IB .

(D.61)
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Hence,

(PA ⊗ PB) ∩ (PA ⊗ PB) = DA ⊗DB =: DAB ; (D.62a)

(PA ⊗ PB) ∪ (PA ⊗ PB) = IA ⊗ IB =: IAB . (D.62b)

The tensor composition then “preserves the identity” because the identity

on a joint system is the tensor product of the identities on each of the

spaces being combined, 1AB = 1A ⊗ 1B ⇐⇒ DAB = DA ⊗ DB . By

the interchange law, this implies that the tensor of projectors on operator

systems contains the depolarizing projector (or zero):DAB∩(PA ⊗ PB) =
(DA ⊗DB) ∩ (PA ⊗ PB) = (DA ∩ PA)⊗ (DB ∩ PB) = DA ⊗DB ,

DAB ∩ (PA ⊗ PB) = DAB . (D.63)

Proving condition (3.20d) for the tensor, which was the last property

needed to show that the tensor product of two projectors verifying

Equation 3.20 verifies them as well.

The Tensor product preserves commutation: Since, if PA ∩ P
′

A =

P ′

A ∩ PA and PB ∩ P
′

B = P ′

B ∩ PB , then

(PA ⊗ PB) ∩
(
P

′

A ⊗ P
′

B

)
=
(
PA ∩ P

′

A

)
⊗
(
PB ∩ P

′

B

)
=
(
P

′

A ∩ PA
)
⊗
(
P

′

B ∩ PB
)
, (D.64)

and so

(PA ⊗ PB) ∩
(
P

′

A ⊗ P
′

B

)
=
(
P

′

A ⊗ P
′

B

)
∩ (PA ⊗ PB) . (D.65)

D.3.2. The Transformation

The projector appearing in Theorem 3.4.1 is built from the projectors

characterizing its input and output. The corresponding operation is

defined as the transformation in (5.4), represented by→ :

PA → PB := IA ⊗ IB − PA ⊗ IB + PA ⊗ PB − PA ⊗DB +DA ⊗DB . (D.66)

The Transformation yields a valid projector on operator system that

preserves commutation: This additional operation in the Boolean

algebra of projectors is actually secondary since it can be entirely defined

using the negation and the no signaling composition (i.e., the tensor):

PA → PB ≡ PA ⊗ PB . (D.67)

Therefore it will automatically be a valid projector in the sense that it

will obey Equations (3.20) if its constituents do, and will accordingly

preserve commutation if they do.
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[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.
[11]: Bisio et al. (2019), Theoretical frame-
work for higher-order quantum theory.

Other properties: The transformation is not associative in general.

For example, ((PA → PB)→ PC) ̸= (PA → (PB → PC)), because the

uncurrying rule14

14: First proven in the context of higher-

order transformations in Reference [10]

[10]: Perinotti (2017), Causal Structures and
the Classification of Higher Order Quantum
Computations.

.

can be applied to the right-hand side:

PA → (PB → PC) = (PA ⊗ PB)→ PC , (D.68)

which is obviously different than ((PA → PB)→ PC) because of Equa-

tion D.52. In the algebra, the uncurrying rule relies on the associativity

of the tensor:

PA → (PB → PC) = PA ⊗
(
PB ⊗ PC

)
= PA ⊗ PB ⊗ PC

(D.32)

= PA ⊗ PB ⊗ PC

= (PA ⊗ PB)⊗ PC = (PA ⊗ PB)→ PC .
(D.69)

Remark that because of Equation D.54b, the transformation also preserves

the inclusion relations:

PA ⊆ P
′

A ⇒ (PA → PB) ⊆
(
P

′

A → PB
)
; (D.70a)

PB ⊆ P
′

B ⇒ (PA → PB) ⊆
(
PA → P

′

B

)
. (D.70b)

At the level of Boolean logic, the transformation operation can be under-

stood as a logical implication. Indeed, the transformation is equal to its

inverse implication, meaning that it satisfies

PA → PB = PA ← PB , (D.71)

which comes from the definition. Additionally, it is equivalent to PB →
PA since the order of the systems in the tensor product does not matter

asHA ⊗HB ∼= HB ⊗HA.

D.3.3. The Type System

The→ operation on projectors recovers the→ type constructor of Bisio

and Perinotti type theory [10, 11] (presented in the main text, Section 4.3):

if the trivial system is defined as ‘1’, that is to say, the 1-dimensional state

structure {1} made of the number 1, one can interpret the measurement

(thus the negation of a given state structure) as a transformation into the

trivial system. This leads to the identity

PA = PA → 1 , (D.72)

which justifies the notation A → 1 := A . The proof is straightforward

from the definition since 1 is 1-dimensional: PA → 1 = PA ⊗ 1 = PA. In

the same way, one can prove that

PA = 1→ PA . (D.73)

Therefore, a state structure can be seen as a transformation from the

trivial system to itself and its negation as a transformation from itself

to the trivial system. In view of the link between composition and

transformation, one may also interpret the former in terms of the latter. A
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bipartite system in tensor-composed state structures, A ⊗B for instance,

can actually be seen as characterized by the following transformations

PA ⊗ PB = PA → PB = PA ← PB . (D.74)

This means that a no-signaling composite bipartite system is equivalent

to a functional on a transformation from one state structure to the

functionals on the other of the other. In the above equation, the direction

of the transformation has no influence, which is expected since it is a

no-signaling composition.

D.3.4. The Parr

The projector characterizing a two-way signaling composition as in Defi-

nition 3.5.2 is derived from the projector characterizing a transformation

as

PA

&

PB ≡ PA → PB := PA ⊗ PB . (D.75)

The Parr yields a valid projector on operator system that preserves

commutation: Like the transformation, it is a secondary connector so

using it is the same as using the negation and tensor. Consequently, it

yields valid projectors that preserve commutation.

Other properties: Because the negation is an involution, the parr is

associative,

(PA

&

PB)

&

PC = PA ⊗ PB

&

PC = PA ⊗ PB ⊗ PC = PA ⊗ PB ⊗ PC = PA ⊗ PB ⊗ PC
= PA

&

(PB

&

PC) .
(D.76)

Notice the intermediate expression which is a symmetric pattern of an

overall negation and party-wise negations of a tensor product compo-

sition. Because of the idempotency of the negation, every expression

involving only the parr connective presents it:

PA

&

PB

&

. . .

&

PK = PA ⊗ PB ⊗ . . .⊗ PK (D.77)

This form is the one appearing in the definition of the fully signaling

superset, Definition 5.1.2.

As this form involves only the tensor product as composition, the parr

inherits its commutative characteristic since PA ⊗ PB ∼= PB ⊗ PA,

PA

&

PB ∼= PB

&

PA . (D.78)
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15: I am grateful to Titouan Carette for

being the first to point out the connection

as well as the categorical approach to me.

From the tensor product, it also inherits the order-preservation,

PA ⊆ P
′

A

(5.16)⇐⇒ PA ⊇ P
′

A

(D.54)⇒ PA ⊗ PB ⊇ P
′

A ⊗ PB
(5.16)⇐⇒ PA ⊗ PB ⊆ P

′

A ⊗ PB .

(D.79)

With the same kind of proof, it can be shown that the parr obeys an

interchange law with the cup but a distribution law with the cap:(
PA ∪ P

′

A

) &(
PB ∪ P

′

B

)
= (PA

&

PB) ∪
(
P

′

A

&

P
′

B

)
, (D.80)

and

(
PA ∩ P

′

A

) &(
PB ∩ P

′

B

)
= (PA

&

PB) ∩
(
PA

&

P
′

B

)
∩
(
P

′

A

&

PB
)
∩
(
P

′

A

&

P
′

B

)
. (D.81)

So, the interchange of the cap with the parr yields an upper bound:(
PA ∩ P

′

A

) &(
PB ∩ P

′

B

)
⊆ (PA

&

PB) ∩
(
P

′

A

&

P
′

B

)
, (D.82)

This mirroring with the properties (D.42), (D.43), and (D.46) of the tensor

under the substitutions (⊗ ↔

&

), (∩ ↔ ∪), and (⊇↔⊆) is a nice example

of what De Morgan duality implies.

However, the tensor and the parr do not have a meaningful notion of

distribution over each other as the right-hand side of the following makes

no sense in terms of underlying subspaces:

PA ⊗ (PB

&

PC) ̸= (PA

&

PB)⊗ (PA

&

PC) . (D.83)

D.3.5. Multiplicative Additive Linear Logic

Here is shown under which definition that the rules { · ,∩,∪,⊗, · → · }
form a model of logic which is almost multiplicative additive linear logic

(MALL)
15

. The correspondence with MALL is summarized in Table D.1,

where the rules introduced in this thesis are put in correspondence with

their usual notation.

Table D.1.: Correspondence of the alge-

braic rules of the projective characteriza-

tion (proj.) with linear logic (LL)

Name Symbol Unit

proj. LL proj. LL

Negation · ·⊥ / /

Additive conjunction ∩ & I T
Additive disjunction ∪ ⊕ D 0

Multiplicative conjunction ⊗ ⊗ 1 1

Multiplicative disjunction

& &

1 ⊥
Linear Implication → ⊸ 1 /

Linear logic is a formal system of logic, of which MALL is a fragment,

that is a restriction of the logic to fewer rules. It can be defined as a

sequent calculus, that is the formalization of proof systems in which each

proposition follows under some structural and inference rules from other

propositions (it is a sequent of these propositions, whence the name) see
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[143]: Girard et al. (1989), Proofs and Types.
[146]: Girard (1987), Linear logic.

References [143, 146]. If one sees the projector algebra and the operations

on it as the propositions, the starting set of propositions is indeed similar

to those of MALL:

1. There is a set of base projectors;

2. For every projector P , there exists a projector P ;

3. For every projectorsPA andP ′

A, there exist an additive conjunction

PA ∩ P
′

A as well as an additive disjunction PA ∪ P
′

A;

4. For every projectors PA and PB , there exist a multiplicative con-

junctionPA⊗PB as well as a multiplicative disjunctionPA → PB ;

5. There are two constants (I,D) that go with each additive binary

connectors;

6. There are two constants (1, 1) that go with each multiplicative

binary connectors.

And the properties that can be proven for the projectors are similar to

those that can be proven in MALL using the sequent calculus:

1. All binary connectors are commutative;

2. Multiplicative connectors distribute over additive ones;

3. All propositions have a negation obeying the De Morgan rules

(5.37);

4. Additive constants are the negation of each other;

5. Multiplicative constants are the negation of each other.

Proposition 1 is always true, as is shown through this appendix. Propo-

sitions 2 to 4 are true from the fact that the definition of these various

connectors implies closure, which, in the case of projectors, is the con-

servation of properties (D.7) and (D.11). These were proven for each

connector in the previous sections. Proposition 5 follows from equations

(D.19) and (D.20). Proposition 6 happens because of the isomorphism

L (H) ⊗ C ∼= 1 so that P ⊗ 1 = P and the same way, P ⊗ 1 = P = P ,

1⊗ P = P = P .

Property 1 is true from the definition. In the case of the mutiplicative

connectors, PA ⊗ PB and PA ⊗ PB , the isomorphism HA ⊗ HB ∼=
HB ⊗HA should of course be used.

Property 2 follows from Eqs. (D.39) and (D.40) in the case of ⊗ and

application of the De Morgan rules (D.33) on these two equations can

be used to prove the property in the case of

&

. Put differently, the

multiplicative conjunction (respectively, disjunction) distributes over the

additive conjunction (disjunction)

PA ⊗
(
PB ∩ P

′

B

)
= (PA ⊗ PB) ∩

(
PA ⊗ P

′

B

)
; (D.84a)

PA

&(
PB ∪ P

′

B

)
= (PA

&

PB) ∪
(
PA

&

P
′

B

)
. (D.84b)

But as ⊗ and→ are both operations that merge subspaces, the converse

obviously does not hold. Indeed, an expression like PX ∩ (PA ⊗ PB) =
(PX ⊗ PA) ∩ (PX ⊗ PB) makes no sense as the right-hand side feature

a cap between two superoperator projectors defined on different spaces

that are not isomorphic in general.

Property 3 was proven at Equation (D.32) for the negation, (D.33) for

the additive connectors, and follows from the definition in the case of

multiplicative connectors.
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[146]: Girard (1987), Linear logic.

[36]: Simmons et al. (2022), Higher-order
causal theories are models of BV-logic.

Property 4 is the statement I = I − I +D = D, whose converse hold by

idempotency or can be proven by the same kind of computation.

Property 5 is the statement 1 = 1− 1 + 1, as in the 1-dimensional case

D = I = 1.

There are, however, some discrepancies with MALL, that are now dis-

cussed. First, two small issues that indicate a departure from a faithful

model of MALL as in Reference [146]:

1. The multiplicative units are equivalent;

2. The additive falsity (i.e. the unit for ∪) is not absorbant.

The first issue is why the terminology ‘degenerate’ was used in the main

text to refer to the model of MALL formed by the algebra of projectors.

The second issue –that PA ⊗DB ̸= DA ⊗DB– is more severe as it goes

against an equality that can be proven in MALL. A way to circumvent

this is to redefine the additive falsity as the number 0, but then the trace

normalization of all operator systems the projectors characterize should

be set to zero which would jeopardize the probabilistic interpretation.

A more substantial problem is the fact that the cap and cup are only

well-defined for expression featuring the same set of base projectors: two

projectors can only be composed with a cap if they can be embedded

in the same space. This is part of the problem evoked when discussing

Property 2 above. For the model of logic to work properly, the number of

subsystems as well as the dimension of each subsystem must be fixed a
priori, and each expression is associated with a given (set of) subsystem(s),

so that the composition is well-defined. Knowing this information allows

one to ‘pad’ the expressions with identities so as to embed them in the

global Hilbert space. For example, an expression like PX ∩ (PA ⊗ PB)
can be made definite by knowing for example that there are two systems

A and B, and that PX is associated with system B so that the padding

reads PX ∼= IA ⊗ PXB , where PXB is the projector PX acting on system

B. Another possibility is that PX is associated with both systems, so

that the padding is trivial PX ∼= PXAB . Yet another possibility is that the

projector is associated with system A andB, but the global Hilbert space

is tripartite:H = HA ⊗HB ⊗HC . In that case, the padding should be

done on the two projectors:PX ∼= PXAB⊗IC ,PA⊗PB ∼= PA⊗PB⊗IC .

Despite these particularities, the connection between the algebra of

projectors and MALL is too evident not to be pointed out. In particular,

the issues with interpreting the algebra as a model of LL come from the

choice of additive connectives as ∩ and ∪. This choice is motivated by

a desire to compare the underlying operator systems associated with

different types of higher-order quantum transformations. Another choice

proposed in Reference [36] is to use the Cartesian product and direct

sum as the additive conjunction and disjunction respectively. In that

case, the issues can all be alleviated except for the degeneracy of the

multiplicative units... but the additives connectors can no longer be used

for comparison.
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D.3.6. The Prec

Define the A-to-B one-way signaling composition, nicknamed prec, as

PA ≺ PB := IA ⊗ PB − PA ⊗DB +DA ⊗DB . (D.85)

The reversed sign≻ (also nicknamed the prec) can be defined accordingly:

the B-to-A one-way signaling composition is given by

PA ≻ PB := PA ⊗ IB −DA ⊗ PB +DA ⊗DB . (D.86)

As is the case with the transformation →, PA ≻ PB ∼= PB ≺ PA
since HA ⊗HB ∼= HB ⊗HA. Likewise, the connector is in general not

commutative, PA ≺ PB ̸= PB ≺ PA.

The Prec yields a valid projector on operator system and preserves

commutation (Lemma 5.1.8): When introduced in the main text, the

one-way signaling set A ≺ B was obtained the most general kind of

maps in CJ representation, that is structure-preserving map A → B
characterized by projector PA → PB but restricted to the subset of maps

that obey the no-signaling from B to A condition, obtained as projector

IA ⊗ PB from Lemma 3.5.3. In terms of the underlying operator system,

the support of A ≺ B is obtained as the intersection of the following

two projectors, Equation (3.104):

PA ≺ PB ≡
(
PA → PB

)
∩ (IA ⊗ PB) . (D.87)

Because IA,PA, and PB are valid projectors on operators systems,

meaning they obey Equations (3.20a), and because operations · ,⊗ and

∩ all preserve this property as proven in the last sections, PA ≺ PB must

obey (3.20a) by construction so its utilization yields valid projectors on

operator systems in L
(
HA ⊗HB

)
.

For the same reason as above, if PA ∩ P
′

A = P ′

A ∩ PA and PB ∩ P
′

B =

P ′

B ∩ PB , then the A-to-B composition preserves these commutations:

(PA ≺ PB) ∩
(
P

′

A ≺ P
′

B

)
=
(
P

′

A ≺ P
′

B

)
∩ (PA ≺ PB) . (D.88)

Similarly, because

PA ≻ PB := PA ⊗ IB −DA ⊗ PB +DA ⊗DB , (D.89)

is an expression derived from connectives that preserve commutation,

the B-to-A one-way composition also preserves commutation:

PA ≻ PB =
(
PA → PB

)
∩ (PA ⊗ IB) . (D.90)

Nevertheless, the A-to-B one-way signaling composition is different from

the B-to-A one, so it should also be proven that these two composition

commutes with each other:

(PA ≺ PB) ∩
(
P

′

A ≻ P
′

B

)
=
(
P

′

A ≻ P
′

B

)
∩ (PA ≺ PB) , (D.91)

Using the above reasoning, the commutation of ≺with ≻ is equivalent

to proving the commutation of the terms in the square brackets in
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[PA ≺ PB ] ∩
[
P

′

A ≻ P
′

B

]
=
[ (
PA → PB

)
∩ (IA ⊗ PB)

]
∩
[ (
P ′
A → P

′

B

)
∩
(
P

′

A ⊗ IB
) ]

. (D.92)

Actually, from the associativity of the ∩ and the commutation of the→
with the ⊗, the four terms commute pairwise which is enough to prove

that the pairs of terms in square brackets commute. The same way,

(PA ≻ PB) ∩
(
P

′

A ≻ P
′

B

)
=
(
P

′

A ≻ P
′

B

)
∩ (PA ≻ PB) . (D.93)

Interchange law with the additive connectors: Cap and prec satisfy

an interchange law,(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
=
(
PA ≺ PB

)
∩
(
P

′

A ≺ P
′

B

)
. (D.94)

This can be shown as follows:

(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
= IA ⊗

(
PB ∩ P

′

B

)
−
(
PA ∩ P

′
A

)
⊗DB +DA ⊗DB

(D.33b)

= IA ⊗
(
PB ∩ P

′

B

)
−
(
PA ∪ P

′
A

)
⊗DB +DA ⊗DB

= IA ⊗
(
PB ∩ P

′

B

)
− PA ⊗DB − P

′
A ⊗DB +

(
PA ∩ P

′
A

)
⊗DB +DA ⊗DB

=
(
IA ⊗ PB − PA ⊗DB +DA ⊗DB

)
∩
(
IA ⊗ P

′

B − P
′
A ⊗DB +DA ⊗DB

)
=
(
PA ≺ PB

)
∩
(
P

′

A ≺ P
′

B

)
.

(D.95)

Remark that the grouping at the penultimate line is arbitrary, implying

that:(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
=
(
PA ∩ P

′

A

)
≺
(
P

′

B ∩ PB
)

=
(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
=
(
PA ≺ P

′

B

)
∩
(
P

′

A ≺ PB
)
.

(D.96)

Therefore, the exact grouping on the right-hand side of Equation (D.94)

does not matter as long as the A’s and B’s are on the correct side

of the prec connector. This property, due to the commutativity of the

additive connectors, is what causes the non-uniqueness of the normal

form presented in Section 5.2. This non-uniqueness is also discussed in

Chapter 6.

The cup and the prec satisfy an interchange law as well,(
PA ∪ P

′

A

)
≺
(
PB ∪ P

′

B

)
=
(
PA ≺ PB

)
∪
(
P

′

A ≺ P
′

B

)
. (D.97)

This can be shown in the same way,



D.3. The Type System/Fragment of Linear Logic 237

(
PA ≺ PB

)
∪
(
P

′

A ≺ P
′

B

)
=(

IA ⊗ PB − PA ⊗DB +DA ⊗DB
)
∪
(
IA ⊗ P

′

B − P
′
A ⊗DB +DA ⊗DB

)
=
(
IA ⊗ PB − PA ⊗DB +DA ⊗DB

)
+
(
IA ⊗ P

′

B − P
′
A ⊗DB +DA ⊗DB

)
− IA ⊗

(
PB ∩ P

′

B

)
+ PA ⊗DB + P ′

A ⊗DB −
(
PA ∩ P

′
A

)
⊗DB −DA ⊗DB

= IA ⊗ PB + IA ⊗ P
′

B − IA ⊗
(
PB ∩ P

′

B

)
−
(
PA ∩ P

′
A

)
⊗DB +DA ⊗DB

= IA ⊗
(
PB ∪ P

′

B

)
−
(
PA ∪ P

′
A

)
⊗DB +DA ⊗DB
=
(
PA ∪ P

′

A

)
≺
(
PB ∪ P

′

B

)
.

(D.98)

These two interchange laws imply distributivity as a special case because

the elements in the algebra are all additively idempotent (P = P ∩ P =

P ∪P ) so the following can be written:

(
PA∪P

′

A

)
≺ PB =

(
PA∪P

′

A

)
≺(

PB∪PB
)
=
(
PA ≺ PB

)
∪
(
P ′

A ≺ PB
)
. As a consequence, the following

relations hold:

(PA ∩ P
′

A) ≺ PB = (PA ≺ PB) ∩ (P
′

A ≺ PB) , (D.99a)

(PA ∪ P
′

A) ≺ PB = (PA ≺ PB) ∪ (P
′

A ≺ PB) , (D.99b)

PA ≺ (PB ∪ P
′

B) = (PA ≺ PB) ∪ (PA ≺ P
′

B) , (D.99c)

PA ≺ (PB ∩ P
′

B) = (PA ≺ PB) ∩ (PA ≺ P
′

B) . (D.99d)

Properties appearing in Proposition 5.1.9: The distributivity of the

negation is first proven by direct computation,

PA ≺ PB =

IA ⊗ IB − PA ≺ PB +DA ⊗DB = IA ⊗ IB − (IA ⊗ PB − PA ⊗DB +DA ⊗DB) +DA ⊗DB =(
IA ⊗ IB − IA ⊗ PB + IA ⊗DB

)
− PA ⊗DB +DA ⊗DB =

(
IA ⊗ PB

)
− PA ⊗DB +DA ⊗DB

= PA ≺ PB .
(D.100)

The prec has thus a simpler connection with the negation than the no-

signaling (the tensor) and the two-way signaling (the parr) compositions

as it directly commutes with the negation instead of obeying a De Morgan

law,

PA ≺ PB = PA ≺ PB . (D.101)

One can link one-way signaling ≺, and no-signaling ⊗ compositions by

noticing that

(PA ≺ PB) ∩ (PA ≻ PB) = PA ⊗ PB , (D.102)

This equation is proven by developing it, (PA ≺ PB) ∩ (PA ≻ PB) =(
IA⊗PB −PA⊗DB +DA⊗DB

)
∩
(
PA⊗IB −DA⊗PB +DA⊗DB

)
,

and noting that the intersection of any two elements but

(
IA ⊗ PB

)
∩(

PA⊗IB
)
= PA⊗PB is givingDA⊗DB . Thus, the expression reduces to

PA ⊗PB followed by eight occurrences ofDA ⊗DB alternating between

a plus and minus sign, therefore canceling each other.



238 D. Appendices to Chapter 5

Compared to transformation, one-way signaling composition is also

better behaved in the sense that it is associative

PA ≺ (PB ≺ PC) = (PA ≺ PB) ≺ PC . (D.103)

So that PA ≺ (PB ≺ PC) = PA ≺ PB ≺ PC can be written unambigu-

ously. The distributivity of the negation over the prec is used in the proof:

PA ≺ (PB ≺ PC) = IA ⊗ (PB ≺ PC)− PA ⊗DB ⊗DC +DA ⊗DB ⊗DC
= IA ⊗ IB ⊗ PC − IA ⊗ PB ⊗DC + IA ⊗DB ⊗DC − PA ⊗DB ⊗DC +DA ⊗DB ⊗DC

=
(
IA ⊗ IB

)
⊗ PC −

(
IA ⊗ PB − PA ⊗DB +DA ⊗DB

)
⊗DC +DA ⊗DB ⊗DC

=
(
IA ⊗ IB

)
⊗ PC −

(
PA ≺ PB

)
⊗DC +DA ⊗DB ⊗DC

=
(
IA ⊗ IB

)
⊗ PC −

(
PA ≺ PB

)
⊗DC + (DA ⊗DB)⊗DC =

(
PA ≺ PB

)
≺ PC ,

(D.104)

where the definition has been used to go to the last line, as well as the

commutation of the prec with the negation to go to the penultimate

one.

Finally, the preservation of the partial order is direct from the interchange

law (D.99) proven above. Let PA ∩ P
′

A = PA ⇐⇒ PA ⊆ P
′

A and

PB ∩ P
′

B = PB ⇐⇒ PB ⊆ P
′

B , then

(PA ≺ PB) ∩
(
P

′

A ≺ P
′

B

)
(D.99)

=
(
PA ∩ P

′

A

)
≺
(
PB ∩ P

′

B

)
= P

′

A ≺ P
′

B , (D.105)

which implies that

(PA ≺ PB) ⊆
(
P

′

A ≺ P
′

B

)
. (D.106)

Relation with the parr and inclusion relations with between multiplica-

tive connectors: The parr is linked with the prec in a similar fashion as

the prec is linked with the tensor:

(PA ≺ PB) ∪ (PA ≻ PB) = PA

&

PB . (D.107)

This equation has a quick proof using the De Morgan rule and the

distributivity of the negation:

(PA ≺ PB) ∪ (PA ≻ PB)
(D.32)

= (PA ≺ PB) ∪ (PA ≻ PB)
(D.33a)

= (PA ≺ PB) ∩ (PA ≻ PB)
(D.101)

=
(
PA ≺ PB

)
∩
(
PA ≻ PB

)
(D.102)

= PA ⊗ PB = PA

&

PB .
(D.108)

From Equation (D.102), it can also be inferred that

PA ⊗ PB ⊆ PA ≺ PB , (D.109a)

PA ⊗ PB ⊆ PA ≻ PB . (D.109b)

It follows from (PA ⊗ PB) ∩ (PA ≺ PB) = (PA ≺ PB) ∩ (PA ≻ PB) ∩
(PA ≺ PB) = (PA ≺ PB) ∩ (PA ≻ PB) = PA ⊗ PB , and the second
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Figure D.3.: Diagrammatic depiction of

the image in L
(
HA ⊗HB

)
of the com-

position of PA with PB obtained by

the tensor ⊗, prec ≺, and parr

&

con-

nectors. In the diagram, A = Im
{
PA

}
,

A = Im
{
PA

}
, and the same holds for

B, whereas D = DA or = DB depend-

ing on, respectively, whether it is on the

left or on the right of the tensor product.

equation is proven analogously. The same way, from Equation (D.107),

PA ≺ PB ⊆ PA

&

PB , (D.110a)

PA ≻ PB ⊆ PA

&

PB . (D.110b)

Putting these relations together yields Equations (5.41) in the main text,

PA ⊗ PB ⊆ PA ≺ PB ⊆ PA

&

PB , (D.111a)

PA ⊗ PB ⊆ PA ≻ PB ⊆ PA

&

PB . (D.111b)

The first line is diagrammatically depicted in Figure D.3: the subspace

associated with PA → PB = PA

&

PB is represented in blue on the

right: its definition as PA

&

PB = IA ⊗ IB − PA ⊗ PB + DA ⊗ DB
appears more clearly: the support is the full disc (the image of IA ⊗ IB)

minus the left quadrant (the image of PA ⊗PB) except the central dot

(the image of DA ⊗DB).

The intermediate case, associated with PA ≺ PB is depicted in green on

the center; from Equation (3.104), PA ≺ PB =
(
PA → PB

)
∩ (IA ⊗ PB),

it is obtained as the intersection of the blue part, PA → PB , with

IA ⊗PB = (PA ⊗ PB) ∪
(
PA ⊗ PB

)
which correspond to the right and

top quadrants. It can also be constructed from the definition, PA ≺
PB := IA ⊗ PB − PA ⊗ DB + DA ⊗ DB : the green part made of the

right and top quadrants (IA ⊗PB) minus the line separating the left and

top quadrants (PA ⊗DB) except at the central dot (DA ⊗DB).

The smallest case, associated with PA ⊗ PB is depicted in yellow on

the left; as discussed in Proposition 3.5.5 it is effectively defined by the

intersection of two no-signaling subspaces that can be defined through

Lemma 3.5.3, (IA ⊗ PB)∩ (PA ⊗ IB), that is the intersection of the right

and top quadrants (IA ⊗PB) with the right and bottom ones (PA ⊗ IB),

yielding the right quadrant. Remark that the intersection with PA → PB
brings no new constraints, this is the main content of the theorem.

D.4. Accidental Isomorphism in the Case of

Quantum Theory and the Proof of

Lemma 5.3.1

Observe that the only time Equation (5.27) is thigh, i.e. when identity

PA⊗PB = PA ⊗ PB holds, is when the projector is either characterizing
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the totality of the space or only the span of identity. In equation,

PA ⊗ PB = PA ⊗ PB ⇐⇒ PA = PB = I orD . (D.112)

This is proven by rewriting PA ⊗ PB into

PA ⊗ PB = PA ⊗ PB +(
PA ⊗ PB − PA ⊗DB −DA ⊗ PB +DA ⊗DB

)
+(

PA ⊗ PB − PA ⊗DB −DA ⊗ PB +DA ⊗DB
)
, (D.113)

using the definition of negation and algebraic properties. It can then

be understood from Figure D.3: the first term of the above is the right

quarter of the wheel, the second is the top quarter with its boundary

removed, and the third is the bottom also without boundaries. As the

three parts share no intersection, the regular addition ‘+’ is equivalent to

a conjunction ‘∪’. Next, more algebraic manipulations lead to

PA ⊗ PB = PA ⊗ PB +(
PA ⊗ PB + PA ⊗ PB − IA ⊗DB −DA ⊗ IB

)
, (D.114)

and from this expression, it is direct to check that the term in parenthesis

vanishes if and only if either of the conditions in Eq. (D.112) hold.

This has consequences on the set inclusions (D.111), appearing in the main

text as Equations (5.41). The situation is more symmetric when these are

rephrased as transformations by negating one of the two systems, in that

case A:

PA ⊗ PB ⊆ PA ≺ PB ⊆ PA → PB , (D.115a)

PA ⊗ PB ⊆ PA ≻ PB ⊆ PA → PB . (D.115b)

The inclusions become equivalences in the special cases where the pro-

jectors are either identity or depolarizing. These imply set isomorphisms

that are not without consequences: subsets with different signaling

constraints get accidentally equivalent.

Putting an identity on the right side of the→ gives

PA → IB = PA ⊗DB , (D.116)

which happens to be equivalent to

PA ≺ IB = IA ⊗ IB − PA ⊗DB +DA ⊗DB . (D.117)

As it can be shown directly from the definitions. In that case, the two-way

and one-way signaling compositions coincide. The same way, putting

one on the left side gives

IA → PB =IA ⊗ PB
=IA ⊗ IB − IA ⊗ PB +DA ⊗DB
=IA ⊗ PB − IA ⊗DB +DA ⊗DB ,

(D.118)
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which is equivalent to

DA ≺ PB = IA ⊗ PB − IA ⊗DB +DA ⊗DB . (D.119)

One has then the following identities:

PA ≺ IB = PA → IB ; (D.120a)

DA ≺ PB = IA → PB . (D.120b)

These are the only two cases for which the transformation is equivalent

to the prec as the following rewriting shows:

PA → PB = PA ≺ PB + (IA − PA)⊗ (IB − PB) . (D.121)

These relations can be concisely recast as

PA ≺ PB = PA → PB ⇐⇒ PA = IA or PB = IB . (D.122)

In addition to that, one-way signaling composition is equivalent to the

no signaling composition in the following cases:

PA ≺ DB = PA ⊗DB ; (D.123a)

IA ≺ PB = IA ⊗ PB . (D.123b)

Again, this directly follows from the definition by re-expressing it as

PA ≺ PB = PA ⊗ PB + (PA −DA)⊗ (PB −DB) , (D.124)

and this can be concisely recast as

PA ≺ PB = PA ⊗ PB ⇐⇒ PA = DA or PB = DB . (D.125)

It should be noted that condition (D.125) is stronger than (D.122). Actually,

when both conditions are satisfied at once, one has either of the two

identities:

IA → DB = DA ≺ DB = DA ⊗DB ; (D.126a)

DA → IA = IA ≺ IB = IA ⊗ IB . (D.126b)

The reason this is the case comes from isomorphism (D.112), which

reduces the transformation into a no-signaling composition. Indeed,

DA ≺ DB
(D.122)

= IA → DB = IA ⊗DB = IA ⊗ IB
(D.112)

= DA ⊗DB . (D.127)

And the same way,

IA ≺ IB
(D.122)

= DA → IB = DA ⊗ IB = DA ⊗DB
(D.112)

= IA ⊗ IB . (D.128)

Therefore, the isomorphisms (D.112), (D.122), and (D.125) give the condi-

tions for set equivalences in the composition rules.

One can understand these relations using a diagram like Figure D.4. For

a transformation PA → PB made of arbitrary projectors (in blue), its

different substructures are effectively distinct (no-signaling in yellow,
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Figure D.4.: Diagrammatic representa-

tion of the support of the different projec-

tors representing transformations from

A to B with respect to the tensor factors

ofL
(
HA ⊗HB

)
. These are the four dif-

ferent ways of composing an effect in A
with a state in B. Note that the intersec-

tions are well defined; for example, the

line ‘A ⊗ D’ is indeed the intersection

A⊗B ∩A⊗B.

Figure D.5.: Diagrams depicting the sub-

spaces supporting the four different ways

of defining a transformation (top). When

PA = DA and PB = IB (bottom),

the yellow and green zones are shrunk

to the segment D ⊗ B: Equations akin

to (D.123a) and (D.123b) are simultane-

ously verified so no signaling (yellow) is

equivalent to one-way to A (green). At

the same time, the pink and blue zones

are reduced to A ⊗ B − A ⊗ D: Eqs.

(D.120a)and (D.120b) are simultaneously

verified so two-way signaling (blue) is

equivalent to one-way signaling to B
(pink).

A-to-B one-way in pink, and B-to-A one-way in green). Recall that one

can infer the inclusion relations from their overlap, e.g. PA ⊗ PB ⊆
PA ≺ PB ⊆ PA → PB can be inferred from the fact that the yellow

part is contained within the pink one which is contained within the blue

one. Another example,

(
PA ≺ PB

)
∩
(
PA ≻ PB

)
= PA → PB can be

inferred from the fact that zone covered by the pink and green areas is

equivalent to the blue one.

An accidental isomorphism is present when either the input or the output

is a density operator (featuring an identity projector). In the first case,

PA = IA and PA = DA, so the area A shrinks into a line: the top and

left quadrants of the circle are shrunk into the diagonal that goes from

bottom left to top right. The yellow zone is thus shrunk into D ⊗ B,

the upper border of A ⊗ B, and so is the green zone, this equivalence

of yellow and green is similar to Equation (D.123a), but with A and B

swapped: PA = DA ⇒ PA ≻ PB = DA ⊗ PB . At the same time, the

pink zone is shrunk to A ⊗ B − A ⊗D, i.e. A ⊗ B without its bottom

border, and so is the blue zone, this equivalence of pink and blue is

Equation (D.120b). In the second case, PB = IB and PB = DB , so

the area B also shrinks to a line: the bottom and left quadrants are
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shrunk into the diagonal that goes from top left to bottom right. The

yellow zone is untouched, but the green one is shrunk into the same

zone as A⊗B becomes the border A⊗D, i.e. the top-left segment. This

equivalence when PB = IB is similar to Equation (D.123b), but with A

and B swapped: PB = IB ⇒ PA ≻ PB = PA ⊗ IB . As for the green

zone, it is untouched as well, but the blue zone also sees its left quadrant

shrunk into the top-left segment, so the green and blue zone becomes

equivalent. This is Equation (D.120a).

When PA = DA and PB = IB (Figure D.5), the yellow and green zones

are shrunk to the segmentD⊗B. The versions of Equations (D.123a) and

(D.123b) where A and B have swapped roles are simultaneously verified,

so the diagram depicting the no signaling transformation (yellow) is

equivalent to the one depicting the transformation which is one-way sig-

naling toA (green). At the same time, the pink and blue zones are reduced

to A⊗B −A⊗D. Equations (D.120a) and (D.120b) are simultaneously

verified so the diagram depicting the two-way signaling transformation

(blue) is equivalent to the one depicting the transformation, which is

one-way signaling to B (pink).

D.5. Proofs

D.5.1. Proof of Lemma 5.1.6

Let P(n)
be the projector obtained after n ‘steps’ that can be categorized

as 1) do a global negation of the projector, P(n) = P(n−1)
; 2) add a base

projector on the right using tensor product, P(n) = P(n−1) ⊗PX ; 3) add

a similarly obtained projector after k steps,P(k)
, on the right using tensor

product,P(n) = P(n−1)⊗P(k)
. This covers all cases as the→ can be split

into a negation and a tensor, · → · ≡ · ⊗ · , and one can always redefine

the tensor factors labeling so that the added system is on the right since

HA ⊗HB ∼= HB ⊗HA.

The only non-trivial first step is to choose a base projector, say PA, in

which case the claim trivially holds, PA ⊆ PA ⊆ PA. Suppose it holds

after n− 1 steps during which j base projectors were added, then

P̃A ⊗ . . .⊗ P̃J ⊆ P(n−1) ⊆ P̃A ⊗ . . .⊗ P̃J . (D.129)

Let P̃A ⊗ . . . ⊗ P̃J ≡ P
(n−1)
NS and P̃A ⊗ . . .⊗ P̃J ≡ P

(n−1)
FS . Then,

P(n−1)
NS ⊆ P(n−1) ⊆ P(n−1)

FS . The following holds because of Equaitons

(5.16)

P(n−1)

NS ⊇ P(n−1) ⊇ P(n−1)

FS , (D.130)

This corresponds to doing a step of category 1), P(n) = P(n−1)
, in which

case P(n−1)

NS = P̃A ⊗ . . .⊗ P̃J . A negation can be put over every single

projector by redefining the tilde, P̃A 7→ P̃A, which implies that P(n−1)

NS is

redefined as P(n−1)

NS = P(n)
FS = P̃A ⊗ . . .⊗ P̃J . The same can be done on

P(n−1)

FS , which proves the induction for 1).



244 D. Appendices to Chapter 5

Let P ′
be an arbitrary projector on operator system, the following holds

by (D.54) and (5.27) proven in subsection D.3.1:

P(n−1)
NS ⊗ P

′
⊆ P(n−1) ⊗ P

′
⊆ P(n−1)

FS ⊗ P
′
, (D.131a)

P(n−1)
FS ⊗ P

′
⊆ P(n−1)

FS ⊗ P
′
, (D.131b)

P(n−1)
NS ⊗ P

′
⊆ P(n−1) ⊗ P

′
⊆ P(n−1)

FS ⊗ P
′
. (D.131c)

Since P ′
is arbitrary, the first equation corresponds to either doing step 2)

or 3). For case 2),P ′ ≡ PL is the (j+1)-th subsystem added, corresponding

to some party L, so that P(n−1) ⊗ PL = P(n)
. The third equation

then reads P(n−1)
NS ⊗ PL ⊆ P(n) ⊆ P(n−1)

FS ⊗ P
′
. Set PL ≡ P̃L and the

induction is proven. The reasoning is analog in case 3). Note that the

added system, P ′ ≡ P(k)
, is also included in some P(k)

NS ⊆ P(k) ⊆ P(k)
FS

by assumption. Using Equation D.54 again, one has P(n−1)
NS ⊗ P(k)

NS ⊆

P(n−1)⊗P(k) ⊆ P(n−1)

FS ⊗ P(k)

FS . AsP(n) = P(n−1)⊗P(k)
, the induction

is proven by using the fact that the tensor as well as · → · are associative

operations to extend the expressions on both side of P(n−1) ⊗ P(k)
and

then to define the P̃ ’s according to the sought expression.

D.5.2. Proof of Proposition 5.1.11

This is essentially proven the same way as Lemma 5.1.6, see subsec-

tion D.5.1 above, but with two new categories of ‘steps’: 4) P(n) =

P(n−1) ≺ PL and 5) P(n) = P(n−1) ≺ P(k)
. Reducing these steps into

a chain of inclusion like P(n−1)
NS ⊗ P ′ ⊆ P(n−1) ≺ P ′ ⊆ P(n−1)

NS ⊗ P
′

is again obtained by first noticing that PA ⊆ P
′

A ⊆ P
′′

A ⇒ PA ≺
PB ⊆ P

′

A ≺ PB ⊆ P
′′

A ≺ PB and then by using relations (5.41) so that

PA ⊗ PB ⊆ PA ≺ PB and P ′′

A ≺ PB ⊆ P
′′

A ⊗ PB .

D.5.3. Proof of Theorem 5.2.1

Let

Γ =

x⋃
i=1

 yi⋂
j=1

P̃σij(A) ≺ . . . ≺ P̃σij(K)

 (D.132)

and

Ξ =

z⋃
m=1

(
tm⋂
n=1

P̃σmn(A) ≺ . . . ≺ P̃σmn(K)

)
(D.133)

be two normal forms involving k base projectors. Define the shorthand

notation: Γi :=
(⋂yi

j=1 P̃σij(A) ≺ . . . ≺ P̃σij(K)

)
so that

Γ =

x⋃
i=1

Γi = Γ1 ∪ Γ2 ∪ ... ∪ Γx , (D.134)
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and Γij ≡ P̃σij(A) ≺ . . . ≺ P̃σij(K) so that Γi =
(⋂yi

j=1 Γij

)
and

Γ =

x⋃
i=1

 yi⋂
j=1

Γij

 . (D.135)

Hence,

Γ =

x⋃
i=1

(Γi1 ∩ Γi2 ∩ . . . ∩ Γiyi) =

 y1⋂
j=1

Γ1j

 ∪
 y2⋂
j=1

Γ2j

 ∪ . . . ∪
 yx⋂
j=1

Γxj

 ; (D.136)

and Ξm and Ξmn are defined accordingly.

First, remark that the negation, intersection, and union of normal forms

can be put into normal forms: Γ∪Ξ is a normal form obtained simply by

merging the unions:

Γ ∪ Ξ =

(
x⋃
i=1

Γi

)
∪

(
z⋃

m=1

Ξm

)
= Γ1 ∪ Γ2 ∪ ... ∪ Γx ∪ Ξ1 ∪ Ξ2 ∪ ... ∪ Ξz , (D.137)

which is a normal form once the redundant terms in the series –the

Γi’s that happen to be equivalent to some Ξm’s– have been removed by

commutativity, associativity, and idempotency. To prove that Γ ∩ Ξ can

be put in normal form requires to use of the distribution law (D.18)

Γ ∩ Ξ =

x⋃
i=1

 yi⋂
j=1

Γij

 ∩ z⋃
m=1

(
tm⋂
n=1

Ξmn

)
= (Γ1 ∪ Γ2 ∪ ... ∪ Γx) ∩ (Ξ1 ∪ Ξ2 ∪ ... ∪ Ξz)

= (Γ1 ∩ Ξ1) ∪ (Γ2 ∩ Ξ1) ∪ . . . ∪ (Γz ∩ Ξ1) ∪ (Γ1 ∩ Ξ2) ∪ . . . ∪ (Γz ∩ Ξt) .

(D.138)

Each (Γi ∩ Ξm) term is an intersection of intersections. Therefore, they

can be merged as an overall intersection by associativity, and the redun-

dancy can be removed the same way as for the union case above. Then

again, the pairwise unions of these terms are in normal form once the

redundancies like (Γi ∩ Ξm) = (Γi′ ∩ Ξm′) for some (i,m) ̸= (i′,m′)

have been removed.

To prove that Γ can be put in normal form requires to use of the De

Morgan laws,

Γ =

x⋃
i=1

 yi⋂
j=1

Γij

 (D.33a)

=

x⋂
i=1

 yi⋂
j=1

Γij

 (D.33b)

=

x⋂
i=1

 yi⋃
j=1

Γij

 , (D.139)

then the commutation of the negation with the prec, Equation (D.101), is

used on each term,

Γij = P̃σij(A) ≺ . . . ≺ P̃σij(K) = P̃σij(A) ≺ . . . ≺ P̃σij(K) = P̃
′

σij(A) ≺ . . . ≺ P̃
′

σij(K) = Γ′
ij . (D.140)

Where the base projectors have been redefined so as to incorporate the

negation. Thus, the Γ′
ij are normal forms, and so their intersections of

unions can be put into normal form by using the two properties proven

just before this one.
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16: As is the case with Γ and Ξ, each

value of the index of unions u defines

a new index for the set intersections vu.

Hence, vu directly depends on the cur-

rent value of u but this dependence is

left implicit, v := vu.

Next, let Υ be a projector on an operator system over l subsystems in

L
(
HL ⊗ . . .⊗HR

)
that is in normal form,

Υ =

z⋃
m=1

(
tm⋂
n=1

P̃χmn(L)
≺ . . . ≺ P̃χmn(R)

)
(D.141)

where χmn is an element of the permutation group over l symbols. Then

the one-way signaling composition Γ ≺ Υ is a projector on operator

system over L
(
HA ⊗ . . .⊗HK ⊗HL ⊗ . . .⊗HR

)
that can be put into a

normal form as well. This is proven using the interchange laws (D.94) and

(D.97). Define Υm and Υmn like above, let u ranging from 1 to x× z such

that u = 1 is identified with (i,m) = (1, 1), u = 2with (i,m) = (1, 2), etc.

For each u, let v ranging
16

from 1 to yi × tm such that v = 1 is identified

with (j, n) = (1, 1), etc., and let ζuv = (σij , χmn) be an element of the

permutation group over k + l elements indexed by u and v. That way, an

element like Γij ≺ Υmn can be rewritten as Θuv in the following manner:

Γij ≺ Υmn =
(
P̃σij(A) ≺ . . . ≺ P̃σij(K)

)
≺
(
P̃χmn(L)

≺ . . . ≺ P̃χmn(R)

)
= P̃σij(A) ≺ . . . ≺ P̃σij(K) ≺ P̃χmn(L)

≺ . . . ≺ P̃χmn(R)

= P̃ζuv(A) ≺ . . . ≺ P̃ζuv(K) ≺ P̃ζuv(L)
≺ . . . ≺ P̃ζuv(R) =: Θuv ;

(D.142)

This is but a relabelling using associativity of the prec (5.38a) (proven

at Equation D.104). But the same way, an element like Γij ≻ Υmn can

also be identified with some Θu′v′ by finding the permutation ζu′v′ that

exactly corresponds to P̃ζu′v′ (A) ≺ . . . ≺ P̃ζu′v′ (K) ≺ P̃ζu′v′ (L)
≺ . . . ≺

P̃ζu′v′ (R) = P̃χmn(L)
≺ . . . ≺ P̃χmn(R) ≺ P̃σij(A) ≺ . . . ≺ P̃σij(K). The

important thing to notice is by definition, Θuv is a normal form. The

one-way signaling composition of Γ with Υ then reads:

Γ ≺ Υ =

x⋃
i=1

 yi⋂
j=1

Γij

 ≺ z⋃
m=1

(
tm⋂
n=1

Υmn

)
(D.97)

=

x⋃
i=1

 yi⋂
j=1

Γij

 ≺ ( z⋃
m=1

(
tm⋂
n=1

Υmn

))
(D.97)

=

x⋃
i=1

 z⋃
m=1

 yi⋂
j=1

Γij

 ≺ ( tm⋂
n=1

Υmn

) (D.94)

=

x⋃
i=1

 z⋃
m=1

 yi⋂
j=1

(
Γij ≺

(
tm⋂
n=1

Υmn

))
(D.94)

=

x⋃
i=1

 z⋃
m=1

 yi⋂
j=1

(
tm⋂
n=1

Γij ≺ Υmn

) =

(x,z)⋃
(i=1,m=1)

 (yi,tm)⋂
(j=1,n=1)

Γij ≺ Υmn


=

x×z⋃
u=1

(
yi×tm⋂
v=1

Θuv

)
.

(D.143)

In the above rewriting, the associativities of intersections and unions

have been used in the penultimate equality, and then the definition of

the Θuv’s was injected to go the last line. Note that compared to the

intersection and union cases, there is no risk of redundancies since the

permutations of Γij and Υmn run over different sets ({A, . . .K} and

{L, . . . R} respectively). As each Θuv is a ‘prec chain’, it is direct to see

that the last line is a normal form of Γ ≺ Υ.
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Using relations (5.40) (proven around Equations (D.102) and (D.107)),

the no-signaling composition of two normal forms, Γ⊗Υ, as well as their

two-way signaling composition of a normal form into a normal form,

Γ→ Υ can be expressed in terms of intersections, unions, negations or

precs: Γ ⊗ Υ = (Γ ≺ Υ) ∩ (Γ ≻ Υ) and Γ

&

Υ = (Γ ≺ Υ) ∩ (Γ ≻ Υ).

And so they can be put in normal form as well because of the above

discussion. The same holds for the transformation and any connector

that can be derived from { · ,∩,∪,≺, }.

Therefore, by showing that the negation of a normal form, the intersec-

tion, and union of two normal forms, as well as the one-way signaling

composition of two normal forms, can all be rewritten into a normal form.

Moreover, the other multiplicative connectors, since they are secondary,

can also be put into a normal form. The proof is completed by noticing

that a single base projector like PA is in a normal form by definition.

D.5.4. Proof of Theorem 5.3.2

Using Lemma 5.3.1, the equivalence between (5.64) and (5.55) is almost

immediate: inject the result on each node, P (n-network)

A
channel

≡ (IA0 → IA1) ≺

. . . ≺
(
IA2n−2

→ IA2n−1

)
(5.63a)

=
(
IA0
≺ IA1

)
≺ . . . ≺

(
IA2n−2

≺ IA2n−1

)
,

then use the associativity of the prec.

This in turn can be used to recursively prove the equivalence between

(5.64) and (5.56). Indeed, observe that the 1-comb is characterized by

IA0
→ IA1

which is equivalent to

P (2-comb)

Astate

:= IA0 → IA1

(5.63a)

= IA0 ≺ IA1 . (D.144)

Then, each iteration of combs satisfies the latter condition in Lemma 5.3.1

for (5.63a) to hold on the right side of the→. E.g, for P (4-comb)

Astate

:

P (4-comb)

Astate

:= ((IA0
→ IA1

)→ IA2
)→ IA3

=
((
IA0
≺ IA1

)
→ IA2

)
→ IA3

=
(
IA0 ≺ IA1 ≺ IA2

)
→ IA3 =

(
IA0 ≺ IA1 ≺ IA2

)
→ IA3

= IA0
≺ IA1

≺ IA2
≺ IA3

= IA0
≺ IA1

≺ IA2
≺ IA3

.

(D.145)

Where the associativity of one-way signaling composition (Equation D.103

here) and the distribution of the negation over the prec (Equation D.101

here) has been used to simplify in between each step. The proof for the

n-comb directly follows by induction on the above computation: suppose

it holds for n, P (n-network)

A
channel

= P (2n-comb)

Astate

then for n+ 1 the projector is

P (2(n+1)-comb)

Astate

:=
(
P (2n-comb)

Astate

→ IA2n

)
→ IA2n+1

=
(
P (2n-comb)

Astate

≺ IA2n

)
→ IA2n+1

= P (2n-comb)

Astate

≺ IA2n
≺ IA2n+1

= P (2n-comb)

Astate

≺ IA2n
≺ IA2n+1

= P (n-network)

A
channel

≺
(
IA2n → IA2n+1

)
=: P ((n+1)-network)

A
channel

,

(D.146)

where the hypothesis was injected in between the antepenultimate and

penultimate lines as well as identityIA2n
≺ IA2n+1

=
(
IA2n

→ IA2n+1

)
.
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Next, the equivalence between (5.64) and (5.54) is also proven by in-

duction. It holds by definition for the n = 1 case, suppose it holds for

n, P (n-comb)

A
channel

= IA0
≺ IA1

≺ . . . ≺ IA2n−2
≺ IA2n−1

, and define the

relabelling P (n-comb)
′

A
channel

≡ IA1
≺ IA2

≺ . . . ≺ IA2n−1
≺ IA2n

where all

indices have been incremented by 1. Then,

P (2(n+1)-comb)

Astate

:=

(. . . (IAn → IAn+1)→ . . .)→
(
IA0 → IA2n+1

)
= P (n-comb)

′

A
channel

→
(
IA0
→ IA2n+1

)
(D.68)

= (IA0
⊗ P (n-comb)

′

A
channel

)→ IA2n+1

(5.63b)

= (IA0
≺ P (n-comb)

′

A
channel

)→ IA2n+1

(5.63a)

= IA0
≺ P (n-comb)

′

A
channel

≺ IA2n+1

= IA0
≺ P (n-comb)

′

A
channel

≺ IA2n+1

= IA0 ≺ IA1 ≺ . . . ≺ IA2n ≺ IA2n+1

= IA0 ≺ IA1 ≺ . . . ≺ IA2n ≺ IA2n+1 .

(D.147)

Here, the uncurrying rule (D.68) was used between the second and third

lines as a computational shortcut.

Finally, the equivalence between (5.64) and (5.57) follows by induction

as well. In the case n = 1, it is proven by writing explicitly the content of

the projector (5.64),(
IA0
≺ IA1

)
{M} =M

(IA0
⊗ IA1

− IA0
⊗DA1

+DA0
⊗DA1

) {M} =M

M − 1A1

dA1

TrA1 [M ] +
1A0

dA0

TrA0

[
1A1

dA1

TrA1 [M ]

]
=M

1A0A1

dA0A1

TrA0A1
[M ] =

1A1

dA1

TrA1
[M ]

TrA1 [M ] =
1

dA0

TrA0A1 [M ] 1A0 . (D.148)

Suppose it holds for n nodes,P(2n){M (n)} =M (n) ⇐⇒ TrA1

[
M (1)

]
=

1
dA0

TrA0A1

[
M (1)

]
1A0 ∧ . . .∧ TrA2n−1 [M ] = 1

dA2n−2
TrA2n−2A2n−1 [M ]⊗

1A2n−1
. Then, for n+ 1 nodes, let M (n+1) ≡M , and

M = P(2n+2){M}
=
[
P(2n) ≺

(
IA2n

≺ IA2n+1

) ]
{M}

=
[ (
IA0 ⊗ . . .⊗ IA2n−1

)
⊗
(
IA2n ≺ IA2n+1

)
− P(2n) ⊗DA2n

⊗DA2n+1
+DA0

⊗DA1
⊗ . . .⊗DA2n

⊗DA2n+1

]
{M}

=
[ (
IA0
⊗ . . .⊗ IA2n−1

)
⊗
(
IA2n

≺ IA2n+1

)
− IA0 ⊗ . . .⊗ IA2n−1 ⊗DA2n ⊗DA2n+1 + P(2n) ⊗DA2n ⊗DA2n+1

]
{M} .

(D.149)

Using this last equality, one can regroup terms as
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0 =
[ (
IA0
⊗ . . .⊗ IA2n−1

)
⊗
((
IA2n

≺ IA2n+1

)
− IA2n

⊗ IA2n+1

) ]
{M}

−
[ ((
IA0 ⊗ . . .⊗ IA2n−1

)
− P(2n)

)
⊗DA2n ⊗DA2n+1

]
{M} .

(D.150)

This defines two projectors with zero intersection, therefore each piece in

square brackets must be zero independently of the other. The first piece,

0 =
[ (
IA0
⊗ . . .⊗ IA2n−1

)
⊗
((
IA2n

≺ IA2n+1

)
− IA2n

⊗ IA2n+1

) ]
{M}

is exactly equation (D.148) applied on systems A2n+1A2n. Whereas the

second piece,0 =
[ ((
IA0 ⊗ . . .⊗ IA2n−1

)
− P(2n)

)
⊗DA2n⊗DA2n+1

]
{M}

can be recast into 0 =
[
(
(
IA0 ⊗ . . .⊗ IA2n−1

)
−P(2n)

]
{TrA2nA2n+1 [M ]}.

Using M (n) ≡ TrA2nA2n+1 [M ], this last equation must contain by hy-

pothesis the n other causality conditions. Therefore, the n + 1 causal-

ity conditions have been recovered from the projector, completing the

proof.
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