Quantum Mechanics II

Exercise 3: Density matrix

10 October 2018

- 1. Let state $\hat{\rho}$ be given by $\hat{\rho} = \sum_k p_k |\psi_k\rangle\langle\psi_k|$, where $\forall k \in \mathbb{N}_0 : p_k \geq 0$ and $\sum_k p_k = 1$. Prove that
 - a) $\hat{\rho}$ is hermitian,
 - b) $\operatorname{Tr} \hat{\rho} = 1$,
 - c) $\hat{\rho} \geq 0$,
 - d) $1 \hat{\rho} \ge 0$.

How the eigenvalues of $\hat{\rho}$ can be interpreted?

Reminder: Operator $\hat{\rho}$ is positive if and only if $\forall |\psi\rangle : \langle \psi | \hat{\rho} | \psi \rangle \geq 0$.

- 2. Demonstrate (prove) that $\operatorname{Tr} \hat{\rho}^2 \leq 1$. When does the equality $\operatorname{Tr} \hat{\rho}^2 = 1$ hold?
- 3. Knowing that the evolution of $\hat{\rho}(t)$ obeys Liouville's equation

$$i\hbar \frac{d\hat{\rho}}{dt} = [H, \hat{\rho}],$$

show that if the initial state $\hat{\rho}(0)$ is pure, it stays pure for all t.

4. Derive Ehrenfest's theorem using Liouville's evolution.

<u>Reminder:</u> Ehrenfest's theorem gives the evolution of the mean value of observable.

- 5. In two-dimensional Hilbert space with orthonormal basis $\{|a\rangle, |b\rangle\}$, is it possible to discriminate by measurements the states (a), (b) and (c) defined below?
 - a) Superposition of two basis states $|a\rangle$ and $|b\rangle$ given by corresponding amplitudes α and β .
 - b) Statistical <u>mixture</u> of basis states $|a\rangle$ and $|b\rangle$ taken with weights $|\alpha|^2$ and $|\beta|^2$ correspondingly.
 - c) Equally weighted statistical <u>mixture</u> of pure states $|\psi\rangle$ and $|\phi\rangle$ where state $|\psi\rangle$ is the same as in item a) and state $|\phi\rangle$ is given by the amplitudes α and $-\beta$.

<u>Hint:</u> Analyze the density matrices of these states.