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Solutions to Exercise Sheet 2

Exercise 1.

(a) First, we need to find the marginal probability distributions p(x) and p(y). For this we use the relation
p(x) =
∑

y p(x , y), which gives p(x) = p(y) = {1
3 , 1

3 , 1
3}. Therefore H(X ) = −

∑

x p(x) log p(x) =
H(Y ) = log3 bits.

(b) In order to find H(X |Y ), we need to find p(x |y), which is given by p(x |y) = p(x , y)/p(y). Using
the definition of H(X |Y ), we obtain H(X |Y ) = −

∑

x ,y p(x , y) log2 p(x |y) = log3− 4/9 bits. With
the same method, we find H(Y |X ) = log3− 4/9 bits.

(c) Using the results of (a) and (b), we directly compute H(X , Y ) = H(X ) +H(Y |X ) = 2 log 3− 4/9 bits.

(d) Using (a) and (b), we find I(X ; Y ) = H(Y )−H(Y |X ) = 4/9 bits.

(e) Cf. lecture notes or the Wikipedia page on mutual information1.

Exercise 2.

(a) By using the chain rule, H(X1, X2, ..., Xk) =
∑k

i=1 H(X i|X i−1, ...., X1).
The i-th draw with replacement implies that X i is independent of X j. Thus, H(X1, X2, ..., Xk) =
∑k

i=1 H(X i).
As all draws have the same probability distribution, H(X1, X2, ..., Xk) = kH(X ).

(b) The i-th draw is model by the random variable X i. Because the i-th draw is independent of all
previous ones and the color of the ball drawn is not known, no information is gained at this draw.
Therefore, the probabilities do not change. (The experiment can be described as taking i − 1 balls
from one urn and putting them into another urn without looking at them. Logically the probability
distribution of the ith draw is not affected by that.)

(c) We find that p(X1 = c1, X2 = c2) = p(X1 = c2, X2 = c1), where ci is a certain color.

To prove this, let the total number of balls in the urn be t = r + g + b. Then model the experiment
by a tree where each level represents a draw and each branch is labeled by a particular color. For
example, the probability that the first ball drawn is red is pr =

r
t , and the second ball drawn is green

is pg =
g

t−1 . Now if the order of the balls drawn is reversed, the probabilities become pg =
g
t and

pr =
r

t−1 , respectively. However, the product of the two probabilities remain the same:

r
t
·

g
t − 1

=
r

t − 1
·

g
t

This reasoning can be used for any path in the tree, proving the relation.

(d) The probability to draw a red ball with the second draw is given by

p(X2 = r) = p(X1 = r, X2 = r) + p(X1 = g, X2 = r) + p(X1 = b, X2 = r),

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball
first. By using the result of (c), we have

p(X2 = r) = p(X1 = r, X2 = r) + p(X1 = r, X2 = g) + p(X1 = r, X2 = b) = p(X1 = r).

(e) The previous result shows that p(X2 = r) = p(X1 = r). Similarly, p(X2 = g) = p(X1 = g) and
p(X2 = b) = p(X1 = b).

1http://en.wikipedia.org/wiki/Mutual_information
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(f) The marginal probabilities are the same for the first and second draw, i.e. p(X2 = ci) = p(X1 = ci),
thus H(X2) = H(X1).

(g) By using the chain rule H(X i|X i−1, ...., X1) ≤ H(X i), we have (for dependent random variables)
H(X1, X2, ..., Xk)≤

∑k
i=1 H(X i).

Using H(X i) = H(X ), we get H(X1, X2, ..., Xk)≤ kH(X ).

Exercise 3.

(a) Using the definition of the conditional probability, one can write p(x , z|y) = p(x |y)p(z|x , y).
However, for the Markov chain p(z|x , y) = p(z|y), thus one obtains p(x , z|y) = p(x |y)p(z|y).

(b) The chain rule for mutual entropies is given by

H(X1, X2, ..., Xn:Y ) =
n
∑

i=1

H(X i:Y |X1, X2, ..., X i−1).

Thus, H(X :Y, Z) = H(Y, Z:X ) = H(Y :X ) + H(Z:X |Y ) and H(Y, Z:X ) = H(Z:X ) + H(Y :X |Z). Fur-
thermore, we have the definition (see lecture)

H(Z:X |Y ) = −
∑

x yz

p(x , y, z) log
p(x |y)p(z|y)

p(z, x |y)
.

Using the result of (a), we conclude that H(Z:X |Y ) = 0. Taking into account that H(Y :X |Z) ≥ 0,
one obtains H(X :Y )≥ H(X :Z).

(c) Using the result of (b), H(X :Z) ≤ H(X :Y ) = H(Y ) − H(Y |X ). Now max{H(X :Y )} = log k as
H(Y |X )≥ 0 and max{H(Y )} = log k. The limit is reached if Y = f (X ) and Y is uniformly distributed.
One finally obtains the inequality H(X :Z)≤ log k.

(d) If k = 1, then H(X :Z) = 0. The set Y contains only one element, thus all information contained in
X is lost by the operation X → Y .

Exercise 4.

(a) The probability of a Bernoulli experiment in general reads p(x1, x2, ...xn) = pk(1− p)n−k. Since
for a typical sequence k ≈ np, we find the probability to emit a particular typical sequence:
p(x1, x2, ...xn) = pk(1− p)n−k ≈ pnp(1− p)n(1−p).
We can approximate as a function of the entropy:

log p(x1, x2, ...xn)≈ np log p+ n(1− p) log(1− p) = −nH(p).

Thus, p(x1, x2, ...xn)≈ 2−nH(p).

(b) The number of typical sequences NST is given by the number of ways to have np ones in a sequence
of length n (or to get np successes for n trials in a Bernoulli experiment). Thus

NST =
�

n
np

�

=
n!

(np)!(n(1− p))!
.

By using the Stirling approximation one obtains log NST ≈ nH(p).
Comparison to the total number of sequences that can be emitted by the source: NST = 2nH(p) ≤ 2n.
The probability that the source emits a sequence that is typical is PST = pST NST ≈ 1 for n� 1.

(c) The most probable sequence 1111.....1 if p > 1/2 or 0000.....0 if p < 1/2. This sequence is not
typical.

Exercise 5.
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(a) By replacing H(Y |X ) = H(X , Y ) − H(X ) in the definition of the distance, we obtain 2H(X , Y ) −
H(X ) − H(Y ). Furthermore, the definition H(X :Y ) = H(X ) + H(Y ) − H(X , Y ) gives us another
expression for the distance.

(b) Proof of the properties in order of appearance:

(1) ρ(x , y)≥ 0 since H(X |Y )≥ 0 and H(Y |X )≥ 0.

(2) ρ(x , y) = ρ(y, x) is trivially given by its definition.

(3) ρ(x , y) = 0 iff H(Y |X ) = H(X |Y ) = 0 , which holds iff there exists a bijection between X and Y .

(4) Let A= ρ(x , y) +ρ(y, z)−ρ(x , z). Using a), A= 2[H(X , Y ) +H(Y, Z)−H(Y )−H(X , Z)].
Using the strong subadditivity H(X , Y )+H(Y, Z)−H(Y )≥ H(X , Y, Z)), we have A≥ 2[H(X , Y, Z)−
H(X , Z)]≡ 2H(Y |X , Z)≥ 0.

Exercise 6.

(a) For instance if X = Y = Z = {0, 1}, X = Y = Z with uniform distributions.
We have H(X :Y ) = 1 bit since H(X :Y ) = H(Y )−H(Y |X ) and H(Y |X ) = 0 (because X are Y perfectly
correlated). We find H(X :Y |Z) = 0 bit since (X , Y ) = f (Z). One verifies that H(X :Y :Z) > 0 and
H(X :Y |Z)< H(X :Y ).

(b) For instance if X = Y = Z = {0, 1} and Z = X ⊕ Y (sum mod 2), with:

Y =
P(X , Y ) 0 1

0 1/4 1/4 1/2
X = 1 1/4 1/4 1/2

1/2 1/2 1

We obtain H(X :Y ) = 0 bit since X and Y are independent and thus H(Y |X ) = H(Y ).
Furthermore, H(X :Y |Z) = H(X |Z) − H(X |Y, Z). In our example X is fixed if one knows Y and
Z . Thus, H(X |Y, Z) = 0. This implies H(X :Y |Z) = H(X |Z). One obtains H(X :Y |Z) = 1 bit. One
verifies that H(X :Y :Z) = −1 bit < 0 bit and H(X :Y |Z) > H(X :Y ). We confirm furthermore, that
H(X : Z) = H(Y : Z) = 0. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows
that there is a negative overlap between the three random variables X , Y and Z .

Optional: An interesting exercise is to determine under which conditions (independence, perfect
correlation) on the three variables X , Y and Z one obtains a maximal or minimal H(X :Y :Z).
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H(X) H(Y)

H(Z)

H(X : Y : Z)

Figure 1: Venn diagram depicting example 2-6. (b).
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