## Solutions to Exercise Sheet 2

## Exercise 1.

(a) First, we need to find the marginal probability distributions $p(x)$ and $p(y)$. For this we use the relation $p(x)=\sum_{y} p(x, y)$, which gives $p(x)=p(y)=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$. Therefore $H(X)=-\sum_{x} p(x) \log p(x)=$ $H(Y)=\log 3$ bits.
(b) In order to find $H(X \mid Y)$, we need to find $p(x \mid y)$, which is given by $p(x \mid y)=p(x, y) / p(y)$. Using the definition of $H(X \mid Y)$, we obtain $H(X \mid Y)=-\sum_{x, y} p(x, y) \log _{2} p(x \mid y)=\log 3-4 / 9$ bits. With the same method, we find $H(Y \mid X)=\log 3-4 / 9$ bits.
(c) Using the results of (a) and (b), we directly compute $H(X, Y)=H(X)+H(Y \mid X)=2 \log 3-4 / 9$ bits.
(d) Using (a) and (b), we find $I(X ; Y)=H(Y)-H(Y \mid X)=4 / 9$ bits.
(e) Cf. lecture notes or the Wikipedia page on mutual information ${ }^{1}$.

## Exercise 2.

(a) By using the chain rule, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\sum_{i=1}^{k} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$.

The $i$-th draw with replacement implies that $X_{i}$ is independent of $X_{j}$. Thus, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=$ $\sum_{i=1}^{k} H\left(X_{i}\right)$.
As all draws have the same probability distribution, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=k H(X)$.
(b) The $i$-th draw is model by the random variable $X_{i}$. Because the $i$-th draw is independent of all previous ones and the color of the ball drawn is not known, no information is gained at this draw. Therefore, the probabilities do not change. (The experiment can be described as taking $i-1$ balls from one urn and putting them into another urn without looking at them. Logically the probability distribution of the $i$ th draw is not affected by that.)
(c) We find that $p\left(X_{1}=c_{1}, X_{2}=c_{2}\right)=p\left(X_{1}=c_{2}, X_{2}=c_{1}\right)$, where $c_{i}$ is a certain color.

To prove this, let the total number of balls in the urn be $t=r+g+b$. Then model the experiment by a tree where each level represents a draw and each branch is labeled by a particular color. For example, the probability that the first ball drawn is red is $p_{r}=\frac{r}{t}$, and the second ball drawn is green is $p_{g}=\frac{g}{t-1}$. Now if the order of the balls drawn is reversed, the probabilities become $p_{g}=\frac{g}{t}$ and $p_{r}=\frac{r}{t-1}$, respectively. However, the product of the two probabilities remain the same:

$$
\frac{r}{t} \cdot \frac{g}{t-1}=\frac{r}{t-1} \cdot \frac{g}{t}
$$

This reasoning can be used for any path in the tree, proving the relation.
(d) The probability to draw a red ball with the second draw is given by

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=g, X_{2}=r\right)+p\left(X_{1}=b, X_{2}=r\right)
$$

since getting a red ball for the second draw may be preceded by drawing a red, green or blue ball first. By using the result of (c), we have

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=r, X_{2}=g\right)+p\left(X_{1}=r, X_{2}=b\right)=p\left(X_{1}=r\right)
$$

(e) The previous result shows that $p\left(X_{2}=r\right)=p\left(X_{1}=r\right)$. Similarly, $p\left(X_{2}=g\right)=p\left(X_{1}=g\right)$ and $p\left(X_{2}=b\right)=p\left(X_{1}=b\right)$.

[^0](f) The marginal probabilities are the same for the first and second draw, i.e. $p\left(X_{2}=c_{i}\right)=p\left(X_{1}=c_{i}\right)$, thus $H\left(X_{2}\right)=H\left(X_{1}\right)$.
(g) By using the chain rule $H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \leq H\left(X_{i}\right)$, we have (for dependent random variables) $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq \sum_{i=1}^{k} H\left(X_{i}\right)$. Using $H\left(X_{i}\right)=H(X)$, we get $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq k H(X)$.

## Exercise 3.

(a) Using the definition of the conditional probability, one can write $p(x, z \mid y)=p(x \mid y) p(z \mid x, y)$. However, for the Markov chain $p(z \mid x, y)=p(z \mid y)$, thus one obtains $p(x, z \mid y)=p(x \mid y) p(z \mid y)$.
(b) The chain rule for mutual entropies is given by

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}: Y\right)=\sum_{i=1}^{n} H\left(X_{i}: Y \mid X_{1}, X_{2}, \ldots, X_{i-1}\right)
$$

Thus, $H(X: Y, Z)=H(Y, Z: X)=H(Y: X)+H(Z: X \mid Y)$ and $H(Y, Z: X)=H(Z: X)+H(Y: X \mid Z)$. Furthermore, we have the definition (see lecture)

$$
H(Z: X \mid Y)=-\sum_{x y z} p(x, y, z) \log \frac{p(x \mid y) p(z \mid y)}{p(z, x \mid y)}
$$

Using the result of (a), we conclude that $H(Z: X \mid Y)=0$. Taking into account that $H(Y: X \mid Z) \geq 0$, one obtains $H(X: Y) \geq H(X: Z)$.
(c) Using the result of (b), $H(X: Z) \leq H(X: Y)=H(Y)-H(Y \mid X)$. Now $\max \{H(X: Y)\}=\log k$ as $H(Y \mid X) \geq 0$ and $\max \{H(Y)\}=\log k$. The limit is reached if $Y=f(X)$ and $Y$ is uniformly distributed. One finally obtains the inequality $H(X: Z) \leq \log k$.
(d) If $k=1$, then $H(X: Z)=0$. The set $\mathcal{Y}$ contains only one element, thus all information contained in $X$ is lost by the operation $X \rightarrow Y$.

## Exercise 4.

(a) The probability of a Bernoulli experiment in general reads $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k}$. Since for a typical sequence $k \approx n p$, we find the probability to emit a particular typical sequence: $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k} \approx p^{n p}(1-p)^{n(1-p)}$.
We can approximate as a function of the entropy:

$$
\log p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx n p \log p+n(1-p) \log (1-p)=-n H(p)
$$

Thus, $p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx 2^{-n H(p)}$.
(b) The number of typical sequences $N_{S T}$ is given by the number of ways to have $n p$ ones in a sequence of length $n$ (or to get $n p$ successes for $n$ trials in a Bernoulli experiment). Thus

$$
N_{S T}=\binom{n}{n p}=\frac{n!}{(n p)!(n(1-p))!}
$$

By using the Stirling approximation one obtains $\log N_{S T} \approx n H(p)$.
Comparison to the total number of sequences that can be emitted by the source: $N_{S T}=2^{n H(p)} \leq 2^{n}$. The probability that the source emits a sequence that is typical is $P_{S T}=p_{S T} N_{S T} \approx 1$ for $n \gg 1$.
(c) The most probable sequence $1111 \ldots . .1$ if $p>1 / 2$ or $0000 \ldots . .0$ if $p<1 / 2$. This sequence is not typical.

## Exercise 5.

(a) By replacing $H(Y \mid X)=H(X, Y)-H(X)$ in the definition of the distance, we obtain $2 H(X, Y)-$ $H(X)-H(Y)$. Furthermore, the definition $H(X: Y)=H(X)+H(Y)-H(X, Y)$ gives us another expression for the distance.
(b) Proof of the properties in order of appearance:
(1) $\rho(x, y) \geq 0$ since $H(X \mid Y) \geq 0$ and $H(Y \mid X) \geq 0$.
(2) $\rho(x, y)=\rho(y, x)$ is trivially given by its definition.
(3) $\rho(x, y)=0$ iff $H(Y \mid X)=H(X \mid Y)=0$, which holds iff there exists a bijection between $X$ and $Y$.
(4) Let $A=\rho(x, y)+\rho(y, z)-\rho(x, z)$. Using a), $A=2[H(X, Y)+H(Y, Z)-H(Y)-H(X, Z)]$. Using the strong subadditivity $H(X, Y)+H(Y, Z)-H(Y) \geq H(X, Y, Z)$ ), we have $A \geq 2[H(X, Y, Z)-$ $H(X, Z)] \equiv 2 H(Y \mid X, Z) \geq 0$.

## Exercise 6.

(a) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}, X=Y=Z$ with uniform distributions.

We have $H(X: Y)=1$ bit since $H(X: Y)=H(Y)-H(Y \mid X)$ and $H(Y \mid X)=0$ (because $X$ are $Y$ perfectly correlated). We find $H(X: Y \mid Z)=0$ bit since $(X, Y)=f(Z)$. One verifies that $H(X: Y: Z)>0$ and $H(X: Y \mid Z)<H(X: Y)$.
(b) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}$ and $Z=X \oplus Y(\operatorname{sum} \bmod 2)$, with:

|  | $Y=$ |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(X, Y)$ | 0 | 1 |  |
| 0 | $1 / 4$ | $1 / 4$ | $1 / 2$ |
| $X=1$ | $1 / 4$ | $1 / 4$ | $1 / 2$ |
|  | $1 / 2$ | $1 / 2$ | 1 |

We obtain $H(X: Y)=0$ bit since $X$ and $Y$ are independent and thus $H(Y \mid X)=H(Y)$.
Furthermore, $H(X: Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$. In our example $X$ is fixed if one knows $Y$ and $Z$. Thus, $H(X \mid Y, Z)=0$. This implies $H(X: Y \mid Z)=H(X \mid Z)$. One obtains $H(X: Y \mid Z)=1$ bit. One verifies that $H(X: Y: Z)=-1$ bit $<0$ bit and $H(X: Y \mid Z)>H(X: Y)$. We confirm furthermore, that $H(X: Z)=H(Y: Z)=0$. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that there is a negative overlap between the three random variables $X, Y$ and $Z$.
Optional: An interesting exercise is to determine under which conditions (independence, perfect correlation) on the three variables $X, Y$ and $Z$ one obtains a maximal or minimal $H(X: Y: Z)$.


Figure 1: Venn diagram depicting example 2-6. (b).


[^0]:    ${ }^{1}$ http://en.wikipedia.org/wiki/Mutual_information

