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Exercise 1. Suppose w is a codeword for this code, then from the definition of the parity matrix H, we
have

Hw= 0. (1)

Because w is a column vector with binary entries, we can rewrite the matrix product (1) as
∑

i

Hi ·wi = 0, (2)

where Hi denotes the i-th column of H and wi is the i-th entry (i.e. row) of w.
Since the code corrects up to e − 1 errors and detects up to e errors, the minimum weight of the

code is d = 2e, which means that there exists a codeword wd such that the number of nonzero entries
in wd is 2e. From (2), we can deduce that for wd , there are 2e columns in H (corresponding to the
nonzero entries of wd) which are linearly dependent. Because 2e is the minimum weight (therefore
also the minimum number of linearly dependent columns), all sets of 2e− 1 columns must be linearly
independent.

Exercise 2.

(a) The size of the matrix is given by n = 6 and m = 4. n corresponds to the size of the codewords. The
rank of H is equal to m= 4 and corresponds to the number of parity bits. We define a codeword
vector x of components x i , i = 1, 2, ..., n. The condition Hx = 0 can be written in terms of the system
of equations:











x1 + x5 + x6 = 0
x1 + x2 + x6 = 0
x2 + x3 + x6 = 0
x1 + x4 + x6 = 0

We find the following solutions:

x=















1
0
1
0
0
1















,















1
1
1
1
1
0















,















0
1
0
1
1
1















,














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The minimum distance between the codewords is 3, therefore single errors can be corrected.

(b) To correct one error and detect two, the minimum Hamming distance has to be d = 4. This
corresponds to having 3 linearly independent columns in H (see Exercise 1). In particular, the
last column of H can neither be equal to another column of H nor to a linear combination of
any two columns. There are 5 columns and the number of possible linear combinations of two
of them is 5·(5−1)

2 = 10. Remember that the column with all zeros is also forbidden, so this gives
us 5+ 10+ 1 = 16 different forbidden columns. Because the entries hi,6 are bits, only 24 = 16
different combinations are possible, and they are all excluded by the argument above. Therefore the
Hamming distance d can not be 4.

Exercise 3.
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(a) The first 3 columns of G1 are linearly independent and correspond to k = 3 bits of information, while
the last two columns correspond to m= 2 parity bits. There are 2k = 8 codewords. The Hamming
matrix has 2 rows (number of parity bits) and 5 columns (lengths of the codewords) and contains
at least two linearly independent columns. H can be found by solving the equation Hw= 0 for a
codeword w. We can try a solution of the form:

�

h1,1 h1,2 h1,3 1 0
h2,1 h2,2 h2,3 0 1

�

We find:
�

1 1 1 1 0
0 1 1 0 1

�

Since all codewords have at least two bits, the minimum distance between the words is d = 2. This
code detects single errors without correcting them.

(b) In this case, n = 4 and k = 1. The number of codewords is 2k = 2. m = n−k = 3, which corresponds
to 3 parity bits. Therefore 3 columns of H can be written as the identity matrix. We find:





1 1 0 0
1 0 1 0
1 0 0 1





The code has only two codewords:

x=


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
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
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



The Hamming distance is d = 4. This is a repetition code which corrects single errors and detects
two errors.

Remark: The transmission rate is given by R = k/n. We observe that RG1
= 3/5, but it does not

permit to correct any error (can only detect single errors). In contrary RG2
= 1/4 but permits to

correct single errors and detect double errors. There is a trade off between the transmission rate
and the possibility to correct errors.

Exercise 4. The if part is trivial. We will only prove the only if part. First note that because the
codewords form a closed linear subspace, the sum (modulo 2) and the difference (modulo 2) of two
codewords are also codewords:

∀i, j, i 6= j,∃l, m,wi +w j =wl ,wi −w j =wm. (3)

The phrase “the minimum Hamming distance is d” can be expressed mathematically as

d =min
i, j

d(wi ,w j), (4)

where d(a,b) gives the Hamming distance between a and b.
By using the linearity condition (3), we can rewrite (4) as

d =min
i, j

d(wi ,w j) (5)

=min
i, j

d(wi −w j , 0) (6)

=min
k

d(wk, 0). (7)

The last line shows that d is defined as the minimum Hamming distance between any codeword and
0, so there is at least one codeword which has this distance and all other codewords having this distance
as a lower bound.
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