\documentclass[a4paper,11pt]{article} \usepackage{amsmath} \usepackage{amstext} \usepackage{amsthm} \usepackage{mathtools} \usepackage{braket} \usepackage{graphicx,subcaption} \usepackage[percent]{overpic} \usepackage{bbm} \usepackage{bm} \usepackage{threeparttable} \usepackage{tabularx} \usepackage{multirow} \usepackage{booktabs} \usepackage[nohyperlinks]{acronym} \usepackage{microtype} \usepackage{pifont} \usepackage{pdfpages,diagbox} \usepackage[utf8]{inputenc} \usepackage[labelformat=empty,labelsep=none]{caption} \usepackage{enumerate} \usepackage{slashbox} \usepackage{hyperref} \definecolor{ulbblue}{cmyk}{1,0.75,0.2,0.18} \hypersetup{colorlinks, citecolor=ulbblue, linkcolor=ulbblue, urlcolor=ulbblue } \makeatletter \renewcommand\@pnumwidth{1.8em} \makeatother \usepackage[T1]{fontenc} \usepackage{textcomp} \usepackage{fix-cm} \usepackage[charter,cal=cmcal,sfscaled=false]{mathdesign} \usepackage[paper=a4paper,innermargin=4cm,outermargin=3cm,top=3.5cm,bottom=3.5cm]{geometry} \setlength{\headheight}{13.6pt} \usepackage{setspace} \usepackage[PetersLenny]{fncychap} \usepackage{fancyhdr} \theoremstyle{definition} \newtheorem{exercise}{Exercise} \newtheorem*{definition}{Definition} \setlength {\textheight}{26 cm} \setlength {\textwidth}{16.5 cm} \setlength {\topmargin}{-2 cm} \setlength {\oddsidemargin}{-0.4 cm} \begin{document} \noindent \fbox{\parbox{\textwidth}{ INFO-H-451\hfill 2014-2015\\ \centering{ \textsc{\Large Information and Coding Theory}\\ Exercise Sheet 2} }} \section*{} \begin{exercise}~The random variables $X$ and $Y$ have the joint probability distribution given by the table below:\\ \begin{center} \def\arraystretch{1.3} \begin{tabular}[htbp!]{|c||c|c|c|} \hline \backslashbox{X}{Y} &0&1&2\\ \hline\hline 0&$\frac{1}{9}$ & $\frac{1}{9}$ & $\frac{1}{9}$\\ \hline 1& $\frac{1}{9}$ & $0$ & $\frac{2}{9}$\\ \hline 2& $\frac{1}{9}$ & $\frac{2}{9}$ & $0$\\ \hline %\hline %&&\multicolumn{3}{|c|}{$Y$} %\\ %\multicolumn{2}{|c|}{P($X,Y$)} %&\multicolumn{1}{c}{$0$} %&\multicolumn{1}{c}{$1$} %&\multicolumn{1}{c|}{$2$} %\\ %\hline % & $0$ & $\frac{1}{9}$ & $\frac{1}{9}$ & $\frac{1}{9}$ \\ % \hline % $X$ & $1$ & $\frac{1}{9}$ & $0$ & $\frac{2}{9}$ \\ % \hline % & $2$ & $\frac{1}{9}$ & $\frac{2}{9}$ & $0$ \\ % \hline %\hline \end{tabular} \end{center} Find: \begin{enumerate}[(a)] \item $H(X)$ and $H(Y)$. \item $H(X|Y)$ and $H(Y|X)$. \item $H(X,Y)$. \item $I(X;Y)$. \item Draw a Venn diagram for the quantities obtained above. \end{enumerate} \end{exercise} \begin{exercise}~ An urn contains $r$ red, $g$ green and $b$ black balls. We consider as a random variable $X$ the color of a ball that is randomly drawn from the urn. \begin{enumerate}[(a)] \item\label{a} Show that the entropy of drawing $k$ balls with replacement is given by $H(X_{1},X_{2},...,X_{k})=k\cdot H(X)$ where $H(X)$ is the entropy of a single draw. \item\label{b} If the balls are not replaced, and if we do not look at the color of the balls that were taken out, give an intuitive argument why $H(X_i)=H(X)$ where $H(X)$ is the entropy of an arbitrary draw. Without appealing to intuition, it might be useful to start solving (\ref{c}) to (\ref{f}). \item\label{c} The balls are not replaced. Compare the probability that has the colors $c_1$ at the first draw and $c_2$ at the second draw to the probability that has the color $c_2$ at the first draw and $c_1$ at the second draw. \item\label{d} The balls are not replaced. What is the probability that a red ball is drawn at the second draw? \item\label{e} The balls are not replaced. What can we say about the marginal probabilities? \item\label{f} The balls are not replaced. Compare the entropy of the second draw with that of the first draw. \item\label{g} Show that the entropy of drawing $k$ balls without replacements is less than or equal to the entropy of drawing $k$ balls with replacement. \end{enumerate} \end{exercise} \begin{exercise}~The random variables $X$, $Y$ and $Z$ form a Markov chain $X\rightarrow Y\rightarrow Z$ if the conditional probability of $Z$ depends only on $Y$, i.e. $p(X,Y,Z)=p(X)p(Y|X)p(Z|Y)$. \begin{enumerate}[(a)] \item\label{a} Show that $X$ and $Z$ are conditionally independent given $Y$, i.e. $p(X,Z|Y)=p(X|Y)p(Z|Y)$. \item Show that $I(X;Y)\geq I(X;Z)$ by using the result of (\ref{a}) and the chain rule for mutual information $I(X;Y|Z)$. \item The random variables $X$, $Y$ and $Z$ have probability distributions on sets ${\mathcal{X}}$ of cardinality $n$, ${\mathcal{Y}}$ of cardinality $k$ and ${\mathcal{Z}}$ of cardinality $m$. Show that if $n>k$ and $m>k$ then $I(X;Z)\leq \log_{2} k$. \item Explain what happens if $k=1$. \end{enumerate} \end{exercise} \begin{exercise}~Consider binary sequences of length $n$ emitted by a source of independent and identically distributed (i.i.d.) random variables. Each bit is emitted independently of the previous one according to the binomial distribution where with probability $p$ a $1$ is emitted. A \textbf{typical sequence} contains $k$ ones and $(n-k)$ zeros, with $k\simeq np$ (the mean number of ones is rounded to the closest integer.) \begin{enumerate}[(a)] \item What is the probability that the source emits a particular typical sequence? Give an approximation to that probability as a function of the entropy of the source. \item What is the number of typical sequences, expressed as a function of the entropy of the source? Compare it with the absolute number of sequences that can be emitted by the source. What is the approximate probability that a typical sequence is emitted? (Use the Stirling approximation $n! \approx n^n$) \item What is the most probable sequence that can be emitted by the source? Is it typical? \end{enumerate} \end{exercise} \begin{exercise}~ \begin{definition} $\rho(x,y)$ is a \textbf{metric} if it satisfies the following properties $\forall x,y,z$: \begin{itemize} \item $\rho(x,y)\ge 0$ \item $\rho(x,y)=\rho(y,x)$ \item $\rho(x,y)=0$ if and only if $x=y$ \item $\rho(x,y)+\rho(y,z)\ge \rho(x,z)$ \end{itemize} \end{definition} \begin{enumerate}[(a)] \item Let $\rho(X,Y)=H(X|Y)+H(Y|X)$. Verify that $\rho(X,Y)=H(X,Y)-I(X;Y)=2H(X,Y)-H(X)-H(Y)$, and interpret this relation with the help of a Venn diagram. \item Prove that $\rho(X,Y)$ satisfies all properties of a distance if the notation $X=Y$ means that there exists a bijection between $X$ and $Y$. \end{enumerate} \emph{Hint}: To show the last property use the strong sub-additivity. \end{exercise} \begin{exercise}~Let $X,Y$ and $Z$ be uniformly distributed binary random variables such that $H(X)=H(Y)=H(Z)=1$~bit. If $Z$ is ignored, the mutual information of $X$ and $Y$ can be defined as $I(X;Y)=H(X)-H(X|Y)$. If $Z$ is taken into account, the mutual information, \textbf{conditioned} on $Z$, can be defined as $I(X;Y|Z)=H(X,Z)-H(X|Y,Z)$. Finally, the mutual information of all three random variables can be defined as $I(X;Y;Z)=I(X;Y)-I(X;Y|Z)$. The last quantity can be positive, negative or zero. \begin{enumerate}[(a)] \item Give an example for a distribution of $X$, $Y$ and $Z$ such that $I(X;Y;Z)>0$. \item Give an example for a distribution of $X$, $Y$ and $Z$ such that $I(X;Y;Z)<0$. \end{enumerate} \end{exercise} \section*{} \centering \textbf{\color{ulbblue}{The exercises and solutions are available at} \url{http://quic.ulb.ac.be/teaching}} \end{document}