\documentclass[a4paper,11pt]{article} \usepackage{amsmath} \usepackage{amstext} \usepackage{amsthm} \usepackage{mathtools} \usepackage{braket} \usepackage{graphicx,subcaption} \usepackage[percent]{overpic} \usepackage{bbm} \usepackage{bm} \usepackage{threeparttable} \usepackage{tabularx} \usepackage{multirow} \usepackage{booktabs} \usepackage[nohyperlinks]{acronym} \usepackage{microtype} \usepackage{pifont} \usepackage{pdfpages,diagbox} \usepackage[utf8]{inputenc} \usepackage[labelformat=empty,labelsep=none]{caption} \usepackage{enumerate} \usepackage{hyperref} \definecolor{ulbblue}{cmyk}{1,0.75,0.2,0.18} \hypersetup{colorlinks, citecolor=ulbblue, linkcolor=ulbblue, urlcolor=ulbblue } \makeatletter \renewcommand\@pnumwidth{1.8em} \makeatother \usepackage[T1]{fontenc} \usepackage{textcomp} \usepackage{fix-cm} \usepackage[charter,cal=cmcal,sfscaled=false]{mathdesign} \usepackage[paper=a4paper,innermargin=4cm,outermargin=3cm,top=3.5cm,bottom=3.5cm]{geometry} \setlength{\headheight}{13.6pt} \usepackage{setspace} \usepackage[PetersLenny]{fncychap} \usepackage{fancyhdr} \theoremstyle{definition} \newtheorem{exercise}{Exercise} \setlength {\textheight}{26 cm} \setlength {\textwidth}{16.5 cm} \setlength {\topmargin}{-2 cm} \setlength {\oddsidemargin}{-0.4 cm} \begin{document} \noindent \fbox{\parbox{\textwidth}{ INFO-H-451\hfill 2014-2015\\ \centering{ \textsc{\Large Information and Coding Theory}\\ Exercise Sheet 5} }} \section*{} \begin{exercise}~\textbf{Channel with additive noise.} We consider a memoryless channel with additive noise, with input $X$ and output $Y = X+Z$, where $Z$ is a random variable with $P(Z=0)=P(Z=a)=\frac{1}{2}$, $a\in \mathbb{N}$. We assume that the alphabet of the input is ${\cal X}=\{0,1\}$ and that $Z$ is independent of $X$. Calculate the capacity of this channel as a function of $a$. \end{exercise} \begin{exercise}~We consider a memoryless channel $S$ with input $X=\{0,1,2,3\}$ and output $Y=X+Z {\rm ~(mod~4)}$, where $Z=\{-1,0,1\}$ with probabilities $\{\frac{1}{4},\frac{1}{2},\frac{1}{4}\}$, respectively. In addition, $X$ and $Z$ are independent. \begin{enumerate}[(a)] \item What is the probability distribution $p^*(x)$ that maximizes the mutual information? \item Calculate the capacity of this channel. \item Calculate the capacity of a channel system that consists of two concatenations of the channel. \item Calculate the capacity of a channel system that consists of two times the channel in parallel. Compare the result with the results of (b) and (c). \end{enumerate} \end{exercise} \begin{exercise}~We are given a noisy channel with a binary alphabet for the input and output, with transition matrix $$ p(y|x)=\left( \begin{tabular}{c c} 1 & 0 \\ 1/2 & 1/2 \end{tabular} \right) \qquad\qquad x,y \in \{0,1\}. $$ \par \begin{enumerate}[(a)] \item Calculate the capacity and the probability distribution $p^*(x)$ that attains this maximum. \item Find the symmetric binary channel that gives the same capacity as the previous channel. \item Calculate the capacity of a channel with transition matrix \begin{equation*} p(y|x) = \begin{pmatrix} 1 & 0\\ 1-q & q \end{pmatrix}, \qquad x,y \in \{0,1\}, q \in [0,1] \end{equation*} \end{enumerate} \end{exercise} \begin{exercise}~\textbf{Suboptimal codes.} We reuse the channel of exercises 5-3 and consider a sequence of random error correction codes $(2^{nR},n)$, where each codeword is a sequence of $n$ equiprobable random bits. \par \begin{enumerate}[(a)] \item This sequence does not attain the capacity that we have calculated above. Why? \item Determine the maximal transmission rate $R$ for which the average error probability $P_e^{(n)}$ of the random codes tends to zero for a block length $n$ tending to infinity. \end{enumerate} \end{exercise} \begin{exercise}~\textbf{Preprocessing of the output.} We consider a channel characterized by the transition matrix $p(y|x)$ and a given capacity $C$. We want to increase $C$ by introducing a ``preprocessing'' of the output, ${\tilde Y}=f(Y)$. The resulting channel is thus $X\to Y \to {\tilde Y}$, with capacity $\tilde{C}$. \begin{enumerate}[(a)] \item Show that ${\tilde C} \leq C$. What does this imply? \item When does this preprocessing not decrease the capacity of the channel? \end{enumerate} \end{exercise} %\noindent {\bf 5-6.} {\em Capacit\'e \`a erreur nulle.} %Soit un canal dont l'alphabet d'entr\'ee et de sortie %est $\{0,1,2,3,4\}$, et qui est caract\'eris\'e par la probabilit\'e %de transition %$$ %p(y|x)= \left\{ \begin{tabular}{ll} %1/2 & si $y=x \pm 1$ ~mod~5 \\ %0 & sinon %\end{tabular} \right. %$$ %\par %\medskip %\noindent (a) Calculer la capacit\'e de ce canal. %\par %\medskip %\noindent (b) On appelle ``capacit\'e \`a erreur nulle'' le nombre %de bits qui peuvent \^etre transmis par usage du canal avec une %erreur {\em strictement} \'egale \`a 0. Il est clair que, pour le canal %pentagonal d\'ecrit ci-dessus, cette capacit\'e est au moins \'egale %\`a 1 bit (il suffit par exemple d'envoyer les symboles 1 ou 2 avec %une probabilit\'e 1/2 chacun). Montrer que la capacit\'e \`a erreur nulle %de ce canal est en fait sup\'erieure \`a 1 bit. Dans ce but, trouver %un code utilisant des blocs de longueur 2 plus performant que le code %trivial ci-dessus. \section*{} \centering \textbf{\color{ulbblue}{The exercises and solutions are available at} \url{http://quic.ulb.ac.be/teaching}} \end{document}