
Information and coding theory

Solution to exercise sheet n◦ 1 :

1-1.

(a) Example X = {0, 1, . . .m− 1}. With p(x) = 1
m

for x ∈ X .

(b) H(X) = −∑m−1
i=0 pi log2 pi = log2m = 6 bits.

(c) One needs 6 bits, since 26 = 64.

(d) One needs 3 symbols, since 43 = 64.

(e) One defines the Lagrangian L({pi}) = H(X)− λ[
∑m−1
i=0 pi − 1].

Condition for an extremum :

∀i, ∂L
∂pi

= 0.

The distribution that maximizes H(X) (note that H(X) is concave) satisfies :

− log2 pi −
1

ln 2
+ λ = 0 ∀i.

One finds pi = 2λ−
1

ln 2 , i.e. pi is a constant. With the constraint one finds pi = 1
m

.

1-2.

(a) H(XP ) = 1.75 bits.

(b) H(XQ) = 2 bits.

(c) The expected length of the codewords is 1.75 bits for the distribution P and 2.25 bits for
the distribution Q.

(d) The entropy gives the minimal expected length of codewords one can obtain. The binary
code C is optimal for the distribution P , since its expected length LP = H(XP ). For the
distribution Q we find LQ > H(XQ) and LQ > LP , which implies that the code is not optimal.
The optimal code for Q is given by a simple enumeration of the elements of X ; it is thus,
impossible to compress that source.

1-3.

(a) H(X) = 2 bits.

(b) Sequence of questions :
Did one obtain “head” with the first flip ?
Did one obtain “head” with the second flip ?
...
Did one obtain “head” with the nth flip ?
One can associate the answer to each question with a separate bit, and thus the answers to
n questions are encoded in n bits. We obtain the expected number of “yes/no” questions :∑∞
n=1 p(n)n = H(X) = 2. It is equal to the entropy, which shows that the sequence of questions

is optimal.
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1-4.

(a) H(Y ) = H(X) = 1.875 bits, because the function is bijective (i.e. if one fixes Y , one knows
X).

(b) The function is not bijective. One obtains H(Y ) < H(X) with H(X) = 2.085 bits and
H(Y ) = 1, 325 bits.

(c) H(X, f(X)) = H(X) +H(f(X)|X) but H(f(X)|X) = 0, because knowing X fixes f(X).
H(f(X), X) = H(f(X)) +H(X|f(X)) but H(X|f(X)) ≥ 0.
Finally : H(f(X), X) = H(X, f(X)) implies H(f(X)) ≤ H(X).
It is saturated if H(X|f(X)) = 0, i.e. if the function Y = f(X) is bijective.

1-5.

(a) Definition of the conditional entropy : H(Y |X) =
∑
x∈X p(x)H(Y |X = x).

H(Z|Y ) =
∑
y∈Y

p(y)H(Z|Y = y) =
∑
y∈Y

p(y)H(X+Y |Y = y) =
∑
y∈Y

p(y)H(X|Y = y) = H(X|Y ).

If X and Y are independent, then H(X|Y ) = H(X).
As conditioning can only reduce the entropy : H(Z|Y ) ≤ H(Z).
We finally obtain H(X) ≤ H(Z), and similarly H(Y ) ≤ H(Z).

(b) Example

P(X = x, Y = y) Y =−1 −2 −3 −4 P(X = x)
X = 1 1/4 0 0 0 1/4

2 0 1/4 0 0 1/4
3 0 0 1/8 1/8 1/4
4 0 0 1/8 1/8 1/4

P(Y = y) 1/4 1/4 1/4 1/4 1

Calculation of H(X) and H(Y ) : H(Y ) = H(X) = H(1/4, 1/4, 1/4, 1/4) = log2 4 = 2 bits.
One obtains Z ={3, 2, 1, 0,−1,−2,−3} with P (Z = 0) = 3/4, P (Z = 1) = 1/8 et P (Z =
−1) = 1/8 and the other probabilities are zero.
Calculation of H(Z) : H(Z) = −3

4
log2

3
4
− 1

4
log2

1
8

= 1.061 bits.
One verifies that H(X) > H(Z) and H(Y ) > H(Z).

(c) We require that X and Y are independent and that all zi,j = xi + yj are distinct for any
couple (i, j). If these conditions are satisfied one obtains pz(i, j) = px(i)py(j), which gives us
the solution (after insertion in the defintion of H(Z)).
Example : X = {1, 2, 3} and Y = {10, 20, 30, 40} for any probability distribution of X and Y ,
where X and Y are independently distributed.

Optional.

P(X, Y ) X = −1 0 1 P(Y)
Y = −2 0 1/3 0 1/3

1 1/3 0 1/3 2/3
P(X) 1/3 1/3 1/3 1

In this example, one verifies 〈X〉 = 〈Y 〉 = 〈XY 〉 = 0, thus r = 0.
H(X : Y ) = H(X) +H(Y )−H(X, Y ) = 0.918 bit.
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