Information and coding theory

Solution to exercise sheet $\mathrm{n}^{\circ} 1$:

1-1.

(a) Example $\mathcal{X}=\{0,1, \ldots m-1\}$. With $p(x)=\frac{1}{m}$ for $x \in \mathcal{X}$.
(b) $H(X)=-\sum_{i=0}^{m-1} p_{i} \log _{2} p_{i}=\log _{2} m=6$ bits.
(c) One needs 6 bits, since $2^{6}=64$.
(d) One needs 3 symbols, since $4^{3}=64$.
(e) One defines the Lagrangian $\quad L\left(\left\{p_{i}\right\}\right)=H(X)-\lambda\left[\sum_{i=0}^{m-1} p_{i}-1\right]$.

Condition for an extremum :

$$
\forall i, \frac{\partial L}{\partial p_{i}}=0 .
$$

The distribution that maximizes $H(X)$ (note that $H(X)$ is concave) satisfies :

$$
-\log _{2} p_{i}-\frac{1}{\ln 2}+\lambda=0 \quad \forall i
$$

One finds $p_{i}=2^{\lambda-\frac{1}{\ln 2}}$, i.e. p_{i} is a constant. With the constraint one finds $p_{i}=\frac{1}{m}$.

1-2.

(a) $H\left(X_{P}\right)=1.75$ bits.
(b) $H\left(X_{Q}\right)=2$ bits.
(c) The expected length of the codewords is 1.75 bits for the distribution P and 2.25 bits for the distribution Q.
(d) The entropy gives the minimal expected length of codewords one can obtain. The binary code C is optimal for the distribution P, since its expected length $L_{P}=H\left(X_{P}\right)$. For the distribution Q we find $L_{Q}>H\left(X_{Q}\right)$ and $L_{Q}>L_{P}$, which implies that the code is not optimal. The optimal code for Q is given by a simple enumeration of the elements of X; it is thus, impossible to compress that source.

1-3.

(a) $H(X)=2$ bits.
(b) Sequence of questions:

Did one obtain "head" with the first flip?
Did one obtain "head" with the second flip?
Did one obtain "head" with the nth flip?
One can associate the answer to each question with a separate bit, and thus the answers to n questions are encoded in n bits. We obtain the expected number of "yes/no" questions : $\sum_{n=1}^{\infty} p(n) n=H(X)=2$. It is equal to the entropy, which shows that the sequence of questions is optimal.

1-4.

(a) $H(Y)=H(X)=1.875$ bits, because the function is bijective (i.e. if one fixes Y, one knows $X)$.
(b) The function is not bijective. One obtains $H(Y)<H(X)$ with $H(X)=2.085$ bits and $H(Y)=1,325$ bits.
(c) $H(X, f(X))=H(X)+H(f(X) \mid X)$ but $H(f(X) \mid X)=0$, because knowing X fixes $f(X)$. $H(f(X), X)=H(f(X))+H(X \mid f(X))$ but $H(X \mid f(X)) \geq 0$.
Finally : $H(f(X), X)=H(X, f(X))$ implies $H(f(X)) \leq H(X)$.
It is saturated if $H(X \mid f(X))=0$, i.e. if the function $Y=f(X)$ is bijective.

1-5.

(a) Definition of the conditional entropy : $H(Y \mid X)=\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x)$.
$H(Z \mid Y)=\sum_{y \in \mathcal{Y}} p(y) H(Z \mid Y=y)=\sum_{y \in \mathcal{Y}} p(y) H(X+Y \mid Y=y)=\sum_{y \in \mathcal{Y}} p(y) H(X \mid Y=y)=H(X \mid Y)$.
If X and Y are independent, then $H(X \mid Y)=H(X)$.
As conditioning can only reduce the entropy : $H(Z \mid Y) \leq H(Z)$.
We finally obtain $H(X) \leq H(Z)$, and similarly $H(Y) \leq H(Z)$.
(b) Example

$\mathrm{P}(X=x, Y=y)$	$Y=-1$	-2	-3	-4	$\mathrm{P}(X=x)$	
$X=$	1	$1 / 4$	0	0	0	$1 / 4$
2	0	$1 / 4$	0	0	$1 / 4$	
3	0	0	$1 / 8$	$1 / 8$	$1 / 4$	
4	0	0	$1 / 8$	$1 / 8$	$1 / 4$	
	$\mathrm{P}(Y=y)$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	1

Calculation of $H(X)$ and $H(Y): \quad H(Y)=H(X)=H(1 / 4,1 / 4,1 / 4,1 / 4)=\log _{2} 4=2$ bits. One obtains $\mathcal{Z}=\{3,2,1,0,-1,-2,-3\}$ with $P(Z=0)=3 / 4, P(Z=1)=1 / 8$ et $P(Z=$ $-1)=1 / 8$ and the other probabilities are zero.
Calculation of $H(Z): \quad H(Z)=-\frac{3}{4} \log _{2} \frac{3}{4}-\frac{1}{4} \log _{2} \frac{1}{8}=1.061$ bits.
One verifies that $H(X)>H(Z)$ and $H(Y)>H(Z)$.
(c) We require that X and Y are independent and that all $z_{i, j}=x_{i}+y_{j}$ are distinct for any couple (i, j). If these conditions are satisfied one obtains $p_{z}(i, j)=p_{x}(i) p_{y}(j)$, which gives us the solution (after insertion in the defintion of $H(Z)$).
Example : $\mathcal{X}=\{1,2,3\}$ and $\mathcal{Y}=\{10,20,30,40\}$ for any probability distribution of X and Y, where X and Y are independently distributed.

Optional.

$\mathrm{P}(X, Y)$		$X=-1$	0	1	$\mathrm{P}(\mathrm{Y})$
$Y=$	-2	0	$1 / 3$	0	$1 / 3$
	1	$1 / 3$	0	$1 / 3$	$2 / 3$
$\mathrm{P}(\mathrm{X})$		$1 / 3$	$1 / 3$	$1 / 3$	1

In this example, one verifies $\langle X\rangle=\langle Y\rangle=\langle X Y\rangle=0$, thus $r=0$.
$H(X: Y)=H(X)+H(Y)-H(X, Y)=0.918$ bit.

