
Information and coding theory

Exercise sheet n◦ 1:

1-1. A discrete random variable X has a uniform probability distribution p(x) over the set X
of cardinality |X | = m.

(a) Give an example for X and calculate p(x) for x ∈ X .

(b) Determine the entropy H(X). If m = 64, what is H(X)?

(c) How many bits are needed to enumerate the alphabet X without encoding, where m = 64?

(d) How many symbols taken from a quaternary alphabet are necessary to enumerate the
alphabet X without encoding, where m = 64?

(e) Show that H(X) is greater than the entropy of any other random variable Y , where Y has
values on the same set X . (Read the recall on Lagrange multipliers.)

1-2. A random variable X has an alphabet X = {A,B,C,D}.

(a) Calculate H(XP ) associated to probabilities
P (X) = {1/2, 1/4, 1/8, 1/8}.

(b) Calculate H(XQ) associated to probabilities Q(X) = {1/4, 1/4, 1/4, 1/4}.

(c) We define a binary code:
{C(X = A)=0, C(X = B)=10, C(X = C)=110, C(X = D)=111}.
Calculate the expected length (in bits) of the codewords of X are distributed according to
P (X) and Q(X)

(d) Compare the four obtained results.

1-3. A coin (with same probability for “head” or “tail”) is flipped repeatedly until one obtains
“head”. Let the random variable X be given by the number of flips until one obtains “head”
for the first time.

(a) Calculate H(X).

(b) One repeatedly flips the coin until “head” is obtained for the first time. Find a sequence of
questions of type “yes/no” to determine the value of X. Compare the entropy of X with the
expected length of the sequence of questions necessary to fully determine X.
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1-4. Assume X and Y to be random variables. What is the inequality relating H(X) and
H(Y ) if,

(a) Y = 2X , with X = {0, 1, 2, 3, 4} associated to probabilities {1/2, 1/4, 1/8, 1/16, 1/16}.

(b) Y = cos(X), with X = {0, π/2, π, 3π/2, 2π} associated to probabilities {1/3, 1/3, 1/12, 1/12, 1/6}.

(c) Show that the entropy of any function f(X) of the random variable X is less or equal than
the entropy of X. In order to prove this, it is useful to calculate the join entropy H(X, f(X)).
In which case the inequality H(f(X)) ≤ H(X) is saturated?

1-5. Let X and Y be two random variables, taking values x1, x2, · · · , xr and y1, y2, · · · , ys.
Furthermore, we define a random variable Z = X + Y .

(a) Show that H(Z|Y ) = H(X|Y ) and H(Z|X) = H(Y |X). Deduce that if X and Y are
independently distributed, then H(X) ≤ H(Z) and H(Y ) ≤ H(Z). Thus, summing two
random variables can only increase the uncertainty.

(b) Give an example for X and Y (necessarily correlated) such that H(X) > H(Z) and H(Y ) >
H(Z).

(c) In which case the equality H(Z) = H(X) +H(Y ) is satisfied?

Optional: Give an example of a distribution of two random variables X and Y whose correla-
tion coefficient is zero, although they are not independent. Show that in this case H(X:Y ) 6= 0,
showing that the mutual entropy is a better measure of the dependence of X and Y . Correlation

coefficient: r = <xy>−<x><y>√
<x2>−<x>2

√
<y2>−<y>2

Recall:

1. Change of the base of logarithms

logaN = logbN/ logb a

2. Lagrange theorem:

• We want to maximize
u(x1, x2, ..., xn) with k constraints gj(x1, x2, ..., xn) = aj, j = 1, · · · , k.

• We introduce the Lagrangian:
L(x1, ..., xn, λ1, ..., λk) = u(x1, x2, ..., xn) +

∑k
j=1 λj[aj − gj(x1, x2, ..., xn)].

• Condition on an extremum:
∀i, ∂L

∂xi
= 0.

• If u is concave, the solution is a maximum.

Web site:

http://quic.ulb.ac.be/teaching/
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