Information and coding Theory

Exercise sheet $\mathrm{n}^{\circ} 1$:

1-1. A discrete random variable X has a uniform probability distribution $p(x)$ over the set \mathcal{X} of cardinality $|\mathcal{X}|=m$.
(a) Give an example for \mathcal{X} and calculate $p(x)$ for $x \in \mathcal{X}$.
(b) Determine the entropy $H(X)$. If $m=64$, what is $H(X)$?
(c) How many bits are needed to enumerate the alphabet \mathcal{X} without encoding, where $m=64$?
(d) How many symbols taken from a quaternary alphabet are necessary to enumerate the alphabet \mathcal{X} without encoding, where $m=64$?
(e) Show that $H(X)$ is greater than the entropy of any other random variable Y, where Y has values on the same set \mathcal{X}. (Read the recall on Lagrange multipliers.)

1-2. A random variable X has an alphabet $\mathcal{X}=\{A, B, C, D\}$.
(a) Calculate $H\left(X_{P}\right)$ associated to probabilities
$P(X)=\{1 / 2,1 / 4,1 / 8,1 / 8\}$.
(b) Calculate $H\left(X_{Q}\right)$ associated to probabilities $Q(X)=\{1 / 4,1 / 4,1 / 4,1 / 4\}$.
(c) We define a binary code:
$\{\mathrm{C}(X=A)=0, \mathrm{C}(X=B)=10, \mathrm{C}(X=C)=110, \mathrm{C}(X=D)=111\}$.
Calculate the expected length (in bits) of the codewords of X are distributed according to $P(X)$ and $Q(X)$
(d) Compare the four obtained results.

1-3. A coin (with same probability for "head" or "tail") is flipped repeatedly until one obtains "head". Let the random variable X be given by the number of flips until one obtains "head" for the first time.
(a) Calculate $H(X)$.
(b) One repeatedly flips the coin until "head" is obtained for the first time. Find a sequence of questions of type "yes/no" to determine the value of X. Compare the entropy of X with the expected length of the sequence of questions necessary to fully determine X.
Note:

$$
\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \quad \sum_{n=1}^{\infty} n r^{n}=\frac{r}{(1-r)^{2}}, \quad r<1
$$

1-4. Assume X and Y to be random variables. What is the inequality relating $H(X)$ and $H(Y)$ if,
(a) $Y=2^{X}$, with $\mathcal{X}=\{0,1,2,3,4\}$ associated to probabilities $\{1 / 2,1 / 4,1 / 8,1 / 16,1 / 16\}$.
(b) $Y=\cos (X)$, with $\mathcal{X}=\{0, \pi / 2, \pi, 3 \pi / 2,2 \pi\}$ associated to probabilities $\{1 / 3,1 / 3,1 / 12,1 / 12,1 / 6\}$.
(c) Show that the entropy of any function $f(X)$ of the random variable X is less or equal than the entropy of X. In order to prove this, it is useful to calculate the join entropy $H(X, f(X))$. In which case the inequality $H(f(X)) \leq H(X)$ is saturated?

1-5. Let X and Y be two random variables, taking values $x_{1}, x_{2}, \cdots, x_{r}$ and $y_{1}, y_{2}, \cdots, y_{s}$. Furthermore, we define a random variable $Z=X+Y$.
(a) Show that $H(Z \mid Y)=H(X \mid Y)$ and $H(Z \mid X)=H(Y \mid X)$. Deduce that if X and Y are independently distributed, then $H(X) \leq H(Z)$ and $H(Y) \leq H(Z)$. Thus, summing two random variables can only increase the uncertainty.
(b) Give an example for X and Y (necessarily correlated) such that $H(X)>H(Z)$ and $H(Y)>$ $H(Z)$.
(c) In which case the equality $H(Z)=H(X)+H(Y)$ is satisfied?

Optional: Give an example of a distribution of two random variables X and Y whose correlation coefficient is zero, although they are not independent. Show that in this case $H(X: Y) \neq 0$, showing that the mutual entropy is a better measure of the dependence of X and Y. Correlation coefficient: $r=\frac{\langle x y\rangle-\langle x\rangle\langle y\rangle}{\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \sqrt{\left\langle y^{2}\right\rangle-\langle y\rangle^{2}}}$

Recall:

1. Change of the base of logarithms

$$
\log _{a} N=\log _{b} N / \log _{b} a
$$

2. Lagrange theorem:

- We want to maximize $u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with k constraints $g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{j}, j=1, \cdots, k$.
- We introduce the Lagrangian:

$$
L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}\right)=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{j=1}^{k} \lambda_{j}\left[a_{j}-g_{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] .
$$

- Condition on an extremum:

$$
\forall i, \frac{\partial L}{\partial x_{i}}=0 .
$$

- If u is concave, the solution is a maximum.

Web site:

http://quic.ulb.ac.be/teaching/

