Information and coding theory

Solution of exercise sheet $\mathrm{n}^{\circ} 2$:

2-1.

(a) First, one needs to find the marginal probability distributions $p(x)$ and $p(y)$. For this we use the relation $p(x)=\sum_{y} p(x, y)$. We obtain that $p(x)=p(y)=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}$. Thus, we find $H(X)=-\sum_{x} p(x) \log p(x)=H(Y)=\log 3$ bits.
(b) In order to compute $H(X \mid Y)$, we need to find $p(x \mid y)$, which we obtain via $p(x \mid y)=$ $p(x, y) / p(y)$. Using the definition of $H(X \mid Y)$, we obtain $H(X \mid Y)=-\sum_{x, y} p(x, y) \log _{2} p(x \mid y)=$ $\log 3-4 / 9$ bits. With the same method, we find $H(Y \mid X)=\log 3-4 / 9$ bits.
(c) Using the results of (a) and (b), we directly compute $H(X, Y)=H(X)+H(Y \mid X)=$ $2 \log 3-4 / 9$ bits.
(d) Using (a) and (b), we find $H(X: Y)=H(X)-H(X \mid Y)=4 / 9$ bits.
(e) See lecture.

2-2.

(a) With the chain rule one one can write
$H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=\sum_{i=1}^{k} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)$.
The i-th draw with replacement implies that X_{i} is independent of X_{j}. Thus, $H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=$ $\sum_{i=1}^{k} H\left(X_{i}\right)$.
As all draws have the same probability distribution, we obtain
$H\left(X_{1}, X_{2}, \ldots, X_{k}\right)=k H(X)$.
(b) The random variable X_{i} corresponds to drawing a color at the i-th draw. Here, the calculation of the entropy $H\left(X_{i}\right)$ is not depenending on the previous draws, as we did not obtain any information. All balls up to the i-th draw were drawn without looking at them, that is, without gain of information. Therefore, the probabilities did not change. (The experiment can be described as taking $i-1$ balls from one urn and putting them into another urn without looking at them. Logically the probability distribution of the i th draw is not affected by that.)
(c) We find that $p\left(X_{1}=c_{1}, X_{2}=c_{2}\right)=p\left(X_{1}=c_{2}, X_{2}=c_{1}\right)$, where c_{i} is a certain color. Thus, a draw $c_{1} c_{2}$ has the same probability as a draw $c_{2} c_{1}$. A constructive way to understand this : Assume the total number of balls is $M=R+W+B$, where $R=p_{R} M$ is the number of red balls, $W=p_{W} M$ is the number of white balls, and $B=p_{B} M$ is the number of black balls. With this information it is possible to construct a tree, where on each branch one can write the probability to draw a certain color. Example : First draw is a red ball, probability is $p_{R}=R / M$. Second ball is a white ball, probability is $W /(M-1)$. Compare with firstly drawing a white ball (probability $\left.p_{W}=W / M\right)$, and secondly drawing a red ball (probability $R /(M-1)$). We find

$$
\frac{R}{M} \frac{W}{M-1}=\frac{W}{M} \frac{R}{M-1}
$$

This example could be repeated for all color combinations, proving the relation.
(d) The probability to draw a red ball with the second draw is given by

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=b, X_{2}=r\right)+p\left(X_{1}=n, X_{2}=r\right)
$$

since getting a red ball for the second draw may be preceded by drawing a red, black or white ball first. With the result of (c) one finds

$$
p\left(X_{2}=r\right)=p\left(X_{1}=r, X_{2}=r\right)+p\left(X_{1}=r, X_{2}=b\right)+p\left(X_{1}=r, X_{2}=n\right)=p\left(X_{1}=r\right)
$$

(e) The calculation of (d) shows that $p\left(X_{2}=r\right)=p\left(X_{1}=r\right)$. Similarly, $p\left(X_{2}=b\right)=p\left(X_{1}=b\right)$ and $p\left(X_{2}=n\right)=p\left(X_{1}=n\right)$.
(f) The marginal probabilities are the same for the first or second draw, i.e. $p\left(X_{2}=c_{i}\right)=$ $p\left(X_{1}=c_{i}\right)$, thus $H\left(X_{2}\right)=H\left(X_{1}\right)$.
(g) By using the chain rule $H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \leq H\left(X_{i}\right)$, one can write for dependent random variables $\quad H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq \sum_{i=1}^{k} H\left(X_{i}\right)$.
Using $H\left(X_{i}\right)=H(X)$, one obtains $H\left(X_{1}, X_{2}, \ldots, X_{k}\right) \leq k H(X)$.

2-3.

(a) Using the definition of the conditional probability, one can write $p(x, z \mid y)=p(x \mid y) p(z \mid x, y)$. However, for the Markov chain $p(z \mid x, y)=p(z \mid y)$, thus one obtains $p(x, z \mid y)=p(x \mid y) p(z \mid y)$.
(b) The chain rule for mutual entropies is given by

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}: Y\right)=\sum_{i=1}^{n} H\left(X_{i}: Y \mid X_{1}, X_{2}, \ldots, X_{i-1}\right)
$$

Thus, $H(X: Y, Z)=H(Y, Z: X)=H(Y: X)+H(Z: X \mid Y)$ and $H(Y, Z: X)=H(Z: X)+H(Y: X \mid Z)$. Furthermore, we have the definition (see lecture)

$$
H(Z: X \mid Y)=-\sum_{x y z} p(x, y, z) \log \frac{p(x \mid y) p(z \mid y)}{p(z, x \mid y)}
$$

Using the result of (a), we conclude that $H(Z: X \mid Y)=0$. Taking into account that $H(Y: X \mid Z) \geq$ 0 , one obtains $H(X: Y) \geq H(X: Z)$.
(c) Using the result of $(\mathrm{b}), H(X: Z) \leq H(X: Y)=H(Y)-H(Y \mid X)$. Now $\max \{H(X: Y)\}=\log k$ as $H(Y \mid X) \geq 0$ and $\max \{H(Y)\}=\log k$. The limit is reached if $Y=f(X)$ and Y is uniformly distributed. One finally obtains the inequality $H(X: Z) \leq \log k$.
(d) If $k=1$, then $H(X: Z)=0$. The set \mathcal{Y} contains only one element, thus all information contained in X is lost by the operation $X \rightarrow Y$.

2-4.

(a) The probability of a Bernoulli experiment in general reads $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k}$. Since for a typical sequence $k \approx n p$, we find the probability to emit a particular typical sequence : $p\left(x_{1}, x_{2}, \ldots x_{n}\right)=p^{k}(1-p)^{n-k} \approx p^{n p}(1-p)^{n(1-p)}$.
We can approximate as a function of the entropy :

$$
\log p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx n p \log p+n(1-p) \log (1-p)=-n H(p)
$$

Thus, $p\left(x_{1}, x_{2}, \ldots x_{n}\right) \approx 2^{-n H(p)}$.
(b) The number of typical sequences $N_{S T}$ is given by the number of ways to have $n p$ ones in a sequence of length n (or to get $n p$ successes for n trials in a Bernoulli experiment). Thus,
$N_{S T}=\binom{n}{n p}=\frac{n!}{(n p)!(n(1-p))!}$.
By using the Stirling approximation one obtains $\log N_{S T} \approx n H(p)$.
Comparison to the total number of sequences that can be emitted by the source : $N_{S T}=$ $2^{n H(p)} \leq 2^{n}$.
The probability that the source emits a sequence that is typical is $P_{S T}=p_{S T} N_{S T} \approx 1$ for $n \gg 1$.
(c) The most probable sequence $1111 \ldots . .1$ if $p>1 / 2$ or $0000 \ldots . .0$ if $p<1 / 2$. This sequence is not typical.

2-5.

(a) By replacing $H(Y \mid X)=H(X, Y)-H(X)$ in the definition of the distance, we obtain $2 H(X, Y)-H(X)-H(Y)$. Furthermore, the definition $H(X: Y)=H(X)+H(Y)-H(X, Y)$ gives us another expression for the distance.
(b) Proof of the properties in order of appearance:

1. $\rho(x, y) \geq 0$ since $H(X \mid Y) \geq 0$ and $H(Y \mid X) \geq 0$.
2. $\rho(x, y)=\rho(y, x)$ is trivially given by its definition.
3. $\rho(x, y)=0$ iff $H(Y \mid X)=H(X \mid Y)=0$, which holds iff there exists a bijection between X and Y.
4. Let $A=\rho(x, y)+\rho(y, z)-\rho(x, z)$. Using a), $A=2[H(X, Y)+H(Y, Z)-H(Y)-H(X, Z)]$. Using the strong subadditivity $H(X, Y)+H(Y, Z)-H(Y) \geq H(X, Y, Z)$, we have $A \geq$ $2[H(X, Y, Z)-H(X, Z)] \equiv 2 H(Y \mid X, Z) \geq 0$.

2-6.

(a) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}, X=Y=Z$ with uniform distributions.

We have $H(X: Y)=1$ bit since $H(X: Y)=H(Y)-H(Y \mid X)$ and $H(Y \mid X)=0$ (because X are Y perfectly correlated). We find $H(X: Y \mid Z)=0$ bit since $(X, Y)=f(Z)$. One verifies that $H(X: Y: Z)>0$ and $H(X: Y \mid Z)<H(X: Y)$.
(b) For instance if $\mathcal{X}=\mathcal{Y}=\mathcal{Z}=\{0,1\}$ and $Z=X \oplus Y(\operatorname{sum} \bmod 2)$, with :

	$Y=$		
$\mathrm{P}(X, Y)$	0	1	
0	$1 / 4$	$1 / 4$	$1 / 2$
$X=1$	$1 / 4$	$1 / 4$	$1 / 2$
	$1 / 2$	$1 / 2$	1

We obtain $H(X: Y)=0$ bit since X and Y are independent and thus $H(Y \mid X)=H(Y)$. Furthermore, $H(X: Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$. In our example X is fixed if one knows Y and Z. Thus, $H(X \mid Y, Z)=0$. This implies $H(X: Y \mid Z)=H(X \mid Z)$. One obtains $H(X: Y \mid Z)=1$ bit. One verifies that $H(X: Y: Z)=-1$ bit <0 bit and $H(X: Y \mid Z)>H(X: Y)$. We confirm furthermore, that $H(X: Z)=H(Y: Z)=0$. Therefore, the corresponding Venn diagram is like in Fig. 1, which shows that there is a negative overlap between the three random variables X, Y and Z.

Optional : An interesting exercise is to determine under which conditions (independence, perfect correlation) on the three variables X, Y and Z one obtains a maximal or minimal $H(X: Y: Z)$.

Figure 1 - Venn diagram depicting example 2-6. (b).

