INFORMATION AND CODING THEORY

Solution of exercise sheet n°® 2.

2-1.

d p(y). For this we

(a) First, one needs to find the marginal probability distributions p(z) p(y
}. Thus, we find

an
use the relation p(x) = Zyp(:c,y). We obtain that p(z) = p(y) = % %
H(X)=->_p(z)logp(z) = HYY) = log 3 bits.
(b) In order to compute H(X|Y), we need to find p(z|y), which we obtain via p(z|y) =

p(z,y)/p(y). Using the definition of H(X[Y), we obtain H(X|Y) = =3 p(z,y)log, p(z|y) =
log 3 — 4/9 bits. With the same method, we find H(Y|X) = log3 — 4/9 bits.

(c) Using the results of (a) and (b), we directly compute H(X,Y) = H(X) + H(Y|X) =
2log 3 —4/9 bits.

(d) Using (a) and (b), we find H(X:Y) = H(X) — H(X|Y) = 4/9 bits.

(e) See lecture.

2-2.

(a) With the chain rule one one can write

H(X1, Xg, oo, X)) = S8 H(XH| X1,y X1).

The i-th draw with replacement implies that X; is independent of X;. Thus, H(X;, X, ..., Xj) =
k

> i H(X).

As all draws have the same probability distribution, we obtain

H(Xy, Xo, ..., Xy) = kH(X).

(b) The random variable X; corresponds to drawing a color at the i-th draw. Here, the calcu-
lation of the entropy H(X;) is not depenending on the previous draws, as we did not obtain
any information. All balls up to the i-th draw were drawn without looking at them, that is,
without gain of information. Therefore, the probabilities did not change. (The experiment can
be described as taking ¢ — 1 balls from one urn and putting them into another urn without
looking at them. Logically the probability distribution of the ith draw is not affected by that.)

(¢) We find that p(X; = ¢1, Xo = ¢2) = p(X; = ¢2, X5 = ¢1), where ¢; is a certain color. Thus,
a draw cqcy has the same probability as a draw cocq. A constructive way to understand this :
Assume the total number of balls is M = R+ W + B, where R = pr M is the number of red
balls, W = pw M is the number of white balls, and B = pg M is the number of black balls.
With this information it is possible to construct a tree, where on each branch one can write the
probability to draw a certain color. Example : First draw is a red ball, probability is prg = R/M.
Second ball is a white ball, probability is W /(M — 1). Compare with firstly drawing a white
ball (probability py = W/M), and secondly drawing a red ball (probability R/(M — 1)). We

find
R W W R

MM—-1 MM-1
This example could be repeated for all color combinations, proving the relation.

(d) The probability to draw a red ball with the second draw is given by

p(Xo=r)=pXi=rXo=r)+pX1=bXo=7)+p(X1=n,Xo=7),
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since getting a red ball for the second draw may be preceded by drawing a red, black or white
ball first. With the result of (c¢) one finds

p(Xo=r)=pXi=rXo=r)+pXi=7Xo=0)+p(X;i=r,Xo=n)=p(X; =1).

(e) The calculation of (d) shows that p(Xy = r) = p(X; = r). Similarly, p(Xy = b) = p(X; =b)
and p(Xs =n) = p(X1 =n).

(f) The marginal probabilities are the same for the first or second draw, i.e. p(Xy = ¢;) =
p(Xl = Ci), thus H(XQ) = H(Xl)

(g) By using the chain rule H(X;|X;_1,...., X1) < H(X;), one can write for dependent random
variables H(Xy, Xo, .y Xi) < Zle H(X;).

Using H(X;) = H(X), one obtains H (X, Xs, ..., X}) < kH(X).

2-3.

(a) Using the definition of the conditional probability, one can write p(z, z|y) = p(z|y)p(z|z, y).
However, for the Markov chain p(z|z,y) = p(z|y), thus one obtains p(x, z|y) = p(x|y)p(z|y).

(b) The chain rule for mutual entropies is given by

H(X1, Xs,., XY) =Y H(X:Y X1, Xa, .0, Xi1).
i=1
Thus, H(X:Y, Z) = H(Y, Z:X) = H(Y:X)+H(Z:X|Y) and H(Y, Z:X) = H(Z:X)+H(Y:X|Z).
Furthermore, we have the definition (see lecture)

H(Z:X|Y) = Zp x,y, z) log <:C(’Z,:)$Ty|)y)

TYZ

Using the result of (a), we conclude that H(Z:X|Y) = 0. Taking into account that H(Y:X|Z) >
0, one obtains H(X:Y') > H(X:Z).

(c) Using the result of (b), H(X:Z) < H(X:Y) = H(Y)—H(Y|X). Now max{H (X:Y)} = logk
as H(Y|X) > 0 and max{H (Y")} = log k. The limit is reached if Y = f(X) and Y is uniformly
distributed. One finally obtains the inequality H(X:Z) < logk.

(d) If £ = 1, then H(X:Z) = 0. The set ) contains only one element, thus all information
contained in X is lost by the operation X — Y.

2-4.
(a) The probability of a Bernoulli experiment in general reads p(z1,xo,...7,) = p*(1 — p)" k.

Since for a typical sequence k ~ np, we find the probability to emit a partlcular typical se-

quence : p(z1,To, ...T,) = pF(1 — p)"F ~ pP(1 — p)n(=P),
We can approximate as a function of the entropy :

log p(21, T2, ...xn) & nplogp +n(1 — p)log(l — p) = —nH(p).

Thus, p(ilh, Ta, xn) ~ 2—nH(p)

(b) The number of typical sequences Ngr is given by the number of ways to have np ones in
a sequence of length n (or to get np successes for n trials in a Bernoulli experiment). Thus,

2



_(n) _ n!
Nsr = (1) = =y
By using the Stirling approximation one obtains log Ngr ~ nH (p).
Comparison to the total number of sequences that can be emitted by the source : Ngy =
ont (p) < om,
The probability that the source emits a sequence that is typical is Psy = psrNgr ~ 1 for
n > 1.

(¢) The most probable sequence 1111.....1 if p > 1/2 or 0000.....0 if p < 1/2. This sequence is
not typical.

2-5.
(a) By replacing H(Y|X) = H(X,Y) — H(X) in the definition of the distance, we obtain
2H(X,Y) — H(X) — H(Y). Furthermore, the definition H(X:Y) = H(X)+ H(Y) — H(X,Y)
gives us another expression for the distance.
(b) Proof of the properties in order of appearance :
1. p(x,y) > 0since H(X|Y) >0 and H(Y|X) > 0.
2. p(z,y) = p(y,x) is trivially given by its definition.
3. p(z,y) =0iff HY|X) = H(X|Y) = 0, which holds iff there exists a bijection between
X and Y.
4. Let A= p(z,y)+p(y,z)—p(x,2). Using a), A =2[H(X,Y)+ H(Y,Z)—H(Y)—H(X, Z)].
Using the strong subadditivity H(X,Y) + H(Y,Z) — H(Y) > H(X,Y, Z)), we have A >
20H(X,Y,Z) - H(X,Z)|=2H(Y|X,Z) > 0.

2-6.

(a) For instance if X =Y = Z = {0,1}, X =Y = Z with uniform distributions.

We have H(X:Y) = 1 bit since H(X:Y) = H(Y) — H(Y|X) and H(Y|X) = 0 (because X
are Y perfectly correlated). We find H(X:Y'|Z) = 0 bit since (X,Y) = f(Z). One verifies that
H(X:Y:Z)>0and H(X:Y|Z) < H(X:Y).

(b) For instance if ¥ =Y = Z ={0,1} and Z = X @Y (sum mod 2), with :

Y =
P(X,Y)| 0 1
0] 1/4 1/4[1/2
X= 1[1/4 1/4]1/2
172 1/2] 1

We obtain H(X:Y) = 0 bit since X and Y are independent and thus H(Y|X) = H(Y).
Furthermore, H(X:Y|Z) = H(X|Z) — H(X|Y, Z). In our example X is fixed if one knows Y
and Z. Thus, H(X|Y, Z) = 0. This implies H(X:Y|Z) = H(X|Z). One obtains H(X:Y|Z) =1
bit. One verifies that H(X:Y:Z) = —1 bit < 0 bit and H(X:Y|Z) > H(X:Y). We confirm
furthermore, that H(X : Z) = H(Y : Z) = 0. Therefore, the corresponding Venn diagram is
like in Fig. 1, which shows that there is a negative overlap between the three random variables
X,Y and Z.

Optional : An interesting exercise is to determine under which conditions (independence, perfect
correlation) on the three variables X, Y and Z one obtains a maximal or minimal H(X:Y:Z).



FIGURE 1 — Venn diagram depicting example 2-6. (b).



