
Information and coding theory

Solution of exercise sheet n◦ 4:

4-1.

(a) The table of the Lempel-Ziv code:

Position Substring Output Output-encoded
1. A (0,A) (00,000)
2. A (1, ) (01,011)
3. AB (1,B) (01,001)
4. ABB (3,B) (11,001)
5. ABC (3,C) (11,010)
6. (0, ) (00,011)
7. ABA (3,A) (11,000)
8. B (0,B) (00,001)
9. C (0,C) (00,010)
10. . (0,.) (00,100)

The alphabet of the source reads A = {A, B, C, }. To encode the position on can use 2 bits
(sufficient to encode 0,1,2,3). Furthermore, one needs three bits to encode the character (taking
into account adding the “.” at the end). Thus, one needs 5 bits per substring, which gives in
total 50 bits. In a naive way one needs 3× 18 = 54 bits to send the sequence. We remark that
asymptotically one tends to a number of bits per symbol which is equal to the entropy of the
source, and thus smaller than the naive encoding, except in the case of a source with uniform
distributed probabilities.

The elements A,B and C of the last ABC appear in different substrings for the first example.
For the second example, ABC is part of the sub string that contains the last character.

(b)

Position Substring Output Output-encoded
1. A (0,A) (000,00)
2. B (0,B) (000,01)
3. AA (1,A) (001,00)
4. AAA (3,A) (011,00)
5. AAAA (4,A) (100,00)
6. AAAAA (5,A) (101,00)
7. BB (2,B) (010,01)
8. . (0,.) (000,11)

The alphabet of the source reads A = {A, B}.
Lempel-Ziv: 5 ∗ 8 = 40 bits
Naive encoding: 2 ∗ 19 = 38 bits
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(c)

Position Substring Output Output-encoded
1. A (0,A) (000,00)
2. B (0,B) (000,01)
3. AA (1,A) (001,00)
4. AAA (3,A) (011,00)
5. AAAA (4,A) (100,00)
6. AAAAA (5,A) (101,00)
7. AAAAAA (6,A) (110,00)
8. . (0,.) (000,11)

The alphabet of the source reads A = {A, B}.
Lempel-Ziv: 5 ∗ 8 = 40 bits
Naive encoding: 2 ∗ 23 = 46 bits
(d) The original sequence is: AABABC ABBBBBBBB.

4-2.

(a) The optimal method of asking questions can be found by considering the Huffman code
applied to the source X1X2...Xn.

In order to apply this code one needs to define a new random variable Y which has an
alphabet that contains all outcomes of the sequence X1X2...Xn That is,

Y = { 111...111︸ ︷︷ ︸
“All objects are faulty”

, 111...110︸ ︷︷ ︸
“The first n− 1 objects are faulty, the last one is not”

,

111...100︸ ︷︷ ︸
“The first n− 2 objects are faulty, the last two are not”

,

111...101︸ ︷︷ ︸
“The first n− 2 objects and the last one are faulty, the (n− 1)th object is not faulty”

,

..., 000...000︸ ︷︷ ︸
“No object is faulty.”

}.

(1)

In total there are 2n possible sequences and we allocate to them the following probability
distribution

q(y) = {p1p2p3 · · · pn, p1p2p3 · · · pn−2pn−1(1− pn),

p1p2p3 · · · pn−2(1− pn−1)(1− pn),

p1p2p3 · · · pn−2(1− pn−1)pn,

..., (1− p1)(1− p2) · · · (1− pn)}.

(2)

For given numbers for p1, p2 etc. We construct the priority queue of Y using the probabilities
q(y) (q(y) has to be normalized) and then construct the Huffman code.
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(b) The longest sequence of in the set of questions is associated with least probable the case.
Since pi >

1
2

the least probable case is when no object is faulty. The second least probable case
is when only the last object is faulty. These two cases are the leaves of the longest paths in the
Huffman tree. The last question is thus: “Is the last object faulty?”.

4-3.

The player B uses the optimal code. We also know that this player needs to ask, on average,
35 questions (“bits”) to identify the object. This implies the inequality

H(X) ≤ 35 < H(X) + 1

⇒ 34 < H(X)

For a fixed number of objects, the distribution of objects of player A which gives the high-
est entropy is the uniform distribution. Conversely, if the entropy is fixed then the uniform
distribution minimizes the number of objects. The uniform distribution offers a possibility to
calculate a lower bound on the number of objects:

34 < log2 m.

We conclude that there are at least 234 ' 1.7× 1010 objects in the ensemble.

4-4.

(a) The probability distribution that maximizes the Shannon entropy is the one where all
possible elements have the same probability to occur. There are n + 1 possible elements: n
where one of the coins is counterfeit and one element taking into account the possibility that
no coin is counterfeit. The probability distribution of this case is pi = 1

n+1
, and the Shannon

entropy is H(X) = log2(n + 1) bits.

(b) With the optimal code, one needs on average k weighs with k such that

H(X) ≤ k < H(X) + 1. (3)

For the case of maximal entropy, we have

log2(n + 1) ≤ k < log2(n + 1) + 1. (4)

(c) With the help of (b) one deduces that n + 1 ≤ 2k < 2(n + 1), thus, n ≤ 2k − 1.

(d) The probability distribution attains the bound, if n = 2k − 1 and thus pi = 1
2k

(probability
distribution which is 2-adic).

Weigh Max. coins
1 1
2 3
3 7
4 15

The bound is attained if one has a number of coins equal to 1, 3, 7, 15, ... .

4-5.

(a) We are given L−H5(X) = 0

L−H5(X) =
m∑
i=1

pili +
m∑
i=1

pi log5 pi = 0,
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but li = − log5 5−li , so we can rewrite

L−H5(X) = −
m∑
i=1

pi log5 5−li +
m∑
i=1

pi log5 pi = 0.

Defining ri = 5−li∑
j 5−lj

and R =
∑

i 5−li , we have

−
∑
i

pi log5 (ri ·
∑
j

5−lj) +
m∑
i=1

pi log5 pi = 0,

−
∑
i

pi log5 ri − log5

∑
j

5−lj +
m∑
i=1

pi log5 pi = 0,

which can be simplified into

L−H5(X) =
∑
i

pi log5

pi
ri
− log5 R = 0.

The Kraft inequality tells us that R ≤ 1. Also note that ri is a probability distribution, since
ri ≥ 0 and

∑
i ri = 1. So we can rewrite the previous expression using the definition of the

relative entropy D(x||y):

L−H5(X) = D(p||r) + log5

1

R
= 0.

We know that D(p||r) ≥ 0 and log5
1
R
≥ 0 since R ≤ 1. The non-negativity of the inequalities

implies R = 1 and pi = ri = 5−li .

(b) Since L = H5(X) we know that the 5-adic code is optimal. Thus, we can construct it using
the Huffman code. For each step of this encoding one groups 5 elements into one, thus the
number of elements is decreased by 4 at each step. If at the beginning one had m elements,
at the end of the encoding, i.e. after k steps, only one element remains (m − 4k = 1). Thus,
m = 4k + 1.
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