## Information and coding theory

## Solution of exercise sheet $\mathrm{n}^{\circ} 5$ :

5-1.
Channel capacity : $C=\max _{p(x)} I(X: Y)$. There are three ways to calculate $I(X: Y)$ :

1. $I(X: Y)=\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}$.
2. $I(X: Y)=H(X)-H(X \mid Y)$.
3. $I(X: Y)=H(Y)-H(Y \mid X)$.

Note that for the (memoryless) additive noise channel where the input $X$ and the noise $Z$ are uncorrelated we can use the relation $H(Y \mid X)=H(X+Z \mid X)=H(Z)$. Therefore, for the calculation of the capacity we can use the equation

$$
\begin{equation*}
C=\max _{p(x)}\{H(Y)\}-H(Z), \tag{1}
\end{equation*}
$$

where the second term $H(Z)$ does not depend on $X$ (and thus, $\mathrm{p}(\mathrm{x})$ ).
To compute the capacity as a function of $a$ we need to consider three cases :
(I) $a=0:$ No noise is added, thus $Y=X$ and $H(Z)=0$. The capacity is therefore $C=\max _{p(x)} H(p, 1-p)=1$ bit.
(II) $a>1$ : The output alphabet reads $\mathcal{Y}=\{0,1, a, 1+a\}$. For the input variable $X$ we define the general probability distribution $P(X=0)=p, P(X=1)=1-p$. Then we can compute probability distribution of the output $Y$ :

$$
\begin{gathered}
P(Y=0)=P(X=0) \cdot P(Z=0)=\frac{p}{2}, \\
P(Y=1)=P(X=1) \cdot P(Z=0)=\frac{1-p}{2}, \\
P(Y=a)=P(X=0) \cdot P(Z=a)=\frac{p}{2}, \\
P(Y=a+1)=P(X=1) \cdot P(Z=a)=\frac{1-p}{2} .
\end{gathered}
$$

We conclude that each output can be associated to a unique combination of input $X$ and noise $Z$ and thus, there is no error. We can recover the result in (I) by substituting the probability distribution $p(y)$ in equation (1) :

$$
C=\max _{p}\left\{-p \log _{2}\left(\frac{p}{2}\right)-(1-p) \log _{2}\left(\frac{1-p}{2}\right)\right\}-1 \text { bit. }
$$

This is maximized by $p=\frac{1}{2}$ for which $C=1$ bit.
(III) $a=1:$ In this case, $\mathcal{Y}=\{0,1,2\}$. Similar to the reasoning above, if one obtains $Y=0,2$ then there is no error when guessing the $X$ sent. However, $Y=1$ corresponds to either $X=0, Z=1$ or $X=1, Z=0$. We find the output probability distribution $p(y)=$ $\left\{\frac{p}{2}, \frac{1}{2}, \frac{1-p}{2}\right\}$. Substituting this in the capacity formula (1) we find that $C=\frac{1}{2}$ bits for $p=\frac{1}{2}$.

5-2. This exercise can be solved in the same way as in ex. 5-1, i.e. because the input $X$ and noise $Z$ are independent we can use Eq. (1) (warning : in general equation (1) is not valid!).
(a) We again parametrize the input probability distribution, but now, as the input takes 4 values we set it to $p(x)=\{a, b, c, d\}$ where $a+b+c+d=1$ (alternatively one can include the constraint into the parametrization, so write $p(x)=\{a, b, c, 1-a-b-c\})$. Note that -1 $\bmod 4=3$, so the output alphabet reads $\mathcal{Y}=\{0,1,2,3\}$. Now, we have to find the parameters $a, b, c, d$ that maximize the output entropy $H(Y)$. We can express (similar to ex. 5-1) $p(y)$ as a function of $a, b, c, d$

$$
p(y)=\left\{\frac{a}{4}+\frac{c}{4}+\frac{d}{2}, \frac{b}{4}+\frac{c}{2}+\frac{d}{4}, \frac{a}{4}+\frac{b}{2}+\frac{c}{4}, \frac{a}{2}+\frac{b}{4}+\frac{d}{4}\right\} .
$$

Now we try to find $a, b, c, d$ such that the (optimal) uniform distribution $p(y)=\left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}$ is reached (warning : in general it may not be possible to achieve this! Then one needs to use Lagrange multipliers). We have 4 equations +1 equation for the constraint $a+b+c+d=1$ to solve (one equation is linearly dependent on the others). We find that $a=c$ and $b=d$. Namely, there is an infinite number of solutions and among them $a=b=c=d=1 / 4$, i.e., the uniform distribution for $X$ is a solution.
(b) When we substitute the solution of (a) in Eq. (1) we find $C=\frac{1}{2}$ bits.
(c) We need to sum both noises: $Z_{\text {total }}=Z_{1}+Z_{2}$ and again follow a calculation like in (a). One obtains the new probability distribution by noting that $(-2 \bmod 4)=(2 \bmod 4)=2 . Z_{\text {total }}$ takes the values : $\{-1,0,1,2\}$ with probabilities $\left\{\frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{8}\right\}$. We have thus $H(Z)=H\left(\frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{8}\right)$ and we find $C=\log _{2} 4-1.91=0.09$ bits.
(d) $C_{\text {total }}=C_{1}+C_{2}=1$ bit. (The capacity is additive!)

## 5-3.

(a) If $p(X=1)=p$ and $p(X=0)=1-p$. One obtains:

$$
I(X: Y)=H\left(\frac{1-p}{2}, \frac{p}{2}\right)-p
$$

Taking into account that :

$$
\begin{equation*}
\frac{\partial H(x, 1-x)}{\partial x}=\log _{2} \frac{1-x}{x} \tag{2}
\end{equation*}
$$

The maximum is found for $p^{*}=\frac{2}{5}$ and $C=I_{p=\frac{2}{5}}(X, Y)=\log _{2} 5-2$ bits.
(b) The binary symmetric channel has capacity $C=1-H(\alpha)$ bits, where $\alpha$ is the error rate of the channel, because $I(X: Y)=H(Y)-\sum p(x) H(Y \mid X=x)=H(Y)-H(\alpha) \leq 1-H(\alpha)$ bits.
(c) We have $C=\max _{p(x)} I(X: Y)$. Où $I(X: Y)=H(Y)-H(Y \mid X)$. The entropy at the output is given by $H(Y)=H(1-p \cdot q, p \cdot q)$ and the conditional entropy reads $H(Y \mid X)=$ $p H(q, 1-q) . I(X: Y)$ is maximal if $\frac{\partial I(X: Y)}{\partial p}=0$, which implies

$$
\begin{equation*}
q \cdot \log _{2} \frac{1-p \cdot q}{p \cdot q}=H(q, 1-q) \tag{3}
\end{equation*}
$$

To simplify notations we write $H(q, 1-q)=H$. The distribution $p$ that maximizes $I(X: Y)$ is

$$
\begin{equation*}
p=\frac{1}{q\left(1+2^{\left(\frac{H}{q}\right)}\right)} . \tag{4}
\end{equation*}
$$

We finally obtain the capacity of the channel :

$$
\begin{equation*}
C=\log _{2}\left(1+2^{\left(\frac{H}{q}\right)}\right)-\frac{H}{q} . \tag{5}
\end{equation*}
$$

To check consistency we can test Eq. (5) for $q=0.5$. Since $H(q=0.5)=1$ we confirm the result of (a), i.e. $C(q=0.5)=\log _{2} 5-2$ bits.

## 5-4.

(a) It does not attain the capacity because the uniform distribution does not maximize the mutual information of the channel of exercises 5-3.
(b) For a probability distribution $p(x)$, the maximal transmission rate $R$ is bounded from above by $I(X: Y)$. For the channel of exercise 5-3: $R_{p=1 / 2}<I_{p=1 / 2}(X: Y)=0.3113$ bits.

## 5-5.

(a) $C=\max _{p(x)} I(X: Y)$ and $\tilde{C}=\max _{p(x)} I(X: \tilde{Y})$.

We have $I(X: Y, \tilde{Y})=H(X: Y)+H(X: \tilde{Y} \mid Y)$,
and $I(X: Y, \tilde{Y})=H(X: \tilde{Y})+H(X: Y \mid \tilde{Y})$.
Since $H(X: Y \mid \tilde{Y}) \geq 0$ and $H(X: \tilde{Y} \mid Y)=0$ (see exercise 2-3), we deduce that $I(X: \tilde{Y}) \leq I(X: Y)$. Thus, $\tilde{C}>C$ is impossible.
(b) One requires $H(X: Y \mid \tilde{Y})=0$. This chain thus must satisfy $X \rightarrow \tilde{Y} \rightarrow Y$. This is only possible if $Y \leftrightarrow \tilde{Y}$, i.e. iff $\tilde{Y}=f(Y)$ is a bijective function.

